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Abstract

SM A L L calibre projectiles are spin-stabilised to increase ballistic stability, often at

high frequencies. Due to hardware limitations, conventional actuators and meth-

ods are unable to provide satisfactory control at such high frequencies. With the reduced

volume for control hardware and increased financial cost, incorporating traditional guid-

ance methods into small-calibre projectiles is inherently difficult. This work presents a

novel method of projectile control which addresses these issues and conducts a systems

level analysis of the underlying actuation mechanism. The design is shown to be a viable

alternative to traditional control methods.

Firstly, a 7 Degree-of-Freedom (DoF) dynamic model is created for dual-spin pro-

jectiles, including aerodynamic coefficients. The stability of dual-spin projectiles, gov-

erned by the gyroscopic and dynamic stability factors is given, discussed and unified across

available literature. The model is implemented in a Matlab/Simulink simulation environ-

ment, which is in turn validated against a range of academic literature and experimental

test data.

The novel design and fundamental operating principle are presented. The actuation

mechanism (AM) is then mathematically formulated from both a velocity change (∆V )

and a lateral acceleration (ã) perspective. A set of axioms are declared and verified using

the 7-DoF model, showing that the inherently discrete system behaviour can be controlled

continuously via these control variables, ∆V or ã. Control state switching is simplified to

be instantaneous, then expanded to be generically characterised by an arbitrarily complex

mathematical function. A detailed investigation, parametric analysis and sensitivity study

is undertaken to understand the system behaviour.

A Monte Carlo procedure is described, which is used to compare the correction cap-

abilities of different guidance laws (GLs). A bespoke Zero-Effort-Miss (ZEM) based GL
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is synthesised from the mathematical formulation of the AM, with innately more know-

ledge of the system behaviour, which allows superior error correction. This bespoke GL

is discussed in detail, a parametric study is undertaken, and both the GL parameters and

PID controller gains are optimised using a genetic algorithm. Artificial Intelligence (AI)

Reinforcement learning methods are used to emulate a GL, as well as controlling the AM

and operating as a GL, simultaneously.

The novel GLs are compared against a traditional proportional navigation GL in a

nominal system and all GLs were able to control the AMs, reducing the miss distance to a

satisfactory margin. The ZEM-based GL provided superior correction to the AI GL, which

in turn provided superior correction over proportional navigation. Example CAD models

are shown, and the stability analysis is conducted on the geometry. The CAD model is

then used in CFD simulations to determine aerodynamic coefficients for use in the 7-DoF

dynamic model. The novel control method was able to reduce the 95% dispersion diameter

of a traditional ballistic 7.62mm projectile from 70mm to 33mm. Statistical data analysis

showed there was no significant correlation or bias present in either the nominal or 7-DoF

dispersion patterns.

This project is co-sponsored by BAE Systems and ESPRC (ref. 1700064). The con-

tents of this thesis are covered by patent applications GB2011850.1, GB 2106035.5 and

EP 20275128.5. Two papers are currently published (DOI: 10.1016/j.dt.2019.06.003, the

second DOI is pending) and one is undergoing peer review.
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4.3 Actuation mechanism, latax based ã . . . . . . . . . . . . . . . . . . . . 135

4.3.1 Instantaneous switching . . . . . . . . . . . . . . . . . . . . . . 138

4.3.2 Non-instantaneous switching . . . . . . . . . . . . . . . . . . . . 145

4.3.3 Procedure for deriving latax . . . . . . . . . . . . . . . . . . . . 146

4.3.4 Design parameters affecting bias manoeuvre . . . . . . . . . . . 158

5 Guidance Laws 165

5.1 Monte Carlo batch analysis . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.2 Bespoke ZEM-based GL for ∆V actuation mechanism . . . . . . . . . . . 169

5.2.1 Parametric studies and investigations . . . . . . . . . . . . . . . . 175

5.2.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.3 Reinforcement Learning AI control . . . . . . . . . . . . . . . . . . . . 197



viii C O N T E N T S

5.3.1 The reward function . . . . . . . . . . . . . . . . . . . . . . . . 197

5.3.2 Implementing RL agents into Simulink dynamic model . . . . . . 202

5.3.3 DQN direct control . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.3.4 DDPG Guidance Law . . . . . . . . . . . . . . . . . . . . . . . 206

6 Simulations and Discussion 211

6.1 Nominal Guidance Law comparison . . . . . . . . . . . . . . . . . . . . 212

6.2 Novel geometry analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.2.1 CAD models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.2.2 Aerodynamic coefficients using CFD analysis . . . . . . . . . . . 229

6.2.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.3 7-DoF dynamic model example trajectories . . . . . . . . . . . . . . . . 235

7 Conclusions 243

7.1 Project summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.2 Key findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

7.3 Summary of objective novelty . . . . . . . . . . . . . . . . . . . . . . . 253

7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

References 257

A Explicit calculations 283

A.1 Aerodynamic forces & moments . . . . . . . . . . . . . . . . . . . . . . 283

A.1.1 The drag force . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

A.1.2 Spin interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

A.1.3 Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

A.1.4 The Magnus force . . . . . . . . . . . . . . . . . . . . . . . . . 287

A.1.5 Overturning moment . . . . . . . . . . . . . . . . . . . . . . . . 289

A.1.6 Pitch damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

A.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

A.2 Airframe trimming coefficients . . . . . . . . . . . . . . . . . . . . . . . 291

A.3 Jacobian partial derivatives matrix coefficients . . . . . . . . . . . . . . . 294

A.4 AI Agent training parameters . . . . . . . . . . . . . . . . . . . . . . . . 298



B Geometry modelling in PRODAS and Ballistic stability analysis 303

B.1 PRODAS modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

B.2 Parametric investigation of projectile geometry affecting ballistic stability

factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

B.2.1 Calibre Comparison . . . . . . . . . . . . . . . . . . . . . . . . 307

B.2.2 Surface geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 309

B.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

B.4 Example analysis of Tungsten Tipped 7.62x51mm NATO using ballistic

stability framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

C Academic Publications 319

List of Figures

1.0.1 Orbital ATK Armament Systems M1156 PGK [11] . . . . . . . . . 5

1.0.2 DARPA Extreme Accuracy Tasked Ordnance (EXACTO) projectile 6

1.0.3 Sandia National Labs guided bullet prototype . . . . . . . . . . . . 7

1.0.4 Finned smart bullet by Zhang et al. [17] . . . . . . . . . . . . . . . 8

1.0.5 Smart Anti-Vehicle Aerial Guided Engagement (SAVAGE) from

Smart Rounds [18] . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.0.6 General Dynamics Roll Controlled Guided Mortar (RCGM) [19] . 9

1.0.7 STARSTREAK dart submunitions mounted on main rocket body [21] 10

1.1.1 Block schematic of novel dual-spin projectile design . . . . . . . . 13

1.1.2 Development of helical control method using a spinning lifting surface 15

1.1.3 Earth axis perspective of picture plane and control force Fc rotating

at rate ω through angle φ . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.4 Force rotates through angle φ1 at lower rate ωB and rotates through

angle φ2 at higher rate ω0 . . . . . . . . . . . . . . . . . . . . . . . 16

ix



x C O N T E N T S

2.1.1 Illustration of patent design by Thales [37] with bullet (30) and case

(20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 The optimal mass distribution of a long range bullet, from [63] . . . 32

2.3.1 Apparatus for estimating aerodynamic coefficients [86] . . . . . . . 40

2.3.2 Depiction of custom 105mm projectile [48] . . . . . . . . . . . . . 40

2.3.3 Comparison of aerodynamic coefficients for M107 155mm projectile

across different sources . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Traditional PN engagement scenario [108] . . . . . . . . . . . . . . 46

2.4.2 Example of sliding mode control [109] . . . . . . . . . . . . . . . 47

2.4.3 Reference frame of kinematic model used in ZEM GLs [125] . . . . 50

2.4.4 Adaptive controller used by Calise et al. [129] . . . . . . . . . . . . 52

2.4.5 Actuation mechanism of impulse thrusters considered by Gao et al.

[131] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.1 Diagram of a typical Reinforcement learning agent . . . . . . . . . 61

