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Abstract: The Loewner framework has recently been proposed for the system identification of
mechanical systems, mitigating the limitations of current frequency domain fitting processes for the
extraction of modal parameters. In this work, the Loewner framework computational performance,
in terms of the elapsed time till identification, is assessed. This is investigated on a hybrid, numerical
and experimental dataset against two well-established system identification methods (least-squares
complex exponential, LSCE, and subspace state space system identification, N4SID). Good results are
achieved, in terms of better accuracy than LSCE and better computational performance than N4SID.

Keywords: Loewner matrix; Loewner framework; system identification; frequency response func-
tions; modal analysis; experimental modal analysis; structural dynamics; tangential interpolation;
damage detection; structural health monitoring

1. Introduction

System identification (SI) is a mature area of research [1] with many applications in
structural engineering for the modal characterisation of physical systems. SI methods can
be divided into two main categories depending on the data domain employed: time or
frequency. A further subdivision can be carried out considering the type of data: output-
only or input–output. The former is typical of operational modal analysis [2], the latter of
experimental modal analysis (EMA) [3], the approach considered in this work. The modal
parameters extracted from these EMA approaches can then be employed in a plethora of
uses [4], such as structural health monitoring (SHM) [5] and model updating [6,7].

In this work, the computational performance of the Loewner framework (LF) [8,9],
a recently introduced technique for the extraction of modal parameters in mechanical
systems, is compared to standard techniques on a well-known experimental benchmark,
after assessing its robustness to noise on a numerical system inspired by the experimen-
tal benchmark.

The LF originates as a model order reduction (MOR) technique for large dynamic
systems [10]. However, its origins can be traced back to the Loewner matrix (L), an in-
terpolation matrix introduced by Charles Loewner in the 1930s [11]. In fact, the authors
firstly introduced the use of the LF as a single-input multi-output SI for the extraction
of modal parameters [9] (natural frequencies, ωn, damping ratios, ζn, and mode shapes
φφφn) for mechanical systems for vibration-based SHM [12]. However, the computational
performance of LF, particularly in comparison to similar alternatives, was not addressed
before and it is considered in this work.

By considering tangential interpolation, or rational interpolation along tangential
directions [13], Antoulas and co-authors [8] developed the LF for the MOR of dynamic
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systems and then extended it to the SI of electronic systems in [14], for which the main
advantage is to relax the severely ill-conditioning of current fitting processes [15]. The LF
is based on the fitting of frequency response functions (FRFs) via tangential interpolation,
creating a state space representation of order k for the given data [16]. The scope does not
diverge from established techniques, such as rational fraction polynomials, or from the
recently emerged fast relaxed vector fitting [17].

Briefly, an LTI dynamic system Σ with k internal variables in descriptor-form represen-
tation, m inputs and p outputs, is defined such as:

Σ : E
d
dt

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1)

where x(t) ∈ Rk is the internal variable, u(t) ∈ Rm is the function’s input and y(t) ∈ Rp

is the output. The constant matrices are:

E, A ∈ Rk×k, B ∈ Rk×m C ∈ Rp×k D ∈ Rp×m (2)

For a given finite value λ, with the matrix A − λE being non-singular, a Laplace
transfer function, H(s), such that λ ∈ C, of Σ can be defined in the form of a p×m rational
matrix function:

H(s) = C(sE− A)−1B + D (3)

A complete theoretical exposition of the LF is available in [8], while the authors’
implementation of the LF for modal analysis is outlined in full detail in [9], a comparative
study is presented in [18] and a MATLAB tutorial given in [19].

Damage is a change in a system which undermines or affects its operational capa-
bility [20]. In this work, SHM or damage detection and assessment, is considered as the
statistical pattern recognition strategy of damage detection in aeronautical [21], civil [22]
and mechanical engineering systems [23]:

1. operational evaluation;
2. data acquisition;
3. features selection;
4. damage assessment.

The features used in this work are the modal parameters, particularly ωn and φφφn
a common choice for SHM [24], due to the direct relationship between these and the
system’s mass and stiffness [25]. In this work, ωn was used for severity assessment and φφφn
for damage localisation. The severity assessment was carried out concering the relative
changes in ωn between undamaged and damaged cases, while local changes in the trajectory
of φφφn from the undamaged scenario.

We refer the reader to the general overview on SHM in [26], and a review on vibration-
based SHM via modal data in [25]. A summary on the industrial implementation for SHM
can be found in [27].

To study the computational efficiency of the LF, two industry-standard SI methods
were selected for comparison: subspace state space system identification (N4SID) [28],
operating in the time domain, and the least-squares complex exponential (LSCE) [29],
operating in the frequency domain. N4SID implementation is based on the n4sid MATLAB
function, while the LSCE is based on the modalfit function.

