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ABSTRACT

Transonic flows are simulated within convergent
divergent nozzles and within turbomachinery blade rows.
The flow is represented by the conservative full potential
equation approximated by a nine-node central-difference
scheme, which is third order accurate. Artificial viscosity
is included into the central-difference approximation of the
potential equation, in regions where the flow is locally
supersonic. The appoximation of the potential equation by
central-differences, with an artificial viscosity term
included, is equivalent to the approximation by upwind-
differences and ensures that the upwind nature of the
domain of dependence of supersonic flows is correctly
modelled. The exact form of this artificial viscosity
term is derived and contains third order derivatives of
velocity-potential. The inclusion of artificial-viscosity
allows the potential equation to be approximated everywhere
by central-differences and the flow equation is everywhere
elliptic. The Neuman boundary-condition is applied, along
solid surfaces, if an inviscid solution is desired. Viscous
effects are incorporated by the modification of this condition
so as to allow a transpiration flow through the solid ’
surfaces. A standard Successive-Line-Over-Relaxation
technique, developed for the solution of simultaneous
elliptic equations, is used to solve the discretized
potential flow equations. Predictions are presented for
both the inviscid and the viscous-corrected potential )
codes applied to the simulation of transonic flow through
nozzles and cascade blade-rows. .Comparisons are made
with other theoretical models and with experimental data.
The problem of non-uniqueness is considered and an estimate
- of numerical error is made by the application of the
inviscid code with two computational gfids of different
levels of refinement. The stability of this potential
code is examined and is found to depend on the level of
smearing of the shock discontinuity predicted by the

theoretical model.
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NOMENCLATURE
a,b,c,d,e,f,q,
h,p,q,r = coefficients in the discretized
potential flow equation speed
of sound
'a = speed of sound
An = A specific set of nine constants
used in the central-difference
approximation to the first order
derivative of potential with respect
to x
b = blockage factor
Bn = as An for the first order partial
derivative with respect to y
c = axial chord or speed of sound
CE = entrainment coefficient
Cf = skin friction coefficient
CFO = coefficient of unknown potential
in the discretized flow equation
Cn = a general set of nine constants,
different for each partial derivative
for each node, used in the central-
difference approximations
C(n) = a set of constants to which the
potentials along the inlet plane
are set
cl,c2 = constants
Dn = a general set of six constants used
—— in the upwind approximations
or a specific set of six constants used
in the upwind approximation to the
second order partial derivative with
respect to x
D(n) = a set of constants to which the
potentials aiong the exit plane are

set
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E = energy

E = a specific set of six constants used
in the upwind approximation to the
second order partial derivative with
respect to x and y

f1,£2,£3 = functions

Fn = a specific set of six constants used
in the upwind approximation to the
second order partial derivative with
respect to y

H = shape factor of boundary layer

H1 = ratio of mass flow thickness to
momentum thickness

Yori = specifies that the node is on the
I (or i) row from the inlet plane

Jorj = specifies that the node is on the
J (or j) column from the bottom

K1l = a constant

1 = number of iterations completed or
a boundary-layer parameter

L;,Ls = a function

M = mach number or number of nodes on
a column

Ms = mach number along solid surface

n,s = cartesian coordiantes aligned with
a streamline or a solid surface

n = number of nodes per column

NP = total number of nodes at which the .-
potential is unknown

p . = static pressure

pb o= back pressure

q = velocity

r.6,z = polar'coordinates in radial, tangential
and axial directions respectively

R = gas constant

Re = Reynolds number



s = pitch spacing

Sij , = central-difference approximation
to the potential flow equation
oncolumn i and row j

t = time
T = temperature
Tij = artificial viscosity at node on

column i and row j

u = component of velocity in the x-
direction

Us = velocity along a solid surface

gs = dimensionless velocity along a
solid surface

v = component of velocity in the y-
direction '

v = - maximum velocity in the flow-field
or velocity ‘

Ve = transpiration velocity

L = velocity or relaxation factor

X,y = Cartesian coordinates

; = dimensionless distance

o = air-flow angle

Y ’ = ratio of specific heats

o* = boundary-layer displacement thickness

A = mass flow thickness

Al = minimum dimensional length of element
in computational grid

Ap = pressure rise

At | = time step

AV = change in velocity predicted across

the shock



Ax, Ay

Axf
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Subscripts

UPWIND

z,9

spacing between two nodes in the
x ‘and y-direction respectively

spacing between two nodes in the
xX+direction on a fine grid

dimensionless pressure gradient
parameter

switching function or coefficient
of absolute viscosity

density

velocity potential

summation

boundary-layer momentum thickness
dimensionless momentum thickness

gradient operator

central-difference approximation to
at node n and node o respectively
stagnation

partial derivative with respect to
s.and n respectively

partial derivative with respect to
time ’

partial derivative with respect to
x and y respectively

upwind-difference approximation to

partial derivative with respect to
"z and frespectively

at infinity
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1,2 = at inlet plane and outlet plane
respectively

Abreviations

A.D.I. = Alternating-Direction-Implicit

A.V. = Aritifical Viscosity

CAS-IN = The inviscid potential code used to
solve for transonic flow in cascade

CAS-VI = = The viscous-corrected potential code

’ used to solve for transonic flow in

cascades

C.D. = Central-Difference

C.F.L. = Courant-Friedrichs-Lewi

In = natural logarithm of

L.B.I. = Linearized-Block-Implicit

L.H.S. = Left~-Hand-Side

N.E.C. = Numerical Error of Coarse computational
grid :

N.E.F. = Numerical Error of Fine computational
grid

P.D. = Partial Derivative

R.H.S. = Right-Hand-Side

S.L.O.R. = ‘Successsive-Line-Over-Relaxation

3-D = Three-Dimensional

2D-IN = The Inviscid Potential code used

to solve for transonic flow in nozzles

The viscous—-corrected Potential code
used to solve for transonic flow in
‘nozzles ’

2D-VI
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INTRODUCTION

1.1 The Problem

Aircraft gas turbine engines are often required
to minimize their frontal area and/or weight, for a given
duty. Any increase in frontal area will have the effect
of increasing the installation drag of the engine, whilst
an increase in weight will reduce the range'and increase
the fuel burnof the aircraft it is powering. Engines
incorporating centrifugal compressors, in particular, suffer
from a major disadvantage in that they require a much
larger frontal area than do similar engines with axial-
flow compressors. The quest for reduced engine size and
higher engine thrust-to-weight ratios has led to an increase
in the air velocities through both types of engines. The
result of this increase in air velocities has often been
to force the airflow around the compressor and turbine
blades into the transonic regime, characterised by mixed
subsonic-supersonic flow conditions. 1In addition, the
advent of aircraft designed to operate just below the
speed of sound has resulted in the occurence of transonic
flows around their wings and engine nacelles. Transonic
flow are also now common around helicopter rotors, around
propeller and'fan blades and around many forms of weapons.

Transonic flows are usually accompanied by shock
waves which may adversely effect the aerodynamic eff1c1ency
~ of the compressor, turbine or wing due to wave drag,
viscous interaction and unsteady effects. It is important,
therefore, for the designer of these components to have a
thorough understanding of transonic flow and a means of
transonic airfoil-, cascade-, and channel-flow analysis.

It is deéfrable that this'analysis is capable of providing
a reliable flow field prediction and may be used in a
systematic approach to minimize the adverse shock effects.



Windtunnel testing is very expensive and time-
consuming and such testing of transonic flows is subject
to much uncertainty. Numerical methods which can produce
accurate predictions of the flow field around components
operating in the transonic regime are, therefore, very

desirable.

The major complexity of simulating transonic
flows is due to the flow being of mixed type with regions
of both subsonic and of supersonic flow co-existing. The
location of the boundaries‘separating the differént regions
of flow is unknown and is requiréd as part of the fluid-flow
solution. The .physical behaviour of inviscid supersonic flow
is very different to that of inviscid subsonic flow. 1In the
latter a local disturbance in the flow is propagated in all
directions, being described mathematically by equations
which are elliptic in nature. 1In supersonic flow, however,
the effects of a local disturbance are restricted to a
region downstream of the disturbance bounded by the Mach
cone. Such flows are described mathematically by equations
which are hyperbolic in nature. Any numerical simulation
of transonic flows, which is required to represent the
flow to a reasonable accuracy, must model the different
natures of these two different types of flow.

A further difficulty in simulating transonic
flows results from the presence of the shock wave. Across
a normal shock the flow changes from supersonic to subsonic,
and inbetween there exists a discontinuity in the physical
properties of the flow. This discontinuity makes it
difficult to satisfy all the relevant flow equations in
the region of the shock wave. As the position of the
shock is not known a priori it is neccessary to compute
the flow-field solution throughout the complete physical
space. Thus, a computational mesh with a large number of
points is required with subsequent requirements for large
amounts of computer storage and fast computing speeds.



1.2 Historical Advances in the Solution of Transonic

Flows

In spite of much effort for over twenty years,
no numerical solution of the transonic flow problem could
be obtained without such drastic simplifications, either
in the governing equations or in their solution, that
important features of the real flow were lost. 1In recent
years, however, significant advances have been made in the
numerical prediction of transonic flows, stimulated not
only by the requirement for accurate transonic predictions
in a variety of aerodynamic situations but also by the
availability of powerful modern digital computers.

The first major advance was made by Magnus and
Yoshira [1] who used the increased power of the new computers
to advance the transient solution of the transonic problem
forward in time to an asymptotic steady-state. This reduced
the mixed elliptic-hyperbolic problem to one that is
entirely hyperbolic (in time). The real breakthrough,
however, was achieved by Murman and Cole [4 in 1970,
with the solution of the transonic small-perturbation (TSP)
equation for the velocity potential in two dimensions:

[t - 2.7 - b o o, + 0y, =0 (1)

Their success relied on a novel Finite Difference scheme
which used central differences to approximate the gradients
of velocity potential in regions where the flow was subsohic,
and backward (upwind) differences in regions where the

flow was supersonic. The central difference approximation

to the derivatives at any point in the subsonic region was,
therefore, a function of the velocity potential both
upstream and downstream of that point. Any local disturbance
in the subsonic region of flow was thus allowed to propogate
in all directions. The backward difference scheme used to



approximate derivatiﬁes of velocity potential at all
points in the supersonic regions of flow, was however,
only a function of the velocity potential of points upstream
of the point of interest. Any local disturbance in the
supersonic region of flow was thus allowed bnly to
propagate downstream in the local direction of the flow
‘and could not influence the fluid properties at any
fpoints upWind'Of‘the disturbance. Additionally, line-
relaxation (implicit along X = constant lines) was

used to solve the resulting algebralc equations which
‘approximate the differential flow equations. This
3Sélution technique removed the stability restrictions.
iinear theusehic line and gave the authors very encouraging
-lresults. This was then followed by the solution of the

" exact potential equation

(c2- u2>¢xx - 2uv¢xy + (c2?- v2)¢yy =0 (2)

. bdearebedian and Korn Lﬂ in 1971, using a similar
switched differencing scheme to Murman and cole. The
speed of sound, c, was defined by Bernoulli's Law:

(P4 v2)/2 + e2/(y-1) = 1/2 + M /(y-1) (3)

since that point, there was an amazingly. rapid growth
ih‘thekpépability for solving transonic flow problems on
modern digital computers: The flow was solved in three-
‘dihehsions,~more accurate eguations were used‘to represent
the flow, viseouefinviscid interaction was included,

‘and accuracyrand efficiency of the numerical methods
.were increased significantly. Essentially there are

at present three major methods for solving transonic

~ flows. These are, in order of increasing simplicity,
'the"solutlon of the viscous full Navier-Stokes equations,
rhe'SOIutipniof;the inviscid Euler equations and the
sblﬁtien of the inviscid, irrotational velocity-potential

-'equetions.”_



1.3 The Solution of the Navier-Stokes Equations

Internal transonic flows are most accurately
represented by the full ensemble averaged Navier-Stokes
equations, as used by Shamroth, Gibeling and McDonald
[ ] and by Shamroth, McDonald and Briley [5] The
solution of the full Navier-Stokes equations includes
all convective, pressure and diffusion terms necessary
to model large sparated regions of flow and can be used
to solve shear layers not alligned‘with any of the
coordinate directious. The only approximation is associated
with the replacement of fluctuating propertles due to
turbulence by their time-averaged values.

The numerlcal procedure used by the above to
olve these governing equations was a con51stently Spllt
linearixed block implicit (LBI) scheme orglnally
developed by Riley and McDonald [6] In this method
the governing equations are replaced by an 1mp11c1t time
difference approximation, optionally a backward difference
or Crank-Nicolson'scheme. Terms involving non-linearities
at the implicit time level are linearized by Taylor's
exﬁansion in time about the solution at the known time
level, and spatial difference approximations are introduced.
This results ih a system of multidimensional, coupled;
linear difference equations for the dependent variables at
the unknown time level. These difference equations are
then solved using a Douglas-Gunn [7] procedure for
generating alternatlng-dlrectlon implicit (ADI) schemes as
perturbatlons of fundamental difference schemes. The flow
equations are replaced by coupled linear difference equations
having narrow block-banded matrix structures, which may be
solved‘efficiently by standard block ellimination methods.

A simplification of the full Nav1er—Stokes
solution is one based upon the thin shear layer equations.
These equations contain all pressure and convective



terms but retain only those viscous terms significant in
thin shear layer flow aligned with one coordinate direction.
The remaining viscous terms are omitted from the analysis.
Such an approach has been utilized by Steger, Pulliam

and Chima [13].

The use of the Navier-Stokes equations to
represent transonic flows has one major advantage: The
entire flow-field (both boundary-layer and core region) is
solved via a single set of eguations, avoiding the
division of the flow into separate viscous and inviscid
regions. This leads to increased accuracy and simplifies
the solution procedure. Fully viscous approaches to the
modelling of transonic turbomachinery flows have given
very good predictions of the flow field. However, such
approaches are necessarilly expensive in terms of computer
running time and memory requirements and in terms of man-
hours needed to develop such a code. At present, the
solution of the full Navier-Stokes equations as applied
to transonic flows is limited to organisations with
access to supercomputérs Although it is likely that
as computers become more powerful and cheaper such
techniques will gain wider acceptance, a simplified
solution of transonic flows is needed in the interim period.

1.4 Euler Eguation Solution Procedures

One of the most widely used methods, at present,
to simulate internal transonic flows is to time march the
solution of the transient Euler equations to an asymptotic
steady-state. The Euler equations are essentially the
Navier-Stokes equations with all viscous terms removed.

For inviscid, unsteady, two-dimensional flows through a
stationary blade row the Euler equations can be expressed

in a Cartesian coordinate system as:



Mass Continuity:

ap/ot + 3 (pu)/dx + 9 (pv) /3y = 0O

X-momentum continuity:

d(pu)/3t + 3 (p+pu®)/3x + 3 (puv) /3y = 0

y-momentum continuity:

d(pv) /ot + d(puv)/ax + 3(p + pv2)/3y = O

Energy continuity:

3E/5t + 2 ([E+p|u) /3% +  ([E+p]v) /0y = 0
where:  E = p/(y-1) + p(u?+ v2)/2
Equations (4) to (7) may be written as:
W +F +8& =o0

e > > ’ v
where W, F and G are column vectors given by:

p . pPu. pv
W= pu | F= p+ou? | &= puv
pv : puv p+ov?
E _ (E+p)u (E+p)v

Thus equation (9) together with the equation of state
completely defines the problem.

(4)

(5)

(6)

A7)

(8)

(9)



The Euler equations have been solved both in
two-dimensions, Denton ], and in three-dimensions,
Denton [9] and Singh [10]. In the three-dimensional
solution, one additional equation of momentum continuity
must be added to equations (4) to (8). Other examples of
the solution of the Euler equations are the procedures of
Couston [ll] and of Gopalkrishan and Bozzola [14 .

The Euler equations may be solved in either
finite-difference, Pulliam [13], or in finite volume
form, Schmidt and Jameson 14]. In the former approach
the equations are approximated by conventional finite
difference relations, relating values of the fluid
properties stored at grid nodes. 1In the finite volume
method the equations are regarded as conservation
equations applied to a series of interconnected elementary
volumes. Both approaches are equivalent on a rectangular
Cartesian grid, but for highly distorted grids which
must be used for real turbomachines it appears that it
is easier to enforce global conservation using the finite

volume method.

The solution procedure used in the finite-

- .volume scheme of Denton [8 and 9] is to evaluate the
fluxes, for each equation, through all the faces of the
elements of the computational grid. - This is accomplished
using averages of the flow properties at the four corners
of the face concerned (for 3-D flow). These flows are
summed to find the change of the conservation property
for each element, over the time step. One gquarter of
this change is then added to the values of the properties
at the four downstream corners of the element. The '
- manner of distributing this change does not affect the
final solution, for which the sum of the fluxes at each
element must be zero. It does, however, have a critical
influence on the stability of the solution procedure.



Stability is enforced by using an effective
pressure in the momentum equations, rather than the true
pressure. This effective pressure is made equal to the
current pressure at the next downstream grid point plus
a correction. The correction at any point is obtained
by an interpolation procedure which does not make use of
the true pressure at that point. It is also necessary
to damp the changes in the pressure correction after each
time step, Denton [9] uses a relaxation factor of 0.05.
This smoothing is very small and has been shown to
have a negligible effect on the final solution.

Inviscid analyses suffer from two major
defects. Firstly they are limited by their neglect of
viscous displacement effects. 1In cases where the boundary
layer remains thin, as in the flow through accelerating
turbine blade rows, flow field predictions neglecting
viscous effects may be quite accurate. However, if the
boundary-layer thickens appreciably, the actual pressure
~ distribution generated in the flow may be significantly
affected by the boundary-layer development. In transonic
flows, shock placement is very sensitive to the effective
airfoil geometry and even small viscous displacement
effects can significantly affect the blade passage
pressure distribution. In these cases the interactive
" effects of the boundary layer with the rest of the flow
field can become particularly severe. The other
limitation of completely inviscid analyses is their
“inability to predict aerodynamic losses and heat-transfer
rates. Nevertheless, inviscid analyses offer a considerable
simplification of the problem and have been applied
successfully to a variety of transonic flows.

In most solutions of the transonic flow -
problem using the inviscid Euler equations it is usual to
introduce a correction, which accounts for the viscous
phenomena, into the inviscid analysis. The simplest
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such approach modifies the inviscid solution via empirical
data correlations. This approach is limited, however,
to flow conditions within the range of the correlating

data and is not widely used nowadays.

A more widely used approach solves the
boundary-layer equations, recognising the mutual dependencé
of the pressure distribution and the viscous effects.

The boundary-layer blockage may be readilly incorporated
into the inviscid Euler calculations either by displacing
the blade surfaces by one boundary layer displacement
perpendicular to the surface, or by forcing fluid to
'transpirate through the blade surfaces. Singh [10]
adopted the fomer approach to obtain greatly improved
predictions of the flow through a transonic compressor.
Althdugh the real boundary-layer flow is likely to be
highly three-dimensional, suitable three-dimensional
boundary layer prediétion methods are not_yet available.
Singh was able to obtain good results by instead applying
a two—dimensidnalAboundary—laYer method along the qguasi-

streamlines.

Denton [8,9], howéver, preferred a transpiration
type boundary-layer displacement model, in which the
approach fluid is assumed to flow through the blade
surface at a rate sufficient to displace the mainstream
by one boundary-layer displacement thickness. The advantage
of the transpiration model is that the computational grid
does not have to be regenerated everytime the boundary
layer is updated. Denton chose to update the boundary-
layer prediciton after every fifty time step calculations.
A more sphisticated inVisCid/visCous interaction was
employed by Rizzetta and Borland [15], who modelled the
displacement effect of the shock/boundary—layer interaction
and utilized this in conjunctibn with the boundary-layer

solution.
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The solution of the (transient) Euler equations

is usually achieved by marching forwards in time to arrive
at the steady-state condition, through the transient
behaviour of the flow. This technique provides a solution
of the flow equations as a function of time and it is
assumed that the'asymptotic limit at large times is the
desired steady-state solution of the problem. As a
disturbance at any time level can only influence events
at a later time level the solution is hyperbolic in time.
Thus the solution of the steady mixed hyperbolic-elliptic
problem,'Such as that encountered in transonic flow, is
achieved by the solution of the transient equations which
are hyperbolic in character, regardless of whether the
flow is subsonic or supersonic. Such an approach is termed
a 'time-marching' procedure. Even though an additional
variable, time, is introduced into the computation, this
type of technique is very attractive because it allows the
use of a single numerical technique for the entire flow

domain.

As with all explicit time marching methods the
theoretical maximum stable time step is determined by the
Courant-Friedrichs-Lewi (CFL) condition, depending on
the space and time descretization as well as the mesh size.
Denton [8] adheres to the following forms of the CFIL conditon:

At < AL / (Vv + ©) (10)

where At is the maximum stable time step, v is the estimated
maximum velocity in the field, A% is the minimum dimensional
length of each element and ¢ is taken for safety as

the inlet stagnation speed of sound.

It is not necessary to take the same physical
time-step, for each element or even for each equation, to
obtain the correct steady-state'solution. As long as the
conservation equations are satisfied for every element the
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steady-state solution is independent of the magnitude of
the time-step At. Hence the maximum stable time-step can
be chosen for each individual element to obtain the
fastest convergence to the steady-state. This spatial
variation in time-step results in significant reductions
in computer running time. However, the intermediate

transient solution then has no physical significance.

The advantage of time marched Euler solutions
to internal transonic flows is that they make no assumption
of irrotationality. As a result their use can be extended
to flows with strong shock waves (Mach number at the
shock greater than 1.4). 1In general, however, even allowing
for spatial variations of the time-step, the CFL limitation
of the time-step causes slow convergence and several hundreds
of time-steps are needed to advance to the steady-state
solution. Even if the CFL conditions are satisfied,
stability problems may occur caused by a lack of dissipation
allowing amplification of non-linear oscillations generated
by the shockwaves in the solution. Therefore; all time-
marched Euler solutions require an additional damping
mechanism such as spatial smoothing [16], explicit artifical
damping terms [17], or more ellaborate methods such as
Coustons Damping surface technique [11] or Denton's
'Opposed Difference' technique [9]. Alternatively
specialized numerical techniques, for example McCormack
or Lax-Wendroff schemes, may be used. These schemes split
the time step into two parts, elliminating the need for
spatial smoothing at the expense of increased computer
running time. They do, however, ensure the stability of
the integration of the equations through time until a
steady-state is achieved, without introducing the errors
into the steady-state solution that smoothing does.
Smoothing between each time-step has been known to cause
significant underestimation of shock-strength and errors

in shock location.
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1.5 Velocity Potential Methods:-

The appearance of pressure in the Euler
equation (5 to 7) complicates their solution, as the
determination of pressure is not straightforward.
Essentially the difficulty arises because there is no
equation for pressure itself. Instead the pressure
field must be chosen so that the solutions of the
momentum equations, in which the pressure gradient features,

yields a velocity field which also satisfies continuity.

The number of independent variables, in the
Euler solution, which must be computed and stored means
that such a technique is expensive in terms of computer
storage. Also, as mentioned previously, the CFL cbndition
causes the time-marched solution of the Euler eguations
to require large amounts of computer running time. As
a result the solution of transonic flows is often
computed in terms of a single variable, velocity potential.
In order to reduce the system of Euler equations to a single
equation, it is necessary to introduce the assumption that
the flow is irrotational. The velocity potential, ¢, may
therefore be introduced such that:

V = grad ¢ = | (11)
Thus the mass continuity equation may be written, for two-
dimensional, steady, irrotational flow in a stationary

blade row, as:

(pdy )y + (PO, )y = O (12)

where ¢, = u and ¢y = v | - (13)

Combining the continuity equation with the momentum and

energy conservation equations leads to a single equation in
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velocity potential for isentropic, steady, inviscid two-

dimensional flow:

(az—u2)¢xx + (az-v2)¢yy—2uv¢xy =0 (14)

where a is the local speed of sound determined from the

energy equation:

a?= aoz-(y—l)(u2+v2)/2' ' (15)

ao’being the speed of sound based on the stagnation

temperature.

