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Sanson Alessandra Abstract

ABSTRACT

Bismuth compounds are considered the most suitable alternatives to lead-based
systems for ferroelectric and piezoelectric applications. Nevertheless little has been
done to systematically study the relationships that link the two main classes of
ferroelectric bismuth compounds: perovskite and bismuth layer compounds
(Aurivillius compounds). The knowledge of these relationships could be a key to
improve the performances of the bismuth compounds and could help to better tailor

their properties for specific applications.

The objective of this project was twofold:

1. To understand the structural and electrical relationships between perovskite
and Aurivillius compounds within the Na;;,Bi;,TiO;-BigTiz012-BaTiOs
(NBT-BIT-BT) system;

2. To explore the possibility of obtaining a new perovskite of formula

Bi,MgTiOs.

A study of 83 different compositions allowed us to sketch the possible phase diagram
of the NBT-BIT-BT system. XRD structural characterisation highlighted the
importance of low angle analysis in the study of layered compounds. The presence of
monophasic regions in the phase diagram stressed the flexibility of this class of
compounds that are able to withstand high percentage of vacancies before collapsing.
It was shown that, after taking into account some electronic considerations, a simple
geometrical model can be use as “rule of thumb” to predict the stability of Aurivillius
compounds. New unreported compounds were found in the system and a mechanism
for the formation of the\Aurivillius compounds is proposed.

The dielectric and piezoelectric properties were linked to the fundamental layered
structure of the Aurivillius phases showing that all these properties depend on the
number of perovskite blocks present. The higher the number of perovskite blocks,

higher the values of resistivity and relative permittivity.
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It was proved that the formulation Bi;MgTiOs does not lead to a perovskite compound
but to a multiphasic system. Nonetheless, it was established that the doping of
BisTi30;, with magnesium improves its properties to a good extent modifying also the
morphology of the grain of the ceramics. The addition of 1%mol MgO increases the
permittivity by 50% and the resistivity by more than one order of magnitude.
Magnesium strongly affects also the piezoelectric coefficient almost doubling the

value relative to that previously reported for BIT.
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INTRODUCTION

«The toxicity of lead and lead compounds has been known since 200 B.C.. Pb can be
absorbed into blood, bone and soft tissues causing nervous disorders, high blood
pressure, anaemia, memory and concentration problems. While lead heavily affects
adults, its neurotoxic effect is particular worrying in children for whom low levels of
lead in the blood can cause severe damage'. There has been an intense debate around
the impact of lead coming from electronic equipments other than batteries, especially
since the convention of Rio de Janeiro in 1992 on “climate change™. Pushed by a

- public opinion, more and more sensitive to public health and environmental issues,
the scientific community and electronic industry have started to move towards the
elimination of lead from ferroelectric and piezoelectric materials before local or
global regulations come into force.*

xIn looking for new lead-free ferroelectrics attention has been focused on bismuth
based materials. These compounds present a promising option to replace lead
materials in ferroelectric applications presenting good properties coupled with a
decreased toxicity. The materials for this study were made using the conventional
mixed oxide ceramic technique that is the easiest synthetic route for these materials.x

»The piezoelectric compounds of bismuth crystallise mainly in two forms: perovskite
and layered perovskite-related materials (known as Aurivillius compounds).

The aim of this project was to understand the structural and electrical relationships
between these two families in an attempt to improve the properties of the compounds
already known, or to discover new ones. This was accomplished by studying the
coupling of the best known piezoelectric bismuth compound (Nap sBigsTi03, NBT)
with the prototype of the Aurivillius compound family (BisTi3O12, BIT).

In conjunction with this, a study was made to obtain a possible new perovskite of
formula Bi;MgTiOg.

This thesis is divided in four sections: Literature Review, Experimental, Results and
Discussion, and Final Remarks and Future work.

In the first section the phenomenon of piezoelectricity is introduced and examined

with respect to ceramics. LThe project is put in the context of an increasing interest in

xvii



Sanson Alessandra Introduction

lead-free materials and the main compounds chosen (NBT and BIT) are examined in
detail. x

In the “Experimental” section, the primary production route is reviewed and the
techniques used for the characterisation of the materials are presented. |

The “Results and Discussion” presents the work performed and justifies it on the basis
of the current knowledge. This part is divided into two subsections corresponding to
the two main parts of the project: the coupling perovskite-Aurivillius and the possible
new perovskite Bi,MgTiOg.

