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In this paper, we propose an AI-based methodology for estimating angle-of-attack and angle-

of-sideslip without the need for traditional vanes and pitot-static systems. Our approach involves

developing a custom neural-network model to represent the input-output relationship between

air data and measurements from various sensors such as inertial measurement units. To generate

the training data required for the neural network, we use a 6-degrees-of-freedom F-16 simulator,

which is further modified to simulate more realistic flight data. The training data covers the

full flight envelope, allowing the neural network to generate accurate predictions in all feasible

flight conditions. Our methodology achieves high-accuracy estimations of angle-of-attack and

angle-of-sideslip, with mean absolute errors of 0.534 𝑑𝑒𝑔 and 0.247 𝑑𝑒𝑔, respectively, during the

test phase. The results demonstrate the potential of the proposed methodology to accurately

estimate important flight parameters without the need for complex and costly instrumentation

systems. The proposed methodology could have significant practical applications in the aviation

industry, particularly in next-generation aircraft instrumentation and control. Future research

could focus on further refining the neural-network model and exploring its application in other

aircraft systems to improve safety and reduce costs.

I. Introduction

The performance and safety of an aircraft are directly related to total airspeed and relative orientation of the airframe
according to the surrounding airflow. The pilot or real-time operator should monitor these physical elements to

assess the flight performance during an operation. These measurements are critical for flight safety as stall warning
systems utilize this feedback to warn the pilot or operators, and flight control algorithms could also use them to improve
flying characteristics. In conventional systems, air data booms are mounted on the aircraft’s nose section to measure
dynamic pressure, angle-of-attack (𝛼), and angle-of-sideslip (𝛽). However, these systems are unsuitable, especially for
new-generation fighter aircraft, because of critical requirements such as stealthiness and aerodynamic efficiency. From a
stealthiness point of view, designers aim to reduce the aircraft’s radar cross-section (RCS), but adding an air data boom
could increase it and affect the detectability in a warfare environment. Aerodynamic efficiency is another critical issue;
adding an air-data boom would not contribute positively.

To address the limitations of conventional air data booms, there has been growing interest in developing alternative
methods for measuring and estimating airspeed and orientation parameters in aircraft. One promising approach is using
AI-based techniques to estimate angle-of-attack and angle-of-sideslip without the need for traditional instrumentation
systems. Recent advances in machine learning have made it possible to develop customized neural network models
that can accurately estimate angle-of-attack and angle-of-sideslip using data from various sensors, such as inertial
measurement units. Unlike traditional instrumentation systems, these AI-based approaches do not require air data
booms, making them more suitable for new-generation fighter aircraft with stringent stealthiness and aerodynamic
efficiency requirements. Furthermore, the use of AI-based techniques can potentially improve the accuracy and
reliability of airspeed and orientation parameter estimation, thus contributing to increased safety and performance in
aircraft operations. However, developing accurate and reliable AI-based models for airspeed and orientation parameter
estimation is a challenging task that requires extensive data collection, processing, and analysis. The quality and quantity
of the training data, the selection of appropriate features, and the choice of neural network architecture are all critical
factors affecting the model’s performance. This paper presents an AI-based methodology for estimating angle-of-attack
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and angle-of-sideslip that overcomes these challenges and achieves high-accuracy estimations without the need for air
data booms. Our approach involves developing a customized neural network architecture that incorporates additional
information about the wind parameters to improve the accuracy of the estimation. We validate the performance of our
methodology using data from a 6-degrees-of-freedom F-16 simulator and demonstrate its potential for improving the
safety and performance of aircraft operations. After considering these fundamental requirements for performance,
safety, and stealthiness, the paper’s primary motivation is to design a neural network-based synthetic air data system to
estimate aerodynamic angles 𝛼 and 𝛽. We utilize an open-source F-16 aircraft model to generate the training dataset
from the JSBSim simulation environment [1]. We applied several modifications to measurement models to obtain
realistic measurements. In addition, we developed an automatic maneuver generation logic to perform maneuvers
that cover the whole flight envelope. Additional attitude, altitude, and flight speed control systems are developed to
recover the aircraft from adverse conditions for the continuity of the data collection process in different mass and flight
conditions. Collected data is utilized for training a data-driven synthetic air data system.

