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a b s t r a c t

The power produced by a wind turbine can be considerably affected by the presence of systematic
errors, which are particularly difficult to diagnose. This study deals with wind turbine systematic yaw
error and proposes a novel point of view for diagnosing and quantifying its impact on the performance.
The keystone is that, up to now in the literature, the effect of the yaw error on the nacelle wind speed
measurements of the affected wind turbine has been disregarded. Given this, in this work a new
method based on the general principle of flow equilibrium is proposed for the diagnosis of such type
of error. It is based on recognizing that a misaligned wind turbine measures the wind speed differently
with respect to when it is aligned. The method is shown to be effective for the diagnosis of two test
cases, about which an independent estimate of the yaw error is available from upwind measurements
(spinner anemometer). A data-driven generalization of the concept of relative performance is then
formulated and employed for estimating how much the systematic yaw error affects wind turbine
performance. It is shown that the proposed method is more appropriate than methods employing
wind speed measurements (like the power curve), which are biased by the presence of the error. The
results of this study support that SCADA-collected data can be very useful to diagnose wind turbine
systematic yaw error, provided that a critical analysis about their use is done.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Wind turbines at present are the leading renewable energy
echnology worldwide, due to their advantageous energy density
nd wind kinetic energy conversion efficiency, and their exploita-
ion is fundamental in the transition to a sustainable energy
uture [1–3]. The growth of wind turbines installation worldwide
lmost doubled from 2019 (58 GW) to 2020 (111 GW) [4] and
he trend has been further accelerating, which gives immense
pportunities as well as risks related to the grid management [5,
].
Wind turbine monitoring is a far from trivial task, due to the

tochastic nature of the source and to the complexity of the ma-
hine, but it is crucial in order to improve the efficiency of energy
onversion and finally diminish the levelized cost of energy. The
ndividuation of systematic errors [7,8] affecting wind turbine
peration is an overlooked topic, which should be analyzed more
n depth. A systematic yaw error [9] occurs when a wind turbine
s controlled to achieve a set point of rotor orientation, which
s believed to be front of the wind flow but in fact it is not.

∗ Corresponding author.
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This can occur due to wind vane defects, incorrect installation or
maintenance, or the aging of the machine. In [10], it is estimated
that over 50% of the industrial wind turbines operate with more
than 6◦ of systematic yaw error. Aerodynamic considerations [11]
indicate that, in presence of a systematic yaw error γ , the ex-
racted power P is reduced by a factor cos3 γ . By assuming for
implicity the cos3 law, a systematic yaw error of 6◦ causes an
verage production loss in the order of 2%. This leads to estimate
hat, by correcting the systematic yaw error of the wind turbines
orldwide, the wind energy production would increase of the 1%.
Supervisory Control And Data Acquisition (SCADA) systems

ave been historically conceived for allowing remote control of
he wind turbines, but they have been evolving into a powerful
nformation source for condition monitoring [12,13]. Actually,
CADA systems store and make available a vast set of environ-
ental, operational, electrical, mechanical and thermal measure-
ents with a typical averaging time of ten minutes. Nevertheless,
xtracting knowledge from this information is particularly chal-
enging when dealing with systematic errors which regard the
otor.

In line of principle, a wind turbine systematic yaw error can
e ascertained by using upwind sensor systems and by compar-
ng the rotor orientation to the upwind wind direction. In fact,
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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iDARs [14,15] or spinner [16] anemometers have been employed
t this aim. By a practical point of view, the use of such sensors
ystems in addition to those already implemented on the wind
urbine might be discouraged by their installation cost. Given this,
t makes sense to employ the SCADA-collected data (which are
ypically available to the end user without additional cost) at least
s a first advice for directing the installation of LiDARs or spinners
o the wind turbines which are more suspected to be affected by
he systematic yaw error. The general problem with the use of
CADA data for diagnosing systematic errors related to the rotor
s that the anemometer is mounted on the nacelle behind the ro-
or span [17]. This means that the nacelle anemometer measures
he wind perturbed by the rotor in intensity and direction and
he undisturbed field is reconstructed through a nacelle transfer
unction.

