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SUMMARY

A general method for the optimal design of 1large 1laminated
compésite structures, that allows full design variable (ply
thickness and orientation) freedom, has been developed. . The
number of variables and constraints, and hence the problem
size, being dealt with at any given moment in the
optimization process is kept within reasonable bounds by

using a multilevel optimization scheme.

The optimization process is split into a system level and an
element 1level. At the system level the entire structure is
considered and the individual laminae thicknesses (not ply
angles) are sized so as to minimize the total structural
weight within the constraints placed on the system. These
constraints - can include strain, displacement, buckling and
gauge limits. Once the design has converged at this level
the optimization process then switches to the element level.
The objective function at the element 1level combines a
weight function and a strain energy change function into.a
utility function which is minimized and in which the
relative importance of each part is reflected by weighting
coefficients. Minimizing the change in strain energy
ensures load path continuity when switching between the two
levels of optimization, and so decouples the problems at the
two 1levels. Continuous 1lamina thickness and ply-angle
variation is used to minimize the element 1level objective

function while satisfying strain, buckling and gauge



constraints. In this way optimum use is made of the
material in each element, without changing the the load
paths in the overall structure and thereby ensuring that the
constraints ‘at the 'system level are still satisfied. The
procédure switches between the two 1levels until overall

convergence has been achieved.

Structures representative of straight, forward swept and
delta wings are uséd to illustrate the effectiveness of the
system and to show that the optimal designs produced are
feasible and realistic, and compare favourably with designs

obtained by more conventional and intuitive methods.
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NOTATION

constant or plate length.

membrane terms‘in the laminate riéidity matrix
constant or plate width

strain/displacement matrix

coupling terms in laminate rigidity matrix
functions or constants

variable

bending terms in the laminate rigidity matrix
elastic (Young’s) modulus

function or function value

force

constraint function at element level

shear modulus or constraint function at system level
element stiffness matrix

global stiffness matrix

number of lamina/layers

number of half wave lengths of buckle

a 3x5 matrix defined in Appendix C

number of half wave lengths of buckle

number of deformation modes of the plate

number of load cases

load vector

objective function weighting coefficients, or if in
matrix form then the lamina stress-strain relations

transformed lamina stress-strain relations
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Greek

< ® © M D> o~ o¢
|

q
| |

reduced stiffness properties of lamina
matrices of lamina invariant properties
laminate rigidity matrix (A,B,D) |
lamina/layer thickness

strain transformation matrix

deflection in the x-direction

lamina invariant properties or strain energy
deflection in the y-direction

strain energy |

element/component weight

deflections in z-direction

total weight of the structure, or wofk done
variables

distance from plate midsurface to the lamina centroid

symbols

éhear strain
deflections/deflection vector
change (of parameter)

strain

lamina/ply layup angle

plate midsurface curvature
Poisson’s ratio

material density

direct stress

- shear stress



@ - a 5xL matrix - function of ply angles

Superscripts

L - lower bound

T - transpose of a matrix
U - upper bound

- optimum value, or midsurface values when applied to

plate strains

' - reduced set, or transformed axis set
Subscripts
a - linearization point in element optimization

crit- critical buckling load

j - lamina/layer number

1 - lamina (generally used in strain expressions)
L - longitudinal direction (of the fibres)

m - number of half wave lengths of buckle

n - number of half wave lengths of buckle

pl - plate (generally used in strain expressions)
T — transverse direction (of the fibres)

X - x-direction

Xy - Xx-y plane
y - y-direction

z - z-direction



CHAPTER 1

1 INTRODUCTION

1.1 Rationale

The use of composite materials, and in particular fibre
reinforced plastics, 1is expanding rapidly in the aircraft
industry and‘ the 1last decade has seen the range of
applications of these materials expand from mere aircraft
trimmings and fittings to secondary structure such as cabin
floors, flaps and rudders, and even primary structure eg.

the Harrier GR5 wing.

The advantages of these mategials when compared to aluminium

or titanium, are numerous, but those traditionally

highlighted are:-

a) the potential reductions in structural weight ( see
‘figure 1.1) due to their high specific strength (figure
1.2) and excellent fatigue properties ( figure 1.3 ) and,

b) the potential for reductions in the production and life
cycle costs, primarily due to the reduced number of parts
and fasteners required ( figure 1.1 ) so needing less
less labour, and the improved fatigueAlife leading to

fewer inspection and maintainance requirements.



Aileron structure Vertical fin structure
Aluminjum | Composite Aluminium Composite
Weight (1bs) 139.9 107.4 858 642
% Composite
weight 5.8 61.9 0 76
Weight saved
(1lbs) - 32.5 - 216
% Weight
saved - 23.2 - 25.2
No. of parts
(excl. 398 205 716 201
fastners)

Figure 1.1 Alumnium and composite structure comparison
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Figure 1.2 Material specific

Another potentially major advantage of

'strength

COMPOSITES

ALUMINIUM

N - No. of cycles

Figure 1.3 Relative fatigue

strength

composite materials

the ability to "tailor" the laminated material in such a

i.e.

way that certain desired structural behaviour can be induced

the designer has the power to "design" the material,



as well as the structure.

This additional design flexibility that these materials
allow, stems from the highly directional properties of the
fibres (typically glass, carbon or aramid types). .Simply by
laying fibres at various prescribed angles and sequences, a
material (laminate) can be built that has certain desired
strengths and stiffnesses in specfic directions. Suitable
manipulation of these properties can lead to the design of
plates which behave quite differently to isotropic (egq.
aluminium) plates eg. a plate can be made to bend or twist

when loaded in tension.

The analysis of the interaction bf these layers of fibres
(lamina) and their effect on the overall stuctural behaviour
is, however, a very complex and tedious process.
Furthermore; ‘many of the common design constraints such as
stress and strain limits are highly non-linear functions ofb
the design variables (lamina thickness and fibre orientation
(ply angle)). As a result there are no simple formulae for
proper sizing of laminates and design intuition cannot be
considered a reliable guide in these circumstances. This
has, in the past, 1limited designers to using relatively
simple fibre layups whose behavior is easily understood and
so in many cases the full potential of these materials has

not been realized.



The. use of modern mathematical optimization techniques
combined with some composite structural analysis method, in
a computer based design system is an attractive solution to
the problem. Non-linear optimization techniques have
advanced a great deal over the last 20 years and can now
provide a sound, reliable basis for laminate sizing. Modern
computers also have the powerful processing capability
required to analyse large laminated composite structures and

the interaction of their elements and laminae.

1.2 Literature Survey

Thé potential for applying optimization techniques to the
design of composite structures has noﬁ escaped the attention
of other researchers. Numerous publications on various
aspects of optimum composite structures have appeared since
the 1late 1960’s. The early papers on this subject
essentially reported on the feaéiblity of the concept (Ref.
{[2], [3]) and it was not until after 1973, when Khot et al.
(Ref. [4]) and schmit and Farshi (Ref. [5]) published
their work, that research in this field became " more

widespread.

The work by Khot and Schmit showed that optimization
techniques could be wused successfully in the design of
realistic optimum composite structures. Their papers,
interestingly, repbrted on two different aspects of optimum

composite design, with Khot describing design methods for



large structures using the finite element method of
analysis, while Schmit’s work concentrated on the optimum
design of individual panels. Practically all the subsequent
literature on optimum composite design can readily be
classified as dealing with either one of tﬁese aspects and
are catergorized accordingly in this survey. The two

catergories are discussed separately.

A selected list of some of the work published on the optimum
design of individual composite structural elements or
components is given in the references (Refs. [6]1-[16]).
The comparatively large number of published works that falls
into this catergory, can probably be attributed to the fact
that the problem size dealt with here 1is, generally,
significantly smaller (in terms of the number of desgn
variables) than that dealing with multi-element structures.
These problems can thus often be solved using only desktop
computers eg Refs. [6] and [7], or even if a large computer
has to be used, only a 1limited memory size and storage

capacity is required.

Much of the work presented in this catergory is very similar
in nature (minimum weight design of symmetric laminated
panels) and only really differs in detail and in the
solution method chosén. Massard (Ref. [6]) describes a
method that includes strength constraints, bending and
inplane loads, and that varies the number of layers and ply

angles (within a prescribed set) to achieve an optimum.



Flanagan (Ref. [7]) gives a method using a derived gradient
technique to size a laminate subject to inplane loads only,
varying either the ply ratios or ply angles, while Park
(Ref. [8]) varies thé ply thickness and angle to design
minimum weight panels subject to inplane loads and strength
and stiffness constraints. Buckling constraints (as well as
strength and stiffness constraints) are included in Schmit
and Farshi’s work (Ref. [9]), setting it slightly apart
from the former 3 papers. They use the method of inscribed
“hyperspheres to ensure that feasible designs are acheived
after each design iteration but 1limit the work to
considering only inplane loading, and vary only the 1lamina
‘thickness (ply angles remain fixed) when sizing a laminated

panel.

Tauchert and Adibhatla have investigated different types of
optimum composite panels and have derived methods for
designing symﬁetric laminated plates for maximum stiffness
(Ref. [10]) and bending strength (Ref. [11]), by varying
the lamina thicknesses and ply angles using a quasi-Newton
method. The weight of the panel was not taken into
consideration but an upper limit was placed on the total

plate thickness.

The work published by Stroud et al. <(Refs. [12]-[13]) on
minimum weight design of composite panels under combined
loads was the ground work that lead to the computer program

PASCO. This (publically available) program is intended for



use on uniaxially stiffened composite panels subjected to
combined inplane loads. Non-linear mathematical programming
techniques (method of feasible directions) are wused to
acheive an optimum design by varying the lamina thickness

and ply-angle and stiffener spacing, width and depth.

Work on other aspects of optimum composite panel design has
been published by McKeown (Ref. [14])) who established an
uppef bound on the number of layers in optimal
(plane-stress) composite sheets, and Adali who developed
techniques for design sensitivity analysis (Ref. [15]) and
multi-objective (minimizing the dynamic deflection and
maximizing the natural frequencies) design methods (Ref.

[16]) for antisymmetric angle-ply laminates.

Published literature indicates that only a small number of
structural synthesis systems for large multi-element
laminated composite structures have been developed in the
past. One of the few of these that is pub;ically available
in documented form is the program OPTCOMP developed by Khot
(Ref. [17]). The program is based on an optimality
criterion vmethod which assumes that the strain energy
density is equal for all ply groups as the laminate
approaches minimum thickness (i.e. minimum weight). An
iterative redesign procedure for adjusting the number of
plies is derived from this optimality condition. The ply
thicknesses and angles remain fixed. The program includes

approximate buckling constraints and uses a finite element



code to reanalyse the structure at each iteration and update

the stress state.

The above report (and program) was preceeded by a number of
papers by Khot and his colleagues in which the basic theory
(with stress and displacement constraints) was developed
(Ref. [18]) and twist constraints for aeroelastic tailoring
of wings were included (Ref. [19]). This work was all
based on the philosophy of using the number of plies (of
prescibed thicknesses and angles) as the design variables

rather than altering the actual ply thickness or angle.

McKeown was also active in this field in the mid 1970's and
published two papers (Refs. [20]-[21]) describing a novel
approach to the optimum composite design problem. He
proposed reformulating the problem into one in which the
primary variables were the nodal deflections of the finite
element model. This leads to a multilevel problem (or
"inner and outer subproblems”™) which he shows to be a
convenient approach to solving the non-linear mixed integer
problem involved, and allows the optimal number of 1layers,
layer thickness and ply angles to be determined
simultaneously. The usefulness of the method 1is, however,
somewhat restricted 'by the need to express all the
constraints in terms of the nodal deflections, which may
lead to very complex and computationally inefficient (and

possibly unreliable) expressions for some constraints.



Starnes and Haftka (Ref. [22]) modified an existing
structural optimization program (WIDOWAC - by the same
authors) to include composites. The design variables
considered were lamina thicknesses (at fixed angles) and
penalty functions were wused to introduce the strength,
displacement, twist, buckling and gauge constraints, with
the search algorithm being a Newton method. Their work
included interesting comparisons of the optimum designs

acheived in composites and aluminium.

A computational procedure for sizing 'composite airframe
structures developed by NASA in the late 1970’'s is descibed
by Sobieski (Ref. [23]). The procedure includes a finite
element analysis and mathematical optimization technique and
allows the variation of the layer thicknesses and ply angles
so as to satisfy stress and deflection constraints, while
optimizing individual elements. The method described
apparently allows Qreat flexibility in terms of the design
variables, material selection, combinations and
construction, but since individual panels are optimized
separately, the resulting design will only be near, but not

generally at, the minimum total mass design.b

The results of an interesting multilevel approach to the
optimum composite design problem were presented by Schmit
and Mehrinfar (Ref. [24]). They demonstrated stable
convergence of the procedure when applying it to the design

of composite wing box structures that were subject to



strength, deflection and both panel and 1local buckling
constraints. A key feature of the method was the selection
of the <change of stiffness (rather than weight) as the
element (or lower) level objective function.td be minimized.
The potential versatility of the method was, however,
restricted by allowing only the lamina thicknesses to vary

while the ply angles remained fixed.

Finally, a paper by Stroud (Ref. [25]) illustrates some of
the potential problems associated with optimized structures.
He emphasizes the sensitivity of optimized composite
structures to off-design conditions and imperfections and
the resulting need to ensure that absolutely all load cases

are considered in the design process.

1.3 Objective Of This Work

The aim of this work can broadly be defined as the
development of a structural synthesis system for laminated
composite structures that will ensure the most efficient use
of material in the structure, within the bounds prescibed by
the designer. The most efficient use of material
essentially implies a design that uses a minimum volume or

weight of material to perform a given function.

This system is to act as a tool for the design engineer,
performing all the tedious, complex and repetitive

calculations repquired to produce an optimum structural

- 10 -



design. It is to be an effective and versatile design tool
free of the various 1limitations imposed on structural
complexity or design variables that have restricted the

usefulness of previously published work (see section 1.2).

1.4 Scope And Presentation Of This Work

In order to make the most efficient use of the special
‘properties of composite materials, full design variable
freedom (for thickness and ply anglé variation) must be
allowed in the design/optimization procedure. This can,
however, rapidly 1lead to an unweildly problem with an
inordinately 1large number of variables as the number of
elements in the finite element model increases. 1In the past
many fesearches (see section 1.2) have limited the problem
size by working with fixed ply angles and allowing only the
laminae thicknesses to vary. Design variable linking has
also been used to limit the number of variables by ensuring
symmetry of the laminates and by defining certain elements

(in the finite element model) as being of the same laminate

type.

In this work, however, a general method for optimal design
of composite structures is developed that does allow full
variable (thickness and ply angle) freedom, and includes
design variable 1linking and the ability to keep ply angles
and/or thicknesses fixed as an design opfion rather than a

limitation. This is achieved, while keeping the problem

- 11 -



being dealt with at any given moment in the optimization
process a feasible size, by using a multilevel optimization

scheme.

The optimization process is‘split into a system (or upper)
level and an element (or lower) level. At the system level
the entire structure 1is considered and the individual
laminae thicknesses (not ply angles) are sized so as to
minimize the total structural weight within the constraints
placed on the system. These constraints can include strain,
displacement, buckling and minimum gauge limits. Once the
design has converged at this level the optimization process
then switches to the element level. At the element 1level
full design variable freedom is allowed such that the weight
of the individual element may be minimized. In order to
decouple the problems at the two levels, and to maintain the
stiffness distribution (and hence the load paths,
displacements, etc.) established in the system 1level
optimization, the stiffness change of the individual
elements is kept to a minimum while carrying out the element
level optimization. This is achieved by setting up a
multi-criteria objective <function in which both element
weight and stiffness change are minimized. In this way
bptimum use is made of the material in each element, without
changing the load paths in the overall structure and thereby
ensuring that the constraints at the system level are still

satisfied. The procedure switches between the two 1levels

- 12 -



until overall convergence has been achieved.

The results obtained wusing this multilevel optimization
scheme were very satisfactory and demonstrated both the
viability and effectiveness of the method. Structures
representative of straight, forward swept and delta wings
were used as test examples and were optimized wusing full
design vafiable freedom (ply thickness and angle) to satisfy
strain, buckling and displacement constraints. The final
designs produced were all feasible and realistic, comparing
very favourably with designs obtained by more conventional
and intuitive methods. Convergence of the overall procedure
was generally obtained after 4 to 5 iterations of the

overall (ie. both levels) optimization procedure.

The concept and philosophy of applying a multilevel
optimization system to the problem of optimal design of
laminated composite structures has been shown, in this work,
to work well and to warrant futher development work to fully
exploit its potential. To this end recommendations for
futher development and enhancement of the basic system have

been made.

The development of the theory, the methods employed in the
cuurent work and the results obtained are addressed in
detail in the subséquent chapters. In chapter 2 futher
motivation for the use of a multilevel optimization scheme

is given, together with a detailed description of the

- 13 -



problem formulation. Chapters 3, 4 and 5 concentrate on
aspects of the element level optimization, starting with the
description of the objective function and constraints at
that level (chapter 3), and going on to an explanation of
the optimization algorithm chosen (a sequential LP method)
and the ways of linearizing the constraint and objective
functions (chapter 4). This is followed by some examples
illustrating the effectiveness of the element optimization
scheme in chapter 5. 1In chapters 6, 7 and 8 the same topics
are covered as in chapters 3, 4 and 5 respectively, but for
the system level optimization scheme. Chapter 9 contains a
discussion of the results of the overall multilevel scheme,
and 1is followed by the conclusions drawn from this work as
well as suggestions for future research and development work

- in this line, in chapter 10.

The appendices contain much of the material and information
that forms the theoretical and mathematical base for this
work, but which would not have been relevant to include in
the main body of the text. The appendices dealing with
theory (A - D) are followed by one (E) describing some of
the problems encountered with the computer implemetation of
the theory presented in the following chapters, and then
there are two appendices (F and G) giving brief descriptions
of the programs developed for the element and system level

optimization processes.

- 14 -



CHAPTER 2

2 PROBLEM FORMULATION

The methods commonly used in structural optimization cannot
be easily or readily applied to the opfimum composites
design problem. The primary reasons for this are the
inordinately 1large number of design variables (and related
constraints) associated with laminated composite structures,
and the high degree of interdependence of these variables.
This leads to problems that are generally too large to deal
with realistically on existing computers, and that may also
tend to be unstable i.e. the optimization scheme may not

converge.

In order to overcome these obstacles an approach needs to be
“adopted where = the number of design variables under
consideration at any point should be kept as 1low as
posssible. Futhermore to avoid the potential convergence
problem, full design variable freedom should only be allowed
when optimizing small substructures which are well defined

in terms of constraints and loading.

The use of multi-level optimization is particularly suitable
in this case as it can be used to satisfy both of the above -
requirements. In this work the upper 1level (or system
level) of optimization is performed considering the entire

structure and using only the layer thicknesses of the

- 15 -



laminated structural components as the design variables i.e.
the ply anglés and the number of layers is kept fixed. The
number of design variables can be further limited kby
defining an upper bound of 6 on the number of layers at the
optimum (see Appendix C for the derivation thereof). The
maximum number of design variables ét the upper optimization
level 1is then 6xN (where N is the number of structural
elements) and the problem size, although 1large, 1is thus
still in the same order of magnitude as the more common,

isotropic material, structural optimization problems.

The lower level (or elemenf level) of optimzation considers
only individual elements where’the major constraint is that
the change of stiffness of the element should be kept to a
minimum as weight 1is reduced. This ensures that the
stiffness, and hence the 1load paths, in the  overall
structure do not change substantially, so preserving the
continuity when switching back to the wupper 1level of
optimization. The system and element level problems are
effectively decoupled in this manner, and the loads in any
given element can thus be assumed to remain the same
irrespective of the change in the design variables during
the 1lower 1level of optimization. This constraint together
with strain, buckling and gauge constraints leads to a well
defined problem at the element level and so full freedom of
the design variables (layer thickness and ply angle) can be

allowed. The maximum number of variables at this level is
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always likeiy to be small as there are only two variables
per layer. The number of variables at this level can
obviously limited to 12, if 6 is used as the upper bound on

the number of layers at the optimum.

The multilevel approach 1is also attractive in terms of
dealing with bubkling constraints. The inclusion of local
buckling constraints in addition to the wusual strain,
stiffness and gauge limits presents difficulties in regular
optimization methods because their meaningful representation
requires that consideration be given to the detail design of
the many individual components which make up the strucéﬁral
system. This problem is avoided by dealing Qith the higher
modes of panel buckling at the element 1level optimization,
where <closed form solutions can be éffectively used, and
with panel buckling constraints at the system 1level, . where
rigorous solutions may have to used for areas of complex

structural geometry.