Equation (14) can be written with u2=¢xzand v2=¢y2,
or alterntively in terms of cylindrical coordinates:

(a%-¢ 2/r%) ¢, /r?+ (a2-¢zz)¢zz-2/r2(¢e¢z> =0 (16)

Both forms of the equation have been widely used for the
solution of transonic flows. Chen [18] and Garabedian
and Korm[3] use the velocity potential equation in
cartesian coordnates (egn, 14), whilst McCarthy and
Reyhner [19] opt for the cylindrical fbrm (egn, 16). A
more general approach which is capable of solving the full
potential equation for flows not aligned with any of the
coordinate directions is Jameson's 'rotated' scheme. This
is derivéd by writing the poténtial equation in the local
Cartesian coordinate system orientated along the stream-
line and its normal. For example, for two-dimensional
flows, ignoring the change of streamwise direction in the
x-direction: .

(a®-q) ¢ -+ a%¢,, = O - an
where: =u? ¢ + 2uv oy * v2

q? q? g2

*ss Py (18)
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= <2 - 2
and ®nn = Y2 Opy ~ 2uv ¢xy tu” ¢yy : (19)
q? q? a’

This form of the velocity potential equation (egn.17)
has been used by Jameson [20] and by Sobieczky and
Dulikravich [21].

In all forms of the velocity potential equation
(ean. (12), (14), (16), or (17) the pressure does not
feature, and the gbverning set of Euler equations has
been replaced by a single equation. The resulting savings
in computer time and storage are responsible for the wide-
spread use of velocity-potential methods. The use of the
velocity-potential does, however, assume that the flow
is irrotational and isentropic. These assumptions limit
the application of these methods to cases where the shock
system is weak (Mach number at the shock less than 1.3).
Fortunately most turbomachines operate without strong
shocks, to minimize aerodynamic losses, and potential
methods can be usefully applied to the vast majority of
turbomachines. 1If however, flows with stronger shocks
are required to be solved accurately a more sophisticated
approach is needed, such as an Euler or Navier-Stokes

solution.

The replacement of the separate equations of
mass, momentum and energy conservation into a single
velocity-potential equation depends on a flow field that
satisfies each starting conservation equation independently.
There is no guarantee that every solution to the single flow
equation is a solution to all the conservation equations.
Indeed, this is hbt the case when there exists a step or
discontinuous change in velocity within the flow domain,
such as a shock wave. Murman recognised the effect of
such discontinuities and urged the use of a ‘'conservative'
form of the equation.
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The equation of mass continuity is often referred to as
the 'strong conservation' form of the velocity potential

equation:
(pd )y * (PO,), =0 (12)

This equation may be adapted to flow through a rotating

blade row, again in the cartesian coordinate system, thus:
(pbp ), + (pb¢y)y = UV (pb) (20)

where b is a blockage factor taking into account the.
variation in streamtube thickness in the third (radial)
direction. The right-hand side of the equation contains
the effect of rotation of the blade row with speed U.

This rotational form of the strong conservation
equation has been,successfuily utilized by Deconick and
Hirsch [22]. The form for stationary blade rows (egn 7)
has been used by many researchers including Holst [23] and
Deconick [24]. The mass continuity equation may also be

written as:

V2¢p= -V¢.V1np | (21)

This form of the strong conservation equation was solved
by Ives and Llutermoza [25] but does notvotherwise'seemed

to have been popular.

As mentioned previously, no velocity potential
equation is capable of satisfying all the original Euler
conservation equations across a shock wave. The strong
conservation form, eqns(7, 21 or 22) does conserve mass
across a shock but results in a loss in momentum. The
alternative, egn (14, 16 or 17) is derived from a
combination of all the original conservation equations.
However, across a shock wave it satisfies none of

these original equations, predicting a loss in both mass
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and momentum. The loss in momentum is, however,
generally less than that resulting from the use of the
strong conservative form. The best form of the velocity
potential equations is the one which best approximates
the true non-isentropic jump across the shock. For
practical use, axial turbomachines are generally -
designed to have weak shock systems if any at all,

to reduce loss and to avoid boundary-layer separation.

A comparison between the two forms of the velocity
potential equation has been made by comparing their
predictions to one-dimensional flows. For flows with
weak shocks, the discrepancies between the two methods
was found to be negligible. Thus the choice of equation
form appears to be a matter of convenience rather than
accuracy: Both forms will violate one or more of the

set of fluid dynamic equations across a discontinuity.

There is a school of thought which opts for
the strong conservation form of the velocity-potential
equation. The logic is that it is more acceptable
to suffer some loss of momentum across a shock, which
would simply be equivalent to a drag, than it is to suffer
a loss of mass. Also it is more easy to introduce a
blockage factor, representing the streamtube contraction
in the third dimension, into the strong conservation
form than into the alternative form. The use of the
strong conservation form does have one disadvantage:
It has been found to be more likely to predict non-
unique solutions [26], in which more than one flow-field
may be predicted which satisfies all the boundary conditions.

In all the velocity-potential schemes discussed
here, the governiﬁg set of equations has been reduced
to a single eqguation in a single unknown, ¢. This equation
is steady and cannot be solved by time-marching. Thus
the problem is one of mixed hyperbolic-elliptic nature
and the upwind dependence of supersonic flow regions
must be modelled if an accurate solution is to be obtained.
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Murman and Cole [2] achieved this by using two different
finite-difference schemes to approximate derivatives in

subsonic and supersonic flow.

The scheme used to represent derivatives in
the subsonic flow regime, the central-difference
scheme, contained nodes both upstream and downstream
of the reference node. The scheme used to represent
derivatives in the supersonic flow regime, the upwind
difference scheme, contained only nodes situated
upstream of the reference node. Thus, although not
representing the exact conical shape of the domain
of influence of points in supersonic flow, Murman and
Cole did introducé a reasonably accurate domain of
dependence for all points in the flow and were rewarded
with very promising results.

In the more general rotated scheme of Jameson,
upwind differences are used for all derivatives appearing
in the equation for ¢ss {(egqn 18) when the flow is locally
supersonic. Central differencing is used for these terms
when the flow is locally subsonic and is used to represent
the derivatives in the expression of ¢nn' regardless of

whether the flow is subsonic or supersonic.

Later researchers [27, 28, 29], by examining
the exact form of the two different finite difference
schemes and the truncation errors associated with each,
proved that the upwind difference scheme could be -
replaced by a central-difference scheme plus some
additional terms. These additional terms were called
Artificial Viscosity because they contained second
order derivatives. of velocity. Thus the entire flow
field was represented by a central-difference scheme
with some additional terms being added to the flow
equations representing regions of supersonic flow. The
flow equations are, therefore, made effectively elliptic
throughout the physical space and a single solution
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procedure can be used to solve for all points within the
flow-fiela. In addition to simplifying the solution
procedure the inclusion of Artificial Viscosity terms
was found to supress the tendency of the potential
solution to produce unrealistic solutions containing,
for example, expansion shocks. Howevér, some smearing
of the jump in flow properties across the shock was

also found to result from the inclusion of Artifical

Viscosity.

, Theksoiution of the steady velocity-potential
equation is usually accomplished by relaxation methods.
One of the most common forms of these techniques is
known as Successive-Line-Over-Relaxation (SLOR). 1In
this method the matrix, [A] containing the coefficients
of the flow equations along a single column of nodes
is inverted by a GaussianvEllimination Technique. This
matrix is relatively small_of size nxn, where n is the ,
number of nodes per column (x=constant). 1In addition
' the matrix is sparse and only a few of the coefficients
of the matrix need be stored. All references to nodes
not in the column under consideration are included
as constants on the right hand side of the equation in
matrix [K]. Thus we can re?resent the flow equations
along any column by: |

SIORE

where A is the nxn matrix containing the coefficients
of the flow equations, [¢ is a nxl matrix containing

the velocity-potentials along the column and [K] is also
a nxl matrix containing the constants of the equations.
This equation (22) represents a set of n equations
relating the values of the velocity potential at the

n nodes along the column under consideration. This
matrix equation can then be solved using standard matrix
procedures and the entire process is repeated for the
next column downstream, and so on. A slightly different

(22)
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technique is the Alternating-Direction-Implicit

(ADI) method, which solves the flow equations alternatively
along a singlevrdw and a single column. With both
techniques a number of sweeps of the flow-field is
generally needed before a converged -solution is obtained,

about 100 of these sweeps being the norm.

» An alternative to solving the flow equations
along a single column (or row) at a time is to solve
the entire flow-field by a single matrix inversion. The
governing equations of the entire flow-field are
represented by a single matrix equation, the solution of
which gives the values of the velocity potential at all
nodes within the flow-field, concurrently. The matrixes
involved are of course large: [A being of siée NPxNP,
and [¢] and [K] being both of size NPx1l, where NP is the
number of nodes in the entire flow-field. Although the
matrix.IA] containing the coefficients of the flow
equations is again sparse (either tri-or pentaédiagonal),
such an approach requires considerable extra computer
memory compared to a SLOR or ADI scheme. Also, with
very large matrixes the accumulative roundéoff'error
in the solution procedure, due to computer inaccuracy,
may well become significant. For these reasons direct
matrix inversion of the entire flow-field is rarely
used to solve the difference equations representing

transonic-flow.

1.6 Relative Popularity of the Different Methods

of Solving for Transonic Flows

There are three major methods of predicting
transonic flows. . The simplest is by sélving for a
single equation in velocity potential. This assumes
that the flow is irrotational and isentropic and limits
the use of such methods to flows in which the shock is
weak. Nevertheless, the solution of the velocity-potential
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equation is very economical in terms of computer storage
and running time and has, to date, been the technique

most widely used to simulate transonic flows.

The recent advances in computer power have led
to the solution of the time-marched Euler equations
gaining in popularity and they are, at present, the
method most commonly used to predict transonic flows.
The Euler equations are transient and inviscid and
conserve mass, momentum in each dimension solved and
energy. The flow is solved in terms of the primative
variables (u,v,p etc) which introduces a further
complexity compared to the velocity potential approach.
The Euler equations make no assumption of irrotationality
and can be used to solve for flows with strong shock
systems. However, they are inviscid and, as with the
velocity potential solution, a separate boundary-layer
displacement type model must be incorporated if viscous
effects are to be included. The solution of the Euler
equations require more computer storage and running time
than that of the velocity-potential egquation but it
is still an economical technique compared to the thirg
method for solving transonic flows: the solution of

time averaged Navier-Stokes equations.

The Navier-Stokes equations contain all
convective, pressure and viscous terms necessary to model
transonic flows. However their solution is extremely |
expensive in terms of computer storage and running time
and the use of such techniques is restricted to
organizations with access to supercomputers. However,
it is likely that as the power of available computers
continues to advance, the solution of the full Navier-
Stokes equation Qill gain in popularity, as an accurate
method of simulating transonic flows.
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2 THE TECHNIQUE USED TO MODEL TRANSONIC FLOW

2.1 The Equation to be Solved

In this report, the strong conservative full
velocity-potential eqguation is used to represent transonic
flow. The flow-field is solved in two-dimensions and the

flow is assumed to be steady, thus:
(pbo ) + (pbd)y)y =0 (23)

This equation applies to flow through a stationary blade
row or duct. The equation contains no viscous terms and
the use of the velocity-potential assumes that the flow

is irrotational and isentropic. The assumption of
irrotationality and isentropy limits the solution to

flows with weak shock systems. The term b in equation

(23) is the blockage factor which takes into account the
variation of stream-tube thickness in the third direction.
‘due to a change in passage height and casing boundary

layer thickness in the axial direction. This blockage
factor is not calculated but must instead be specified
before the solution is determined. For the solution of

the transonic flow in the two-dimensional nozzle considered
in this report, the change of streamtube thickness in the
third direction is ignored and the value of b at every
point is set egual to unity. TFor the solution of the

flow in the two-dimensional transonic cascade blade row
also considered in this report, however, a linear variation
of b is imposed between the blade leading and trailing edgés.
Upstream of the leading edge and downstream of the trailing
edge the blockage factor is assumed constant.

The density, p, in equation (23) is computed from
the isentropic relation: '

p=opo |l - ly-1) s 2 * .C.by.z) '1/(y-1)

2YR To

(24)
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The values of the velocities u=§x and v = ¢y used in the
last equation are always taken from the most recently
campleted iteration. The total density po is based on
the total temperature and pressure thus:

PO = m= (25)
The governing equation (egn.23) has no simple analytic
solution and must instead be solved numerically. To
obtain a numerical solution it is necessary to first
define a grid distribution over the flow domain with
nodal points at which the flow properties are to be
solved. Once the grid has been defined the next step

is tc replace the partial differentials in the governing
equation with algebraic expressions. This will result in
a system of algebraic equations which can be solved
iteratively to obtain the value of velocity potential,

and thence every other flow property, at each node.

2.2 -~ The Computational Grid

2.2.1 The Computational Grid for the solution of the

nozzle problem

The computational grid used for the solution of
transonic flow in the two-dimensional covergent-divergent
nozzle under investigation is very simple to construct.
As the nozzle is symmetrical about the axial direction
the flow is only solved above the centre-line, which is
then treated as a solid wall. Essentially the grid
consists of 87 vertical columns {lines along which
x = constant) and 13 rows, see Figure 1l. The columns
are intersected by the rows in such a manner that, along
any column, the spacing between any two consecutive rows,
Ay, is constant. This spacing between rows will vary .
from column to column depending on the height of the
nozzle upper wall above the centre-line at any particular
column. |
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In order to be able to accurately apply the
(Neuman) boundary conditions along the rows corresponding
to the nozzle wall and centre-line, two rows of ' dummy *
points are included external to the flow-field. One
of these rows is situated one Ay spacing below the centre-
line and the other is situnated one Ay spacing above the
upper wall. At each intersection between a row and a
column there is situated a single node. This the
computational grid comprises 87 column each of 13 nodes
or 13 rows each of 87 nodes, giving a total of 1131 nodes.
The solution of the flow-field is required in terms of the
value of velocity potential, and thence every other fluid

property, at each node.

In order to ensure stability of the solution
procedure it is desirable for the elements of the grid
to have sides of approximately equal length, with no
abrupt change in these lengths from one element to its
neighbour. 1In the grid utilized in this report the
spacing, Ax, between any column I and the column immediately
downstream, I+l, is made equal to the spacing A4y, between
two consecuytive nodes on column I. Thus in regions where
the distance between the nozzle-wall and centre-line is
small, for example at the throat, both the nodes and the
columns are packed relatively closely together.

2.2.2 The Computational Grid for the solution of the

Cascade Problem

The computational grid utilized in this report,
in the solution of transonic flow in the two-dimensional
cascade blade row is similar to that used to compute the
flow in the nozzle; see Figure 2. As the distance between
the topmost row of nodes and those at the bottom does not
vary muc% the spacing between one column and its immediate
neighbour may be kept constant throughout the flow-field. .
Provided then that the number of rows is carefully chosen,
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the height of most elements will be approximately equal
to their width, as required for stability. The rows of
nodes in the flowdomain upstream of the blade passage
are straight lines inclined to the x-axis to an angle
equal to the known inlet air-flow angle. Similarly,

the rows downstream of the blade passage are straight
lines inclined at an angle, equal to the set outlet
air-flow angle, to the x-axis. Along all columns in the
flow domain the rows are equally spaced and, as before,
two additional rows of 'dummy' nodes are included.

Thus, the computational grid used in the computation
of flow through the cascade blade row consists of fifty-seven
columns, each containing nineteen nodes, giving a total
of 1086 nodes. Twenty of these columns are situated
upstream of the blade passage, a further twenty downstream
of the blade passage and the remaining seventeen inside the
blade passage. The position of the columns have been
chosen so that no node coincides with either the leading
or the trailing edge of the blade. It was felt that if
a node coincided with either of these points the solution
procedure would become complicated. That point would then
be required to satisfy two boundary-conditions: one
typical of points on the blade surface and the other
typical of points on the periodic boundary. Instead the
first column inside the blade passage is situated half
a column spacing downstream of the leading edge and the
last column within the blade passage is situated a similar
distance upstream of the trailing edge.

2.3 The Finite Difference’Apbrbximation

The partial derivatives of velocity potential
appearing in the governing flow equations are approximated,
in this report, using finite difference approximations.
Finite-difference techniques are, in general, well understood
and maintain a direct connection with the mathematical
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form of the governing equation. Precise mathematical
conditions of existence and convergence exist for these
techniques, as well as methods for error analysis. In
addition, an 'upwind' finite-difference scheme may be
readily incorporated to mirror the domain of dependence
of supersonic flows, and powerful iterative methods
have been developed for the solution of the resulting

algebraic equations.

2.3.1 Taylor's Theorem

The finite-difference approximation used in
this report is based on the Taylor's expansion in two
independent variables, which relates the value of the
velocity potential at any node n, to that at a reference

node o by the following:

¢ + 0, (X, - X)) * d>y (¥, - ¥,) + ¢xy (X, = XY, - Y,)

o =
+ 5b o (X, = X )P+ B (Y, - Y '+ i x K T X))’
*Eb o (= X2, = Y) A, (X - X)) (Y - Y )?
1 -y )? |
+ e¢yyy (Yn Yo) + H.O.T. : (26)

where ¢n is the value of velocity potential at node n,
situated at X=X , Y=Y, i ¢0 is the value of velocity
potential at node o, situated at X=X°, Y=Y o7 ¢x is the
partial derivative 8¢/8x,¢xy=82¢/ax3y etc; and H.O.T.
which contains fourth order and higher partial derivatives
of velocity potential is the error of .the approximation.

From equation (26) it can be seen that, for third
order accuracy, nine partial derivatives of velocity potential
must be taken into account when approxmating any partial
derivative of velocity potential by a function of the velocity

potential at surrounding nodes.
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2.3.2 Central-Difference Approximation

‘The central-differenced form of the finite-
difference approximation is used to represent partial
derivaties of velocity potential at regions in which the
flow is locally subsonic. When approximating a particular
derivative at any node using a central~-differenced
approximation, a lattice of nine nodes (in addition to
the reference node) must be used, one for each derivative
which must be considered. Eguation {26) may then be
vapplied to each of these nine nodes to give nine equations.
It is required that each of these nine egquations are
multiplied throughout‘ by a constant ( say Cn' where
n =1 to 9). The nine constants, C; to Cys are of value
such tha£ when the nine equations, each having previously
‘been multiplied by the relevant constant, are summed
together theicoefficieht of the particulaf partiél
derivative to be approximated is equal tovunity. In
addition, it is required that the coefficients of all the
other eiéht partial derivatives be zero. Thus we have
nine conditions from which the values of the constants
C,; to Cg may be uniquely determined. For every partial
: defivative‘to which an approximation is required, a
- different set of coefficients must be determined. 1In
-the solution prdce&ure used to simulate transonic flows
in this réport, approximations are required only of the
first and second order partial derivatives of velocity

potential.
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The nine conditions from which the values of the particular
set of coefficients required may be determined, can be

written, in general, as:

n 1
in =.9
Z [Cn (Xn-Xo)(Yn—Yo)] = d
n=1
n

(27)
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The values of a,b,c,d and e depend on the particular
derivative which is to be approximated, and are set in
accordance with the table below:

Derivative a b c ,d e
3¢/3x 1 o o0 o0 ©
é¢/ay | o 1 o o0 o

92¢/3x2 o o 2 0 o

32¢/3xdy 0o o0 o 2 o)

32¢/3y2 o o o0 o 1
Table 1

For each node in the computational field, therefore,

there is required five sets, each of nine coefficients,
which enables all first and second order partial derivatives
of vélocity-potential to be approximated by central-
differences. The partial derivative of velocitykpbtential
at any point O, can then be express as: |

_ n_=9 n.=.9
P.D.= ZE: C oy = oo j{: c, (28)
n=1 ’ n<=1

where P.D. is any first or second order partial derivative
of velocity potential in x or y. Cn is the set of nine
coefficients, for the particular node and derivative

under consideration calculated from equation (27).

The above equation is third order accurate.
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2.3.3. The Central-Difference Lattice

‘The partial derivatives of velocity-potential,
at any particular node, may be represented by equation (28)
as a function of the values of velocity-potential at nine
points in the neighbourhood of that node. 1In theory at
least, these nine nodes hay be any nine nodes in the
flow domain. However, the error of the finite-difference
approximation is roughly proportional to the sum of the
fourth powers of the spacings of each of these nine nodes
from the node under consideration. To minimize this error
the nine nodes chosen are in close proximity to the node
under consideration. It has also been found that, for
third order accuracy, it is desirable to have three of
these nodes on the same column as the node under consideration,
and a further three on the same row. Thus for the central-
differenced approximation to any partial derivative of velocity
potential at a general node on column I and row J, the form
of the finite-difference lattice employed is as Figures

[3] ana [4].

2.3.4 The Upwind Difference Approximation

The finite-difference lattice, used for the central-
differenced approximation of partial derivatives of'velocity-
potential, contains nodes both upwind and downwind of the
nodes at which the derivative is being approximated. Thus
the fluid properties at that node are influenced by the
fluid properties at nodes all around and is representative
of the behaviour of flow in a regime of subsonic flow.

In supersonic flow, however, the fluid properties, at any
node, are only influenced by the fluid properties at upstream
nodes. Tomirror this effect partial-derivatives of velocity-
potential, at any node in a region of supersonic flow, are
approximated as a function of the velocity-potential only

of npstream nodes. This form of finite-difference
approximation is known as a 'back-wind' or 'upwind' finite-

difference schemne.
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The lattice used in the upwind-difference
scheme is similar to that used in the central-difference
scheme but without all nodes downstream of the reference
node Figs. 5 and 6 . Thus six nodes, in addition to the
reference node, are used in the upwind-differenced lattice
and equation (26) can be applied to each of these nodes
to generate a set of six equations. It is now required
that a set of six constants (say D, where n=1 to 6) be
determined such that when the six equations are multiplied
by the relevant constants and then all summed together the
coefficient of the desired derivative is ﬁhity. A further
five conditions are required to uniquely determine the
values of the constants D; to Dg. The values of the
constants Dn have been chosen so that they satisfy the
following six conditions: '

n_=.6 ‘

2 [Dn (Xn-Xo)] = a
n=1
n.=-6 o

Z [Dn (Yn - YO)] = b
n=1
n

=6 '
2y _
Z {Dn (Xn-xo)] =C

n 1
{28)

n.=.6 )

Z [Dn (Xn—Xo)(Yn—YO)] =d
n=1
n.=.6 a ‘

. 2 _

2{: [Dn (Yn - Yo) ] = e
n=1
Ne=-6

2 -
j{: [ Dn (Xn - XO) (Yn - Yo)] =0
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where a,b,c,d and e depend on the derivative to be
approximated, as given in Table 1. For each node in

the computational field, therefore, five sets each of

six coefficients are required to approximate the first and
second order partial-derivatives of velocity potential
using an upwind differenced scheme. The partial derivative
of velocity-potential at any point, o, can then be approx-
imated using the upwind-difference scheme by the following

expression:

n_=.6 n.=.6
P.D.= j{: Dn¢n - ¢o j{: Dn (29)
n=1 n=1

where P.D. is the partial-derivative of velocity potential

in x and/or y, and Dn is the set of six coefficients,

whese values will vary depending on which derivative is being
approkmiated at which node. '

2.4 Artifical Viscosity

The finite-difference lattice used to approximate
partial-derivatives in the subsonic flow regime, contains
nodes both upstream and downstream of the node at which the
derivative is being approximated. The lattice used to
approximate partial derivatives in the supersonic flow
regime, however, contains only nodes upstream of the node
at which the derivative is being approximated. The use of
such a mixed-finite-difference scheme ensures that the
domain of dependence actually experienced physically by
the fluid at any point in the flow-field is modelled by the
numerical scheme, whether the flow at that point is
subsonic or superscnic.

By examining the form of the two types of finite-
difference approximations and the truncation errors associated
with each, it can be shown -that the upwind-differenced
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approximation is identical to the central-differenced
approximation plus some additional terms. These additional
terms are usually referred to as Artificial Viscosity
because they contain second order derivatives of velocity.
The exact nature of these Aritifical Viscosity terms will

now be considered in detail.