On top of this, the literature about SCADA-based detection
f wind turbine systematic yaw error has overlooked a further
ritical point, which is the fact that the nacelle anemometer
easurements are affected by the presence of the systematic yaw
rror [18]. This occurs because, if a wind turbine operates sub-
ected to a systematic yaw error, its nacelle anemometer (being
ehind the rotor) will be more upwind or more downwind with
espect to what happens in normal operation and therefore, for a
iven free flow wind speed, the nacelle anemometer will respec-
ively measure more or less wind intensity with respect to what
ould happen normally. The core of the present work is therefore
critical analysis of what the above statement implies and of
ow the SCADA-based methods for individuating and assessing
he impact of the systematic yaw error should be reconsidered.

The structure of the manuscript is as follows. The related work
s summarized in Section 1.1, where the innovative contribution
of the present study is outlined as well. In Section 2, the test case
s described and the method is illustrated. A real-world test case
s contemplated, which is a wind farm owned by the ENGIE Italia
tility company. In Section 3, the results are collected and the
onclusion are drawn in Section 4.

.1. Related work and contribution to scholarship

The caveat which orientates most studies in the literature is
hat SCADA-collected direction measurements of a wind turbine
ffected by a systematic yaw error are very likely indistinguish-
ble with respect to those of a wind turbine operating correctly.
he nacelle wind direction and rotor orientation measurements
ndicate a correct alignment, while this does not occur. This
mplies that most studies in the literature are based on the indi-
iduation of the systematic yaw error through secondary effects
nd the most straightforward effect is an under-performance
recall the cos3 law).

An under-performance consists of less power extracted for a
ertain incoming wind speed. The most common SCADA-based
pproach for individuating and quantifying an under-performance
s the analysis of the power curve, because it is the relation
etween wind speed (x-axis) and extracted power (y-axis). In
his regard, a very interesting study related to the use of the
ower curve for systematic yaw error detection is [19]. The most
oticeable aspect of that work is that a 2.5 MW utility-scale wind
urbine (Eolos research station) has been fully controlled by the
uthors, who have forced the operation under several static yaw
rrors in order to characterize the different behavior with respect
o the normal operation. Actually, a gap in the research is given
y the lack of a clear data labeling (with error or not). In this
ontext, the work of [19] is particularly valuable. The data-driven
rocedure employed in [19] is substantially a fit of the observed
ower curve in presence of the systematic yaw error to cos3 γ

times the power curve in normal operation. The systematic yaw
2

error is diagnosed also in [20] as an under-performance detected
by a data-driven method. A Gaussian Process regression for the
power curve is set up, employing operation variables as blade
pitch and rotor speed.

Several studies in the literature employ a mixture of analyses,
which include jointly the power curve and the behavior of the
wind vane measurements. The common assumption is that the
best performance of the machine should occur for vanishing yaw
error. If this does not occur, it is likely that there is a systematic
yaw error, which is consequently estimated as the angle at which
the best performance is observed. This line of reasoning is applied
for example in [21], where an analysis of the binned power curve
is performed upon grouping the data per yaw error intervals of
2◦. A similar approach is employed in [22,23]. The difference
with respect to [21] is in the power curve model, which is Least-
Square B-spline Approximation. In [24], the power curve analysis
is applied upon a non-trivial data rejection algorithm that takes
into account several features of the machine functioning. In [25],
the data are pre-processed appropriately, so that small portions of
the power curve are employed for diagnosing and individuating
the yaw error.

The same kind of concept is employed in other studies where
the target is the power coefficient, rather than the power curve.
In [26], the systematic yaw error is individuated by looking at
what value of the yaw error the maximum power coefficient
occurs actually (measurements) and theoretically, where the the-
oretical estimate is achieved with a data-driven method that
takes into account environmental variables like turbulence inten-
sity and external temperature. In [27], the yaw angle - power
coefficient curve is analyzed and the diagnosis is formulated
directly from the observed data. The behavior of the yaw angle
- rotor speed curve is studied in [28]. The approach employed
in [29] instead stands apart somehow, because a wind-farm ap-
proach is formulated for diagnosing the systematic yaw error,
which is given by the analysis of the distribution of the relative
wind direction measurements.