The three methods were used to estimate the modal parameters of a well-known
experimental test bed, the eight DoF (degrees of freedom) system of the Engineering
Institute (EI) at the Los Alamos National Laboratory (LANL) [30–32]. Their running times
were recorded over five iterations to measure their respective computational performance.
The accuracy and precision of the identification were also compared with benchmark results
retrieved from [30]. A numerical system, inspired by the experimental benchmark, was
created to test the robustness of the LF by corrupting the numerical signals with white
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Gaussian noise at different levels. The SHM capability of the LF is addressed in both
a numerical system, with numerically damaged (stiffness reduction) scenarios, and in
an experimental system considering a damaged case. The numerical models were also
compared to the results of the experimental system.

The remainder of the work is organised as follows. Section 2 presents the hybrid
case study and outlines its results. Then, Section 3 closes this work with the conclusions
and recommendations.

2. Case Study

The LF performances are evaluated on the case study of the system shown in Figure 1.
This is a well-known experimental testbed, the eight DoF (degrees of freedom) mass-spring-
damper system of the EI at LANL [30–32]. Specifically, the accuracy of the LF-based SI
approach is evaluated, in terms of goodness of fit and comparability of the identified modal
parameters with the known benchmark values, with both numerical and experimental data.
While its precision is validated in terms of robustness to artificially added white Gaussian
noise, inserted in the numerically generated responses.

Figure 1. Eight DoF numerical system: schematic diagram (adapted from [33]).

The experimental setup, shown in Figure 2, consists of eight translating masses (mn)
linked by seven springs, numbered consecutively from right to left. All masses are alu-
minium disks of thickness 25.4 mm and 76.2 mm in diameter with a central hole, lined
with a Teflon bush. The masses slide on a highly polished aluminium rod that constrains
movement in the vertical direction and are linked by coil springs epoxied by collars that
are bolted to the mass. The nominal value of all masses is 419.4 g, except for m1 at 559.3 g.
The stiffness constant of all springs, k1−7, is 56.7 kNm−1. The eight DoF system was de-
signed to serve as a benchmark system for SHM and non-linear behaviour; hence, different
damage and excitation cases exist. However, for the scope of this research only the un-
damaged and the 14% damage, in the spring between mass 4 and 5, cases are considered.
In both cases, the lowest input excitation is considered.

Figure 2. LANL eight DoF system (retrieved from [32]).

Measurements are made via accelerometers, with a nominal sensitivity of 10 mVg−1,
placed at each mass. A force transducer nominal sensitivity of 22.48 mVN−1 is used for
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the input force acquisition. A 215 N peak force electro-dynamic shaker allows for random
excitation, where the root mean square (RMS) amplitude level of the input was varied from
3 to 7 V. For the case under scrutiny, the system is excited with random excitation with
a 3 V RMS amplitude level. Table 1 reports the data acquisition’s specification, obtained
using a Hewlett-Packard 3566A system, which, in turn, is controlled by a laptop, that is
also responsible for data storage.

Table 1. Data acquisition specifications.

Sampling Rate (fs) 512 Hz

Time Period 8 s
Frequency Resolution 0.125 Hz
Number of data points 4096

We refer reader to [30–32] for details on the system. Because fs = 512 Hz, only natural
frequencies up to 256 Hz are detectable. However, since previous literature on this dataset
have only presented results for the first six modes, this work presents results concerning
the same interval with a relevant source for a comparison of the identification results from
the experimental data. These are all below 115 Hz and thus far enough from Nyquist’s limit.
Furthermore, quantitative benchmark results for ωn and ζn are only available for the first
five modes [30]. Please note that in [30] only the ωn values were provided for the damaged
case. The original dataset carried acceleration data in g, within this work, for adherence
with the Système International of units, the acceleration data is converted into ms−2.

2.1. Numerical System

The numerical system, shown in Figure 1, is modelled according to the values de-
clared in [30] for the experimental system. Hence, it consists of eight masses, such that
m2−7 = 0.4194 kg and m1 = 0.5593 kg, adjacently linked with springs, such that
k2−8 = 57.6 kNm−1 and k1 = 2.7 kNm−1. The first spring is used to mimic the effects of
friction between the masses and the rod and the stinger effect on m1, as suggested in [34]
for a similar structure. This results in the superposition of a rigid-body mode at around 3.8
Hz, which is neglected in the comparison study with the experimental data as a counterpart
is not identified due to filtering. This mode will be referred to as mode # 0. The systems’
dampers (c1−8) are modelled such that ζ1−8 = 3%. The numerical model is excited with a
unit (1 N) rectangular impulse applied to the first mass as the input force and time histories
(THs). Displacements, in m, for m1−8 and force, in N, for the input are obtained with the
same length and characteristics of the experimental system data, as given in Table 1.

The fast Fourier transforms (FFTs) of the displacements are divided by the input force
FFT to obtain the recipient FRFs. For this example, only the SIMO (considering all output
channels together) case is taken into consideration; however, the LF can be applied for SISO
as well.