2.4.1 The Rotated Scheme of Jameson

The treatment of flows which are not well
aligned with the coordinate system requires the use of
a difference scheme in which the upwind bias conforms
to the local flow direction. To illustrate the construction
of such a scheme consider the 'non-conservative' potential
flow equation in Cartesian coordinates:

(a2 - u2)¢xx - 2uvd>xy + (a? - V2)¢yy = 0 (2)

The required rotation of the upwind differencing at any
particular point can be acomplished by 1ntroduc1ng an
auxiliary Cartesian coordinate system which is 1ocally
allgned with the flow at that point, as suggested by
Jameson [20] If s and n denote the local streamwise

and normal directions, then equatlon (2) may be expressed
as:

2

(a

- q?) ¢ .+ ate,, =0 ~ (30)

Since u/q and v/g are the local direction cosines,_¢ss

and ¢nn can be expressed in the original coordinate system

neglecting the variation of streamline direction in the
x-direction, as:

b = (uf¢xx + 2uve, ¥ \.72<1>3,Y)/’<:_r2 | (31)
and
¢pn = (v2¢xx'— 2uv<pxy +,.u"’¢yy)/q2 (32)
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The required rotation of the upwind differencing can then
be achieved by using upwind-differenced approximations
for the evaluation of the second order derivatives
contributing to ¢ss' when the flow is locally supersonic.
If the flow is locally subsonic, however, central-differenced
formulae are used to evaluate these derivatives. The
second order derivatives contributing to ¢nn are always
approximated using central-differenced formula, regardless
of whether the flow is subsonic or supersonic. Assuming
that the computational grid is rectangular witﬁ constant
spacings in the x- and y- directions, the application

of the Taylors theorem, in one or two independent
variables as appropriate, allows the following relation-
ships to be derived:

i-1 5 = %1,5 7 % bx + % ¢ Ax® - 3 Ax® + HO.T. (33)

= - : 2 _ :
bi-2 3 T b1, T 20x8% 2¢, 0% 2 0% + H.O.T.  (34)

s = b. . + SRS ¥ 3 + H.0.T.
93,91 = %3, - by & %¢yyAy oy hY H oA? (35)

.. = ¢, . =20 Ay + 2¢  Ay? - + H .
bi,9-2 = G1,5 T20y0Y + 20, Ay7 $oyyyt¥® + H.O.T (36)
= - - 2 2
¢i—l,j-l - ¢’i.j ¢ A% ¢yAY + %¢xxAx' + %¢yyAy
- 4 x3- 1 - 2
+o ALY 8 Oy BX ¢YYY %¢xxyAx Ay
=%¢__ AxAy | - (37)

XYY

where H.O0.T. incorporates fourth or higher, order terms.

The above expressions relate the velocity potential at all
nodes, on a fivé-node upwind lattice applied to a square
computational grld (fig. 7), to the veloc1ty potential ¢ i,3
at the reference node. From these expressions the following
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upwind-differenced approximations can be derived:
equation (34) - 2 x equation (33) :-

b = 0 s~ 20, Ax) v (38)

XX i,J i-1,3 + ¢i-2,j + (¢xxx
A 2
X

equation (37) - equation (33) - equation (35) :-

b, = 05 5 = 0 -9 + ¢

Xy i,3 i-1,5 ~ %i,3-1 i-1,5-1
' AXAY '
0L %+ B ) | . (39)

equation (36) - 2 x equation (35) E—

byy = b5 5 = 20

Yy 1,] ilj_l‘+ ¢irj_2 + (¢ Ay)

YYY

(40)
Ay?
where the terms in the brackets are the errors resulting
from approximating the second order derivatives by the
first part of the right-hand side of the equation only,
ignoring fourth and higher, order terms. Thus the upwind-
differenced formulae in equations (38) to (40) can be

. - Ax,-
regarded as representations of $ex BXG ¢xy"(—§)¢xx"(
and ¢yy - Ayd respectively. The use of the following

YYY
upwind-differenced approximations:

= b, . =20, . - + O .
¢Xx ¢llj 2¢1-303 ¢l-2l3
Ax?
by = ®5,5 " %i-1,5 7 01,3-1 Y %i-1,3-1 (41

AxAy

-
1

.. =2 . +d, .
Yy ¢l:3 ¢i,J—l ¢1,3—2

Ay?

)

Ay
2

)¢

XYy
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in the représentation of ¢ss from equation (31), therefore,
introduces the following additional terms into the represen-
tation of the potential equation (2):

2
A.V. = (1 —_27) {Ax(uzuxx +uv v ) + Ay(avo o+ 2 )y (42)

vév
gq Yy Yy
where A.V. represents the additional terms referred to as

artificial viscosity.

Often instead of solving for the non-conservative form of
the potential equation the following 'fully conservative'

potential equation is utilized
(pdy )y + (p0), =0 . - (12)

It can be shown that this fully conservative form of the

potential equation is equivalent to the non conservative

form (equation 2) multiplied by the term (p/a®?). Thus, if

the conservative form of the'potential equation is represented
by upwind-differenced approximations, the artificial viscosity
terms introduced will contain the terms of equation (42)

multiplied by (p/a?). In the construction of a discrete
apprbximation to the conservative form (12) of the potential-
flow equation, it has proved convenient to accomplish the
switch to upwind differencing by the explicit addition of

an artificial viscosity to the central-differenced formulae.

Thus'the equation to be solved is of the fofm:

sij + Tij =0 _ | .(43)

where Sij is. a central-difference approximation to the
left hand side of.-equation (12), and Tij is the artificial
viscosity which may be constructed as an expression in

divergence form:

A.V. = 3P/3x + 3Q/3y | (44)

where P and Q are appropriate expressions.
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Thus using the 'rotated' scheme of Jameson, it is required
that the expressions P and Q be such that the sum of their
partial derivatives, with respect to x and y respectively,
equals the right-hand side of equation (42); i.e.:

- 2. 2
9P . 30 _ Q__) (l az \{Ax (?y  +uvv_ )+4y (uvuyy+v vyy)} (45)
ax oy a2 g2

Jameson adopted a scheme where P and Q are defined as:

P

I

- uijulaye } o | | (46)

I

Q -‘u{[vIAypy} | | (47)

where u is a switching function which is equal to zero in

the subsonic zone:

¥ = max {0, 1-a?/qg?} ' (48)

P then approximates:

p = —ax(12% ) wp = ax (o (L2l ) Winguvyy) | (49)
. q2 X a? qz
and Q approximates:
= —ay(12’ = P (1",3_2_) (uvu_+viy_ ) . (50)
Q Ay< q2> VQY by ('az) g2 4 Y

When the above formula for P and Q are used it can be

verified that the terms containing the highest derivatives

of ¢ are the same as those in equation (45) .-
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2.4.2 " Application of the Rotated Scheme of Jameson
’ to a Non-square Computational Grid

, The derivation of the expression for artificial
viscosity, equation (42), is based on a square computational
grid. The computation grid described in section 2.2 is not
square and, without the benefit of a coordinate transforma-
tion, the simple expressions of equations (33) to (37)
cannot be utilized. Instead we must, in general, apply
the Taylors expansion in two variables for all nodes in the
"upwind'-la;tice. For each of the six nodes in the upwinded-
differences lattice we can express the relationéhip between
the velocity-potential at that node, ¢n’ and that at the
reference node, ¢°. i.e.:

14

bp = 8o by (X = X)) H b (Y = YD+ oo, (X, - XY, - Y)

* a0 (X m X TE e (Y - YR Xy - X

Ay K T XDT, - YO o+ Re (X) - X )Y, - Y )2
1 - 3 :

+ dooy (¥, - ¥,)+ H.O.T. (26)

As the lattice used in the upwind-difference scheme
references only six nodes, other than the reference nodes,
the set of coefficients Dn (where n=lto 6) for each
derivative at each node can only be chosen so that they
satisfy six conditions. These six conditions are as '

in equations (28). No conditions have been imposed on

and ¢_ . and these

xxx' ¢xyy YYy
will, in general, be non-zero; ie:

the resultant coefficients of ¢
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[Dn (X, - xo) (Y, - Yo)z] # 0 (51)

[Dn (Y, - Yo)3] # 0 |

The approximation of a derivative by an tupwind' difference
will, therefore be equivalent to the approximation of that
derivative by a tcentral' difference, plus some additional
terms containing third-order derivatives of velocity potential.

Thus: v :
' 3;% n=6
@ yx) upwind ~ ©xx'c.p. * ¢ — [Dn(xn—xo)aprxx * e 2;
n=1 n=1
_ n=6
[nn (¥, -Yo) 3] ¢YYY + X n§=:1 [Dn(xn-xo) (Yn-Yo) 2]¢ XYy (52)
=6 n=6
(¢xy)upwind = (¢xy)C.D. % E: ‘-E (xn-xo) ] ¢xxx t 3
n=1 n=1
n=6
iy 3l e - - 2 .
‘En(Yn Yo) ]¢Yyy + %.E: [E (X =X )(Yn Yo) XYY (53)
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i~

n=6
(Gyy)upwind = yy)c.p. * ¢ 2;1 [ Fn(xn_xo)3] bxxx * s

n=g
[Fn(Yn‘YO)S] dyyy + % g;l[Fn(xn-xo)(Yn-Yo)Z] ¢xyy (54)

By substituting the above expressions into equation (31)
and thence into equation (30) it can be shown that the use
of 'upwind' differences in the rotated coordinate scheme

introduces an effective artificial viscosity (multiplied

by p/az)of :

2
A.V. = (a2/q%-1) (p/a®){ (3 z[nn(xn-xo)a] y 3 z[nn(xn-xo)ﬂ

2
+ %_ Z[Fn(xn-xo)3] ) byxx }

2
+ (a?/q?%-1) (p/a?){ (‘21— Z[Dn(xn-xo) (Y -¥_) 2]+ uvZ(En(Xn—Xo)

vZ
(yn-yo)Z] r3z [Fn(xn-xo)(yn-yo)2]) by )
2
+ (a?/q?-1) (p/a?) {2 z[p (v, -v ) + ¥ 1 B, (v, -v )]
v2
+ ‘6—2 [ Fn (Yn—YO) 3] ) ¢yyy (55)

i.e.: A.V. = A¢xxx + B¢xyy + C¢yyy (56)
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where:

A

, 2
(a?/q*-1) (p/a®) &= [p, (x5 ) %] + §¥ s[E_(x_-x)?)

2
+ 3 }:[Fn‘(xn-xo) 3] ) (57)

. o . 2 : .
B = (a%/g2-1) (p/a?) (- I [ D, (X ~X) (¥, -¥)?] + uv

z[ % S .vz_z . 27, 8
B (Xp=Xg) (Y=Y ) ] t 5 [Fn(xn_xo)(yn—Yo) ]) (58)

_‘ u? | uv |
¢ = (a?/a?-1) (p/a%) (= T [ D (0,-v) *] + 5 3 [B vp-v)°)

. |
o+ v z[ F_ (Y -Y) 3] ) (59)

where Dn' En and Fn (n=1 to 6) are the sets of coefficients
corresponding to the upwind approximations to partial

derivatives ¢xxx' ¢ and ¢yyy respectively, and all the

Xyy .
summations are from i=1 to i=6.

So, it has been shown that an upwind difference
is equivalent to a central difference plus a certain additional
term (A.V.). Thus it is argued that in supersonic flow, the
‘upwind' representation of the flow equations can be replaced
by the 'centred' representation plus an artificial viscosity
This artificial viscosity is included explicitly into the flow
equation, where required. In a regime of supersonic flow,
therefore, we may replace the following representation of
the 'conservative' potentiél equation:

{(pb )y + (pboy)y ) upwind = O | (60)

by the centred-difference form with artificial viscosity:

{(pb ¢x)x + (pbcby.)y }C_D_ + A.V. =0
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or

Tl ¢ )y + (eD0) 0 Y b 2 - ALy, (61)

The above eguation (61) may be applied to any region of the
flow-field if the artificial viscosity term becomes zero in
all regions of subsonic flow. The switched 'upwind/centre’' -
difference scheme of Murman and Cole [2] has, therefore, been
replaced by a single finite-difference representation which
greatly simplifies the solution procedure. Note, that for the
~artificial viscosity to vanish in all regions of subsonic flow
the term (a?/g?-1) in equations (57) to (59) must be replaced
by the term u where:

p = max {1, 1 - a2/q? }
and equation (61) becomes

{eb o), + (b0 Yo . = AV, - (62)
The artificial viscosity has not, in contradiction to the
recomendation of Jameson, been formulated in a divergent form
as the expression for artificial viscosity derived from a non-
square computational grid was too complex. In order to add
explicitly the artificial viscosity to the governing flow
equation the third-order partial derivatives of velocity-
potential need to be approximated. This is achieved by

fitting a cubic approximation to the values of the second

order derivatives which can then be differentiated analytically

to yield the third-order derivatives.

, The inclusion of artificial viScosity into the
central-differenced approximation of the flow equation is
necessary, to model the domain of dependence of supersonic
flows. If centred-differences are used to represent
derivatives in supersonic flow without this artificial
viscosity, the solution becomes unstable. The artificial
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viscosity does, however, introduce an error into the final
solution, resulting in smeared shocks. As the artificial
viscosity is dependent on the third power of the mesh
spacing, it reduces as the mesh spacing is reduced. In
the limit of infinitely small mesh spacing the artificial

viscosity becomes zero everywhere.

2.5 Boundary Conditions

2.5.1 _ Boundary Conditions for the Nozzle Calculation

The computational domain for the solution of
the potential flow, in the convergent-divergent nozzle
examined in this report, consists of the region of the
nozzle, from inlet to outlet, between the centre-line
and the upper wall. Due to the symmetry of the nozzle
in the flow-direction the flow need only be solved in one
half of the nozzle and the centre-line may be treated as if
it were a solid wall. For elliptic gquasilinear equations
it is required that a boundary condition be applied to
give an expression for the velocity potential at each
node on the perimeter of the computational domain. For
the solution of potential flow in a duct or nozzle the
boundary conditions are well known. These are that the
velocity of the fluid normal to the solid walls is zero.

i.e. _ai =0 (63)

The physical significance of this boundary condition is

that no fluid is allowed to flow through the solid walls.

Such a boundary condition is used in preference to the no-slip
condition which épecifies that the velocity of the fluid
tangential to the solid wall must equal zero.

i.e. 3¢ _ o . (64)
9s
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The no-slip condition describes the manner in which fluid
actually behaves in practice but is dependent on the flow
being viscous, as are all real flows. However, the

potential formulation assumes that the flow is completely
inviscid and cannot, therefore, satisfy the no slip condition.
Instead the no through-flow condition must be applied.

Along the inlet plane of the nozzle, the total
pressure and temperature are given. Also, the inlet flow
angle, which in this case is zero is given. Thus the values

of velocity-potential at all nodes on the inlet plane are

set. The actual values to which they are set is not
significant provided the nodes are all of the same potential,
as required for a zero inlet angle. This is because the
flow-field is dependent on the gradients of velocity

potential and not on the actual values of potential themselves.
The set values of velocity potential at all nodes on the

inlet plane remain fixed as the solution progresses.

At the exit plane of the nozzle the back-pressure
is given. The boundary condition which must be satisfied
at this plane is that the static pressure of the fluid
equals the nozzle exhaust (back) pressure. It is not possible
to express this condition as a linear expression in velocity-
potential and instead the values of the potential at the
exit plane must be guessed. The solution is then iterated
with the guessed values of potential at exit remaining
invariant until convergence is achieved. The static
pressure of the fluid at exit is then computed from the
resulting calculated potential distribution and compared
to the back pressure. If the static pressure at exit equals
the back pressure the solution is complete, else the values
of potential at exit are modified and the solution procedure

repeated until equality is achieved.
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The modification to the set values of potential
at exit is accomplished by adding a constant value of

pbtential to all nodes on the exit plane. This value of
additional potential was assumed to be directly proportional
to the percentage error of the predicted exit static
pressure. So as not to introduce a sharp rise (or a fall)
in potential between the nodes on the penultimate column
~and those along the exit column, the potential along nodes
,upstfeam of the exit column are also modified. A lineaily
riﬁcreasing change in potential was introduced to all nodes,
from the shock to the exit so that, at the exit, the correct
change in potential was introduced. The solution of the

. potential equation is then complete and from the computed
.potential distribution the velocity at évery node may be
calculated. The values of all the other primative variables
. (e.g. = p, p, t) may be calculated from these velocities using

the standard isentropic relationships.
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2.5.2 Boundary Conditions for the Cascade Solution

The computational domain used for the solution
of the potential flow in the cascade problem consists of
one passage of a blade row with the inlet and outlet
boundaries a sufficient distance upstream and downstream of
the blades to allow uniform flow conditions. This domain
is a blade-to-blade surface of a cascade blade-row, Figure 8
delimited by ABCDEFGH, X is the coordinate in the axial
direction and y the one in the tangential or pitchwise
direction. For this system to be well posed the boundary
conditions must be specified in a manner compatible with the
governing flow equations and the physics of the problem.

Along the solid blade walls the condition that the normal
velocity must equal zero is given again imposed:

3% _ |

an o (63)
Tf the effects of rotation are to be included then this
derivative must be required to equal some function of the

bladespeed [22]. Also, as will be discussed later, viscous
effects can be included into the inviscid analysis by a

modification of this boundary condition.

At the inlet of the flow domain we have the following

boundary condition:

BE%% = PP ' : " | (651

At outlet of the flow domain a similar condition applies:

pbd _ ' 6
: T p2b2WX2 _ (66)
where subscripts 1 and 2 dencte the inlet and exit boundaries
respectively, n is the direction normal to the boundary, and
Wx and Wy are velocities in the x- and y- directions.



A particularity in cascade flows is the presence
of periodic boundaries upstream (AB,HG) and downstream
(CD,FE) of the blade row. As a blade row consists of a
number of blades equally spaced, the properties of a fluid
at any point are equal to those one pitch spacing away.

Thus the primitive variables along AB must be equal to those
along HG, and the primitive variables along CD must equal
theose along FE. This results in a constant difference in
potential between two corresponding points such as P and Q
in Figure [8]:

tg = %p * 5, My, | (67

where P is any node on the surface AB and Q is the node,
of the same valueox as P, on the surface HG.

Similarly downstream of the blade:
¢Q' B ¢P' * $2WY2 _ (68)
where S is the pitch spacing.

From equations (65), (66), (67) and_(68) together with the
mass conservation the following expression can be derived:

p.b W =p b W , (69)

As density, p, is a function of the x and y velocities,
and the blockage factor, b, is a constant which must be
specified equation (69) is of the form:

. . ) - . .
Function (WX1'Wy1) Function (WXz'WY2) (70)

from which it is clear that only three independent guantities
can be specified for both upstream and downstream boundaries
including periodicity. Hence inlet Mach number and angle



(which specifies leand WY1) together with outlet Mach
number or alternatively outlet angle completely determine
the flow for a given geometrical configuration and blockage.
In this report, the Kutta condition has been applied at the
trailing edge which specifies that the fluid properties

along the suction surface and the pressure surface must
approach equality at the trailing edge. The use of the Kutta
condition determines the outlet flow angle and no downstream
condition need be specified.

The values of velocity-potential along the inlet
plane, AH, are set so that the gradient of potential along
this plane is constant and equal to the ¥Y-component of
velocity corresponding to the known inlet Mach number and
angle. These values of velocity potential along the inlet
plane are kept invariant as the solution progresses. At
the exit plane, DE, the values of velocity potential are
also set. Firstly, a value of exit flow angle is guessed,
which together with the mass conservation equation (23)
gives the exit Mach number. The potentials along the exit
plane are then set so that the gradient of potential along
this plane ié constant and equal to the y-component of
velocity corresponding to the guessed exit flow angle and
resluting exit Mach number. The solution of the potential
flow is then iterated, keeping the set values of potential
along the inlet and exit planes constant. When a converged
solution has been obtained the value of velocity at the
trailing edge on the pressure surface is compared to that
atrthe'trailing edge on the suction surface. If the two
velocities are equal then the guessed value of exit flow
angle} and the resulting exit Mach number, are correct. If
the two velocities are unequal the guessed value of exit
flow angle is incorrect and must be aléered. The soltuion
procedure is then repeated until the Kutta condition of
equal velocity at the trailing edge on pressure and suction
blade surfaces is achieved. The change of guessed exit flow

angle was implemented manually.
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The Kutta condition has been used to determine
the air-flow angle at the exit plane. From this angle, the
Mach number of the flow at the exit plane may be determined
from the mass conservation equation (69). Thus the values
of Mach number and air-~flow angle are known at both inlet
and exit plane which for a given blade geometry and blockage
completely defines the flow problem, in real flows. However,
as will be shown later, the potential formulation can give
rise to more than one different flow-field for the same
values of inlet and exit Mach number and angle [29] ,[30.
This problém of uniqueness of the potential formulation was
overcome in the nozzle solution (for which the exit angle
was known to equal zero) by comparing the exit pressure
predicted by the potential formulation to that of the known
back—pressure. A similar'approach is used in the potential
formulation of the cascade problem. This requires that the
static pressure ratio across the blade be known a priori,
which'together with the total pressure and Mach number at
inlet specify the value of the static pressure at =sxit.

We now require that the static predicted by the potential
solution at exit equals this given static pressure.

The Kutta condition is used to determine the
value of the exit air-flow angle and thence the value of
the exit Mach number. It is ensured that Wy at exit is
equal_to the Wj corresponding to this angle and Mach number,
- by setting the gradient of potential along the exit plane
equal to Wy at all nodes on that plane. Thus the gradient
of potential in the y-direction is specified but not the
actual values of potential themselves. However, it is both
the absolute values of potential at exit and their gradients
which uniquely specify the potential flow solution. Thus,
once the Kutta condition has been satisfied, the
predicted static ﬁressure at exit is compared to the known
value of static pressure. If the two are equal the solution
is complete and the flow is uniquely specifiéd. If the
values of predicted and known static pressure at exit are
not equal then the set values of potential at exit must be altered



so that their absolute values change but their gradient in
the y-direction remains unaltered. Thus the values of the
air-flow angle and hence Mach number at exit remain
unchanged. The solution procedure is then repeated with
these new values of potential at exit until equality is

achieved.

In summary, referring to Figure (8) , the boundary

condition along AH is:

%m) = )

i.e. the values of potential at inlet are specified
Along HG and AB:

= .-|-'
¢q ¢P SWY1

i.e. the periodicity condition
Along GF and BC:

_B_Q=O
oen .

i.e. the know through flow condition
Along FE and CF:

q;q = ¢p + SWYZ

i.e. the periodicity condition
and along DE:

= Dn)

®(n)

i.e. the values of potential are specified

(71)

(67)

(63)

(68)

(72)

C and D are two sets of values of potential which satisfy

certain condltions and they remain invariant as the solution

is iterated.
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2.5.3 " Total Pressure Loss

The potential solution of transonic flows is
an isentropic solution and is, one its own, incapable of
predicting a loss in total pressure, for example, across
the shock-wave. However, an estimation is made of thé
total pressure loss across the shock-wave by the
application of the standard one~dimensional shock relations.
The total pressure between the inlet plane and the shock is
then assumed constant, a step loss in total pressure is
imposed at the shock, and this reduced total pressure is

assumed downstream of the shock until the exit plane.

The estimated total pressure loss is updated
after each iteration to take into account any change in
predicted shock strength from iteration to iteration. This
imposed total pressure loss will effect the values of the
densities calculated downstream of the shock, and will thus
effect the coefficients of the discretized potential equation

and the ultimate solution itself.

The loss in total pressure is estimated along
each row as being dependant on the éhock stréngth predicted
along that row. The total pressure downstream of the shock
is thus estimated as being different along each row and no
mixing of these total pressure was assumed. For the -
determination of the predicted exit static pressure, therefore,
a mass averaged static pressure was calculated for the exit

plane and taken as the predicted exit static pressure.