To find the nonlinear mapping for the air data, we utilize deep neural networks, which have been proven to capture
complex input-output relationships through gradient-based optimization and can be used to model any continuous
function [2, 3]. Neural networks are not a recent concept in air data estimation. Rohloff et al. [4] and Samy [5] proposed
introducing neural networks to construct virtual sensors from static pressure measurements on fuselage without using
inertial data. Similarly, Borup et al. [6] got measurements from pressure sensors installed over the UAV structure
combined with wind tunnel tests and used neural networks to model air data. Lerro has studied the problem from both
theoretical and hardware perspectives and applied the technique for UAVs, and small category aircraft [7–10]. The
main advantage of neural networks over filtering algorithms is that they are model-free. Benefiting the advances in
deep learning, one can seamlessly capture highly-nonlinear dynamics. Neural networks can also integrate differential
equations or model-based constraints to introduce further system physics [11], [12]. An alternative method to estimate
the air data is filtering. Lie [13], [14] proposed a cascaded Extended-Kalman filtering architecture to calculate the
angle of attack, sideslip, and aircraft velocity. The drawback of the algorithm is the need for an aircraft model, which
is challenging to achieve in high fidelity. Sun [15] carried this work further to overcome this issue by proposing a
model-free filtering system. Even though the algorithm yields promising results, it relies on the wind estimation module,
which is highly sensitive to wind uncertainties.

This paper presents two significant contributions that aim to enhance the capabilities of existing air data estimation
methods by leveraging synthetic data generation and advanced machine learning techniques. The first contribution of
this paper involves modifying the baseline flight simulator to generate more realistic flight data that covers the complete
flight envelope. This is achieved by incorporating all feasible maneuvers and considering a comprehensive set of
flight conditions. To accomplish this, we have meticulously incorporated critical aspects of aircraft dynamics, such
as aerodynamic forces, propulsion systems, control surface deflections, and environmental factors, into the simulator.
Including these factors ensures that the generated data closely resembles real-world flight data and adequately captures
the complex interactions between the aircraft and its environment. This synthetic data generation approach overcomes
the limitations of traditional data collection methods, which often provide an incomplete representation of the flight
envelope, and significantly reduces the operational costs associated with acquiring extensive flight data. The second
contribution of our paper is the proposal of a customized neural network architecture designed specifically for predicting
the angle of attack and sideslip angle given a proper set of inputs. To maximize the neural network’s performance, we
have employed extensive feature engineering techniques to identify the most relevant input parameters for the model.
The customized neural network architecture is designed with multiple layers and a large number of hidden neurons to
accommodate the high dimensionality and complexity of the input data. This design allows the model to learn intricate
relationships between inputs and outputs, ultimately leading to accurate predictions of the angle of attack and sideslip
angle.

In the following sections of this paper, we present a comprehensive discussion of our proposed air data estimator
framework and its components. First, we outline the air data estimator framework, detailing its design and the rationale
behind its development. Next, we delve into the simulation environment, describing the high-fidelity aircraft model
and its role in generating realistic flight data. The data generation for the full flight envelope section elaborates on our
approach to creating a comprehensive dataset by incorporating all feasible maneuvers and flight conditions. Subsequently,
we introduce the artificial neural networks model, detailing the architecture, feature engineering, and training process for
predicting critical flight parameters. In the estimation results section, we demonstrate the effectiveness of our proposed
framework by comparing the predicted values with actual flight data, highlighting the accuracy and robustness of our
model. Finally, we conclude the paper by summarizing our contributions, their implications for air data estimation, and
potential avenues for future research.
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II. Air Data Estimator Framework
The air data estimator (ADE) framework depicted in Fig. 1 consists of data collection/generation and model training.

One conventional way of collecting data is to get historical data from previous flight records for supervised learning.
This approach’s limitation is that the data do not cover the full flight envelope as it only represents what the aircraft had
flown. This will cause the machine learning model not to learn the complete flight dynamics, as it will be fed with a
subspace of the full envelope. A solution to this issue is collecting lots of flight data, which is operationally expensive.
This paper proposes a synthetic environment that includes a high-fidelity aircraft model and can generate flight data
for all feasible flight conditions. This data is then fed to the machine learning process to learn a predictive model that
calculates the angle of attack and sideslip angle. The actual flight data is only utilized to calibrate the aircraft model
parameters within the synthetic environment.