In order to assess the robustness of the LF, the system’s response was corrupted with
additive white Gaussian noise (AWGN) at different levels. In this work, only input–output
noise is considered, as was established in [9] to be the most severe case. For the noise-free
scenario, the LF correctly identifies, with respect to the numerical results, ω0−7 with a
maximum discrepancy of 7.26 × 10−13 %, ζ1−9, and φφφ1−9, demonstrated [35] with a modal
assurance criterion (MAC) of unity for all modes. The MAC is computed with the usual [36]
formulation:

MAC(φb, φe) =

(
φT

b φe
)2(

φT
b φb

)(
φT

e φe
) (4)

where b and e subscripts represent the compared baseline and mode shape, respectively.
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2.1.1. Investigation of Noise Effects

The effects of noise on the Loewner-based SI are investigated numerically as follows.
The signal is corrupted at both the input and output with a noise range between 0 and 25%
with intervals of 1%, totalling 26 independent cases. The noise percentage is characterised
as a fraction of the signal’s standard deviation, σ. The local root-mean-square error (RMSEij)
between the FRFs’ columns at a given frequency step is introduced to measure the goodness
of the LF fit to the experimental FRF. The RMSEij is defined as follows:

RMSEij =

√∣∣∣∣( f f it
i (j)− fi(j)

)∣∣∣∣2 (5)

where f f it
i (j) indicates the LF fit column at the given frequency vector index j, likewise

fi(j) indicates the FRFs’ columns at the corresponding frequency and the subscript i for
the given FRF column. Alongside RMSEij, the global RMSE is introduced with its usual
formulation:

RMSE =

√√√√1
I

I

∑
i=1

1
K

K

∑
j=1

∣∣∣∣( f f it
i (j)− fi(j)

)∣∣∣∣2 (6)

where I is the number of FRF columns and the other notation is consistent with Equation (5).
The number of frequency points, K, is given by fs/2/∆ f , which returned 2000 points. The
results on the goodness of fit of the model for the input–output 0, 1, and 5% noise are
presented in Figure 3. Figure 4 shows the effect of noise, in all cases, for the correlation of
ωn, ζn and φφφn. Figure 5 shows the effect of noise on the overall RMSE, mean of the RMSE
over its samples, per given noise level and iteration.

Figure 3 shows the LF fit for three instances: clean (no noise), 1%, and 5% noise.
The eight FRF channels, superimposed for conciseness, are shown by a red dashed line,
the numerical data is represented by a blue line and the deviation is superimposed, for all
channels, with a green line. The deviation is concerned with the magnitude of the FRF;
however, phase fitness seems to be more severely affected by noise, particularly for high
DoFs. While the difference between the noise-free and the noisy cases is noticeable, once
AWGN is introduced, the deviation does not rise significantly with noise. Hence, it can be
asserted, similar to what is found in [9], that phase modelling is more sensitive to noise
than peak amplitude for the LF. Moreover, the deviation does not have a constant value,
particularly referring to Figure 3b. In fact, a linear relation between deviation and frequency
can be seen. This is explained by the nature of the LF because the sum of errors of the
interpolation can grow with the frequency [9]. Hence, the relation can be justified by the
sum of multiple interpolation errors along the FRF. In Figure 3b, the minimum order case
k = 16 (the minimum order is two times the number of discovered modes) is considered.
This does not translate to poor identification of the modal parameters, because the order k
of the LF is raised to identify stable poles.
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Figure 3. Eight DoF numerical system: the eight DoF system numerical recipient FRF is compared
with LF’s transfer function results for the 0% (a), 1% (b), and 5% (c) input–output noise cases.
In each sub-figure, from left to right, the gain’s absolute value and the phase angle are presented,
for conciseness all eight channels are superimposed.
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Figure 4. Eight DoF numerical system: In (a–c) the effect of the output–input noise is investigated.
The first column refers to the relative difference in ωn, in %, corresponding to the numerical results.
Likewise, the second column refers to the ζn, while the third column reports on the MAC value
between the numerical and estimated values of φφφn.



Aerospace 2023, 10, 571 7 of 20

0 5 10 15 20 25

Noise %

0

5

10

R
M

S
E

#10!4

y = 9.679e-06x + 2.9417e-06

iter1
iter2
iter3
iter4
iter5
-t
95% ci

Figure 5. Eight DoF numerical system: Results of the numerical study and the relationshipbetween
the noise level and global RMSE. The term 95% ci stands for 95% confidence interval.

Figure 4 compares the correlation between the numerical and estimated data when
subjected to noise. Figure 4a–c show the input–output noise case. The main modal
quantities, ωn, ζn, and φφφn, are considered. ωn and ζn estimation results are presented as
the relative difference (∆), in percentage, calculated by:

∆ =
xe − xb

xb
% (7)

where xe and xb represent the estimated and baseline quantities, respectively. The increase
in noise is inversely correlated with the precision of the modal parameter identification,
as expected. The results for ωn in Figure 4a show that a near-perfect identification is
achieved for the noise-free scenario, and, as the noise level increases, the precision of the
identification of the higher modes diminishes. The same is found in Figure 4b for ζn and,
to a lesser extent, for φφφn in Figure 4c. Nevertheless, the first mode is always correctly
identified for all noise scenarios.

