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Abstract
This paper presents a radar‐based algorithm for autonomous estimation of drone
intention. The algorithm is based on radar's kinematic measurements, providing fast and
robust intention estimation for multiple targets. The core idea of the proposed algorithm
is to build intention‐specific features for each intention in advance and use them in actual
drone surveillance situations. To effectively depict the trajectory characteristics of various
intentions, the trajectory frequency is computed on multiple phase planes through Monte
Carlo Simulations. Finally, a naive Bayes classifier is applied to integrate the trajectory
likelihood in different phases and ultimately compute the intention likelihood of all in-
tentions concerned. Numerical simulations for the three candidate intentions of image
acquisition, smuggling, and kamikaze attack demonstrated the performance of the pre-
sented method. The simulation results show that one can estimate the true intention of a
specific drone by comparing the value of each intention likelihood.
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1 | INTRODUCTION

In recent years, the number of incidents caused by drone swarms
has increased. For an effective response to drone swarms, C‐
UAS (Counter Unmanned Aircraft System) systems are being
equipped with automated processes that provide decision
makers with accurate and low‐latency target information.
Figure 1a shows the processing chain of a typical C‐UAS system
where the degree of autonomy varies for each task. Task 1
(detection, tracking) in a typical surveillance system is fully
automated. In contrast, Tasks 2 (identification, classification), 3
(behaviour analysis, intention estimation), and 4 (decision‐
making) still require human involvement at some level [1].

This paper presents a radar‐based algorithm for autono-
mous estimation of drone intention. The algorithm is divided
mainly into the pre‐processing phase and the intention esti-
mation phase. The pre‐processing phase aims to establish an
Asset‐Dependent Intention Bank (ADIB) based on the drone
mission model. ADIB is composed of statistical features that
characterise typical trajectory patterns for the intentions

considered. This paper proposes the trajectory frequency as
the main statistical feature that is obtained from Monte Carlo
simulations. On the other hand, the intention estimation phase
aims to calculate the likelihood of each intention in the ADIB
using the naive Bayes approach.

The trajectory frequency is computed using radar kine-
matic measurements, namely the estimated position and ve-
locity of different detected drones. The usefulness of intention
estimation capabilities based on radar data can be clearly un-
derstood through the following example. Suppose a drone
breached a geofence around a military installation and is being
tracked by a drone surveillance system. An EO/IR (Electro‐
Optical and Infra‐Red) system will capture an image of the
drone and show it to the human operator. If the human
operator discovers from the image that the drone is carrying
explosives, it can be confirmed that the drone has the intent of
‘bombing’ [2]. Even if autonomous image recognition tech-
nologies are applied, this approach of estimating intent is not
appropriate for the case where numerous drones are simulta-
neously present in the surveillance area. This is because most
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EO/IR systems typically have a small instantaneous field of
view (IFoV), meaning that a very limited number of targets can
be simultaneously tracked. On the contrary, radars have a wider
coverage of both range and direction, which means that they
can track multiple drones at the same time. Moreover, radar
can be operated in all weather conditions.

Among the various types of radar system, this paper con-
siders staring Frequency‐Modulated Continuous‐Wave
(FMCW) radar as the primary sensing technology. Staring ra-
dars are usually adopted in C‐UAS systems because they have
advantageous performance benefits compared to scanning ra-
dars in drone surveillance applications [3, 4]. Staring radars often
have a long Coherent Processing Interval (CPI), which is
essential to detect slow‐moving multi‐copters and their Doppler
signatures with fine resolution. Figure 1b illustrates a counter‐
UAS scenario where a staring radar is the main sensor system
and unidentified drone swarms are surrounding a stadium, for
example, in case of a public event.

1.1 | Related work

The three recurring keywords in studies related to intention
estimation (that is, Task‐3 in Figure 1a) are anomaly detection
[5–7], threat assessment [8], and intent inference [9–13].
Among references dealing with intent inference, we review [9–
11] first in which the targets considered are drones.

Ref. [9] proposed an algorithm to estimate the malicious
intent of a drone. The algorithm is based on a Bayesian
inference approach and uses radar data as its sensor system.
However, their concept of intent appeared to be defined to
refer only to a drone's tendency to enter or remain in a
particular portion of the airspace, such as no‐fly zones. No
further considerations as to velocity or flying patterns were
used to inform a more detailed assessment of the intent, such
as the purpose of the flight.

Ref. [10] analysed micro‐Doppler data of a drone modified
to carry and release a grenade. The author showed that the
micro‐Doppler HERM (HElicopter Rotor Modulations) lines
of the drone vary depending on whether the drone is still
carrying or has released the grenade. This idea could be used to
determine if a drone has a ‘bombing’ intention, but it would
not be easily applicable to scenarios of low SNR or long dis-
tance, where the signature of the blades is undetectable.

Ref. [11] proposed an RF‐based drone detection and
identification method. The key idea of this study is that every
drone platform emits different RF patterns from one platform
to another. If a drone is recording a video and transmitting it to
a ground station, it generates unique RF patterns. Although
interesting for the potential passive detection and analysis of
these RF emissions, this approach would not be easily appli-
cable at long distances and for drones that are highly auton-
omous and do not communicate with a ground station.

Refs. [12, 13] proposed radar‐based integrated intent
inference and tracking filter algorithms. The targets considered
in these references are ground vehicles and manned aircraft,
respectively. In such algorithms, the performance of the
tracking filter is expected to be enhanced by using the inferred
intent of the tracked objects.

Ref. [12] proposed the autonomous spatial pattern esti-
mation method for a ground target. Spatial patterns that can be
estimated include a line, arc, or rectangle, which are then fed to
the tracking filter. In other words, the target intent in the paper
is defined as the intention to maintain a certain trajectory
pattern. This means that higher‐level intentions must be esti-
mated by human operators.

Ref. [13], on the other hand, proposed a method that can
simultaneously estimate the class and intent of a military
manned aircraft. The considered classes are cargo and fighter,
and the considered intents are cruise and attack. The paper
demonstrated the performance of the proposed algorithm
through numerical simulations. Meanwhile, a limitation of the
proposed method is that the intention estimation is highly
correlated with only the acceleration estimation. In other
words, targets with high acceleration are considered to have a
high probability of attack intent. Taking into account these
modelling characteristics, their proposed method is not always
appropriate to model intent which should be described also in
relation to other targets or assets in the scenario. For example,
the target A's intent of chasing target B, or flying along a cir-
cular trajectory around asset C, cannot be modelled by using
acceleration‐only approaches. The acceleration‐based intention
estimation of fixed‐wing manned aircraft cannot be directly
applied to small drones because they, especially multi‐copters,
can perform more agile manoeuvres than manned aircraft. In
other words, in the case of small drones, the dynamic range of
the acceleration can be quite large regardless of the drone's
mission.

1.2 | Main contributions

The main contribution of this paper is that it presents a novel
methodology for estimating drone intention using radar's ki-
nematic measurements, where the term ‘intention’ indicates the
specific mission or the purpose of the drone's flight. As
mentioned in Section 1.1, the definitions of the intention of a
target differ in the different related studies. Among the various
definitions of intent, the mission or the purpose of the flight is
the highest level of intention that informs the reason of the
drone's behaviour. If this level of intention can be estimated, it

F I G U R E 1 (a) Processing chain of the conventional C‐UAS system,
(b) Drone surveillance system based on staring radar.
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will be easier to predict the long‐term behaviour of drones,
which will ultimately help improve the performance of C‐UAS
systems. To the best of our knowledge, drones' mission esti-
mation methods fully based on radar's kinematic measure-
ments have yet to be reported in the open scientific literature.