The point of this study is that the above works overlook the
fact that the nacelle wind speed measurements are affected by
the presence of the yaw error. This implies that it is not com-
pletely consistent to compare the power curve of a wind turbine
subjected to systematic yaw error to that of a well aligned wind
turbine. In this regard, it is worth discussing the recent work
in [24]. LiDAR measurements have been employed to diagnose
the systematic yaw error on some target wind turbines and to
assess its absence upon appropriate intervention on the wind
turbines. Therefore, in [24] a clear data labeling is at disposal
and the authors elaborate on the SCADA data collected by the
wind turbines when operating with and without the systematic
yaw error. Through a straightforward comparison of the power
curves in presence and absence of the systematic yaw error, it
is estimated that less than 10◦ of yaw error correction provides
order of 15% of performance improvement, which is implausible
(the cos3 law gives a 5%). The conclusion drawn in [24] is that
there are data quality issues related to the wind turbine nacelle
anemometer. Given the line of reasoning of this work, a more
plausible interpretation is that, when operating with 10◦ of yaw
error, the nacelle anemometer was more upwind than the normal
and then overestimated the wind speed, thus amplifying the
apparent difference in the power curve with respect to the case
of vanishing yaw error.

At present, there is only one work in the literature dealing
with the effects of the systematic yaw error on nacelle wind
speed measurements. In [30], the flow equilibrium condition
of two nacelle anemometers is employed for individuating the
systematic yaw error. The study in [30] raises substantial issues
also on the methods based on the characteristic curves of wind
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urbines as a function of the yaw angle as estimated by the
CADA-collected measurements. Actually, it is argued that the
low distortion induced by the nacelle is disregarded in most
tudies in the literature.
Based on the above line of reasoning, with this work a research

ap is filled regarding the following points:

• Detection. A systematic yaw error detection algorithm based
on nacelle anemometer measurements analysis is formu-
lated. The points of strength of this algorithm are the con-
sistency following from first principles, the simplicity and
the universality (it does not depend on the particular wind
turbine model).

• Assessment. A method for quantifying the effect of the sys-
tematic yaw error on wind turbine performance is formu-
lated, which is the generalization of the concept of relative
performance. This method does not employ nacelle wind
speed measurements, because those depend on the presence
or not of the systematic yaw error. In this work, it is argued
that the proposed method provides more consistent results
with respect to the power curve analysis.

The selected test case is a further point of strength of this
ork. Actually, the presence of a systematic yaw error on two
ind turbines out of six from an Italian wind farm has been ascer-
ained through an upwind sensor system (spinner anemometer).
his means that the data sets are labeled. Furthermore, the sys-
ematic yaw error has been corrected and this means that data
ets describing the behavior in presence or absence of a remark-
ble systematic yaw error are at disposal. Summarizing, therefore,
he proposed method for detection and assessment of systematic
aw error is shown to be more consistent and effective with
espect to the state of the art.

. Materials and methods

.1. Definition of systematic yaw error

The yaw error γ is defined as the difference between the wind
direction θwd and the rotor direction θrot , as indicated in Eq. (1):

= θwd − θrot . (1)

The control system of the wind turbine operates for achieving the
set point given by γ = 0 through the actuation of yaw motors
and-or by using the blade pitch control [31] of the turbine [32].
As discussed in detail for example in [32], the critical point for
wind turbine yaw control is the measurement or estimation of
the wind direction and several possibilities are explored in the
technology. The most common is the assumption that the wind
direction measured by the nacelle anemometer is the correct
one, or at least is in a comprehensible relation with the correct
one which can be compensated [33]; the use of more advanced
sensor systems like LiDARs has been recently growing [34]; or
short term estimation methods based on the operation variables
of the wind turbine can be adopted [35]. Whatever the method
for estimating the wind direction is, there is a mismatch between
the large inertia of the rotor and the wind direction meandering
characteristic time. This means that the yaw error γ [36] is
a dynamic quantity which changes instant by instant and can
be hypothesized to be distributed according to a Gaussian with
zero mean and a certain standard deviation σ [21]. There is
an important line of research dealing with dynamic yaw error
reduction [37–40], which practically means diminishing σ , since
the yaw error has a non-trivial impact on aerodynamic charac-
teristics [41]. There are corresponding evidences of the fact that
the advance in dynamic yaw control improves the efficiency of