The thesis is concluded with “Final Remarks and Future Work”, where the research is

summarised, conclusions are drawn and future directions considered.

xviii
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1.1. PIEZOELECTRICITY

In this introductory section the phenomenon of piezoelectricity is presented and
located in the context of the project. After a brief historical excursion, the

fundamentals of the effect are presented.

1.1.1. Historical outline

The first experimental proof of the piezoelectric effect was published in 1880 by
Pierre and Jacques Curie as a result of their studies on monocrystals (quartz,
tourmaline and Rochelle salt) undergoing mechanical stress®. They showed that some
materials, due to their particular crystallographic structure, can develop electrical
charges proportional to the applied mechanical stress (direct piezoelectric effect).
Later, they proved that the same crystal can exhibit a converse effect, changing its
dimensions when a voltage is applied through it. Unfortunately, the complexity of this
phenomenon, that requires a tensorial analysis to define the relevant measurable
quantities, prevented the deep comprehension of piezoelectricity for almost twenty
five years. In 1910 Voigt published the “Lerbuch der Kristallphysik” in which he
defined completely the twenty natural crystal classes in which the piezoelectric effect
occurs and, with appropriate tensorial analysis, all the possible macroscopic non-zero
piezoelectric coefficients®. Although the phenomenon had been reported, there were
no commercial applications for piezoelectric materials until 1917, when Langevin
began to perfect an ultrasonic submarine detector, using piezoelectric quartz crystal as
transducer’.

The success of the sonar stimulated the research on all kind of piezoelectric devices
that culminate in the 1940’s with the discovery of the advantages obtainable by the
use of polycrystalline ceramics instead of single crystals. Although investigations into
the applications of piezoelectricity were carried out all around the world, the
American industries took the lead of the research animating also an intense patent
activity. The American supremacy established during the Second World War was
soon beaten by new Japanese companies, born from the active collaboration between

industry and universityé, appeared in the market for the first time in 1951.
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The discovery of lead zirconate titanate (PZT) gave additional impulse to an already
vibrant research throughout the world. An analysis of the US patents in the years
between 1990 and 19966, showed that with 41 and 42% ofthe total patents issued, US
and Japanese companies represent the leaders of the piezoelectric market. The total
US consumption of electronic ceramic components in 1999 was $5.5 billions and with
an average annual growth rate (AAGR) of 8.7% is estimated to reach $8.6 billions by
the year 20047. Among them, piezoelectric ceramics, ceramic-polymer composites
and polymer films equalled 222 million of US dollars in 2000. Likely to grow at an
AAGR of 8%, the market of piezoelectric ceramic is expected to reach in the US only
$284 by 20058 These numbers stress the diffusion and importance of these materials
that are not longer confined to a narrow sector of the electronics industry. In fact,
since the appearance of the Langevin’s sonar, the number of devices based on
piezoelectricity have expanded dramatically and piezoelectric materials are now part
of everyday life. Some ofthese devices are listed in Figure 1.1, divided in 4 groups by
the functions they are designated to serve. A newer, and rapidly growing application
of piezoelectrics, is the integral incorporation of mechanical actuation and sensing
microstructure into electronic chips (micro electromechanical systems (MEMS)) and

the development of a new generation ofnon volatile memories (NVFRAM)O.

Actuators
Microphones LOll.d Speﬁilkers
Accelerometers Ink jet printers
Sensors . Autofocusn.lg
Gas igniters Video head positioner
Micropositioner

ging transd .
n destructive tes trasonic clean
. Filters (SAW)
Fish finders
. Transformers
iezo transforme .
. Delay lines
icalnl

"«for/gener» "

Figure 1.1: Applications of piezoelectric materials classified in base of their function
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1.1.2. The environmental issue

X Lead zirconate titanate solid solutions (PZT) represent, from the time of their
discovery in 1950, the most widely used ceramics for ferroelectric and piézoelectric
applications. The high toxicity of lead oxide, however, is becoming a major concern
all over the world as a consequence of a growing awareness on environmental issues.
In addition, the volatilisation of PbO during sintering can change the stoichiometry of
the ceramics affecting their performances obliging the manufacturer to carry out the
high temperature processing in a Pb-rich atmosphere. For this reason the production
of lead-based ceramics is not only a matter of public health but also a technological
complication. Furthermore, the increasing interest in biocompatible materials to
implant directly in living tissues, and in piezoelectrics operating at high temperature
and pressure, has pushed the electronics industry to investigate lead-free materials to
accomplish these new markets and possible new regulations. In a questionnaire about
future R&D trends for piezoelectric and dielectric ceramics published in 1997, 61
Japanese technologists pointed out the necessity to find and develop non-lead
containing piezoelectric ceramics for dielectric and piezoelectric applicationslo.
Although the environmental impact of lead released from electronic equipment may
be extremely low, there has been (especially in the European Community) a
progressive tightening of the legislation concerning lead-compounds. In two different
directives (the Waste of Electric and Electronic Equipment (WEEE) and the limitation
of hazardous substances in electrical and electronic equipment (ROHS)), ratified on
the 7™ of June 2001'!, the European Council stated that each state member must

ensure that:

1. “Producers will pay for the collection, treatment, recovering and
environmentally sound disposal of WEEE products from private house-hold”
(WEEE);

2. By the 1* January 2007 at the latest, new electrical and electronic equipment

put on market does not contain lead or other hazardous substances (ROHS).
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The European approach was so aggressive both in terms of scopes and deadlines, to
oblige the members of the World Semiconductor Council (representing the largest
semiconductor makers in the European Union, Japan, U.S., Korea and Taiwan) to ask
for the exemption of certain materials from the ban. PZT was exempted in
consideration of the fact that no valid alternatives have yet been found to replace it'2,

It is clear that although there are no current regulations on eliminating PZT and
related compounds, the electronic industry is very keen to discover and develop leéd-
free materials and processes, not only to be prepared for possible future legislations

but also to find a breakthrough product for the market.

1.1.3. The effect

From a macroscopic point of view, piezoelectricity is the polarisation of a material
due to the displacement of ions from their equilibrium positions by the action of an
external stress. The piezoelectric effect is therefore strongly linked to the internal
structure of the material: to show piezoelectric properties there must be a mismatch
between the centre of the positive and negative charges, i.e. the crystal must be non-
centrosymmetric. Of the 32 point groups in which all the crystals are classified, 21
classes are non-centrosymmetric and 20 of these are piezoelectric. For the class 432
the combination of symmetry elements excludes piezoelectric activity (Table 1.I). Out
of the 20 piezoelectric classes, 10 are characterised by having a unique polar axis, i.e.
an axis which shows different properties at the two ends”. Crystals belonging to these
classes are called polar because they are spontaneously polarised. However, the
spontaneous polarisation cannot be detected as charges on the surface, because these
are compensated through external or internal conductivity.

X Nevertheless, if the temperature of the crystal is altered, a change in the polarisation
occurs and electric charges can be detected in the faces perpendicular to the polar
axis. For this behaviour, these crystals are called pyroelectric. For some crystals
belonging to these classes (called ferroelectrics), the direction of the spontaneous
polarisation can be switched between two or more equivalent stable states by

application of an electric field. yx_
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Centre N° Crystal System

; oint
simmel P Rhombo Orthorh Mono- Tri-

ry groups  cypic Hexagonal Tetragonal hedral ombic clinic  clinic
0
an m3m m3 6/mmm 6/m 4/mmm 4/m 3m 3 mmm 2/m 1
432 23 622 6 422 4 32 222
1
43m 6m2 42m
o
21) 6mm 6 4mm 4 3m 3 2mm 2 1
10 m

Table 1-1: Crystalline classes classified considering the presence (0) of absence (o) of the

centre of symmetry

The reversibility ofthe polarization can be strongly affected by temperature, pressure,
electrical conductivity and crystal perfection so that the ferroelectric behaviour of a
crystal (although theoretically predictable) can not be detected because of
experimental limitationsl4d A summary of the relations between piezoelectricity,

ferroelectricity and pyroelectricity is presented in Figure 1.2.

21 Non centrosymmectric

20 Piezoelectric

Polarised under stress t I*
Centrosymmectric

10 Pyroelectric (No piezoelectric)

ntaneouslv polarised

Figure 1.2: Relations between pyroelectric, ferroelectric and piezoelectric crystals
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1.1.4. Ferroelectric crystals and ferroelectric domains

Ferroelectric crystals show spontaneous polarisation that decreases with increasing
temperature to disappear at a specific temperature called the Curie temperature (Tc).
The Curie point is characterised by a peak in the permittivity and disappearing of
ferroelectric activity. This temperature therefore indicates the transition from a low
temperature polar structure to a high symmetry, high temperature one (called
paraelectric) in which no spontaneous dipole is present. x

When the temperature is lowered below Tc without applying an electric field, the
polarisation can develop in at least two directions. As a consequence, a depolarizing
field E, arises inside the crystal (Figure 1.3). To minimize the energy associated with
E, the crystal splits into regions called domains which are separated by interfaces
called domains walls. The domains are therefore regions inside the crystals in which
the polarisation is uniformly oriented along one of the directions allowed by
symmetry. As an example of domain developing, we can consider the tetragonal
phase of a perovskite crystal ABOs. In this case, domains can have a polarization

vector in one of the six {001} directions of the unit cell (Figure 1.4).