The effect of noise on the global RMSE is investigated in Figure 5. Five evaluations of
the LF fit across the noise range are used for statistical significance and the corresponding
95% confidence interval (ci) is represented in the shaded area of Figure 5. A clear positive
linear trend between noise and RSME is found, meaning that as noise increases, so too does
the modelling error. For this study, the minimum order of k is used.

Notably, the global RMSE value never exceeds 8 × 10−4 and Figure 4 shows that
for small enough values of noise, the modal properties are correctly identified. This is
confirmed in Figures 3 and 5, where as the level of noise increases the fitted model deviates
from the numerical data; however, this is particularly true for phase data rather than
amplitude and modal parameters.

2.1.2. Investigation of the Structural Damage Effects

In order to further investigate the capabilities of the LF and foster the comparison with
the experimental eight DoF system, three damaged numerical scenarios are introduced.
Here, the suitability of the LF for SHM and its noise robustness is investigated. Three
damaged scenarios, derived from the system presented in Figure 1, were built by reducing
the stiffness of k5 by 7, 14, and 21%. Only the stiffness was modified in these scenarios
and ζn was left unchanged from the undamaged scenario, only used to evaluate the
goodness of the identification. The same noise levels considered in the undamaged case
were analysed for the damaged configurations. Hence, a total of 78 cases, 26 per scenario
were considered. The results of the identifications via LF in this section are presented
by comparing the modal parameters with those obtained numerically. For ωn and ζn,
the numerical values are compared to those identified via LF. At the same time, for φφφn
the MAC value, from Equation (4), between the numerical and identified values is shown.
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The ωn of the baseline and damaged numerical cases are shown in Table 2, serving as a
source of comparison with the data in Figure 6.

Table 2. Eight DoF noise-free numerical system: natural frequencies, in Hz, of the numerical undam-
aged and damaged cases.

Natural Frequency (Hz)

Mode # Undamaged 7% 14% 21%

0 3.896 3.896 3.895 3.894
1 22.652 22.485 22.292 22.068
2 43.656 43.435 43.186 42.904
3 63.628 63.573 63.509 63.433
4 81.532 80.777 79.930 78.986
5 96.474 96.290 96.090 95.874
6 107.708 107.241 106.704 106.115
7 114.677 113.856 113.189 112.663
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Figure 6. Eight DoF numerical system: 7% damage (top), 14% damage (middle), 21% damage
(bottom). Results of the numerical study on the numerical case effected by input–output noise:
(a,d,g) The effect on ωn identification; (b,e,h) the effect on ζn; (c,f,i) the effect on φφφn. In the legend, A
stands for the numerical results and # n stands for Mode # n.
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For noise levels less than 1%, the LF is able to correctly identify all the parameters of
the damaged cases, as shown in Figure 6. When the noise level was less than 5% the first
five modes’ parameters were identified satisfactorily. In addition, the modal parameters of
the first two modes are always coherent with the numerical counterpart for all noise levels.
The hardest scenario for the LF identification was the 7% stiffness reduction scenario, where
only a small change in modal parameters, see Table 2, is found, making it difficult to detect.
Nevertheless, the LF is able to do so, hence demonstrating its capability for SHM.

In Figure 7 the ωn and φφφn of the first three modes of the undamaged and three
damaged scenarios are compared for damage assessment. ζn is not considered as it was
constant in all scenarios. Figure φφφn shows the ∆ (Equation (7)) change, with respect to
the undamaged scenario, of the ω1−3 estimated by LF for the undamaged and damaged
noiseless cases. In Figure 7b, the φφφ1−3 of the undamaged and damaged scenario are
compared for damage localisation. The differences between the ω1−3 increase linearly with
the damage and the φφφ1−3 trajectory deviation becomes more pronounced at the damaged
fifth node. The combination of the ωn and φφφn results allows for damage assessment, ωn
and φφφn (the higher the damage the more deviation), and localisation, φφφn, of the damage.
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Figure 7. Eight DoF numerical system: Relative difference, in percentage, between baseline and
damaged cases in ωn for the first three modes (a) and the first three φφφn for the numerical baseline and
damaged cases (b). The data refers to the noiseless case identified by LF and the thicker grid line
marks the damage location.

Given the results outlined in Figures 6 and 7 and Table 2 and the above-mentioned
discussion, the values of the LF for SHM and its robustness to noise is demonstrated.
Specifically, these results are used in the following section to assess the model against the
real experimental data.

2.2. Experimental System

In this section, the identification results of the experimental system in Figure 2 are
presented. The LF results are compared to the well-established methods N4SID and LSCE.
Two cases are taken into consideration, undamaged and damaged, 14 % stiffness reduction
in the fifth element. These also allow for further comparison with the numerical system.