The multilevel concept therefore appears to be a sound basic
approach to the optimum design of laminated composite
structures, especially if the constraints include buckling,

strength and stiffness limits.

A schematic description of the multilevel approach adopted
in this work 1is given 1in figure 2.1 where t, and e,
represent the thickness and ply orientations respectively.

The formulation employed here represents an intuitive



decomposition of the primary problem statement into a system
design problem and a set of wuncoupled element level
problems. Results are obtained by iterating between system

and element level problems.

(START )

SYSTEM LEVEL OPT.
Minimize weight Finite Ele.
of the whole | __}element | level
structure using : analysis convergence
variables t:
only.
Finite element ELEMENT LEVEL OPT.
analysis

Minimize weight

of each element

r— keeping it's
Sys. stiffness change

level to 2 minimum

convergence using variables

t, and €.

Figure 2.1 Multilevel design logic

Expressed more formally, the composite structure
optimization problem can be written in general terms as:-
min W(t)
subject to:- i) c(6,t) <0
ii) 87«06 < g"
iii) t'=t <t*

where



W(t) | is the total structural weight ( proportional
to variable t)

c(B,t) are the constraints (dependent on the
variables and t)

8,t are the ply angle and thickness variables
respectively, associated with each lamina

L,U superscripts indicating the lower and upper
bounds respectively

When expreséed in the multilevel optimization way wused in

this work, it can be written as:-
System level:

Find t such that
min W(t)
subject to:- i) G(t)< 0
| ii) tgtgt”

and
Element level:

Find B and t such that
min w(t)
subject to:- i) Ak —= 0
ii) g(®,t) < 0
iii) s"g o< 6
iv) tgtgt

where
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G(t) are constraints applicable at system level
(t is the only variable)
g(8,t) are constraints applibable at element level
(6 and t are variables)
Ak is the stiffness change of the element
w(t) 1is the element weight
The other symbols are the same as in primary problem

statement.
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CHAPTER 3

3 ELEMENT LEVEL OPTIMIZATION

3.1 Objective Function At Element Level

In order to obtain stable convergence of the overall design
procedure, the behaviour of the structure, and the resultant
load paths within it, should not be altered significantly
when switching from one optimization level to another. This
can be achieved by requiring that the stiffness change at

the element level optimization be kept to a minimum.

The stiffness change of the element can thus be wused as a
constraint (with relatively tight move limits) at the lower
level of optimization or alternatively can be used as the
objective function to be minimized. The latter method has

been used very succesfully in Refs. [24] and [26].

The use of stiffness change alone, however, as the objective
function will not generally be sufficient to drive the
design to an optimum. This is particularly well illustrated
in the case where the element satisfies all the constraints
(buckling and strain), as there 1is then‘ no incentive to
change the design (and so reduce the volume of material),
since the stiffness change will then be =zero i.e. a
minimum. Stiffness change and weight should thus be
combined in a multi-objective function that is to be

minimized. The inclusion of weight as a part of the
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objective function ensures that both layer thicknesses and
layup angles wil be used such that a design will be obtained
that achieves a good compromise of minimized weight and

stiffness change, while satisfying all the constraints.

The various multi-objective optimization methods that have
been developed over the years are described in Refs.
[27]1,[28] and [29] in detail. Many of these methods require
the wuser to have some knowledge of the constrained optimum
values of each objective function individually, and use
these values in the optimization process. 1In this design
problem, however, it is not known what the optimum element
weight will be. The basic, weighted objeétives method of
combining objective functions, descirbed in Ref. [271, 1is
an extension of the utility function techniques andrdoes not
require information on the individual optima, and is thus
chosen for this work. The method 1is briefly described

below.

The basis of the weighted objectives method consists of
adding all the objective functions together using different
weighting coefficients for each. The multi-objective
optimization problem is thereby transformed to é scalar

optimization problem by creating one function of the form
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k
£(x) =) q £, (x) (3.1.1)
{et

where f;(x) are the original objective functions

X are the variables
q; are the weighting coefficients representing the
relative importance of the criteria (g 0)
It is wusually assumed that iiqi = 1, Note that the

[

weighting coefficients do not reflect proportionally the
relative importance of the objectives but are only factors,
which when wvaried, would 1locate different points in the

design space.

Thé location of these points depends not only on the values
of q; but also on the wunits in which the functions are
expressed. The q; can, however, be made to reflect closely
the importance of the objective functions "if all the
functions are expressed in units of approximately the same
numerical values. Thus egn. (3.1.1) can be changed to the
form
k .

£(x) =§q.tfi(x)ca 0 (3.1.2)

where

c; are constant multipliers.

According to Ref. [27] the best results are wusually
obtained if ¢; = 1/f;, where f: is the ideal optimum of the

objective function f; within the bounds of the prescribed
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constraints.

Now in the element 1level optimization' f: = 0 for the
stiffness change part of the objective function. This leads
to c; =0 which is obviously not acceptable, since the
solution would then be totally dominated by this part of the
multi-objective function. Furthermore, the calculation of
the f: value for the weight function involves a complete
optimzation scheme in its own right and the additional

computational effort required for this does not seem

justified.

These problems are overcome in this work by assuming the fz
value for the weight function is merely the element weight
obtained in the system level optimization iteration
immediately prior to the element level optimization, while
the fz value for the stiffness change function is taken to
be the element stiffness upon entry into the element level
optimization. Experience has shown thesé to be suitable
values in that they allow the weighting coefficients g to
represent proportionately the relative importance of the
various parts of the objective function when varied in the

range 0 to 1.

The total objective function thus has the form

f(x) = q, £ (x)/W + q, £, (x)/4k (3.1.3)
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where W and Ak are the £; values for the weight and
stiffness change as described above. This form of egn.
(3.1.2) ensures that the separate objective functions are
dimensionless and will have similar numerical values and
thus neithér should dominate the solution, wunless vastly
differing weighting coefficients are assigned to the two

parts.

3.2 Constraints At The Element Level

The constraints to be considered at the element 1level of
Sptimization are buckling (to be prevented), strain (with
upper (tension) and lower (compression) bounds), minimuﬁ
lamina thickness and bounds on the layup angles. These can,

respectively, be written as:-

Buckling:- (Fo ) /Fy = 1/C,
(Fy)it /By = 1/, (3.2.1)
(Fey desw /Eey 2 1/¢,
where Fy + F, + F,, = F___
and F, /F__ = C, ; @/&w_=cz; Fyy /Fror = C
Strain:- £ < £ < g
(per layer) E,: < & < 8: (3.2.2)
. < E,< Ex
Thickness:- t < t < t (3.2.3)
Angle:- 8 < 6 < @ (3.2.4)
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Note that the constraints (3.2.1) applies to the element as
~a whole whereas the constraints (3.2.2) - (3.2.4) are

applicable to the individual lamina in the element.

The vériables FerFy and Foy in the buckling vconstraint
equatidns are the forces in the x, y and shear directions
respectively, and the subscipt "crit" denotes the buckling
load in that direction. The constraints are here written in
a way which approximates very closely the well known form of
the buckling constraint equation

o /(B Lpd +Ey /(B ) ip +(Fpy /(Fpy o ) < 1 (3.2.5)
Egn. (3.2.5) can be written in the form

x+ Pp+3 =1 (3.2.6)
where «, B and ¥ can take on any value as 1long as the
inequality 1is satisfied. If it is specified that == C ,
P=C, and ¥=C; (which is the same as the buckling
constraint egns. (3.2.1)) the inequality (3.2.6) is still

satisfied since by eagns. (3.2.1) C, +C, + Cy = 1. The

3
constraint eqgns. (3.2.1) thus satisfy the generalized
buckling constraint egn. (3.2.5) but impose the additional
individual limits on E&/KF*)a&t , Fv/(Fv)a{b and

Fuy /(Fyylecit -

The advantage of writing the buckling constraints in the
form of egns. (3.2.1) as opposed to egn. (3.2.5) is that
the design variables (which occur in the "crit" terms) may
be dealt with directly rather than the inverse design

variables and so helps to simplify the optimization
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algorithm. It should be noted, however, that this form of
the buckling constraint can be extremely conservative.
(Experience with wusing this form has shown that in the
interest of a more optimal solution it would probably be
better to wuse egn. (3.2.5) despite the extra mathematical

complexity).

The derivation of the formulae for calculating the buckling

loads is given in section 3.2.1.

The strain constraints used are the lamina strains in the
longitudinal (€.), transverse (£.) and shear (&)
directions. (The method for transformation of the element
strains into lamina strains is given in section 3.2.3.) The
superscripts L and U indicate the 1lower and wupper bounds
epplicable, with the same notation being applied to the
thickness (t) and ply-angle (®) limits. The maximum strain
criteria is wused in preference to the Tsai-Hill failure
criteria say, because:- (i) of the more direct relation
between its strain components and the design variables
(thereby probably making the convergence more stable and
providing more understandable sensitivity information if
required), and (ii) experienced composite designers
regularly wuse strain limits in practice and thus have grown

accustomed to them.
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A further possible "constraint" is the application of an
upper limit of 6 on the number of lamina per element. The
reason for this is that 6 is éhe_established upper bound for
the number of layers in an optimum design laminate. Setting
the upper bound on the number of 1lamina also has very
distinct computational advantages in that the total problem
'size is then well contained and can be predetermined. It,
futhermore, then helps to avoid the complexity of the
integer programming problems associated with having a
variable number of lamina. The derivation of this bound is
given in Appendix C. It may be argued that this 1low 1limit
does not allow for the incremental type stacking frequently
used by designers to limit interlaminar shear and edge
stresses. The detail analysis of these effects is, however,
very complex and cannot therefore realistically be included
in a design optimization package of the type descibed here.
If these effects are of concern to the designer, the
bptimization package can still be wused to produce a
fundamentally sound design which can then be refined to suit

the specfic requirements.

3.2.1 Calculation Of The Buckling Loads For Composite

Plates

The derivation of buckling loads for a specially orthotropic
laminate (see Appendix A for definition thereof) is

relatively straightforward and can be found in most texts on
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the subject. In this section, however, only the condition
of symmetry about the midplane is imposed i.e. there need
not necessarily be a 1lamina at -f for each lamina at +8.
This implies that there may be coupling between direct and
shear in-plane 1loads and between bending and twisting
moments, but there is no coupling between in-plane loads and

bending/twisting moments.

A completely unbalanced, unsymmetric layup does generally
imply coupling between in-plane loads and moments i.e. a
plate would bend under any in-plane 1loading. This added
complexity normally precludes the use of closed form
solﬁtions for the buckling analysis, and an eigen solution
has to be done. This type of layup is, howe?er, very seldom
used in practice as it can 1lead to major design and
manufacturing problems such as high residual stresses and
warping, due to the thermal expansion and contraction of the
lamiﬁa induced by the curing process. The buckling analysis

of these layups is therefore not considered in this work.

Now from Ref. [30]), the strain energy of an anisotropic

plate due to bending (with no midsurface extensions) is

Ve = 0.5f[ID, (3%w/3x* ) +2D,, (32w/3x*)(3*w/dy*) +
D,, (3*w/dy? ' +4D,, (32 w/dxdy ) +4(D,3 (32w/dx%) +

D,z (3*w/2y*)) (8% w/dx3y) ldxdy (3.2.1.1)
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where D, +Dy2 s....,Dg33 represent the bending stiffness

components of the plate (as derived in Appendix A).

If the plate is assumed to be simply supported on all the

edges a deflection function of the fbllowing form can be

used: -
2 = \3 AT
we= Y ) a,sin"a sin B (3.2.1.2)
mzl asl
Thus
dW/e X = z:z;aMA(mﬁ/a)cos(mﬁx/a)sin(ﬁiy/b)
dw/dy = ZZa,M(n'li'/b)sin(m'ﬁx/a)cos(n‘Wy/b)
¥w/x = -}:Zam(mw/a) sin(m%x/a)sin(nWy/b)  (3.2.1.3)
a’w/ay = -Z;Z;amn(nﬂyb) sin(mfTx/a)sin(nWy/b)
bzw/BxBy = 2:E:amﬂ(nm‘?/ab)cos(ﬁix/a)cos(ﬁ“y/b)

Substituting eqns. (3.2.1.3) into eqn. (3.2.1.1) then

gives, for a plate of length a and width b,

Voo = O.SJZOID" (ZZam\(mﬁ/a)" sin(mfx/a)sin(nFy/b) ) +
2D,, (E:E:amﬁ(anﬁ/ab)sin(mfx/a)sin(niy/b)f +
D, ( :Z‘:‘am(nwb ¥ sin(mWx/a)sin(n¥y/b) * +
4D33(Ezz;amﬁ(nmﬂf/ab)cos(mﬁx/a)cos(nﬁy/b)f’ -
4(Dyy (‘iZa,M(mTf/a)"sin(xrr‘i'x/a)sin(n‘wy/b)) +
Dz;(zziiaww(nﬁyb)zsin(mﬁx/a)sin(wry/b)))
( ;iam(nmﬁ‘/ab)cos(m'u’x/a)cos(n‘try/b) ) 1dxdy
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Intergrating this with respect to x and evaluating it over

the limits 0 to a gives,

b
v, = 0.5L[;Zazn(mﬁ/a)"(a/2)sinz(n1\'y/b)) +
2D, () Y aZ, (nmT*/ab)* (a/2)sin* (nWy/b)) +
Dya (D9 a2 (nT/b)* (a/2)sin® (n¥y/b)) +
4Dy, () at (nmT*/ab)* (a/2)cos® (nWy,b)) Idy

and then intergrating this with respect to y and evaluating

over the limits gives

Vee = (T'“/B)ab[D.\ZZam\(m/a) + 2(D,, + 2Dgq)
(ZZam\(nm/ab) ) + D,_(ZZam(n/b) )1 (3.2.1.4)

It is interesting to note that the terms coupling bending
and twisting (D;y ,D,3) do not appear in the final expression
of the bending strain energy. It may be érgued that this is
a function of the deflection form (egn. (3.2.1.2)) that was
chosen. It can, however, be shown that any-vequation that
satisfies the boundary conditions fér a simply supported
plate i.e. w = 0 at all the edges, will always produce the
same result.' The assumption of a simply supported plate
(rather than the deflection function chosen) thus implies
that the coupling terms are of no significance in the

buckling calculations.
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Now the work done by the compression force F (force per

unit width) during buckling is

b

W, = 0.5(F*)‘[[:(3w/3x)z dxdy

0.5(F,<)/TZZam“(m‘ﬁ'/a )? cos®(mWx/a)sin® (nFy/b)
o6 m M

(W*b/8a)Fy ) » a. m" (3.2.1.5)

and similarly in the y-direction the work done is

b o
Wy = 0.5(F, )‘lf° (dw/3y)” dxdy

(F*a/8b)F,) ) aZ, n? (3.2.1.6)

Considering the load in the x-direction only the «critical
buckling 1load is given by -equating eqns. (3.2.1.4) and

(3.2.1.5) giving

(Wb/8a)Ey » a- o = (W*/8)ab[D,y ) a2, (m/a)* +
m ~ ~ N
2(D,, + 2D, ) (). 9 aZ, (nm/ab)*) + Dy, (D 0 at, (n/b)*)]
m n ) ™m A

Asumming that only the first coefficient of a_,,  is relevant,

n

the above equation can be written as

Femt= WD, (n/a)" + 2(D, +2D55) (nm/ab)® + D, (n/b)*]
or
(Felent = (Fa/m)® [Dy, (m/a) +2(D,, +2D4y ) (nm/ab} +D,, (n/b)%]

Clearly (Fy). ;¢ is minimum for n =1 i.e. a one half sine

wave deflection in the y-direction.
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Thus

(Fylent = (ﬁa)z[D“ (m/a®) +(2/(ab) )(D'2_+2D33)+D22/(mzbq.)]

(3.2.1.7)

For a minimum value of Fx' the value of m which satisfies

de/dm = 0 has to be found.
Thus
dE, /dm = (wa) [2D, m/(a"™) - 2D,,/(n®b¥*)] = ©

leading to

.28 i ”
m = (a/b)((D,, /D, ) ) (3.2.1.8)

The plate can only buckle into an integer number of half
sine waves and hence if m is not an integer value, the
lowest buckling load calculated using the nearest integer

values on either side of m is taken to be the critical 1load.

Now similarly for (Fv)aﬂf equating egns. (3.2.1.4) and
(3.2.1.6) leads to

F, = (Fb/n)"[D, (m/a)’ +2(D,, +2Dg ) (nm/ab)” +D,, (n/b)" ]

This is obviously a minimum for m = 1, thus

(Pl = (Wb) [D, /(n"a")+(2/(ab)) (D, +2D55)+D,, (n*/bT)

(3.2.1.9)
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For a minimum find the value of n for dFY/dn = 0.

dF, /dn = (Wb)* [-2D,, /(n®a¥] + 2D, /(nb¥)] = 0
leading to |
©.285 |
n = (b/a)((D, /Dy ) ) (3.2.1.10)

or the next higher integer.

The calculation of the critical shear load for buckling is
done in a similar manner. The work done by the shear force

va is defined as
b o
Wy = Fxy [[ (2w/3x)(2w/dy)dxdy (3.2.1.11)

Using the deflection function (3.2.1.2) again,

egn.(3.2.1.11) becomes

(2222 8un 2, (ngT¥ab)cos(nWx/a)sin(nWy/b)
M A p % m
sin(pWx/a)cos(qWy/b))dxdy

Now noting that

(cos(mWix/a)sin(plix/a))dx = 0 if nﬁtp is an even number
and
(cos(mWx/a)sin(plix/a))dx = (2a/%)(m/(m*-p*))
if mip is an odd number
then

Wy, = 8ny§:§:§:§:aNAaFw(mnpq/((m’—p’)(q'—nz)) (3.2.1.12)
MAP%
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where m,n,p and q are such integers that m : p and n z g are

odd numbers.

Equating egqns. (3.2.1.4) and (3.2.1.12) an expression for

ny is obtained as follows:-

Fpy = (%*ab/64)(D,, ;Zﬂaiﬂ(m/a)" +2(D,, +2D,y )
(2.2 2z (nm/ab)® 14D,z (22 a4, (n/b)* ))/
(2222 3w, ap, (mupa/((n*-p*)(q*-n*))) (3.2..1.13)
~TF9

Now it is necessary to select such a system of constants a_,

and a

P, as to make Fyy @ minimum.

The solution at this stage becomes very tedious and involves
the solving of a number of simultaneous equations. Suffice
it to say therefore that the remainder of the mathematical

manipulation required to solve for (Fyy) can be found in

crit
Refs. [30],[31] or [32] and only the final result will be

presented here.

A very convenient form of writing the expression for

(va)adt is given in Ref. [12], and it repeated below.
Defining the parameter C as

ols
C = (Dy Dy,) /(D,, +2Dg, )

then for ¢ > 1

(Fey Dot = (2/D) (D, D3y "™ (8.125 + 5.05/C)

and 'for c<1
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(F = (2/b)* (D, (Dyy +2D4g ) ) (11.7+0.532C+0.938C%)

xy )r_r.d’_

3.2.2 Calculation Of The Lamina Strains

Laminated plate theory is based on certain hypotheses (see
Appendix A) which simplify the analysis without really
restraining the generality of the theory. The most
important of these 1is the assumption that the strains are
linear functions in the thickness direction of the laminate,
that 1is to say that they are equal in the case of in-plane
loads and proprotional to the thickness in the case of

bending loads.

This assumption implies that there is no damage inside the
laminate, such as delaminations or cracks which would allow
the strain field to become discontinuous. The assumptions
of laminated plate theory would no longer be valid under
such conditions, and therefore the strain constraints should
be specified in a manner that ensures that all the lamina
remain intact wunder all the various 1loading conditions

~applied to the laminate.

Failure of individual lémina in a composite structural
element may not necessarily lead to complete failure of that
element but will almost certainly act as a point from which
further failure or cracks may propogate, and for this reason
as well the strains in each laminé need to be kept within

acceptable limits.
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In this section it is shown how the individual 1lamina
strains can be derived from the overall plate strains and
curvatures. The derivation is based on the diagrams in
figure 3.2.2.1 and the notation used is consistént with that
in the diagram and Appendix A.

T

X
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—
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c——

l ~

"“\

~
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.
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|

Fibre direction

Figure 3.2.2.1 Strain transformation

The notation in figure 3.2.2.1 indicates the use of the x-y
axes system for the "off-axis" or global axis system, and
the L-T axes for "on-axis" or local lamina axis system. It
is also worth noting that strain is non-dimensional and
purely geometric, so involving no material properties or

balance of forces.
Now the strain-displacement relations are
E =3uNnL ; E,=23v/eT ; &E,=3u/dT + Pv/3L

where u and v are displacements in the L. and T directions
respectively. The quantities wu,v,L and T are vectors and
hence the relative values in any new axis system, say L’'-T',

can be defined by



L = L'cosB + T’sinBf

T = -L'sinB + T’cosB
or

L’ = LcosB - Tsin®

T' = LsinB + Tcos®

From egn. (3.2.2.1)

AL /3L = cosB ; L' /AT

[
i

dT' /3L = sinB ; °oT'/2T

(3.2.2.1)

-sin®

cos8 (3.2.2.2)

Now the relations between the displacements (as opposed to

the strains) in the primed
same as those given in

quantities are vectors.