Figure 1.3: Surface charge associated with spontaneous polarisation. P&= spontaneous
polarisation, E,= depolarizing field",
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Figure 1.4: Representation of the possible distortion of the cell on cooling from the Curie
temperature. A) Cubic cell in the paraelectric state; B) the six possible deformations that
can lead to a tetragonal cell below the Curie temperature. The arrows indicate the direction
of the cation displacement.

As a consequence, in tetragonal crystals, the domains wall can lie in the {100} or
{110} planes forming what are called the 90° and 180° walls from the angles formed
by the vectors of the two adjacent domains they divide (Figure 1.5).

Figure 1.5: Example of domains pattern in a tetragonal material.
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At room temperature, the domains compensate almost completely the polarisation in
the crystal and as a consequence the latter shows almost no ferroelectric response at
all. The polarity of the crystal can be easily restored exploiting the possibility of
switching the polarisation, applying an external field. In these conditions the domains
reorient themselves in the direction of the field leading to a “polarised” crystal. This
process is called “poling”. The presence of domains inside the materials is also
responsible for the hysteretic behaviour of the polarisation when a variable field is
applied (Figure 1.6).

By applying an electric field of increasing strength, an increasing number of domains
will switch towards the direction ofthe field and the polarisation will increase rapidly.
In these conditions the material has maximum domain allignment and the polarisation
reaches the value of saturation (Ps). Decreasing the field to zero, some ofthe domains
will remain aligned, producing a remanent polarisation (Pr). In order to eliminate this
polarisation it is necessary to apply an electric field in the opposite direction: the
value needed is called the coercive field (Ec). Further increase in the field causes the
alignment of the dipoles in the opposite direction. The area within the loop is a

measure of'the energy required to reverse the polarisation twice.

Figure 1.6: Hysteresis loop for a ferroelectric material. Ec=coercive field, Ps= saturation
polarisation, Pr= remanent polarisation.
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1.1.5. Equations of state

As stated above, the piezoelectric effect links mechanical and electrical properties.
The equations of state can be expressed in terms of stress and strain (elastic variables)

and field and displacement (electric variables) in the following way’:

D=dT+¢'E (Direct Effect) Equation 1.1
S =s*T +dE (Converse effect) Equation 1.2

In which D is the electric displacement, T the stress, E the electric field, S the strain, d
the piezoelectric tensor, s the material compliance and ¢ the permittivity. The
superscripts indicate a quantity held constant: constant stress means that the material
is unconstrained, and electric field constant that the electrodes in the sample are short-
circuited. From thermodynamic considerations, it can be proved that the piezoelectric
coefficients of the direct and converse effects are equal. The previous equations are
tensorial. The strain and the stress are second-rank tensors, the elastic compliance that
expresses the relationship between them, is then a fourth-rank tensor. In the same way
the permittivity, which links E and D, is a second rank tensor and the piezoelectric
coefficient d, linking polarization and stress, is a third rank tensor. The tensorial
nature of the equations becomes easy to see using the appropriate subscripts as in

Equations 1.3 and 1.4.

D; = dipTj + 8TijEj (Direct Effect) Equation 1.3

Sij = SEij]dil + dwiiEx (Converse effect) Equation 1.4

If all the components of these tensors were independent, 117 coefficients would be
necessary to completely describe the piezoelectric effect. The symmetry of st e7 and
d, however, reduces the number to 45 independent tensor components: 21 for the
elastic compliance, 6 for the relative permittivity and 18 for the piezoelectric
coefficient. The crystal symmetry and the right choice of reference axes can reduce
these numbers even further simplifying the problem as will be shown for ceramics in

the following chapter.

10
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1.2. PIEZOELECTRIC CERAMICS

The meaning of the word “ceramic” has changed in time according to the evolution of
new technologies and materials. It was born to define products essentially based on
silicates like pottery, and was extended to indicate oxides (MgO, Al203, ZrO; etc.)
nitrides, borides and other inorganic materials. However, a definition based only on
compositional considerations has become inadequate to describe a ceramic material
especially after the discovery of borderline materials like cermets, glass-ceramics and
ceramic-polymer composites. Bearing in mind that in a ceramic there are only ionic
and covalent bonds, a possible definition could be: a polycrystalline inorganic
material with a long-range order and essentially non metallic, that can exhibit
electrical, magnetical or mechanical properties due to its structure and chemical

composition.

