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Abstract: Unmanned Aerial Systems (UAS) are a promising technology for many areas,
including transportation, agriculture, inspection, and rescue missions. However, to enable a high
level of autonomy,including Beyond Visual Line of Sight (BVLOS) flight, the drones should be
able to perform safe landings in unknown areas without an operator. Hence there is a need for
development of safe landing methods for autonomous drones.The autonomous UAVs can often
be operated more economically than the conventional manned aircraft. As technology advances,
autonomous UAVs are expected to play an increasingly important role in a variety of industries
and applications.In this paper we have explored a semantic segmentation-based approach for
the problem of autonomous landing.
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1. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) or drones
has increased significantly in recent years, especially in
the commercial sector.With the rapid expansion of the
drone industry, there are concerns about the safety and
regulation of drones in the airspace. In the years to come,
the Beyond the Visual Line of Sight (BVLOS) concept
will expand the commercial use of drones compared to to-
day’s use. UAVs, or unmanned aerial vehicles, are aircraft
that are operated remotely or autonomously. Autonomous
UAVs are a rapidly growing technology with a range of
potential applications from surveying and mapping to
parcel delivery and search and rescue. One of the main
advantages of autonomous UAVs is that they can be op-
erated without a human pilot on board. This not only
reduces the risk to human life, but also allows UAVs to be
used in a wider range of situations and environments. In
addition, autonomous UAVs can often be operated more
cheaply than conventional manned aircraft. As technol-
ogy advances, autonomous UAVs are expected to play an
increasingly important role in a variety of industries and
applications.(Liu et al. (2022))

1.1 The Landing Problem

Autonomous landing is a challenging point for a UAV,
which need to be resolved as a matter of urgency. Locating

a suitable landing area, sensing the position between
landing platform and and the UAV, and then seeking the
occasion to land are the three steps in the process of
landing of an UAV. The GPS has been applied to provide
position and velocity of UAV as control feedback. Since
the accuracy of GPS receivers for use on UAV must be
measured in meters, they are unsuitable for precision tasks
such as landings.

1.2 The Proposed Solution

The aim of this work is to make the UAV identify suitable
landing place in its operation path. The characteristics
that define a suitable landing place are:

(1) Doesn’t cause any injury to any living being in the
vicinity.

(2) Any property isn’t damaged.

(3) The damage to the UAV is minimized (Daniel (2007))

In Daniel (2007) based on the “size”, “shape”, “surface”
and “slope” criteria, for finding safe landing sites these
steps were discussed:

(1) Segmenting the image
(2) Identifying sites with suitable size and shape
(3) Classifying the type of surface
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1.3 Related works

Selecting safe landing sites is a key development of au-
tonomous UAVs. The existing methods have the com-
mon problems of poor generalization ability and robust-
ness. Their performance is significantly degraded, and the
error cannot be self-detected and corrected. These meth-
ods have poor performance due to less diverse data.

The existing methods for autonomous landing site detec-
tion can be broadly classified into two categories:

(1) Camera Based:
A UAV can locate a landing zone in a variety of meth-
ods utilising computer vision. These techniques recog-
nise the ground environment using either monocular
or binocular vision cameras. Techniques for selecting
known and unknowable zones in both indoor and out-
door contexts can be done using vision-based landing
zone identification methods.In Bruno and Colombini
(2021) the author addresses the possibility of a robot
to localize itself in an unknown environment and
simultaneously build a consistent map of this envi-
ronment this is called SLAM. This can be achieved
using cameras and is effective in navigation in GPS
denied locations.In the paper Wubben et al. (2019)
UAV is equipped with a low-cost camera that can
detect ArUco markers. After the marker is detected,
the UAV alters its flight behaviour to land on the
exact position where the marker is located.
(2) LiDAR Based:

The distance between two objects can be calculated
using the remote sensing technique known as light
detection and ranging (LiDAR).Pulsed laser beams
are directed to the target region on the ground by
a UAV equipped with LiDAR. The region of the
earth it encounters reflects the light beam.The author
in Chen et al. (2020) had a UAV system equipped
with low-cost LiDAR and binocular camera to realize
autonomous landing in by detecting the flat and safe
ground area. The paper Scherer et al. (2012) also has
a LiDAR based approach.In the paper they created
and constructed a 3-D scanning LiDAR with two
modes of operation: forward scanning for detecting
obstacles during low-altitude flying and downward
scanning for mapping the ground and finding landing
zones from a higher height.