Fig. 1 Air data estimator: data collection and model training cycle

The synthetic environment developed for this research is a comprehensive flight simulator capable of generating
flight data across the entire flight envelope. This environment is built upon a high-fidelity aircraft model that accurately
captures the complex interactions of aerodynamic forces, propulsion systems, and flight control mechanisms. The
simulator uses a six-degrees-of-freedom (6-DOF) rigid body model, accounting for all the necessary forces and moments
acting on the aircraft. Additionally, it integrates realistic atmospheric conditions, including wind, temperature, and
pressure variations, to ensure that the generated data closely resembles real-world flight conditions.

To create the high-fidelity aircraft model, we first establish a baseline model using available aerodynamic data,
control surface characteristics, and propulsion system performance. Then, we apply an iterative process of fine-tuning
and calibration, utilizing actual flight data to refine the model parameters. The primary objective of this step is to
ensure that the synthetic environment accurately reflects the aircraft’s response to control inputs and environmental
changes. Furthermore, the refined model can be used to generate flight data for various flight conditions, including
off-nominal scenarios that may not have been encountered during actual flights. The data generation process begins
by defining a broad set of flight conditions, encompassing the full flight envelope. This includes varying altitudes,
airspeeds, aircraft configurations, and control surface deflections. For each flight condition, the simulator generates
a corresponding set of data points, including the angle of attack, sideslip angle, and other relevant parameters. The
resulting dataset, comprising millions of data points, is then pre-processed to remove any outliers or inconsistencies,
ensuring the integrity of the data for subsequent machine learning processes. With the dataset in hand, we proceed to
train a predictive model using supervised learning techniques. In this study, we employ a deep neural network (DNN)
architecture chosen for its ability to learn complex relationships between inputs and outputs. The network is designed
with multiple layers and a large number of hidden neurons to accommodate the high dimensionality of the input data.
The output of the trained model is the predicted angle of attack and sideslip angle for any given flight condition.

To validate the performance of the proposed ADE framework, we compare the predicted angle of attack and sideslip
angle from the DNN model with simulated flight data. This comparison demonstrates the effectiveness of our synthetic
environment and high-fidelity aircraft model in generating representative flight data for training the machine learning
model. Moreover, the results show that the ADE framework can successfully learn the full flight dynamics, overcoming
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the limitations of relying solely on historical flight data. The rest of the section explains our synthetic environment, the
modifications applied for a high-fidelity model, the data generation process, and the supervised learning algorithm.

III. Simulation Environment
This study uses JSBSim as our simulation environment, an open-source flight dynamics model (FDM) widely

recognized in the literature [1, 16, 17]. This model incorporates 6-degrees-of-freedom equations of motion, considering
the rotating Earth and quaternion representation for orientation [18]. Additionally, the simulation environment features
the 1976 Standard Atmosphere Model and an appropriate gravity model to ensure realistic environmental conditions.
The aerodynamic and propulsion forces and moments are modeled using look-up tables, which effectively capture the
complex relationships between various flight parameters and the aircraft’s response.

The wind model structure employed in our simulation environment encompasses both 1-cosine gust and turbulence
effects to represent realistic atmospheric conditions during flight better [19–21]. The turbulence model parameters are
derived using a discrete implementation of the Dryden Model, a widely adopted approach for simulating atmospheric
turbulence in flight dynamics simulations. This implementation captures the statistical properties of turbulence and
ensures that the generated flight data reflect the aircraft’s response to such disturbances. By MIL-STD-1797A, the
1-cosine gust model is defined as follows:

𝑣 = 0 𝑥 < 0

𝑣 =
𝑉𝑚

2

(

1 − cos 𝜋𝑥
𝑑𝑚

)

, 0 ≤ 𝑥 ≤ 𝑑𝑚

𝑣 = 𝑣𝑚 𝑥 > 𝑑𝑚

(1)

The 1-cosine gust model simulates a deterministic gust profile, providing a means to assess the aircraft’s performance
and stability in the presence of gust disturbances. By incorporating both turbulence and gust effects into our simulation
environment, we ensure that the generated flight data captures a broad range of atmospheric conditions, enhancing the
robustness and accuracy of the subsequent machine-learning model. This comprehensive approach to modeling wind
conditions also contributes to a more accurate representation of the aircraft’s performance and stability characteristics
under various flight scenarios.