1.2.1. Piezoelectricity and Ceramics

A ceramic can be roughly considered an agglomeration of small crystals, fitted
together in a random way. As it is cooled from the high temperature paraelectric state
to the ferroelectric state, the unit cell deforms usually with lengthening in the
direction of the polar axis. Intergranular stresses are minimised by the formation of
domains regions within each grain, which have common orientation of the
spontaneous dipole, as already seen for single crystals. A ceramic of an ordinary
piezoelectric or pyroelectric material is non piezoelectric, even though the individual
crystals may be strongly piezoelectric, because the effects from the individual crystals
cancel each other. This is initially true also for a ceramic specimen of a ferroelectric
material. To make the ceramic piezoelectric, an electric field must be applied to
switch the polar axes of the ferroelectric crystallites to those directions allowed by
symmetry which are nearest to that of the electric field. After the poling, the ceramic
has a net dipole moment, and will respond to an applied electric field or mechanical
pressure similar to a single crystal as long as the field or pressure is well below that
needed to switch the polar axis. As a result of the poling process much of the domain

structure of the ceramic is eliminated. To pole a ceramic is more complicated than to

11
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pole a single crystal. The process involves the alignment of the polarisation of each
single grain. Since the original crystallographic directions ofthe grains in the ceramic
were randomly oriented, the line-up ofpolar axes after the poling process cannot be as
perfect as in a single crystal of the same material, but it will be the best possible in
those conditions. In polycrystalline materials, in fact, the switching of the dipole
moments is hindered by the elastic strain inside its body. On cooling from the
paraelectric phase, large mechanical stress can be generated inside the ceramic body
by the anisotropic strain caused by the deformation ofthe cells. This stress can affect
the domain dynamics, clamping them and preventing in this way their switching in an
electric field. The switching of domains by 180° do not change the strain of the grain
but in the case of 90° switching, the difference in the a and c parameter of the cell
obliges the latter to change its dimensions in respect to the crystallographic
environment. This kind of “rotation of 90°” of'the unit cell is not always possible due
to the presence of the other grains and of the strain inside the material. The 90°
domains are therefore more difficult to reorient than the 180° ones. Even if the field
applied is high enough to reorient these domains, when it is removed they reverse
back to their initial states immediately or after a certain time, in the phenomenon

known as aging. The process ofpoling ofa single crystal is represented in Figure 1.7.

Polaris.
Axis

T p—

\

Voltage 1 J
r .

dll

=

Figure 1.7: Schematic of the poling process. A) material before poling; B) During the application of
the voltage the dipoles in the materials align with the direction of the field developing a
polarisation; C) After poling, the dipoles rearrange themselves in the best condition considering the
geometry of the system.

12



Sanson Alessandra Literature review

The fraction of the single crystal polarization value that can be obtained in ceramics
has been calculated for the perovskites, the best known piezoelectric ceramics. The
crystallites of these materials can have mainly three kind of structure: tetragonal,
rhombohedric or orthorhombic. Depending on the nature of the constituent crystallites
the fraction of alignment will then be 83% (tetragonal), 87% (thombohedric) and 91%
(orthorhombic)ls. It is important to point out that these values refer to simple not-
tilted perovskite like BaTiO;.

Despite several types of symmetry of the constituent crystals, a piezoelectric ceramic
shows only one kind of symmetry. Initially, the random disposition of its crystallites
leads to an isotropic body. The poling process destroys this isotropy introducing a
preferential orientation in the direction of the field: the symmetry of a poled ceramic
can be described as cylindrical polar (com). The equations expressing the piezoelectric
effect can then be simplified taking into account this symmetry and then be expanded
as shown in Equations 1.5-1.7 for the direct effect and Equation 1.8-1.12 for the

converse one 15 .