The rest of the paper is organised as follows. The detailed
method for data‐driven setting of the ADIB is explained in
Section 2. Subsequently, Section 3 explains the method to
determine the intention of a drone using the naive Bayes
classifier. The performance of the proposed algorithm is
demonstrated in Section 4. Section 5 summarises and con-
cludes this paper.

2 | ASSET‐DEPENDENT INTENTION
BANK

The possible set of malicious intents can vary depending on
the characteristics of each asset. For example, smuggling by
drones is likely to occur near prisons and is an intentional act.
Obstruction to manned aircraft during take‐off or landing is
likely to occur near airports and may be intentional or acci-
dental. Considering this range of possibilities, we can conclude
that it is reasonable to compose a different set of intention
candidates for each asset and utilise this set to infer the drones'
intent. The set of intention candidates and its characteristics
used by the proposed intention estimation algorithm is referred
to as ADIB (Asset‐Dependent Intention Bank). The following
sub‐sections describe the definition of intention‐specific fea-
tures and a technique for establishing the ADIB, with the
overall work process depicted in Figure 2a.

2.1 | Behaviour analysis for each intention

First, we analyse the mission characteristics for image acqui-
sition, smuggling, and kamikaze attacks, which are general
categories of representative missions that hostile drones can
perform and infer the behavioural characteristics of drones
based on this analysis.

2.1.1 | Image acquisition

Suppose a drone's mission is to capture images of an asset's
specific target or area. The performance of the drone's built‐in
camera limits the maximum allowable range between the drone
and the asset during the image‐recording activity. This is
because the drone has to secure the minimum pixel size of its
target on the captured image, which is required by the mission.
During the image‐recording activity, the speed and angular rate
of the drone are also restricted to some extent to prevent
blurry images from being captured. If the drone's target is
partly surrounded by buildings or structures, the permissible
approaching direction of the drone can be also restricted in
order to exclude occluding obstacles on the captured images.

2.1.2 | Smuggling

Suppose a drone's mission is to deliver smuggled items to its
receiver. The drone flies to a specific point where smuggling is
most likely to occur. After reaching a pre‐planned point within
the asset, the drone may land waiting for pick‐up of the
smuggled items, or drop them and then return to its base. In
both cases, the drones must enter a specific area near or at the
asset, and keep sufficiently low speed and altitude to avoid
damaging the smuggled items during delivery.

2.1.3 | Kamikaze attack

Suppose a drone's mission is to hit a target located at the asset
to cause maximum physical damage via a kamikaze attack. The
kamikaze attack can be committed using drone swarms to
maximise the survivability against C‐UAS systems attempting
to neutralise them. The drones can also store explosives to
maximise their lethality. High speed is vital for drones with
kamikaze attack intention, as this increases their kinetic energy,
leading to higher lethality. Moreover, high speed also increases
the drones' survivability because the kill probability of most C‐
UAS system's interdiction methods decreases when the speed
of drones increases.

2.2 | Heuristic selection of measurement
manifold

After identifying a bank of possible malicious intentions for a
specific asset, the next step is to define the features specific to

F I G U R E 2 (a) Work process for establishing the ADIB, (b) Processing
chain of intention estimation using ADIB.
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each of them. One can expect that the evolution of the state
variables shown by a drone, such as its position and velocity,
will vary depending on its mission. If we can collect a large
number of trajectories for a given single intention, the statistics
of the trajectory dataset can be considered intention‐specific
features. In this study, ‘state variables’ refer to values derived
from the radar's kinematic measurements, such as the position,
velocity, and its rate of change. The word ‘trajectory’ refers to
the series of values for each state variable stored in chrono-
logical order.

We can infer from Section 2.1 that the behavioural
characteristics of each mission can be defined through relative
distance, relative direction, and drone speed, which are rela-
tive geometric information between assets and drones. If we
define an arbitrary multidimensional manifold composed of
measurable state variables, we can use the manifolds as a
space where a histogram of independent trajectory can be
computed. If the trajectories used in calculating the histogram
are various trajectories of drones with the same intention, the
calculated histogram can be considered a statistical charac-
teristic for the drone's intention. More specifically, the mea-
surement space for the histogram has to satisfy the following
two requirements.

� The state variables in the space must be observable using
radar measurements.

� Trajectory characteristics for different intentions should be
clearly demonstrated.

As in Section 2.1, drone's missions have the following
characteristics in common:

(i) After reaching a certain range from the asset, perform the
main mission.

(ii) There are likely to be specific directions to approach the
asset from.

(iii) In the process of approaching the asset, the velocity
vector is controlled in a specific direction and size.

Since the relative range between a drone and an asset is
included as a parameter in all of the characteristics listed
above, relative range can be a key state variable that consti-
tutes the space for histogram computation. From the char-
acteristic (ii) above, the direction of the line of sight vector,
such as elevation and azimuth angle, between a drone and an
asset also can be a state variable. Both angles can in principle
be adopted as state variables that constitute the histogram
calculation space, but only the elevation angle is adopted for
the effective delivery of the proposed method and its per-
formance demonstration in this work. Characteristic (iii) im-
plies that velocity information should also be included for the
histogram calculation space. Therefore, the radial velocity
(rate of change of relative range) and rate of climb (vertical
speed of a drone) are also selected as the state variables for
the histogram calculation space. Summarising, the state vari-
ables to constitute the histogram calculation space are rear-
ranged and defined as follows:

� Range: Rast denoting the drone's distance from the asset.
� Elevation angle: East denoting the drone's elevation angle

from the asset. The sign convention of East is depicted in
Figure 3.

� Radial velocity: Vr,ast denoting the drone's radial velocity
with respect to the asset, where a positive value means that
the drone is approaching the asset.

� Rate of climb: Vv denoting the vertical component of the
drone's velocity vector, where the positive rate of climb
implies an increase in altitude.

These state variables are now used to define the phase
plane on which the histogram will be computed using the
trajectory dataset.

2.2.1 | Phase plane

The phase plane is a two‐dimensional space composed of two
state variables. The proposed method uses three kinds of phase
planes: range‐elevation, range‐radial velocity, and range‐rate of
climb phase plane, indicated by PRE, PRVr, and PRVv,
respectively. For simplicity, PRX will be used to refer to an
arbitrary phase plane.

2.2.2 | Phase trajectory

The phase trajectory is the finite sequence of two‐
dimensional coordinates of the trajectory data correspond-
ing to each phase plane. TPRE , TPRVr , and TPRVv denote the
phase trajectory in the range‐elevation, range‐radial velocity,
and range‐rate of climb phase plane, respectively. Using the
trajectory dataset, each phase trajectory of a single data can
be expressed as:

TPRE ¼ xPRE τ1ð Þ; xPRE τ2ð Þ;…; xPRE τnð Þ
 �

TPRVr ¼ xPRVr τ1ð Þ; xPRVr τ2ð Þ;…; xPRVr τnð Þ
 �

TPRVv ¼ xPRVv τ1ð Þ; xPRVv τ2ð Þ;…; xPRVv τnð Þ
 �

;

ð1Þ

F I G U R E 3 Geometry of the proposed radar simulations, with key
state variables estimated by the detection and tracking processes.
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where

xPRE τið Þ ¼ 〈Rast τið Þ; East τið Þ〉
xPRVr τið Þ ¼ 〈Rast τið Þ; Vr;ast τið Þ〉
xPRVv τið Þ ¼ 〈Rast τið Þ; Vv τið Þ〉:

τi is the ith time step of each dataset, and n is the total number
of time steps used. 〈⋅〉 denotes one coordinate. If N is the
number of datasets used, then we can get a set of phase paths,
that is

TPRE ð1Þ;TPRE ð2Þ;…;TPRE ðNÞ;
�

TPRVr ð1Þ;TPRVr ð2Þ;…;TPRVr ðNÞ;

TPRVvð1Þ;TPRVvð2Þ;…;TPRVvðNÞ
�

;

ð2Þ

where TPRE ðjÞ, TPRVr ðjÞ, and TPRVvðjÞ are the phase trajectories
of the jth dataset.