2.5.2 Hierarchy of RL algorithms [148] . . . . . . . . . . . . . . . . . . 61

2.5.3 Diagram of a DQN agent using the actor-critic method . . . . . . . 64

3.1.1 Projectile design with fixed Fc . . . . . . . . . . . . . . . . . . . . 76

3.1.2 Axis convention from the projectile reference frame [186] . . . . . 77

3.1.3 Variation projectile frame coefficients due to non-zero α . . . . . . 79

3.1.4 Partial classification of state-space forms (adapted from [187]) . . . 89

3.2.1 Individual firings of various 7.62x51mm bullets . . . . . . . . . . . 95

3.2.2 Average velocity profiles of different ammunitions . . . . . . . . . 96

3.2.3 Velocity profile for dynamic Model against radar measurements for

7.62x51mm NATO ball ammunition . . . . . . . . . . . . . . . . . 96

3.2.4 Dynamic model predictions against results by Patel et al. [32] for

unguided novel 105mm projectile . . . . . . . . . . . . . . . . . . 97

3.2.5 Dynamic model predictions against results by Khalil et al. [95] for

M107 155mm projectile . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.6 Dynamic model predictions against results by Gkris et al. [183] for

a 7.62x51mm NATO bullet . . . . . . . . . . . . . . . . . . . . . . 99



C O N T E N T S xi

3.2.7 Dynamic model predictions against results by Ren et al. [85] for

novel 120mm mortar . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.1 Pictorial representation of equation 3.49, with slow arm subscript 2

and fast arm subscript 1 . . . . . . . . . . . . . . . . . . . . . . . 103

3.3.2 Nutation creating the characteristic ‘yaw rosette’ [189] . . . . . . . 104

3.3.3 Ideal effects of imparting spin [189] . . . . . . . . . . . . . . . . . 105

3.3.4 Stability regimes [94] . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3.5 Stability of different calibres forV =Mach(1.5+0.5m) | m∈{0,1, ...,5}109

3.3.6 Dual-spin projectile with passivated control surfaces . . . . . . . . 111

4.1.1 Simulink block diagram for the velocity-based actuation mechanism

and GL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1.2 Wrapping of bias angles, bias starts at φON = φB −φa and ends at

φOFF = φB +φa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.1 Bias centre point φB with force sweep angle of size φa . . . . . . . 120

4.2.2 Bias range with centre point φB and symmetric φa on either side. . . 121

4.2.3 Bias angle at φB corresponds to a counter bias angle of φB +π . . . 122

4.2.4 Axiom 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2.5 Axiom 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2.6 Axiom 3 [φB,φa] = [π/2,π/4] . . . . . . . . . . . . . . . . . . . . 127

4.2.7 Axiom 4: [φB,φa] = [π/2,π/4] . . . . . . . . . . . . . . . . . . . . 128

4.2.8 Axiom 5: [φB,φa]1 = [π/2,π/4], [φB,φa]2 = [3π/2,π/4] . . . . . . 129

4.2.9 Axiom 6: [φB,φa]1 = [π/2,π/4], [φB,φa]2 = [3π/2,π/4] . . . . . . 130

4.2.10 Circular initial conditions ([u0,v0] = [−0.1592,0]) with a bias, pro-

gression then counter bias, showing the continuation of circular motion131

4.2.11 Stop algorithm check for residual velocities in all four quadrants . . 133

4.2.12 Terminal phase of stop algorithm check . . . . . . . . . . . . . . . 134

4.2.13 Drift effect in system . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.1 Simplifications to spin rate for control architecture † - Phase II is

repeated because both instances represent free flight . . . . . . . . 139



xii C O N T E N T S

4.3.2 ‘Deadzones’ for bias manoeuvres with: ωB = π/2 [rad.s−1], ω0 =

2π [rad.s−1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.3.3 The effect of ωB/ω0 on the size of φa which produces the maximum
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Chapter 1

Introduction

LO N G range weapons have been an integral part of warfare throughout human history.

The ability to cause a desired effect on a target from range enables the user to

keep distance from potential danger. Early weapon development was primarily focused

on increasing the area of effect, which led to the introduction of artillery. Originally

using tension energy system like catapults and trebuchets to simply fire larger calibre

projectiles, artillery evolved quickly with the introduction of black powder to deliver these

larger projectiles at higher speeds and longer ranges. Projectiles were adapted from being

purely kinetic, into missiles and shells which carry payloads of secondary munitions or

explosives to increase the area of effect. The up-scaling continued in World-War II, with

the German V-2 rocket system introducing the concept of long-range ballistic missiles,

and then intercontinental ballistic missiles (ICBMs).

With the advent of modern warfare, munition development has reversed direction and

demanded a higher accuracy of the systems. Primarily, a higher munition accuracy means

a larger probability of achieving a successful target effect on the first round; this results in

a lower economic and logistical burden since less munitions are needed. In addition, large

scale volume of fire tactics like artillery barrages, are a high a risk for collateral damage.

While this was less of a problem throughout history, where battlefields were often well

away from any civilisations, modern warfare is increasingly taking place in built up areas,

with a high density of civilian populations and structures. Both factors led to the advent

of guided weapons, which are now well established in modern arsenals.

Guided weapons encompass a family of ranged munitions which are adorned with some

1
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kind of control mechanism, able to intentionally modify the trajectory. The weapons can

be missiles or rockets, such as the aforementioned ICBMs, with consumable onboard fuel

or resources to constantly impart thrust throughout flight; or they can be projectiles such as

artillery shells, which are ballistic and have no onboard resources for thrust. Predominantly,

guided weapons all use some combination of rearward mounted fins and forward mounted

canards. Theses lifting surfaces can be passivated and stationary, which are traditionally

used for ensuring munition stability, or they can be active which are used for physically

imparting the control force. Much like the ailerons on aircraft wings, these controllable

fins have an adjustable pitch angle, which changes the lift force they produce. The control

and guidance architecture is built around this lift force. The control method is not restricted

to using lifting surfaces, in fact many other novel methods have been investigated, rather

lifting surfaces are a mainstay in commercial aviation and are thus very well understood

and researched.

Early concepts of guided weapons tend to use proprietary munitions and launch plat-

forms and this is true for most technological advancements. For guided weapons in modern

militaries, swapping munition stocks for the latest advancements is a logistical and fin-

ancially burden. As such, it is highly advantageous to develop guided munitions in a

conventional and standardised form factor, so they can be interchanged with conventional

unguided munitions as the situation requires. Some examples of this are Raytheon’s

155mm M982 Excalibur [1], the US Army’s 155mm M712 Copperhead [2], and Saab

Bofors Dynamics’ 120mm ‘THOR’ [3] (or STRIX). These projectiles all use fin stabilisa-

tion and contain the flight computer, guidance actuators and sensors on board. The former

two use fin guidance as well, but the Bofors THOR uses 12 lateral thruster rockets to

provide mid-course corrections. They are more expensive, guided versions of the standard

155mm artillery munition.

Projectiles are by definition, ballistic, there are no onboard resources for sustained

thrust. To maintain stability throughout the flight they are spun during launch by rifling in

the weapon barrels. Helical grooves are cut through the full length of the barrel to induce a

spin as the projectile travels down the barrel. Generally speaking, a higher spin rate means

a projectile is more stable and is more resistant to aerodynamic perturbation. At longer

ranges however, projectiles can be spun too much resulting in ‘super-stability’, where the
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projectile is less able to follow a natural trajectory which thereby results in it being more

susceptible to perturbations (discussed in §3). Either way, spinning the projectile makes

the trajectories more reliable and importantly, predictable.

One consistent theme across the majority of guided weapons is that they have a relat-

ively low spin rate. High roll rates are detrimental to the stability of rockets and missiles,

owing to the high coupling between degrees of freedom, comparatively low response

frequency of the actuators and actuator mechanisms, and the general desire to conserve on-

board resources by demanding as little effort from the actuators as possible. This naturally

low spin rate, combined with the relatively large volumetric budget available, means that

actually implementing the control hardware in missiles is comparatively simple; though

this of course does not deduct from the complexities of the hardware and control theory

which goes into these systems.

Smaller calibre weapons systems (<40mm) still mostly rely on volume of fire to

achieve a desired effect on target: rotary cannons on aircraft, infantry light machine guns

and anti-aircraft emplacements to name a few. One notable exception for small arms

where accuracy is paramount, is for snipers. Infantry sniper weapons, or sniper rifles, have

evolved to effectively deliver conventional ballistic ammunition out to distances of up to

5km, up to the range of accuracy permitted by the ammunition itself [4]. Sniper rifles can

use widely available ammunition such as the 7.62x51mm, 7.62x54mmR or 12.7x99mm

NATO, or they can use speciality ammunition such as 8.6×70mm Lapua Magnum; spe-

cifically designed for accuracy at long ranges. Modern sniper systems, the combination of

the rifle, ammunition and trained operators are usually only range limited by the accuracy

of the cartridge.

Robinson & Berefelt of the Swedish Defence Research Agency have produced a report

detailing the implementation of guidance and control into spinning artillery projectiles [5].

The major conclusion of the report is that a significant factor hindering the development

of guided, spinning projectiles is the implementation of actuators and servos with a re-

sponse frequency comparable to the projectile rotation rate. As a result of this, stability

of the projectile cannot currently be ensured by conventional actuators alone, it must be

guaranteed by the gyroscopic stability factor: "stability must be guaranteed by open loop

characteristics of the system and not by synthesized closed loop properties". It was high-
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lighted that guidance subsystems must be substantially reduced in size, leading to a lack

of redundancy in critical components.

Large calibres have more payload space and less extreme flight conditions, so are

easier to guide in the first instance. Research and developments for large calibre pro-

jectiles focuses on optimising and miniaturising the existing guidance and control systems.