The proposed solution in the paper Leung et al. (2022)
takes RGB image, LIDAR point cloud and robot motion
information as inputs, and outputs a fused traversability
cost map that is computed from both terrain types and
geometrical properties.This paper provides a significant
growth in autonomy level in off-road ground vehicles.They
evaluated the proposed framework with synchronised sen-
sor data captured while driving the robot in real off-road
environments.

2. TYPES OF LANDING ZONES

In Shah Alam and Oluoch (2021) the author classifies the
various types of landing zones into Indoor and Outdoor
landing zones as shown in the Figure 1. Indoor landing
zones are flat and static zones.While, the outdoor zones
can be dynamic or static depending on the various factors
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Fig. 1. Various Types of landing zones. Adopted from
[Shah Alam and Oluoch (2021)]

involved. Static and dynamic outdoor landing zones can
be divided further into two types the known and unknown
zones. Runways that are marked, Helipads and surfaces
with some distinct symbols which can be used to identify
them are some examples of known static landing zones.
On the other hand, the flat surfaces like roadside, field,
and flat roof which are free of any unwanted materials
or obstacles are some examples of unknown static landing
zones. The surfaces on ship, truck or other moving vehicles
that are marked and have flat surface are some examples
of dynamic known landing zones.(Kaljahi et al. (2019))

3. SEMANTIC SEGMENTATION

There are a lot of methods for image -classification
like bounding boxes, semantic segmentation,etc.Bounding
boxes are frequently used for object identification and
image classification. A semantic segmentation technique,
on the other hand, can produce pixel-perfect accuracy
and expose fine-grained details about the contents of an
image. This the reason why we chose sematic segmentation
method over the bounding box method.The principle of se-
mantic segmentation of an image is to assign every pixel of
a picture taken by a camera with a corresponding category
label (class). (Liu et al. (2022)) Semantic segmentation
requires classification of all pixels within the plane of
image and implementation of the image to be performed
at the same time, causing a degradation in resolution in
the resulting image. For the widely deployed and existing
framework SegNet, it has shown high performance when
detecting a small pixel target composed of small and
simple features while up-sampling the compressed feature
map while traversing multiple pooling layers while the
complicated background is adequately controlled. How-
ever, when many complicated features need to be detected
for on a complicated background, resolution degradation
inevitably occurs. Thus, SegNet using a standard stacked
convolutional neural network is inadequate to comprehen-
sively learn the local features related to the whole im-
age needed for a high-performance semantic segmentation
model and all location information.(Cho and Jung (2022))

We selected a few existing architectures to train and test
our dataset.

3.1 DeeplabV8

The most recent version of Deeplab’s image semantic seg-
mentation models, v3+, is the most advanced available.
The use of atrous spatial pyramid pooling (ASPP) opera-
tion at the encoder’s end is its main contribution. (Chen
et al. (2017b))
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3.2 Resnet

An artificial neural network called a residual neural net-
work (ResNet) (ANN). Additionally, Control Neural Net-
work uses it. It is a gateless or open-gated variation of
the HighwayNet, which was the first functionally complete,
extremely deep feedforward neural network with hundreds
of layers—much deeper than earlier neural networks. (He
et al. (2015))

3.3 DenseASPP

Atrous Spatial Pyramid Pooling (ASPP)Chen et al.
(2017a) was proposed to concatenate multiple atrous-
convolved features using different dilation rates into a final
feature representation. Although ASPP is capable of pro-
ducing multi-scale features, we contend that the scale-axis
feature resolution is insufficient for the autonomous driv-
ing scenario. In order to achieve this, we suggest Densely
connected Atrous Spatial Pyramid Pooling (DenseASPP),
which densely connects a set of atrous convolutional layers
to produce multi-scale features that not only cover a wider
scale range, but also do so densely, all while maintaining
a relatively small model size.(Yang et al. (2018))

4. DATASET

Selecting a dataset is a crucial task before the training of
Semantic segmentation models. After careful thought and
evaluation of the data acquisition strategy and object-class
selection for annotation we selected the UAVid Dataset.We
selected the UAVid Dataset after comparison with various
well-known existing semantic segmentation datasets.The
CamVid dataset which is one of the most commonly used
datatset. It has 701 images, each of size 960 x 720, If
we compare in terms of number of Pixels this is a lot
smaller than our dataset. The Cityscapes dataset which is
an important dataset for urban scenes. it has 5000 images
of size 2048x1024, This is much bigger than the size of
UAVid dataset. However, the objects in the images of
UAVid dataset are smaller than in Cityscapes dataset,
providing more object variance in the same number of
pixels, which compensate for the object recognition task.
The size of images is quite large in the Potsdam dataset
i.e., 6000 x 6000.(Lyu et al. (2020))
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Fig. 2. The Pixel number histogram of various classes in
our Dataset