2.2.1. Undamaged Scenario

The analysis involved the goodness of fit of the LF, considering all channels in an
SIMO fashion, to the computed acceleration FRF. Figure 8 shows the computed FRF as a
solid blue line, the Loewner realisation as a dashed red line and the deviation, defined
as the square of the difference’s absolute value at each frequency instance, with a solid
green line. The plot on the left shows the absolute gain of the FRF, the LF fit, and the
deviation, while the right plot shows the phase angle in degrees. In Figure 8, the FRF for
this case is noisy and, as seen before, this mostly influences the higher frequencies and
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modes. The absolute gain plot shows, unequivocally, that the deviation trend increases with
frequency. This phenomenon returns a coherent fit for the LF, except for the phase angle at
higher frequencies, giving an absolute gain deviation between 10−2 and 102. Nevertheless,
this deviation magnitude still allows for a coherent identification of parameters by the LF,
which is shown in Tables 3–5 and Figure 9. It should be noted that the LF results in Figure 8
are obtained with the minimum order, in accordance with the literature results, of k = 12
(since only six modes were extracted in previous literature) and the modal parameters are
obtained to the suitable higher-order as prescribed by the poles’ stability.

Figure 8. Eight DoF experimental system (undamaged case): The FRF computed from the test data is
compared with the LF’s transfer function for the undamaged case. The absolute gain (left) and phase
angle (right) are presented with all eight channels superimposed for conciseness.

Table 3. Eight DOF experimental system (undamaged case): ωn, in Hz, and ζn identified by N4SID,
LSCE, LF, LF from the noiseless numerical system (LF_num) and numerical system are compared to
the benchmark results from [30]. The values in brackets refer to the relative difference between the
estimated values and benchmark results. Only the first five modes were explicitly listed in [30].

Natural Frequency (Hz)

Mode # N4SID (%) LSCE (%) LF (%) Benchmark LF_num (%) Numerical (%)

1 21.812 22.052 22.310 22.6 22.652 22.652
(−3.49) (−2.42) (−1.28) (0.23) (0.23)

2 43.385 43.181 43.513 44.5 43.656 43.656
(−2.51) (−2.96) (−2.22) (−1.90) (−1.90)

3 62.969 62.944 62.887 65.9 63.628 63.628
(−4.45) (−4.49) (−4.57) (1.18) (1.18)

4 81.026 81.276 81.330 86.6 81.532 81.532
(−6.44) (−6.15) (−6.09) (−5.85) (−5.85)

5 95.790 96.135 96.016 99.4 96.474 96.474
(−3.63) (−3.28) (−3.40) (−2.94) (−2.94)

6 107.062 107.038 107.371 n.a. 107.708 107.708
(n.a.) (n.a.) (n.a.) (n.a.) (n.a.)
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Table 4. Eight DoF experimental system (undamaged case): ζn identified by N4SID, LSCE, LF, LF
from the noiseless numerical system (LF_num) and numerical system are compared to the benchmark
results from [30]. The values in brackets refer to the relative difference between the estimated values
and benchmark results. Only the first five modes were explicitly listed in [30].

Damping Ratio [-]

Mode # N4SID (%) LSCE (%) LF (%) Benchmark LF_num (%) Numerical (%)

1 0.084 0.093 0.084 0.085 0.030 0.030
(−1.18) (9.41) (−1.18) (−64.29) (−64.29)

2 0.047 0.048 0.045 0.043 0.030 0.030
(9.30) (11.63) (4.65) (−30.23) (−30.23)

3 0.039 0.036 0.028 0.033 0.030 0.030
(18.18) (9.09) (−15.15) (−9.10) (−9.10)

4 0.030 0.029 0.027 0.050 0.030 0.030
(−40.00) (−42.00) (−46.00) (−40) (−40)

5 0.026 0.021 0.022 0.026 0.030 0.030
(0.00) (−19.23) (−15.38) (15.38) (15.38)

6 0.029 0.033 0.023 n.a. 0.030 0.030
(n.a.) (n.a.) (n.a.) (n.a.) (n.a.)

Table 5. Eight DoF system (undamaged case): MAC matrix diagonal values between N4SID and
LSCE, N4SID and LF, LF and LSCE, LF and LF_num and LF and the numerical system φn. The off-
diagonal terms are negligible as they were all found to be close to zero, as expected.