Small calibre projectiles remain almost completely unguided, with research predominantly

optimising the relation between the spin rate and projectile geometry, such as boat-tail

angles and ogive contours. Medium calibres are currently the forefront of control and

guidance innovation. They are small enough to still traditionally require spin imparted

on them for accuracy but also large enough that advanced technologies, such as Micro-

electromechanical systems (MEMS) can now begin to be installed. The emergence of

guided small calibre projectiles hinges entirely on the success of miniaturisation and per-

formance increases of existing technologies in medium calibres.

Innovations and concepts are emerging to fulfil this requirement for medium calibre

projectiles. The projectile can be by de-spun in flight to a point where control and guidance

hardware can operate. This is achieved in one of two ways: firstly, the projectile can be

intentionally designed with a roll damping moment, which opposes the rifling of the barrel

and reduces the roll rate of the projectile through flight. Secondly, the concept of a dual-

spin projectile is proposed, with two separate rolling sections connected by a bearing. This

allows the back section to spin freely and keep gyroscopic stability while the front section

can be relatively de-spun to a point where the actuators are effective. Dual-spin projectiles

are the most promising technology for driving development in the sector, primarily because

of the design of conventional shells include a front mounted fuse.

Another consideration for guided weapon design is that large stockpiles of conventional

unguided munitions already exist. As described above, instead of dismantling and wasting

the munitions they can be upgraded using the dual-spin design, which is achieved by

retrofitting the shells a course-correcting fuse (CCF). Unlike the above artillery shells,

which have most of the projectile volume available for guidance hardware if needed, a

CCF contains the control and guidance hardware within the size of a traditional mortar

fuse. Examples of currently manufactured CCFs are Orbital ATK Armament Systems’

M1156 Precision Guidance Kit (PGK) [6], BAE’s Silver Bullet [7], the Israeli Top Gun
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155mm [8, 9] and the Guidance Integrated Fuze (GIF) [10]. Figure 1.0.1 shows the

scale of the PGK which was chosen by the US Army over the Silver bullet and adopted

as the XM1156 [11]. A CCF is able to be used on most of the available 105-155mm

artillery/mortar rounds available to date, provided the characteristics of the round (such as

aerodynamic coefficients) can be uploaded to the guidance computer, so the trajectory can

be calculated. The XM1156 is currently being fielded in the M982 Excalibur round [6].

F I G U R E 1 . 0 . 1 Orbital ATK Armament Systems M1156 PGK [11]

All these examples above show the effort that are being made to adapt existing guidance

methodologies to spinning projectiles, with the smallest calibre able to be guided being

dictated by the dimensions of the control hardware. However, different projects have

been undertaken which specifically focus on guiding small calibre projectiles. Since the

research is on the cutting edge of defence engineering research, details of the projects

remain scarce.

DARPA have developed the Extreme Accuracy Tasked Ordnance (EXACTO) program,

which uses a proprietary gun platform and optic system to guide a .50cal (12.7mm) bullet

[12]. There were no specifications of the design, but in 2015 a video was released (figure

1.0.2A) showing the performance of the round. EXACTO reportedly uses real time optical

guidance from the scope to guide the projectile, as opposed to being a beam rider or homing

system. Figure 1.0.2B shows the official illustration of EXACTO publication by DARPA.



6 C H A P T E R 1 . I N T RO D U C T I O N

There is no obvious external control system is visible on the projectile, suggesting the use

of some internal mechanism of steering during flight. The purpose of the three concentric

white rings around the circumference of the projectile is not addressed and there is no

apparent indication of guidance and control systems which have been used.

( A ) Live fire demonstration [12] ( B ) Design depiction [13]

F I G U R E 1 . 0 . 2 DARPA Extreme Accuracy Tasked Ordnance (EXACTO) projectile

A sabot is a structural device, used to keep a sub-calibre projectile centred in the

barrel of a weapon system during expulsion. They are primarily used in tank systems,

allowing the use of kinetic energy penetrator (KEP) ammunition from a large bore cannon

designed for HE rounds. The spin rates used in the traditional HE rounds is very high

and detrimental to the KEP munition. This necessitated the inclusion of a slip obturating

ring or slip obturator. This is a layer of relatively soft material designed to deform under

pressure, which ensures good contact with the rifling of the barrel. Importantly it prevents

the rifling from imparting the full amount of rotational kinetic energy it would otherwise.

This allows optimal performance of both sabot and non-sabot rounds with a rifled barrel.

M. Minnicino [14] has developed a program which can model de-spun projectiles fired

out of a gun tube with a progressive rifling twist. Its purpose is to test the performance of

the materials used in the creation of novel band-slip designs.

Sandia National Laboratories have also demonstrated a .50cal guided bullet prototype

[15]. The Sandia prototype, shown in figure 1.0.3B, uses homing guidance via on-board

front mounted sensors to detect reflected laser light from a target. The Sandia design is

fired from a proprietary smooth bore barrel, with a plastic sabot to provide an adequate seal.
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There was no disclosure whether the projectile is encased within a loaded cartridge case

and fired in a manner similar to traditional rounds. The form factor of the Sandia round is

much longer than a traditional bullet. This long aft section has 4 control fins on the exterior

which are controlled by electromagnetic actuators. There is no inertial measurement unit

used in the prototype, which traditional guided projectiles use for tracking a position in

space. Figure 1.0.3A shows a test firing, where a LED was attached to the back of the

projectile to prove the electronics and guidance systems could survive the launch and

flight. There is no mention as to whether the path was a pre-programmed or whether the

projectile responded during flight. The tests also showed the projectile reached Mach 2.1

using commercially available gunpowder. Computer simulations estimate the projectile

could correct 0.2m lateral distance over a range of 1km.

( A ) Depiction of live fire demonstration [16] ( B ) Prototype design [15]

F I G U R E 1 . 0 . 3 Sandia National Labs guided bullet prototype

In the following years, a very similar geometry has been investigated by Zhang et al.

, from the Chinese College of Mechatronic Engineering, and Chongqing Jialing special

equipment Co. [17]. The authors used a CAD model of the geometry to investigate

the aerodynamic coefficients of the novel projectile design in an effort to analyse the

flight properties. The work was primarily concerned with finding the optimal location for

the centre of mass by comparing experimental results with live fire tests to analyse the

variation of the static margin, or static stability. It was noted at the end of the manuscript

that further work should investigate the control architecture of the projectile using a 6-DoF

model. There was no mention of ‘control’ or ‘controlled flight’ in the manuscript, which

would suggest that the prototype is a structural representation of further work.
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( A ) CAD model

( B ) Prototype in cartridge without sabot

F I G U R E 1 . 0 . 4 Finned smart bullet by Zhang et al. [17]

The American ‘Smart Rounds’ has shown a product in development called Smart Anti-

Vehicle Aerial Guided Engagement (SAVAGE) [18], for use in counter UAV scenarios.

The design is a 40mm rocket propelled projectile intended to be fired from either shoulder-

fired launcher, or from a ground based 64-tube emplacement. The design features a

parachute used to recover the fuselage, which should not suffer serious structural damage

due to the usage as a counter-UAV missile. The projectile uses onboard sensors, but it

is not mentioned whether this is for laser homing or image recognition. The projectile is

guided by MEMS activated canards. Machine learning is described as being used for the

control surface actuation and guidance. In addition, AI also supposedly enables swarm

behaviour for multiple SAVAGE missiles, though neither implementation methodology

for the AI are disclosed.

General Dynamics and BAE have introduced the Roll Controlled Guided Mortar

(RCGM), use a proprietary control and guidance assembly mounted between the well-

established L16A2 (US M252) mortar body and M734A1 fuse [19]. Figure 1.0.6 shows

the projectile. The main body, in green, is the standard L16A2 mortar which is usually

adorned with a fuse. On the far right side of the figure is the M734A1 fuse, a small golden
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F I G U R E 1 . 0 . 5 Smart Anti-Vehicle Aerial Guided Engagement (SAVAGE) from Smart Rounds
[18]

end cap. Connecting the two is a long, silver cylindrical body with lateral fixed canards,

which is the actual guidance assembly. The projectile operation is not strictly dual-spin

in the sense of two discrete sections of a projectile, rather it operates with a spin-band

type mechanism. General Dynamics have released a computer animation of the projectile

operation, as well as the footage of the first instance of the projectile after launch. The tail,

main body, fuse and main body of the guidance module all rotate in one direction. The

canards are attached to a slipping ring, free to rotate around the guidance assembly which

it does in the opposite direction to the main body. There is some kind of mechanism which

can control the roll rate of the canard slip band with respect to the main body. At certain

points, roll rate of the slip band is adjusted so its orientation remains stationary relative to

the earth reference frame, which produces a control force. It is unclear what the spin rates

and frequencies of the body and band are intended to be, but it is speculated that all roll

rates are low, to enable the operation of the GPS tracking.