2.6 The Solution of the Discretized equations .

2.6.1 Succesive-Line-Over-Relaxations

_ Using finite-difference approximations, with
artificial viscosity introduced to model the domain of
dependence of supersonic regions of flow, the conservative
potential equation is represented by a set of elliptic
algebraic equations. Together with the relevant boundary
conditions one equation is derived for each node in the
computational domain, relating the velocity-potential
at that node to the velocity-potential at neighbouring
nodes. The conservative potential equation (23) is expressed

as:

(PB)y by + (PB4, + (D) by + (pb)pyy = O (73)

For any one sweep the distribution of density is taken from
the most recently computed potential distfibution, the
blockage factor is specified and remains invariant Finite-
difference approximations are, therefore, required for the |
following derivatives of potential:A

¢X, ¢XX: ¢Y¢ ¢YYY

The replacement of these partial derivatives with their
finite difference approximations thus producés a set of
simultaneous elliptic algébraic equations in velocity

potential. This set of e@uatibns may be expressed in a

matrix formulation as:

4] [o) =[x * B

where [A] is a matrix of sizeﬁp;ngcontaining the coefficients
of the potentials. for every node. [¢ is the matrix of the
potentials for every node from ¢1‘to ¢NP' and [K] is the
matrix containing the terms on the right-hand side of
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equation (73) for every node. This matrix [K] is of size

NPxl and contains a zero term for each node in the subsonic
flow regime, but a non-zero term corresponding to the

explicit artificial viscosity for every node in the super-
sonic flow fegime. NP is the number of nodes at which

the velocity potential is unknown. It is, in theory,

possible to directly invert the matrix [Al to give a

sclution to the potential at all NP nodes simultaneously.
Repeating this technique, updating the coefficients of A

after each iteration, should then give increasingly better
solutions to the governing flow equations until the final
potential solution satisfies these equations to some acceptable
degree. Such a technique was attempted but was found to
exhibit a divergent behaviour. An alternative approach is

thus required and one family of methods which has found much
favour in the solution of large numbers of finite-difference
equations is the matrix block iterative techniques. These
usually involve considering each row or column (or both) of
nodes as a separate block, and employing an iterative technique
which solves for each block seperately. By utilising such a
technique it is possible to write the complete set of equations
(24) as :

c, D, 5, R
B C D ) K
3 3 3 A 3 ) 3
A B C D ¢ K
4 4 ) 4 4 N (75)

N=2 " N-2 CN'z DN'z

"N-1 Py Gy
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where N is the number of vertical columns of nodes in the
computational domain. The equations for the potentials
along the inlet column (i=l) and the exit column (i=N)

do not feature as the potentials along both these columns
are specified and treated as known. Each of the terms
Bjr Byr Cyr &y
themselves, giving the governing equations for the potential

and Ki in equation (75) are matrices

of the nodes along column i. Considering the set of
equations (75) in more detail it can be seen that each
matrix Ci is an irreducible matrix of sizem x m whose
non-zero entries give the coupling of any node on the
column i with its neighbours on that column. With .the
nine-node central-differenced lattice of Figures 3 g 4,
Ci has thekfollowing general form.

S

where m is the number of nodes per column of the computational
grid. Note that if n < m/2, then a =0, else e, = 0. Thus
the velocity potential at any node on column i, away from the
boundaries, is a function of the velocity potential at three
other nodes on that same column. | |



The matrix Bi is a matrix of size mxm, whose non-zero
terms contain the coupling coefficients of any node on
column i with those nodes on the preceding column i-1.
For the nine node central-differenced lattice, as before,
the matrix Bi has the following general form:

The matrix Ai‘is a matrix of size mxm, whose non-zero
terms contain the coupling coefficients of any node on
column i with those nodes on the column i-2. For the nine
node central-differenced lattice,Ai has the following
general form: '
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Di is a matrix of size mxm whose non-zero terms contain the
coupling coefficients of any node on column i with those
nodes on the following column i+l.

Thus, for the nine-node central-differenced lattice, the

matrix Di is of the following general form:

The matrix Ei is the matrix containing the velocity
potentials of all nodes on column i. Thus Ei has the

form:

¢1 Kx

K

¢z 2

¢ K

3 3

;= Ky =
m-1 Km-1

cbm Km
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where ii is the vector of constants containing the terms
on the Right-Hand-side of the flow equations which
determine the potentials on column i.

The matrices Ai, Bi' Ci’ and Di are sparse matrices banded
around the diagonal. The non-zero terms of these matrices
need not be stored nor utilized in the matrix manipulations.

The governing flow equation (23) may then be replaced at
any general node on column i and now j, thus:

+ £, . ¢

h.. ¢. - . L .
ij %i-2,3 i, %i-y,3-, ta ¢

91,5 %i-1,3 i3 %i,3-2

* by %55, 9%,5 %,54, T Pi,i ®in,5-; T 9,5 %in,s

* i35 %n, 54, %1, 4,5 ° Ki,j (76)
where j > m/2 ; or :

Bii %i-p,5 *F Fi,5 %imy,5-0 T 91,5 Cami,5 T P,y 04,54,

*di,5 %,54 Y %,5 %54 T Pi,5 Caay,5- T 94,5 ik,

+ T35 %n,94, T 05,5 T ki, (77)

where j < m/2

Thus the governing flow equations for every node along

column i is represented by:

2] 5 [4hee + () s {0)um # o) 5 [+ (2] 4 [¥)ian = [¥)s

(78)

The values of the velocity potentials at the nodes along

- - -

column i, [¢]i' may be determined simultaneously using
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a block-iterative technique known as Successive-Line-Over-
Relaxation (SLOR). 1In this technique expressions involving
the potential of nodes not on the column i are taken over to
the right-hand side of equation (73). Thus if we solve

for successive columns, from inlet towards exit, and

always utilize the most recently determined value of potential
at any node, the potential along column i at iteration

(2+1) may be express as:

e (6 0 < B, = Bl 00 o) [,

R | -
[D] [¢]l+f“ (79)

The right-hand side of equation (79) is easily determined
using standard matrix techniques of multiplication and
addition. Thence, by inverting the matrix C it is

possible to determine the potential, l¢] (2+1), which
satisfies equation (74). The potential at column i for
iteration 2+1 is, however, modified so that it is a function
of the potential at column i for iteration %, as well as
that at iteration £+1.Thus: ’

[3], 0 - "’([3’],1(“1) ~[o], @ ) NATRE (80)

If w is equal to unity then we have the Gauss-Seidel Block
Iteration scheme where the function of the potential at

a new iterative sweep is not constrained in any manner by

the value at the previous sweep. If w is greater than

unity, the change in potential froﬁ one iteration to the

next is greater than it would be for the Gauss-Seidel Block
Iterative scheme. This is termed over-relaxation and is

used to accelerate the convergence of the iterative technique
towards the asymp£otic solution, where the solution remains
unchanged for further iterations, Over-relaxation is commonly
used where the stability of the gbverning system of equations
is high. However, in many cases over-relaxation can

cause the iterative solution scheme to diverge. in such
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cases, under-relaxation must be used. Under-relaxation
involves the use of a relaxation factor, w, which is less
than unity. A few different values of relaxation factor
were attempted in the solution of the flow equations, in
this report, and an optimum value of w = 0.45 was determined.
For values other than this the solution either required

more iterations to achieve the same convergence criteria,

or failed to converge at all.

Using this Line-Relaxation technique the potentials
were first determined at the most upstréam column at which
the potentials are unknown. The potentials are then
determined at succesive downstream columns until the potential
has been determined at every node in the computational
domain. From this hew potential-distribution a new density
distribution is determined which, from equation (73) will
slightly alter the matrix equations of flow for every column.
Thus using this new potential distribution the procedure
is repeated, sweeping from the inlet plane to the exit
plane until some pre-determined convergence criteria is
satisfied. It was felt that sweeping in a downstream
direction best modelled the true physical behaviour of the
flow in which disturbances in regions of high Mach numbers
tend to propagate downstream much more readily than they
do upstream. An alternative approach was attempted in
which the solution swept alternatively in an upstream and
then a downstream direction, but was not found to be
significantly Qifferent from sweeping in a solely downstream

direction.

2.6.2 Convergence Criteria

The convergence criteria utilized to determine
when the iteratiVe solution has converged is, too some degree,
arbitary. The most commonly used criteria is to insert the
values of potential determined by the last iteration [3 ]i2+1
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into equation (79) and determine the values of the left and
right-hand sides of this equation. The difference between
these two values is the'residual, a measure of the degree

of accuracy of the solution procedure. . Summing the residuals
for each column gives a total residual and this is usually
required to be less than some chosen value. The maximum
permissible value of the residual is usually chosen as
between 10™° and 10”7. The smaller the value of this
maximum permissible;residual then the more accurate the

final sblUtion, but the more the iterations that are required
to achieve this solutlon. Thus for each iteration, the

total summed re31dual must be determined and compared to

a chosen value. If the re51dual is greater than this

value the solution must progress a further iteration until
finally the residual is less than the chosen value. The
determination of this residual does, however, involve

a fairly large number of computer operations and, in this
report, a different convergence criteria has been utilised.

The'convergence criteria utilized in this report
is simply the sum of the difference in potentials determined
at iteration 2+1 and that at iteration £. This difference
is divided by the local mesh spacing and is summed over all
the nodés. The division by the mesh spacing means that the
total value is now representétive of the difference in
velocity, from one iteration to the next, rather than the
>difference in potential. This total is compared to some
chosen value and if it is less than this value the solution
is said to have converged; Else the solution must progress
a further iteration. For a computational mesh with
approximately 1000 nodes it is usually required that this
sum of the charges in potential from one iteration to the
next, divided by the local mesh spacing, is less than a
value between 500 and 1000 for convergence to have been satisfied.
This signifies that the average change in velocity at each
point is less than a value between 0.5 m/s and 1.0 m/s, from
one iteration to another. For average velocities in the
flow-field of about 300 m/s, this signifies that at a



converged state, the average change in velocity at a node,
from one iteration to the next is between 0.16% and 0.33%.
The advantage of such a convergence criteria in a line-
relaxation iterative technique is that the change in
potential from one iteration to the next must be determined
anyway, see equation (80). Thus very .little additional
computational operations are required which makes the

use of such a criteria very efficient in terms of computer

run-time.

2.7 The Viscous Correction

Trahsonic'internal flows are strongly dependent
on the form and size of the associated boundary layer. 1In
a transonic convergent-divergent nozzle the flow upstream
of the shock wave will be accelerating and the boundary-layer
in this region will, in general, remain thin. Downstream
of the normal shock, however, the flow is subsonic and
decelerating. The boundary layer inthis region,  therefore,
experiences an adverse pressure gradient, corresponding
to this decelerating flow, causing it to thicken. The
deceleration of the flow downstream of the shock is thus
reduced and the value of the static pressure at exit of the
nozzle would fall if the strength and position of the shock
remained unchanged. However this static pressure must always
equal the back pressure (which remains unchanged) and the
viscous flow adjusts itself to satisfy the condition by
reducing the strength of the shock and/or shifting its
position upstream of that which it would occupy in the
absence of a boundary-layer. The significance of the
viscous boundary-layer effects will depend on the geometry
and operating conditions of the nozzle but will, in general,
have a considerable effect on the performance of the nozzle.

The influence of the boundary-layer on cascade
blade flows is more complicated due to the combined effects
of change in effective flow area and in blade circulation.
These viscous effects will, in general, significantly



affect the flow and account for the deviation of the flow
at outlet of the blade-row.

Thé solution of the flow equations must, therefore,
account for viscous effects if an accurate predictions of
the flow is required. This is achieved by the application
of a transpiration type of boundéry-layer displacement model,
in which the approach fluid is assumed to flow through the
solid walls at a rate sufficient to displace the mainstream
along these surfaces by one boundary-layer displacement
thickness. This approach has been used by many authors
including Denton [ ] and Ives and L1utermoza[25] For
an inviscid calculation the boundary conditions require
that the flow normal to the solid walls is zero. To account
for fluid viscosity, this is modified so that the flow normal
to these surfaces is no longer set equal to zero, but instead
set equal tothe local value of the transpiration velocity Vi
The transpiration velocity may be calculated from the following

equation:

3 (pU_. &%) o
Ve = —S (81)
os ~

where p is the local value of denisty at the surface
is the local value of velocity at the surface

8% is the local value of ‘boundary layer dlsplacement
thickness, and

's is the distance along the surface.
Thus, to know the distribution of transpiration velocity
we must calculate the distribution of boundary layer

displacement. thickness.

2.7.1 Boundary Layer Cal culations

In general, the boundary layer will be initially
laminar, undergoing a transition to turbulence a small
distance downstream of the nozzle inlet. In addition, an interaction
is liablebto.occur béﬁween the boundary layer and the shock wave.
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2.7.2 Laminar Boundary Layer

The laminar boundary layer was solved using the
method devised by Thwaites[31] and since used in a slightly
different manner by many authors inlcuding Rangaswamy and
Elder [32] This method is based on the Von Karmin momentum
integral equation, first derived in 1921[33] , and makes
no assumption as to the form of the velocity profile within
the boundary layer. The momentum integral eguation may be
expressed in the following form:

au
deé ) : 5 _ : '
ax * Ug (2+H) =% =% Cq (82)
in which
Hz 6%/9 N ‘ . (83)

where: H is the éhape factor of the boundary-layer profile
6* is the boundary-layer displacement thickness
6 is the boundary-layer momentum thickness
'is the skin friction coefficient

and  U_ is the velocity at the outer edge of the boundary-
layer (assumed to be the velocity along the solid
surface derived from the potential flow solution)

@]

The momentum integral equation contains too many unknowns,

8, H and Cf (Us is known from the potential flow calculation),
to be useful by itself and so it is supplemented by algebraic
equations among the unknowns. Such relations are simpler

in terms of the dimensionless variables and we, therefore,
make 6 and x dimensionless by forming Reynolds numbers:

Re, = pUS8 (84
.e K
H
= pU X
Re, = s (85)
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where u is the coefficient of absolute viscosity.

Although H and Cf are already dimensionless, the skin friction
coefficient is rather a strong function of the Reynolds
number. Thus we introduce the parameter

2 = ¥ Re

c (86)

6 f

which is independent of the Reynolds number, not only for
the flat-plate problem but for broad classes of exact
solutions of the boundary layer equations.

Thus we multiply the momentum integral equation (82) through

by Re, to get

8

pU_6 2 dU ) ’
s gg (2+H) =
m dx dx = £ d(87)

Thwaites defined a dimensionless pressure gradient parameter-

y = 082 % |
T wod (88)
and rewrote the above equation as
pU 2 .
s de‘_ _ : :
T dx 2 2= (2+H)2 (89)

If we use Pohlhausen's quatic velocity profile, £ and H can
be shown to be functions only of A. Thwaites found that, to
an excellent approximation, the same is true of the available,
exact solutions of the laminar boundary layer equations.

That is, when the values of 2 and H for such. solutions are
plotted against ), the data cluster around a single curve

with very little scatter. 1In fact, the right side of equatlon
(89) is very well approximated by the linear formula

2 [2 - (248) 1] 2 0.45 - 6 | (90)
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When this and the definition (83) of A are substituted into

equation (84), we obtain.

EE_ de?_ 0.45 - ¢ 08?2 Egﬁ O1)
b dx ‘ u dx
which we can rearrange to give:
L _4d g2y y = 5
U ax (6 Us ) 0.45 Us ©92)

We can rewrite this equation in terms of the dimensionless

variables:
Us = Us/vref
x = x/Lref
6 = 6/L
/xef
giving . ; , .
52 - 0.45 1 [x u. dx (93)
Re 6
Us (o)

Thus for any given distribution of Us(x), the distribution of

0 (x) can be readily determined by the integration of a single -
first-order differential equatibn. Oncé 0 is known A can be
calculated from equation (88) and H(A) then calculated from

an empirical relation, prqposed by Dunham [34]

H=1.622 (A + 0.11) ~©0-209  (94)

Thus the distribution, §*(x), of the boundary layer displacement
thlckness may be determined. ’
o TR

The integral of equation (83) is numerically approximated
using the trapezoidal rule.



2.7.3 Transition from a Laminar to a Turbulent

Boundary-Layer

In the general case of flow past a solid surface,
the boundary layer is initially laminar. However, sooner
or later, all boundary layers become unstable and any small
disturbance initiates transition to the unsteady turbulent
state. Transition starts at a particular value of Reynolds
number (Recriﬁ) based onthe distance x, along the surface,
from the start of the boundary layer.

Transition to turbulence is not an instantaneous
process. Instead the flow'is intermittently laminar and
turbulent over a certain length of surface. The length of
this transition regime, upwind of which the flow is always
laminar and downwind of which the flow is always turbulent,
can be much larger than the length over which the flow is.
purely laminar. The skin friction usually increases
dramatically across the transition region and it would,
therefore, be desirable to utilise an integral method to
describe the transition process. As no such method exists
it is necessary in calculating boundary-layer growth by an
integral method to assume that the flow changes instantaneously
from laminar to turbulent at a transition pbint. It is
usual to assﬁme that transition occurs when the Reynolds
number based on the momentum thickness (Ree) is greater than
some critical Reynolds number (Recrit)' The value of this
critical Reynolds number depends on many factors as discussed
by Schlichting [35] . Probably the two most important factors
are the pressure gradient imposed on the boundary layer by -
the inviscid flow and the roughness of the surface along
which that fluid is flowing. An increase in either surface
roughness or positive pressurebgradient will hasten transition
or, looked at another way, will decrease the critical value

of Reynolds number.



In this report, the value of the critical Reynolds
number was based upon a modified form of Seyb's correlation.
Instantaneous transition from a laminar to a turbulent
boundary layer was assumed to occur when the value of A

(see equ. 88 ) was greater than-O 09 or when Ree> Recrit'
where:
: A + 0.09 2.62
Re = 19 + 10
crit 1.2 + O.7Tu 0.0106 + 0.036Tu (95)

and Tu is the percentage of turbulence (assumed to lie between
0.15% and 4%).

This formula for critical Ryenold's number
does account for the effect of pressure gradient, although
indirectly, because the momentum thickness grows more rapidly
in a positive pressure thereby increasing Ree. However,
the influence of surface roughness is ignored which limits
the situationsto which this correlation may be applied.
Fortunately this correlation was based on data taken on
turbomachinery cascades and should be applicable to other
airfoils and nozzles with a similar degree of surface
roughness. As can be seen, the influence of mainstream

turbulence is also taken into account.

As will be discussed later, the method used to
calculate the turbulent boundary layer from immediately
downstream of the transition point onwards, is based on.
Head's set of equations. This method solves two simultaneous
first-order ordinary differential equations and two initial
conditions are required, therefore, to start the calculations.
Thwaite's method gives values of 6, H and Cf up to the
transition point, but H and Cf change drastically during
transition so that only the initial turbulent vlaue of 6 can
be taken from the laminar calculations. The initial turbulent
value of the shape factor, H;, is given by the relations
proposed by Maskell [36] '



where:

- - 2
H, = 1754 - 0.0647 In(Rey) + 0.001916 [In(Rey)]? |

if A>0 or A<0O and Ree>,2,500

. 3 (96)
and

‘Hp = 1754 - 0.0647 ln(Rey) + o.001916[1n(Re9ﬂ 2

+ [1.32'— 126'(Ree)“°?752]‘

"when A<O and Re, <2,500

e -

'Thus; two initial conditions are known and the solution of
the turbulent  boundary layer calculations can progress.

2.7.4 ) ~ Turbulent Boundary Layer

The method used to predict the turbulent boundary-

"layer growth is based on that devised by Head l37] and widely
~ used, with slight modifications, by many authors including

’ Green_[38},Head proposed that the turbulent boundary layer

:growth‘be ptedicted by the simultaneous forward integration

' of the Von Karmén momentum‘integfal equation and the entrainment
‘equation. The entrainment equation is an expression for the
streamw1se rate of change of the mass flow thickness, which

v~may be wrltten as:

an _ . - A dus S (97)
Tdx CE (1 Ms Us dx .

_ where M is the Mach number at the edge of the boundary-layer
”andAls'the mass flow thlckness deflned as:

“whefe'y is normal to the surface.
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A is the ratio of the mass of fluid flowing through the boundary
layer to that which would flow through the boundary-layer if
all the fluid within were at velocity equal to that- at the
outer edge of the boundary-layer.

CE is the entrainment coefficient defined as:

_ 1 a (p U b) : ' (99)
E p_U_ dx

It can be seen from the form of equ. (99), that the entrainment
coefficient represents the rate at which fluid from the outer
(inviscid) flow is entrained by the boundary-layer.

Whilst, in calculating the growth of the laminar boundary-layer
the outer flow was assumed incompressible - (a fair assumption
if the pressure ratio across the nozzle is not toohigh and
transition occurs fairly rapidly) the same cannot be assumed

in calculating the growth of the turbulent boundary layer.
Hence the presence of a Mach number in equation (97). The
momentum integral equation is also used in its compressible

form:

'de _Cf _ (H+ 2 - M;) 8 duUs , (100)

dx 2 Us dx

which when combined with equation (97) gives:

0dH; _ . _ Cf _ iy 6 dUs
& - % " H (2 1) 55 & ) - (101)
where Hy= A/8 = (6-8")/6 | (102)

. Thus we have two simultaneous first order differential equations,
(100) and (101), expressing gradients of 6 and H,; respectively.
However, the addltlonal unknowns CE' Cf and H feature in these
equations and we, therefore, require additional relations

in these variables to be able to solve the set of equations.



The additional relations used are the Ludwieg and Tillman
skin friction relation;

Cg = 0.246 Rep®:28° e 1.56H (103)

the Cebeci and Bradshaw [39] correlations for the relation
between H; and H:

1,287
H; = 3.3 + 0.8234 (H-1.1) for H < 1.6

and (104)
064

—3.
Hy = 3.3 + 1.5501(H-0.6798) - for H> 1.6

and finally the relation between C and H,;given by Thompson
[40] as a fit to Head's graphical relatlonshlps-
- ,6189 ) (105)

CE = 0.0299 (H,-3.0)

Thus we have 5 equations (100,101, 103, 104 and 105) in 5
unknowns (6, H;, H, CE and Cf) and given that we have
initial values of two of the unknowns, in this case 8 and

H, we can simultaneously integrate the two ordinary
differential equations to give the turbulent boundary-layer
growth. The numberical method chosen to integrate these two
equations is the Runge-Kutta method; widely used for the
numerical integration of one or more ordinary differential

equations.

2.7.5 Boundary-Layer Interaction with the Shock Wave:

The interaction between a normal shock wave in
transonic flow over a solid surface and the boundary-layer .
along that surface is extremely ccmplicated and has received
considerable theoretical attention (see Ref. {41] for a
critical review). There are two opposing schools of thought
as to whether thi$ interaction should be treated in a special

way.
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Lock [42] argues that no special treatment of
the interaction is necessary. Instead he believes that
it is sufficient merely to regard the interaction as a
region in which an ordinary turbulent boundary-layer is
subject to a local rapid rise in pressure, followed by
a milder (but usually still adverse) pressure gradient.
This approach was initially proposed by Green [43], who
suggested that, provided the pressure jump through the
shock-wave is spread over a few boundary-layer ticknesses,
then any reliable method of calculating turbulent boundary-
layers should be expected to predict the main effect of
the interaction on the subsequent development of the
boundary-layer. This approach is subject to the boundary-
layer remaining attached andmay require some artificial
smearing of the flow property changes across the shock.
The relative success of this procedure can be judged by
the encouraging results obtained by many authors, for
example, Bauer, Garabedian,‘Korn and Jameson [44];
Bavitz [45], Collyer and Lock [461 and Melnik [4?}

Nandan, Stanewsky and Inger [48], however, argue that

a more detailéd and physically correct treatment is
required of the interaction of the boundary layer with

the shock wave. This is neceséary because of the way this
interaction governs.the way the boundary-léyer responds to
the subsequent adverse pressure gradients, thereby '
influencing the flbw conditions at the exit plane of the
nozzle (or the trailing-edge of an airfoil). Their flow
solution is obtained by embedding anvanalytical solution
for near-normal shock/boundary-layer interaction as a '
module within a boundary-layer'inviscid flow computation
code. For the analytical solution of the interaction

a nonasymptotic triple deck disturbance model is employed.
This model comprised an upper mixed flow region, outside
the boundary layer, consiting of an incoming potential
supersonic flow and a subsonic potential flow separated

by a given shock discontinuity. Below these regions lay

a doubly-infinite nonuniform boundary-layer region,
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containing a highly rotational, mixed transonic linear
disturbance flow. Near the wall, lay a viscous disturbance
sublayer containing the upstream influence and the skin
friction perturbation.