D;=d5Ts + 8T1E1 Equation 1.5
D, =d;sTs +£4E, Equation 1.6
Dj = d3y(Ti+Ty) + d33T3 + £'3E;3 Equation 1.7
S = sEuTl + sE12T2 + sE13T3 + ds1E; Equation 1.8
Sy = sEnTz + sE12T1 + sE13T3 + d31E3 Equation 1.9
S5 = sE13(T1+T2) + s533Ts + d33E3 Equation 1.10
Sy = 5B Ty + dysE, Equation 1.11
S¢ = 2(SE11-SE12)T6 Equation 1.12

It is worth remembering that in these equations it is considered that d and s are
symmetrical tensors to use a more concise notation (suffix notation) that allowed to
use only two suffix instead of the three generally used for a third rank tensor'®, These
coefficients are summarised in a more compact form in Table 1.II. Observing this

table it is clear the massive simplification obtained using symmetry considerations.
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Sn Sk Sl 0 0 0

Sl s1l SI3 0 0 0 ®m

S3 sI3 33 0 0 0 (Cylindrical Symmetry
0 0 0 Sua 0 0

0 0 0 0 Sta 0

0 0 0 0 0 2 (Sn-Si2)

0 0 0 0 dis 0 61/80 0 0

0 0 0 dis 0 0 0 siso O

dsi d3i  a33 0 0 0 0 0 6380

Table I-11: Matrix representation of the piezoelectric, dielectric and compliance for a
piezoelectric ceramic.

The conventional labelling for reference axes and planes for piezoceramics, necessary

for defining the previous coefficients, is shown in Figure 1.8. The poling direction is

generally indicated as direction 3.

(Z)
3

Polarisation

Figure 1.8: Definition of the directions for the piezoelectric coefficients. The direction of
poling is generally indicated with 3.
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In defining the piezoelectric coefficient djj, the first subscript describes the direction
of the field (or the dielectric displacement) while the second indicates the component
of strain or stress. In this way ds; relates the field along the polar axis to the strain
perpendicular to it, while ds;3 is the coefficient of piezoelectricity when the field and
the strain are parallel to the polar axis.

An important parameter to characterise a piezoelectric material is its
electromechanical coupling factor (k). It is a measure of the efficiency of the
electromechanical effect, i.e. of the conversion between the two forms of energy

involved and it is espressed by the Equation 1.5.

U
k = 12 Equation 1.13

Uy,

where Uy, U; and U, are the piezoelectric, mechanical and electrical energy densities.
It is important to have a high k for an efficient energy conversion, but the previous
definition of k does not take into account the dielectric or mechanical losses nor the
recovery of unconstrained energy. Hence it is not an exact indication of the effective
energy conversion. The efficiency of the process is then better expressed by the ratio
of converted, useable energy delivered by the piezoelectric sample to the total energy
taken up by it. This ratio is commonly named “effective coupling coefficient, ke and

it is expressed by the following equations.

12 = input electrical energy converted into mechanical
€

Input electrical energy

input mechanical energy converted into electrical

kzeff =

Input mechanical energy

The strain caused by the application of an electrical field or a mechanical stress has
components in the three orthogonal directions, so the energy transfer from one form to
the other occurs in a very complex 3-dimensional way. As a consequence, shape and

dimensions of a ceramic element lead to unique expressions of ke The
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electromechanical coupling coefficient is written with two subscripts that indicate
respectively, the direction along which the electrodes are applied and along which the
mechanical energy is applied or developed. For example ksi links the electric field in
the direction parallel to the one ofpoling (3) with the direction perpendicular to it (1).
Special mention should be given to the planar coupling factor (kp) and the thickness
coupling factor (kt). These two parameters are characteristic of ceramic samples
shaped in the form of disc with electrodes on the major surfaces and thickness small
compared to them. kp expresses the coupling between an electric field applied along 3
(the poling direction) and the radial vibrations (directions 1 and 2) (Figure 1.9A). The
thickness coupling coefficient kt on the other hand links an electric field along 3 with

mechanical vibrations in the same direction (Figure 1.9B).

Figure 1.9: Representation of the radial vibrations (A) and thickness vibrations (B).

The main categories of ferroelectric materials are represented in Figure 1.10,
classified on the basis of the structure of the unit cell. For each class a prototype

member is also indicated.

Perovskite
- Pb(Zr,Ti)03, Lay]e;li';It:‘uc.tures
T"ps~ BaTi0; 3012

Figure 1.10: Principal families of piezoelectric materials classified in base of their crystalline
structure. For each family a representative compound is also indicated.
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Of all these classes, the perovskite one represents by far the most important category
for piezoelectric applications. The layer structures are gaining increasing importance
for memory applications, although the piezoelectric coefficient is not as high as that
of the perovskite materials.