F I G U R E 1 . 0 . 6 General Dynamics Roll Controlled Guided Mortar (RCGM) [19]

The STARSTREAK High Velocity Missile (HVM) is a close-range surface to air
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missile (SAM), manufactured by Thales Air Defence Ltd. [20]. Details of the project and

the missile are classified, but some details of the platform are available through public

means, and examination of a prototype located at the Defence Academy of the United

Kingdom in Shrivenham, England. The missile is comprised of a rocket motor with 3

independent submunitions, each carrying their own 0.9kg payload. During prelaunch,

the operator tracks the target from the sight and can assign wind directions/conditions to

improve performance. At launch, the rocket fires the first stage of the motor to clear the

gun tube but stops the burn before it leaves the tube to protect the operator. When it is clear

of the weapons platform and operator, around 4m, the second stage motor kicks in and

accelerates the munition up to Mach 4 (the fastest in the world at the time of writing). Once

the rocket has reach terminal speed it launches the 3 submunitions. The submunitions are

beam riding tungsten alloy darts, 396mm long by 22mm in diameter, weighing around

0.9kg with approximately 0.45kg of that being an explosive payload. The darts feature a

dual spin design. The forward section has two fixed canards, while the non-rotating aft

section is adorned with 4 stabilising fins and the guidance electronics and optical sensor

used for the beam riding functionality. The two forward mounted control fins impart a

constant control force on the projectile. Control is enacted by means of a bi-directional

motor rotating the front section to align the control force direction axis with the direction

required by the guidance law.

F I G U R E 1 . 0 . 7 STARSTREAK dart submunitions mounted on main rocket body [21]

The development of dual-spin designs is driving the miniaturisation of the major mis-

sile sub-systems. Technology is being adapted from other fields of industry, such as
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Microelectromechanical Systems (MEMS). Efforts are already being undertaken to make

them more resilient, as a by-product of their use in aerospace [22]. Additionally, new

technologies such as piezoelectric actuators, which are robust and have very high opera-

tional frequencies, are being implemented. Different designs of piezoelectric actuators,

such bi-morph actuators [23, 24] and snap-through actuators [25], have been incorporated

into projectile fins and control methodologies have been considered [26, 27]. Smaller

designs usually equate to higher projectile speeds [28]. Both numerical and experimental

investigations have been undertaken to show that conventional fin designs are able to pro-

duce significant deflections when subjected to supersonic speeds in excess of Mach 4, for

example a 25mm projectile achieved a deflection of 1.4m at a range of 160m [29].

While fin controlled designs are being successfully implemented, research is still being

undertaken to explore more unconventional methods of control. Project SCORPION, a

collaboration between DARPA, U.S Army Research Labs (USARL) and the Georgia

Institute of Technology, has investigated micro-adaptive flow control (MAFC) with respect

to their potential effectiveness at controlling spin stabilised projectiles [30]. It utilised

the Coandă effect interaction with the projectile boattail, as well as a high bandwidth

piezoelectric actuator which distorts the boattail geometry. USARL have also suggested

an alternative asymmetric, spin stabilised projectile with a singular ‘paddle’ [31]. ‘Tail-

spoilers’ have been shown able to manoeuvre a 105mm projectile up to Mach 3 [32]. A

range enhancement of 7% was achieved, with a controllable deflection of 1.5km at a range

of 10km. Articulable noses, or ogives, have been investigated, achieving bandwidths of up

to 200Hz in wind tunnels at Mach 3.3 [28]. In terms of other approaches, Microvanes have

been investigated for flow control modification on a supersonic spinning projectile [33].

The vanes were found to inhibit flow separation on the surface of the projectile, resulting in

the normal force coefficient and pitching moment stabilising, leading to greater projectile

stability as a result of the reduced oscillations. In addition, there exist a plethora of patents

[34, 35, 36, 37, 38] describing novel guidance methods such as air jets, gyroscopes and

asymmetric ogives.
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1.1 Design and operation

Guided projectiles are advantageous because of the significant increase in accuracy they

bring. They reduce the number of rounds necessary to achieve the desired effect on

target, which reduces logistical and financial burden as well as significantly reducing

the likelihood of collateral damage in modern engagement scenarios. It is logistically

beneficial for new guided projectiles to adhere to conventional form factors, so that the new

projectiles can be interchanged with traditional munitions in existing weapon platforms;

no proprietary launch systems are needed. The weapons systems used to launch small

calibre projectiles are traditionally rifled, to impart the necessary spin on the projectile to

ensure the necessary gyroscopic stability is maintained along the trajectory. This results in

high projectile spin-rates and very turbulent launch conditions. Small calibre projectiles

are mostly used in direct-fire scenarios, which means shorter flight times. Lifting surfaces,

or fin guidance, are the most prevalent and well understood method of control. However,

they are not conducive to use in spinning projectiles since the current response frequency

of currently available robust actuation technologies is not significantly higher than the spin

rate of the small calibre projectiles.

This project proposes a dual-spin projectile design to address the above discussion.

Figure 1.1.1 shows the basic design layout with the key components. The projectile is

dual-spin, with a front and aft section connected by a bearing. Attached to the bearing is a

brake, which is able to lock and unlock the two sections on demand. Another option would

be to connect the two sections with a motor; instead of having two discrete states, locked or

unlocked, the motor allows more continuous control over the spin-rate discrepancy of the

two sections. Either way, an electronic receiver will be attached to the braking mechanism,

which is responsible for relaying the brake/no-brake command from an external source.

The design uses a non-actuating blunted ogive section as a method of control, to

constantly impart lift onto the projectile. Figure 1.1.1 shows the entire bottom portion

of the ogive as being blunted but in reality, the length, angle and area of blunting are

all parameters which will be adjusted to provide the desired lift force. Any method of

imparting lift could be used but a blunt edge is suggested to reduce complexity and increase

robustness of the overall design. This is because there are no protruding geometries like
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F I G U R E 1 . 1 . 1 Block schematic of novel dual-spin projectile design

fins which could interfere with the barrel profile during launch. Blunting the ogive results

in a mass asymmetry which will need to be accounted for in the control system and stability

analysis.

When the projectile is fired from the gun system, the aft section will engage with the

rifling and be spun to the normal operating spin speed of that weapons platform. The brake

will be engaged during launch and thus the forward section will also accelerate to the same

spin as the aft, as if it were one whole body. Since the aft section contains the high-density

material necessary for ballistic stability, and also likely a power source, it will have much

higher rotational energy and therefore a higher moment of inertia compared to the forward

section. This high inertia is what keeps the forward section spinning when the brake is

engaged.

When the brake disengages, the forward section will begin to de-spin slightly, due

to the aerodynamic roll damping moment. The magnitude of the roll damping moment

and thus the rate of de-spinning can be altered by the blunt face geometry but it will be

a trade-off with drag, mass asymmetry and ballistic instability. After a transient period,

the system will reach a new steady-state, where spin rate of the front section is lower than

the aft section. It is non-zero due to friction in the bearing, but it will be lower than the

aft spin rate. When the brake is re-engaged the forward section is accelerated by the aft

section, which still has the relatively higher spin rate, back to the initial state the system
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was in before the brake was first dis-engaged. It is assumed that the high inertia of the aft

section will be able to reliably and repeatedly re-accelerate the front section with repeated

engage/disengages. There will of course be decay of the whole system, but that can be

taken into consideration. This is the procedure used to alter the spin rate of the forward

section which is adorned with the lifting surface.

This projectile is designed to be a direct-fire beam rider, with some external observer

capable of discerning its location in free space relative to the target. The controller then

acts to keep the projectile on path to the target. Due to the small cross section of a bullet,

the projectile can facilitate controller tracking by implementing a source of illumination

on the aft face. This could be a reflective surface which passively reflects a tracking pulse

(e.g. a laser) back towards the observer, or it could be an active tracker e.g. a diode emitting

light in the IR spectrum.

Mechanism of enacting control

A traditional un-spun projectile will effectively travel along a straight trajectory, as shown

in figure 1.1.2A. Lifting surfaces such as canards or fins can be incorporated onto a

projectile producing a lift vector which results in the projectile moving laterally, shown

in figure 1.1.2B. Spin-stabilised projectiles rotate about their longitudinal axis. If a spin-

stabilised projectile is also adorned with surfaces producing a fixed lift vector, then the

lift vector will rotate or oscillate with the projectile. This oscillatory lift force results in a

helical trajectory, shown in figure 1.1.2C. The rate of projectile spin speed is proportional

to the diameter of the helical trajectory, a quicker spin rate produces a tighter helix with

a smaller diameter (figure 1.1.2D). If the spin rate of the lifting surface is changed, the

diameter of the helix will change accordingly, as shown in figure 1.1.2E. Switching

between different lifting surface spin speeds results in a switching of the helix sizes and

it is this which will be the mechanism of control. When the brake is disengaged the front

section spins slower and the helix is larger. When the brake is engaged, the forward section

matches the aft and the helix is smaller.