The results obtained using the above model to
describe the shock/boundary-layer interaction showed
that, in some cases, although the error in not treating
the interaction in a special way was small in the region
of the shock, this error was amplified as the solution was
integrated downstream. Thus Nandanan, Stanewsky and Inger
argued that an analytical treatment of the interaction was
necessary to ensure accurate computation. »

A third approach is possible, however, though
it has until now found little application. This consists
of applying correlations obtained from experimental data,
relating the change in the boundary layer variables. of shapé
factor and momentum and displacement thickness with the outer
flow variables of Mach number and mainstream turbulence
before the shock. Although further experimental data is
needed, before the correlations are perfected it is possible
to make first order approximations from data obtained by
Raghunathan and McAdam [49] and Kooi [50].'

+ No attempt has been made, in this réport, to
model analytically the shock/boundary4layer interaction.
Instead the pressure rise across the shock was smeared and
the boundary layer then solved merely as if it was in the
presence of a strong pressure gradient. However a small
step change in shape factor was imposed across the shock
so that the total change in shape factor across the smeared
shock was of a magnitude indicated by Ragunathan and McAdam.

2.7.6 Boundary Layer Separation.

If the flow in a boundary—layer experiences an
adverse pressure gradient, it will lose momentum in flowing
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against this pressure gradient., If the region of adverse
pressure gradient is of sufficient length, there will come
a point at which some of the fluid in the boundary-layer
will have lost all of its initial momentum and will
stagnate. Further past this point some fluid will under
the influence of the pressure gradient, have reversed

its original direction and will flow in an opposite
direction to that of the outer inviscid flow. The point
at which the boundary-layer flow stagnates varies across
a plane normal to the solid surface. The flow nearest
the wall, will, in general, have had the least initial
momentumvbefore it experienbed the adverse pressure
gradient, and will therefore, be the first to stagnate.
Flow further from the wall will stagnate a point further
downstream. Thus, there will appeaf a locus of points
within the boundary layer at which the velocity; u,'is
zero. Also, there must be one streamline, a dividing
streamline, which separates streamlines that reverse
their direction at the u=0 locus, from those that start
further upstream. This streamline, because of the variation
a£ which the boundary—layer fluid stagnates, comes out
of the Qall and the flow is said to have separated from
the solid boundary. That is, the streamlines no longer
follow the wall.

This phenomenum is termed boundary-layer
separation. The onset of separation can usually be
determined by monitoring the value of the shape factor,

H, as the boundary layer solution is integrated downstream.
If the value of H suddenly rises sharply reaching a value
of approximately 2.4 or greater, then the boundary layer
can be assumed to have separated. Egns (104) relatihg
H, to H are no longer valid, once separation has occured.
Fortunately an alternative relation exists, as used by
Heritage [51], which is valid in the region and downstream
of boundary-layer separation

H, = H(O.5H + 1)

H-1

This relation has been used in this report, where separation -

(106)

has been detected.
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3 RESULTS AND DISCUSSIONS

3.1 The Inviscid Solution of the Nozzle Problem

Figure (9) shows the solutions obtained for the
components of velocity in the axial (x-) direction against
axial distance from nozzle inlet, along both the centre-
line and'the wall of the two-dimensional, symmetrical
convergent-divergent nozzle specified in Table (2). The
values of the inlet total temperature and pressure were
293.15(K) and 93428.0(Pa) respectively, and the value of
the back pressure was 79040.06 (Pa). The fluid was
assumed to be air with a ratio of specific heats equal to
1.4 and the gas constant, R, was taken as 288.7 KJ/KgK.
The numerical solution scheme, 2D-IN, was inviscid, the
effects of boundary-layer growth along the nozzle-walls
being ignored. Onto Figure (9) have been plotted the
results of Damia-Torres [52] » obtained by the application
of his inviscid code to an identical nozzle operating

under identical conditions.

The general form of the predicted velocity
distributions is as expected. A mostly continuous
acceleration of the flow is observed until a point some
distance downstream of the throat of the nozzle. At this
point a sharp fall in velocity is predicted, after which
the flow decelerates gradually to the exit of the nozzle.
The acceleration of the flow through the entire convergent
section, upto the throat and thence through some of the
divergent section, indicates that the flow at inlet is
subsonic, but that it accelerates through a choked throat
(at which the velocity is sonic) to a supersonic value.

The predicted sharp fall in velocity represents the
discontinuity at the shock wave, across which the total
velocity falls from a supersonic to a subsonic value. The
gradual deceleration downstream of the shock wave indicates
that the flow after the shock-wave is, as expected, subsonic.
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A further point of interest is the fact that the sharp
fall in velocity along the kall is predicted to occur
a small distance upstream of the corresponding point
on the centre—line._ The significénce of this distance
being small is that the solution predicts the presence
of a nearly (but not exactly) normal shock-wave in the

nozzle duct.

The agreement between the velocity distributions
pPredicted by the 2D-IN scheme and those predicted by
the inviscid code of Damia-Torres is very good. Only in
the region a small distance upstream of the predicted
location of the shock wave is the difference between
the two solutions significant. ‘The maximum discrepancy
is between the value of veldcity predicted at the shock
and is approximately five percent (5%). However, as
Damia Torres readily admits his inviscid code, in particular,
results in an’overprediction of the values of velocity
at the shock, when compared to interpolated values obtained
experimentally using Laser-Doppler anemometry. Thus. it
appears that the present inviscid code (2D-~IN) is slightly
more accurate, for this test case at least, then the inviscid
code of Damia Torres. The number of nodes used in the
2D-IN code is similar to that used in the inviscid code
of Damia Torres, approximately 1000. ‘The .2D-IN code
required approximately 10 minufeg df CPU time on a Perkin-
Elmer 3210 mini-computer, corresponding to approximately
one-hundred iterations, to‘achieve a satisfactory convergence.
The number of iterations and the CPU time required by the
inviscid code of Damia Torres is not known to this author.

It can be seen that the 2D-IN code predicts
an undershoot in veloeity immediately after the shock,
particularly along the wall. This results in the wiggle
in velocity distribution after the shock. Such a wiggle. is
commonly predicted using potential methods to model
transonic flows and is caused by the sharp change in
artificial viscosity as the flow goes from supersonic



(high artificial-viscosity) to subsonic (zero artificial-
viscosity) across the shock. - It was not felt that this
undershoot was of sufficient magnitude to significantly
affect the validity of the solution.

Figure (10) shows the distributions of Mach
number, again along the centre-line and the nozzlerall,
predicted by the inviscid 2D-IN solution code for the
above nozzle operating at the same conditions as before.

The general trends of the predicted Mach-number distributions
are similar to those of the axial-velocity distributions.

3.2 The Viscous Solution of the Nozzle-Problem

Figure (11) shows the distributions of axial
(x-) velocities, along both the centre-line and the wall
of a two-dimensional convergent-divergent nozzle, predicted
by a two-dimensional viscous solution procedure, 2D-VI.
The nozzle geometry and operating conditions were as in
section 3.1. The effects of viscosity were included into
the main inviscid code by applying a transpiration model
along the nozzle-wall. The growth of the boundary-layer
was predicted using integral methods (one for a laminar
boundary—layer and the other for a turbulent boundary-layer).
A transpiration fluid was then allowed to flow through the
nozzle wall of value sufficient to displace the stream-line
along the wall by one boundary-layer displacement thickness.
Onto Figure (ll) have been plotted the prédictions obtained
by Damia Torres using his viscous-adiabatic Navier-Stokes
model applied to the identical nozzle operating under the

identical conditions.

The general form of the velocity distributions
predicted by the viscous 2D-VI code is similar to those
predicted by the inviscid 2D-IN code: The flow accelerates
from an initial subsonic value through a choked throat to
a supersonic velocity followed by a gradual deceleration of



the flow in the divergent section of the nozzle. The
regions of acceleration and deceleration are separated by

a sharp drop in velocity signifying the pressure of a

shock wave. The difference between the positions of the
shock-waves along the centre line and along the wall of the
nozzle is greater using the viscous 2D-VI code than that
predicted by the inviscid 2D-IN code. Thus, the inclusion
of viscous effects results in a prediction of a shock wave
across the nozzle which is more curved than that which
would be predicted if viscous effects were ignored.

The agreement between the velocity distributions
predicted by the viscous (2D-VI) code and those predicted
by the viscous code of Damia Torres is good. The values of
the maximum velocities (at the shock) predicted by the two
viscous codes are very nearly identical. The only difference
between the two viscous codes is that the code of Damia Torres
predicts slightly lower velocities along the wall after the
shock and predicts the shock along the wall at a position
slightly upstream, compared to the 2D-VI code.

The viscous potential code predicts finite
values of fluid velocity at solid walls, as does the
inviscid potential code. In neither code is the no slip
condition, that the fluid at solid walls must be at rest,
imposed. The viscous correction effects are achieved by
imposing a finite value for the potential gradient normal
to the wall, whereas in the fully inviscid analysis this
gradient is set to zero. 1In reality the no slip condition
does apply and the fluid velocity along a so0lid wall must
be zero. Care must be taken therefore when comparing actual
experimentally determined results to those predicted by a
viscous-correction type potnetial method. It is suggested
that the fluid is measured experimentally just outside the
boundary-layer rather than on a solid wall itself.

As mentioned previously the viscous (corrected)

2D-VI code predicts higher values of axial velocity along
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the wall, after the wall shock-wave, than does the
corresponding code of Damia Torres. The 2D-VI code
ensures that, at exit from the nozzle, the flow is uniform.
Hence at the exit plane, the velocity of the fluid along
the wall is equal to that at the centre-line. This is

not the case for the code of Damia Torres, and at exit

the velocities predicted by the two codes are slightly
different.

Figure (12) gives the velocity-vector plot of
the convergent section of the nozzle obtained using the
viscous 2D-VI potential code. A velocity-vector has been
drawn for every node in the computational flow field in
the convergent section of the nozzle, containing the information
on both magnitude and direction of the total velocity at
each node. Due to the symmetry of the nozzle about its
axial centre-line, only the half of the nozzle flow field
above this centre-line is shown. Figure (13) gives the
corresponding plot of velocity-vectors for the divergent
section of the nozzle. From these two vector plots it
can be seen that the flow is everywhere smooth. The
acceleration in the convergent section is demonstrated
by the increase in magnitude of the velocity vectors.

In the divergent section the rapid decrease in velocity
at the shock and the resulting gradual deceleration to

exit is also clearly displayed.

_ Figure (14) shows the distributions of Mach
number, along the centre-line and outer wall, predicted
by the viscous 2D-VI potential code for the nozzle
operating under the identical conditions as specified

previously.

3.3 Comparison Between the Viscous and Inviscid
Potential Codes

Figure (15) shows the solutions obtained for
the axial-velocity distributions, along the nozzle wall,
using both the completely inviscid potential code, 2D-IN,



and the viscous-corrected potential code 2D~VI. The
nozzle geometry and operating conditions were as before.

It can be seen that for the region from the nozzle inlet

to a small distance upstream of thebshock, the velocities
predicted by the two different potential codes are identical.
In this region the flow is accelerating rapidly and the
boundary layer remains in consequence, thin. Thus the
inclusion of a boundary-layer correction into the inviscid
core solution will have little effect on the final solution.
Downstream of this region, however, there is a significant
differenbe in?the velocity distributiohs predicted by the
two codes. Tﬁé viscoﬁs code predicts the shock position
some distance upstream of that predicted by the inviscid
code (119.20mm compared to 123.08mm axially from the

nozzle inlet). Also, the viscous potential code predicts

a lower value of velocity immediately upstream of the

shock (399.88 m/s) than that predicted by the inviscid

code (419.18 m/s). Downstream of the shock the velocities
predicted by the viscous code are slightly higher than those
predicted by the inviscid code. Thus, not suprisingly,

the greatestdiscrepanciesbetween the inviscid and viscous
potential codes occur in the regions where the boundary-layer
grows most rapidly. As can be seen from Figure (16) the
boundary-layer grows most rapidly at the shock itself, due
to the interaction effects between the shock and the
boundary layer. This is responsible for the change in
shock position and strength observed to occur with the
inclusion of viscous effects. Downstream of the shock

the bouhdary—layer grows gradually due to the adverse
pressuré gradient and the difference in the'velocity
distributions predicted by the two potential codes is more

modest, though still significant. The effect of viscosity in reducing
the predicted shock strength will also reduce the total pressure loss and thus

increase the total pressure at exit. ,
The effect of viscosity in reducing the velocity

at the shock and in forcing the shock upstream was also
encountered- by Damia Torres and by many other researchers
in the field. Thus it'appears that, qualitatively at
least, the influence of. the boundary-layer growth on the
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nozzle walls has been correctly modelled. The viscous
code of Damia Torres predicted velocities after the shock
of values lower than that predicted by this inviscid
code. The 2D-VI viscous code of this author, however,
predicts velocities after the shock of values higher

than that predicted by the 2D-IN, completely inviscid,
code of this author. '

The diScrepancy between the velocities near the
wall, downstream of the shock, predicted by the viscous
code of Damia Torres and that of this author is due to the
method whereby the viscous effects are modelled. The code
of Damia Torres sclWes the Navier-Stokes‘equations
utilizing a turbulence model whereas that of this author
uses a transpiraﬁion flow to introduce viscous effects.
Thus the code of Damia Torres will enforce the no-slip
conditions along solid walls and will result in low velocities
near these walls. The 2D-VI code, however, enforces the
no-through flow condition (modified slightly to allow some
transpiration) and results in relatively high values of
velocity near the walls. Thus it is not surprising that the
2D-VI code predicts higher velocities near the wall, in
regions where the boundary-layer is thick, than does the
viscous code of Damia Torres. 1In addition the code of
Damia Torres does not assume isentropy and allows for a
gain in entropy across the shock and a loss in total
pressure due to the visccﬁs losses associated with the
boundary-layer. This will also result in a difference in
the velocities predicted'by the two modéls, in the region
downstream 6f the shock‘where~the boundary—léyer grows

sinificantly.

3.4 Prediction of Boundary Layer Displacement thickness

Figure (16) shows the shape of the boundary-layer
displacement thickness along the nozzle wall, predicted by
the integral method utilized in the 2D-VI code. The
nozzle geometry and operating conditions were as before,



and the scale in the y-direction has been stretched by
a factor of five so as to magnify the boundary-layer.

From this figure it can be seen that, upstream
of the shock wave, the boundary-layer displacement thickness
is very small. In this region the flow is accelerating
rapidly and the boundary layer encounters, therefore, a
strong negative pressure gradient. This negative pressure
gradient assists the flow of the fluid within the boundary
layer and keeps the boundary-layer thin.

The large.jump in boundary-layer thickness,
visible in Figure (16) is due to the interaction between
the boundary—layer and the shock wave. It is known
that such an interaction results in a sudden change in
boundary—layer displacement-thickness, momentum thickness
and shape factor. The fluid processes occuring within a
shock/boundary-layer interaction are verylcomplex and
difficult to model. The effects of such an interaction on
the boundary-layer development have been introduced by

use of correlations, as described in section 2.7.5.

Downstream of the shock-wave it canAbe seen
from Figure (16), that the flow decelerates gradually' to
the exit plane of the nozzle. The boundary layer in this
region will therefore encounter an adverse (9051t1ve) pressure
gradient. The fluid within this boundary layer will lose
momentum in flowing against this pressure gradient and

will thicken, as shown in Figure (16).

3.5 The Solution of the Nozzle Flow at a Lower

Pressure Ratio

, In order to further validate the potentiai flow
models, used in this report, both the 2D-IN and the 2D-VI
codes have been applied to the identical nozzle as before
operating under different conditions. Figure (17) shows

the axial velocity distributions, along both the'centre—line



and the wall of the nozzle, predicted using the inviscid
2D-IN potential code. The nozzle'geometry,was as specified
previously but the operating conditions were slightly
different. The conditions at the nozzle inlet were
exactly as before but the value of the back pressure was
increased from its previous value of 79040.06 (Pa)

to 82040.06 (Pa). Thus the nozzle is modelled operating
at a lower total inlet-to-exit static pressure ratio.

No results obtained using either of the potential codes of
Damia Torres were available for the nozzle operating at
this pressure-ratio and instread the velocity-distribution
predicted by the analytic one-dimensional method has

also been plotted onto Figure (17).

, Comparing the velocity predictions obtained from
the 2D-IN code applied to the nozzle operating at the higher
value of pressure ratio, Figure (9), to those obtained by
application of the same code to the same nozzle operating
at the lower value of pressure ratio, Figure (17), reveals
the following: The values of velocities predicted for the
two cases are very nearly identical in the region from
nozzle inlet to the position at which the shock occurs in
the lower pressure-ratio case. For the case of the lower
operating pressure-ratio, however, the shock along both
the wall and the centre-line is predicted as occuring some
distance upstream of the corresponding location of the shock
predicted for the case of the higher operating pressure
ratio. Also the value of the velocity at the shock has
~decreased as the shock has moved upstream as a result of the
increase in back-pressure. Thus the 2D-IN unviscid
potential code predicts that the shock moves towards the
throat with an accompanying decrease in velocity at the
shock, as the back pressure is increased. This is
exactly the effect expected from established convergent-
divergent nozzle theory and that this behaviour occurs _
has been proven conclusively by experimental observation.

It appears, therefore, that the 2D-IN code reacts correctly
to a change in nozzle operating conditions.



- Figure (18) shows the distributions of x-velocities
predicted by the viscous 2D-VI potential code for the
above nozzle operating at the higher value of back pressure
(pb = 82040.06), with the inlet conditions as before.
Comparing these results to those predicted by the same
code for that nozzle operating with a lower value of back
pressure, Figure (1ll), and it can be seen that the viscous
potential code reacts to a change in nozzle-operating
conditions in a similar manner to that of the inviscid
potential code: An increase in back pressure forces the
shock towards the throat and reduces the value of velocity
at the shock.

Flgures (19) and (20) shows the distributions
of Mach number along the nozzle wall predicted by the
inviscid and viscous potential codes respectively, for
the nozzle operating at the lower value of inlet-to-exit

pressure ratio.

3.6 The Convergence of the Solution

The value of the change in velocity potential,
from iteration to iteration, divided by the local value of
mesh spacing is calculated for each node in the flow field
as the solution progresses. The sum of these (absolute)
values at all nodes then represents the total change in
velocity at all nodes and gives'an indication as to how
well the soiution has cbnverged. Convergence is assumed
to have occured, and the solution terminated, when this
sum falls below some predetermined value. In figure. (21)
'this sum, called for convenience the residual, is plotted
against the number of iterations completed for the inviscid
solution procedure, 2D-IN. The nozzle 'geometry and inlet
operating conditiens were as before and the back pressure
was 79040.06 Pa. The residual initially decays rapidly and
then approaches aéymptotically some near-zero value,
signifying that a satisfactory convergence of the solution
has been achieved. The solution was assumed to have



converged when the value of this residual fell below 500.

As the solution was achieved on a computational mesh of

1000 nodes this signifies that the average change in
velocity, from iteration to iteration, was on average
0.5m/s. A change of a mere 0.17% approximately. Nobte

that this residual is not the residual often used to express
convergence [lq where the calculated values of potential
are inserted into the gbverning flow equations at each node
and the difference in the L.H.S. and the R.H.S. of the
equations are summed. This alternative form of residual was
determined for the above case. At convergence, where the
residual calculated in the fomer manner was about 500,

the residual calculated in the alternative manner was

6.59 x 10~°.

In Figure (22) the value of the residual
after each iteration is displayed for the viscous 2D-VI code -
applied to the nozzle operating at the above conditions.

The behaviour of this residual is similar to that for the
inviscid potential code, but the decay in the value of

the residual is subject to some oscillation. This is caused
mostly by the change in values of the transpiration
velocity of the fluid allowed to flow through the nozzle-
wall, from iteration to iteration, required to model the
viscous effects. The boundary-layer calculation is updated
after each iteration and hence the distribution of
transpiration velocity changes ‘likewise. During the
latter iterations some of the oscillation in the value

of the residual is also due to the change in the value

of the velocity potential at exit required to match the
exit static pressure predicted by the solution to the

known value of nozzle back pressure.

3.7 The Inviscid Solution of the Cascade Problem

Figure (23) shows the distributions of Mach
number against fraction of axial-chord, along both the
suction and the pressure surface of a double-circular-arc
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compressor cascade, predicted by the inviscid potential code
CAS-IN. The geometry of the blade is as specified in
Table (3) and it is assumed to be operating with an inlet
air-flow Mach number and angle of 0.995 and 58.42°
respectively and an inlet total temperature and pressure
of 288.15K and 101325.0 Pa respectively. A blockage
factor, accounting for annulus boundary-layer and change
in blade height from inlet to outlet, of 1.16 is assumed
and the static pressure ratio across the blade is known
to equal 1.242. The blade spacing is 56.43 mm and the
stagger angle of the blades is 47.4°. The fluid flowing
through the cascade is assumed to be air with a ratio of
specific~heads, Yy, egual to 1.4 and a gas constant, R,
equal to 288.7J/KgkK.

The 'numerical solution scheme, CAS-IN, used.
to predict transonic flows in turbomachinery cascades is '
based on the inviscid potential scheme, 2D-IN used previously
to predict two-dimensional transonic flows in nozzles.
Thus the potential code, CAS-IN, is completely inviscid
and ignores the effects of the growth in boundary-layer
along the blade surfaces. As the compressor blade is
part.ofa stationary cascade this code also ignores rotational

effects.

o The cascade blade row specified above has been
experimentally investigated at the Von-Karman Institute of
Fluid Dynamics |53], and the experimental distributions of
Mach number obtained at the above operating conditions have
been plotted onto Figure (23). ’

The flow inlet to the blade is initially
subsonic as required by the solution procedure. The
inviscid potential code, CAS-IN, predicts that, along the
pressure—surface,;the flow diffuses gently to a Mach number
at the trailing-edge less than that at the leading edge.
Along the suction surface, the flow is predicted as
accelerating rapidly in the region of the leading-edge
to a maximum value of Mach number of approximately 1.24.
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Thence, the flow is predicted as decelerating rapidly

to a Mach number of approximately 0.9, after which it
decelerates gradually to the trailing edge of the blade.

The rapid deceleration of the flow along the suction surface,
at a fraction (x/c) of axial chord equal to approximately
0.38, represents the presence of a normal shock-wave at

this point.

The values of Mach number, predicted by the
CAS-IN code along the suction and pressure surfaces of
the blade, are very nearly equal in the region close to
the blade trailing-edge. Thus the Kutta condition, that
the Mach numbers along these two surfaces are equal at the
trailing edge, is satisfied. This Kutta condition was
achieved by an iterative process whereby the outlet
air-flow angle was varied until the two Mach-numbers
at the trailing edge were equal. The outlet air-flow
angle which satisfied this condition was found to equal
37.75°. |

The outlet air-flow angle determined by
experiment is, in contrast, 43.79 degrees. Thus the
inviscid potential code predicts that the flow is
turned through an angle approximately 6° greater than
that which occurs in reality. The outlet air-flow angle
predicted by the CAS-IN code is very close to the blade
outlet angle, 37.5 degrees. ' Thus, it appears that the
inviscid potential code predicts that the deviation of
the flow is very nearly nill. The inability of the 2D-IN
code to predict deviation is due to its neglect of the
boundary-layer development on the blade surfaces and of
the wakes which occur downstream of the blades. These
viscous effects are largely responsible for the fluid
experiencing, in bractice, a deviation. Thus any model
which ignores these effects cannot be expected to predict
a deviation, and hence the correct value of outlet air-flow
angle.