Thus

u = u’'cosb + v’'sinb

v = -u’sinB + v’'cosB
or

u’ = ucos® -vsinB

v’ = usin®B + vcos®8

and unprimed co-ordinates are the

egn. (3.2.2.1) because all

(3.2.2.3)

(3.2.2.4)

Now since Ea=3u/3L , by chain differentiation it <can be

written as

€, = (3usaL' ) (3L' SoL) +

(du/>dT' ) (2 T' /2L)

Substituting into this egns. (3.2.2.2) and (3.2.2.3), gives
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omn
I

L = ((du'/>L' )cosB + (dv'/>L')sinB)cosb +

((du' /3T' )cos® + (dv'/3T')sinB)sind

Thus

£L = chosze + £Ysin19 + £xy(sin8cose) o (3.2.2.5)
where |

& = 8:_ = 3u' sar!

Ey= & =T

Eyy= 8,:, = 2u' /a7 + av' /oL’

Similarly it can be shown that

€, = &sin'® + E,cof O - £ (sinbcosh) ~(3.2.2.6)

£u= -Zéxsin6c059+28,,sinecose+ E%;cosze -sin®@ ) (3.2.2.7)

Now egns. (3.2.2.5) - (3.2.2.7) can be written in matrix

form as

£ cos*®  sin®B sinBcosd £,

e, = |sin®® cos*@ -sinBcosb €y

[ ~-2sinBcosb 2sinfcosf@  (cos*0 -sin*®) Exy
€x

(€, = [T19& (= [T]{E,} (3.2.2.8)
€y

where eqn. (3.2.2.8) is true for each lamina.

Note that the values §&,, E,and €, in eqn. (3.2.2.8) are
the sum of strains due to in-plane and bending stresses.

These strains can be written as
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the distance from the plate midsurface
the membrane (midsurface) strain

the midsurface curvature
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CHAPTER 4

4 OPTIMIZATION METHOD AT THE ELEMENT LEVEL

4.1 oOptimization Algorithm

Linear programming (LP) methods have been the subject of a
large proportion of the work done on optimization methods to
date. This has resulted in very efficient algorithms being
developed that have a high degree of reliability and a sound
theoretical basis. In view of these successes, it is not
surprising that some of the methods commonly used for
solving general constrained nonlinear problems (laminated
composite element optimization 1is such a problem) exploit

the LP techniques.

The general, nonlinear problem can be converted to a linear
constrained problem by linearizing the constraints and the
objective function. These linear approximations permit the
solution of the general problem by the LP or simplex LP

methods in a recursive, or sequential manner.

The nonlinear functions £(t,0) can be approximated in the

vicinity of a point (t_,,8,) by Taylors expansion,

f(t,8) = f(t“,9“)+(t—tq)(af(t,e)/ath‘+(9—94’(bf(t,Q)/39L_
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where the higher order terms of the expahsion have been

ignored, as is usually done.

The point (t,,B0,) is called the linearization point. It
should be recognized that the 1linearization 1is in many
instances a gross approximation, and as such must be treated
with caution. It is, nonetheless, an approximation that is
widely used, and can give excellent results if it is

sensibly applied.

The type of recursive LP method used in this work is
commonly refered to as approximation programming (Refs.

[34]) and [35]) and is described briefly below.

The objective function and the constraints are linearized by
taking the first terms of the Taylor expansion about the
current point (t,,6,). This is done for each iteration and
no part of the preceeding problem is retained (one of the
major differences when compared to other sequential LP
methods). The original nonlinear problem is thus locally
approximated by linear terms, permitting the solution of
nonconvex problems. To ensure the approximation is
adequate, however, move limits are placed on the t, and ©,

i.e. the permissible variation of t and B are limited.

To solve a problem a starting point (t,,8,) 1is chosen and
the objective function and constraints are linearized in the
neighbourhood of (t,,6,). The LP problem is then solved and

the solution is taken to be the starting point for the next
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“iteration. The nonlinear functions are relinearized about
the new (t_,,6,) and the process is repeated until either no
significant improvement occurs in the solution, or
successive solutions start to oscillate between the vertices
of the feasible region. 1In the latter event the move limits
may be reduced and the solution process continued.
Computational efficiency, however, requires that these move
limits be kept as large as possible so as not to slow down

the convergence to the optimum.

Convergence is assumed if the change in objective function
value for two successive LP subproblems is smaller than a
desired value and the nonlinear constraints are satisfied

within the desired tolerance.

The method of approximation programming is attractive 1in
that it 1is applicable to nonconvex problems and produces
feasible or nearly feasible intermediate solutions with good
accuracy (Ref. [35]). Futhermore, it is well suited to
development work since by the very nature of a LP problen,
the progress of the solution can easily bé tracked thereby'

allowing relatively easy identification of problem areas.

Finally it worth noting that the combination of infeasible
(or nearly feasible) design points, about which the
constraint functions for the next LP problem are linearized,
and highly non-linear constraints (such as buckling

constraints) can in some cases result in a design space with
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no feasible region being produced. This can effectively be
overcome by scaling the design into the (non-linear)
feasible design region before the linearization process is
initiated. This particular problem and the scaling

procedures are discussed in Appendix E.

4.2 Linearization Of The Objective Function

In section 3.1 the form of the objective function was given

(egqn. (3.1.3)) as
f(t,B) = q\f‘(t,e)/w + q,f,(t,8)/4k (4.2.1)

Now, before this function can be linearized it is necessary
to define the functions £,(t,®) and £,(t,8) in a proper

mathematical form.

The first function, £ (t,0), is the weighﬁ of the element.
This is directly proportional to the density and thickness
of the individual lamina, but not the ply angle. It can
thus be written as
L
£,(6,0) = ) gt (4.2.2)
l:l
where
(4 is the desity of lamina j

t is the thickness of lamina j
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The second function, f£,(t,®), is the stiffness change in an
element and is dependent on the <change in angle and
thickness of each 1lamina. There areA numerous ways of
choosing to evaluate (and so assign a numerical value to)
the stiffness change of an element. 1In Refs. [24] and [26]
the stiffness change (the only function to be minimized at

the lower level) is expressed as

AR = (Y Y (r, -&rE))T
~ n
where R, are the terms of the laminate rigidity matrix (see
Appendix A) and % denotes the value upon entry to this level
of optimization. This form of expression for stiffness
change was tried initially in conjunction with weight in a
multi-criteria objective function. The optimization results
(and the convergence rates) were found to be very sensitive
to other input parameters (load  cases, weighting
coefficients etc) and the degree of compromise between the
two "minimized" objectives wunpredictable. The change 1in
element strain energy was then used as avmeéns of expressing
stiffness change in the element, and provided much more
satisfactory results. This was also thought to provide a
more accurate gauge of the 1load continuity at the upper
optimization level, since both element strains and stiffness

are taken into account.
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Egn. (4.2.1) can thus be re-written as
£ (t,8) = q, £ (t,0)/W + q,f, (t,0)/40 (4.2.3)

where AU represents the change in strain energy in the

element. The actual element strain energy is evaiuated as
T .
U = {€P|} [R]{Epl} (4.2.4)

where {&P‘} is the vector of element strains and [R] the

rigidity matrix as defined in Appendix A.

The strain energy change part of the objective function can

be expressed as
" .2 T » 2
£,(6,0) = (U - U = ({Eq} [RIEQ) - U (4.2.5)

where {&?y} is the vector of plate strains and curvatures
(see Appendix A), [R] is the plate rigidity matrix and u*
the strain energy of the element on entry to this 1level of

optimization.

The linearized form of egqn. (4.3), using a Taylor series

expansion is thus
L
L 3 .
£2(t,8) = (U-U") + ) (t-to)(3f,(t,0)/3t) +

-

(6- 6‘,,)4.(Bf,_(1'.,9)/39|l.)ck (4.2.6)

where subscript "a" denotes that these values are evaluated

at the point of linearization, and

x T T
af,_(t,e)/atj= 2(U-u )({aerq/atz}[R]{er, }+{5P‘“3R/3t,§] (Ept}+
(EpTIRIGEN/3E))  (4.2.7)
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A similar expression can be written for 9f, (t,8)/38.

The derivatives 3R/at and 3R/39 of the rigidity matrix [R]

are given in Appendix B.

The methods for evaluating 2&/3t, 38,36, are given in the

section 4.3.

The above equations (4.2.5)-(4.2.7) are only valid for
single 1load cases. If multiple 1load cases are to be

considered these can be re-written respectively as

A % 2

£,(£,0) = 5 (U, - U) | (4.2.8)
=1 .
* NL

(in this case AU becomes E:(AU) )

ns\

where NL is the number of load cases, and

NL
£,06,0) = Y (U- Un)+ i((t ta) 2 <>f (t,8)/3t)

(111} J-!

(8- 8a), Z(’Af (t,0)/26))  (4.2.9)

) asf
where

3£,(t,0)/3t; = 2 Z(u-u ) ({3€p /at}[R]{&P;}+

ns!

{8‘.‘ }IBR/ati]{é pt JH{E o }[R]{ae‘,'/ati}) (4.2.10)

and a similar expression for sz(t,e)/be.

4.3 Linearization Of The Lamina Strain Constraints

The rélationship between the plate strains and the loads

applied to the plate (derived in Appendix A, egn. (A.10))
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can be written as

A i B
|
{F} = oo {E )
B f D
= [RI{&p} ~ (4.3.1)

At the element level of optimization it is assumed that the
applied 1loads do not change when the design variables are
varied. The derivatives of egqn. (4.3.1) with respect to

the design variables tj can thus be written as
{3r/3t;} = [dR/2t 1{€p } + [RI{Ep/3L;} = O
leading to
-1
{Qﬁrl/bts} = —[R] [bR/atj]{er;} (4.3.2)

A similar expression for the derivative with respect to the

design variables ej(ply angles) can be written
-1
{aef:/aej} = -[R] [3R/56;]{&pn} (4.3.3)

In egqn. (4.3.2) the derivative of the rigidity matrix [R] is

= ] -
‘ -
3A/3t:‘ : 't)B/bt‘3
) !
[3R/2t;] = |[--------o- TR
I
.bB/btj : 3D/3t:‘J
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with a similar expression for 3R/36 These derivatives (of

.".
the rigidity matrix) are given in Appendix B.
Now the individual lamina strains can be expressed in terms'
of the plate strains (see section 3.2.2) as
' .
{&€¢} = [T]{E, ] , (4.3.4)
where

[T] strain transformation matrix (eqn. (3.2.2.8))

©
v &, + K, z
(¢} =98 + ¥, z (egqn. (3.2.2.9))

£‘y+ k‘xy z
and where the £° and X are the plate midsurface strains and
curvatures respectively. Equation (4.3.4) can thus be
written in the following form
8¢} = [T]le,J{Epu]} + [Tl zile,1{En]) (4.3.5)

where zjis the distance from the centre of the plate to the

centroid of lamina j, and

1 0 0 0 0 0]
le]=]0 1 0 0 0 0
0 0 1 0 0 0]
) -

[e ] = 0o 0 0 0 1 O
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Differentiating eqn. (4.3.5) with respect to the 1lamina

thickness variable t; gives
{bég/at;k = [T]l[e‘]{éé?\/Bt;}f[T]jzj[ez]{bar,/Bti} (4.3.6)
Substituting egn. (4.3.2) into egn. (4.3.6) gives

(38¢/3t; ) = -1, [e, J[R]” [3R/at; 1{E g ) -
1Tl zj[ez][m" [2R/3t; 1{€ o } (4.3.7)

Now differentiatng egqn. (4.3.5) with repect to the lamina

ply angle B gives, for j # i

{384'/861}3 = [T]; [e, 1{3&p) /36, }+[T]; 25 [e; 1{2€ o1 /36, } (4.3.8)

and for j i,

]

{384/36,-_}.i [2T/86); Le, 1{€p } + [T); [e, 1{3ep /08; ). +

[3T/<58,'_]‘-l Zjlez]{a‘,\ }+[T]323[e1]{36"‘/ae‘-}j (4.3.9)

Expressions similar to eqgn. (4.3.7) for {aat/ati} can be
obtained for {2€,/46;} by substituting egn. (4.3.3) into

egqns. (4.3.8) and (4.3.9).

The above equations can thus be used to evaluate the Taylor
series expansion (to first order) of the strain expressions,

as given below.

(€), = [Tl le, MEQ) + [T]zle, l{EQ )], +

L

D (t - te); B8yl +

!
L

- 0g). (o 6. 4.3.10
§<e n); (3€0/28)), (4.3.10)
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and

(E._)j
(E4);

(1 0 01{&,)
[0 1 01yl (4.3.11)

Equations (4.3.10) and (4.3.11) can be combined to give the
linearized form of the strain constraints with bounds placed

on &, € and €., as required.

4.4 Linearization Of The Buckling Constraint Equations

The buckling equations in section 3.2.1 define the «critical

buckling load in the x-direction as (egn. (3.2.1.7))

(F,) = (Fa)® [D, m®/a"+2(D,, +2Dgy )/(ab)* +D,, /(m*b")]

X erct

(4.4.1)

where m = a/b(D,, /D,, fds , or the next higher integer, and

is the number of half wave-lengths into which the plate will

buckle.

Now if it is assumed that the number of half wave-lengths
will not vary during any one iteration (m <can be
recalculated at every iteration of the recursive LP
optimization process), the derivatives of F can be

evaluated as

3F, /3t: = (Ta) [(mn*/a") (3D, /3ty) + (2/(ab)*)

3
((3Dy /3t,)42(3Dgy /3t4)) + (3D,, /3ty )/ (n*b?)]

(4.4.2)
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where 3DMA/3t3 are defined in Appendix B.

The constraint on buckling in the x-direction can now be

linearized using a Taylor expansion and can be written as

(F et = (Wa) [D, m*/a"+2(D, +2D,; )/(ab) +D,, /(nfb*)] +
= L
(4.4.3)

In a similar manner the linearized expression for the
critical buckling 1load in the y-direction can be derived,

giving

(Fy)

ermt

F, = (1TL1<>)z [D,, /(n*a*)+2(D, +L2r>,,,s )/(ab)* +D,, (n%*/b*)] +

JZ;‘ (t-ta)(3F, /3ty) + ;(e‘aa);\( 3F, /36;)
(4.4.4)

where GFY/Btl and bEY/Aqi will be similar in form to eqn.

(4.4.2), but derived from the expression for (F given

Y )u-'d:

in section 3.2.1.

The critical shear buckling load (F.y) is dependent on

ert

the parameter C, (see section 3.2.1), where
oS
c = (Dn Dzz) /(D\z +2D33)
If C2>21, then
2 s ©25
(Fygleat = (2/b) (D Dj,) (8.125 + 5.05/C)

or if Cc< 1 , then
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a8

a3 )) (11.7+0.532C+0.938C")

(F = (2/b)* (D,, (D, +2D

XY )a-';b

Parameter C 1is not related to the number of half
wave-lengths of the buckle and hence has to be included in

the equation for (va) before the derivatives are taken.

Thus for C 2 1 (at the point of linearization)

(Foydepie = (2/b)7 (D, D3y )°*° (8.12545.05(D,, +2Dyy )/
(D, D, )
= (2/b)* (D,, /D, )7 (8.125(D, D,, I+
5.05(D,, +2D,y ) ) B (4.4.5)
Thus

(8Fyy /3ty) = (2/b)" (Dyy /D, el (8.125(3/3t (D, Dy )+
5.05(3D,, /3ty +2(3Dyy /3t y)+(2/b) (3/3t;)
(Dya /D, % )(8.125(D, D,, ) +5.05(D,, +2Dgy ))
(4.4.6)

where
3/3t;(D,, Dy, 7 = 0.5((D,, /D,2 1" (3D,, /2t ) +(D,, /D,, s
| (8D, /2t;))
3/t (D,, /D, ©** = 0.25(p,, p, )F ((3D4a/3t{)/D,,

(8D, /3t3)/D“ )
whereBDMA/ati is given in Appendix B.

An equation similar to eqn. (4.4.6) can be written for

BFw'/Beh.
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The linearized form of eqgqn.(4.4.5) can thus be written (by

Taylor expansion) as

©.S

.25
(Faylerit = [(2/0)% (D, /0, )77 (8.125(D, D, 7" +
5.05(Dyy +2D33 ) ) 1o+ g(t—ta):‘(bF,.,/at:‘) +
jg(e—e&)(ap,w /28;) (4.4.7)

Now if C < 1 (at the point of linearization)

-1.$ 2

<
(F ) = (2/b) (D, ) (D, +2D4g ) [11.7(D,, +2D, )

XY +

ent
.s
0.532(D,, Dz,_7 (D‘z+2D33)+0.938(D“ Dzz)] (4.4.8)

Thus

~-1.5
33 )

% 5
(11.7(D,, +2Dy, ) +0.532(D,, Dy ) (Dyy +2Dgy ) +

-0,8
(8Fgq /2t{) =(2/D)7[0.5(Dy, ) (3D, /3t;) (D, +2D

0.938(Dy, Dz ))-3/2(Doy ((3Dy /oty )42
(3Dgy /3t))) (D +2Dg T (11.7(Dy; +2D5y 1 +

84
0.532(D,, Dy, ) (D, +2D3q )+0.938(D,, Dy, ))) +
-1

o.§
(Dzz.) (D\z. +2D33 )

0“ y
(11.7(2(8Dyy /3ty +23D4y /3t )
: o.f
(D, +2D55 )+0.532(3/3ty (D, Dy, ) ) (Dyy +2Dg3 ) +
0.5
(D, Dy, )" ( (3D /3t )+2(3Dy, /3t ))+0.938

(D, (3D, /3ty ) + Dy, (3D, /3t;)))] (4.4.9)

)0-5'

where 3/dty (D, D, is given above and anw/éti is given

in Appendix B.

Again an eduation similar to egqn. (4.4.9) can be written

for BFxY /bB:\.
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The linearized form of equation (4.4.8) can be written as

2 o.5 -1.S 2
(Fw)“-‘.(._ = [(2/b) (D,,) (D, +2Dyy ) (11.7(D,, +2D23)

+
&
0.532(D, D,, ) (D, +2D,, )+0.938(D, D,, ))] +
L .
D (t-to )(dF, /3ti) + 3 (8-6,).(3F,, /36:)
= ) J i J

Iz
(4.4.10)

These linearized forms of the buckling (critical 1load)
equations are then used in the form of the constraint given

in section 3.2..

4.5 Move Limit Strateg!

The linearization techniques used in sections 4.3 and 4.4
provide constraint equations which only approximate the
original (non-linear) constraint expressions in a small
region around the point of linearization. Thefe is thus the
risk that as the design 1is changed the error in the
approximated constraints would become large, and the design
may move into an infeasible region i.e. where the actual
constraints are violated. The most common method of
limiting the risk is to prescribe move limits for the design
variables, thereby limiting the extent of change allowed in

the design at each iteration.

Computational efficiency requires that these move limits be
kept as large as possible whereas the smaller the move limit
the more stable the convergence is likely to be. Compromise

schemes have been developed where the move limits are large
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in the early stages of the optimization and become tighter
as the optimization proceeds; A typical example of this
type of strategy is given in Ref. [36], where the upper and

lower move limits are of the form

L u
X S X < X
where
k-
xp = (1 - b(c"" ))x,,
X, = (1 + u(c* ™" ))x,
and

b and u are lower and upper limits (typically 0.6)
c is a progressive shrinkage factor (typically 0.9-0.95)
.k is the iteration number

'x is the initial design variable

The strategy employed in this work is wvery similar but
involves the wuse of slightly different formulae for the

lamina thickness and ply-angle variables.

The move limits for the 1lamina thickness variables are

defined (using similar notation to that given abové) by

L u

t g t gt

where
L k-1
tu = (1 - bc )tua
Q k-1
tk = (1 + bc )tkﬂ (4.5.1)
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Experience in using the program developed indicated that
values of 0.5 and 0.95 for b and c generally provide a
satisfactory compromise  of speed and -stability of
convergence. (Ref [36] suggests that values of 0.6 and 0.95
generally provide satisfactory results when dealing with

isotropic structures).

The alloWable movement of the ply-angle variables is limited
by expressions of a slighty different form;
where

0: =06 - bc™!