Figure 1.1.3 shows the key parameters of the projectile and the method of control, as

well as the YZ plane, also known as the ‘picture plane’. The picture plane aspect can be

thought of as the perspective of an observer if they were behind the gun system during
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( A ) Generic projectile

( B ) Projectile with lifting surface

( C ) Spinning Projectile with lifting surface

( D ) Quickly spinning Projectile with lifting surface

( E ) Spin rate change during flight

F I G U R E 1 . 1 . 2 Development of helical control method using a spinning lifting surface

launch, watching the projectile travel down its trajectory towards the target. This is an

important perspective, as it is the view most operators or controllers have when using direct

fire projectiles, in addition to which it is also the perspective from which the mathematical

framework will describe the actuation mechanism, control and guidance of the projectile.

The constant magnitude control force Fc, produced by the blunted ogive, rotates through

a roll angle φ with roll rate ω . The roll rate would act towards one of two values, ω0 or

ωB (where ωB < ω0) depending on whether the brake is locked or unlocked following the

procedure previously described. The roll orientation φ ∈ [0,2π] of Fc is with respect to

the normal axis and wraps in the negative mathematical direction, since most conventional

projectiles have a right hand twist. This follows the conventional ballistic axis and the

coordinate system described in §3.1.

If the roll rate remains at either ω0 or ωB for one full revolution, the net force on

the projectile will be zero, since it is a symmetrical distribution of Fc. However, a net

force can be imparted on the projectile in one revolution by switching ω through certain

roll angles. Figure 1.1.4 shows Fc rotating at the slower rate ωB through the angle φ1,

then switching to rotate at the faster ω0 through the angle φ2. The novel control strategy
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F I G U R E 1 . 1 . 3 Earth axis perspective of picture plane and control force Fc rotating at rate ω

through angle φ

proposed herein uses a fixed magnitude Fc rolling at speed ω0. The roll rate is slowed to

ωB through favourable roll angles when Fc is aligned, to some degree, with the desired

correction axis. It is then accelerated back to ω0 through the remaining unfavourable roll

angles. This results in a net impulse and thus acceleration in the direction indicated in

the figure. This procedure of slowing Fc when sweeping through favourable roll angles is

henceforth referred to as a ‘bias’. All measurements and symbols henceforth are given in

the ‘picture plane’ reference frame unless explicitly stated.

F I G U R E 1 . 1 . 4 Force rotates through angle φ1 at lower rate ωB and rotates through angle φ2 at
higher rate ω0

Objective novelty of control method, actuation mechanism and discussion

Most guided projectiles have fins which can roll the projectile and induce a control force,

Fc, along a pitching axis. The conventional guidance strategy is to roll the projectile to

align the controllable pitch axis with the desired direction, then increase Fc by actuating

the control surfaces resulting in lateral movement. The novel guidance strategy proposed

herein uses a fixed Fc rolling at speed ω0. The roll rate is slowed to ωB through favourable
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roll angles when Fc is aligned with the desired correction axis, then accelerated back to ω1

through the remaining unfavourable roll angles. There is no ability in this design for any

part of the projectile to have zero roll rate in the earth frame, as utilised by the slip-band

in ref. [19]. At the time of writing, there is currently no literature describing the design,

control and guidance of such a projectile

The design is informed by a variety of different sources, of which many current pro-

jectiles designs are discussed in the literature review. Other resources pertaining to generic

projectile research and development have also been used such as the WSTC0129 report

by Thales, a catalogue investigating a wide variety of novel projectile morphologies [39].

It will be shown that a dual-spin design is a good compromise between complexity and ro-

bustness, which provides an satisfactory level of correction capability while still remaining

feasible with modern technology. In addition, the mathematical tools used to investigate

a dual-spin design can be readily simplified to describe traditional single-body projectile;

the design, conduct and evaluation of the enclosed methodology can be used on other

projectiles.

A faithful constraint of this prototype is that it should be operationally indistinguish-

able and functionally interchangeable with, conventional ammunition; meaning that no

proprietary weapons systems, not modification to existing weapon systems will be ne-

cessary for its operation, beyond the attachment of the guidance hardware (such as laser

designators etc.). Under this notion, the proposed idea offers the most promising design

aspects from a sensical perspective.

A dominant principle for guided small calibre projectile design is to use fewer moving

parts; this means there is less volume occupied, fewer subsystems which can fail and fewer

components which must be physically hardened to operate in such an extreme environment.

In reality there are many different methods by which a projectile can be controlled, ranging

from traditional methods such as fins and pulse jets, to more unconventional approaches

such as internal inertial/gyroscopic control or air-skin morphological changes. Using a

fixed control surface means there a fewer moving parts; the bearing is the only moving

part used in the design, it is simple and intrinsically robust.

Conceptually an ideal dual-spin design completely dissociates the most difficult aspect

of small calibre projectile control, which is the high spin rate, from the control archi-
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tecture itself. The aft section would be free to rotate at any speeds provided the front

section can remain relatively stationary to control the projectile as necessary. However

to completely eliminate the spin relies on large, power intensive components which are

not conducive to small calibre designs. Spin mitigation technology such as a sabot is

counter-intuitive, because the volumetric budget necessary for control hardware would be

lost at a proportionately higher rate that advantages from the sabot would be gained.

There are notable issues with such a design which must be addressed. First and fore-

most is the power requirement. While delivering power to large scale missile and rockets

is readily demonstrable, this control method is design for small calibre projectiles. This

already reduces the available volume budget, but splitting the body in two for the dual-spin

design reduces the budget further. While the power supply could also be split into two

sections, any mechanism responsible for passing power between those two sections would

itself, consume more volume than it is worth. The front section is designed to be small

and have low mass, so adding any power system which are notoriously heavy would be

counter intuitive. Logically the power source would be situated in the aft section and it

may be possible to utilise kinetic energy harvesting during launch, since the flight time is

relatively small.

The next large problem is the actuation frequency of the actuators. The problem is

somewhat mitigated by having the actuation mechanism and effector contained within the

projectile housing: i.e. the actuator is not moving an external fin which would be subject

to aerodynamic forces, it is acting on a section of metal inside the projectile. The ideal

candidate for the actuator would be a piezoelectric (PZT) material. PZT actuators have

operational frequencies in the MHz range, as well as being as robust as traditional ceramic

materials. The PZT material would function as a disc brake, with a continuous range

of motion to press against the front section. This allows control over the torque acting

against the front section rotation at a rate high enough for high fidelity control. Some PZT

require very high voltages, over 1kV, to function. However, some newer PZT materials

have can operate in the -20 to +120V range. This feeds back to the power issue, where

the already volumetrically stretched power supply would now have high voltage demands

as well. At the time of writing, the most promising identified technology to fulfil this roll

are capacitors, which would able to meet the power requirements when future innovations
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reduce the size. It is unlikely that supercapacitors would be needed due to the lower

voltage capabilities, and the increased power capacity is wasted due to the relatively short

flight times.
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1.1.1 Project aims and objectives

The proposed design has been demonstrated to be volumetrically small and efficient. It is

power efficient, using components that are robust and able to withstand the hostile launch

conditions. The mechanism is deployable quick enough after launch to allow significant

correction distances over the short flight time expected from a small calibre projectile. And

lastly, the mechanism is capable of utilising an actuation frequency which is significant

compared to the spin rate of the projectiles for high-fidelity control. Conceptually, the idea

is robust. This project aims to answer the following:

Is the underlying operating principle of the novel actuation mechanism actually feasible

as a method of controlling a projectile?

This will be achieved by addressing the following objectives, each with auxiliary sub-

goals:

1. Objective 1: Can a mathematical framework be formulated which robustly describes

the motion of the system as a response to the controller instructions?

• Can the motion of the projectile be characterised in terms of a controllable

parameter?

• Can this parameter be expressed linearly in terms of a control variable?

2. Objective 2: Does a projectile geometry exist which can fulfil the requirements of

the control mechanism?

• Does the geometry provide sufficient aerodynamic and control characteristics

at expected operational conditions?

• Does the geometry fulfilling the above do so without detriment to stability

along the ballistic trajectory, in the event no control authority is exerted.

Manuscript overview

The project will be laid out in the following manner. Firstly in chapter 2, a literature

review will be conducted to discover the extent to which different technologies can be im-

plemented in the project. The literature review will cover the following aspects: Ballistic
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stability, dual-spin projectiles, aerodynamic coefficient modelling, guidance laws and AI

implementation in projectiles. Stability criteria contains stability factors, which govern

projectile stability [5]. It is pertinent to understand projectile stability and the associated

factors to ensure any successful small-scale prototype is actually able to be physically

guided. The dual-spin design allows conventional guidance methods to be used on a pro-

jectile with a very high spin rate and it has been used in many different guided projectiles

including recently, STARSTREAK [20]. The concept works with and utilises the spin of

the projectile instead of trying to mitigate it, which is beneficial since spin stabilisation is

paramount to the design of almost all small calibre projectiles. If a dual-spin design is feas-

ible at small-scales, this could permit a guided projectile design which can be fired from

conventional weapon systems, without the need for a proprietary smooth-bore platform.