The CAS-IN potential code applied to the
cascade blade-row operating under the conditions described
previously predicts that the flow is turned by an angle
of about 200, from inlet to outlet, accompanied by an overall
deceleration of the flow. This deceleratlon of the flow
is largely due to the change in flow area from 1nlet to
outlet corresponding to the change in air-flow angle.
The deceleration of the flow at outlet compared to
that at inlet will result in a rise in static pressure
from 1nlet to outlet, as given by the compress;ble form
of the Bernou111 S equation. It is this rise in static
pressure which a stationary compressor‘bladevrow is required
to produce and a measure of the ratio of the losses incurred
in achieving this rise to the value of the rise itself
gives an 1nd1cat10n of the eff1c1ency of the compressor

blade row.

The inviscid potential code has predicted Mach
numbers on the suctien surface as almost everywhere
greater than the corresponding point on . the pressure
surface. Thus from the compress1ble form of the Bernoull'
equation the static pressure along the pressure surface
will be everywhere greater than the corresponding point
on the suction surface. This pressure difference between
the two surfaces of the blade will cause a force to be
exerted on the blade, and this blade-loading will depend
on the integral of the difference in pressure on suction
and pressure surface along the blade.

The agreement between the Mach number distribﬁtions
predicted by the inviscid potential-code, CAS-IN and those
obtained by experiment is in general good Some discrepancy
does occur at the shock, with the CAS-IN code underpredicting
the value of Mach number at the shock, on the suction
surface, by approximately 6%. Also the deceleration
predicted across the shock has been smeared by the
potential code, compared to the experimental results.
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The smearing of the shock has been noticed by many
researchers and is a result of the inclusion of
artificial-viscosity into the potential code [2] .
Artificial viscosity is included into the potential code
to provide stability to the numberical scheme and to
enable the use of a simplified solution scheme but. its
inclusion does introduce an error into the final solution.
The artificial viscosity acts in a manner similar to
actual fluid viscosity and produces a smeared shock-wave
of thickness greater than that which occurs in actual
practice. This smearing is unavoidable and can only be
reduced by reducing the artificial viscosity by, for example,
refining the computational mesh. This will, however,
reduce the stability of the numerical solution scheme and
may lead to a divergence in the solution procedure. 1In
practice it is necessary, therefore, to utilise an
artificial viscosity which satisfies some compromise
between accuracy and stability. Elsewhere on the suction
surface, away from the vicinity of the shock-wave, the
predictions of the inviscid potential code CAS-IN
corresponds well to experimental observations.

Along the pressure surface of the blade, the
CAS-IN code predicts Mach numbers which are very close to
those suggested by experiment everywhere except in the
immediate vicinity of the leading-edge of the blade.
In this region the inviscid potential code predicts
Mach numbers higher than those obtained by experiment. It
is likely that this error is as a consequence of the blade
not seeing exactly the correct angle of incidence at the
-leading-edge. It is known that a minor change in this
angle can have significant effects on the Mach~number
distributions at the leading edge, partlcularly on the
pressure surface.

. %‘.3‘ .

The error in the angle of incidence experienced
by the blade is most likely caused by either a small
error in the mathematical approximation of the blade
geometry at the leading-edge or, alternatively, is
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due to the effect of ignoring the boundary-layer in this
region. The geometry of the blade is specified as a
number of discrete points and in order to construct the
computational grid it is necessary to fit curves through
these points and to interpolate between them. As the
blade is most highly curved at the leading-edge it is
possible that the cubic-spline approximations used in

this interpolation result in small errors in the specification
of the location of the nodes on the blade surfaces and the
gradients at these nodes. Thus an effective blade
geometry is described which is slightly different, at

the leading edge, from the actual blade which is being
‘modelled. This difference in geometry at the leading

edge will cause some error in the angle of incidence seen
by the blade with possibly the consequential errors in

the predictions of Mach-number in the region of the

leading-edge, seen in Figure (23).

. Alternatively, it may be that the effect of
ignoring the growth of the boundary-layer on the blade
- surfaces is responsible for the errors in Mach-number
distribtuions predicted near the leading edge by the
CAS-IN code. This boundary-layer will effectively change
the geometry of the blade with a resultant change in
incidence angle. Although this change in blade geometry
will be small due to the thinness of the boundary-layer
near the leading edge, its effects may well be significant.

The vector plot of the velocities predicted by
the CAS-IN potential code, within the blade row of the
cascade specified in Table (3) and operating at the
conditions specified previously, is given in Figure (24).
From this vector plot it can be seen that the flow is
smooth and follows the shape of the blade geometry. The
velocities on the suction surface are everywhere greater
than at the corresponding point on the pressure surface
with the exception of the first node from the leading-edge.
The velocity along the pressure surface is seen to rise
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fairly rapidly in the immediate vicinity of the leading
edge and then to fall equally as rapidly. This is due to
the effect of incidence angle mentioned previously. The
incidence angle experienced by the modelled blade is
obviously smaller than that experienced in practice by

the blade operating at the same conditions. Thus the flow
on the pressure surface is predicted as accelerating

around the leading edge.

3.8 , The Viscous Solution of the Cascade Problem

Figure (25) shows the distributions of Mach-
number against fraction of axial-chord, along both the
suction and the pressure surface of the stationary
cascade blade row specified previously, predicted by the
viscous-corrected potential code CAS-VI. The operating
conditions of the cascade are as before and the blockage

factor is again taken as 1l.16.

The numerical solution scheme, CAS-VI, used
to predict viscous transonic flows in turbomachinery
cascades is based on the viscous-corrected potential
scheme, 2D-VI, used previously to predict two-dimensional,
viscous, transonic flows in nozzles. The potential code
CAS-VI computes the development of the boundary-layer on
both the suction and pressure surface of the blade and
imposes a. distribution of transpiration velocity along
each blade surface, which displaces the streamline along
that surface by the distance of the bouhdary-layer
displacement thickness on that surface. As in the CAS-IN
~ code rotational effects are ignored asvthe cascade is
assumed to be stationary. The experimentally obtained
distributions of Mach-number obtained at the Von Karman
Institute of Fluid Dynamics, for this cascade row at these
conditions have also been plotted onto Figure (25).

The viscous potential code CAS-VI predicts
that, along the pressure surface of the blade, the flow
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diffuses gently to a Mach number at the trailing-edge

less than that at the leading-edge. Along the suction-
surface, the flow is predicted as accelerating rapidly

in the region of the leading-edge to a maximum value of
Mach numbér of approximately 1.29. Thence the flow is
predicted as decelerating rapidly to a Mach number of about
'0.92 after which it decelerates gradually to the trailing

edge of the blade. The increase in predicted shock strength will result
in an increase in the assumed total pressure loss, campared to the campletely
inviscid solution.

‘ - The value of exit air-flow angle at which the

viscousvpotential—code satisfies the Kutta condition

. for the above blade operating at the above conditions is,
"as for the inviscid code, 37.75°. The CAS-VI code applied
to, this blade thus predicts that the flow is turned through
,anAangle of approximately 20° from inlet to outlet,
_accompanied by an overall deceleration of the flow and a
~subsequent rise in static pressure. The values of Mach
number predicted on the shétion surface are everywhere
greater than those prediCted on the corresponding point

, on~thé pressure surface. Thus, a pressure difference is
‘predicted as occuring between the two surfaces of the blade
from which the 1lift on the blade may be calculated.

The agreemeent between the Mach number distributions
predicted by the viscous-corrected potential code,
 CAS-VI,’and'thoée obtained by éxperiments is very good.

‘As with the inviscid potential code the value of Mach number
fprédiCted_as_ocCuriﬁg immediately upstream of the shock,
on the suction surfécé, is leés than that observed‘byv _
experiment. The error between the predicted and experimentally
‘determined. value of Mach number at this point is only
3%, however, one-half of the corresponding error of the
inViscid-code. - The reason why the viscous potential code
prediéts a Mach-.number'at the shock less than that
'.ocdﬁ?ihg in reality is most 1ikely due to an error in
~ the estimation of the total pressure loss of the fluid .
due -to the"efféct_of boundary-~layer. As will be discussed
in a*latefISeétioh, the potential difference between



inlet and exit of the computational grid is varied
iteratively until the static‘pressure at exit predicted

by the solution is equal to the‘known value of static
pressure at exit of the cascade row. Changing the value

of potential difference between inlet and exit results

in a change in the value of Mach number predicted at the
shock. Thus the accuracy to which this Maéh number is
predicted is dependant on the accuracy to which the o
static pressure at exit is predicted. This value of

static pressure depends on the value of total preésure at
exit as well as the value of Mach number predicted at

exit. The total pressure at exit is calculated as the

total pressure at inlet minus losses in total pressure due
to the shock-wave and due to the growth of the boundary-
layer along the blade‘surfaces. The calculation of total

- pressure loss due to the shock is straightfbrward but

the calculation of the loss due to the bdundary—layer is
more complicated. A fairly crude estimate has been made

of this viscous caused loss (approximately 2% of the
inlet value) ana this will cause an error in the calculation
of the Static pressure at exit and thus an error in the
value of potential difference set between inlet and outlet.
It is likely that it is this error in the value of potential-
difference set between inlet and outlet which is responsible
for,the underestimation of the value of Mach number at the
shock predicted by the CAS-VI potential code.

In common with the inviscid solution the viscous-
corrected solution predicts a shock on the suctidn-Surface,
51gn1f1ed by the rapid fall in velocity, which is
51gn1f1cantly smeared compared to that occuring in reallty.
The cause of this smearing of the shock is the inclusion
of the artificial viscosity terms into the solution
which, as described in the previous section, acts in a
manner similar to real viscosity causing a smearing of

the shock.
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Elsewhere on the suction surface, away from the
immediate vicinity of the shock and along the entire
length of the pressure surface the predictions of the
CAS-VI potential code compare extremely well with experimental
observations. The values of Mach number along the pressure
surface predicted by the viscous-corrected CAS-VI code
are slightly greater than those predicted by the inviscid
CAS-IN code, resulting in the viscous code comparing more
favourably to the experimental results than does the
inviscid code. Similarly the viscous code predicts
slightly higher Mach numbers, downstream of the shock
along the suction-surface, than does the completely
inviscid code, these higher values of Mach number again

comparing more favourably with experiment.

The vector plot of the velocities predicted
by the CAS-VI potential code, within the blade row of
the cascade specified previously is given in Figure (26).
From this vector plot it is apparent that, unlike the
flow-field predicted by the inviscid potential code, the
flow around the leading-edge of the blade is predicted
as being smooth without any sharp acceleration around the
leading-edge{ It appears, therefore, that the inclusion
of the boundary-layer effects has resulted in a change in
the effective geometry of the blade near the leading-edge
which has caused a change in the angle of incidence seen
by the blade. The change in 'effective' blade-geometry,
although most likely small, has had a significant effect
on the predictions of Mach number around the leading edge.

The viscous-corrected code CAS-VI satisfies
the Kutta condition for the same outlet air-flow angle as
did the inviscid code CAS-IN. Thus, the CAS-VI code
fails to predict deviation even though it takes into
account the growth of boundary-layers on the blade
surfaces. This inability to predict deviation must be
due to either the limitations of the transpiration-type
viscous correction or to the neglect of wakes downstream of



the blade. The transpiration type viscous correction simply
alters the gradient of potential normal to the blade surface
from a zero to a non-zero value. These non-zero values were set
so that the streamline along the blade surface is displaced

by one boundary-layer diplacement thickness. However, the
core solution procedure remains inviscid, with the result

that non-zero velocities are also predicted tangential to the
blade surfaces. Also the potential core code does not predict
a boundary-layer in which the velocities change from some
‘relatively high value to zero along the blade surface.

Instead an inviscid solution is predicted on what is
essentially a modified blade geometry. It is possible

that such a simplified viscous correction is unable to

predict deviation.

More likely, the inability of the viscous-corrected
potential code to predict deviation is due to its neglect
of the wake mixing which occur, in reality, downstream of the
blade row. These wakes areregions of relatively low-momentum
fluid resulting from the separation of the boundary-layer
at the blade trailing-edge. It is difficult to model wake mixing
using a transpiration-type viscous.correction. The boundary
condition for the inviscid code, along the blade surfaces,
was that the velocity normal to the blade surface was set
(to zero). The viscous correction merely changed the value
to which these velocities were set (to .non-zero values).
Downstream of the blades, however, the corresponding
boundary condition expresses the periodicity of cascade
flow, see section 2.5.2. The periodicity condition does not
take a form which can easily be altered to include viscous
effects. Thus the modelling of wake mixing is very difficult and
has not been attempted. in this report. The flow predicted
downstream of the blades will, of course, be altered by
the viscous correction occuring within the blade-row but,
in the absence of a wake-mixing model, will not experience any

deviation.



In the absence of a technique to model wakes,
it is likely that the viscous-corrected potential code will
be unable to predict deviation at exit from the blade row.
Thus, whilst the introduction of a viscous correction has
improved the predictions of Mach number distributions
within the blade row, the effects of deviation remain
ignored and the CAS-VI code (as does the CAS-IN code)
predicts an incorrect exit flow angle.

For the test case of the cascade blade row
specified in Table (3) operating at the conditions described
previously, the viscous-corrected potential code CAS-VI
has been found to give considerably improved predictions
of the Mach-number distributions over the blade, compared
to the inviscid potential code CAS-IN. In particular, the
inclusion of viscous effects resulted in greatly improved
predictions of the flow around the blade leading edge and
of the shock strength. More modest improvements were
obtained in the prediction of the flow on the suction surface
downstream of the shock, and in the prediction of the flow

along the pressure surface away from the leading-edge.

Thus, from this test case it is concluded that
the viscous-corrected potential code CAS-VI gives improvements
in the flow-field prediction of sufficient magnitude to
strongly justify the use of this code in preference'to the
inviscid CAS-IN potential code. The preference given to
the viscous-corrected code over the completely inviscid
code is reinforced by the knowledge that the former
requires only fractionally more computing time and storage
compared to the latter.

3.9 Convergence of the Inviscid Solution of the

Cascade Problem

In Figure (27) the residual of the completely
inviscid solution of the cascade problem by the CAS-IN

potential code has been plotted against the'number of completed
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iterations of the solution procedure. As in the solutions
of nozzle-flow the residual used here is defined as the
sum, over all nodes, of the change in velocity potential
between that predicted at the previous and at the present
iteration, divided by the local value of mesh spacing.
Thus the magnitude of the residual gives an indication to
the extent by which the solution changes from iteration to
iteration, and can be used, therefore, as a monitor of
convergence. Convergence was assumed to have occured when
the value of this residual fell below 1200 (m/s). As the
residual sums changes in potential divided by the local
mesh spacing it actually is a sum of the change, from
iteration to iteration, of the change not in velocity
potential but in velocity itself. As approximately

1200 nodes were emplbyed in the computational grid, a
residualyof 1200 (m/s) indicates that the average change
in velocity from iteration to iteration is, on average,

1l m/s. Thus the average change in velocity is a mere
0.3%.

During the first ten iterations the residual
fails very rapidly from an intial value of approximately
13,000 (m/s) to a value of approximately 3,000 (m/s).
Thereafter, the residual decays much less rapidly and
asymptotically approaches a near-zero value. A further
sixtylfive iterations are necessary to reduce the residual
from 3,000 (m/s) to a value bélow 1,200 (m/s).

. The residual used here to monitor convergence
is not that often used elsewhere in which the residual is
" the sum of the difference in the two sides of the governing
flow equation when the computed potential distribution
at a given iteration is inserted into the governing
equations. The value of such a residual, at convergence,
is usually very small (of order lofs), not the large values
obtained using the alternative definition of residual (103),
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3.10 Convergence of the Viscous Solution of the Cascade

Problem

In Figure (28), the residual of the viscous-corrected
solution of the cascade problem by the CAS-VI code has
been plotted against the number of completed iterations.
This residual is calculated, as described in the previous
section, as the sumover all. nodes of the change in the solution
~of velocity potential, from iteration to iteration, divided
by the local value of mesh spacing. As for the inviscid
cascade solution, convergence of the solution is assumed
‘to have occured when the value of this residual falls below
1200 (m/s). ' ' ‘ '

During the initial few iterations, the residual
falls rapidly from an initial value of 13000 (m/s) approx-
imately to around 3000 (m/s). The small rise in the value
of the residual at the tenth iteration is due to the first
alteration of the boundary conditions, made so as to include
the effects of boundary-layer growth. Thereafter the
residually falls gradually, approaching a near-zero value.
Finally, after seventy-five iterations the residual falls
below the pre-set value of 1200 (m/s) and the solution is
assumed to be converged and is, therefore, terminated.

3.11 The Solution of the Cascade Flow Problem with
Different Inlet Air-Flow Angles

In sections 3.7 to 3.8 it was shown that the
viscous-corrected potential code CAS-VI gives more accurate
predictions to the cascade flow problem than does the inviscid
potential code CAS-IN. As this increased accuracy is obtained
with very little extra cost in terms of computer storage
requirements and rﬁnning time it is recommended that the
viscous CAS-VI code always be used in preference to the
inviscid CAS-IN code. '



, In order to further validate the CAS-VI code it
has been applied to the cascade specified previously operating
at the same conditions described previously, with the
exception of the inlet air-flow angle to the cascade and
consequentially the static pressure ratio across the
cascade. No experimental data was available for this
cascade at other inlet air-flow angles and, therefore, no
conclusions can be drawn as to the accuracy of CAS-VI
code at these angles. However, it was felt to be of interest
to determine qualitatively the effects predicted by this
code as the inlet angle varies.

As will be discussed in a later section, the
potential solution is non-unique and for the solution of
transonic flows requires that the value of static pressure
at exit from the cascade is known a priori. No information
is known to this author on the variation of the static
pressure rise, across the cascade considered in thiskreport,
with change in inlet air-flow angle. An estimation of this
pressure rise at inlet angles other than 58.42 must,
therefore, be made. A crude estimation has been made by
assuming that the pressuré rise varies approximately
linearly with air-flow angle. This will result in errors
in the predicitons by the CAS-VI code at angles other than
58.42, but this was not felt to be important as it is the
qualitative effects of change in inlet air-flow angle
which is of interest, in the absence of experimental data at
these other angles. Thus, the static pressures at exit of
the cascade are set in accordance with-the values of pressure

rise across the cascade given below:

Figure Inlet Air Angle Pressure Rise
. o« Ap/%pV,1?
29 . 56.42 0.2915
30 57.42 o ~ 0.3192
31 58.42 | 0.3512 (known)
32 '59.42 0.3763

Table 4



Figures {29), (30), (31) and (32) give the
distributions of Mach humber against fraction of axial
chord predicted by the CAS-VI potential code, for the
cascade specified previously operating with an inlet air-

flow angle as given in Table 4.

Comparing Figures (29) to (32) it can be seen
that the viscous-corrected potential code predicts that,
as the inlet air-flow increases, the value of the Mach
number at the shock also increased contributing to an
increase in the lift on the blade. The value of Mach-number
near the trailingfedge of ‘the blade, however, is predicted
as decreasing as the inlet air flow angle increases. Also
of interest is the fact that, at lower values of inlet air-
flow angle, the velocity on the pressure-surface near the
leading-edge is higher than that at higher inlet angles.
This effect is obviously due to the change in incidence
angle seen by the blade with change in inlet air-flow
angle. This observatien agrees with the hYpothesis that
the cause for the overestimation of Mech—number, on the
pressure surface near'the leading edge, by the inviscid
CAS-IN code is caused by the blade seeing an incorrect

value of incidence angle.

The reduction in Mach-number at exit from the
cascade with increaee in inlet angle, predicted by the
CAS-VI code, is as expected to occur in practice. An
increase in inlet air-flow angle will result in a reduction in
the outlet-to—inlet_area ratio of the flow, A,/A,, as these
areas are proportional to the cosine of the relevant
air-flow angle. The flows at inlet and exit are both subsonic
and, therefore from mass-continuity, the Mach-number at
exit will fall with an increase in inlet angle, always
provided the inlet Mach number remains constant. The
predicted f£all in Mach number at exit of the cascade
contributes to the rise in exit static-pressure, with increase

in inlet air-flow angle,
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The viscous potential code, CAS-VI, predicts
that the blade loading increases with increase in inlet
air-flow angle, an effect which is expected from
experimental observations of many other cascade blade
rows. Thus this code predicts qualitatively at least, the
correct response of the flow through a cascade to a change
in the value of inlet air-flow angle.

3.12 Non-Uniqueness of the Potential Solution

It has been shown that the potential solution
of transonic flows can result in more than one prediction
of flow-field, for the same values of inlet and exit
Mach number and angle. These multiple solutions usually
vary most significantly from each other in their predicted
values of Mach number at the shock and in the position
of the shock itself. It is, therefore, necessary to have
some means of establishing which of these multiple solutions
corresponds to the actual physical flow which is being
modelled. The non-uniqueness of the potential solution
is due to its assumption of isentropy, which is invalid
across the shock-wave. Thus it is necessary to establish
which of the multiple solutions is the correct one by means
of a non-isentropic exit variable. The isentropic potential
flow model leads to a uniquely defined outlet state through
the isentropic connection between inlet and outlet. Across
a shock-wave, however, the flow is non-isentropic, the
change in entropy being dependant on the strength of the
shock. It is not, therefore, possible for a given inlet
state to directly fix the shock position and strength by
means of a physical outlet boundary parameter such as
velocity density or pressure.

In the four potential codes described in this
report, 2D-IN, 2D-VI, CAS~IN and CAS~VI, the strength and
position of the shock wave was fixed by the specification
of the difference in VelocitY'potential between inlet and
outlet. It was found that for any given potential difference,
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between inlet and outlet, there exists a single unique
potential solution for a fixed mass flow rate and inlet
state. This potential solution will differ from others
obtained, at the same mass-flow rate and inlet state, using
a different value of potential difference between inlet and
outlet. '

The problem of determining which of a series of
potential solutions corresponds to the actual physical
flow being modelled is therefore, one of determining which
valﬁe of inlet-to-exit potential difference corresponds
to the physical flow being modelled. In the four potential
codes described in this report this problem has been solved
in an iterative manner. Initially a value of the potential
difference between inlet and outlet was guessed and the potential
flow-field corresponding to this potential-difference solved.
The loss in total pressure across the shock, in this
particulaf flow-field, is then estimated by means of the
one-dimensional normal shock relationships which relate
the loss in total pressure to the Mach number at the shock.
Thence, by using the estimated (non-isentropic) value of
total pressure at exit, the non-isentropic outlet static
pressure corresponding to this guessed value of inlet-to-exit
potential difference is calculated, a posteriori. This
calculated value of the non-isentropic static pressure at
exit is then compared to the actual value of static pressure
existing ét exit. 1If thesé'two values of exit static pressure
are equal thén the guessed value of inlet-to-exit potential
difference is the correct'one, corresponding to the actual
physical flow being modelled. If these two static pressures
are unequal, however, the guessed value of potential-difference
is altered and the above procedure repeated until the
calculated non-isentropic static pressure at exit equals the

known value which exists in practice.

The'potential solution of transonic flows as
described above requires that one of the non-isentropic
exit paramaters, in this case the exit static pressure, be
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known a priori. In general it is desirable, particularly

for internal turbomachinery blade flows, that the numerical
technique used to model flows through turbomachinery components
can accurately predict the flow-field within these components
without the need for specifying in advance any parameters

at exit. Thevrequirement that the static pressure at exit

be known a priéri is a major disadvantage of potential
solutions and limits their application to components where

this exit static pressure is either known or can be accurately
estimated. For the prediction of flows within blade rows,

the potential solution requires that the exit static pressure
be estimated, in advance, either from experimental observations

or by using cascade correlations.

‘For the solution of flows within éonvergent-
divergent nozzles the potential code is a very useful tool
as it is usual to prescribe, in advance, the static pressure
to which the nozzle will be discharging. The iterative
manner of the potential solution, in which the position
and strength of the shock is altered (by altering the
inlet-to-exit potential difference) until the exit static
pressure corresponds to a known value, is very similar to
the method used to solve for flows within these nozzles
using a one-dimensional analytic method. 1In such an analytic
method the flow is assumed isentropic up to the shock, which
is initially guessed as occuring immediaiely doWnstream
of the throat. Thus, from the isentropic one-dimensional
flow relations, the flow up to the shock can be calculated
analytically (without the need for any iterations). Thence
from the normal one-dimensional shock relations the loss in
total pressure across the shock can be calculated. Assuming
the flow downstream of the shock to exit to be once more
isentropic, the isentropic relations can again bé used to
determine the flow parameters everywhere in this region.