2.3 | Trajectory frequency on selected phase
planes

The histogram of trajectories defined as in Equation (1) on the
specific phase plane PRX is called the trajectory frequency. To
the best of our knowledge, the concept of trajectory frequency
can only be found in the field of meteorology [14]. For example,
Ref. [14] used the trajectory frequency for analysing statistical
characteristics of an air parcel. The trajectory frequency of the
air parcel provides statistics for studying climate within a spe-
cific region. Similarly, the trajectory frequency of a drone rep-
resents patterns of the drone's relative geometry to an asset.

2.3.1 | Trajectory frequency

The trajectory frequency, F, is the count of different phase
trajectories in a dataset that cross over a specific region/bin on
a specific phase plane. Then, the trajectory frequency matrix
(TFM), F, is the two‐dimensional histogram with trajectory
frequencies as the values of the histogram's bins. The trajectory
frequency matrix FPRX for a phase plane PRX is defined by

FPRX ¼

FPRX
11 FPRX

12 ⋯ FPRX
1β

FPRX
21 FPRX

22 ⋯ FPRX
2β

⋯ ⋯ ⋯ ⋯
FPRX

α1 FPRX
α2 ⋯ FPRX

αβ

2

6
6
6
6
4

3

7
7
7
7
5

: ð3Þ

The subscripts α and β indicate the number of bins for the
range and the other state variable X, respectively. X may
indicate elevation, radial velocity, or rate of climb. Each ele-
ments in FPRX is set as

FPRX
ab ¼

XN

j¼1

1ab TPRX ðjÞ
 �

; ð4Þ

where a and b are the row and column index of the FPRX . In
(4), 1ab TPRX ðjÞ

 �
is the indicator function defined by

1ab TPRX ðjÞ
 �

ð5Þ

¼
def

1 if there exists 〈Rast; X〉 ∈ TPRX ðjÞ;

where Rast ∈ lba; uba½ Þ and X ∈ lbb; ubb½ Þ:

0 otherwise;

8
><

>:

where lba, uba, lbb, and ubb denote the lower bound (lb) and the
upper bound (ub) of the ath range bin and bth X's bin. Figure 4
illustrates how the trajectory frequency can be computed for the
range‐radial velocity phase plane as an example.

After performing computation of trajectory frequency for
each intention, nine different trajectory frequency datasets are
generated (three intentions times three phase planes) which are

FPRE
I ;FPRVr

I ;FPRVv
I ;

n

FPRE
S ;FPRVr

S ;FPRVv
S ;

FPRE
K ;FPRVr

K ;FPRVv
K

o
;

ð6Þ

where the subscripts I, S, and K denote image acquisition,
smuggling, and kamikaze attack intention, respectively. In the
rest of this paper, the subscript I will be used to refer to an
arbitrary intention. The trajectory frequency datasets include
the statistical characteristics of each intention and are utilised
for computing the intention likelihood defined in Section 3.

2.4 | Numerical simulation‐based trajectory
generation

Ideally, it would be preferable to use actual experimental data
for establishing the ADIB. However, this would be challenging

F I G U R E 4 Trajectory frequency of two phase trajectories: TPRVr ð1Þ

and TPRVr ð2Þ. The number of each bin indicates the total number of phase
trajectories that visited the bin. Empty bins indicate the bin with zero crossing
trajectories.
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and requiring to perform thousands of flights to obtain
such a large dataset. As an alternative, this paper proposes a
Monte Carlo simulation‐based trajectory pattern generation
method.

2.4.1 | Waypoint‐following behaviour model

We adopt the waypoint‐following behaviour model [15] to
generate a large amount of data with intention‐specific tra-
jectories. In this model, all intentional behaviours of drones are
mimicked by simple waypoint‐following flights, whereby the
position and speed constraints of each waypoint govern the
drones' motion. This behaviour modelling method is chosen to
provide a rapid and efficient trajectory simulation technique
with low computational burden. Effects such as wind and
related oscillations of the drones and uncertainties in their
motion are not modelled for now but can be added in future
versions of the simulations. It should be noted that the way-
points are used here to mimic mission‐dependent trajectory
patterns, and they do not necessarily coincide with waypoints
set for the automatic flight control system of the drones.

2.4.2 | Waypoints generation

For a systematic setting of waypoints, it is assumed that they
only exist within three regions in the surveillance area: inbound
area, mission area, and outbound area. The number of way-
points in each area can be restricted to a specific number
whenever necessary. Each area is defined as follows:

� Inbound Area: The inbound area indicates a specific re-
gion in the surveillance area where the surveillance system is
likely to detect a drone's first signature. The inbound area
can vary depending on the conditions of the asset and the
surrounding environment. Drones can pop up anywhere in
the surveillance area if the asset is located in the centre of an
urban area where many vehicles and humans always exist.
On the contrary, if the asset is isolated in an area where
civilian access is prohibited, drones will be first detected
near the boundary of the surveillance area.

� Mission area: The mission area indicates a specific region
in the surveillance area where a drone performs the main
activity of the mission. Recording images, releasing smug-
gled items, and hitting a target are expected to occur in the
mission area of the image acquisition, smuggling, and
kamikaze attack intention, respectively.

� Outbound Area: The outbound area indicates a specific
region in the surveillance area where the surveillance system
is likely to lose a retreating drone's track. Like the inbound
area, the outbound area can vary depending on the condi-
tions of the asset and the surrounding environment.
Meanwhile, some missions do not have an outbound area
since they do not include a ‘return’ phase, such as smuggling
by delivering both drone and forbidden items and kamikaze
attacks.

In order to generate random waypoints in a Monte Carlo
fashion, each area must provide its waypoints' probability
density functions (PDFs) of position and speed values for the
drones' flying trajectories. A rigorous definition of such PDFs
would require quantification of factors such as drones' flight
performance, camera (or other payloads) mass, navigation/
guidance accuracy, random movements of drones and targets,
wind/gust strength, drone surveillance system's tracking ac-
curacy, amongst others. In this study, the PDFs for each
waypoint area are instead defined based on simpler assump-
tions, which will be explained later in Section 4. These are still
valid to demonstrate the performance of the proposed algo-
rithm and can be made more complex and realistic in further
iterations beyond the scope of this paper.

The waypoints within the mission area and outbound area
have position and speed constraints, but the very first waypoint
within the inbound area has additional uncertainties in two
direction angles: flight path angle γ and course angle χ, which
are defined in Figure 3. These direction angles are also
randomly set, drawing their values from a uniform distribution
between a given minimum and maximum.