The necessary theory to describe the enclosed work is shown in Chapter 3. The earth

and projectile axis reference frame are established, a description of the aerodynamic ef-

fects on a projectile in flight is given along with the associated aerodynamic coefficients.

The equations of motion are then formulated and expressed in state-space representation in

aero-ballistic coordinates (V,α,β ). The equations are trimmed at a certain flight envelope

to allow computational simulations with partial knowledge of aerodynamic coefficients.

A Jacobian linearisation is used to reclassify the non-linear system as a quasi-Linear

Parameter Varying (q-LPV) system for closed loop stability analysis and use in MAT-

LAB/Simulink simulation environments.

The pitching and yawing motion of projectiles is discussed with the precessional and

nutational modes of instability, with a description of how these modes lead to the gyro-

scopic and dynamic stability factors, Sg and SD respectively. These factors govern the bal-

listic stability framework, which determine whether a projectile is innately stable without a

control system. Here, the nomenclature is unified across multiple sources to allow a design

utilising the enclosed methods to remain stable in the event of guidance module malfunc-

tions, and thereby always result in a predictable trajectory. The evolution of these stability

factors is surmised, which led to the publication of a review article [40] (Appendix C).

Additionally, a novel procedure for using these stability factors at trim conditions along

the whole flight envelope is illustrated in a conference paper (Appendix C).

Chapter 4 describes how the physical control mechanisms produce a variable numeric
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value which can be demanded of the projectile by a guidance architecture to physically

steer the projectile towards a target. Next, an in-depth analysis is conducted, showing

how the actuation mechanism can be characterised from different perspectives. These

actuation frameworks are responsible for illustrating how the motion can be viewed and

used continuously, even though the behaviour of the control mechanism is, as will be

shown, inherently discrete. Then, the nuances and intricacies of the velocity based and

acceleration-based actuation mechanism models are shown, illustrating how they can both

be best utilised to deliver an effective and robust control and guidance strategy.

Chapter 5 presents a series of guidance laws (GLs), which are responsible for intel-

ligently deciding the controller effort necessary for the projectile to approach the target

in a desirable way. To meaningfully compare the guidance laws against each other in a

variety of situations, a test procedure is shown which uses Monte Carlo simulations. A

large number of different simulations can then be averaged to provide a characteristic

response, individual to a specific GL. Proportional Navigation (PN) is chosen to represent

traditional GLs and its implementation is shown. A novel Zero Effort Miss (ZEM) based

GL is then presented, which is a natural progression of describing the actuation mechan-

ism in terms of velocity changes, akin to the ‘delta-v’ used in spacecraft flight dynamics.

This novel guidance law is explored in-depth by conducting a parametric investigation,

applying PID and Fuzzy logic controllers, and finally optimising the parameters using a

Genetic Algorithm (GAs). Reinforcement Learning (RL) Artificial Intelligence (AI) is

then discussed, presenting different approaches for implementing an RL agent into the

control architecture. Firstly, the agent is given complete control of both the actuation

mechanism and the guidance law to determine whether it is able to control the novel sys-

tem as a whole. Then, the agents are modified and then tested to see if they are able to

learn and control the actuation mechanism and guidance law respectively.

In chapter 6, the GLs from the preceding chapter are directly compared in a nominal

control case using the Monte Carlo procedure, to determine their effectiveness at reducing

the miss distance in the normal-horizontal plane. Two possible projectile designs are

illustrated in CAD. Aspects of the geometry are presented and an explanation is given for

where further work should be directed to optimise the design. CFD is used to determine

aerodynamic coefficients for a projectile. The methodology is tested using a conventional
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155mm projectile, coefficients of which are already available in existing literature and can

thus be used to validate the procedure is producing viable results. Coefficients for the novel

projectile design are then computed and used to conduct the ballistic stability analysis.

The 7-DoF model in MATLAB/Simulink is used in conjunction with the aerodynamic

coefficients computed from the CFD simulations and the control architecture from chapters

4 and 5, to produce some example trajectories. The trajectories are compared against the

unmodified ballistic cases.

Finally, the conclusions of this project are shown in Chapter 7, with a list of possible

future work. Appendix A contains a full list of explicit calculations which were con-

sidered too long to include in the main text, in addition to any simulation or experiment

parameters lists. Appendix B contains a parametric investigation of projectile geometry

using the ballistic modelling software PRODAS. It also shows how PRODAS can be used

in conjunction with the enclosed stability analysis to evaluate the feasibility of a novel

bullet design which uses tungsten, delivering the same ballistic flight properties as its

conventional equivalent, while vacating an internal volume toward the ogive. Appendix C

contains a list of academic publications which have resulted from this project.





Chapter 2

Literature Review

FR O M the introductory discussions it has been shown that there is an apparent need

to develop a new control mechanism for small calibre guided projectiles (SCGPs)

to better enable the adaption of pre-existing technology. Without it, the wide scale devel-

opment and adoption of SCGPs is rate limited by the volumetric constraints of technology

already used in traditional guidance package subsystems. As such, this project does not

focus on the miniaturisation of these subsystems, rather it will investigate the feasibility

of a novel actuation mechanism which aims to facilitate the guidance of small calibre

projectiles using pre-existing technology that would otherwise be unfeasible. The de-

velopment of such a mechanism will also benefit larger calibre direct-fire projectiles (eg.

BOFORS 40mm) by allowing the use of less complex or expensive technologies. This

also offers the opportunity to refine and improve the mechanism in these larger projectiles.

In this chapter, relevant works pertaining to the project or associated theory are presen-

ted. Firstly, the most similar projectile prototypes and concepts are discussed, highlighting

the key operational and design differences. It must be understood how to present and

model a projectile and its operation, so that any ideas and designs can be sufficiently

discussed. This includes mathematical modelling, linearisation procedures and imple-

mentation into software capable of computing and running dynamic simulations. Next,

ballistics stability is investigated, which ensures there are no significant oscillations caused

by the projectile, which would be a hindrance to the control and guidance architecture.

Aerodynamic analysis is necessary to compute the associated aerodynamic coefficients,

without having to conduct live-fire experiments. Relevant approaches and their results will

25
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be investigated. Then the control and guidance itself will be reviewed, including a review

of guidance laws which control the projectile approach to a target. Artificial intelligence

and reinforcement learning will be evaluated for the most promising implementations. A

summary will then be given highlighting the most important aspects and addressing how

they affect the enclosed discussions.

An issue that has become evident during the literature review is the categorisation of

the relevant works. In designing and testing projectiles, the subsystems are often heavily

dependent on each other; e.g. a trajectory prediction is only as good as the aerodynamic

coefficients used for the projectile. As such, many of the works cover and are relevant to

many of the different sections and subsections. The works have been grouped to represent

the primary focus of the manuscript, but some descriptions of particular works may include

discussions which are relevant to other subsections.

2.1 Similar projectile designs

The design and operation of novel projectiles and projectile control mechanisms are un-

likely to be found in academic publications; papers focus on specific methods or aspects

of the design and control architecture. Patents however, focus on broader design and

operational descriptions to fully capture and describe the enclosed invention. The most

relevant projectile designs and control methods already in use today have been shown in

the introduction, but a few patents exist which describe relevant material.

In 2007, General Dynamics patented a method of control for a dual-spin projectile

[41]. The result of this patent is ultimately the Roll Controlled Guided Mortar (RCGM)

[19] from figure 1.0.6. The patent describes a dual-spin projectile, where the front section

is adorned with variable or fixed control surfaces, where control is enacted by changing

the speeds of either section with relation to one another. The RCGM operates using a

fixed control force being produced by a slip-band around the main body. Additional aero-

surfaces on the slip-band generate a large spin-damping moment which de-spins the slip

band sufficiently from the main body that it rotates in the opposite direction to the main

body, in the earth reference frame. Because the control force rotates uniformly, there is no

net lateral force produce by them in normal rotation.



2 . 1 . S I M I L A R P RO J E C T I L E D E S I G N S 27

When correction is required a brake will engage, increasing the torque between the

two sections. The brake is applied just enough that the slip band then remains stationary

with respect to a reference frame*, such that control force then points in the direction in

which correction is required. Because the force is now relatively stationary, the projectile

accelerates in the desired direction. When control is no longer required, the brake is

released and the slip band begins rotating in the opposite direction to the main projectile

again.

The primary difference between this description and the mechanism described in this

project pertains to the rolling behaviour of the front section. In the proposed mechanism,

the roll rate will never be 0Hz, or approaching 0Hz, with respect to the earth reference

frame. In fact, the mechanism does not rely on the roll rate being reduced to a relatively

low rate, or even being significantly different from the roll rate of the main body. It only

relies on there being some spin disparity, and the correction force will accumulate over

time to produce the desired correction. The proposed design specifically addresses the high

spin rate of spin-stabilised projectiles through the use of a piezoelectric brake mechanism,

as opposed to the magnetically actuated or magneto-rheological fluid brakes described in

the patent. The piezoelectric brakes are simplistic, robust and are capable of delivering

equivalent response times. It is true however that a larger spin disparity, and lowering the

spin rate as much as possible will produce the most responsive and highest fidelity control

architecture.