4.1 Dataset size

The UAVid dataset (Lyu et al. (2020)) is a high-resolution
UAV dataset which is designed for semantic segmentation

tasks. The main focus of this dataset is urban scenes shot
from an UAV. It has 300 images, each with a size of
4096 x 2160 or 3840 x 2160. Buildings, roads, trees, low
vegetation, static cars, moving cars, humans, and back-
ground clutter are the eight classes selected for semantic
segmentation task. The official data split for the UAVid
dataset, i.e., 15 training scenes (It has 150 labelled images)
and 5 validation scenes (50 labelled images) for training
and validation, respectively. The test split consists of the
left 10 scenes (100 labelled images).

4.2 Class Definition and Analysis

Labelling each object in a 4K resolution dataset which is
based in an urban environment is consumes a lot of time
and is expensive.The most common types of objects are
labelled for in the dataset so as to ease the process.There
are a total of 8 classes in the dataset.The UAVid Dataset
that we used had a diverse class composition as shown in
figure 2. The definition of each class is described as follows.

(1) Building: houses, skyscrapers and also including
buildings under construction. walls and fences are not
included.

(2) Road: road or bridge surface that cars can operate on
legally. The places where vehivles can be parked are
excluded.

(3) Tree: trees that have canopies and main trunks.

(4) Low vegetation: grass, small shrubs, and bushes.

(5) Static car: cars that are not moving, buses that
are not moving , trucks, automobiles. two wheeler
vehicles are not included.

(6) Moving car: cars that are moving, including moving
buses, trucks, automobiles, and tractors. two wheeler
vehicles are excluded.

(7) Human: pedestrians, bikers, and other humans

(8) Background clutter: all objects not belonging to any
of the classes above.(Lyu et al. (2020))

5. EXPERIMENT
5.1 System

The task of training a semantic segmentation model re-
quires a lot of computational power. So, for the task we
used Delta HPC (High Performance Computing), it is a
supercomputer at Cranfield University. The computer has
two “front-end” login nodes. These are known as delta-
login-1 and deltalogin-1. They each contain two Intel E5-
2620 v4 (Broadwell) CPUs giving 16 CPU cores and have
a total of 256 GB of shared memory.

The compute nodes are housed in standard rack mount 6U
chassis, with 12 nodes per 6U chassis. There are 10 chassis
for compute nodes spread over five racks. This gives a total
of 120 compute nodes. 118 nodes are for general use and
each of these nodes has two Intel E5-2620 v4 (Broadwell)
CPUs giving 16 CPU cores and 128GB of shared memory.
Taken together these give a total of 1888 available cores.

There are two GPU nodes housed within one of the
standard rack mounts 6U chassis, each node has two Intel
E5-2620 v4 (Broadwell) CPUs giving 16 CPU cores, and
128GB of shared memory. One node has 4 Tesla K80 GPU
cards, and the other node has 4 V100 cards.
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Fig. 3. Various classes in the UAVid Dataset (Lyu et al. (2020))

5.2 Training

The machine learning libraries that we used for our paper
are listed below.

Libraries

(1) TensorFlow: A complete open-source machine learn-
ing platform is called TensorFlow. Researchers can
advance the state-of-the-art in ML thanks to its ex-
tensive, adaptable ecosystem of tools, libraries, and
community resources, while developers can simply
create and deploy ML-powered apps.

(2) Matplotlib: Python’s Matplotlib toolkit provides a
complete tool for building static, animated, and in-
teractive visualisations. Matplotlib makes difficult
things possible and simple things easy.

(3) OpenCV: A set of programming tools called OpenCV
is primarily focused on real-time computer vision.

5.8 Evaluation Metrics

The following evaluation metrics standard for classification
methods were used.

(1) Intersection Over Union(IoU):
The Intersection over Union (ToU) metric is essen-
tially a way to measure the amount of overlap between
our prediction output and the target mask.The IoU
metric measures the number of pixels common be-
tween the target and prediction masks divided by the
total number of pixels present across both masks.

— TP

- Tp+Fp+ Fy
Tp = True Positives

Tn = True Negatives

Fp = False Positives
Fn = False Negatives

ToU (1)

Background

Clutter

Low Eirane Moving
Vegetation Car

(2) Avg. Accuracy:
One parameter for assessing classification models is
accuracy. The percentage of predictions that our
model correctly predicted is known as accuracy.The
average of accuracy across the image is considered.