The F-16A Block-32 jet fighter was chosen as the aircraft model for the simulation due to its detailed model structure
and the availability of reliable references in the literature [22–24]. This aircraft has been extensively studied, and
its performance characteristics are well-documented, making it an ideal candidate for our simulation environment.
Moreover, the F-16A model has been subject to various modifications and developments over the years, further enhancing
its suitability for our study. By using the F-16A Block-32 jet fighter as the basis for our high-fidelity aircraft model,
we ensure that our simulation environment accurately captures the complex interactions between aerodynamic forces,
propulsion systems, and flight control mechanisms. This choice also allows us to leverage the wealth of existing
knowledge and data on the aircraft, facilitating the fine-tuning and calibration of our model to generate realistic flight
data.

In addition to the aforementioned features of the simulation environment, we have also developed and integrated
an inertial sensor measurement model that accounts for various sources of error commonly encountered in real-world
applications. These sources of error include bias, G-dependent bias, random noise, quantization error, and measurement
lag, all of which can significantly impact the accuracy and reliability of sensor measurements. To ensure that our
measurement error model accurately reflects the performance of actual inertial sensors, we have adopted the parameters
from the LN-200 Tactical grade Inertial Measurement Unit (IMU) specifications, which are designed to perform
effectively across the entire military operating environment [25]. By incorporating these parameters into our simulation
environment, we can generate realistic sensor data that takes into account the inherent limitations and uncertainties
associated with inertial sensing systems.

𝑦𝑚𝑔𝑦𝑟𝑜
= 𝑦𝑔𝑦𝑟𝑜 + 𝑏𝑔𝑦𝑟𝑜 + 𝑛𝑔𝑦𝑟𝑜 + · · · + 𝑘𝑔𝑔𝑦𝑟𝑜𝑎𝑏𝑜𝑑𝑦 (2)

Besides the core components of the simulation environment, we have also implemented additional control systems
within the aircraft model, including attitude, altitude, and velocity controllers. These control systems play a crucial
role during the automatic maneuver generation phase, as they enable the recovery of the aircraft from adverse flight
conditions, allowing for the collection of long-duration flight data. By incorporating these additional controllers into
the aircraft model, we can effectively capture the dynamic responses of the aircraft under various flight and weight
conditions. One example of the integrated control system is the attitude controller, as illustrated in Fig. 2. This controller
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is specifically utilized to regulate the orientation of the aircraft between maneuver legs, ensuring stability and smooth
transitions during complex flight maneuvers. The inclusion of such control systems not only enhances the realism of our
simulation environment but also provides valuable insights into the performance and stability characteristics of the
aircraft under a diverse array of operating conditions.

Fig. 2 Pitch attitude controller

IV. Data Generation for Full Flight Envelope
As described in the previous section, the synthetic data generator requires three input files to execute the algorithm

effectively: the aircraft model, initial conditions, and maneuver files. The maneuver file is comprised of time-dependent
event lists that dictate the aircraft’s behavior during the simulation. However, due to the high dimensionality of the
data, it is infeasible to manually generate these event lists for the purpose of creating comprehensive flight datasets. To
address this challenge, we have developed an automatic maneuver script that efficiently generates maneuver files for the
synthetic data generator. This script directly produces JSBSim-compatible maneuver files with an "xml" extension,
streamlining the process of generating flight data across a wide range of flight conditions and scenarios. By utilizing the
automatic maneuver script, we can significantly reduce the time and effort required to generate diverse and realistic flight
data, ultimately enhancing the effectiveness of our synthetic data generation approach. Furthermore, this automated
process facilitates the exploration of various flight scenarios and conditions, enabling the machine learning model to
learn from a more comprehensive dataset, and ultimately improving its predictive capabilities.