8, =6_+ bc (4.5.2)

The ply-angle change is expressed as an absolute value
rather than a proportion of the initial value so that the
allowable variations in lamina stiffness (and so the strain
variations) are directly ~controlled and progressively
decreased. 1If expressed as a proportion of the initial
value the variations allowed in lamina stiffness would
change dramatically as the ply—angie varied from 0 to 90 .
Experience proved that a maximum move limit value of b = 15
(degrees)‘and a shrinkage factor of ¢ = 0.9 provided
favourable convergence characteristics. The shrinkage
factor needed to be smaller than that associated with the
lamina thickness because of the particularly non-linear

constraint behaviour associated with changes in ply-angle.
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CHAPTER 5

5 ILLUSTRATIVE EXAMPLES OF ELEMENT LEVEL OPTIMIZATION

A FORTRAN program (LAMOPT - described in Appendix F) was
written in order to substantiate the theory developed in the
previous chapters, using actual numerical problems. Four
problems, solved wusing LAMOPT, are presented to illustrate
the suitability of the method for weight optimization
problems. A futher two examples are given to demonstrate
both the suitability of the form of the multi-criteria
objective function (given is section 3.1) and the effect on
the optimum of varying the weighting coefficients in the

objective function.

The weight optimization examples are all based on the plate
shown in Figure 5.1 and initial laminate design given below.
The same plate and layup is also used for the first of the
problems illustrating the effect of varying the objective

function weighting coefficients.

Figure 5.1 Test plate (simply supported)
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Layer No. Thickness Ply angle

(mm) - (deg)
1 2.5 45.0
2 2.5 0.0
3 2.5 0.0
4 2.5 45.0

where all the layers were assigned the following material
properties (representative of a high strength carbon/epoxy
composite) and strain 1limits (same for tension and

compression)

E = 130 000 MPa E. =0.004
E = 9 000 MPa g€, = 0.004
G = 4 800 MPa €., = 0.0055
Y - 0.28

In all the examples given a design variable 1linking option
was employed to ensure that the design remained symmetric
about the midplane. It is interesting to note, however,
that when this was not included the final (optimum) results

did not differ significantly from those presented here.

No consideration was given to strain energy change in the
first four examples 1i.e. only the weight was minimized.
These results are summarized in Tables 5.1 - 5.4 which also

contain information on the loading condition wused (for
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reference axes see Appendix A), the final result and the
percentage weight decrease achieved. In cases where
compression or shear 1loads were considered, buckling
constraints were included, and the calculations for these
were based on plate dimensions of 240mm (x-direction) by
60mm (y-direction). The convergence criteria used in all
the examples was that the design was deemed to have
converged if the weight change in subsequent iterations was
less than 1 percent and thé sum of the ply-angle changes

less than 10 degrees.

TABLE 5.1 - EXAMPLE CASE 1
Load Condition F. F F M M, M
(N/mm and Nmm/mm) * Y il * Y nd
-150. 0. 0. 0. 0. 0.
Final design Layer No. Thickness Ply-angle
(mm) (deg)
1 0.631 33.1
2 0.081 -6.8
3 0.081 -6.8
4 0.631 33.1
Percentage of original mass = 14.2%

((final mass/initial mass)x100)

Number of iterations to convergence = 12
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TABLE 5.2 -

'EXAMPLE CASE 2

Load Condition Fy F, Fw’ Mx M, MXY
(N/mm and Nmm/mm) —
150. -150. 0. 100. 100. 0.
Final design Layer No. Thickness Ply-angle
' (mm) (deg)
1 1.762 68.4
2 0.146 2.1
3 0.146 2.1
4 1.762 68.4
Percentage of original mass = 38.3%
((final mass/initial mass)x100)
Number of iterations to convergence = 9

TABLE 5.3 - EXAMPLE CASE 3

Load Condition F, FY F M M_ M
(N/mm and Nmm/mm) L X 14 Y

150. 0. 0. 0. 0. 0.

150. -150. 100. 0. 0. 0.
Final design Layer No. Thickness Ply-angle

- (mm) (degq)

1 1.976 57.0

2 0.286 19.7

3 0.286 19.7

4 1.976 57.0
Percentage of original mass = 45.2%
((final mass/initial mass)x100) '
Number of iterations to convergence = 12



TABLE 5.4 - EXAMPLE CASE {4

Load Condition Fy F, Fry M, My M,y
(N/mm and Nmm/mm)

150. -150. 100. 0. 0. 0.
150. -150. 0. 100. 100. 0.
Final design Layer No. Thickness Ply-angle
(mm) (deg)
1 1.965 55.1
2 0.302 23.9
3 0.302 23.9
4 1.965 55.1
Percentage of original mass = 45.3%

((final mass/initial mass)x100)

Number of iterations to convergence = 14

The results demonstrate the effectiveness of the method in
producing a minimum weight design for a laminated composite
plate subject to strain and buckling constraints, and
numerous load conditions. The optimization algorithm is
also shown to be relatively efficient in that all the test

cases satisfied the stringent convergence criteria in 14 or

less iterations.
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The results obtained when optimizing the flat plate
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with various weighting coefficients are shown below in
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Figure 5.2 1Influence of weighting coefficients (1)
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The solid 1line (points marked with x) in Figure 5.2
represents the results of a test case‘where a load of 150
N/mm was applied in the x-direction, while the broken 1line
(points marked with o) represents the results of a multiple

load, test case.

These loads were as follows:-

Fpb,  F F

Y XY M

X M, Myy
1. 150. -150. 100. 0. 0. 0.
2. 150. -150. 0. 100. 100. 0.

3. -=150. 0. 0. 0. 0. 0.

Consider first the curve representing the single 1load case
(solid 1line). This curve is nearly linear over the region
(0.2,0.8) to (0.8,0.2) and thus in this range the weighting
coefficients can be said to accurately represent the
relative importance of the ¢two parts of the objective
function. This is also the range of coefficients most
likely to be wused in order to achieve a satisfactory
compromise between strain energy change and weight
minimization, when switching between upper and iower levels
of optimization. Outside this range, as the weighting
coefficients become biased more in favour of weight
reduction, the strain energy change increases rapidly to
about 130 percent at (0.9,0.1) and 1200 percent at
(1.0,0.0). At the other end of the scale the changes are

less dramatic but slightly less consistent. This is to be
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expected, however, because as the coefficients are biased
more heavily in favour of minimizing the strain energy
- change, the number of alternative solutions (local minima)
increases. 1In practical terms this can readily be explained
by the fact that there are numerous combinations of ply
thicknesses and angles that will give very similar plate
strains (for a given set of 1loads) and stiffnesses
(rigidities). The end result 1is that wvariations of the
weighting coefficients in the region (0.2,0.8) to (0.0,1.0)
produce a cluster of points around the (0.2,0.8) mark, which
have no definite pattern. This phenomena was found in all
the (single load) test cases run, and the location of these
points was apparently only dependent on the initial design
chosen. Tﬁey are, however, all perfectly acceptable points
in that all the <constraints are satisfied and the strain

energy change is minimal (as required).

A similar distribution of the points was obtained when
multiple load cases were considered. The range of the
weighting = coefficients associated with the linear
distribution of the points did, however, vary to some degree
depending on the relative magnitude, type and orientation of
the applied loads. If the 1loads considered contained a
dominant load case the results produced were very similar to
those for the single load case. At the other extreme, when
two or more load cases of similar magnitude, but different

sign and/or orientation were included then the linear
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distribution of points in some cases only extended as far as
‘the point associated with the weighting coefficients
(0.4,0.6), as shown by the broken line in Figure 5.2. In
these cases, weighting coefficients biased futher in favour
of minimizing strain energy change produced an irregular
distribtion of points in the region of the (0.4,0.6) mark
(for the same reasons as mentioned above). Although the
exact degree of compromise between minimization of strain
energy change and weight could therefore not be accurately
predicted in this region, the designs produced were still
quite acceptable in that the strain energy change was
minimal, the weight had been decreased and all the

constraints were satisfied.

The effectiveness of varying the weighting coefficients in
the multi-criteria objective function when considering
larger, slightly more cqmplex structures 1is illustrated
below using a rectangular box section, which can be
considered to be representative of a wing box. The layout

and dimensions of the box section are shown in Figure 5.3.

The laminate construction of all the elements in the bottom
skin was defined to be of laminate type 1 (i.e. design
variable linking was used), all the elemnts in the top skin
of laminate type 2 and all the elements in the webs and ribs
of laminate type 3.These various laminate types are defined

below.

- 66 -



100

Figure 5.3 Rectangular box beam

Laminate type 1 - Bottom skin

Layer no. Thickness Ply angle
(mm) {(degrees)

1 2.5 0.0

T2 1.25 -45.0

3 1.25 45.0

4 1.25 45.0

5 1.25 -45.0

6

2.5 0.0
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Laminate type 2 - Top skin

Layer no. Thickness Ply angle
(mm) (degrees)

1 2.0 0.0

2 2.0 -45.0

3 2.0 45.0

4 2.0 45.0

5 2.0 -45.0

6 2.0 0.0

Laminate type 3 - Webs and ribs

Layer no. Thickness Ply angle
(mm) (degrees)

1 1.0 -45.0

2 1.0 45.0

3 1.0 45.0

4 1.0 -45.0

All the layers were assigned the same material properties as

those in the plate examples shown above.

This structure was subjected to two loads applied at the tip
nodes, and these were as follows:-
Load 1 Load 2
Node no. 6 12 18 6 12 18
Force (N) 10000 20000 10000 10000 15000 20000
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The section was then optimized for this multiple 1load case
using varying weighting coefficients in the objective

function and the results are presented in Figure 5.4.

(0-0,1-0)

100

80
%W

60
(0-6,02)

40 (1:0,0-0)

20

0 20 40 60 80 100
% AU

Figure 5.4 Influence of weighting coefficients (2)

The strain energy change in Figure 5.4 was calculated for
the entire structure (rather than element by element) by
multipling the applied loads by the displacements at the
nodes where the loads were applied in the direction of the
Joad. Since this was a multiple load case the strain energy
change was evaluated as (see egn. (4.2.8))

2

sU = ) (U, —u,'f)

Although the curve shown in Figure 5.4 does not have any
linear, or nearly linear, sections in it, it does represent
a smooth progression from a design dominated by the strain

enegy change considerations at the one end to another where
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weight minimization is the only objective at the other end.
The points‘ between these extremes fall neatly on the curve
shown and thus quite effectively represent the relative

importance of the two parts of the objective function.

Inspection of the nodal displacements of the structure prior
and subsequent to the optimization process also provides
good insight into the effect that varying the weighting
coefficients has on the overall structural stiffness. 1In
Table 5.5 below the displacements of the nodes where the
loads are applied are given in the direction of the applied
load. Results are presented for the two load cases given
above, with the terms W1l and W2 denoting the weighting
coefficients assigned to the weight and strain energy change

parts of the objective function respectively.
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TABLE 5.5 - NODAL DISPLACEMENTS

Load 1
wl 1.0 0.8 0.6 0.5 0.4 0.2 0.0
w2 0.0 0.2 0.4 0.5 0.6 0.8 1.0

S | 149.7 133.8 116.3 111.5 97.7 86.9 67.0
$, | 149.6 133.4 116.9 110.5 96.3 85.4 69.4
e | 146.4 129.5 113.7 106.3 95.5 84.8 70.9

Load 2
wl 1.0 0.8 0.6 0.5 0.4 0.2 0.0
w2 0.0 0.2 0.4 0.5 0.6 0.8 1.0

S 135.5 120.1 104.6 100.6 92.5 83.1 62.4
139.4 124.1 108.7 102.6 94.7 84.4 65.4
141.1 125.8 110.3 102.4 95.3 85.7 67.7

These results show how effectively the stiffness change of
the structure can be controlled by minimizing the strain
energy change in the various laminate types. This
capability combined with the smooth, progressive transition
to the other extreme (pure weight minimization) for all the
intermediate weighting coefficients (Figure 5.4)
demonstrates thé viability, and flexibility, of the form of

objective function developed in section 3.1.
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The examples above demonstrate the viability of the method
developed for the element 1level optimization and its
suitability for inclusion in the multilevel optimization

system.
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CHAPTER 6

6 SYSTEM LEVEL OPTIMIZATION

6.1 Objective Function At System Level

A single criteria objective function is used at the system
level (as opposed to the multi-criteria objective function
at the element level), which is that of minimizing total
structural weight. This is commonly used as the objective
fuction in structural optimization problems since it not
only has an intrinsic merit of it’s own, but in many cases
also indirectly reflects the cost associated with the
structure. This is especially true in aircraft structures
where the cost penalties associated with excessive weight
can be sévere. Futhermore, in composite strutures the
weight function can frequently be more directly related to
cost than say, in aluminium structures, since the final
product cost is generally more closely related to the raw
material volume cost, as there is little material wasted in

machining processes.

The system level objective function can thus be simply

written as
NEL. [

W(t) = ZZ(fAt)ij (6.1.1)

3=
where NEL is the total number of elements in the finite

element model

L is the number of layers in element j
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A is the surface area of element j
e is the density of layer i in element j

t is the thickness of layer i in element j

6.2 Constraints At The System Level

The constraints considered at the system level of
optimization are buckling (to be prevented), strain (with
upper (tension) and lower (compression) bounds),
displacement 1limits on the structure and bounds on lamina
thicknesses. The buckling, strain and geometric constraints

can be written in a similar manner to the element level

constraints as:-

Buckling:- (FX )cr;.{: /FX a 1/C

1

(Fy)oew /F, & 1/C (6.2.1)

(FxY )orl‘f‘ /F#I 2 1/C3

where F, + F, + F,, = F

and Fx/F-r-o-r = C| i F\[/FTOT = C2 i F)“i /F‘ro-r = C3

Strain:- E. < E. < E

(per layer) & < & < & (6.2.2)
L “w
Eur < é'm-< EL‘r

Thickness:- t < t < t° (6.2.3)

and the deflection cdnstraints are written in the following
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form,

[ u

peflection:- & . < éﬁp< §

np ne (6.2.4)

The constraints (6.2.1) apply to each element as a whole,
whereas the constraints (6.2.2) and (6.2.3) are applicable

to the individual laminae of the elements.

The buckling constraint equations (6.2.1) are exactly the
same format as those for the element 1level buckling
constraint. The arguments wused to derive the buckling
constraint equations in section 3.2 hold for any plate,
regardless of its stiffness or dimensions. These parameters
(stiffness and dimensions) only affect the actual numerical
value of (Fyu) ¢ o (Fydet and (Fp, )erit (see section
3.2.1), and not the form of the constraint equations. The
use of these equations at both system and element 1level is

thus justified.

It is worth remembering that egns. (6.2.1) only approximate
(albeit very closely) the well known form of buckling
equation, eqn. (3.2.5). This equation is in itself an
approximation to the real solution, but one that works well
for flat, reasonably proportioned plates (i.e. a ratio of
side 1lengths of 1less than about 6:1 and a side length to
thickness ratio greater than 10). If the finite element
model wused in the analysis phase has any areas of very
complex geometry or substantial curvature, more accurate

buckling analyses would have to be done using eigen
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solutions. It may not be necessary to do this at each
iteration since egns. (6.2.1) may provide accurate enough
approximations (at decidedly 1less computational cost) to
. proceed for a few iterations. The exact compromise of the
two buckling calculation methods would naturally be problem
dependent and only experience in using each method would

provide a guide for future problems.

This argument can be extended to the case of panels made of
elements of various stiffnesses i.e. laminate types, where
again some compromise would have to be made between the
accuracyr of eigen solutions and the rather less costly (in
terms of computational time) option of using an equivalent,
smeared stiffness to evaluate the buckling loads. (In this
work this problem has not been addressed and only panels
made up of elements of the same stiffness (layup) are

considered).

The relevant detail on the strain constraints and the reason
for their choice can be found in section 3.2 and will not be
repeated here. Suffice it to say that using the same type
of "strength" constraint at system and element levels
greatly facilitates the interpretation of the results

especially when switching from one level to another.

A limit may be placed on displacements, in the x, y and 2z
directions, of any node of the finite element model. These

displacements (with upper and lower bounds) are written as
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S“P (egn. (6.2.4)), where the subscripts n and p define the
node number and degree of freedom (x, y and z) respectively

of the displacement to be constrained.
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CHAPTER 7

7 OPTIMIZATION METHOD AT THE SYSTEM LEVEL

7.1 oOptimization Algorithm

The arguments put forward in favour of a sequential 1linear
programming (LP) method for the optimization algorithm in
section 4.1 hold whatever problem is considered. One of the
possible disadvantages of this technique, however, (as
mentioned in section 4.1) is that the linearizations are
only approximations of the original constraint functions,
and thus the step size needs to be controlled By move limits
to ensure that the design stays in or near‘the feasible
region. The more non-linear the objective function or
constraints are, 1in terms of the desigﬁ variables, the
tighter these move limits must be and thus the slower the
convergence of the solution. The system level optimization
problem is, if anything, not as highly non-linear as the
element 1level problem due to the exclusion of the ply-angle
variables, and is thus even better suited to the use of a

sequential LP method.

The move limit strategy applied at the system 1level 1is

identical to that at the element level (see section 4.5).
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7.2 Linearization Of The objectivé Function

In section 6.1 the form of the objective function was given

(egqn. 6.1.1) as
NEL ¢
Wit) = ) Z(eAt)Lj

"l=\ L=l
This is a linear function of the design variables tﬁ and
thus is suitable in the above form for wuse in the LP

algorithm.

7.3 Linearization Of The Lamina Strain Constraints

The strain constraint functions are linearized at the system
level, as at the element level, by using a Taylor series
expansion (to first order) giving,

NEL L

€.}, = (gl 0o + ;;‘t*t«’q (13&/3t 3, ), (7.3.1)
where NEL is the number of elements in the finite

element model
L is the number of layers in element j
t is the thickness of layer i in element j
{36¢/>tﬂ km is the derivative of the strain vector

for layer k of element m with respect to

the thickness of layer i of element j.
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The evaluation of the strain derivatives is explained in

sections 7.5 and 7.5.1.

Note that egn. (7.3.1) has a slightly different form to the
equivalent equation (egn. (4.3.10)) for the element level
linearized strain function. This is due to the fact that at
the system level the strain in any layer is considered to be
a function of all the design variables in the structure i.e.
layer thicknesses in all elements. At the element level
only the layers in the iaminate under consideration are used
in the calculation of the derivatives and the linearized

constraint function.

7.4 Linearization Of The Deflection Constraints

The linearized form of the deflection constraints is very
similar to that of the strain constraints, and can be

written as,

NEL L
Sp = (800 + ;;(t—ta)q (25, /3ty ), (7.4.1)
where §“P is the displacement at node n in the

direction p (x, y or z directions)
| ‘35§=/Dtei) is the derivative of displacement &,, with
respect to thickness tq
The remaining notation is the same as that explained above

for egqn. (7.3.1).
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The method used for evaluating the derivatives (aSgP/atq )

is given in sections 7.5 and 7.5.2.

7.5 Constraint Derivative Evaluation Using The Finite

Difference Technique

There are numerous methods for evaluating derivatives of the
constraints with respect to the design variables. The most
widely used of these are

(i) the behaviour space method

(ii) the design space method

(iii) the virtual load method

(iv) the finite difference method

The first three methods are briefly described in Appendix D
and their various advantages highlighted. The finite
difference method is explained below in more detail since it

the method chosen for this work.

The various pro’s and con’s of the finite difference
technique, as applied to structural optimization, can be
explained using the following mathematical description. The
derivative, or gradient, of any function at a given point

can be approximated by (see figure 7.5.1),

VE/3x = (£(x+ax) - £(x-Ax))/24x (7.5.1)
df/3x = (f£(x+ax) - £(x))/Ax (7.5.2)
dE/5x = (£(x) - E(x-4X))/AX (7.5.3)
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Figure 7.5.1 Finite difference methods

Eqgn. (7.5.1) wuses central differencing, eqn. (7.5.2)
forward differencing and egn. (7.5.3) backward differencing

to obtain approximate derivatives of the function f(x).

The accuracy of the approximation is obviously dependent on
the degree of non-linearity of the funbtion f(x), the step
size Ax at the point in question, and the differencing
method chosen. In most cases central differencing will
yield the best estimates of the derivatives, although
numerical evidence indicates that egns. (7.5.2) and (7.5.3)
will generally also give a good approximation (Ref. [34])
and the variation in the results produced by egns. (7.5.1)

- (7.5.3) will be small.

Stuctural optimization problems typically include
displacement and strain (or stress) constraints so these are
used here to illustrate the application of finite

differences in the evaluation of constraint derivatives.
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In the upper level of optimization, the 1lamina thicknesses
are the design variables, so the nodal displacements of the
finite element model of the structure, can be written as

S, = E(ty) (7.5.4)

where &, is the displacement of node n, and t‘] is the

thickness of layer i in laminate type j.