2.4.3 | Simulation framework

The simulation framework used for the Monte Carlo simu-
lation is the RAPID‐SIM, which the authors have developed
to model the radar signatures of small UAVs [16]. The
RAPID‐SIM consists of radar, drone, environment, and
simulation control modules as depicted in Figure 5. For
establishing an intention‐specific dataset consisting of the
diverse trajectories of the aforementioned state variables,
Monte Carlo simulations are performed for each intention.
For each run of the Monte Carlo simulations, the different
sets of waypoints are generated using the waypoint uncertainty
models mentioned in Section 2.4.2. The following assump-
tions and settings are applied for generating intention‐specific
trajectories:

� Consider the drone as a point mass since the accurate
simulation of rotational motion is not necessary.

� The lateral acceleration control loop and the speed control
loop are modelled as first‐order lag systems.

� Proportional Navigation Guidance (PNG) law is applied to
generate lateral acceleration to follow the current waypoint
[17].

� Target waypoint is switched to the next waypoint if the
drone approached the current waypoint close enough [15].

3 | INTENTION ESTIMATION USING
ADIB

The following sub‐sections describe the proposed method to
determine the intention of a drone using radar data and the
established ADIB dataset. First, the conventional signal
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processing flow for FMCW radar is briefly provided in Section
3.1. Section 3.2 justifies the introduction of the naive Bayes
classifier for the estimation of intentions and introduces the
concept of trajectory likelihood, which is computed using the
trajectory frequency. Finally, Section 3.3 explains the decision
algorithm based on the naive Bayes classifier and its application
to the intention inference problem. Figure 6 illustrates the
proposed process chain to determine the drone's intention.

3.1 | Primary measurements of staring
FMCW radar

The data recorded by the multiple channels of the FMCW
radar are organised in a digitised radar cube. Its three di-
mensions indicate the number of receive channels, the fast‐
time (i.e., digitised samples for each radar chirp) and the
slow‐time (i.e., individual chirps received one after the other).
By applying a double FFT in the fast and slow time directions,
range‐Doppler maps can be generated [18], that is, 2D matrices
from which the range and the radial velocity of the targets can
be estimated. This is done by first running detection algorithms
such as CA‐CFAR (Cell‐Averaging Constant False Alarm Rate)
on the range‐Doppler maps in order to detect the cells (pixels)
containing targets and reject noise and clutter. From these

detected cells with targets' signature, the range Rrdr and radial
velocity Vr,rdr are estimated [19]. The direction of arrival
(DoA) then indicates the angular orientation of a target to the
radar [20, 21]. Using the 2D planar‐array antenna, the azimuth
Ardr and elevation Erdr angles of each target can be estimated,
with these angles depicted in Figure 3. Hence, the measure-
ment vector of the radar, z, can be defined as

z ¼ Rrdr Vr;rdr Ardr Erdr½ �⊺: ð7Þ

The tracking filter reduces the noise within the measure-
ments and estimates the necessary variables that are not
directly measured by the CFAR detection and DoA estimation,
such as the four state variables, Rast, East, Vr,ast, and Vv,
defined in Section 2.4.3. To avoid confusion, the state variables
forming the ADIB are assumed to be outputs of the tracking
filter. Thus, the output vector, y, is

y ¼ Rast East Vr;ast Vv½ �⊺: ð8Þ

Details of the tracking filter equations are explained in the
Appendix.

3.2 | Trajectory likelihood matrix

The trajectory frequency matrix (TFM) shown in Equation (6)
describes how frequently an arbitrary coordinate is presented
on a specific phase plane for each intention. This feature can

F I G U R E 6 Process chain of intention estimation using trajectory
likelihood and the naive Bayes classifier.

F I G U R E 5 Message and data interface between modules of RAPID‐
SIM. The simulation control module sets every other modules' parameters
and the initial value of variables based on users' scenario setting. The
environment module provides asset and flight corridor information that
may affect a drone's behaviour. The drone module computes the position
and velocity of each electromagnetic scatter point that is essential for the
radar module to generate synthetic radar data. The radar module generates
range‐Doppler data, micro‐Doppler signatures, and tracking filter‐based
information such as state variables and their covariance.
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be used as a look‐up table (LUT) to calculate metrics of tra-
jectory likelihood. For example, if the state variable of a drone
at a particular time falls within an area with a high trajectory
frequency of a particular TFM, ΛPRX

I , the drone is considered
to have high trajectory similarity to the intention I with respect
to the phase plane PRX . On the contrary, if the state variable
exists within a specific TFM where the trajectory frequency is
zero, the drone can be considered to have low trajectory
similarity with the intention I with respect to the phase plane
PRX .

In order to use the TFM as a metric of similarity, we need
to convert it to a probabilistic model. For the phase plane PRX ,
the probabilistic model should provide the probability:

P ZPRX jCI

 �
; ð9Þ

where the observed coordinate ZPRX is an element of the set
Z ¼ ZPRE ; ZPRVr ; ZPRVv

� �
and ZPRX ¼ 〈R̂ast; X̂〉. CI is an

element of the intention classification set C ¼ CI ; CS; CKf g.
Finding a function that provides a probability over the entire
range of the observation vector is equivalent to finding a
probability density function that provides the probability of a
particular observation Z given the true intention CI.

Trajectory likelihood matrix (TLM) is an empirical esti-
mation of the PDF that corresponds to Equation (9). In the
event space we are dealing with, a single event is an increment
of each element of the TFM by one. The total number of
events is therefore the sum of all the elements of the TFM.
Since probability can be expressed as the ratio of the number
of specific events to the total number of events, we can define
the TLM as follows.

Let the TLM ΛPRX
I be the PDF for the phase plane PRX .

Then, the trajectory likelihood matrix is defined by

ΛPRX
I ¼

ΛPRX
11 ΛPRX

12 ⋯ ΛPRX
1β

ΛPRX
21 ΛPRX

22 ⋯ ΛPRX
2β

⋯ ⋯ ⋯ ⋯
ΛPRX

α1 ΛPRX
α2 ⋯ ΛPRX

αβ

2

6
6
6
6
4

3

7
7
7
7
5

; ð10Þ

where

ΛPRX
ab ¼

FPRX
ab

P
i;jF

PRX
ij

: ð11Þ

Since the TLM (10) is a finite 2D table, a 2D interpolation
method is necessary to evaluate the trajectory likelihood of
arbitrary phase coordinates consisting of real numbers. Let
Λ̂

PRX

I tkð Þ be the interpolated trajectory likelihood at the
tracking filter's update time step tk. That is

Λ̂
PRX

I tkð Þ ¼ BLI ΛPRX
I ; 〈R̂ast tkð Þ; X̂ tkð Þ〉

� �
; ð12Þ

where BLI(A, 〈x, y〉) is the Bilinear Interpolation (BLI) function
with 2D grid data A, and the 2D query points, x and y [22]. We

need three sets of query points which are 〈R̂ast tkð Þ; Êast tkð Þ〉,
〈R̂ast tkð Þ; V̂ r;ast tkð Þ〉, and 〈R̂ast tkð Þ; V̂ v tkð Þ〉. All query points
can be set using the output vector in Equation (28) in the Ap-
pendix. After computing all interpolated trajectory likelihoods
for each intention and each phase plane at tk, we get nine scalar
values that are

Λ̂
PRE

I tkð Þ; Λ̂
PRVr
I tkð Þ; Λ̂

PRVv
I tkð Þ;

n

Λ̂
PRE

S tkð Þ; Λ̂
PRVr
S tkð Þ; Λ̂

PRVv
S tkð Þ;