Fig. 3 Automatic maneuver generation algorithm

Fig. 3 illustrates the main working principle of the automatic maneuver generation algorithm. Within the "Flight

Zone", input values such as body rates and thrust lever position are randomly selected from a specified range with a
certain probability. This randomness ensures that a diverse set of flight conditions and scenarios are covered during
the simulation. If the aircraft approaches the "Danger Zone", which represents a region close to the ground or other
hazardous conditions, the script activates the Attitude control system to prevent the aircraft from descending further and
potentially crashing. This region is referred to as the "Re-Climb Zone". Once the aircraft successfully climbs back to
the "Flight Zone", it resumes its flight with random maneuvers. The altitude boundaries for the flight zones can be
easily adjusted from the input section of the automatic maneuver generation algorithm. This flexibility allows for the
exploration of various flight scenarios and conditions, ultimately contributing to the comprehensive nature of the dataset
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used for training the machine learning model. By incorporating this automated maneuver generation process into the
synthetic data generator, we ensure that the generated flight data effectively spans the entire flight envelope, enhancing
the robustness and accuracy of the resulting air data estimator.

Furthermore, the algorithm allows for the adjustment of the input parameters’ range, such as normalized body rates
and thrust level, which are included in the events. This flexibility enables the generation of time-dependent random
maneuvers, utilizing variable probabilistic distributions in the created maneuver sets. It also allows users to fine-tune
the algorithm by modifying the input range and probabilistic distribution parameters according to the desired flight
characteristics, facilitating the exploration of various flight scenarios. Thanks to the efficiency and adaptability of
the automatic maneuver generation algorithm, a maneuver file containing a diverse set of flight conditions, including
aggressive agile maneuvers, can be generated rapidly. An example of such maneuvers is depicted in Fig. 4.

Fig. 4 Flight path of a sample maneuver set

Leveraging the automatic maneuver generation algorithm, we produced a large number of training datasets to ensure
comprehensive coverage of various flight conditions. The final dataset comprises 288,000 data points, equivalent to a
4-hour flight, and includes 16 distinct flight sets lasting between 15 and 20 minutes each. A sampling time of 0.05
seconds was employed during data collection from the simulation. In creating the datasets, the probability of random
control surface inputs and the range of control surface deflections were adjusted to ensure that each flight set exhibited
unique characteristics. For instance, 4 of the 16 flights in the final dataset consisted of non-aggressive flights with lower
angles of attack. Another 4 flights feature maneuvers with high angles of attack and medium-low thrust levels at stall
limits. Four additional flights in the dataset incorporate gradual climbing and descending maneuvers at varying elevator
deflections and throttle levels. The remaining 4 flights consist of aggressive agile maneuvers with high kinetic energy.

(a) V-n diagram (b) V-h diagram

Fig. 5 Flight envelope and altitude envelope of training data

Utilizing the synthetic environment outputs and basic flight mechanics equations, we have determined the flight
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and altitude envelopes of the training dataset. As depicted in Fig. 5, the flight envelope adheres to the real aircraft’s
g-limits, ensuring a realistic representation of the aircraft’s performance capabilities. This compliance is achieved
by incorporating the background Stability Augmentation System (SAS) into the simulation, which provides artificial
stability to maintain the proper flight characteristics of the aircraft. The incorporation of the SAS not only enhances the
fidelity of the synthetic environment but also ensures that the generated flight data closely mirrors the behavior of an
actual aircraft under various flight conditions. This alignment between the synthetic data and real-world performance
allows for the development of a more accurate and reliable air data estimator, ultimately improving its applicability and
effectiveness in practical scenarios. By simulating a realistic flight envelope and incorporating essential systems like the
SAS, our approach ensures that the machine learning model is trained on a comprehensive and representative dataset,
thus maximizing its predictive capabilities.

(a) Alpha distribution (b) Beta distribution

Fig. 6 Distribution of training data

While the generated dataset encompasses a broad range of angle of attack data, a closer examination of the
distributions within the final dataset reveals a noteworthy concentration of data points, particularly in cruise trim angles.
This observation suggests that the dataset may be more heavily weighted toward stable flight conditions, which could
potentially influence the performance of the air data estimator in less common or more extreme scenarios. Additionally,
although the incorporation of wind and turbulence models enables the generation of data with high sideslip angle values,
it is observed that the sideslip angle predominantly remains around zero degrees for the majority of the flights (as
illustrated in Fig. 6). This finding indicates that the dataset may not fully capture the diverse range of sideslip angle
conditions that could be encountered in real-world flight scenarios. Despite these observations, the dataset still provides
a valuable foundation for training the machine learning model. However, future refinements to the synthetic environment
and data generation process could potentially address these limitations and further enhance the comprehensiveness and
representativeness of the dataset, ultimately contributing to the development of a more robust and accurate air data
estimator.