In 2009, Thales patented a similar control mechanism with a projectile design more

similar to that which is presented here [37]. Figure 2.1.1 shows the design, including a

dual-spin projectile design with a blunted face on the forward section. The forward section

adorned with the blunt face provides a constant lift force which as already discussed, no

significant deflection is produced in normal flight due to the roll symmetry. A motor is

present connecting the two sections, which can adjust the roll angle of the forward section

to any orientation with respect to the earth reference frame. Importantly the front section

is described as being able to rotate in any direction, by any amount, with respect to the

main body. In this sense while the appearance of the Thales patent embodiment is more

*the patent explicitly states that the "reference frame" is completely generic [41], however both the
description of the operation mechanism and the demonstration video [42] imply that it is in fact the earth
reference frame



28 C H A P T E R 2 . L I T E R AT U R E R E V I E W

similar to the design in this project, the operation and control is less similar.

F I G U R E 2 . 1 . 1 Illustration of patent design by Thales [37] with bullet (30) and case (20)

Another patent by Minnicino adds to the design of Thales by including a cover to the

blunt edge [43], so that the projectile remains symmetric until correction is needed. At

this point, control is enacted using the same method as the Thales design, using a motor

to align the control force with the desired axis and leaving it stationary with respect to

the earth frame. A patent by Jenkins et al. describes a projectile which functions in a

similar manner to Thales [37] and Minnicino [43], however the control force is provided

by an axially articulated nose as opposed to aerodynamic surfaces [44]. This design also

changes the spin rate using an active DC motor instead of additional aerodynamic surfaces

with a large roll damping moment. Other patents also show similar designs and operating

principles [45], but non as similar as those discussed above.

The major differences between all of the above patents and the presented design is that

the front sections are always able to assume any orientation required by the control system,

and it can maintain this orientation indefinitely. In the presented design, the rotation

direction of the front end remains fixed. The only controllable variable is the roll rate of

the front section. In addition, the roll rate of the front section can remain sufficiently high

with respect to the earth reference frame, provided there is a sufficient difference between

the front and aft roll rates.

2.2 Ballistic stability and control of projectiles

Ballistic stability determines whether a projectile will remain on a predicable course over

the trajectory. Oscillations are present throughout the flight of all projectiles in the form

of precession and nutation, discussed in detail in §3.3. If projectiles are unstable then

these oscillations begin to chaotically amplify until undue aerodynamic effects become
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so great that the projectile will deviate off course. This unpredictability is unacceptable

for projectiles and thus, guaranteeing ballistic stability for projectiles is of paramount

importance. This section describes how ballistic stability is characterised by different

sources and the work which has been undertaken to understand different aspects. The

following review forms the basis publication, "A Review of Dual-Spin Projectile Stability"

[40], which is included in the appendices. There has since been more literature released

on the topic, which have been integrated into this section without particular note.

Lloyd & Brown investigated the dynamic stability of spinning projectiles subject to

constant horizontal and vertical forces applied to the nose [46]. It was found that before the

artillery shell reaches apogee, a right horizontal nose force tends to destabilize precession

and stabilize nutation, and a lifting nose force tends to stabilize precession and destabilize

nutation. The opposite occurs after the projectile has reached apogee, before terminal

impact. Lloyd & Brown found that a 15 kg, 105-mm shell could experience no more than

a 40N force applied to the nose before the motion of the projectile becomes dynamically

unstable. This equates to a generic projectile limit of around 0.34g of lateral acceleration.

Cooper, Fresconi & Costello have investigated the flight stability of asymmetric pro-

jectiles with control mechanisms, by extending standard linear theory to account for the

asymmetric mass [47]. The projectile model used in this work was the same as that con-

sidered in the text discussed earlier, [48], which investigated aerodynamic data using spark

range firings. The resulting analytical model is validated using parameters for a mortar

shell and is found to be in good agreement with the classical 6-DoF model. It was high-

lighted that there can be dynamic instability issues when the actuation frequency is close

to one of the pitch/yaw modes. In addition, a spinning projectile with actuating canards

will undergo a ‘coning motion’, or pitch/yaw precession, as a result of the normal control

forces present.

Li et al. continued this work and proposed a novel method of deriving the instability

boundaries as a function of control force magnitude [49]. The procedure is again demon-

strated with a 15kg 105mm shell, with emphasis placed on the horizontal nose force (right

positive). It was found that when the horizontal control force Fyc [N] lies in the unstable

scope, the projectile is unstable. If Fyc is outside of this, in the stable scope, the projectile
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will maintain stability. The unstable and stable scopes are defined by

Stable Scope → Fyc[N] ∈ [−35.48,58.33] (2.1)

Unstable Scope → Fyc[N] ∈ [− inf,−35.48]∪ [58.33,+ inf] (2.2)

Less scrutinous methods also exist and have evolved to give even rudimentary guidance

to weapons designers. The ‘Miller twist rule’ is an imperial unit formula which can be

used to calculate the optimal twist rate of a barrel as a function of bullet attributes and the

gyroscopic stability factor (Sg) [50], thus it can also be used to determine Sg if the twist

rate is known. Courtney et al. has shown empirically that the Miller rule can be modified

for use with plastic tipped bullets with non-homogenous densities [51], as well as for open

tip style bullets [52].

2.2.1 Dual-spin projectile stability

This subsection contains works which consider ballistic stability, specifically pertaining to

dual-spin projectiles or some aspect of them. There is a notable contribution to projectile

instability caused by the coupling of the front and aft sections. In addition, dual-spin

instability equations simplify to single-spin projectile by nature of the equations.

Theodoulis & Wernert have modelled and conducted stability analysis on a spin-

stabilised 155mmm projectile with a course correcting fuse [53]. The traditional 6-DoF

model is expanded to 7-DoF, to include the roll of the front section, which is independent

of the rear. Aerodynamic coefficients for the projectile are determined through wind tunnel

experiments and CFD analysis. The equilibrium manifold and accelerations are then com-

puted through an LPV model of the projectile and stability analysis is conducted by means

of pole analysis. It was found that as the roll rate increases the stability increases, which

agrees with the traditional results from gyroscopic stability. In addition, two of the poles

possess a large oscillatory motion, which represents the precession and nutation present in

the classic ballistic theory. These results indicate that stability analysis on an LPV model

agrees with stability analysis form classic aero-ballistic theory, which is discussed in depth

later.

In the same year, the authors also studied flight control of the same spin-stabilised
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155mm projectile, with a CCF, by means of a trajectory autopilot [54]. The non-linear

airframe dynamics are approximated using a Linear-Parameter-Varying (LPV) model,

which can produce accurate predictions of the complex dynamics. An optimised linear-

quadratic integrator is used for the controller, with gain scheduling implemented to cover

the whole flight envelope. Traditional pole-based stability analysis is conducted on the

linearised system to establish the stability of the system throughout the trajectory. This

work is continued the following year by Spagni & Theodoulis, using a quasi-LPV model,

and [55]. In both cases, it was found that the autopilot was able to provide a sufficient step

response to control the projectile along the majority of the flight envelope.

Tipàn & Theodoulis et al. have continued the flight control work on spin-stabilised

155mm projectiles by evaluating a method of lateral dynamics control utilising non-linear

dynamic inversion (NDI) [56]. Due to the high spin rate of the aft section traditionally

considered in dual-spin projectiles, the lateral dynamics are highly coupled. Any resulting

lateral autopilot must then deliver the required performance while guaranteeing projectile

stability from the coupling. NDI methods are noted as potentially lacking robustness,

which the manuscript addresses using a timescale separation scheme. In addition, the

aerodynamic uncertainties are also large which can lead to large irregularities in the control

and aerodynamic forces. The assumed aerodynamic coefficient uncertainties used in the

simulations are listed in the paper, which are shown in table 2.1 The control scheme is

tested for a nominal, where there are no uncertainties, and real-world situation. Once the

NDI autopilot loop is implemented, a ZEM guidance law is used in both the nominal and

real-world simulations, but there is no description of the ZEM methodology.

A more traditional control theory approach to stability analysis has been conducted by

Theodoulis et al. [57], created a LPV model for a canard guided, single spin projectile.