MAC Value (Main Diagonal Terms) (-)

Mode # N4SID vs. LSCE N4SID vs. LF LF vs. LSCE LF vs. LF_num LF vs. Numerical

1 1 1 0.99 0.99 0.99
2 1 1 0.99 1 1
3 1 0.99 0.99 0.99 0.99
4 1 1 1 0.99 0.99
5 1 0.96 0.97 0.96 0.96
6 0.98 0.93 0.95 0.80 0.80

Tables 3 and 4 introduce the raw values of the mean (µ) over five iterations, taken
for statistical significance, of the identified ωn, in Hz, and ζn by the LF and benchmark
methods (LSCE and N4SID). Here, a quantitative comparison between N4SID, LSCE, LF,
LF from the noiseless numerical system (LF_num), numerical system and benchmark
data [30] is considered by showing, in brackets, their relative difference in percentage to the
benchmark values. The ωn identified within this work tend to be slightly underestimated
when compared to the benchmark values. Nevertheless, the identified ω1−5 deviation
from the expected benchmark values never exceeds 6.5%. The identified ζn are very
coherent with the benchmark data. In fact, only ζ4 is noticeably underestimated (this is,
however, in line with the estimations of the two other methodologies). In addition, LSCE
notably overestimates ζ1. The same is valid for LF_num and the numerical system values.
They are largely consistent with the N4SID and LF values for ωn. However, they present
large discrepancies for ζn, since that parameter is assumed to be 3% for all modes in the
original model.
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(a)

(b)
Figure 9. Eight DoF experimental system (undamaged case): Box plot of the ωn (a) and ζn (b) for each
mode of the undamaged case. The median value is represented by the central red line. The bottom
and top blue edges of the box indicate the 25% and 75% percentiles. The whiskers represent the
largest and smallest data points not considered outliers. The red plus symbol indicates the outlier
values. The diamond represents the mean values (over five iterations) identified via LSCE and the
square via N4SID.

Figure 9 shows the statistical performance of the LF against the mean of the established
methods. The choice of presenting the established methods through their mean and not
according to the LF is based on the nature of their standard deviation (σ), which is of a
negligible magnitude if compared with the LF’s own, and to maintain clarity within the
plot. Overall, Figure 9 shows that the LF-identified ωn and ζn are in line with the values
found through LSCE and N4SID identification.

The first six φφφ1−6 of the eight DoF system are compared in Table 5 using the MAC
value. The LF slightly underperforms identifying the sixth mode of the undamaged case.
Nevertheless, the sixth mode shape is still consistent with the ones identified by LSCE and
N4SID. The MAC values between the sixth mode identified by the LF, LSCE, and N4SID
are 0.95 and 0.93, respectively. Hence, this is well above what is commonly considered a
sufficient correlation by practitioners [35,37]. In summary, the first six modes of the eight
DoF system are identified by LF accordingly to N4SID and LSCE. The numerical model
and LF_num perform well for the first five modes (MAC values are above 0.96); however,
they fall short at the sixth mode with an MAC value of 0.80. Notably, this is also the mode
for which the quantitative benchmark values are not available [30].

As well as the accuracy and precision, the efficiency of the method is evaluated.
The approach taken here considers the µ and σ of the time elapsed till identification on
the experimental data over several iterations (five in this case), at the order k. The results
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are satisfactory when compared with well-established methods. The results are presented
in Table 6, in which LSCE is recognised as the least computationally demanding method
and N4SID as the most. The LF lies between them, both in terms of µ and σ. The values
presented in Table 6 were computed in MATLAB R2022b running on a desktop Microsoft
Windows 11 machine with a 6-core AMD Ryzen 5 5600G.

Table 6. Eight DoF experimental system (undamaged case): Time elapsed till identification (over
five instances for statistical significance), in s, for N4SID, LSCE, and LF of the undamaged case. k
represents the model order.

Time to Identification (s)

N4SID LSCE LF

µ 16.626 0.010 0.199
σ ±0.172 ± <0.001 ±0.006
k 25 30 50

2.2.2. Damaged Scenario

The damaged case is characterised by a 14% reduction in the stiffness of the fifth ele-
ment. As for the undamaged case, the results obtained from N4SID, LSCE, LF, LF_num and
the numerical system are compared to the benchmark values with respect to the identified
parameters. The FRF for the damaged system is even noisier than the undamaged, as shown
in Figure 10. The deviation between the acceleration FRF and the Loewner realisation is
between 10−2 and 102. Nevertheless, the LF model holds a reasonable approximation for
the experimental FRF, particularly for the gain amplitude.

Figure 10. Eight DoF experimental system (damaged case): The FRF computed from the test data
is compared with the LF’s transfer function for the damaged case. The absolute gain (left) and the
phase angle (right) are presented with all eight channels superimposed for conciseness.

ωn benchmark values are available from [30], while they are not for ζn and φφφn. Hence,
N4SID-identified values, the mean over five realisations, are used as the baseline for their
comparisons. Table 7 shows the comparison for ωn. ζn results are shown in Table 8 and the
φφφn are compared to the N4SID values computing the MAC in Table 9. Figure 11 gives a
more intuitive representation of the range of ωn and ζn identified via LF, LSCE, and N4SID.
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Table 7. Eight DOF experimental system (damaged case): ωn, in Hz, and ζn identified by N4SID,
LSCE, LF, LF from the noiseless numerical system (LF_num) and numerical system are compared to
the benchmark results from [30]. The values in brackets refer to the relative difference between the
estimated values and the benchmark results. Only the first five modes were explicitly listed in [30].