Λ̂
PRE

K tkð Þ; Λ̂
PRVr
K tkð Þ; Λ̂

PRVv
K tkð Þ

o
:

ð13Þ

The subscripts indicate specific intentions, the same as in
Equation (6). Now we can consider that the conditional
probability in Equation (9) can be computed using Equa-
tion (12). That is,

P ZPRX jCI

 �
¼ Λ̂

PRX

I : ð14Þ

3.3 | Naive bayes classifier

In Section 3.2, we defined a method that computes the indi-
vidual probability P ZPRX jCI

 �
of each observation coordinate

for a given intention. The intention estimation problem, on the
other hand, requires deriving a probability model that com-
putes the intention probability P CIjZð Þ from all the given
observation coordinates. Using Bayes' theorem, the following
expression is derived

P CIjZð Þ ¼
P CIð ÞP ZjCIð Þ

PðZÞ
: ð15Þ

Calculating the value of the denominator in the above
equation is not straightforward, as the total probability of a
particular set of the observation coordinate changes signifi-
cantly depending on the type of behavioural or intention
models considered. However, if the goal of intention estima-
tion is to find the most likely intention that a particular target
might have, the denominator of Equation (15) does not need
to be found. We can use a naive Bayes classifier to solve this
problem.

Applying a naive Bayes model [23], the conditional prob-
ability of the class CI given the observation coordinates Z

satisfies the following expression:

P CIjZð Þ ¼
P CIð ÞΠ3

j¼1P Z jjCi
 �

PðZÞ
; ð16Þ

where Z1 ¼ ZPRE , Z2 ¼ ZPRVr , and Z3 ¼ ZPRVv . By using
Equation (14), P Z jjCi

 �
in Equation (16) corresponds to Λ̂

PRX

I

in Equation (12). Then, Equation (16) is transformed to
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P CIjZð Þ ¼
P CIð ÞΛ̂

PRE

I Λ̂
PRVr
I Λ̂

PRVv
I

PðZÞ
: ð17Þ

Assuming that all the intention classes in Equation (17)
have the same prior probability P CIð Þ and that PðZÞ is iden-
tical for all classes, the multiplication between the interpolated
trajectory likelihoods of the equation can be defined as the
probability score of CI. That is

ΛI ¼ Λ̂
PRE

I Λ̂
PRVr
I Λ̂

PRVv
I ; ð18Þ

where the probability score ΛI is considered as the likelihood
of the intention CI. Then, the class decision rule based on the
likelihood of each intention in the ADIB can be set as

Target0s   Intention ¼ argmax
I∈fI ;S;Kg

ΛI: ð19Þ

As shown in the block diagram of Figure 2b, the intention
likelihoods for each intention as in Equation (18) are computed
independently. Therefore, the proposed algorithm has a time
complexity of O(n), or a linear time algorithm, where n is the
number of intention candidates considered in the ADIB.

4 | NUMERICAL SIMULATIONS AND
RESULTS

This section presents the proposed approach for intention
estimation via the established ADIB and the naive Bayes
classifier. The ADIB consists of three intentions: image
acquisition, smuggling, and kamikaze attack. We first describe
the random waypoint setting for each intention in Section 4.1
and review the intention estimation results in Section 4.2
(image acquisition), 4.3 (smuggling), and 4.4 (kamikaze attack).
In Section 4.5, the confusion matrix generated by Monte Carlo
simulations is shown, and the performance of the proposed
method is analysed based on it.

4.1 | Definition of the ADIB

To compute the trajectory likelihood matrix (10) for each
intention and each phase plane, we need to define the PDFs
for the waypoints of each intention, assuming that a virtual
mission analysis for feasible intentions was performed. The
analysis results can be found in Tables 1–3, where each table
shows the values used for defining the PDFs at each waypoint
for image acquisition, smuggling, and kamikaze attack mission,
respectively. In the tables, U (a, b) denotes the uniform dis-
tribution with the lower bound, a, and the upper bound, b. For
the inbound area, the initial waypoint's position, speed, and
direction are randomly set, while for the mission and outbound
area, only the position and required speed of the waypoints are
randomly set. As mentioned in Section 2.4.2, systematic errors
such as winds and navigation errors were not considered.

However, the noise for the radar measurements was applied in
a realistic manner.

Figure 7 shows the changes of the trajectory likelihood
matrix, ΛPRVr

I , as the number of the total Monte Carlo run, N,
increases. The figure shows that the trajectory likelihood matrix
converges to a specific shape asN increases, hence a sufficiently
large N is needed to secure reliable results for intention esti-
mation. Using the PDFs defined in Tables 1–3, Monte Carlo
simulations were performed with N = 1000 for each mission.
The computed trajectory likelihood matrices (10) are illustrated
later in this section in Figures 9, 12, and 15, with arbitrary phase
trajectories corresponding to each scenario.

It is important to note that in Figures 9, 12, and 15, the
areas with the same colour in different phase planes do not
necessarily represent the same likelihood, as the colours only
indicate the relative difference in likelihood within the same

T A B L E 3 Kamikaze attack's PDFs for waypoints definition.

Variable
Inbound area Mission area
WP1 WP2

Rx,rdr [m] U (−300,300) U (80,120)

Ry,rdr [m] U (400,500) U (180,220)

Rz,rdr [m] U (20,100) U (0,0)

V [m/s] U (23,35) ‐

χ [deg] U (178,182) ‐

γ [deg] U (3,7) ‐

T A B L E 1 Image acquisition's PDFs for waypoints definition.

Variable
Inbound area Mission area Outbound area
WP1 WP2 WP3 WP4

Rx,rdr [m] U (−300,300) U (−100,0) U (−100,0) U (−300,300)

Ry,rdr [m] U (400,500) U (150,250) U (150,250) U (400,500)

Rz,rdr [m] U (20,100) U (20,50) U (20,50) U (20,100)

V [m/s] U (23,27) U (23,27) U (1,3) U (23,27)

χ [deg] U (178,182) ‐ ‐ ‐

γ [deg] U (3,7) ‐ ‐ ‐

T A B L E 2 Smuggling's PDFs for waypoints definition.

Variable
Inbound area Mission area Outbound area
WP1 WP2 WP3 WP4

Rx,rdr [m] U (−300,300) U (50,150) U (80,120) U (−300,300)

Ry,rdr [m] U (400,500) U (250,300) U (180,220) U (400,500)

Rz,rdr [m] U (20,100) U (10,20) U (10,20) U (20,100)

V [m/s] U (23,27) U (23,27) U (1,5) U (23,27)

χ [deg] U (178,182) ‐ ‐ ‐

γ [deg] U (3,7) ‐ ‐ ‐
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phase plane of each intention. The colour bars for each TLM
figure have been omitted not to have too many objects in these
figures, but the actual TLM values can be seen separately in
Figures 10, 13, and 16.

4.2 | Image acquisition scenario

Figure 8 illustrates the spatial locations for each waypoint area
defined by the virtual mission analysis for the image acquisi‐
tion mission. The mission area of the image acquisition
mission is defined as the ideal area to get the best image quality
of the target at the asset. Arbitrary waypoints and trajectory for
the image acquisition are also illustrated in Figure 8. The first
signal of the drone was detected in waypoint 1. The drone
decelerated its speed after reaching waypoint 2 to secure stable

F I G U R E 8 A mission area plus arbitrary waypoints and trajectory of
‘image acquisition’ scenario. The dashed line represents the approximate
area under surveillance.