A summary of the piezoelectric coefficient ds; for a typical compound of each class is
presented in Table 1-IIL In the table is also indicated the Curie temperature (Tc),

which gives an indication of the maximum temperature of use of the material (see

next paragraph).
Compound ds3 (pC/N) Tc (°C)
- PZTA 268 315
PbNb,O¢ 73 570
CdNb,O4 5 -88
BaTiO; 190 130
Bi4Ti3012 20 675

Table 1-III; Piezoelectric coefficient and Curie temperature of some piezoelectric materials.
PZTA is a commercial composition of PZT"’,

1.2.2. Perovskite and PZT

Although barium titanate was the first piezoceramic to be commercially developed,
the solid solutions between PbTiO3 and PbZrOj; (generally indicated as PZT) show the
highest value of piezoelectric coefficients and represent the most used piezoelectric
ceramics.

The name “perovskite” is given to those materials whose structures are similar to the
one of the mineral Perovskite: CaTiOs;. The unit cell of this structure, generally
indicatéd with ABO;, consists of a corner-linked network of oxygen octahedra with
the B cations in the middle of the octahedral cages and the A-cations situated in the
interstices created by them. In the case of PZT the A sites are occupied by lead, .
whereas in the B sites there are Zr or Ti (Figure 1.11A).

17
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Figure 1.11: Representation of the perovskite structure of PZT. A) Structure above Tc;
B) ferroelectric phase (in this case tetragonal) below

The great polarizability, and consequently the piezoelectricity, of this material is due
mainly to the (Ti/Zr)C>6 octahedra that influence the electric behaviour of the entire
cell. The small ionic radius of Ti4+ and Zr4+ (0.605 and 0.72A respectively)l7
compared with the one of oxygen (1.40A) allows easy movements of the B cations
inside the octahedra, leading in such a way, to the formation of an internal dipole. The
B ion is generally a transition metal with a closed shell (s2p6). The high electronic
polarizability of the whole oxygen octahedron is due to a large number of possible
hybridized orbitals with energy sufficiently closed and composed of the d, p and s
orbitals of the B-cation. In particular, as the energy level of the d-orbitals of the B-
cation gets closer to the one of the 2p orbitals of oxygen, the intensity ofthe covalent
bond becomes larger with a consequent enhancing of the ferroelectric behaviourl8 In
addition, ions ofthe electronic structure [Xe] 6s2 (like Pb2+) have the tendency to form
asymmetrical partially covalent bonds. Their high electronic polarizability is due to
the unshared pair of 6s2 electrons which is stereochemically active. When ions of this
nature are introduced into the A-site of the perovskite lattice, they favour a distortion
of the structure from cubic to the symmetry that stabilises a ferroelectric or
antiferroelectric state.

The cubic cell of Figure 1.11 A is stable only above the Curie temperature; below it
the structure changes either to a tetragonal, monoclinic, orthorhombic or
rhombohedral form depending on the composition of the system. In Figure 1.1 1B the
unit cell below the Curie temperature is shown. The phase diagram of this system can

be seen in Figure 1.12. From the figure it is clear that the border between the two
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possible phases is almost independent of the temperature. In this region, called the
morphotropic phase boundary (MPB), the piezoelectric coefficient and dielectric
constant achieve their highest values, due to the simultaneous presence of multiple
possible phases. In this situation the material presents more possible orientation for
the domains and hence a more effective alignment along the applied field is possible
during the poling process. It has been recently discovered, that a monoclinic phase
may bridge the rhombohedral and tetragonal phases at the morphotropic phase
boundarylg. Glazer®® pointed out the possibility tha_t this monoclinic phase represents
a key point to understand the real nature of the phase transitions in PZT and some of
its unexplained anomalies. He showed that, if we consider the compounds at
microscopic level (that is in terms of unit cell) and we focused on the role of lead, it is
possible to describe all the systems of solid solutions as if it was always monoclinic at
microscopic level but with a different long-range order: monoclinic-rhombohedral
long range order in the side of PbZrOs, monoclinic-monoclinic long-range order at the
previously called MPB and monoclinic-tetragonal long range order at high
concentration of PbTiOs;. The usual phase diagram for PZT could then be the
consequence of the macroscopic scale generally involved when studying the system
with techniques like XRD or electron and neutron diffraction. These techniques would
be able to detect only the long range order present in the materials as a consequence

of twinning effects.
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Figure 1.12: Phase Diagram of PZT, indicating the high temperature paralelectric cubic phase (P¢)
; the low temperature ferroelectric rombohedral (Frqm) and tetragonal phases (Fy), and the high
temperature ferroelectric rhombohedral one (FR(HT))I .
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1.3. LEAD-FREE PIEZOELECTRIC CERAMICS

Increased awareness of public health issues has pushed the research toward more
environmental friendly materials. Unfortunately, the properties of the piezoelectric
ceramics present at the moment in the market are not comparable to the ones of the
lead-based compounds. Apart from a lower piezo-response, these non-Pb piezoelectric
materials present several drawbacks such as for example, narrow temperature range of
stability (BaTiOs) and difficult processing (alkaline niobates). The most promising
compounds are the ones of bismuth. Two of them have been chosen in this project to
assess their potential for development of new lead-free materials and are examined in
detail in the next chapter.