Natural Frequency (Hz)

Mode # N4SID (%) LSCE (%) LF (%) Benchmark LF_num (%) Numerical (%)

1 18.636 19.567 19.608 22.3 22.292 22.292
(−16.43) (−12.26) (−12.07) (0.04) (0.04)

2 39.983 40.308 42.422 43.9 43.186 43.186
(−8.92) (−8.18) (−3.367) (−1.63) (−1.63)

3 62.643 61.326 62.561 64.8 63.510 63.510
(−3.33) (−5.36) (−3.46) (1.99) (1.99)

4 73.741 75.014 74.297 85.9 79.930 79.930
(−6.44) (−6.15) (−6.09) (−5.85) (−5.85)

5 93.843 94.315 93.518 99.7 96.090 96.090
(−3.63) (−3.28) (−3.40) (−2.94) (−2.94)

6 109.288 112.412 110.627 n.a. 106.704 106.704
(n.a.) (n.a.) (n.a.) (n.a.) (n.a.)

Table 8. Eight DoF experimental system (damaged case): ζn identified by N4SID, LSCE, LF, LF from
the noiseless numerical system (LF_num) and numerical system are shown. The values in brackets
refer to the relative difference between the estimated values and the N4SID values.

Damping Ratio (-)

Mode # N4SID (%) LSCE (%) LF (%) LF_num (%) Numerical (%)

1 0.207 0.163 0.181 0.030 0.030
(−21.26) (−12.56) (−85.51) (−85.51)

2 0.128 0.065 0.092 0.030 0.030
(−49.22) (28.13) (−76.56) (−76.56)

3 0.066 0.045 0.053 0.030 0.030
(−31.81) (−19.70) (−54.54) (−54.54)

4 0.061 0.049 0.037 0.030 0.030
(−19.67) (−39.34) (−50.82) (−50.82)

5 0.043 0.022 0.042 0.030 0.030
(−48.84) (−2.33) (−30.23) (−30.23)

6 0.048 0.021 0.034 0.030 0.030
(−56.25) (−29.17) (−37.50) (−37.50)

Table 9. Eight DoF system (damaged case): MAC matrix diagonal values between N4SID and LSCE,
N4SID and LF, LF and LSCE, LF and LF_num and LF and the numerical system φn. The off-diagonal
terms are negligible as they are close to zero.

MAC Value (Main Diagonal Terms (-)

Mode # N4SID vs. LSCE N4SID vs. LF LF vs. LSCE LF vs. LF_num LF vs. Numerical

1 0.99 0.97 0.97 0.99 0.99
2 0.96 0.99 0.93 1 1
3 0.98 0.99 0.97 0.99 0.99
4 0.98 0.99 1 0.99 0.99
5 0.99 0.98 0.98 0.96 0.96
6 0.89 0.93 0.86 0.80 0.80
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(a)

(b)
Figure 11. Eight DoF experimental system (damaged case): Box plot of the ωn (a) and ζn (b) for each
mode of the damaged case. The median value is represented by the central red line. The bottom and
top blue edges of the box indicate the 25% and 75% percentiles. The whiskers represent the largest
and smallest data points not considered outliers. The red plus symbol indicates the outlier values.
The diamond represents the mean values (over five iterations) identified via LSCE and the square
via N4SID.

In Table 7, the ωn identified by N4SID, LSCE, LF and LF_num and those obtained
from the numerical system are compared, while in Figure 11a the identified ωn via LF over
five realisations are compared to the average values from LF and LSCE. When compared
to the benchmark values, ω1 seems severely underestimated (over 10 %) by N4SID, LSCE,
and LF, while those based on the numerical system performed very well (error close to
zero). However, while the input type is mentioned in [30], the same cannot be said for
its amplitude. In fact, it is not clear which, of the three available, is used to obtain the
benchmark results (3 V RMS is used in this work). This would be decisive in determining
if the discrepancy is an error or a result of the amplitude-dependent non-linearity of the
system. This said, the maximum error for the remaining modes never exceeds 9% for
N4SID, 8.20% for LSCE, 6.1% for LF and 5.9% for LF_num and the numerical system.
Concerning ζn, the identification becomes more spurious, as expected given the noisy
experimental FRF, shown in Figure 10. Nevertheless, the ζn are underestimated for all
modes by LF and LSCE, when compared to N4SID. However, this is even more true for
LSCE, for which the ζn of all modes are greatly underestimated. LSCE outperforms LF
only for the identification of ζ4. Generally, it can be said that LF and, more relevantly, LSCE
have slightly underestimated ζn. These are clearly shown in Table 8 and Figure 11b.