V. Artificial Neural Networks Model
We adopt a fundamental multi-layer perceptron architecture to regress the air data, 𝑌 , using 𝑋 . For a fully-connected

network with 𝐿 hidden layers, this amounts to the following modelling equations relating the input features 𝑥, to its target
prediction 𝑦. A generic structure of a deep neural network consisting of a multilayer perceptron with 𝑀 input features
and 𝑁 layers. It is composed of sequentially connected layers, which comprise sets of neurons that are combinations of
mathematical operations followed by nonlinear activation functions. The model parameters 𝜉 are defined as 𝜉 = {𝑊, 𝑏},
where 𝑊 = {𝑤𝑖}

𝑁
𝑖=1, and 𝑏 = {𝑏𝑖}

𝑁
𝑖=1. The output of the lth layer is:

𝑓 (𝑥, 𝜉𝑙) = 𝑓𝑤𝑙 ,𝑏𝑙 (𝑥) = 𝑧𝑙

(

∑𝑁𝑙

𝑗=1 𝑤𝑙 𝑗𝑥 𝑗 + 𝑏𝑙

)

(3)

= 𝑍𝑙
(

𝑤𝑇
𝑙
𝑥𝑙 + 𝑏𝑙

)

(𝑙 = 1, . . . , 𝑁) (4)

where 𝑁𝑡 is the neuron number and 𝑍𝑙 is a nonlinear activation function of a specific lth layer, and 𝑥𝑙 is the input of the
lth layer and also the output of the (𝑙 − 1)th layer. In addition to this, 𝑤𝑙 and 𝑏𝑙 are learnable parameters and called
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weight and bias terms of that layer respectively. Finally, the output of the last layer is a result of the composite and
complex mapping defined as:

�̂�(𝑥) :=
(

𝑓𝑤𝑛 ,𝑏𝑛 ◦ · · · ◦ 𝑓𝑤1 ,𝑏1

)

(𝑥) (5)

This work also proposes a cascaded neural network architecture for estimating air data. The architecture depicted in
Fig. 7 is a single neural network consisting of two parts: The first part estimates the intermediate features:

�̂�𝑖𝑛𝑡 :=
(

𝑓
[1]
𝑤𝑛 ,𝑏𝑛

◦ · · · ◦ 𝑓
[1]
𝑤1 ,𝑏1

)

(𝑥) (6)

Fig. 7 Cascaded neural-network architecture for air data estimation

where �̂�𝑖𝑛𝑡 represents 𝑉𝑍−𝑏𝑜𝑑𝑦𝑎𝑒𝑟𝑜 and 𝑉𝑌−𝑏𝑜𝑑𝑦𝑎𝑒𝑟𝑜 for the angle of attack and angle of sideslip, respectively. Then,
we concatenate the intermediate feature to the main feature set and provide this new input to the second part of the
neural network, where we estimate the output variable. Note that these two parts of the neural network are not trained
separately. All trainable parameters in both parts are updated simultaneously at each mini-batch.

𝑥𝑖𝑛𝑡 = {𝑥, �̂�𝑖𝑛𝑡 } (7)

�̂� :=
(

𝑓
[2]
𝑤𝑛 ,𝑏𝑛

◦ · · · ◦ 𝑓
[2]
𝑤1 ,𝑏1

)

(𝑥𝑖𝑛𝑡 ) (8)

The customized neural network architecture aims to increase the accuracy of angle-of-attack and angle-of-sideslip
estimation by incorporating additional information about𝑉𝑍−𝑏𝑜𝑑𝑦𝑎𝑒𝑟𝑜 and𝑉𝑌−𝑏𝑜𝑑𝑦𝑎𝑒𝑟𝑜 , which are not precisely available
in actual flights due to wind uncertainty. To address this issue, we introduce an intermediate estimator to provide the
neural network with additional information about these variables. As the loss in the intermediate estimator decreases,
the accuracy of the main output is expected to increase further. The inclusion of this additional information enables the
neural network to better capture the underlying relationships between air data and measurements from various sensors,
resulting in a more accurate estimation of angle-of-attack and angle-of-sideslip. Furthermore, the use of a customized
neural network architecture allows us to take advantage of the specific characteristics of our data and tailor the model to
our specific problem domain.