The predicted value of exit static pressure is then compared
to the prescribed value and if the two are unequal the

position at which the shock is guessed is altered. The above
procedure is then repeated until the predicted and prescribed

values of exit static pressure are equal. Indeed, such a
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solution procedure is not far removed from what actually
occurs in practiée. The flow within a noZzle, before

it settles to its steady-state may well have a shock

at a position different from its stready-~state position.
This will result in a difference in the exit static pressure
and the discharge pressure which will send a pressure wave
is an upstream direction throughthe nozzle. This pressure
wave will cause the position of the shock to change until
the exit static pressure equal the back pressure, at which
point the pressure wave will die out. Thus it- is felt
that, although the requisite that the value of exit

static pressure be known a priori is a major limitation

of potential methods, at least the'logic of the solution
procedure is based on what happens in reality.

Figure Predicted exit pressure. error in back pressure
' pexit (N/m?) " (pb-pexit)/pb (%)
29 - 67141.9 - 0.732
30 66962.9 . : 0.250
31 66804.9 -0.170
32 66672.1 : ‘ -0.534
Table 5

Figures (33) to (36) show the distributions of
Mach number all predicted by the CAS-VI code applied to
the cascade blade row specified previously; but with
different values of potential difference between inlet
and outlet. The values of exit static pressure predicted
for these four cases are 67141.9, 66962.9, 66804.9 and
66672.1 Pa respectively. As the exit static pressure
was known to be equal to 66870.3 Pa the errors in the
prediction of exit static pressure (Ppredict - Pgiven)/
0.5 *pv}{ are 0.732 %, 0.25%,-0.17% and -0.534% respectively.
The error in predicted static pressure for the potential
solution of Figure (35) was the only case within the
acceptable limit of + 0.18%, and the predicted flow field
was taken as the one which corresponds to the actual
physical flow-field.
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Comparing Figures (33) to (36) it can be seen
that changing the potential difference between inlet and
- exit does not result in a change in the value of Mach
numbers predicted at inlet or exit from the blade row.
However, changing this potential difference has resﬁlted
in a major change in the shock strength predicted by the
potential soluiton. Thus the loss in total pressure estimated
in these four solutions all vary significantly with a
correspondant variation in the value of the static pressure
predicted at exit from the cascade. It is by comparing
~ this predicted static pressure at exit to the known value,
that it is possible to establish which of the four potential
solutions corresponds best to the actual physical flow-field

which is being modelled.

-~ ‘Note that the flow-field predicted in Figure (36)
gives Mach-numbers which are closer to those obtained by
experiment than does the flow-field predicted in Figure (35).
This is inspite of the latter predicting a value of exit
static pressure which is closer to the kno&n value, than
does the former. This apparent anomaly is due to the errors
"associated with the estimation of the loss in total pressure
between inlet and outlet, caused by the presence of the
boundary layers on the blade surfaces and by the shock-
wave. In particular the estimation of total pressure loss
due to the effect of boundary layer is very crude. Also
the estimation of total pressure loss across the shock
is made assuming that the shock wave is normal and one-
dimensional. This is not the case exactly in this cascade
and so an error will arise in the estimation of total
pressure, and thus static pressure, at exit of the'cascade.

3.13 Stability of the Potential Code

' The inviscid potential code 2D-IN was applied
to the prediction of transonic flow through the nozzle
specified previously, but with a change in either the
number of nodes used in the computational grid or in the
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operating conditions. It was found that an instability
originates in the region of the shock when the absolute
- value of the gradient of velocity in the shock exceeds
1.x10°s”'. This instability was of sufficient severity
to prevent convergence of the solution.

For constant operating conditions, reducing
the size of the mesh spacing of the computational grid
results in improved numerical accuracy of the solution,
as the finite-differencing errors are also reduced.
However, a reduction in mesh spacing is also accompanied
by an increase in the magnitude of apparent velocity
gradient across the shock. The gradient of velocity across
the shock is, theoretically, infinite as at the shock
there is a discontinuity in velocity. However, due to the
-inclusion of artificial-viscosity into the solution scheme
the true step change in velocity is predicted as being
smeared over a couple of mesh spacings. The increase in
velocity gradient with reduction in mesh spacing is the
result of the solution predicting an increasingly sharper
shock jump, as the mesh spacing is reduced. It was found
~that there is a limit to which the mesh spacing can be
reduced, below which instabilities in the solution become
critical. The absolute value of gradient of velocity
across the shock,iat this limiting mesh size, was found

to be approximately 1x10°%.

Alternatively, if the mesh spacing is kept
fixed and the back pressure of the nozzle reduced, then the
potential solution responds so as to predict, as expected,
an increase in shock strength. This increase in velocity
at the shock is accompanied by an increase in the absolute
value of velocity gradient across the shock. For a fixed
mesh spacing, it was found that there exists a limit of
back pressure, below which the potential solution diverges.
The absolute value of the gradient of velocity across the
shock corresponding to this limiting value of back pressure
was found, as before, to be approximately 1.x10%s7 1,
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Thus, for stability of the present potential solution,

it is required that:

Av 5 (™1
Aix absolute < 1+ ¥ 10» (s *) (107)

maxe.

The units of velocity gradient are second !, so equation
(107) is of the following form:

1 | 5
s < . 1. x 10

where At is some length of time

so, for stability of the potential solution, it is required
that:

At < 1. x 105 ; (108)

The solution of the steady state potential equation
of transonic flow is constrained by the regquirement that some
pseudo-time-step, At, is less than 10 microseconds. As an
alternative to the solution of transonic flows by the
steady-state flow equations, it is éossible to 'march' the
transient flow equations forward in time until a . steady-state
is achieved. ‘The existence of a maximum limit of the step
in time, in which the solution can be marched forward in
one iteration of these 'time-marching' techniques is well
known and has been well documented [54]. Thus the stability
requirement of the steady-state potential solution of
transonic flows is very similar in form to that existing .
for the time-marched solutions. Both types of solution
require that, for stability, some time-step At is less than

a certain value.

The limit in the magnitude of the time-step
utilized in time-marched techniques is given by the Courant-
Friedrich-Lewi (CFL) condition. This condition specifies
that the time step, At, from one iteration to the next
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must not be so large that a disturbance originating at
any node is allowed to reach neighbouring nodes with a single
time-step. The CFL condition may, therefore, be expressed

as:

At < DA% | (109)
v + C : '

where, for the region of the computational grid under
consideration, Ax is the size of the mesh spacing and v
'is the velocity. The potential solutions, discussed
earlier in this seciton, were obtained with a mesh spacing
of typically 2mm in the region of the shock and an axial
velocity at the shock of approximately 400 m/s. Thus the
CFL condition requires that the time-step, At, used in the

time-marching techniques is such that:

2. x 10 3

At <
400 x 350

At <2.5x 10 & (s) (110)

The maximum limit of time step of the time-
marched solutions as required for stability is given by the

CFL criteria to be approximately 2.5 microseconds. Thus the

limit of the actual time-step for the transiént time-marched
solﬁtion of transonic flow is a factor of 4 times smaller 7
Athan that which apparently exits for the pseudo-time-step of
the steady-state solution. This may explain why the transient
time-marched techniques require, in general, a factor of 4 or
more times as many iterations to achieve convergence as do

the steady-state techniques.
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The steady-state potential equation used to
model transonic flows, in this report, is:

(pbo,), + (pboy), =0 (23)

Across the shock, the gradient in the y-~direction will be

much smaller than those in the x—direction. Thus, for the
purpose of a stability analysis, we may ignore all gradients

in the y-direction. 1Ignoring these gradients in the deirection,
the potential equation (23) may be expressed as:

(pb) by + (pb) 0. =0 | (111)

from which the following exression for velocity gradient
may be derived

ov - _ = - (pb), ¢ ' : '
® T hx T T (12)

From equation (107), we require that for stability of the
steady-state potential solution of transonic flow, that:

S 1. x 105 | (113)
shock

The gradient of velocity is negativé across the shock,
as velocity falls across a shock-wave.

Substituting for the expression of velocity gradient from
equation (112) into equation (113), the condition for
stability becomes:

- (pb) ¢
X X - 5
——BB——— > l. x 10
or:
(pb) 5 :
X 1. x 10 : (114)

(pb) v
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Equation (114) may also be expressed as:

d 1. x 10°
3% { 1n (pb) } < —_— : (115)

The velocity, v, at the shock,_for the potential solutions
discussed in this section is appproximately 400m/s. Thus
the criteria for stability, equation (107) , requiring that
the absolute gradient of veloc1ty at . the shock is less than
100000 (s !) is equlvalent to stating that gradient with
respect to axial distance (x) of the natural log of the
product of density and blockage factor, at the shock, must
be less than 250 i.e.:-

52 { In (pb) } < 250 (116)

The discussions on stability above have centred
on limiting values of certain gradient across the shock-
wave. To be strictly correct, it is required that the
maximum values of these gradients in the entire flow-field
should be less than the corresponding limiting value, for
stablllty. For transonlc flows however, the maximum
gradients of velocity and density almost always occur at
the shock, and it is sufficient to monitor only'these'

gradients in this region.

. The relationship between the natural log of any
functlon, in this case (pb) the product of f£fluid density
and blockage factor, and the function is as shown in
Figure (37). From Figure (37), it can be seen that at

low values of the product of density and.blockage (pb),

a small change in magnitude of (pb) will be accompanied
by a large change in the magnltude of ln (pb) . Thus it
appears that the steady-state potential solutlon will
exceed the stability requirement of equation (11) and fail
to converge when the value of the product of density and
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blockage becomes small. This limits the operating conditions
of nozzles or cascades at which the potential solution can give
meaningful results to those which result in the minimum value
of density in the flow field remaining relatively high. From
Figure (37) it can be seen that below a density of 0.1 kg/mé,
a small change in density will result in a large change in the
natural log of density, which will probably result in the pot-
ential solution diverging. ' The Mach number corresponding to
this value of density is approximately 2.85 which is outside
the range of flows which may be usefully modelled by potential
methods.

Figures (38) and (39) show the distributions of
(pb) and lne (pb) respectively predicted by the 2D-IN potential
code for a convergent-divergent transonic nozzle. The operating
conditions of the nozzle and the mesh spacing of the computational
grid were chosen such that the solution was at its limit of
stability. Thus, for example, any further reduction in mesh
spacing would have resulted in the solution becoming unstable.
It can be seen from Figure (38) that the minimum value of
density predicted in the flow-field occurs at the shock where
the density is approximately 0.5 kg/m®. Thus the gradient of
lne (pb) across the shock will be approximately double the vélue
of gradient of (pb) across the shock.

For this particular flow field the density has not
fallen so low as to practically make convergence of the solution
impossible. However, across the shock the density rises rapidly
due to the rapid rise in static pressure across the shock. . The
gradient of (pb) and-lne (pb) in this region will, therefore,
be high. ' Figures (40) and (41) show the distributions of (pb)x
and {1ln(pb) }x predicted by the inviscid 2D-IN potential code for
the nozzle operating at the conditions and with the mesh spacing,
as mentioned above. It can be seen that the maximum value of the
gradient of (pb) across the shock is approximately 150, whilst
that of the gradient of lne(pb) is approximately 300. As expected,
the latter gradient is about twice the magnitude of the former
corresponding to a density of 0.5kg/m’.. As this solution was

obtained at the limit of stability it seems that the
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stability criteria of equation (116) is unnecessarily

strict and should be modified to:

’a—i {1n (pb)} < 300 (117)

The limiting value of the gradient of the natural log of

the product of density and blockage has been found, from
Figure (39), to be 300. This differs slightly from the
limiting value of 250 derived previously, equation (116).
The difference between the two limiting values is due to the
neglect of the gradients in the y-direction, in the
derivation of equation (116). Thus it is recommended that
the limiting value of the gradient of the natural log of

the product of density and blockage be taken as 300.

The steady-state potential solution will remain
stable provided that the maximum gradient of the natural
log of the product of density and blockage remains below
about 300. For the range of operating conditions at which
transonic nozzles and turbomachinery blade row operate
in practice, the steady-state potential solution remains
stable provided the mesh spacing in the region of the
shock is not made - excesively fine. For very fine meshes,
the solution attempts to predict very sharp changes in the
flow properties across the shock with the result that the
stability criteria (equation(12)), is violated with
a consequential divergence of the solution. For components
in which the density becomes very low it seems likely that
the potential solution will be unable to converge, even

with coarse computationl grids.

The above stability réquirements have been
derived with reference to the inviscid potential code
2D-IN used to predict transonic flows in nozzles. However;’
as the solution procedure of the viscous corrected potential
code 2D-VI, and those of the cascade codes CAS-IN and CAS-VT
are very similar to thatof the 2D-IN code, then the stability
requirement derived in this section relates equally as well
to all four potential codes.



3.14 Accuracy of the Potential Solution

The numerical error associated with approximating
a partial derivative of velocity potential by the nine-node
central-difference scheme (equation 28) is, in general, a
function of the products of the fourth order partial
derivatives of potential and the mesh spacing. Thus,
assuming that the mesh spacing in the x-direction, Ax, is
equai to that in the y-direction, Ay, then:

Y

Numerical Error = L1(¢xxxxAX“:¢xxxyAxkr¢xxyyAX“’¢xyyyAX !

byyyyte)
If however,this partial derivative is approximated using the
six-node upwind-difference scheme, the numerical error is
~also avfunctibn'of_the'products of the third order partial
derivatives of potential and the cube of the mesh spacing.
' The numerical error of the upwind-difference scheme is of
a lower order than that of the central-difference scheme.
This is because, with‘only six nodes in the finite-difference
lattice, three of the partial derivatives of potential
of thlrd ‘order or less (equation 59) cannot be set to zero.
These ‘partial derivatives are chosen to be of third order
and- thus contribute third order terms to the numerical error
of the upw1nd -difference scheme. As the mesh spacing is
small these)th;rdrorder products are much larger than the
:.fou:th Order:pfoducts, and these'lattér products can be
'ignoréd5 Thus the_numerical error of the upwind-difference

scheme is:
Numerical EerrA= L2(¢. A%’ ,¢ Ax ,¢ Ax?) (118)

In‘régions of suﬁersonic'flow, partial derivatives of
’potentiai,.instead of being approximated by an upwind
diffefence,,haye been approximated by a central difference
, pius‘SOme additional terms. These additional terms are
calledhartificial viscosity and are equal to the numerical
'griqf of the upwind-difference scheme, equation (29),
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Thus, whether parital derivatives are approximated by
upwind-differences or central-differences plus artificial
viscosity, the numerical error of the approximation will
contain third order partial derivatives of potential.

This numerical error is, from equation (55), also a
function of the mesh spacing, Ax, of the computational
grid. Thus, by comparing different predictions obtained
on computational grids of different mesh spacings, and by
analysing the form of the numerical error, a gquantitative
estimate of the numerical error of the potential code can

be made.

Figure (42) shows the distributions of axial
velocity, along the nozzle-wall and centre-line, predicted
by the inviscid 2D-IN potential code applied to the nozzle
specified in Table (2). The inlet total temperature and
pressure were 293.15k and 93428.0 pa respectively and the
back pressure was 79040.06 pa. Again the fluid was
assumed to be air with a ratio of specific heats of 1.4
and a gas constant of 288.7 kj/kgk. The computational grid
used had an average mesh spacing 4.0mm and the grid was
such that the spacing in the x-direction was equal to that
in the y-direction. Figure (43) shows the distributions
of axial velocity, along the nozzle-wall and centre-line,
predicted by the 2D-IN code applied to the identical
nozzle operating at the identical conditions, but derived
using a different computational grid. The mesh spacing
of the computational grid used in the predictions of
Figure (43) was, on average, 2.0mm. Thus the latter set
of these predictions was obtained using a computational grid
twice as fine as that used to obtain the former set of

predictions.

“The two sets of predictions compare very well
"Figure (44) and (45). The closeness of these two sets of
predictions is very encouraging as it suggests that the
numerical error of the CAS-IN potential code is low. The
largest discrepancies between the two sets .of predictions
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occur in the predicted velocity along the wall at x=38mm and
in the predicted velocity along the centre-line at the

shock.

The CAS-IN code, with the coarse grid predicts
an axial velocity along the centre-~line, at the shock,
equal to 383.4m/s. The same code used with the fine grid
predicts an axial velocity at this point, however, equal
to 393.5m/s. Thus the percentage difference in the predicted
value of axial velocity at the shock along the centre-line
is 2.5%.

In regions'of supersonic flow the major contribution
to the numerical error of the potential solution is due to the
inclusion of aritifical viscosity (A.V.), necessary if
regions of such flow are to be represented by ellpitic
equations. From the expression for A.V., equation (55),
it can be seen that the artificial viscosity at any node
is a function of both the poperties of the fluid and of the
computational grid. Thus, A.V. is a function of the

following fluid properties:

a,p,u,v,UXX, Uyy'vyy

and the follewing properties of the computational grid:
Ax3,4y3,Dn,En and F_
where:

a is the local speed of sound
is the local density of the fluid

u is the local component of velocity in the
x-direction

v is the local component of velocity in the
y-direction

Ax is the mesh spacing in the x-direction
Ay is the mesh spacing in the y-direction

©
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Dn’ En and Fn' where n=1 to 6, are the sets

of coefficients used in the approximation
of the partial derivatives of ¢__,¢ and¢
respectively XXXy Yy

Assuming that the mesh spacing Ax is equal to that Ay,
the artifical viscosity is a function of the following

properties of the computational grid:
Ax 'Dn’En and Fn

The three sets of coefficients Dn' En and'Fnare the
coefficients used to approximate the second order
derivatives of potential and are, therefore, approximately
proportional tothe inverse of the square of the mesh

. spacing.
i.e. :- D, o 1/A%2
E o 1/Ax%2
2
Fn o 1/Ax

From equation (55), the artificial viscosity is eqgual to

a function of the sum of these coefficients (from n=1 to 6)
multiplied by the cube of the mesh spacing. Thus A.V. is
a function of the mesh spacing Ax.

i.eo A‘V‘ = fl (AX)

A.V. is, as mentioned previously, also a function of the

fluid properties, thus:

s A%) (119)

A.V. = fz(a’p’u(Y'Uxx'Uyy’Yyy

From equations (15) and (24), the local speed of sound and
density are function of the fluid velocities u and v only.
Thus, equation (119) may be simplified to:

(120)

A.V. = f3(u,v,U » AX)

xx ' Yyy Vyy
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It can be seen from Figures (40) and (41), that the
distributions of u and v along the nozzle, predicted by
the 2D-IN code, do not vary much with mesh spacing,

except across the shock itself. Thus, it can be assumed
that the components of velocity and their derivatives are
independent of the mesh spacing of the computational grid.
Thus equation (120) can be simplified to:

A.V. = kAx , (121)
where k is a constant

Thus, the artificial viscostiy introduced into the solution
scheme is proportional to the mesh spacing and will increase
if the mesh spacing is increased. However, the central-
difference approximation to the potentialkflow equation
containg the terms An,Bn,Dn andAFn {n=1 to 9) utilised to
approximate the partial derivatives ¢x'¢y’¢xx and ¢y
respectively. These terms also vary with the mesh spacing
and therefore the coefficient of the unknown velocity
potential, in the governing potential flow equation, will
also vary with mesh spacing. The conservative form of the

potential equation can be expressed as:
(0B, b, + (pD)y by + ob 0y + 0,0) = O (122)

In regions of supersonic flow the left hand side of this
equation is approximated using central-differences and an
artificial viscosity term is included into the right-hand
side. Thus, for supersonic flow, equation (122) is

represented as:

(lob) by + (o0 by + ob( by + 0 ) Vo p = AV. (123)

Using the central-difference approximations of equation
(28) to approximate the partial derivatives of equation

(123), reduces this equation to:
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(Pb)y (2A, ¢, = 6, IA ) + (pb) (2B ¢, - ¢, IB}

+ pb{ZDn ¢, + ZF, ¢, - $6 ZDn + IF } = A.V. - (124)

where: ¢0 is the value of the unknown velocity potential

¢_ is the value of velocity potential at neighbouring
nodes, ' '

for n=1 to 9
L is a summation from n=1 to n=9
~A_,B_,D

n’'"n’' " n
general Cn of equation (28), used to approximate, by

and Fnare the terms, equivalent to the

central differences, partial derivatives of ¢x' ¢y

and: respectively.
¢ ¢yy p Yy

XX
The coefficient (CFO) ofthe unknown velocity potential in
equation (124) can be expressed as:

CFO = (pb), IA_ + (pb)y LB, + pb (}:Dn + ZFn) (125)

The density and blockage terms in equation (124) remain
approximately constant as the mesh spacing is changed,
except in the region corresponding to the shock jump. The

n

terms A_, Bn' D, and Fo, however, vary according to the
following:

For the épproximation of first order gradients: -

Ana 1/4%
Bna 1/Ax%

and for the approximation of second order derivatives:

D o 1/Ax?
F o 1/6x?

Thus the coefficient (CFO) of the unknown velocity potential,
¢o' in equation (124) may be approximated as:

Cl Cc2

CFO = Ax + Ax2 : (126)
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where Cl and C2 are constants related to the local density

and blockage.

The mesh spacing, Ax, is very small (between 2x10" % and
4 x 10 %),

Thus equation (126) may be approximated as:

cro = &2, ~ (127)

Ax

The coefficient of the unknown velocity potential of the
discretized flow equation (124) is, therefore, inversely
proportional to the square of the mesh spacing and decreases
as the mesh spacing is increased. The artificial viscosity,
however, is approximately proportional to the mesh spacing.
Thus the percentage of numerical error introduced into the
solution by the inclusion of artificial viscosity is
proportional to the cube of the mesh spacing. Thus:

Numerical Error a Ax?® A (128)

This numerical error is the error due to the inclusion of
artificial viscosity into the solution procedure and will
disappear in the immaginary case when there are an infinite
number of nodes with a mesh spacing equal to zero. This
error is identical to the error introduced by approximating
partial derivatives by upwind rather than central differences.

The maximum numerical error (NEF) associated with using the
fine computational grid, where the average mesh spacing
is 2mm, is: ’ '

NEF = KiAxg? ' (129)

where k; is some constant
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The maximum numerical error (NEC) associated with using
the coarse computational grid, where the average mesh

spacing is 4 mm, is:
NEC = k1(2Axf)3 (130)

Axf is the mesh spacing, upstream of the shock, of the

fine grid.

The mesh spacing at an identical point on the coarse grid
is approximately twice this value and is, therefore,

represented by 2Axf

The difference in the numerical errors of the coarse and
fine grids has been found to be a maximum of 2.5%, thus:

NEC - NEF = 2.5 (131)

Substituting the above'expressions for NEC and NEF into
equation (131):

8k;Axf3- kleXfS =2.5

2.5 | :
ky = 7AXf (132)

Now substituting this expression for the constant k; into
the equations (129) and (130) allows the maximum numerical
error of the 2D-IN code, when applied with the two different
computationalvgrids discussed in this section, to be

determined:
For the fine grid:
Numerical Error (NEF) =7A =3 b 4 Axf3 = 0.36%

and for the coarse grid

Numerical Error (NEC) =7%§§3 x(2Axf)3 = 2.86%
. f
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The computational grid used to generate the predictions of
Figures (9) to (20) had an average mesh spacing of 2.59mm.