Using equation (7.5.3) the derivatives of the displacement
constraints with respect to tﬂ can be written as below.
The reason fof the choice of backward differencing will
become apparent later.

38, /0ty = (§,.(t,. ) - ‘S,\(t%-uc(i )1/ 8t (7.5.5)

g
Similarly the derivatives of the strain constraints can be

written as

Li—AtLS))/AtLj (7.5.6)

SE/aty = (E(ty) - £(t
The nodal displacements in egn. (7.5.6) are evaluated using
the standard finite element equilibrium equation

{F} = [K]{d}
giving _

-l

{d} = [K] ({F} (7.5.7)

where {§} is the nodal displacement vector containing all

the 5A values, and [K] is the stiffness matrix which is a

function of the tQ' values.
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The evaluation of the displacement derivatives (egn.

(7.5.5)) for all n design variables (tﬁ

solution of egn. (7.5.7) n+l times (since the displacement

) thus requires the

values associated with design variables tq and those

associated with the incremented values (tﬁ —Atﬁ ) of all the
design variables are required).

It should be noted that if a central differencing method was
used that the number of finite element solutions required
(egn. (7.5.7)) required then rises to 2n+l i.e. the
computational effort involved in the analysis stages is
practically doubled, since egn. (7.5.7) needs to be solved

for all (t% ~Atﬁ ) and (tq<+At ). Any slight gain in the

L
4
accuracy of approximation of the derivatives by this method
is heavily outweighed by the additional computational effort

required.

Since forward and backward differencing involve the same
computational effort and neither method is sure to
consistently give better results than the other, the choice
was made, somewhat arbitrarily, to use backward differencing

in this work.

The fact that even backward differencing calls for n+l
finite element solutions (n design variables) for each
iteration of the design optimization procedure, is the major
drawback of using differencing methods to evaluate

constraint derivatives. Although this certainly implies
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more computational effort than is associated with, say, the
design space, behaviour Space or virtual 1load methods
mentioned above, the difference becomes less marked as the
number of (active) constraints becomes large (as may
frequently happen if stress, displacement and buckling
constraints are considered). It also has a slight édvantage
in that the number of solutions required is fixed, and so
the computational effort required is always a known

guantity, irrespective of the number of constraints.

The greatest advantage of finite differencing though, is its
ease of use and adaptibility. The design space and
behaviour space methods require detail knowledge of the
finite element formulétions (shape functions etc) of the
elements used, and access to the finite element global
stiffness matrix ([K]) (or another must be created outside
of the finite element program). These methods are thus
frequently 1limited to use with only one specific finite
element package. In contrast, finite difference methods can
be wused with .any element and any finite element program,
with no need for detail knowledge of their internal
workings. This makes them particularly attractive for use
in development work so that new elements may be included in
the design process with very 1little extra programming
effort, and even changes to other finite element systems can

be made quite easily.
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7.5.1 Evaluation of The Lamina Strain Constraint

Derivatives

In order to evaluate the individual 1lamina strains in a
plate or shell by classicalvlamination theory, information
is needed concerning the midsurface strains and flexure
(curvature) induced in the element. This information is
frequently obtainable directly from the output of the finite
element program used for the structural analysis (as is the
case with the program LUSAS used ir this work). Some
programs may, however, only give top and bottom surface
strains, in which case a little simple manipulation (using
basic elasticity formulae) of the results is required to get

them into the form needed.

The information extracted from the finite element analysis
is thus f:,ﬁ;,ﬁ:y,)éx,\cy and X,, where & and X denote the
midsurface strains and curvatures respectively. These are
obtained for all n+l analyses i.e. for all analyses using

t and (tﬁ -4t;; ). Using these results the derivatives of

i
the plate strains can be obtained by the finite difference

method. Thus

(3g;/3ty ), = (Exlty) - Elty

where m (subscript) denotes element (or plate) m, and tq

the thickness of layer i in laminate type j.
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Similar expressions can be written for the other components

of midsurface strain and curvature.

Now, in section 3.2.2 it wés shown that individual lamina

strains can be written as (using the element/plate axes)

(€}, = 1& (= & (7.5.1.2)
Exyl. 5:,+ Wiy Z; (egqn. (3.2.2.9))

or ‘ ‘
(), = (E°) + (X} gz (7.5.1.3)

where z; is the distance of the centre of the 1lamina from
the plate midsurface, and {£°} and {x} are the vectors of
the midsurface strains and curvatures respectively (obtained

from the finite element analysis).

Thus the derivatives of the strain in layer k of element m
with respect to the design variable til is given by
{asl/at-b‘.‘ }km-= {AE°/atLj }M+ {3)"/3tt3 }mzkm + {)(,M}(bz,m/bt;_j )
(7.5.1.4)
and thus
{Bq/ztkj}h“= {5€°/3tij}m+ {3“/3ti3lmzkm (7.5.1.5)
except where i # k and the i and k being considered are in

the same element, in which case

{bq/kt;‘i} = {3¢° /3%3}.“* {3"/“'»3},. z,+ {%/2} (7.5.1.6)
since
, k-1 3 '
2, = 1720 ) t, - ) t,) (egn. C.7)
asy ac ket
~giving
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3z, /3ty = 172 for i # k

=0‘ for i = k

The components of the vectors {ae°/atﬁln and {3x/btqhh are
evaluated using equations such as eqn. (7.5.1.1) and so
is easily calculated.

{aél/étij }M

Strain constraints are, however, generally expressed in
terms of the lamina longitudinal (L) (with respect to fibre
direction), transverse (T) and shear (LT) strains. These

strains can be obtained using the transformation matrix

derived in section 3.2.2 and egns. ‘(7.5.1.3) - (7.5.1.5),
to give

(€} = [TIHE, D, (7.5.1.6)
which leads to

Pe/dty ), = [T], e sty l, | (7.5.1.7)
where

' T
{8! }kM = {€|_ ET sl—'f }M
Eqn. (7.5.1.7) can be written in a slightly expanded, more

explicit, form as

3E, /3ty 38, /¥t
pe. /b r = [T), 3e, /2ty : (7.5.1.8)
SE, /3ty 2/ 2t

km km

Thus eqns. (7.5.1.1),(7.5.1.4),(7.5.1.5) and (7.5.1.8) can
be used to evaluate the derivatives of the strain

constraints.
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7.5.2 Evaluation Of The Deflection Constraint Derivatives

The results of the n+l finite element analyses are again
used to obtain an approximate constraint derivative value by
using finite differences. The information required from the
finite element analyses 1is the actual displacement‘of the
constrained nodes in the direction specified eg. (Sq)x

being the displacement of node 4 in the global x-direction.

Having obtained all the required displacement values for all
. cases of tq and the incremented values (¢t -Atﬁ ) the
following equation is wused to evaluate the constraint

derivative

béw/étii = (SAP(t,-_J ) - Snp(tf_j ‘Atq ))/At;_j (7.5.2.1)
where S"P is the displacement of node n in the direction p

(p being used to define the x, y or z directions)

Displacement constraints are thus readily evaluated using

finite differences.:

7.6 Linearization Of The Buckling Constraint Equations

As stated in section 6.2 the buckling loads and associated

constraints are evaluated in exactly the same way at element

- 89 -



level and system level. The linearization of the buckling
constraints is thus achieved in a manner similar to that in
section 4.4 (the linearization of the buckling constraint
equations at the element 1level). The only differehce is
that the derivatives of the buckling loads with respect to
the various lamina ply angles are not considered since the
lamina orientations are not considered as variables at the
system level. The linearized equation for the buckling load
(Fy).~t to be used in the constraint equation (6.2.1) can
thus be written as

(F,)

cry t

) = (Ta) [D, m*/a*+2(D,, +2Ds; )/(ab) +D,, /(n®b¥)] +
5

;(t—ta)j (3B/2t;), (7.6.1)
The meaning of all the terms is explained in sections 3.2.1
and 4.4, and the method of evaluating the derivatives

aE,/th can be found in section 4.4 as well.

erit

The linearized form of the equations for evaluating (Fv)

and (F,, ) will be similar in form i.e. they will be the

crit
same as eqgns. (4.4.4) and (4.4.5) (or (4.4.10))
respectively, but with all the afy/a% and bey/éBiterms

Z€ro.
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CHAPTER 8

8 ILLUSTRATIVE EXAMPLES OF SYSTEM LEVEL OPTIMIZATION

A FORTRAN program (UPOPT -‘ described in Appendix G) was
developed in order to substantiate the theory developed in
chapters 6 - 8. Four problems, solved using this program,
are presented to illustrate the effectiveness of the method

developed.

8.1 Flat Panel

The first example considered is the optimization of ‘a flat
panel (figure 8.1) made of two laminate types and subjected
to multiple loading (32000 N in tension and 32000 N in shear
- distributed over nodes 7, 14 and 21). Buckling and strain
constraints were applied with the same strain limits imposed

as those given in chater 5.

Design variable linking was used to define that elements 1
to 6 were all of laminate type 1 and elements 7 to 12 are
all of laminate type 2. Futher linking is ueed to ensure
that both the 1laminate types remain symmetric about their
midplane. The two initial laminate designs are defined in
Table 8.1, with only one half of the symmetric layup being

given (layer 1 is the uppermost layer).
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The optimization process converged (with the weight change
in consecutive

iterations and the final results are summarized in Table

Figure 8.1

240

Flat panel

iterations

being

less

than 2%)

8.1.
Table 8.1 - Flat panel éxample
Laminate Initial design Final design Ply angle
- type (symmetric) (symmetric)
t (mm) t (mm) (deg)
1. Layer 1 2.5 0.610 0.0
2 1.25 -0.935 -45.0
3 1.25 0.143 45.0
2. Layer 1 2.0 0.478 0.0
2 2.0 0.726 -45.0
3 2.0 0.094 45.0
Weight (kg) 5.10 1.82
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The results are very much as could be expected with the two
load cases considered. The *45 material component is the
largest as this provides optimal resistance to the shear
load and so keeps the strains induced within the prescribed
limits. There is also a substantial component of material
in the 0° direction. These fibres would provide most of the
resistance to the tension load, reduce the shear strain in
the *45° layers for this load case and provide some of the

bending resistance required to react the shear load on the

end.

8.2 Rectangular Box Beam

The next two examples are based on the 34 element

rectangular box structure shown in figure 8.2

Figure 8.2 Rectangular box structure
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The structure for these two problems was defined to be made

up of the three laminate types given in Table 8.2. The four

elements in the top skin nearest to the fixed end of the box

were defined to be of 1laminate type 1, as were the

corresponding elements in the 1lower skin. The remaining

skin elements were defined to be of laminate type 2 and the

webs and ribs all of laminate type 3. Strain, buckling and

displacement constraints (¥80 mm maximum deflection at the
tip) were considered for the first problem. Buckling
constraints were not included in the second problem which

- was otherwise identical. The strain limits imposed were

0.004 in the 1longitudinal and transverse fibre directions

load

and 0.0055 on the shear strain. The cases

multiple
given below were selected to ensure that all the three types

of constraints were active in some region of the structure.

Load case No. 1 (twist) No. 2 (comp.)| No. 3 (bend)
Force DOF Force DOF Force DOF
Nﬁde no. 6 | -15000 z -15000 X 12000 z
12 0 - -30000 X 24000 z
18. 15000 z -15000 x 12000 z
The initial and final converged designs for the both

problems

given in Table

(achieved

after

8.2 below.

5

Note

iterations in both cases) are

that

the

designs

were

constrained to remain symmetric about the midplane and thus

the layup for only one half of the laminate types are given,

- 94 -



with layer 1 being the uppermost in the laminate.

Table 8.2 - Rectangular box structure
Laminate Initial Final Final Ply angle
type design design design
(buckling
constraint)
t (mm) t (mm) t (mm) (deg)
1. Layer 1 2.5 2.052 2.102 0.0
2 1.25 0.413 0.294 -45.0
3 1.25 0.912 . 0.294 45.0
2. Layer 1 2.0 | 1.772 1.971 0.0
2 2.0 0.319 0.325 -45.0
3 2.0 1.317 1.256 45.0
3. Layer 1 1.0 : 0.876 0.221 -45.0
2 1.0 0.672 0.221 45.0
Weight (kg) 324.6 203.8 173.2

The final designs satisfy all the constraints imposed on the
structure and on inspection can be seen to be similar to
those which might have been obtained wusing traditional

design and sizing methods.
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All the elements at the root end (fixed end) of the
rectangular box are of laminate type 1 and, as can be
expected, the layup in this regién for both problems is
predominantly in the 0° degree direction to provide the
necessary strength and stiffness to satisfy the bending
loads. There is some material retained in the %45
direction to provide additional resistance to the torsional
load but in the problem with buckling constraints there is
significantly more material in the 45° direction to help

satisfy those constraints.

The outer elements (laminate type 2) also contain a large
component of the 0° ply to assist the design in satisfying
the displacement constraints under the bending 1load. The
thickness of the 45 ply may initially seem surprising but
there are logical explanations for this. Considering the
buckling constrained problem first, a larger component of
45° layers is required in laminate type 2 than in laminate
type 1 to prevent buckling under the direct compressive load
since the thickness of the 0° ply is 1less in the former
laminate type. It is also well known that to increase the
torsional stiffness of a cantilever type structure such as
the one wunder consideration (ie. so that the constraints
are satisfied) material should be added at the tip rather
than at the root end. The greatest torsional resistance is
provided by the *45° layers and thus the thickness of this

layer(s) has been increased in both problems.
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These results demonstrate the ability of the optimization
method at the upper level to satisfy the buckling
constraints on the structure while keeping the strain and

displacement constraints within the prescribed limits.

The preferred ply orientations and thicknesses for
satisfaction of the buckling constraints can in many
structures differ significantly from those needed to satisfy
only strain and displacement constraints (eg. the case of
shear webs and shear buckling). When all the constraint
types are considered simultaneously it can thus be difficult
to interpret what the contribution of each ply is in
satisfying the various constraints. Since the feasibility
of the method for problems with buckling constraints has
been shown in the examples above only strain and
displacement constraints will be considered in the remaining
example so that interpretation of the results and comparison

with "tradtional" design method results is made easier.

8.3 Multilaminate Rectangular Box Beam

The final example given in this chapter is a refinement of
the above rectangular box problems in that a greater number
of léminate types (ie. design variabies) is considered.
These are defined in Table 8.3. Design variable linking was
used to define that the four root end elements in.the bottom
skin were of laminate type 1, the four root end elements in

the top skin of laminate type 2, the remaining bottom skin
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of laminate 3 and the remaining top skin elements of
laminate type 4. The shear webs (spars) and ribs were all

defined to be of laminate type 5.

Linking was again used to ensure laminate symmetry about the
midplane and the layups given in Table 8.3 thus only define
the one half of the laminate (layer 1 being the furthest

from the midplane).

The strain limits used were 0.004 for the 1longitudinal and
transverse strains and 0.0055 for the shear strain, and a
limit of ¥120 mm was put on the displacements of all the tip

nodes while the load cases considered were:-

Load case No. 1 No. 2
Force DOF Force DOF
Node no. 6 12000 z 10000 z
12 24000 z 15000 z
18 12000 z 20000 z

The initial and final converged designs are given in Table
8.3 below. The convergence criteria was a weight change of

less than 2% and this was achieved after 5 iterations.
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Table 8.3 - Multiple laminate rectangular box

Laminate Initial design Final design Ply angle
type t (mm) - t (mm) (deg)
1. Layer 1 2.5 1.169 0.0
2 1.25 0.218 -45.0
3 1.25 0.218 45.0
2. Layer 1 2.5 1.150 0.0
2 1.25 0.154 -45.0
3 1.25 0.154 : 45.0
3. Layer 1 2.0 0.376 0.0
2 2.0 0.204 -45.0
3 2.0 0.204 45.0
4. Layer 1 2.0 0.307 0.0
2 2.0 0.203 -45.0
3 2.0 0.506 45.0
5. Layer 1 1.0 1.529 -45.0
2 1.0 1.529 45.0

These results show that a large quantity of material has
been put into the shear webs compared to the top and bottom
skins. This unexpected solution is the result of a problem
with the elements wused in the finite element model rather
than a problem with the optimization procedure. The QsS4
4-node shell elements in LUSAS, which were used in these

problems, were shown to give inaccurate results when used to
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model a cantilever beam with an end load (seen as a shear
load by the elements). The finite element model produced
end deflections much smaller than the analytical results,
indicating an effective stiffness much greater than the true
stiffness. Since the spars in the rectangular box are
essentially such cantilevers, their effective stiffness was
much greater proportionately than the material in the skins.
This enhanced stiffness thus made the spars the most
"attractive" place to put extra material in terms of

satisfying the constraints in the optimization procedure.

This problem was not really noticeable in the two previous
examples as the limited number of design variables (laminate
types) allowed 1less freedom for the redistribution of

material.

Bearing the modelling inaccuracies in mind, the results
shown in Table 8.3 can be regarded as realistic and
accurate. The material in the skins also shows a
distribution of material similar to that that would be
obtained using conventional design ﬁethods. The root end
elements (laminate type 1 and 2) contain predominately 0°
fibres to resist the bending load and to provide the
required stiffness to meet the displacement requirements.
Some additional torsional resistance is supplied by the 45°
layers, and these plies also help to reduce the shear
strains induced in the 0° degree fibres by the torsion

component of the second load case.
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The outer elements (laminate types 3 and 4) contain only
just enough material to resist the bending load and to
satisfy the tip displacement constraints for the first 1load
case. Both 1laminate types (3 and 4) contain a large
proportion of 45 fibres as they provide the most effective
resistance (in terms of wéight) to the torsion component of
the second load case. Again the optimization routine has
placed the torsionally stiffer elements at the tip in
preference to other parts in accordance with well
established minimum weight design rules for wing type

structures.

If the finite element model had been more accurate (ie.
less tendency to put material in the spars) it is expscted
that the proportions of the material in all the layers of
the various 1laminate types would be very similar but with
all the thicknesses of the skins suitably increased to take

the bending and torsion loads, presently taken by the spars.

These examples demonstrate the effectiveness and viability
of the method developed for the system 1level of
optimization. It can therefore be concluded that the method
is entirely suitable for use in the multilevel optimization

system,
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CHAPTER 9

9 RESULTS OF MULTILEVEL OPTIMIZATION

The examples given in this chapter show that the final
result (in terms of weight and the design variable values)
and the speed of convergence of the multilevel optimization
is relatively insensitive to the weighting coefficients used
in the element level objective function. They also show
that the results obtained are feasible and realistic and can

readily be explained using simple design logic.

9.1 Influence Of The Weighting Coefficients

The first point is illustrated using two structures which
were optimized wusing three different sets of weighting
coefficients. The structures considered were cantilever box
sections representative of forwrd swept and delta wing
boxes, shown in figures 9.1 and 9.2 respectively. A
vertical load (ie. in the +z direction) of 60000N,
distributed over the tip nodes of the lower skin, was the
load case considered for both the structures and strain and
displacement constraints were imposed. The strain 1limits
used were 0.004 for the 1longitudinal and transverse ply
strains and 0.0055 for the shear strains throughout, while
the displacement 1limits were *80mm at the tip nodes of the
forward swept wing and *60mm for the delta wing. These

problems were run using weighting coefficients (0.8,0.2),

- 102 -



(0.5,0.5) and (0.2,0.8) where the first wvalue 1is the
coefficient. associated with the weight part of the element
level objective function and the second part 1is that
associated with the strain ehergy change part of the

function.

9.1.1 Forward Swept Wing

The results of the swept wing (figure 9.1) are discussed

first.

Figure 9.1 Forward swept wing 600

Design variable linking was used to define that all the
elements in the top skin were of laminate type 1, all those
in the bottom skin of laminate type 2 and all the spar webs
and ribs of laminate type 3. All three laminate types were

constrained to remain symmetric about their midplane. The
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starting designs for these laminates as well as the
optimized values for the various weighting coefficients are
given in Table 9.1 below, with only the upper half of the
symmetric layups being given (layer 1 is wuppermost). It
should be noted that the ply orientations are given relative
to the element x-axes which are all parallel to the wing

leading and trailing edges.