wind energy conversion [42,43]. Yet, the yaw error can have also

3

Fig. 1. The layout of the test case wind farm.

a static component, which is typically referred as zero-point shift
or systematic yaw error. This means that it can happen that the
wind turbine is regulated according to a yaw set point which is
believed to be zero, but it is not. Actually, the zero-point of wind
vane sensor should align with the rotor shaft in order to ensure
the correct measurement of yaw angle, but it can happen that
this does not occur, due to inappropriate installation, aging of the
machine, wind vane defect. It is as if

θwd = θreal + θerr (2)

and then, basing on Eqs. (1) and (2), the expected value of γ

becomes θerr instead of zero. Aerodynamic considerations indicate
that the power of a wind turbine subjected to a systematic yaw
error γ should scale as in Eq. (3):

Pγ = P0 cos3 γ , (3)

where P0 is the power which would be extracted under the same
conditions with vanishing yaw error. Previous studies about full-
scale wind turbines indicate that this is just an approximation and
the role of the blade pitch control comes into play [44], but in any
case the effect on power production [28] is non-negligible and it
can reach some percents of the annual energy production.

2.2. The test case and the data sets

The test case wind farm is composed of six Senvion MM92
wind turbines, each having 2 MW of rated power. It is owned
by ENGIE Italia and sited in southern Italy. The layout is reported
in Fig. 1.

The peculiarity of the test case is that an upwind spinner
anemometer [16] has been installed on these wind turbines and
therefore an independent estimate of the systematic yaw error is
available. From Table 1, it arises that there has been a period dur-
ing which the two target wind turbines T3 and T5 have operated
(data set D1) with a large yaw error (clockwise with respect to
the wind direction), which has been subsequently corrected (data
set D2). One of the points of the strength of the present work
is therefore the data labeling (D1 with systematic yaw error, D2
without).
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Table 1
The data sets and the yaw error estimates provided by the spinner anemometer
for the target wind turbines T3 and T5.
Data set Dates T3 T5

D1 1st Aug–16th Dec 2020 −14.45◦ −12.04◦
D2 1st May–30th June 2021 1.13◦ 0.86◦

The measurements at disposal which have been employed for
his study are:

• Nacelle wind speed sensor 1 v1 (m/s);
• Nacelle wind speed sensor 2 v2 (m/s);
• Power output P (kW).

he data have been filtered on wind turbine operation using the
ppropriate run time counter collected by the SCADA control
ystem. The wind speed v reported in the SCADA-collected data
set is the average of v1 and v2, if two sensors are available, and
his is indeed the case for the present wind farm. There is no in-
ormation available about the precise anemometer arrangement,
xcept for the fact that they are expected to be placed at the
pposite lateral ends of the nacelle.

.3. Detection: Comparison against a state of the art method

A state of the art method for diagnosing a systematic yaw
rror is the analysis of the power coefficient as a function of the
ind vane (i.e. yaw error) measurements collected by the SCADA
ontrol system. The power coefficient is defined as in Eq. (4):

p =
P

1
2ρAv3

, (4)

here P is the produced power, ρ is the average air density on
ite, A is the rotor area and v is the wind speed. The yaw error
power coefficient curve is computed for all the wind turbines

n the farm through the binning method. Furthermore, the fre-
uency of wind vane measurements is computed and reported
or all the wind turbines in the farm.