VI. Estimation Results
In this section, we present the estimation results obtained from the trained machine learning model based on the

comprehensive dataset generated using the synthetic environment and automatic maneuver generation algorithm. These
results provide insights into the effectiveness and accuracy of our air data estimator in predicting the angle of attack and
sideslip angle under various flight conditions. By analyzing the performance metrics and examining the model’s ability
to handle diverse flight scenarios, we can assess the overall success of our proposed approach in developing a robust and
reliable air data estimator. Furthermore, we will discuss any potential limitations or areas for improvement, offering a
foundation for future refinements and enhancements to our methodology.

The input features for the models, as detailed in Table 1, are derived from flight equations and a Spearman correlation
analysis applied to the data described in Section IV. We have carefully chosen features that are accessible through IMU
units and other digital sensors available on the aircraft. Notably, the airspeeds 𝑢, 𝑣, and 𝑤 are excluded from the feature
set to prevent data leakage, as JSBSim employs these values to calculate the angle of attack and sideslip kinematically.

8



In addition to the feature selection process through Spearman correlation, we conducted a feature importance analysis
using SHAP (SHapley Additive exPlanations) values [26–28] to gain further insights into the contributions of each
input feature to the model’s predictions. SHAP values are a powerful and interpretable method for explaining individual
predictions of machine learning models, particularly in the context of regression problems. For regression problems,
SHAP values quantify the contribution of each feature to the predicted output for a specific data point. Positive SHAP
values indicate that a particular feature increases the predicted output, while negative SHAP values suggest that the
feature decreases the predicted output. By computing the average absolute SHAP values for each feature across all
data points, we can rank the features according to their overall importance in the model. This analysis helps us better
understand the relationships between input features and the model’s predictions and offers valuable insights for potential
model improvements or feature engineering efforts. Figure 8 depicts the feature importance analysis for both angle of
attack and sideslip, highlighting the selected features that exhibit meaningful physical relationships. For example, the
leading edge flap demonstrates a considerable impact on the angle of attack, while the body Y-axis acceleration and
aileron position influence the angle of sideslip significantly.

(a) (b)

Fig. 8 SHAP values for (a) the angle of attack and (b) the sideslip angle

Table 1 Summary of features for training phases

Angle of attack (𝛼) Sideslip angle (𝛽)

Elevator Position Rudder Position

Leading Edge Flap Position Aileron Position

Trailing Edge Flap Position Yaw Rate

Flaperon Position Roll Rate

Speedbrake Position Body Y-Axis Acceleration

Body X-Axis Acceleration

Body Z-Axis Acceleration

GPS Total Velocity

Throttle

Altitude

By employing the selected features, we train distinct models for the angle of attack and sideslip estimation. For the
angle of attack estimation, we use a cascaded deep neural network architecture consisting of five layers, containing 512,
256, 128, 64, and 32 neurons. In contrast, the sideslip angle estimation model comprises five layers with 32, 16, 8, 4,
and 2 neurons, respectively. The training data for these models encompass 288,000 flight data points, equivalent to four
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hours of flight time. Meanwhile, the test set consists of separate flights, totaling 20 minutes of flight time. Both the
training and test datasets have a sampling rate of 20 Hz. This approach ensures a comprehensive representation of
various flight scenarios, which ultimately contributes to the development of robust and accurate angle of attack and
sideslip estimators.

(a) Angle of attack (𝛼) training (b) Sideslip angle (𝛽) training

Fig. 9 Learning curves of developed model

We develop separate models for the angle of attack and sideslip by employing the custom neural network architecture
outlined in Section V. For the intermediate parameters, we choose 𝑉𝑍−𝑏𝑜𝑑𝑦𝑎𝑒𝑟𝑜 and 𝑉𝑌−𝑏𝑜𝑑𝑦𝑎𝑒𝑟𝑜 as intermediate
variables for the angle of attack and angle of sideslip, respectively. The evolution of loss functions is depicted in
Figure 9, where both intermediate and output values can be observed to converge toward the ground truth. Notably,
the validation losses are higher than the training losses, indicating that the models do not suffer from overfitting to
the training data. In Figure 10, a comparison is made between the proposed custom neural network architecture and a
generic feedforward one. The results demonstrate that the customized architecture outperforms the generic feedforward
network, showcasing the effectiveness of the tailored approach in capturing the underlying relationships between the
input features and the target variables for the angle of attack and sideslip estimation.