With respect to φφφn, benchmark values are not disclosed, as per the undamaged case,
in [30]. Hence, N4SID data are used as a reference for the comparison in Table 9, where
the MAC values are used as a figure of merit. Notably, φφφn identified via LF show a higher
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correlation to the N4SID φφφn than those identified by LSCE, apart from φφφ4. Nevertheless,
the LF-identified φφφn MAC values with respect to N4SID are, for all modes, at least 0.93. A
correlation is also seenn between the LF_num and numerical modes with LF.

As per the undamaged scenario in Table 6, the time till identification for the LF, LSCE,
and N4SID on the experimental data is investigated for the damaged case as well. In
Table 10, the results in terms of µ and σ of the time till identification, in seconds, and their
order k are presented. The same picture as per Table 6 emerged. The only difference is the
magnitude of the time till identification, which is higher due to a higher order k necessary
to obtain significant results.

Table 10. 8 DoF experimental system (damaged case): Time to identification (over five instances
for statistical significance), in s, for N4SID, LSCE, and LF of the damaged case. k represents the
model order.

Time to Identification (s)

N4SID LSCE LF

µ 37.012 0.013 0.216
σ ±0.075 ±0.001 ±0.007
k 30 34 80

Having established the goodness of the LF identification, when compared to bench-
mark data and N4SID, it is necessary to carry out a damage assessment on the structure.
As is noted in [25], the expectation for a stiffness reduction is a decrease in ωn and a
change in the φφφn trajectories, particularly at the damaged node. In Figure 12, the relative
difference between the undamaged and damaged cases ωn (Figure 12a) and ζn (Figure 12b)
are presented. The comparison for ωn includes results from N4SID, LSCE, LF, benchmark,
LF_num and the numerical system, while for ζn only from N4SID, LSCE and LF, since
benchmark values are not available for ζn and it is constant at 3% for the data relative to
the numerical system (no change between damaged and undamaged). The undamaged
and damaged φφφn identified from the experimental data by LF, LF_numand the numerical
system are shown in Figure 13.

In Figure 12a, a negative relative difference is found for all methods and modes, apart
from ω5 for the benchmark values and ω6 for the methods that use experimental data. This
allows the detection of a change in the structural behaviour, thus detecting damage [25].
It should be noted that the experimental methods see a larger relative difference between
damaged and undamaged ωn than the benchmark and model-based methods. However,
uncertainty on the origin of the benchmark data, particularly concerning the input am-
plitude (as already pointed out) and processing of the data, remains. Nevertheless, LF
performs coherently to the other experimental methods, and LF_num results are perfectly
correlated to the numerical results. Hence, the difference is not due to the method but the
data or system under scrutiny.

On the other hand, for ζn, an increase is registered for all modes and methods, apart
from ζ6 for LSCE. An increase in damping is usually seen as a damage indicator [25];
however, since it is easily influenced by external factors [17] it is rarely used as such.
Notably, the LF increase in ζn is always closer to N4SID than LSCE, apart for ζ4−5.

Figure 13 compares the damaged and undamaged φφφn and successfully demonstrates
the ability of the LF to detect differences, which is a preparation step for damage localisa-
tion [25]. Notably, φφφ1−5 are largely consistent across all methods, proving the goodness of
the LF as a modal parameter identification method for SHM.

In essence and given the above-mentioned results, the LF is an effective SI method
for SHM in mechanical systems as it was able to detect parameter difference between the
damaged and undamaged systems in a similar or improved manner than well-established
methods, benchmark values, and numerical models.
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Figure 12. Eight DoF system: Comparison of the ωn (a) and ζn (b) relative differences between the
undamaged and damaged cases. For ωn, results from N4SID, LSCE, LF, benchmark, LF_num and the
numerical system are presented, while for ζn results from N4SID, LSCE and LF are presented.
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3. Conclusions

In this study, the precision, robustness, and computational efficiency of the LF were
assessed for the identification of the modal parameters of an eight DoF numerical and
experimental dataset from the EI at the LANL. Damage detection, considering severity
and localisation, was considered by interpreting the changes in modal parameters between
the baseline and damaged states, while robustness was investigated by corrupting the
numerical signals with additive Gaussian white noise at different levels.

In the numerical model, the LF performance was compared to the numerical results,
while in the experimental study two industry-standard system identification methods,
N4SID and LSCE, and known benchmark results were used to assess the LF performance.
Good agreement was found between the modal parameters estimated via the LF and those
identified via N4SID and LSCE. In particular, it can generally be said that LF was more
precise in the identification of natural frequencies and damping ratios than LSCE and its
accuracy and precision are on par with N4SID.

The noise robustness of the LF was verified on the numerical dataset, showing that
the LF can accurately identify all modes at low noise levels and lower modes at higher
noise levels.

Regarding the identification time (considering an average over five realisations), LSCE
was the fastest method and N4SID was the slowest. The LF ran at an order of magnitude
slower than LSCE but two orders of magnitude faster than N4SID.

Given the results and conclusions presented, the authors suggest the use of the LF
over N4SID for its improved computational efficiency and over LSCE for its damping ratio
identification capability.
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