.4. Detection: Wind-wind target turbine analysis

Having at disposal data from two wind sensors is a turning
oint for the diagnosis of a systematic yaw error. Actually, if a
ind turbine operates subjected to a systematic yaw error, most
f the time one anemometer will be more upwind than in the
ormal operation and the other will be more downwind. In other
ords, the relation between v1 and v2 will slightly change. If the
ystematic yaw error is vanishing, the flow streamlines behind
he rotor are parallel to the rotor axis. This condition is called flow
quilibrium because the difference between v1 and v2 depends as
eakly as possible on the wind intensity and is expected to be
veragely zero [30]. Therefore, by posing a simple linear relation
s in Eq. (5):

2 = kv1, (5)

e expect k to be nearer to 1 in the case of well aligned wind
urbines and deviating from 1 when there is a systematic yaw
rror. In practice, for the considered test case, it should be pos-
ible to distinguish the data set D1 with respect to the data set
2 for the two wind turbines T3 and T5, in the form of change
f the k coefficient. For further inspection, the average absolute
alue of the difference between v1 and v2 is computed too. This
nalysis can be carried as well for the other wind turbines in the
arm, which act as reference for checking the consistency of the
ethod.
4

.5. Detection: Wind-wind reference-target turbine analysis

Based on the above considerations, the occurrence of a sys-
ematic yaw error is expected to affect the nacelle wind speed
easurement. Therefore, considering that for two wind turbines

T3 and T5) we have a data set where they run subjected to
ystematic yaw error and one where the error has been corrected,
t should be possible to individuate a slight difference in the
elation between the nacelle wind speed measurement at the
arget wind turbines and the nacelle wind speed measured at the
earby reference ones. This can be done by posing once again a
inear relation as in Eq. (6):

vtar = k2vref , (6)

where vtar and vref are the nacelle wind speeds v at the target and
reference wind turbines respectively. This method is proposed
using v rather than v1 or v2 because in this way it can be applied
also for wind turbines having only one wind speed sensor at
the nacelle. Substantially, the objective of this analysis for the
selected test case is inquiring if k2 changes for T3 and T5 in D2
with respect to D1 and how.

2.6. Assessment: Comparison against state of the art methods

The standard in the literature for estimating the performance
change of a wind turbine from one period to another is the power
curve, which goes as follows:

• Compute the average power curve using the method of
bins for D1 and D2 data set. This means grouping the data
per wind speed bins of 0.5 m/s and averaging the power
measurements for each wind speed bin.

• The performance change between D1 and D2 passes through
the computation of Etar and Eref , where

Etar =
∑

i

Pifi

and

Eref =
∑

i

P̂ifi.

Pi and P̂i are respectively the average power for the ith bin
in the target (D2) and in the reference (D1) data set, fi is the
frequency of the ith bin in the target data set (D2).

• The average percentage performance deviation between D2
and D1 can be estimated as

∆ = 1−
Eref
Etar

. (7)

• A subtlety is given by the fact that the power curve depends
on several environmental factors (turbulence intensity, at-
mospheric stability, wind shear and so on [45,46]) which
can have a seasonal dependence. If the data sets belong to
two different seasons, as is the case for the present work
(Table 1), one can have a clearer picture of the performance
change of the target wind turbines by renormalizing the ∆

estimator with the same quantity computed for a reference
wind turbine (∆ref ). One therefore obtains Eq. (8):

∆̂ = ∆ − ∆ref . (8)

2.7. Assessment: Proposed method

Given that the nacelle wind speed measurements are affected
by the presence of the yaw error, the power curve analysis
depicted in Section 2.6 has to be revisited. In order to avoid
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Fig. 2. Power of T3 and T5 as a function of the power of T4 for the data set
D1.

bias, in this work a power–power method based on the relative
performance of T3 and T5 with respect to the other wind turbines
in the farm is proposed.