Table 9.1 - Swept wing results (I)

Lam. Initial Final design
type design WCl = 0.8 WCl = 0.5 WCl = 0.2
| WC2 = 0.2 WC2 = 0.5 Wc2 = 0.8
t| o t | © t B t | ©

l1.rPly 1 2.5 0.0 3.21 |-14.7 3.21 [-12.2 3.34 |-15.3
2]11.25 |-45.0 0.10 |-18.4 0.04 33.3 0.02 [-10.6
311.25]45.0 2.15 29.6 2.44 34.3 2.22 25.5
2.Ply 1} 2.0 0.0 4.58 11.2 3.02 16.3 4.74 17.1

212.0 [-45.0 1.31 [-28.6 1.93 |-23.1 1.56 |-23.9
.45 66.0

o

3(12.0 45.0 0.48 60.2 0.91 49.8
.83 {-39.0

o

3.Ply 1| 1.0 [-45.0 0.98 |-45.0 1.60 |-41.7
211.0 45.0 0.87 46.9 0.92 46.9 1.12 49.0

Weight 556.4 604.3 608.2 624.2

Displ.

Node 7 87.7 : 77.6 76.4 ' 76.4
14 94.1 83.6 79.1 82.0
21 99.5 89.0 83.2 86.8
28 105.4 93.8 87.8 91.1
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The ply thicknesses and the nodal displacements are given in

mm, the ply angle in degrees and the weights in kg.

The multilevel system, in all the cases shown, converged
after 4 iterations, with the convergence criteria having
been taken to be a weight change in consecutive iterations
of 1less than 2%. The weight of the structure was evaluated
in each iteration after the wupper 1level optimization had
been performed. Each multilevel iteration included 5
iterations at the wupper 1level and 8-10 iterations per

laminate type at the lower level.

Oon inspection it can be seen that the final results obtained
when using the different weighting coefficients are
remarkably similar in terms of the design variables
(particularly the ply orientations) and the final weight.
Where there are large differences in the final ply angles
chosen (egq. layer 2 of laminate type 1) the related
thicknesses are generally small relative to the entire
laminate and so their effect on the overall laminate
stiffness is small. Any differences in ply orientation in
these cases thus have a very small effect indeed on the
laminate rigidity wvalues wused in the finite element

analysis.

Since the final design variables for each test case were
similar, the displacements of the loaded structure were, as

could be expected, very similar as well. The slightly lower
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values of displacements associated with the case with equal
weighting coefficients are probably due to the
proportionately higher thickness variable values assigned to
the spar webs (laminate type 3). As explained in chapter 8
the elements wused in this work perform poorly in a
cantilever type situation (as the spar webs can be regarded)
and appear, in terms of the finite element model, to have a
stffness greater than the true value. As a result any
additional material added to these elements has the effect
of increasing the stiffness by a 1larger amount than it

should (and hence the smaller displacements at the tip).

The displacements of the tip nodes, shown in Table 9.1, are
all, with the exception of those at node 7, greater than the
80mm prescribed limit and yet were accepted as a feasible
solution by the optimization routine. The explanation for
this lies in the fact that sequential linear programming was
used as the optimization algorithm. The constraints, which
are all non-linear, thus had to be converted to linear
approximations. The boundaries of the linearized feasible
design region thus only coincide with those of the true
feasible region at the point of linearization. Futhermore
the solution to a linear programming problem always lies at
a vertex of the feasible region and these generally lie
outside the feasible region of the non-linear design space.
The optimum found in these cases was thus the feasible

solution in terms of the linearized design space which here
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obviously lay outside the true, non-linear feasible region.

9.1.2 Delta Wing

The delta wing structure that was optimized is shown in

figure 9.2 below.

Design variable linking was used here to define that all the
trailing edge elements in the top and bottom skins were of

laminate type 1, the leading edge elements in top and bottom
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skins of laminate type 3 and the remaining skin elements of
laminate type 2. The spar webs and ribs were all of
laminate type 4. Futher variable linking was‘used to ensure
that all these laminates remained symmetric about their
midplane. The initial designs for all 4 lamiante types, as
well as their optimized values are given in Table 9.2, with
only the wupper half of the symmetric layups being given
(layer 1 is the uppermost). In this case the ply
orienatations are also given with respect to the element
x-axes which are here taken to be parallel to the spanwise
lines in the finite element model immediately behind, but
adjacent to, the elements being considered ie. the trailing
edge is the local x-axis for all the trailing edge elements
but the leading edge does not form an x-axis for any

elements.
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Table 9.2 -

Delta wing results

Lam. Initial Final design
type design WCl = 0.8 wCcl = 0.5 WCl = 0.2
WC2 = 0.2 WCc2 = 0.5 WCc2 = 0.8
t B t © t (2] t 6
1.Ply 1 2.5 0.0 2.18 [-13.4 1.83 |-11.9 2.48 |-10.3
2] 1.25(-45.0 0.78 |-13.1 0.05 -8.1 0.28 -3.3
3] 1.25| 45.0 0.05 29.2 0.03 26.8 0.02 83.2
2.Ply 1} 2.0 0.0 0.40 1.0 0.57 3.1 0.53 6.3
21 2.0 |-45.0 0.21 |-72.4 0.21 |-73.5 0.11 |-83.2
31 2.0 45.0 0.22 56.9 0.17 55.1 0.10 42.9
3.ply 1| 1.0 0.0 0.20 19.1 0.41 24.7 0.57 38.4
2' 1.0 |-45.0 0.44 |-57.0 0.31 |-64.0 0.47 |-57.5
3] 1.0 45.0 0.41 51.5 0.41 64.3 0.15 45.6
4.Ply 1| 1.0 |-45.0 1.25 |-45.8 2.12 | -46.9 0.82 [-42.8
2| 1.0 45.0 0.62 47.8 1.37 49.6 1.21 45.8
Weight 777.8 279.9 288.2 | 279.6
Displ.
Node 7 34.5 62.3 60.4 58.8
14 35.7 64.1 62.3 60.5
21 35.9 64.4 62.9 62.0
28 35.0 63.0 61.9 61.1
The ply thicknesses ahd the nodal displacements are given in

mm, the ply angle in degrees and the weights in kg.
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Convergence of the multilevel system, defined by a weight
change of 1less than 2% in consecutive iterations, was

achieved in 4 iterations for all the cases above.

As for the swept wihg examples above it can be seen that the
final design variables and structural weights for the delta
wing optimized with the three combinations of weighting
coefficients, are all very similar. Since the same trends
exhibited by the swept wing results (Table 9.1) are apparent
in the delta wing results (Table 9.2) suffice it to say that
the discussion above, on the sﬁept wing, applies directly to

the delta wing as well.

9.1.3 Concluding Discussion

The swept and delta wing examples given above show that the
final design results and the speed of convergence of the
multilevel system are thus not very sensitive to the
weighting coefficients chosen for use in the element level
optimization. The most likely explanation for this is that
although the thickneés variableé can change quite
significantly when changing from one level to the other the
ply orientations get close to their final, optimal values in
the very first entry to the element level optimization (this
happens irrespective of which weighting coefficient was
chosen). The resultant effect 1is that only the ply
thicknesses are being altered significantly in’subsequent

iterations at the element level and thus much the same type
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of function is being performed as at the system level. Thus
in the case of the weighting coefficients being biased if
favour of the weight part of the element level objective
function, the displacement constraints will be violated
after the element level optimization, and the system level
thus has to scale the design before starting its
optimization process. The greater the weighting coefficient
WC1 (weight part of the objective function) relative to the
weighting coefficient WC2 (strain energy change part) the
greater the scaling factor is likely to be. Since the ply
angles selected in all the cases is similar, however, it is
to be expected that the system 1level optimization should
converge to optimal points with similar thickness variable
values even if the starting points are slightly different.
The results show that this is indeed the case, bearing in
mind the problem of the zig-zaging (of the solutions)
associated with sequential LP éolutions (which may to some

extent account for the slight differences in the results).

Inspection of the results given in Tables 9.1 and 9.2 shows
that the final solutions are quite feasible and can be
explained using simple design logic. The effectiveness of
the multilevel optimization system, in terms of producing
optimal results 1is, hoﬁever, better illustrated in the
following two examples where a greater number design

variables were used.
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9.2 Multilaminate Forward Swept Wing

The first example is a forward swept wing box type structure
of the same general arrangement as that shown in figure 9.1.
For this problem, however, the elements were defined to be
of different laminate types as follows:- the'9 root end
elements of the lower skin were of laminate type 1, the 9
root end elements of the top skin of laminate type 2, the
remaining bottom and top skins of laminate ¢types 3 and {4
reépectively and the spar webs and ribs of laminate type 5.
As in previous examples the designs were constrained to
remain symmetric about their midplane. The initial designs
are defined in Table 9.3 with only the wupper half of the
laminates being given (layer 1 being the uppermost). The
loading used was the same as the previous swept wing
examples (ie. 60 OOON distributed over the lower skin tip
nodes) and a displacement limit of 80mm was placed on the
tip nodes of the structure. The strain limits imposed were,
as before, 0.004 on the allowable longitudinal and
transverse strains and 0.0055 on the allowable shear strain.
The structure was optimized using weighting coefficients of
0.5 for both parts of the element level objective function.
In view of the discussion above on the influence of the
weighting coefficients it is not expected that the results
would be significantly different if some other coefficients

had been used.
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The design converged in 4 iterations ( with a weight

of 1less than

change

2%) and the results are given below in Table

9.3.

Table 9.3 - Multilaminate swept wing results
Laminate Initial design Final design
type t e t e

1. Layer 1 2.5 0.0 2.41 3.1
2 1.25 -45.0 0.15 83.1
3 1.25 45.0 3.08 35.4
2, Layer 1 2.5 0.0 6.14 13.6
2 1.25 -45.0 1.26 -24.5
3 1.25 45.0 0.90 53.0
3. Layer 1 2.0 0.0 0.77 0.4
2 2.0 -45.0 0.04 -44.4
3 2.0 45.0 0.12 45.6
4. Layer 1 2.0 0.0 0.76 0.2
2 2.0 -45.0 0.05 -44.0
3 2.0 45.0 0.14 44.0
5. Layer 1 1.0 -45.0 2.40 | =-32.7
2 1.0 45.0 1.64 40.0
Weight (kg) 556.4 460.2
&, node 7 87.7 80.6
14 94.1 84.4
21 99.4 87.5
28 105.4 90.0
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The ply thicknesses and the nodal displacements are given in
mm, the ply angle in degrees and the weights in kg. The ply
orientations are again given with respect to the element
local x-axes which all lie parallel to the spanwise lines

shown in the finite element grid in figure 9.1.

The final design is feasible in that all the constraints
have been satisfied with respect to the linearized problem
(a sequential LP is used as the optimization algorithm).
The displacements at the tip nodes are, however, greater
than the prescribed limits due to the inaccuracies involved
in making linear approximations to the non-linear
constraints, and thus the design is not truly feasible with
respect to the non-linear design space. This problem was
addressed in more detail in the discussion on the swept wing

optimization earlier in this chapter.

The final values assigned to the various design variables
are quite realistic with the exception of the unduly heavy
spar webs and ribs (laminate type 5). The reason for this
phenomenon was poor element behaviour in the finite element
model, which is discussed at 1length in chapter 9.
Notwithstanding this, the values assigned to the other

design variables can be quite easily explained.

Considering first laminate type 2 (root end elements of the
top skin), a very large proportion of the material has been

orientated at an angle of 13.6° ahead of the spanwise lines.
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This would produce a favourable shear coupling effect when
the laminate is loaded in compression (as it is under the
applied bending load) which would tend to twist the wing
leading edge down. These effects can be used to achieve a
minimum weight design whilst satisfying the displacement
constraints ie. under a given bending load the wing leading
edge will twist up less than for the 0° or isotropic
material case. This chatacteristic7has already been applied
to aircraft with forward swept wings to avoid divergence
problems eg. the Grumman X-29 wing is made of composites
with the major material axis 9° ahead of the 25% chord line.
The other components in this laminate can be seen to be at
just about *40° on either side of the major material
direction (13.6 ) which is close to the optimal orientation
fdr torsional resistance (bending induced torsion is found
in swept wings) and for relief of the shear strains induced

in the major material component.

The solution given for laminate type 1 (root end elements of
the bottom skin) is not quite as easily explained. Layers 1
and 3 contain nearly all the material in this laminate -
layer 2 can almost be ignored except for the small
contribution it makes to reducing shear and transverse
stresses in the other layers. They are botﬁ angled ahead of
the spanwise lines and hence would produce some advantageous
shear coupling effects. While each of these laYers assists

in this role, layer 1, being near to 0° offers substantial
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bending stiffness and layer 3, being closer to the 45°
position offers good torsional resistance. The angle
between them is sufficient to ensure that they provide some
measure of relief to each other in‘ terms of shear and

transverse strains.

The reason for laminate types 1 and 2 being so different 1is
not apparent, but can perhaps be explained by there being
two or more local optima near to each other, to which the
designs may be driven. The exact one that is found may be
dependent on the loads imposed on and the stress state

induced in the various laminates.

In contrast to laminates 1 and 2, the final designs for
laminate type 3 and 4 (outer skin elements of the bottom and
top skins respectively) are very similar indeed - so similar
in fact that a discussion of one set of results will suffice
for the other. This similarity between top and bottom skins
could be expected since the allowable strains in tension and
compression are the same and no buckling constraints have
been included. There is sufficient material in layer 1 of
these laminates orientated at 0° (or just about 0°) to
resist the tension/compression induced in them by the
bending load on the wing. A lesser quantity of material has
been placed near a 45° orientation (layer 3) to resist the
bending induced torsion in the wing. This 0°/45 also
provides a reasonably favourable shear coupling effect. The

remaining ple at -44° are negligably small.
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The final design of the forward swept wing is thus realistic

and readily explained using simple design logic.

9.3 Multilaminate Rectangular Box Beam

As a final illustration of the methods capabilities the
example of a rectangular box cantilever with multiple
loading and subject to strain, displacement and buckling

constraints is presented.

The general layout of the structure is as shown in figure
9.3 below (same as figure 8.2) and the laminate arrangement,
applied loads and strain limits are exactly the same as

those described for the last example in chapter 8.

Figure 9.3 Rectangular box beam 6
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Displacement limits were *120mm at the tip nodes of the
lower skin. This limit ensured that the buckling
constraints would be active. As with previous examples the
initial and final designs are presented in tabular form
(Table 9.4) with only the upper half of the 1laminates (all
symmetric) being given.

Table 9.4 - Multilaminate rectangular box results (II)

Laminate Initial design Final design
type t &) t e
1. Layer 1 2.5 0.0 1.98 -4.2

2 1.25 -45.0 0.83 -50.1
3 1.25 45.0 ; 0.02 47.1
2. Layer 1 2.5 0.0 2.07 -1.9
2 1.25 | -45.0 1.31 -40.4
3 - 1.25 45.0 0.05 59.7
3. Layer 1 2.0 0.0 0.60 21.2
2 2.0 -45.0 1.71 -55.0
3 2.0 45.0 0.01 32.2
4, Layer 1 2.0 0.0 0.29 30.9
2 2.0 -45.0 1.95 -53.8
.3 2.0 45.0 0.01 27.8
5. Layer 1 1.0 -45.0 1.41 -47.4
2 1.0 45.0 1.30 41.4

Weight (kg) 329.7 183.6
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The ply thicknesses and the nodal displacements are given in
mm, the ply angle in degrees and the weights in kg. The ply
orientations are again given with respect to the element
local x-axes which all lie parallel to the spanwise lines

shown in the finite element grid in figure 9.3.
The design in this case converged after 3 iterations.

Laminates 1 and 2 (root end bottom and top skins
respectively) shdw similar tendencies in their material
distribution having the largest component‘ in approximately
the 0° degree direction  to offér the necessary bending
stiffness. Both have significant components in the region
of -45° offering resistance to the torsion component of the
second load case. However, the top skin, which 1is in
compression, has distinctly more material in this region
than the bottom skin so that the panels do not buckle (£45°

material offers optimum resistance to buckling for square

plates).

Laminates 3 and 4 (tip elements in the bottom and top skin
respectively) both have 1large components of material in
approximately the 54° direction, with proportionately more
being found in laminate 4 (top skin - under compression).
Although not at quite the optimum angle, thisk material
provides near optimal torsional stiffness to resist the
torsion load component of the second 1load case, and also

provides very good resistance to buckling (for lamiante type
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4). The material in layer 1 in both laminates is orientated
at 200 - 30° where it provides a good compromise between

additional torsional rigidity and bending stiffness.

9.4 Concluding Comment

The multilevel optimization system thus produces logical and
feasible results and does not seem to be very sensitive to
the weighting coefficients used at the element level, in
terms of the final bdesign variable values and speed of

convergence.
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CHAPTER 10

10 CONCLUSIONS AND RECOMMENDATIONS

10.1 Aim Of This Work

Published literature indicates that very few researchers
have broached the subject of developing synthesis systems
capable of optimizing composite structures in which full
design variable freedom is allowed. This was thus
identified as an area in which a contribution could be made

to the knowledge in the field of structural optimization.

In view of this the aim of the work was defined, rather
broadly, as the development of a structural synthesis system
for laminated composite structures that would ensure the
most efficient wuse of the matérial in the structure. More
specifiéally, a general method for the optimal design of
composite structures, that avoided all the problems and
limitations associated with previously published work, was

to be developed.

10.2 Objectives Achieved And Conclusions Drawn

It can reasonably be said that the objectives set out at the
begining of this work have been achieved. A general method
has been developed for the optimal design of laminated
composite structures which allows full design variable

freedom (ply thickness and orientation). The method
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includes the wability to link design variables and to keep
ply angles and/or thicknesses fixed as an option, rather
than a 1limitation. Although the present system (used for
the test cases) was limited to using shell elements to model
the structﬁre, and to the consideration of strain,
displacement and buckling constraints there is nothing in
the formulation which prevents the inclusion of futher

element types or constraints.

The test cases used for evaluating the performance of the
method were essentially all aircraft type structures. They
were, however, selected specifically for being good
compromises between complex structures k(and thus complex
load paths) and being test cases with relatively predictable
results (so that the validity of the optimized values could
be assessed). The multilevel optimization method performed
well on all these tést cases, converging reliably and

reasonably quickly and producing very plausible results.

The general conclusions that can be drawn from this work can

be summarized in point form as:-

1. General optimization methods for composite materials
capable of wusing full design variable freedom, can be
developed for, and successfully implemented on, the present

generation of computers.
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2. The multilevei optimization scheme seems to work well
and is an effective way of reducing the number of design
variables and constraints under consideration at any given
time in the.optimization process. This makes it feasible to

optimize large composite structures on existing computers.

3. The two 1levels of optimization, in the multilevel
optimization system, are very effectively decoupled using
the duai criteria objective function at the lower 1level.
This means that the lower (element) level optimization part
of the system could easily be coupled to some other
optimization package which effectively performs the upper
(system) 1evel,of optimization ie. some package which is
capable' of optimizing composite structures using only layer

thicknesses as variables and keeping ply angles fixed.

4. 1If classical lamination theory is used as a basis for
evaluating element stiffnesses then one general optimization
method can be developed for a wide range of elements (as

long as they conform to the theoretical formulation).

5. The multilevel system developed in this work would seem
to be a sound basic method for the optimization of composite
structures and warrants futher development to fully exploit

its potential.
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10.3 Recommendations

A number of recommeﬁdations are made below for improvements
which could be made to the existing system. These are
followed by a brief discussion on some futher development
areas which could be pursued as part of the continuing
research effort toward developing a comprehensive composite

structural optimization system.

1. A sequential linear programming method is used in this
work asl the optimization algorithm. Although it proved to
be quite suitable for the purposes of this work it does
suffer from some problems which would make it unacceptable
if the present system is to be developed futher and is to be
made more "user friendly". The first of these is the
well-known problem of zig-zaging of the solution. This
makes it difficult to check for convergence and also poses
problems for the less experienced user trying to identify
any trends in the behaviour of variables etc. The second
problem associated with the sequential LP is rather more
complex. Having to make linear approximations to the highly
non-linear constraints means that the solutions generally
lie in the infeasible region (of the non-linear design
space). Re-linearizing the constraints about these
infeasible points does in some cases lead to a linearized
design space with no feasible region. A fairly reliable
cure for this was to scale the design back into the

(non-linear) feasible region before 1linearization. This
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particular problem is addressed in more detail in Appendix E
and will not be discussed futher here. The efficiency and
reliability of the present method could thus be enhanced
somewhat by using some non-linear programming method in
place of the sequential LP method. This would have the
added benefit of avoiding the zig-zaging problem and result
in interim designs being feasible, or at least near

feasible, rather than consistently infeasible.

2. At present no active set strategy is included in the
system. This was intentionally done so that the
optimization précess could be checked wunder the most
rigorbus conditions. Having established that it works well
under these conditions, however, it is recommended that some
active set strategy is employed to enhance the efficiency of
the solution procedure. Reducing the number of constraints
under consideration in any given iteration in this way may
also help to partially alleviate the second problem

explained in point abve.