F I G U R E 9 Trajectory likelihood matrices computed from 1000 Monte
Carlo simulations and phase trajectories (brown lines) of image acquisition
scenario corresponding to each phase plane.

F I G U R E 7 The trajectory likelihood matrix, ΛPRVr
I , for various N, the

number of Monte Carlo simulations. (a) N = 1, (b) N = 10, (c) N = 100,
(d) N = 1000.

F I G U R E 1 0 (a)‐(i) Interpolated trajectory likelihood of image
acquisition scenario corresponding to each phase plane. The final
computed intention likelihood of image acquisition, smuggling, and
kamikaze are shown in (j), (k), and (l), respectively.
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image quality. The image acquisition was continued until the
drone reached waypoint 3. After finishing the image acquisi-
tion, the drone escaped the surveillance area by flying to
waypoint 4.

For brevity, let the high‐TL (Trajectory Likelihood) region
and low‐TL region indicate the regions where the elements of
the computed trajectory likelihood matrix are high and low,
respectively. Figure 9 illustrates the trajectory likelihood
matrices and the drone's phase trajectories on each phase
plane, whereas Figure 10 shows the computed trajectory like-
lihoods and intention likelihoods of the image acquisition
scenario. In each phase plane in Figure 9, the bright yellow and
dark blue indicate high‐TL and low‐TL region within the phase
plane, respectively. The white numbers are the indices of the
waypoints, and the position of the waypoint on the graph in-
dicates the approximate coordinates when the target passes
through that waypoint. In Figure 9a,d,g, it is clearly observed
that the phase trajectories tend to converge in high‐TL region
of the actual intention's (i.e., image acquisition, in this scenario)
trajectory likelihood matrix, which are ΛPRE

I , ΛPRVr
I , and ΛPRVv

I .
Such tendency led to the image acquisition's trajectory likeli-

hoods, Λ̂
PRE

I , Λ̂
PRVr
I , and Λ̂

PRVv
I , being maintained at large values

between 20 and 42 s, as illustrated in Figure 10a,d,g. The large
value of image acquisition's trajectory likelihood results in the
large value of image acquisition's intention likelihood, as shown
in Figure 10j. It should be noted that Figures 10, 13, and 16
show trajectory likelihoods and intention likelihoods only
when each phase coordinate is within the specific range of the
phase plane.

4.3 | Smuggling scenario

Figure 11 illustrates the spatial locations for each waypoint area
for the smuggling mission. Mission area 1 in Figure 11 is
considered to be the ideal approaching course for smuggling,
while mission area 2 is the area where the contraband items
should be dropped at.

F I G U R E 1 1 Mission areas plus arbitrary waypoints and trajectory of
‘smuggling’ scenario.

F I G U R E 1 2 Trajectory likelihood matrices computed from 1000
Monte Carlo simulations and phase trajectories (brown lines) of smuggling
scenario corresponding to each phase plane.

F I G U R E 1 3 (a)‐(i) Interpolated trajectory likelihood of smuggling
scenario corresponding to each phase plane. The final computed intention
likelihood of image acquisition, smuggling, and kamikaze are shown in (j),
(k), and (l), respectively.
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Arbitrary waypoints and the corresponding trajectory for
smuggling are also illustrated in Figure 11. After entering the
surveillance area, the drone decelerated its speed when it
approached waypoint 2 to secure the safe release of contraband
items. After releasing them at waypoint 3, the drone left the
surveillance area.

Figure 12 illustrates the trajectory likelihood matrices and
the drone's phase trajectories on each phase plane. As in the
case of the image acquisition scenario, Figure 12 shows that
each phase trajectory tends to converge to the high‐TL region
of the actual intention's trajectory likelihood matrix (i.e., the
one associated with smuggling, in this scenario).

Figure 13 shows the computed trajectory likelihoods and
intention likelihoods of the smuggling scenario. It is confirmed
from Figure 13k that the likelihood of the actual intention,
smuggling, remained high between 8 and 35 s. In contrast,
other intention likelihoods of image acquisition and kamikaze
attack remained low, as shown in Figure 13j,l.

Figure 12g shows that the range‐rate of climb trajectory of
the smuggling scenario remained in the high‐TL region of the
image acquisition intention's trajectory likelihood matrix at the
initial phase of the scenario. The actual peak of Λ̂

PRVv
I is

9.8 � 10−3 at t = 2.4 s, which can be confirmed in Figure 13g.
This fact implies that it is hard to distinguish the smuggling
and the image acquisition intentions using only the range‐rate
of climb trajectory. However, as seen in Figure 13a,d, the other
trajectory likelihoods of the image acquisition intention
remained low enough to prevent the final smuggling intention
likelihood in Figure 13j from being high.

4.4 | Kamikaze scenario

Figure 14 illustrates the spatial locations for each waypoint area
for the kamikaze attack mission. The mission area in
Figure 14 is the same as the asset area, which is the target of
the drone. Two sets of arbitrary waypoints and the trajectories

for a kamikaze attack are also illustrated in Figure 14. After
entering the surveillance area, the drones kept their speed until
hitting the asset.

Figure 15 illustrates the trajectory likelihood matrices and
the phase trajectories of two different drones with kamikaze
attack intention. Let Drone‐a and Drone‐b denote the drones
with waypoints 1‐2 and 10‐2, respectively. Figure 15 shows that
each phase trajectory of both drones tends to converge to the
high‐TL region of the actual intention's trajectory likelihood
matrix (i.e., the one associated with the kamikaze attack, in this
scenario). However, we can see in Figure 16 that the tendency
of estimating intention for the two drones is clearly different.
For Drone‐a, it is confirmed from Figure 16l that the likeli-
hood of the actual intention, kamikaze attack, remained rela-
tively high to other intentions' likelihood during the entire
scenario. On the other hand, the intention estimation result of
Drone‐b shows that ΛI(t) > ΛK(t) for 8 ≤ t ≤ 11, which can be
considered as an estimation error region. The reason for this
phenomenon is that the likelihood of each phase plane of
kamikaze intention was slightly smaller than that of the image

acquisition intention. More specifically, Λ̂
PRE

I ðtÞ > Λ̂
PRE

K ðtÞ for

8 ≤ t ≤ 13.4, Λ̂
PRVr
I ðtÞ > Λ̂

PRVr
K ðtÞ for 8 ≤ t ≤ 10, and

Λ̂
PRVv
I ðtÞ > Λ̂

PRVv
K ðtÞ for 8 ≤ t ≤ 10. This phenomenon shows

F I G U R E 1 4 A mission area plus arbitrary waypoints and trajectories
of ‘kamikaze’ scenario. Trajectories between waypoint 1‐2 and 10‐2 are the
trajectories of Drone‐a and Drone‐b, respectively.

F I G U R E 1 5 Trajectory likelihood matrices computed from 1000
Monte Carlo simulations and phase trajectories of kamikaze scenario
corresponding to each phase plane. Solid lines and dashed lines are
trajectories of Drone‐a and Drone‐b, respectively.
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the limitation of the proposed method to estimate the inten-
tion by comparing the relative size of the probability score. In
other words, it will be difficult to unambiguously choose one
intention over the other for the proposed method if two in-
tentions have similar statistical characteristics within the same
region on the phase planes.