(a) Default NN Model (MAE: 0.839) (b) Custom NN Model (MAE: 0.338)

Fig. 10 Comparison of Neural Networks Architectures on a test case

The analysis conducted within the simulation environment indicates that the proposed data-driven synthetic air
data system demonstrates promising results. In Fig. 11, the predicted angle-of-attack values are illustrated as blue
lines, while the actual values are represented by orange lines. During the test phase, the mean absolute error (MAE) is
found to be 0.534 degrees. Of particular importance in this simulation is the observation that the proposed system can
estimate the angle-of-attack with a reasonable error bound, even under high angle-of-attack conditions. This feature
holds significant relevance from a flight safety perspective, as it demonstrates the system’s capability to alert the pilot
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or operator to recover the aircraft in near-stall situations. Such a capability underscores the potential of the proposed
synthetic air data system in enhancing flight safety and reliability.

(a) (b)

(c) (d)

Fig. 11 Angle of attack (𝛼) estimation results for the test scenarios (MAE: 0.534 deg)

In a similar fashion, the proposed system is capable of estimating the angle-of-sideslip with a small error bound,
as demonstrated by the results presented in Fig. 12. The mean absolute error (MAE) during the test phase for the
angle-of-sideslip estimation is found to be 0.247 degrees. This outcome further emphasizes the effectiveness and
robustness of the proposed data-driven synthetic air data system in accurately estimating critical flight parameters, such
as the angle of attack and angle of sideslip, which are essential for maintaining safe and stable flight conditions.

Table 2 Comparison of mean absolute errors for different models

Method Angle of Attack Error (deg) Angle of Sideslip Error (deg)

Linear Regression 2.538 0.486

Gradient Boosting 1.178 0.448

Regular Neural Network 0.897 0.396

Customized Neural Network 0.534 0.247

In Table 2, we compare the estimation results for the angle of attack and angle of sideslip using four different models:
linear regression, gradient boosting, regular feedforward neural network, and our proposed customized neural network
architecture. Our analysis shows that the linear regression model results in a significantly high error when estimating
the angle of attack, which indicates its inadequacy in capturing the complex relationship between the input features and
the angle of attack. On the other hand, our proposed customized neural network architecture yields the best results in
estimating the angle of attack, demonstrating its effectiveness in modeling the flight dynamics and learning the complex
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relationships present in the data. As for the angle of sideslip estimation, the results across all four models do not vary
significantly. This can be attributed to the fact that most of the data points for sideslip angle are centered around zero
degrees, which simplifies the learning task for all models. Despite this, it is worth noting that our customized neural
network architecture still performs well in capturing the underlying relationships in the data, making it a suitable choice
for both angle of attack and the angle of sideslip estimation.

(a) (b)

(c) (d)

Fig. 12 Sideslip angle (𝛽) estimation results for the test scenarios (MAE: 0.247 deg)

VII. Conclusions and Future Work
In conclusion, this study has successfully demonstrated a data-driven synthetic air data system capable of estimating

the angle-of-attack and angle-of-sideslip of a fighter aircraft with high accuracy. Utilizing a high-fidelity simulation
environment, we generated training data and tested the proposed method, achieving low test phase mean absolute errors
of 0.534 𝑑𝑒𝑔 for the angle of attack and 0.247 𝑑𝑒𝑔 for the sideslip. Notably, the proposed system can estimate the
angle of attack in near-stall conditions, highlighting its importance from a flight safety perspective. As part of our
future work, we aim to conduct a benchmark study in which the proposed synthetic air data system will be compared
to state-of-the-art filtering techniques, such as the Extended Kalman Filter (EKF) or particle filter. Additionally, we
plan to explore the potential of utilizing physics-informed neural networks to enhance the estimation performance of
our method further. This comparative analysis will enable us to evaluate the estimation performance of our proposed
method and help identify potential areas for improvement or refinement. Overall, our work has laid the groundwork for
a robust and accurate air data estimation system that can be leveraged to enhance the safety and efficiency of fighter
aircraft operations. By incorporating advanced techniques such as physics-informed neural networks, we aim to develop
a more sophisticated and reliable air data estimation framework for future applications.
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