The mesh spacing of such a grid is 1.295Axf and the associated
value of the maximum numerical error is:
Numerical Error =-2:2 x(1.29Ax.)° = 0.78%

Thxeq £
The numerical error of the 2D-IN inviscid potential code is
proportional to the cube of the mesh spacing. A compromise
between accuracy and the number of nodes in the computational
grid must be made. Many nodes will result in a small error
due to the associated small value of mesh spacing, but will
be expensive in terms of requried computer storage and
running time. Using a computational grid of average mesh
spacing of 4mm results in a maximum numerical error of
2.86%. Reducing this mesh spacing to 2.59mm results in a
numerical error of 0.78 %, whilst reducing the mesh spacing
further to 2mm reduces the maximum numerical error to a '
mere 0.36%. Reduéing the mesh spacing below an average of
2.5mm therefore has little effects.on the numerical error
of the solution scheme. In most cases, in this report, a
computational grid of average mesh spacing equal to 2.59mm
was used with the 2D-IN potential code, giving very low

numerical error of 0.78%. -

The preceding estimates of numerical accuracy
have been derived with reference to the inviscid potential
code 2D-IN used to predict transonic flows in. nozzles.
However, as the solution procedure of the viscous corrected
nozzle code 2D-VI and those of the cascade potential codes
are very similar to that of the 2D-IN code, the above
analysis may be assumed to be representative of all four
codes. The average mesh spacing used in the computational
grid for the cascade solution was about 3.5mm and the numerical
error of this solution was, therefore, approximately 1.91%.
This is felt to be an acceptable value for numerical error.
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Numerical error is due to errors in the finite-
difference approximations, which are dependent on the
computational grid utilized. It is not the total error of
the model compared to the actual physical flow. This
total error is a sum of the numerical error, the error due
to computer round-off and the error due to any simplifying
assumptions. This total error can only be estimated by
comparing theoretical predictions to experimental data and

will, in general, be greater than the numerical error.
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4 CONCLUSIONS AND RECOMENDATIONS FOR FURTHER WORK

4.1 Conclusions Regarding the Nozzle-Flow Models

Potential flow models have been developed to
simulate transonic flows in convergent-divergent nozzles.
These models may be either inviscid (as the 2D-IN code)
or may have a viscous correction to model the effects of
boundary-layer development along the solid walls (as does
the 2D-VI code). Both the viscous and the inviscid model
solve the flow in two-dimensions. These potential flow
models always predict a unique solution of the flow-field
prbvided that the nozzle back pressure is satisfied. Both
the inviscid -and the viscous-corrected potential models were
compared to the corresponding models developed by Damia-Torres
[52] » and were found to compare very well. The incluSion
of the viscous effects dué to boundary-layer development
was found to have the effect of forcing the shock, near the
wall, upstream and reducing the Mach number at the shock.

These models were shown to react correctly to
a change in nozzle back pressure: They predicted that
increasing the back pressure forces the shock towards the
nozzle-throat with a corresponding reduction in Mach number
at the shock. ' ' ‘

The solution of the potential flow converged
rapidly, in less than 100 iterations. The solution procedure
remains stable provided that the (absolute) gradient of
velocity predicted as occuring across the shock is 1less
than 1.x105. This limits the average size of the mesh
spacing of the computational grid to a minimum of 1.9mm.

It is recommended that an average mesh spacing of about
2.6mm be employed, which results in a maximum numerical

error, at the shock, of 0.78%.
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The potential solution assumes that the flow is
irrotational and isentropic which limits the use of these
codes to cases in which the Mach-number at the shock is less
than 1.4 - 1.5.

4.2 Conclusions Regarding the Cascade Flow Solution

Potential flow models have been developed to
simulate transonic flows in cascade blade rows. Both an
inviscid (CAS-IN) model and one which has a viscous correction
to model the effects of boundary-layer development on the
blade surfagés'have been developed. These codes solve the
flow-field, within stationary cascade blade-rows, in two
dimensions. The potential assumption that the flow is
irrotational and isentropic limit the application of these
codes to cases in which the Mach-number at the shock is
less than about 1.4.

In order to be able to predict a unique flow-field
these potential models require that the static pressure,
at exit of the cascade blade-row, be known a priori. This
is a serious disadvantage of potential-flow models when
used to simulate transonic flows in cascade, and limits
their use to cases where this static pressure is known
or can be obtained from correlations. Provided that the
static pressure at exit is known a priori, however, the
potential codes predict a unique flow-field.

: The predlctlons of Mach-number distribution
obtained with both the CAS-IN and the CAS-VI codes have
been compared to those obtained experimentally. The
viscous corrected (CAS-VI) code, in particular, predicts
Mach-number distributions on the blade surfaces which are
very similar to those observed by experiment. The only
discrepancy between the theoretically and experimentally
obtained distribution of Mach-number occurs across the
shock. The change in fluid properties across the shock is
observed experimentally as being very sudden, almost a
step change. 1In the theoretical predictions, however,
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this change has been smeared over a few column spacings.
The smearing of the shock-jump is due to the inclusion of
artificial viscosity into the solution and can only be
reduced by reducing the mesh spacing of the computational

grid.

The viscous-corrected potential code (CAS-VI)
has also been applied to the cascade operating over a
range of inlet air-flow angles. This code predicts that
the Mach-number at the shock (on the suction-surface)
jncreases and the Mach-number near the trailing-edge decreases,
. as the inlet air-flow angle increases. The overall effect,
predicted by the CAS VI code, is that the blade loading

increases with increase in air-flow angle at inlet.

The viscous-corrected code (CAS-VI) has been
seen to give significant improvements in the prediction
of the flow-field compared to the inviscid code (CAS-IN).
These improvements have been achieved with very little
penalty in required computer running-time and storage and it
is recommended that the CAS-VI code be always used in
preference to the CAS-IN code.

4.3 Recommendations for Further Work

The viscous-corrected potential codes 2D-VI
and CAS-VI have been used in this report to simulate
transonic flows in convergent-divergent nozzles and in
axial turbomachinery blade-rows, respectively. These
codes have given flow-field predictions which compare
well with other theoretical models or with experimental
data, at least for the test cases considered in this
report. However, each of these codes . has only been applied
to a single geometry. Further comparisons of their
predictions with experimental observation, for other
geometries, must be made before their use can be recommended
without reservation. In particular, the 2D-VI code has
only been compared against other theoretical models. The
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flow-field predictions of this code need to be compared
against experimental data, therefore, so that the accuracy

of this code may be ascertained.

Viscous effects have been included into the
2D-VI and the CAS-VI potential codes by allowing a
transpiration flow through solid walls. The amount of
this transpiration flow is a function of the gradient
of the boundary-layer displacement thickness and it is,
therefore, first necessary to compute the distribution
of the boundary-layer displacement thickness along the
relevant solid surface. The method used, in this report,
to compute this distribution is a simple one-dimensional
boundary-layer model, which does not allow, for example,
separation and reattachment of the boundary-layer. 1In
convergent-divergent nozzles and in cascade blade rows
the influence of the boundary-layer is very marked and
the solution of the flow is highly dependant on the accuracy
to which the boundary-layer has been computed. It is felt
that there is a need to improve this boundary-layer
calculation, by using a more sophisticated model to solve
in two-dimensions. It is desirable that this improved
model can predict boundary-layer separation and reattachment.
Also, the correlation used to model the influence of the
shock /boundary-layer interaction is very crude. It is
felt that, as the boundary-layer displacement-thickness
distribution is so sensitive to this interaction, that an
improved representation of this interaction will lead to
significantly improved results. This may be achieved by
the use of either an improved correlation or by actually
modelling the interaction itself.

The other improvement which can be made to these
potential models is to extend their solution from twoF
dimensions into full three-dimensions. In the search
for improved efficiency of turbomachinery components their
designers are increasingly becoming interested in the
three-dimensional flow through these machines, in both
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stationary and rotating components. The potential solution
is a very efficient solution and it is not thought that
such a solution in three-dimensions would be prohibitively
démanding in terms of computer run-time. It would

however require much greater computer memofy than would a
similar solution in only two-dimensions. Apart from the
possible limitations due to compufer memory requirements,
thére does not appear to be any difficulty in extending

the potential solution into three dimensions. This is in
contrast to a stream-function solution which, although
similar in many ways to a potential solution, does not exist

in three-dimensions.

Finally it is felt that, particularly if the
potential solution is to be-extended into three-dimensions,
it would be beneficial to include the effects of rotation
into the solution. This can be achieved by a fairly minor
modification of the governing flow-equation and of the
boundaryfcohditipns along the surfaces of the turbomachinery
blades [22] . A great deal of information can be obtained
on the behaviour of a rotating blade-row from a knowledge
of its behaviour in a stationary cascade. . However, A
particularly near the tip, it is desirable to have a
éomplete knowledge of the flow under rotating conditions.
Such a knowledge can then be used to reduce effects such
as bver-tip leakage and thus improve aerodynamic efficiency.
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Axial dist. from throat - Height of Nozzle wall above
X (mm) centre-line y (mm)

105.62 37.25
105.00 37.25
102.50 37.25
100.00 , 37.25
97.50 37.25
85.00 37.25
92.50 37.25
90.00 37.25
87.50 37.25
85.00 37.25
82.50 37.25
80.23 37.25
78.171 37.22
76.16 37.12
73.63 36.84
71.09 - 36.33
68.55 35.57
66.01 34.53
63.48 ' 33.13
60.94 31.36
58.40 29.02
55.86 26.96
$53.32 24.76
50.78 ' 22.67
48.24 : 21.25
45.70 20.11
43.16 19.17
40.62 : 18.33
38.09 17.65
35.55 17.01
33.01 16.43
30.47 16.00
27.83 : ‘ 15.61
25.39 15.31
22.85 15.10
20.31 14.90
17.77 14.78
15.23 14.68
12.70 14.60
10.186 ' 14.52
7.62 14.47
5.08 . 14.45
2.54 S 14.42
0.00 | - 14.42

Table 2a:- Nozzle Geometry-Convergent Section
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Axial dist. from throat ~ Height of Nozzle wall above
X (mm) -centre-line y (mm)

2.54 ’ - 14.47

5.08 , 14.58

7.62 14.77
10.16 14.99
12.70 : 15.28
15.23 15.64
17.77 ’ 16.02
20.31 . 16.43
22.85 16.88
25.39 - 17.34
27.93 . 17.80
30.47 18.28
33.01 18.76
35.55 . 19.19
38.09 19.60
40.62 ' 20.01
43.16 20.41
45.70 20.77
48.24 21.10
50.78 21.40
53.32 21.71
55.86 22.01
58.40 22.27
60.94 ' 22.52
63.48 . 22.75
66.01 22.98
68.55 ' 23.18
71.09 . 23.38
73.63 ' 23.56
76.17 ' 23.74
78.171 23.92
81.25 24.07
83.79 ' 24.20
86.33 24.30
88.87 24.40
91.40 : L 24.48
93.94 24.53
96.48 ' 24.58
99.02 ' 24.63
101.56 24.68
104.10 24.70
106.64 24.73
108.39 24.76
111.00 24.76
113.50 ‘ 24.76
116.00 . 24.176
118.50 24.76
121.00 24.76
121.08 : 24.76

Table 2b:- Nozzle Geometry-Divergent Section



- 137 -

x (mm)

0.00000
0.08005
0.27287
0.58402
1.01830
1.57439
2.25061
3.04490
3.95490
4.97786
6.11076
7.35025
8.69267
10.13412
11.67042
13.29716
15.00969
16.80315
18.67252
20.61258
22.61795
24.68314
26.80247
28.97023
31.18056
33.42752
35.70512
38.00729
40.32793
42.66090
45.00000

Table 3a:~ Cascade Geometry for zero-stagger

- Pressure Surface

y (mm)

0.00000
-0.14004
-0.18209
-0.17518
-0.16560
-0.15348
-0.13895
-0.12217
-0.10334
-0.08226
-0.06036
-0.03671
-0.01195

0.01363

0.03976

0.06614

0.09248

0.11850

0.14392

0.16845

0.19183

0.21382

0.23417

0.25267

0.26912

0.28335

0.29520

0.30455

0.31129

0.31537

0.31674
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X (mm)

47.33920
49.67216
51.99281
54.29498
66.67257
58.81953
61.02986
63.19762
65.31696
67.38213
69.38750
71.32756
73.19693
74.89039
76.70293
78.32965
79.86594
81.30739
82.64981
83.88830
85.02219
86.04514
86.95514
87.74942
88.42563
88.98172
89.41589
89.72713
89.91995
80.00000

-Pressure Surface

y (mm)

0.31537
0.31129
0.30455
0.29520
0.28335
0.26912
0.25267
0.23417
0.21382
0.18183
0.16845
0.14382
0.11850
0.08248
0.06614
0.03976
0.01363
-0.01185
-0.03671
-0.06036
-0.08266
-0.10334
-0.12217
-0.13885
-0.15348
-0.16560
-0.17518
-0.18209
-0.14003
0.00000

Table 3a(contd.) -Cascade Geometry at zero-stagger
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X (mm)

0.00000
0.04331
0.22019
0.52409
0.94852
1.49244
2.15452
2.93312
3.82632
4.83190
5.94734
7.16982
8.49623
9.92319
11.44699
13.06357
14.76898
16.55840
18.42717
20.37024
22.38234
24.45798
26.59145
28.77684
31.00809
33.27892
35.58296
37.91373
40.26462
42.62897
45.00000

Table 3b:- Cascade Geometry at zero stagger
- Suction Surface

'y (mm)

0.00000
0.15533
0.24325
0.31205
0.40733
0.52802
0.67281
0.84011
1.02809
1.23468
1.45763
1.694439
1.94266
2.19942
2.46197
2.72742
2.99287
3.25540
3.51215
3.76030
3.99712
4.22004
4.42660
4.61454
4.78180
4.92556
5.04722
5.14246
$.21125-
5.25283
5.26574
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X (mm)

47.37114
49.73549
52.08636
54.41714
56.72119
58.99202
61.22325
63.40865
65.54211
67.61775
69.62985
71.57291
73.44167
75.23111
76.93640
78.55309
80.07689
81.50383
82.83025
84.05272
85.16815
86.17372
87.06693
87.84550

88.50758
89.05150

89.47591
89.77982
89.95668
80.00000

'y (mm)

5.25283
.21125
.14248
04721
.92655
.73179
.61453
.42659
.22003
.99711
3.76028
3.51214
3.25539
2.99285
2.72741
2.46196
2.19941
1.94264
1.69447
1.45762
1.23467
1.02808
0.84010
0.67280

0.52801
0.40732

0.31205
0.24324
0.15532
0.00000

bbb T T Y

Table 3b (contd.) - Cascade Geometry at zero-stagger
- Suction Surface
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Inlet Mach Number = 0.995

Inlet Air Angle = 58.42°
Static Pressure

Ratio » = 1.242
Blockage = 1.16
Chord v - = 90 mm
Staggerr = 47.4°
Pitch o = 56.43
Aspect Ratio = 1.878

Table 3c:- Cascade Operating Conditions



FIGURES



142 -

9T22ZON ®Yy3 JO

uotT3nIos 9yl IoJ pPTIH Teuorzelindwo) aYy] ‘T HaNOId

am SlaNmy 1
111 .J.IT..\H”H [] IHMMHII“” II”I’A
OO e wan
EREEES Sy s N
bt /
NN
/ﬁ//
Nam
/l”




-143 -

NSRS AARRAD
D AN

\ \\\\\\\\\\\\\
SRNNNNRRNRRRNNAY
\\\\\\\\\\\\\\
AN RN
AU RN
\‘\\\\\\\\'\\\\\\

The Computational Grid for the Solution of

FIGURE 2.

—
A Y
\\\\\\\\\\\\
\\\\\\\\\\\

the Cascade Problem




ATeAaT309adsex
PTIb Teuorjejindwo) ayy jo sealey Aaddn pue IeMOT oy3z uT

SOPON 90U8I238y I03J 9DT33IBT °90U8IaJJTd O3 [UTd [eI3Ua) o4l °p % € SAYNOIL

- 144

T+£

T+C N+b\




PTID [eUOTIEINAWOD ou3F

3O SOPON 3JO MmOI puodss ayy ‘ATeAT3doadssI ‘uoc pue saAoqe
SOPON S0uaI9334 103 S0T3IFBT 90UBASIITA ©3TUTI putmdf oul, °*9 B § SHUNOTL

T-I

145




- 146

pTab Teuotiejndwo) axenbs e 103 80133 90USISIITA PUTMA)] SPON OATJI oyl

‘L HINDIA



147 _

MOY opeTd spedse) ayj I0F mCOH#H@ﬂOU M.Hm.mvﬂﬂuom *8 HYNOIA




148 .

S°¢

PO TeT3u93od NI-AZ @Yz Xq psjotpeid
'®Tz2z0N @y3 buoTe X3To0Top TETXVY 3O SUOTINQIIAISTA °*6 TUNOIJI

L3INT WOd4 3INVLSIA
0°¢ STl 0"l 50 0

[TTeM-9722Z0N : saxxol-eTwed + + +
TIeM-9TZZON :9pO) TeT3US30d - — -
SUTT-8I3Ud) : SaIIOJ-PTWeq X X X
sutT-91qua) :9po) TeT3us3zog

T ! T T T T 1 T ! 0

-

0°S

770N G2 NI ST TT9059 A%

< X—<C_.J >W_ 100 —F—>




®pOD TeTIUS30d NI-AZ auz Aq

pa3oTpaad ‘a1zzopN 9yl buole Iaqunpy UOEBW TeTXY JO suoi3ngiIistd *OT dUNDIJ

S ¢

L13INT WOd4 JINYLSIQ
01

Q71

149 -
T

TTeM-9TZ20N - - -
aUIT-2I13Ud)

| I

377708 NI

ERERE

.oz.ru<z

0°¢

S°¢

S<OUOI Z0O



®poD TeT3UL30d IA-AZ oYz Aq peajojpead
'®7z20N @y} buoTe A3TOOT®A TBTXY JO SuOT3NqII3sid °TT HYNOIJ

13INT WOl 3ONYLSIQ |
52 0°C G" | 0"l 50 0
| IR |

150 -
|

} : / R ' . .y .
(TTeM-9T220N : S8IIOL-eTWed + + + . + : o -0y
BUTT-9I3U8) : SBIIOL-eTWE] X X X

TTeM-9TZZON :9pOD TRTIUS3O0d - - ~ , IR
[PUTT-8I3uU8) :9po) Ter3zuslzog A . , : S ]

L | L L ¥ I 0°G
o 31ZZ0N 0-¢ NI SI1140dd - 13AX

< D — =< _J > 00— =>



-~ 151 _

T
NERRERRR
RERERERR
MBI
NI

ARRRRRER
SERRRRER
EERREERE
rrrrtrtey
EENEREER

rrrrtrrtrrt

rrrrr ot
7’ ot
rrr ot
t

t

1
1
1
A 2 3 ot 1 t
’ ' t
1

"I TR TR SR T I

¢ t ? t t * t

* t t L t t t

* 1 t t t ¢ b

Vectors of Velocity in the Convergent Section of the

Nozzle predicted by the 2D-VI Potential Code

FIGURE 12,




- 152 _

I | 1>? {11
N T T S O TR B B
AR T O R B R R B
R U T T T A AR O |
tt v
1S T T T O S N N

ttrrrr 1t

EEEERER
EEREERER
BEBREERER
EEEREERRE
EEEEREEN
IREREREREE
IBERERRERE
BRREREERE
SRRRRER

T
T
T

Vectors of Velocity in the Divergent Section of the Nozzle

predicted by the 2D-VI code

FIGURE 13.




- 153

Spod IA- “az ou3 Xq
p@3oTpaxd a1zzou msu buoTe Iaqunu yoey JO SUOTINQTIISTIA T FANODIA

I13INT WO¥d 3ONVLISIA _
S°¢ 0'¢c STl 0°1 S°0 0

] T ] T T T I I T 0

B SUTT-OTZZON - - - o ~0°¢
BUTT-8I3U3)

J77Z0N NI S371309d 0N FOWN

S<UOT ZO



- 154

Spod IA-Az oU3 Pue NI-dZ o4z uzoq Aq pezoipexd

TTem-9[220N 9U3 PUuOTe A3TOO[SA TBFXY JO UOTAINQTII3STd °ST FAUNOIJ

G ¢

13INT WOd4 JONYLSIA
0°¢ - ST 0"l . S0

| | 1 | | ! 1 | L

,. SNODSTA IA-AZ - - -
PTOSTAUI NI-AC

<X S OO —>




155 -

TTEeM ®TZZO0N °©U3

puoTe jusweoeTdstg xale-Axepunodg JOo UOTINTIISTA °9T1 HINOIA




9pP0Od NI-dZ
ayy Aq pajoTpaad ‘ofjea-aanssaid MOT ® 3e butjexado

‘®7zzON 9y3 buole A3TOOTSA TERTIXV JO SUOTINTIISTA LT TYNOIJ

L3INT WO JONYLSIA

s'¢ - 0c STl 01 =Y
. ! —

156

m.ﬁmhnﬁmc¢ QI-H e o0 e
TTeM-BTZZON :9po) Tefjusljod - - -

AUTT-9I3U3) :9p0) TeTIUS3Ood

l | | |

17708 =2 N1 53114080 TIAX

0°S

<X r—<<_] >W IJ00O—FH>



157 -

9pod IA-AZ
ay3 Xq pe3otpead ‘orjex sanssaad MOT ® 3je butjexado

‘3TZ2ZON 99Ul buoTe A3TOOTSA TeBTXY JO sSuoTingiIiistd

L37INT WOdd 4ONY1S1d

gT HUNOIA

G ¢ 0'¢ STl - 071 S0
_

o syskTeuy g-T *°*°°° lo ._.N

TTeM-8TZ22Z0N :9p0o) TeTjuajlod - - -
| SUTT-2I3Ud) :8p0D TeTausiod - N
! ! ! L _ 0°S

— TI770N =2 NI SITI408d =X

< X< _J >W I00O—F>



9pod NI-dZ =243
Xq peaoipead ‘oT3jel 2Inssald MOT e 3® butjeaado

137ZZON oU3 PuoTe Ioqunu UoeW JO SUOTINGTIISTA 6T FINDIA

L13INT WOdd d4ONYLSI1A

S°¢ 0'¢ =R 0°1 S0 0

I | | | | l | | |

|

- 158

TTem-9TZ20N - - -
BUTT-2a3UdD

47708 NT 53713089 0N FHOVW

0°¢c

G2

sS<OIL Z0O



2pPod IA-AdZ @y} Aq
pe3joipaad ‘ot3ex aanssaad MOT B 3e burjeaado

'37ZZON U3 buole Jequnu UoeW 3JO SUOTINATIIISTA °0OZ FWNOIJ

L3IND WOd4 JINVISIO
¢z 0°2 ' 0"l 50
| |

- 159

SUTT-OTZZON - - -
SUTT-213U3D

770N NT S371408d 0N HOVW

S° 1

0z

9°¢

S<0OI Z0O



160 ~

0°G

uoT3INTOS NI-AZ 943 JO Inofaeyag souabaaAuo) oyl *Tz FINOId

SNOILvVd3ll 40 °"ON
0°¢ 0°¢ 0"l 0

W —OD =<

0 01




UOT3NTOS IA-AZ oYz JO anofjaeysg oousbisAuod ayj ‘gz F¥NOIJ

SNOILYddll 40 "ON
0 0l 0’8 .- 079 0y 0°¢ 0
‘ |

- 1lel

xuwnm—0OIO=<<

0°0l

ANOTAVHEE JINIORIANDD.



9p0O NI-SVD @yl Aq pa3oipsad ‘seoevjans
opeld oYz buore Ioqunu YoeW JO SUOTINGTIFSTA OUlL '€ TUNOIJ

| X
0"l | 50 | 0
T T I T T T T G0
— =1
1
©
~ B 1 0°'T
[
N *3aIngs °3ong :juswTIadxd + + + + +- |
*3ans -saig :juswtaadxXyg X X X
SUOT3OTPaId 9pod TrRIZuUelzod
] i | 1 L G

SN “ON FIVW



- 163 -

AAVAALLANAMAANAANAY

AAAAVAAL AN
AALLAAAANANANAANND
AAAAALLAAANAA NN
AAAAAANAAAAAANNAADN
AL AN
AAAALALAAAN AN
AR LA AN
NAAALAA LA
AOAAAALANAAAANNN
WAL
AL AN
AAALLALAATNNN
AN
SAMLLARMAARNTTNNNNN
AL AL
ALY
ANA AN
AN AN

AAAAARARARRARNANNANAN
aAaAaRARARARARNAARAA N

The Vectors of Velocity within the Cascade Blade channel,

predicted by the CAS-IN code

FIGURE 24.
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'FIGURE 26.

The Vectors of Velocity within the Cascade Blade channel

'predicted by the CAS-VI code
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