3. The maximum strain failure <criteria 1is wused in this
work. While being wuseful in that it concurs well with
existing composite design methodology it does suffer from
two problems. The first of these 1is that it is not an
accurate gauge of material reserve factors when multiple
stress states are considered. This could be especially
critical in an optimized structure which frequently has

simultaneous modes of failure. The second problem
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associated with this failure criteria is that it leads to 3
strength constraints per layer, which means that the number
of constraints grows very rapidly as the number of layers
(variables) in the problem increases. Both of these
problems can be solved by uéing one of the more complex
failure criteria such as the Tsai-Hill or Tsai-Wu criteria
which consider the interaction of the stresses and results

in a single value (constraint) for each layer.

4. Finite difference techniques were used to evaluate the
constraint derivatives at the system level of optimization.
While this proved to be the best method in the existing
circumstances (where it was not possible to access the
finite element stiffneés matrix) -.and gave very plausible
results, it is very inefficient. It is recommended that if
the system is to be developed futher and is to be wused on
problems with many design variables that one of the
analytical methods described in Appendix D, or a
semi-analytical method, is used for the derivative

evaluation.

Some recommendations are now made for areas in which futher
research and development could take place to follow-up on

this work.

1. The present system is only capable of dealing with shell
elements. An extended range of elements is required to

conclusively prove the generality and wusefulness of the
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method. Both plate and membrane elementscould be very
easilyv included as all the mathematics and required
manipulations thereof already exist in the formulation. The
full rigidity matrix is evaluated in the laminate analysis
and all the rigidity derivatives are evaluated in the system
so the required values are all readily accessible. It is
thus merely a matter of selecting the relevant values for

use in membrane, plate or shell elements.

2, Futher constraints should be added to the system to
improve its capabilities and wusefulness. Most of the
additional constraints that are likely to be required will
basically be an extension of the existng constraints (eg.
twist can be expressed as relative deflections) or involve
just a slight change of form (eg. buckling and vibration
constraints require very similar information) and thus
should be relatively easy to install. The similarity in
form should also ensure that no unexpected problems arise in
terms of incompatibility of the constraint type and the

optimization method developed.

3. The possibiity of using some form of linear design
variable linking between  laminate types should be
investigated. This could be used to limit the differences
in the design variable values between adjacent laminate
groups so that greater continuity in the structure is
obtained (and hence less interference at the laminate type

boundaries) ‘and so lead to designs closer to the
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manufacuturable item.

4. The method developed is based on the assumption that all
the constraints, with the exception of 1local element
buckling, can be satisfied at the upper level of
optimization. While this 1is not a particularly limiting
assumption it does mean that the designs produced at the
.upper level may not always be as efficient (optimal) as
desired. This implies that the 1load paths may also be
"non-optimal". The lowerylevel of optimization essentially
uses the load paths generated at the upper 1level (via the
force distribution on the element) to decide on the optimal
ply oreintations and thicknesses for each element/laminate
type. Thus the system could find itself optimizing the plys
for nonéoptimal load paths. The situation is not as bad as
it seems at first, however, since the stiffness change of
the element (and hence to some extent the change of the
loads on 1it) is not constrained to zero, but is written as
part of the function to be minimized. This does allow a
certain degree of flexibility in terms of redistribution of
the load paths. 1In this way the multilevel system does,
after several iterations between the two levels, converge to
an optimal solution. It is suggested that the convergence
could be speeded up (particularly in the cases with
potentially awkward constraints such as twist constraints)
by slight changes to the upper level optimization process.

The change recommended is to include the overall laminate
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orientations of each laminate type as variables at the
system (upper) level ie. the laminate would be free to
change its general orientation whilé keeping the relative
angles between all the layers of that laminate fixed. This
would not greatly increase the number of variables at the
system level but would significantly improve its flexibility
in terms of satisfying the constraints in an optimum manner.
If the multilevel optimization system can get nearer the
optimum in the system 1level process in this way it will
reduce the number of switches required from one level to the

other before overall convergence is achieved.

10.4 Concluding Comment

The immediate objectives Qf this work have been achieved,
and in that sense the work can be said to have been
successfully completed. The ultimate success of the project
must, however, be judged on the contribution it has made to
knowledge in the field of optimal design of composite
structures. In this context it is also felt that the
project was successful in that‘ a small, but hopefully
significant, contribution has been made both in the field of
optimization  of composite structures and mutilevel

optimization schemes.
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APPENDIX A

Derivation of a laminated composite plate rigidity matrix.

For a single lamina of orthotropic material (figure Al) a

plane stress state is defined as & = 0, Ty,= 0 and T,= 0.

fibre direction

Figure A.1l Unidirectionally reinforced lamina

The stress-strain relations for such a lamina can be written

as (Ref. 1[33])

o‘l —Q-“ 6]2 0 6(
% = atz azz 0 &2 (A.1)
T, 0 0 Gee ¥,

where the Q are called the reduced stiffnesses, and are

9, =E /(1 - Y,Y,)
Qn = VB, /(1 - VY, )
0,, = E,/(1 -y, Y,)
O, =G,

Note that egn. (A.1) is derived for the special case of
plane stress from the stress-strain relation given in Ref.

[33] for an orthotropic material.
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Futhermore, if this lamina were to be arbitrarily
orientated, at some angle 6 relative to a reference (or

global) axis system (figure AZ2),

Figure A.2 Reference axis system

then by using suitable transformations (Ref. [33]) the

stress—strain relations can be written as

oy Q, 9, 95| |&
S (= 9, Q, O g (2.2)
Ty Qi Q. 93 By
where
Q, = U, + U,cos2B + UycosdB

Q, = U, - U;cosde

Q,, =0, - UicosZB + Uz cos4® (A.3)
Qz = 1/2 (U, sin26) + U, sindb

Qs = 1/2 (U,sin26) - U;sind®

Qa3 = Ug - U;cosd®

and
U, = 1/8 (3D, + 30,, +20,, + 19, ) )
U, = 1/2 (9, - 0,)
Uy = 1/8 (Q,, + 0,, - 20, - 49,) (A.4)

Uy = 1/8 (9, + Q,, + 60,, - 40

-— -

Us = 1/8 (Qu + 622 - thz

<+

40,.)
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Note that egns. (A.4) are known as the invariant properties
of a lamina, as they are dependent only on the material

properties and not fibre angle or lamina thickness.

It is also occassionally convenient to write the [Q] matrix
of egqn. (A.2) in the form

[Q] = [ro]+[r‘]cos49+[rz]sin4ﬁ+[r31c0526+[r4]sin28 (A.5)

where
B i B i
[rel =|U, U 0 ; [r,]1 = |-Uy U O
00 U |0 0 -y
- - - -
o 0 U u, 0 0
[r,] =0 0 -ug ; [r,bJ= {0 -u 0
Us Uy O o 0o 0]
- ]
0 0 U, /2
Ir,1 =10 0 U, /2
U,/2 U, /2 0

Now following from the Kirchoff hypothesis for plates and

the Kirchoff-Love hypothesis for shells it can be stated

that
&, £, X,
Ey 1 = & t+ z X, -
Exy €y Ky

where

z 1is the distance from the plate midsurface

X is the plate midsurface curvature
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(superscript) denotes midsurface strains

and thus egn. (A.2) can be written as

o &, + X, z
o, 1= [Q1 48 + X z (A.6)
Ty E:Y + Yy 2

‘The resultant laminate forces and moments can be obtained by
intergration of the stresses in each lamina through the

thickness, for example

t/2
F, = f oy dz

~tn
t/2 d
My = 6y 2dz
X Lep k
where F, and M, are the loading intensities i.e. per unit

width of plate.

Expanding this to matrix form, and summing over the L layers

of the laminate, gives

F a; o

X “/1. X 5 zJ.' X

it [ Ao f a2 = Y [Tl taz (A.7)
~th Y

Fyy Tyy Tey

and

M o, o

X UZ X L . X

My = oy zdz = J[J oy zdz (A.8)
-t/z . . le ij_'

Myy Tur Try

represent the distance from the midsurface to

the top and bottom of the laminate respectively.
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Substituting egqn. (A.6) into egns. (A.7) and (A.8) and
remembering that 2:,63, ZSX: 1K1 ¥y 1 Xy are the midsurface
values, and so independent of z, and can thus be removed

from under the summation signs, gives

- - ° r— 1
Fy A, A, A, B,, B, Bgl{K«
Fy = A, A, A, |{& + B, B,, B,|{ky
©
Fry Ay A A3 LBB Bz Bag|| Xy
(A.9)
I~ ©
MX 1" 12 Bls &* Du Du_ Dns Yoy
M, = 2 B B (& + D, D,, D, l{%y
°©
Myy LBB B, Ba Xy Dy Ds Dag| [Xer
(A.10)
where
L L
By = ) (Qua) (2{=2j ) = ) (Quny ), £
37! i=!
L |
2 -—
B = . (25 -2 = -z, t.
- ;(QMO)A( 2ozl ) f‘: (Qua); 2t
L 3 ‘L 2
-
Dean = 2 (Qua ) (2}-231 ) = S (O ){ (2t + £7/12)
3=t 3=t
where

Z. is the distance from the midsurface to the
centroid of the j-th lamina

t is the thickness of the j-th lamina
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Now egns. (A.9) and (A.10) can be combined to write the

following
rFx ] ’_ 5 n 'Ex \
Fy A E B &y
I I I | & (a.11)
Mx ; ¥
My B i D ky
_Mva B : B hx”J

where the 3x3 submatrices A,B and D are defined by egns.
(A.11) and the complete 6x6 A,B,D matrix is known as the

rigidity matrix.

lamina 1

Figure A.3 Lamina stacking sequence

Definitions.

(Refer to figure A3)

1) A specially orthtropic 1laminate has symmetry of its
lamina ( with regard to thickness and, fibre angle ) about
both the x-y plane (element midsurface) and the y-z plane

~i.e. for each lamina at + © there must be an equivalent
one at -0, and for each lamina above the midsurface there
must be an identical one below the midsurface. For these

layups the components A, ,A,, ,D,, and D,, are zero (note
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that the A,B and D matrices are symmetric) and the entire
B matrix is zero.

2) A balanced symmetric laminate only has symmetry about the
midsurface (x-y plahe). In this case only the B matrix is
zero.

3) A general laminate, or an unbalanced unsymmetric laminate

has no zero terms in the rigidity matrix.
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APPENDIX B

Derivatives of the rigidity matrix.

The rigidity matrix [R] is a 6x6 matrix which can be
partitioned as (see Appendix A, egn,(A.1l1)),
i ! 7
A | B
|
[R] = |=--d-—- (B.1)
B : D
- i .
where A,B and D are 3x3 matrices and
L
Amt\ = Z (an)‘ t (B.2)
j=| 'l j
L
Baa = 0 (Q,): 2t (B.3)
i:l -& -S j
L
3
D =y (Q,)(Zt + £ /12) (B.4)
jt( 4 ‘l J
where
Qmn is defined in Appendix A, egns. (A.3)
m,n indicate the matrix row and column number
j indicates the lamina/layer number
The derivation of egns. (B.2) - (B.4) can be found in
Appendix A.
Using the form of egqn. (B.l1) the derivatives of [R] with
respect to the design variables can be written as
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[3}3/3‘?—"3 1

and

[QR/BQ:S] =

where
3A,M/89&
3B,,/36;

BDM,\/a ﬁj

_ . -
|
. i .
BA/Btd : bB/bt‘3
= e - e - — - _i ________
I
oo .
3B/bt‘S : BD/BES
i ?
38/28; | 3B/26;
N S I
|
|
oB/36; | 8D/
= (3Q,M/aes )ZJ ti
. 2 3
= (aQrm\/aej)(th&*' 't‘-l/12)

where the BQM/GB‘S are given by

30, /28
3Q,, /38;
8Q,, /36;
3Q 5 /38,
0,3 /26
3Q;, /38,
and
¥R, /2t
?B, /3t

aDM/z,t‘-‘

= -(2U,5in20; + 4U,sin4f)
= 4Ussin4qi

= 2Uzsin2qj— 4U35in4qj

= Uzcoszqi+ 4U3cos4ﬁi-

= U, cos26; - 4U,cosdb;

= 4Ussin463

= (QMI\)J
= (me).j Z:

= ?’ z
= (Q,,); (2} +t]/4)
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APPENDIX C

Upper bound on the number of 1layers in optimal composite

plates

In Ref. [14] a fixed upper limit is established for the
number of layers required in an optimal plane-stress linear
composite structure. It is also shown in that paper that
the 1limit is independent of the complexity of the finite
elements in terms of which the structure is idealized, the
number of alternative loading conditions or the number or
form of constraints, except that they must be expressible as

functions of the deflections and fibre angles only.

In this section it will be shown (in a similar manner to
Ref. [14]) that the same upper limit can be established for

plate elements.

In Appendix A the following relationship is established for

a lamina:-

{e} = ([r J+[r, Jcosdb+[r,]1sind®+[r, Jcos20+[r, ]1sin206){E}

(C.1)

where
lryd, [, 1, [r,], [rg] and [r,] are 3x3 matrices
dependent on material constants only (as
defined in Appendix A)

b is the fibre angle
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The stiffness matrix of any 1lamina is 1linear in the
stiffness coefficients of the material (eqn. (c.1)). A
lamina of thickness tj and fibre angle Bj will thus have a

stiffness matrix of the general form

kj(aj)=[k°% +[k,5 cos4Q§+[kLh sin46i+[k5]3coszqi
+[k#h sinZ% (C.2)

where kj(ej) is expressed in terms of unit thickness.

The bending stiffness is then given by
K ZL k Zit.+ t;/12 (C.3)
[K] = :‘:‘( J(GJ))(ZJ j+ J/ ) .
where
L is the number of lamina

z is thé\aistance from the plate midsurface to the

centroid of the lamina.

Now if linear elastic behaviour of the plate 1is assumed
(which 1is quite reasonable for most composites) then the

following familiar equation holds

[K].{8§} = {P} (C.4)

where
[K] 1is the stiffness matrix
{d} 1is the deflection vectof

{p} 1is the load vector
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Substituting egn. (C.3) into egn. (C.4) gives

L -2 3
g; [k (65 )1.{d}. (Bt + t;/12) = {P)

or in expanded form

L
%;([kolj{S}+[k,]i{é}cos4%+[kz]i{S}s1n4%+[k3]j{a}coszq

. -2 3 _
+ [k“]j{3}51n2%).(zjﬁj+tj/12) = {P}

This equation can now be written as

L
! 3
; (1, {@}j (2j t,+t;/12) = (P} (C.5)
where
[M]j = [[ko]j{é} ' [k‘]j{é} I eeeen ,[kqu{é}]

- a 3x5 matrix

{éﬁ

{1 , cos4% ’ sin4q ’ coszq ' sinz% }

- a 5x1 vector

Eliminating the summation and writing egn. (C.5) in full

matrix form gives

(m11d1(2" t+t3/12} = (P  (c.6)
where [M] Iis a 3x5 matrix
141 is a 5xL matrix (L = no. of lamina)

{Ezt+t3/12} is a Lxl vector

Now if there is an upper bound on the number of layers in an

optimum element then Ei can be expressed in terms of Fi as

3=

L
Z.o=1/2() t, - 9 t,) (C.7)

J :
nxy n=J4\
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Note that egn. (C.7) is correct only if z =

0 at the plate

midsurface and layer 1 (of consecutively numbered layers) is

in the negative 2z direction.

Egn. (C.6) can thus now be written as

.

L
MIE1(1/2() t, - D t )t + t}/12) =
Hhzi Nne 4\
or }
[M11&1{at +t3/12} = (P}
3~ L
where A = (1/2() t,- 5 t)F
n= l\aj-t\
or
[M1[J1{Y} = {P}
where

3
+ = A. t, . /12
YJ AJFJ+ Fl/

The tj are always non-negative, as is Aj '

independent of tj, and thus there 1is

correspondence of tj and ?j’

Now the optimization problem can be stated as

L

min W(t;) = 2 clt;)

:‘:\
subject to:- [K]1{&8} = {P}
i.e. [MI[$1{Y} = {P}
and t‘-1 =20 j=1,2,...,L
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which is also

a one to one

(egn. (C.4))
(egqn. (C.8))



This is a linear programming problem in the Yj (with its one

to one correspondence with tj) subject to Ny equality
constraints (eqn. (C.8)), where N, 1is the number of

deformation modes of the plate.

The constraints are not generally all independent, so a
reduced set can be defined by eliminating all the equations

corresponding to the linearly dependent rows of [M], giving

[(Mr1081{¥} = {P"}
where [M’] and {P’} define the reduced set.

The rank of these remaining equations is equal to the rank

of [$] or [M'], whichever is the less (Ref. [14]).

Now [M’] has 5 columns and [$] has 5 rows and the maximum
rank of either is thus 5. The rank of [M’], however, cannot
exceed N; since that is the rank of kj(Qj)'; and so the
number of independent equaiity constraints of the linear

programming problem is min(5,N ).

The effect of increasing the number of 1load cases is now
considered. For each additional load a set of equations of

equilibrium are added:-

[K1{s}" = (B}"
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The principal of virtual work, however, requires that for

deflection and load sets
r
(pY (81 = (87 oy

Hence, N, load cases imply at most NP(NA—(NP—l)/Z)
independent rows of |[M'], and [§] is obviously unaltered.
The maximum rank of the equations thus becomes

Amin(S,Nr(Nd—(NP—l)/Z)) = R.

The vectorv{Y} thus solves a linear programm;ng problem with
R equality constraints. By the fundamental theory of Linear
Programming, therefore, not more than R values of Yj may be
non-zero. Since there is a one to one correspondence of Y.

J

and tj this implies that there can be no more than R

non-zero values of tj;

Now let a balanced layup bew defined as a double layer
(lamina), with one half-thickness containing fibre at angle
© and the other at -6 relative to the datum axis. For this
form of layup, terms in the odd functions in the expression
for kj(ﬁj) (egqn. (C.2)) vanish, and so the expansion has
only three terms left. The same reasoning as above can then
be applied to obtain a méximum rank of
min{B,N?(Ng-(NF—l)/Z)} = R. This implies a maximum of 3

"balanced layup" lamina i.e. a total of 6 layers.
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These results are thus exactly the same as those derived in
Ref. [14] for membrane action finite elements i.e.
plane-stress elements, and so it can be concluded that the
maximum number of layers in an optimum composite plate
(subjected to in-plane énd bending loads) 1is eqﬁal to R,
where R = min{G,NF(NA—(NP—l)/Z)}. In general N?is greater
than 1 and N,will be at least 3 (for plate bending elements)
and may be 5 (shell elements) and thus the value of R will
normally be 6. This is the value used in this work as it is
then the wuppermost bound on the number of lamina in an

optimum composite plate.
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APPENDIX D

Methods for constraint derivative evaluation.

The calculation of the derivatives of the constraint
functions with respect to the design variables (often called
design sensitivity analysis) is required when using most of
the efficient optimization methods. It is also necessary to
evaluate these derivatives when applying explicit
approximations of the constraint functibns, such as the

Taylor series, used in this work.

In most structural optimization problems the object 1is
usually to find the derivatives of the displacements {d}
(egn. (D.1)) when using a displacement analysis (finite
element) method. The equations for the displacement
analysis are

[K]{d} = {F} (D.1)

Derivatives of stresses and strains can then be obtained by
differentiation of the strain-displacement or
stress-displacement equations,

{e} = [s]1{d} ) (D.2)
where the system stress-displacement, or stress

transformation, matrix [S] is constant.

For an optimization problem with n design variables x;
(i=1,....,n), the ~calculation of the derivatives of the

displacements with respect to the design variables by the
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finite difference method would require the analysis (egn.
(D.1)) to be repeated for each of (n+l) different stiffness
matrices. The derivatives can, however, often be calculated
more efficiently using analytical means, so avoiding the
large number of analyses associated with finite difference

calculations.

Some of the more common approaches used'for such analytical
evaluation of the derivatives are descibed below and their

relative merits discussed.

D.1 Behaviour Space Method

This method for evaluating the constraint derivatives was
proposed by Haug and Arora (Refs. [38]1-[40]), who
originally called it the state space method. Itb has,
however, recently become more commonly (and appropriately)

reffered to as the behaviour space approach.

In this method the displacements {d} are treated as
independent variables, and an adjoint relationship is then
introduced to express the effect of a variation in {d} in

terms of a variation in the design variables.

Treating {6} and {x} as the independent variables, the first
variation of any constraint function g ({x},{&§}) can be
written as

Ag; = (dg; /8x] (ax} + {2g;/35] {a$) | (D.1.1)
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where {agj/AX} and {agj/Bé} are the partial derivatives of
the constraint Jj with respect to {x} and {d} respectively
(evaluated at a given point {x*} and the corresponding
{é*}), while {ax} and {ad} répresent small variations in {x}

and {4} respectively.