Here a summary of the other two major classes of lead-free ceramics is presented to

provide a more complete view of the systems available at the present.

1.3.1. Barium Titanate (BaTiO;)

Barium titanate was the first piezoceramic to find commercial application in 1947

and it is still used in some piezoelectric applications, although it has been generally
superseded by PZT.

BaTiO; is characterized by several phase transitions (Figure 1.13) all accompanied by
changes in the electrical and mechanical properties that compromise the stability of
the material for a wide range of temperature. This characteristic and the low Curie
temperature (130 °C) have limited the uses of this material to the applications (like
sonar) in which it is possible to take advantage of its relatively high coupling
coefficient '° while accepting a narrow temperature range of operation.

The properties of BaTiO3 have been deeply analysed from the time of its discovery
and several types of doping have Been developed to enhance its properties, in
particular to move the phase transition away from the working temperature and to
reduce the dielectric loss at high frequency15 .

Barium titanate is probably the best studied piezoelectric material.
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Figure 1.13: Evolution of the phases with temperature for barium titanate’,

1.3.2. (K.Na)NbO;

Although potassium niobate ceramics exhibit low piezoelectric coefficients, it has
been shown that when coupled with NaNbOs, it gives rise to a solid solution where
values of ds3 can easily reach 80pC/I\122.

The low dielectric constant and high electromechanical coupling coefficients make
these ceramics suitable for accelerometers or sensors operating at temperature up to
400°C**?* (the Curie temperature of NagsKosNbO; is 420°C™). In addition they do
not contain any harmful components and could therefore be employed in biomedical
applications.

Unfortunately, up to now, only hot-pressing has been able to give ceramics with a
reasonable density”. Furthermore, slight changes in stoichiometry (due to alkaline
oxides volatilization) can cause formations of extra phases. Some of these are highly

hygroscopic and lead to ceramic disintegration on exposure to air.
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1.4. BISMUTH-BASED LEAD-FREE CERAMICS

¥ Among the known piezoelectric materials without lead, great importance has been
placed on the ones based on bismuth. Since the electron shell of Bi®*" is similar to the
one of Pb%*, it can be expected to exhibit similar properties.

Bismuth compounds crystallize mainly in two structures:

v' Perovskite

v" Layer structure (known as Aurivillius compounds)

In the following paragraphs, these structures will be discussed with particular
attention to the two compounds NagsBigsTiO; (for the perovskite family) and
Bi4TizO1, (for the Aurivillius compounds) that represent the key materials in this

study.

1.4.1. Perovskites: Na;;,Bi;; TiO;

The most important among the bismuth containing ferroelectric perovskites is
(Nay,Biy;2)TiOs (NBT), where sodium and bismuth share the A-site of the perovskite
structure and titanium is in the B-site’®?’. The A-site substituted perovskites are quite
rare if compared with the analogue B-site substituted compounds. Apart from NBT
only AgosBiosTiOs, KosBiosTiOs, AgosNdosTiO; and Lag sStosMnO;™® are known.
NBT presents a series of very interesting electrical and structural properties linked to
this substitution. In particular its structure is so peculiar that, despite its discovery in
1960 by Smolenskii?®, only very recently has its phase evolution with temperature

been clearly identified®’. The peculiarity of this compound is stressed by the evolution
of its phases on cooling: from cubic paraelectric (ngm) to tetragonal (P4bm) at
540° and from tetragonal to rhombohedral (R3c) at 255°C, with regions of
coexistence of phase between 500 and 540° (cubic and tetragonal) and 300-320°
(thombohedral and tetragonal). In addition an abrupt change in the dielectric

properties has been noticed at 200°C. The nature of this transition has not been yet
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clearly understood*’. Some authors>'?

attributed this change in properties to a
ferroelectric — ferroelastic transition whereas Pronin et al. considered a ferroelectric-
antiferroelectric transition®®. More recently Roleder et al** showed that the
piezoelectric properties of NBT measured at room tempera