Tp + TN 2)
Tp+Fn +Tn+ Fp

(3) Precision:
The proportion of accurately categorised positive
samples (True Positive) to the total number of posi-
tively classified samples is known as precision.
. Tp
Precision Tt By (3)
(4) F1 Score:
By calculating the harmonic mean of a classifier’s
precision and recall, the Fl-score integrates both
into a single metric. It mainly used to compare the
effectiveness of two classifiers.
Precision x Recall

F1 Score = 2(P7'ecision + Recall) (4)
Tp

Recall = ———— 5

eca To ot Py (5)

5.4 Training the Model

We trained our models in the high-performance computer.
It took around 9-10 hours to train our model to 200 epochs.
We trained two different models. The specifications of the
models are elaborated further in the paper.

(1) Model 1:
The 1st model that we trained was a DeeplabV3
model with Resnet 50 frontend. It provided us the
following metrics. As the images in the dataset were
quite big (4096 x 2160 or 3840 x 2160) we cropped
them into 1080 x 1920 and then began the train-
ing.We selected 100 epochs with a batch size of 10.
(2) Model 2:
The 2nd model that we trained was a DenseASPP
model with Resnet 50 frontend. It provided us the
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following metrics. As the images in the dataset were
quite big (4096 x 2160 or 3840 x 2160) we cropped
them into 2560 x 1440 and then began the training.
We selected 200 epochs with a batch size of 10.

Input Ground Truth Prediction

Fig. 4. Predictions of Model 1

Input Ground truth Prediction

Fig. 5. Predictions of Model 2

6. DISCUSSIONS

Model Avg. Accuracy Precision F1 Score Mean IOU
Model 1 0.62979 0.69487 0.60854 0.31632
Model 2 0.73284 0.77983 0.73284 0.4154

Table 1. Evaluation results

We presented a semantic segmentation approach for iden-
tifying the landing areas.The models we trained provided
us with promising results.

The figure 4 Shows the predictions of the model 1 and the
figure 5 shows the predictions of model 2 In these figure we
can see that on the left there is Input Image,in the center
the ground truth and on the right is the prediction of our
models. We can see that in the prediction there is a lot of
noise(black colour). However,this can be further improved
by training.The noise in model 2 less than model 1.As in
model 2 we had taken 200 epochs while they were 100 in
model 1 and also taken a bigger input image of size 2560
x 1440 rather than 1920 x 1080 in the model 1. These
results can also be improved with further training.

Class Model 1 Model 2
Background clutter  0.50139 0.58976
Building 0.70461 0.82515
Road 0.63151 0.63797

Tree 0.69069  0.70734

Low vegetation 0.57367 0.61167
Moving car 0.77507 0.78286
Static car 0.34426 0.42309
Human 0.61922 0.63094

Table 2. Class-wise accuracy of our models

The numerical metrics for determining the accuracy and
evaluation of our models are shown in table 1. One can
see from the table,that the model 2 provides better results
according to all the evaluation parameters.The table 2
provides the class-wise accuracy of our models .The Class
“Building” has the highest pixel wise composition in the
Dataset hence it has the highest accuracy.The accuracy
can be further improved with increasing the number of
iterations i.e. number of epochs. As our Dataset has 4K
Resolution (4096 x 2160 or 3840 x 2160). For ease of
training, we cropped the input into 1920 x 1080 and 2560
x 1440 then passed it into our model.It helped us increase
our dataset and improve the accuracy.

7. CONCLUSION AND FUTURE SCOPE

BVLOS flight is a Holy Grail for the UAV industry. A deci-
sion making algorithm for drone safe landing is an enabling
technology. In our research, we proposed to use a semantic
segmentation for analysis of landing sites. We compared
two different models, namely, a DeeplabV3 model with
Resnet 50 frontend and a DenseASPP model with Resnet
50 frontend. Our results manifest that both models give
promising results, however, the latter exhibiting better
performance. In the future we plan to integrate our model
into a real time semantic segmentation module and deploy
it on an UAV onboard a NVIDIA Jetson Nano.We will
try to increase the accuracy of our models by collecting
additional data and increasing the dataset size and diver-
sity. Including images with new types of areas, e.g. forests,
farms or land fields, as well as images, collected at different
lighting and weather conditions might improve the robust-
ness of the algorithm. Combining semantic segmentation
with various other deep-learning techniques might also
help to improve prediction accuracy at the expense of
additional computational resources. Building on this paper
we plan to develop a vision-based navigation system for
UAVs in GPS denied locations. We Plan to implement
this as real time video semantic segmentation model.
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