4.5 | Intention inference performance

To analyse the performance of the proposed intention esti-
mation method, a confusion matrix was obtained using a new
dataset that was not used to generate the TLMs. 100 Monte
Carlo simulations for each scenario (image acquisition, smug-
gling, and kamikaze attack) were performed, and Figure 17
shows the computed overall confusion matrix. In the case of
image acquisition, the true positive rate of accurately esti-
mating the actual intention was the highest, but the false
positive rate of estimating the intention in the case of non‐
image acquisition scenarios was also high. Estimating Drone‐
b's intention in Section 4.4 is an example of the high false
positive rate in terms of estimating image acquisition, or the
high false negative rate in terms of estimating kamikaze attack
intention. When image acquisition was excluded, similar esti-
mation performance for smuggling and kamikaze attack was
achieved.

5 | CONCLUSIONS

Interest in counter‐drone technology has increased dramati-
cally in recent years. This paper proposes an autonomous
intention estimation algorithm that can be applied to C‐UAS or
UTM (Unmanned aircraft system Traffic Management) sys-
tems. The algorithm is based on radar data, providing fast and
robust intention estimation for multiple targets. The core idea
of the proposed intention estimation algorithm is to build
intention‐specific features for each intention in advance and
utilise them in actual drone surveillance situations. This
intention‐specific dataset is called ADIB, and it consists of
statistical features of a drone's trajectory called ‘trajectory
frequency’. To effectively depict the characteristics of various
trajectories, the trajectory frequency is computed on multiple
phase planes through Monte Carlo Simulations. Using the
trajectory frequency and measured radar data, we can compute
the likelihood of each phase trajectory on the different phase
planes. Finally, a naive Bayes classifier is applied to integrate the
trajectory likelihood in different phase planes and ultimately
compute the intention likelihood of all intentions concerned.

Numerical simulations for the three candidate intentions of
image acquisition, smuggling, and kamikaze attack demon-
strated the performance of the presented method. The simu-
lation results show that one can estimate the true intention of a
specific drone by comparing the value of each intention like-
lihood. However, the simulation results also showed that there
is a possibility that the proposed algorithm may compute a
similar degree of intention likelihood for more than one
possible intention. Such a phenomenon can be caused when
the two different intentions have similar trajectory frequency in
their ADIB dataset, that is, similar values of the measured
space variables from the radar data.

In addition, there are parts of the simulations where the
intention likelihood of the actual intention drops sharply
because the target passes through the low‐TL (trajectory like-
lihood) region at that point. The longer the target stays in the
low‐TL region, the more the false negative rate of the intention
estimation increases. This is a fundamental limitation of the
current formulation of the proposed method.

Addressing these phenomena is left as future work. One
possible solution is replacing the naive Bayes with a more

F I G U R E 1 7 Confusion matrix computed using 100 Monte Carlo runs
for each intention.

F I G U R E 1 6 (a)‐(i) Interpolated trajectory likelihood of the kamikaze
scenario corresponding to each phase plane. The final computed intention
likelihood of image acquisition, smuggling, and kamikaze are shown in (j),
(k), and (l), respectively. Solid lines and dashed lines indicate data of Drone‐
a and Drone‐b, respectively.
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sophisticated yet less explainable machine learning algorithm,
such as neural networks. Also, for more complicated modelling
of drones' behaviour, the behaviour tree model [24] can be
adopted, which may provide suitable performance in modelling
interactive behaviours among different smart drones.

NOMENCLATURE
ACRONYMS
ADIB asset‐dependent intention bank
TFM trajectory frequency matrix
TLM trajectory likelihood matrix

SETS
C intention candidates
Z observation coordinates

INDICES
X arbitrary state variable
PRX phase plane of range and arbitrary state variable
I arbitrary intention
I image acquisition intention
S smuggling intention
K kamikaze attack intention
rdr radar
ast asset

MATRICES
T phase trajectory (sequence of coordinates)
F trajectory frequency matrix
Λ trajectory likelihood matrix

SCALARS
A azimuth angle
E elevation angle
ΛI intention likelihood of intention I

Λ̂ interpolated trajectory likelihood
Vr radial velocity
R range
Vv rate of climb
F trajectory frequency

VECTORS
x 2D coordinate of specific phase plane or state vector of

tracking filter
z measurement vector of tracking filter
y output vector of tracking filter

AUTHOR CONTRIBUTIONS
Joongsup Yun: Conceptualisation; Formal analysis; Investi-
gation; Methodology; Software; Validation; Visualisation;

Writing – original draft. David Anderson: Conceptualisation;
Funding acquisition; Project administration; Resources; Su-
pervision; Writing – review & editing. Francesco Fioranelli:
Conceptualisation; Funding acquisition; Project administration;
Resources; Supervision; Writing – review & editing.

ACKNOWLEDGEMENTS
This work relates to Department of Navy award (N62909‐19‐
1‐2073) issued by the Office of Naval Research.

CONFLICT OF INTEREST STATEMENT
None.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

ORCID
Joongsup Yun https://orcid.org/0000-0003-2428-2498
David Anderson https://orcid.org/0000-0001-6301-9532
Francesco Fioranelli https://orcid.org/0000-0001-8254-
8093

REFERENCES
1. Bilik, I., Tabrikian, J.: Chap.9 Knowledge‐Based Radar Target Classifi-

cation, Knowledge‐Based Radar Detection, Tracking, and Classification.
John Wiley & Sons, US (2008)

2. Martins, B.O., Michel, A.H., Silkoset, A.: Countering the Drone Threat.
Peace Research Institute. Oslo (PRIO), 2020). https://www.prio.org/
Publications/Publication/?x=12245

3. Harman, S.: A comparison of staring radars with scanning radars for
UAV detection: introducing the alarm™staring radar. In: Proceedings of
the 12th European Radar Conference (EuRAD). Paris (2015)

4. Patel, J., Fioranelli, F., Anderson, D.: Review of radar classification and rcs
characterisation techniques for small uavs or drones. IET Radar, Sonar
Navig. 12(9), 911–919 (2018). https://doi.org/10.1049/iet‐rsn.2018.0020

5. Mitchell, R., Chen, I.: Adaptive intrusion detection of malicious un-
manned air vehicles using behavior rule specifications. IEEE Trans. Syst.
Man Cybern. Syst. 44(5), 593–604 (2014). https://doi.org/10.1109/tsmc.
2013.2265083

6. Janakiraman, V., Nielsen, D.: Anomaly detection in aviation data using
extreme learning machines. In: 2016 International Joint Conference on
Neural Networks (IJCNN), pp. 1993–2000. Vancouver (2016)

7. Katsilieris, F., Charlish, A.: Knowledge based anomaly detection for
ground moving targets. In: Proc. 2018 IEEE Radar Conference
(RadarConf18), pp. 786–791. Oklahoma City (2018)

8. Azimirad, E., Haddadnia, J.: Target threat assessment using fuzzy sets
theory. Int. J. Adv. Intell. Informatics 1(2), 57–74 (2015). https://doi.
org/10.26555/ijain.v1i2.18

9. Liang, J., et al.: Detection of malicious intent in non‐cooperative drone
surveillance. In: Proceedings 2021 Sensor Signal Processing for Defence
Conference (SSPD). Edinburgh (2021)

10. Wit, J., Gusland, D., Trommel, R.: Radar measurements for the assess-
ment of features for drone characterization. In: 2020 17th European
Radar Conference (EuRAD). Utrecht, Netherlands (2021)