Such generalization of the concept of relative performance
oes as follows:

• Train a model for the power of T3 and one for the power
of T5 (indicated as y), using two thirds of the D1 data set.
The input variables of each model are selected to be the
power of T2, T4 and T6, which constitute a vector x. The
correlation coefficient between the input variables and the
power of T3 and T5 are respectively (0.92, 0.94, 0.97) and
(0.95, 0.97, 0.90). It should be noticed that the method does
not require to know that the yaw error is absent for the
reference wind turbines. It just requires that the behavior
of the reference wind turbines does not change, which can
be reasonably assumed if no interventions are performed on
them. This is the case for the present work for T2, T4 and
T6, which have been selected, while T1 has been excluded
because it has undergone an intervention.

• Simulate the output of the model for the remainder one
third of the data set D1, given the input (using Eq. (14)). The
model estimate is indicated as ŷ(x1).

• Do the same for all the data set D2, obtaining ŷ(x2).
• Compute the quantity in Eq. (9) for i = 1, 2:

∆i = 100

∑
xi∈Di

y(xi)− ŷ(xi)∑
xi∈Di

y(xi)
(9)

• The quantity ∆̃ = ∆2 − ∆1 gives an estimate of the
performance change between D2 and D1.

The rationale for using the power of the nearby wind turbines
as input variables for the power of a target wind turbine can be
easily understood also on a qualitative basis, through the plot of
the target as a function of one of the reference as in Fig. 2.

The selected model is a Support Vector Regression with Gaus-
sian Kernel. It has been selected basing on a comparative anal-
ysis against other typical model structures, which is omitted for
brevity. In general its decisive feature justifying its widespread
application in SCADA data analysis problems [47,48] in wind
energy is its robustness with respect to the presence of outliers.
The principles of the Support Vector Regression are as follows.
Starting from a linear model as in Eq. (10):

y = xβ, (10)
5

the objective is estimating the coefficients β in order to minimize
he norm β ′β compatibly with the residuals between model
estimates and measurements being lower than a threshold. The
solution can be expressed in terms of the support vectors, which
are the coefficients α in Eq. (11):

β =

N∑
n=1

(
αn − α∗

n

)
xn (11)

and can be computed by minimizing L (α), given in Eq. (12):

L (α) =
1
2

N∑
i=1

N∑
j=1

(
αi − α∗

i

) (
αj − α∗

j

)
x′ixj + ϵ

N∑
i=1

(
αi + α∗

i

)
+

N∑
i=1

yi
(
α∗

i − αi
)
. (12)

A non-linear Support Vector Regression is obtained by substi-
tuting the scalar products between the observations matrix in
Eq. (12) with a Kernel function of the observations matrix. A
typical selection is the Gaussian kernel given in Eq. (13):

G (x1, x2) = e−κ∥x1−x2∥2 , (13)

where κ is the kernel scale. Once a model has been trained, it can
be used for predicting, given the input variables, using Eq. (14):

f (x) =
N∑

n=1

(
αn − α∗

n

)
G (xn, x) . (14)

In this study, the Support Vector Regression has been ap-
plied using Matlab upon hyperparameters optimization based on
10-fold cross validation.

3. Results

3.1. Detection: Comparison against state of the art methods

In Fig. 3, the frequency of wind vane measurements for each
wind turbine during the data set D1 is reported. From this Figure,
it arises that all the wind turbines orientate to a set point which
the SCADA reports to be zero, but in fact it is not for wind turbines
T3 and T5 (as arises from Table 1). From Fig. 3, it is impossible
to clearly distinguish T3 and T5 with respect to the other wind
turbines in the farm.

Fig. 4 reports the wind vane - power coefficient curve. Also in
this case, it is impossible to distinguish clearly T3 and T5 with
respect to the well aligned wind turbines. What this Figure actu-
ally shows is the effect of the rotor rotation on the wind, which
introduces a sort of rotor blade offset vane [30] in the apparent
behavior of the efficiency. Such offset has to be compensated
according to the line of reasoning in [33].

The above results indicate that it is questionable to use the
wind vane measurements collected by the wind turbine to detect
the systematic yaw error.