The constraint variation must, however, finally be written
only as a function of the design variables {x} i.e. as
{Agj} = {dgj/dx‘  eesaens ' dgj/dxn}{Ax} (D.1.2)

where dgj/dxi are the total derivatives.

The term {3q3/35}{A8} in eqn. (D.1.1) must therefore be
expressed as a function of {Ax}. 1In order to do this an
adjoint variable vector {¢ﬁ}' associated with the constraint

function gy is defined such that

[KI1{&} = {3g;/38) | (D.1.3)

If the j-th constraint 93 is actually the displacement 33

then {§gj/36} = {Ij}, which is a vector.with a unit value in
the j-th position and zeroes elsewhere. Thus eqn. (D.1.3)
becomes

[K1{$;} = [I;] (D.1.4)

Now taking the first variation of egqn. (D.1l) with respact
to X, gives

[K1{a8} + ) [aK/dx; 1{8}ax, =

(=1

™>

{aF/axi‘}Ax.L (D.1.5)

-
"
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Defining matrix [H] as
[B) = [{oF/3x,}, ... ,{3F/0x,}] -
[[3K/3%,1{8}, ... ,[3K/0x,1{8}] (D.1.6)
egqn. (D.1.5) can be written as

[K1{ad} = [H]{ax} (D.1.7)

Pfemultipling eqn. (D.1.7) by the adjoint variable vector
{Qj}r and substituting eqn. (D.1.3) into the resulting
equation gives

(2g;/28) (a8} = {6; 1 [H]{ax} | (D.1.8)
and thus eqn. (D.1.1) can now be written purely as a
functipn of {Ax} by substituting eqn. (D.1.8) into egn.
(D.1.1), giving

{ag;} = ({2g;/3x} + {¢; )" [H]){ax} (D.1.9)

From egns. (D.1.9) and (D.1.2), the following expression
- for {ng} is obtained ,

{Vg;} = {bgl/bx}f + {¢; } [H] (D.1.10)
and again if g; = % then {3g;/2x} = {0} and eqn. (D.1.10)
becomes

(v& ¥ = (4; ) (H] (D.1.11)

The desired derivative vector is thus computed wusing egns.

(D.1.4), (D.1.6) and (D.1.11).
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D.2 Design Space Method

The behaviour variables {£} are taken to be dependent
variables is this approach and can be expressed in terms of

the independent design variables {x}, as

{as} = [3é/3x]{ax} (D.2.1)
where
(35,/3%, .uu.n. 38/ 0%,
[88/3%X) =  |eeieeeneenns eeesseaans (D.2.2)
38,/3%, ...u.. 38,/ 3%,

Substituting eqn. (D.2.1) into egn. (D.1.1) gives
bg; = ({2g5/3x) + {og; /28] [38/3x]){ax]
so leading to

{ng }T

= {ég‘-‘/bx}‘ + {agl/aé} [28 /23x] (D.2.3)
The matrix [88/3x] is obtained by differentiation of eqn.
(D.1), giving

[3K/8x1{8} + [K]{ad/ax} = {aF/ax}
which can be re-written as

[K] {38 /3x} = [H] (D.2.4)

where [H] is defined by eqgn. (D.1.6)

Note that in problems where {F} is assumed to be independent
of the design variables (as in the element level
optimization) eqgn. (D.2.4) reduces to

[K]{ad/dx;} = - [dK/3x; ]{d} i=1, ... ,n

- 158 -



or

(38/8x;,} = - [K]" [3K/3x, 1{8} (D.2.5)

Again assuming g;= % then {3g;/sx} = {0} and {dg,/38} = {I;},
so eqn. (D.2.3) becomes

(v, ] = {1;} [26/3x] (D.2.6)

The derivative vector {v{j}T of the displacement constraints
is evaluated using egn. (D.2.4) (to solve for the set of

{88/8x. }) and egn. (D.2.6).

D.3 Virtual Load Method

In this approach it is also assumed that the ({&§} are the
dependent variables which can be expressed in terms of the
independent design variables {x}. The equations (D.2.1) -
(D.2.3) of the design space approach therefore hold for the

virtual load method.

Any desired displacement éican be expressed as
T
S = {0} {8} (D.3.1)
where {ij- is a virtual load vector which has a unit wvalue
in the j-th location and zeroes elsewhere. Differentiating
eqn. (D.3.1) with respect to {x} gives

(3s/0x) = (v8;) = (@) [88/3x] (D.3.2)
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The virtual displacement vector {é;} corresponding to the
virtual load vector {Qj} is evaluated by

(K157} = 1)) | (D.3.3)
which can be sustituted into egn. (D.3.2) giving

w8 T = 81T (K138 /2x] | (D.3.4)

Now using the expression derived for {88/3x} in the design
space method (egn. (D.2.4)), egn. (D.3.4) can be written
as

(v&; 1 = &) (8] | (D.3.5)

where [H] is defined in eqn. (D.1.6).

The derivative vector {Véi} is then evaluated using egns.

(D.3.3) (to solve for {é;‘}) and (D.3.5)

D.4 Comparison of the Methods

These three different approaches to design sensitivity
analysis have been analysed and shown to give the same
results (Ref. [40]). There are, however, differences to be
found in the generality and efficiency of the individual
methods. The behaviour space and design space» methods are
more general than the wvirtual 1load approach and can be
extended to include other behaviour constraints which may
not be readily expressed in terms of the displacement

vector.
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The relative efficiency of the methods is dependent on the
number of constraints under consideration. The behaviour
space and virtual load methods require the same number of
operations for a given number of active constraints J. The
behaviour space method requires the calculation of J adjoint
variables {dﬁ} (egn. (D.1.4)), while the virtual load
method requires the evaluation of J wvirtual displacement
vectors {&'} (eqn. (D.3.3)). This is followed by the
solution of egn. (D.1.11]), and egn. (D.3.5) respectively.
In the design space method, the number of vectors {od/3x;}
(from eqn. (D.2.4)) that must be determined is n x N%,
where n is the number of design variables x, and NF is the
number of loading conditions. This is followed in turn by

the solution of egn. (D.2.6).

Since very similar computational effort is involved in
solving eqgns. (D.1.11), (D.2.6) and (D.3.5) the final
choice of method depends on the relative values of J and
nNg . Thus if J<nN, the design space method is less

efficient than the other two methods.

In many real design problems, however, stress constraints
are also included and in these cases the number of active
constraints often becomes large. The choice of method then
becomes less obvious and indeed the differences in
efficiency of the various methods in such a situation is
probably insignificant in terms of the total computational

effort required for the structural optimization task.
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APPENDIX E

Implementation experience with derivative evaluation _and

scaling of variables

While developing programs LAMOPT and UPOPT (for descriptions
see Appendices F and G respectively) certain problems were
encountered with regard to the evaluation of the derivatives
with respect to the 1lamina ply angles, thé design space
produced by linearization of the  constraint functions and
with the scaling of certain laminates. The reasons for
these problems, the methods used to overcome them and their

effectivness is described below.

E.l Derivatives with respect to lamina ply angle

These‘derivatives are only evaluated in the element 1level
optimization where the lamina ply angles are considered to
be variables. The problem stems from the fact that the
derivatives of the 1laminate rigidity matrix are zero when
ply angles of 0° and 90° are considered. The buckling and
strain constraints are functions of thé laminate rigidity
matrix and thus if the derivatives of the rigidity matrix
are zero, then the constraint derivatives will also be zero
(see sections 4.3 andv4.4). This in turn implies that the
design variable coefficients in the linear programming (LP)

problem are zero and so do not influence the LP solution.
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This may well 1lead to an incorrect (non-optimal) solution
since the lamina ply angle will not then be changed from

it's 0° or 90° position to a nearer optimal orientation.

The solution to this was to evaluate the derivatives of the
constraints assuming the ply angles to be at 1 or 89 , in
place of the 0° or 90° respectively. Experience has shown
this to be a very effective solution, which is very easy to
implement. It provides a good approximate derivative value
which is non-zero, thereby allowing the ply-angle to be
changed when solving the LP problem, and so move to a
solution nearer the optimum. If the optimal solution is
actually 0° or 90 this result is returned by the LP
solution even when the derivatives are evaluated assuming 1

and 89° ply orientations.

E.2 Infeasible designs and scaling of the variables

One of the problems of using a sequential linear programming
method for solving non-linear problems is that the solutions
generated are frequently infeasible i.e. they 1lie outside
the true feasible region defined by the non-linear
constraint boundaries. The extent to which the constraints
are violated is 1largely dependent on the degree of
non-linearity of the constraint functions and the size of

the move limits applied.
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There is no intrinsic reason why the design should not be
‘allowed to progress from one infeasible (or nearly feasible)
solution to another since the solutions should, after a
number of iterations, tend to converge on the true
(non-linear) optimum. The degree of infeasibility of the
design is also tightly controlled in the later stages by the
progressively decreasing move limits. Most standard LP
solvers, such as the NAG routine HO1BAF used in this work,
will also find an initial design that lies in the feasible
design region (defined by the linearized constraints), and
hence it is expected that a sequential LP method would be

quite satisfactory for this work.

The fact that the constraints are 1linearized about an
infeasible (or nearly feasible)'point, however, proved to be
the source of a problem encountered in applying the
sequential LP algorithm. The combination of an infeasible
starting point and highly non-linear constraints (especially
the buckling constraints) resulted, in numerous cases, in a
design space (with the 1linearized functions) with no
feasible region at all. The problem encountered is
graphically illustrated below in Figures E.2.1 and E.2.2
which show respectively a design space with a feasible

region and one without a feasible region.
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FEASIBLE
REGION

X Xy
Figure E.2.1 Feasible design Figure E.2.2 No feasible design
region region

It was found that the easiest and most efficient way of
avoiding this problem was by scaling the design into the
(non-iinear) feasible region, if the design broduced by the
the previous LP was infeasible. This new feasible solution
was then used as the linearization point for the»constraints

and objective function for the next iteration.

Traditionally, for isotropic structures, a scaling parameter

A is caluclated from the violated constraints by

A

6"P/5;, for displacement'cohstraints (E.2.1)

or
b

A= E /&

L ) for strain constraints (E.2.2)

where
b (superscript) indicates the constraint limit value
é is the displacement of node n in the direction.p

np
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€. 1is the strain in element i
The value A is thus the ratio of the actual value and the

constraint limit value.

In the case of a displacement constraint being violated the
entire set of variables (typically plate thicknesses) is
scaled by this parameter such that
{x'} = Mx} : (E.2.3)
where the superscript ’ denotes the scaled variable values.
It can be eaSily shown (Ref. [34]) that this leads to’
o= Ay | (E.2.4)
if the structure stiffnéss matrix is a linear function of

{x}.

Similarly, strain constraint violations can be satisfied in
the same manner ({x'} = A{x}) to give

E = AE (E.2.5)

The actual design variable values that will ensure that all
the constraints are satisfied can thus be calculated by eqgn.
(E.2.3), where M is determined for the most severely violated

constraint.

This simple scaling procedure can oniy be wused effectively
when the structure stiffness matrix is a linear function of
the design variables. In the case ofk composites the
stiffness matrix is not a linear function of the design
variables and hence procedures other than those described

above are required. The method wused in this work is
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different for éach type of constraint. 1In order to satisfy
any violated displacement constraints an iterative version
of the method described above has been adopted. The eqns.
(E.2.1) and (E.2.3) are used to scale the design if any
constraints are violated, after which it is reanalysed and
the constraints re—evéluated. If any constraints are still
violated this operation is performed again and these
iterations are continued wuntil a feasible design, with

respect to the displacement constraints, is found.

When all the displacement constraints are satisfied the
strains are evaluated. The strength criteria used (see
section 3.2) requires that the longituduinal, transverse and
shear strains of each layer individually be kept &ithin the
prescribed 1limits. Using the method above the entire
structure would thus be scaled to satisfy any violated
strain constraint in any single layer of a single laminate
type. The process may require a few iterations before the
constraint is satisfied (as for the displacement
constraints) and may in this way lead to a grossly
overdesigned structure in areas where the strain constraints
were not active. The approach adopted was thus to scale
only the layers in the laminate type in which the constraint
was kviolated. It may be argued that this changes the
stiffness of only those elements which are of that laminate
type, and thereby changes the stiffness distribution and

resultant load paths in the structure. This may 1lead to
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relative changes in the displacement field, hence requiring
a reanalysis and re-evaluation of the constraint values.
While this is undoubtedly true, experience has shown that
due to the move limifs imposed on the LP solution (see
section 4.5), the constraints are never violated in any
gross manner and thus the resultant scaling factors are
relatively small. The change in element stiffness is
therefore relatively small and so the 1load paths are not
disturbed significantly. Should any problem arise where the
structure stiffness distributionkis substantially altered by
the scaling operation, the problem can be re-run using
tighter move limits in the LP problem, and thereby limit the
degree of violation of the constraint(s) and the associated

scaling factor(s).

This same logic may be used to argue in favour of scaling
only the 1layer in which the strain constraint is violated.
This approach was tried but found to be very inefficient as
very many iterations were required, in certain cases, to
satisfy the constraint. The number of iterations required
is dependent on the relative angle between the lamina fibres
under consideration and the load on that laminate. This can
bebillustrated using a flat plate made of a 0°,+¥45° laminate
which is loaded in plane along the 0° (or x) axis (Fy). The
critical strains in the layers for this loading case will be
the longitudinal strain (&_) for the 0° layer and the shear

strain (&,_.) for the *45° layers. These strains can be
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directly related to the magnitude of the plate strain &
induced by F, i.e. in order to reduce any of the layer
strains the plate strain E&_must be reduced. To achieve
this the in-plane rigidity of the plate in the x-direction
must be increased. This rigidity (see Appendix A) 1is a
linear function of the 0° layer thickness and hence if the
strain constraint in this layer is violated only one scaling
operation (using eqn. (E.2.5)) 1is required to get the
design feasible again. The rigidity of the plate in the
x-direction is, however, non-linearly related to the
thickness of the *45° layers and hence. numerous iterations
of the scaling opertions are required to satisfy the
constraints. This also 1leads to an unnecessary gross
scaling up of the 45° layers when in fact it would have been
more efficient to scale up the 0° layer by a substantially

lesser factor.

The most efficient solution has therefore been found to be
the scaling of all layers in the laminate by the ratio A.
Ideally only the layers having the most effect on the
violated <constraint should be scaled, but this is a rather
complex operation to program and is probably not worth the
computational effort involved. The scaling of all the
layers in the laminate concerned has proved to be an
efficient and reliable method which very seldom requires

more than one iteration.
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In the case of violated buckling constraints the scaling

factor A is evaluated as

M= F/(F e + By /(R g+ (Fey /(B deqg ) (E.2.6)

All the layers in the applicable laminate are then scaled by
this factor. Since this is in principle exactly the same
opertion as that for the violated strain constraints all the
discussion above is applicable in this case. The only
difference is that the buckling constraint is a non-linear
function of all the design variables (since it is dependent
on the laminate bending stiffness which is propqrtional to
t3 - see Appendix A) and may therefore require a number of
iterations of the scaling procedure to obtain a feasible’
design. The actual number of iterations is highly dependent
on the type of loading and lamina orientations and stacking
2

sequence (since bending stiffness is proportional to z° -

see Appendix A) in the laminate under consideration.

Finaily, it is worth noting that although it might be
preferable in the interests of efficiency and speed of
convergence etc. to use an optimization routine ﬁhat is
able to wuse infeasible designs as a starting point, it is
usually veryvuséful for the designer (i.e. program user) to
have interim solutions which are feasible as well. With
this information any of the designs along the way can be
used if judged to be more suitable than the final "optimum"

solution.
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APPENDIX F

Description of program LAMOPT developed for the element

level optimization.

Program LAMOPT described below is intended primarily for use
in the element 1level optimization part of the multilevel
schéme. It is, however, structured in such a way that it
could be used as a stand alone program, with a substantial
analysis and design capability of  its own, in terms of

-laminated composite panels.

The program has numerous analysis and design options
available wh{ch are readily selected by setting the three
flags at the begining of the data deck. These options,
shown in the program flowchart in Figure F.1, are listed
below:-

1. Laminate rigidity evaluation only.

2. Lamina strain analyses for any given panel loads
(a panel buckling analysis may also be done).

3. Laminate rigidities evaluated and used in the input for
a finite element analyéis of 1larger structures made up
of various laminates.

4. Same as 3 but followed by a lamina strain analysis
and/or buckling analysis for each element.

5. Laminated composite panel optimization.

6. Optimization of all laminate types in a structure

modelled by finite elements.
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7. Laminate optimization as part of the multi-level

optimization scheme.

Program LAMOPT is completely general in that any number of
laminates, of any ¢type of construction (with regard to
material types, layer thicknesses and orientations, symmetry
(or lack of it) and stacking sequence) can be used
simultaneously in any of the options listed above. The only\
limitation in this respect is that the laminate construction
and proportions must be such that its behaviour wunder 1load
is still realistically represented by classical lamination
theory (see Appendix A) i.e; it must behave as a membrane,
plate or thin shell, otherwise inaccuracies in the resultant

strains (stresses) may become significant.

If any of the optimization options are invoked then any, or
all, of the following constraints can be applied:-

1. Lamina strain limits

2. Lamina thickness and ply angle bounds

3. Prevention of panel buckling of the laminate

Futhermore, symmetry of the layers about the laminate
midplane may also be enforced. | The constraint options
selected apply to all the laminates under consideration, but
the actual 1limits prescribed can be different for each
lamina of each laminate 1if required. The ﬁathematical
formulation of these constraints can be found in section

»

3.2.-
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Figure F.1 Program LAMOPT flowchart
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A futher "constraint" that can be used in the optimization
modes, is the enforcing of a compromise between the
minimization of the element/panel weight and minimization of
the change of the overall element/panel stiffness (see
section 3.1). This is achieved by assigning weighting
factors to the two objectives which reflect their relative
importance. AAlthough this feature was intended primarily
for use in the mutlilevel optimization scheme it could be
useful in a few other design cases where it is desirable to
keep some control over the stiffness change of the laminate

while optimizing it.

An optimum design is achieved in LAMOPT, within the bounds
of the constraints, using the individual layer thicknesses
and ply orientations as the design variables. If any (or
all) of the layer thicknesses or ply angles need to be kept
fixed, this can be done by setting both the upper and 1lower
gauge, or ply angle, limits to the same, desired value i.e.

effectively making it an equality constraint.

Finally, in the development of LAMOPT, it was decided not to
write a new routine for the optimization work but rather to
use the existing NAG library routine HO1BAF, which is a

robust, well proven LP solver.
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APPENDIX G

Description of program UPOPT developed for the system 1level

optimization.

Program UPOPT was developed in a similar manner to LAMOPT
(see Appendix F) so that it can be used as a stand alone
analysis and design system for composite structures, while
also fulfilling 1its role as the upper level optimization.

part of the multilevel optimization scheme.

The various design and analysis options are shown in the
program flowchart in Figure G.l1l and also listed below:-
1. Evaluate laminate rigidities only
2. Laminate rigidities evaluated and used in the input for
a finite element analysis |
3. As for 2 but followed by lamina strain analysis and/or
buckling analysis for each element.
4. Laminated composite structure optimization (keeping the
ply angles fixed)
5. Laminated composite structure optimization as part of

the multilevel optimization scheme.
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Program UPOPT is completely general, in the same sense as
LAMOPT. In any of the options listed above any number of
laminates, of any type of construction (with regard to
material types, layer thicknesses and orientations, symmetry
(or lack of it) and stacking sequence) can be used
simultaneously. Again the only limitation in this respect
is that the laminate construction and proportions must be
such that its behaviour under load is still realistically
represented by classical lamination theory (see Appendix A)
i.e. it must behave as a membrane, plate or thin shell,
otherwise inaccuracies in the resultant strains (streSses)

may become significant.

If any of the optimization options are invoked then any, or
all, of the following constraints can be applied:-

1. Lamina strain limits

2. Lamina thickness bounds

3. Prevention of panel buckling

4. Nodal displacement limits

5. Twist limits (displacement of two nodes relative to each

other)

Futhermore, symmetry of the layers about the 1laminate
midplane may also be enforced. The constraint options
selected apply to all the laminates under consideration, but
the actual 1limits prescribed can be different for each
lamina of each laminate if requi;ed. ' The mathematical

formulation of these <constraints can be found in section
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6.2.

The lamina thicknesses of the‘ various laminate types are
used as the variables in UPOPT (and not ply angles as well
as ih LAMOPT), to minimize the total weight of the structure
while ensuring that all the constraints are satisfied. The
NAG library routine HO1BAF is also used in UPOPT as the LP
solver for the same reasons as given in Appendix F, where

program LAMOPT described.
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