11. Al Sa’d, M., et al.: RF‐based drone detection and identification using deep
learning approaches: an initiative towards a large open source drone
database. Future Generat. Comput. Syst. 100, 86–97 (2019). https://doi.
org/10.1016/j.future.2019.05.007

12. Wang, A., Krishnamurthy, V., Balaji, B.: Intent inference and syntactic
tracking with GMTI measurements. IEEE Trans. Aero. Electron. Syst.
47(4), 2824–2843 (2011). https://doi.org/10.1109/taes.2011.6034667

1340 - YUN ET AL.

https://orcid.org/0000-0003-2428-2498
https://orcid.org/0000-0003-2428-2498
https://orcid.org/0000-0001-6301-9532
https://orcid.org/0000-0001-6301-9532
https://orcid.org/0000-0001-8254-8093
https://orcid.org/0000-0001-8254-8093
https://orcid.org/0000-0001-8254-8093
https://www.prio.org/Publications/Publication/?x=12245
https://www.prio.org/Publications/Publication/?x=12245
https://doi.org/10.1049/iet-rsn.2018.0020
https://doi.org/10.1109/tsmc.2013.2265083
https://doi.org/10.1109/tsmc.2013.2265083
https://doi.org/10.26555/ijain.v1i2.18
https://doi.org/10.26555/ijain.v1i2.18
https://doi.org/10.1016/j.future.2019.05.007
https://doi.org/10.1016/j.future.2019.05.007
https://doi.org/10.1109/taes.2011.6034667
https://orcid.org/0000-0003-2428-2498
https://orcid.org/0000-0001-6301-9532
https://orcid.org/0000-0001-8254-8093


13. Zhang, W., Yang, F., Liang, Y.: A Bayesian framework for joint target
tracking, classification, and intent inference. IEEE Access 7, 2169–3536
(2019). https://doi.org/10.1109/access.2019.2917541

14. Rolph, G., Stein, A., Stunder, B.: Real‐time Environmental Applications
and Display System: READY, vol. 95, pp. 210–228. Environmental
Modelling & Software (2017)

15. Beard, R., McLain, T.: In: ‘Small Unmanned Aircraft: Theory and Prac-
tice, pp. 223–242. Princeton University Press, Princeton (2012)

16. Yun, J., Anderson, D., Fioranelli, F.: Parametric investigation on simulated
staring FMCW radar for anti‐drone swarms. In: Proceeding 2020 IEEE
Radar Conference. Florence (2020)

17. Lin, C.: Guidance processing. In: Modern Navigation, Guidance, and
Control Processing, pp. 359–361. Prentice–Hall, NJ (1991)

18. Barick, D.: ‘FM/CW Radar Signals and Digital Processing’. (Boulder
Colorado. National Oceanic and Atmospheric Administration (1973).
ERL 283‐WPL 26

19. Rohling, H.: Radar CFAR thresholding in clutter and multiple target
situations. IEEE Trans. Aero. Electron. Syst.(4), 608–621 (1983). AES‐
19. https://doi.org/10.1109/taes.1983.309350

20. Schmidt, R.: Multiple emitter location and signal parameter estimation.
IEEE Trans. Antenn. Propag. 34(3), 276–280 (1986). https://doi.org/10.
1109/tap.1986.1143830

21. Roy, R., Kailath, T.: ESPRIT‐estimation of signal parameters via rota-
tional invariance techniques. IEEE Trans. Acoust. Speech Signal Process.
37(7), 984–995 (1989). https://doi.org/10.1109/29.32276

22. Press, W., et al.: In: ‘Numerical Recipes in C: The Art of Scientific
Computing, pp. 123–128. Cambridge University Press, New York (1992)

23. Rish, I.: An empirical study of the naive bayes classifier. In: IJCAI 2001
Workshop on Empirical Methods in Artificial Intelligence, pp. 41–46.
Seattle, WA (2001)

24. Colledanchise, M., Ögren, P.: In: ‘Behavior Trees in Robotics and AI’, pp.
6–10. CRC Press, London (2019)

25. BarShalom, Y., Li, X., Kirubarajan, T.: In: ‘Estimation with Applications
to Tracking and Navigation: Theory, Algorithms and Software, pp.
267–275. John Wiley & Sons, NY (2001)

26. Wan, E., Merwe, R.V.D.: The unscented kalman filter for nonlinear
estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for
Signal Processing, Communications, and Control Symposium. Lake
Louise, AB, Canada (2000)

How to cite this article: Yun, J., Anderson, D.,
Fioranelli, F.: Estimation of drone intention using
trajectory frequency defined in radar's measurement
phase planes. IET Radar Sonar Navig. 17(9), 1327–1341
(2023). https://doi.org/10.1049/rsn2.12422

APPENDIX A

Tracking Fil ter Equations
To estimate the output vector, the state vector of the tracking
filter, x, is defined by

x ¼ R⊺
rdr V⊺� �⊺; ð20Þ

where Rrdr ¼ Rx;rdr Ry;rdr Rz;rdr
� �⊺ is the relative position

vector between the radar and the drone, and V ¼ Vx Vy Vz
� �⊺

is the velocity vector of the drone.
Assuming that the targets' manoeuvre can be modelled by

the nearly constant velocity model [25], the state equation can
be defined as

ẋ ¼ V⊺ w⊺½ �⊺; ð21Þ

where the process noise vector w ¼ wVx wVy wVz

h i
⊺ is

modelled as a Gaussian white noise acceleration.
The measurement vector with additive noise, ẑ, is defined by

ẑ ¼ R̂rdr V̂ r;rdr Ârdr Êrdr
� �⊺

¼ z þ n;
ð22Þ

where n ¼ nR nVr nA nE½ �⊺ is the Gaussian noise vector with a
standard deviation vector σ ¼ σR σVr σA σE½ �⊺. Using the state
variables defined in (20), the measurement equation is given as

R̂rdr ¼ jRrdrj þ nR ð23Þ

V̂ r;rdr ¼ −
Rrdr ⋅ Vð Þ

jRrdrj
þ nVr ð24Þ

Ârdr ¼ atan2 Rx;rdr; Ry;rdr
 �

þ nA ð25Þ

Êrdr ¼ atan2 Rz;rdr;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
x;rdr þ R2

y;rdr

q� �
þ nE: ð26Þ

As the measurement equation is nonlinear, the Unscented
Kalman filter (UKF) [26] was adopted as a filtering algorithm.

For every update period of the tracking filter, the state vector,
x, is estimated based on the UKF algorithm. x̂ denotes the
estimated state vector, and ŷ denotes the output vector which is
computed using the estimated state variables, x̂. That is,

x̂ ¼ R̂
⊺
rdr V̂⊺

� �⊺; ð27Þ

and

ŷ ¼ R̂ast Êast V̂ r;ast V̂ v
� �⊺; ð28Þ

where

R̂ast ¼ jR̂astj ð29Þ

Êast ¼ atan2 R̂z;ast;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R̂
2
x;ast þ R̂

2
y;ast

q� �

ð30Þ

V̂ r;ast ¼ −
R̂ast ⋅ V̂

 �

jR̂astj
ð31Þ

V̂ v ¼ V̂ z: ð32Þ

R̂ast is the relative position vector between the asset and the
drone, and it can be given as

R̂ast ¼ R̂rdr − Rast
rdr; ð33Þ

where the relative position vector between the radar and the
asset, Rast

rdr, is assumed to be known.
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