3.2. Detection: Wind-wind target turbine analysis

In Fig. 5, the average curve of v2 as a function of v1 is reported
for the data set D1 for the target wind turbines T3 and T5 and
for a sample reference wind turbine (selected to be T6). It clearly
arises that the behavior of T3 and T5 distinguishes with respect to
T6. For T3 and T5, for given v1, v2 is slightly lower with respect
to what happens for T6. The situation changes upon correction
of the systematic error. In the data set D2, represented in Fig. 6,
the behavior of the various wind turbines is more similar. This

is corroborated by the results in Table 2, where the k coefficient
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Fig. 3. Frequency of wind vane measurements: data set D1.

Fig. 4. Wind vane - power coefficient (Cp) curve: data set D1.

s reported for the data sets D1 and D2. The results are reported
ith 4 digits because the standard error of k estimated by the
odel is in the order of 10−4. Upon correction of the systematic
aw error (data set D2), the k coefficient for T3 and T5 is in
he order of 0.99 while it was respectively in the order of 0.94
nd 0.95 in data set D1. For the T6 wind turbine, the coefficient
s stably in the order of 1.02, which is reassuring about the
onsistency of the method (no interventions on T6 and no change
n the coefficient). This value is closer to 1 with respect to T3
nd T5 in the data D1. From these results, it can be hypothesized
hat T3 and T5 in data set D2 have even a better alignment than
6. Furthermore, in the data set D1, the deviation with respect to
he unity for k is higher for T3 which, according to Table 1, has
the higher yaw error. The same kind of conclusions can be drawn
from Table 3, where the average absolute difference between v1
and v2 is reported for data sets D1 and D2.

3.3. Detection: Wind-wind reference-target turbine analysis

In Table 4, the results are reported for the analysis indicated in
Section 2.5. They are reported with 3 digits because the standard
deviation of the least squares estimates is in the order of 10−3. T6
6

Fig. 5. Average curve of v2 as a function of v1 for the data set D1.

Fig. 6. Average curve of v2 as a function of v1 for the data set D2.

Table 2
The estimates of k (Eq. (5)) for the data sets D1 and D2.
Data Set T3 T5 T6

D1 0.9483 0.9517 1.0215
D2 0.9903 0.9897 1.0241

Table 3
The average absolute difference between v1 and v2 for data sets
D1 and D2.
Data Set T3 T5 T6

D1 0.38 0.36 0.23
D2 0.13 0.13 0.22

is selected as reference and the behavior of T3 and T5 is analyzed
for the data sets D1 and D2. Also T4 is included as target wind
turbine, in order to verify if it is possible to distinguish it with
respect to T3 and T5. The coefficient k2 is higher in D1 with
espect to D2 for the T3 and T5 wind turbines. This means that,
or given wind speed measured at the T6 nacelle, in D1 the wind
easured at the nacelles of T3 and T5 is slightly higher than in
2. In other words, the effect of the yaw error at T3 and T5 is an
ver estimation of the wind speed. It should be noticed that the
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Table 4
The estimates of k2 (Eq. (6)) for the data sets D1 and D2.
Data Set T3 T5 T4

D1 0.963 0.943 0.880
D2 0.932 0.903 0.877

Fig. 7. Average power curve difference between D2 and D1 data sets.

method proposed in Section 2.4 does not give indication about
the fact that the wind speed is under or over estimated due to
the presence of the yaw error, while the present method does
because it puts in relation the wind at the target wind turbine to
the wind at reference wind turbines.

3.4. Assessment: Quantification of the performance change

In Fig. 7, the difference between the power curves computed
in the data sets D2 and D1 is reported for wind turbines T3 and T5
and for the reference T6. It appears that T3 and T5 have improved,
while T6 even seems to have worsened. This latter behavior of
T6 can likely be an apparent effect due to environmental factors.
Nevertheless, the procedure indicated in Section 2.7 allows quan-
tifying the difference of the behaviors of T3 and T5 relative to the
behavior of T6. The results are reported in Table 5, from which
it arises that the average estimate of performance change for T3
and T5 is remarkable (4.6% and 7.3% respectively).

In Table 5, the estimates of ∆̃ are reported as well. The data-
driven method proposed in this work, which employs only power
measurements, provides performance change estimates which
are in the order of one third of those calculated through the
power curve analysis. Those two estimates should be similar
if the systematic yaw error did not affect nacelle wind speed
measurements but this, as supported with the above analyses,
is not the case. The point is that there is a bias in the power
curve method and is given by the fact that the nacelle wind speed
measurements are affected by the systematic yaw error. These
results therefore confirm that, for the considered test cases, the
presence of a systematic yaw error led to an over estimation
of the nacelle wind speed. Through the power curve analysis,
therefore, in this case the effect of apparent under-performance is
amplified. Less power is extracted for given wind due to the yaw
error, but also more wind intensity is measured due to the yaw
error. Therefore, it is not completely consistent to estimate the
effect of the systematic yaw error by straightforwardly comparing
the power curves. In other words, the quantification of the effect
of the systematic yaw error requires a reference which is not
7

Table 5
The estimates of ∆̂ (Eq. (8)) and ∆̃.
Metric T3 T5

∆̂ 4.6% 7.3%
∆̃ 1.6% 2.5%

Fig. 8. Power of T3 and T5 as a function of the power of T4, in the form of
difference between the data sets D2 and D1.

affected by the error. Finally, in Fig. 8, the power of T3 and T5 is
reported as a function of the power of T4, in the form of difference
between the data sets D2 and D1. This provides an unbiased
representation of the fact that indeed the performance of T3 and
T5 has improved in the data set D2.

4. Conclusions

The present study has dealt with the use of nacelle anemome-
ter SCADA-collected data for the diagnosis and the assessment of
the performance impact of wind turbine systematic yaw error.
The starting point of this work is the fact that the presence
of a systematic yaw error affects nacelle wind speed measure-
ments and this leads to revisit the methods for diagnosis and
assessment. Despite being as simple as that, this aspect has never
been investigated in deep before in the literature about full-scale
industrial wind turbines.

It is therefore questionable to diagnose wind turbine system-
atic yaw error in the form of under-performance observed from
the power curve without taking into account critically the effect
of the yaw error itself on the nacelle wind speed measurements.
This can be understood through a simple paradox. In presence of
a systematic yaw error, the nacelle anemometer of a wind turbine
is more upwind or more downwind than in normal operation. If it
is more downwind, it measures less wind speed than in normal
operation. Therefore, by comparing the power curves with and
without systematic yaw error, the latter might even appear better
performing, which is a contradiction.

On the other way round, the fact that the nacelle wind speed
measurements are affected by the systematic yaw error might be
the turning point for the diagnosis. The general rationale is that
the presence of a systematic yaw error causes deviations from the
flow equilibrium. Based on this, in this work two methods have
been concretely formulated. The former is based on the analysis
of the relation between the wind speed measured by two nacelle
anemometers (if present) at the target wind turbine and the latter
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s based on the analysis of the relation between the nacelle wind
peed measured at the target and reference nearby wind turbines.
As a consequence of the above line of reasoning, also the

uantification of the effect of the systematic yaw error should be
evisited critically. In this study, the performance change upon a
orrection of a remarkable yaw error has been estimated using a
ata-driven generalization of the concept of relative performance,
hus employing only power measurements. It is shown that the
chieved estimate is more consistent than what would be ob-
ained from a straightforward power curve analysis, which (as
bove argued) is biased by the effect of systematic yaw error.
SCADA data analysis is fundamental for wind turbine mon-

toring and in this context it is important to circumscribe ap-
ropriately the limitations within which it should be employed.
t present, there are no studies in the literature employing the
ethod proposed in this work for the diagnosis of systematic
aw error. This means that there is a limited statistics and that
here are no first principles guesses of the relation between the
eviations from the flow equilibrium and the amount of sys-
ematic yaw error. As in many similar applications, such missing
nowledge in the near future will likely be extracted from data,
hich means from experience. Therefore, the most important

urther direction of the present work is enlarging the test cases
ortfolio. As it stands in this work, the proposed method can be
ery useful for wind energy practitioners as an advice for further
nspections and/or installations of upwind sensor systems (like
iDARs or spinners).
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