The aerodynamic information is encoded into certain state space matrices, the eigenvalues

of which correspond to the precession and nutation frequencies of the projectile at any

given instance. Additionally, root locus analysis of the system can identify stable operating

regions, the parameters of which can be obtained and substituted into the stability criteria,

depending on how the system is modelled. The French German Research Institute of

Saint-Louis (ISL) have conducted a significant amount of research into the modelling and

control of dual-spin projectiles [58, 59, 57, 60, 61, 62].
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Airframe modification effects on control

Lahti et al. [63] designed a methodology to control the exterior ballistic properties of a

spinning projectile by re-distributing the centre of mass around the inside of the bullet. The

stability factors used in the paper follow McCoy [64], an appropriate usage since bullets

are single-spin stabilised projectiles with no control method. The aerodynamic coefficients

used in the analysis are calculated from a modified version of Slender Body Theory [65],

where a correction term
√

Mv is appended to account for flow compressibility. While

it is stated the coefficients are not well estimated near the transonic boundary, they are

assumed to be representative based on experimental data [66]. A bullet model was created

with a large number of cells populating the interior, each may possess a specific density.

A global optimisation algorithm was then used to find the mass distribution which can

provide ballistic stability at the lowest velocity, by satisfying the stability factors. Since

velocity decreases with projectile range, this method will find the mass distribution which

enables the longest range (a training round with limited range was also investigated, but

this review is mainly concerned with results from the long range specimen). Figure 2.2.1

shows the result from their paper.

F I G U R E 2 . 2 . 1 The optimal mass distribution of a long range bullet, from [63]

It is stated the Magnus effect is the main method by which the mass distribution

affects stability, especially toward the aft of the projectile [64]. From figure 2.2.1, it is

apparent the algorithm selected the largest available density to populate mostly the aft of

the projectile, which has the effect of minimising the resulting Magnus moment. These

results indicate that mounting control and guidance hardware in the forward section of a

projectile is beneficial for projectile stability, since electronic components generally have

a lower density than conventional materials such as lead.

Xu et al. [67] have modelled the stability factors for a missile under thrust, assuming
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a flexible chassis. It was shown that thrust has a ‘critical value’ where dynamic stability

is maximised; if thrust is higher or lower than the critical value, then dynamic instability

is induced by elastic or rigid vibrational frequencies respectively. Additionally, structural

stiffness is lowered as thrust increases, which leads to reduced static stability.

Chang et al. [68] have investigated the spin-rate of dual-spin projectiles as a function

of canard properties, by characterising the ratio of aft to forward axial moment of inertia,

IA
x /IF

x . The canards were modelled with zero deflection angle, so any contribution comes

purely from the roll damping moment. For an initial spin rate of 420 rev/s (muzzle velocity

980 m/s with elevation angle of 45o), the dual-spin configuration itself causes a spin-rate

discrepancy of 25 rev/s between the aft and forward sections, while deploying the canards

led to a difference of 250 rev/s. The spin attenuation of the aft section was greater for

values of IA
x /IF

x < 1, while the spin attenuation of the forward section was greater for

values of IA
x /IF

x > 1. For very large values of IA
x /IF

x , the aft section spin-rate was found

to drastically reduce at first, then increase for a short period and finally attenuate as prior.

Impact point drift was caused by any deviation from IA
x /IF

x = 1. The maximum angle of

attack was found to increase drastically to 16o for IA
x /IF

x < 0.3, but remain around 1.7o for

all IA
x /IF

x > 0.3. The ratio of inertial moments has significant effects on both spin rate and

angle of attack and must therefore be considered carefully during the design of a dual-spin

projectile.

Wang et al. [69] have conducted numerical simulations investigating the effect of

yawing force frequency on the angular motion and ballistic characteristics of dual-spin

projectiles. The precession and nutation rates (λp and λn) were calculated following

traditional linear theory. It was found λp and λn for the system decrease over the projectile

trajectory. As a result, the spin-rate of the aft or forward section could coincide with these

intrinsic frequencies at certain intervals, which are dependent on the chosen projectile

parameters. At resonance, there is an increase in angle of attack (approximately 0.2°)

and decrease in projectile range (approximately 0.4km decrease over 33.5km). A Monte

Carlo simulation was then conducted, which showed a 10Hz control force applied to the

projectile is capable of reducing projectile dispersion by a small amount.

Cooper et al. [70] have investigated the implications on flight stability caused by

projectile asymmetry from the addition of canards. Linear projectile theory was extended
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to account for radial mass asymmetries, which was shown to reduce back to standard theory

when the asymmetry was zero. The dynamic stability of the projectile was found by root

locus analysis of the system eigenvalues in state space, in the same way as Theodoulis et

al. [59, 57, 62]. The canards were modelled with sinusoidal actuation, when the frequency

of this driving wave is close to λp or λn, dynamic instability results; this is in agreement

with the investigation of [69]. When the actuation moment of the canards was sufficiently

large, it was shown to adversely affect the oscillatory motion of the projectile, leading to

ballistic instability.

Canard modification and general control

Chang [71] has studied the dynamic response of a dual-spin, canard-stabilised projectile,

when the coupling between canard control and gravity are considered. A new analytical

solution was proposed to predict the maximum angle of attack induced by canard actuation,

the yaw of repose due to canard control and the phase shift of the swerve response. It was

found if the moment imparted on the projectile by the canards, or ‘control moment’, is

large then it will more drastically alter the trajectory, but lead to airframe instability.

Wang et al. [72] investigated the effects of different control strategies on the flight

stability criterion, assuming the only varying parameters are those associated with the

rolling motion of the body. It was found that canards should be designed so the produced

roll moment is as small as possible. During the period in which the roll angle is adjusted,

it was found that control strategy has no impact on flight stability; it was suggested that the

target spin rate of the forward section should be as low as possible for practical purposes.

The behaviour of the motor torque was also characterised in terms of both trajectory and

projectile parameters.

Ollerenshaw & Costello have investigated the swerve response of both fin and spin

stabilised projectiles in response to control inputs [73]. It was found that the maximum

swerve response for spin stabilised projectiles was found when the control is applied to the

base of the projectile, while for fin stabilised the control force must be applied to the nose

to elicit maximum swerve. In addition, fin-stabilized projectiles were found to respond

in-phase to control-force inputs forward of the centre of pressure, whereas spin-stabilized

projectiles were found to respond out of phase.
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Cheng et al. proposed a guidance method for a 155mm projectile mounted with

a fixed canard adorned CCF [74]. It is again noted in the manuscript high spin rates

create a large coupling between the normal and lateral corrective forces. The procedure

effectively calculates trajectories which terminate at the desired impact point, then produce

the necessary control inputs to keep the projectile on the trajectory while minimising the

orientations errors. This ‘virtual target method’ was able to reduce the Circular-error-

probability† (CEP) from 90.75m to 69.3m, a reduction of around 20%. It was also noted

that the corrective capabilities of the control force are biased due to the presence of gravity,

e.g. corrections to the right are more difficult than those to the left.

Maley et al. developed an extended Kalman filter utilising magnetometers, which

estimates the roll speeds and attitude of a spin-stabilised projectile with front mounted

canards, a CCF and GPS [75]. The steady-state Kalman filter was found to perform as

well and in some cases better, than the extended Kalman filter. The largest source of error

in the algorithm was caused by a large-scale error from the magnetometer readings, while

the next largest source of error was from incorrect wind readings used in the dynamic

model. There is no mention as to which calibre projectile is used during the modelling,

but the list of aerodynamic coefficients and associated error budgets used to simulate the

projectile in the dynamic model were included. The included diagrams appear to depict a

standard M107, 155mm projectile, but this is purely speculative. The conventional 6-DoF

dynamic model was used in MATLAB/Simulink to create the projectile, which was in turn

used to validate the observer.

In 2005 Ollerenshaw and Costello have investigated methods of control for direct fire

projectiles with canards [76]. An impact point prediction control scheme is employed

to reduce the miss distance from launch instabilities, which can lead to very large miss

distances for short-range direct fire projectiles. The control inputs are decided based on

which possible action state in a linearised model converges quickest to the desired traject-

ory. A parametric study is then conducted for various projectile and model parameters,

using the conventional 6-DoF model, which shows the control methodology described is

able to reduce the CEP from 34.6m in the ballistic case, to 6× 10−3m for the corrected

case. The CEP for the guided trajectory shown here is substantially smaller than other

†Radius of a circle containing 50% of the impacts
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articles stating a CEP reduction [74, 77, 78, 79], which came in subsequent years. This is

primarily because this article considers a direct fire projectile, which has significantly less

time to be subjected to aerodynamic disturbances and perturbations.

Liu et al. have incorporated the moment terms for a fixed canard dual-spin projectile

into the stability equations of traditional pitching/yawing ballistic theory [80]. The ‘swerve

orientation’ or pitching and yawing motion, can then be analysed without knowledge of

the projectile attitude.

Tang et al. have investigated methods of controlling muzzle velocity and spin rate for

projectiles fired from a novel rail-gun platform, by adjusting the voltages in the rail-gun

platform itself [81]. It was also noted that velocity and spin rate would have to be balanced

according to the gyroscopic stability factor. The stability factor quoted by Tang et al. was

from [82], which appears to be a secondary source of the conventionally used textbooks

such as McCoy [64] and [83]. The proposed methodology to induce a spin rate in the

projectile is to generate an asymmetrical magnetic field. A prototype was constructed and

voltages of 2kV were able to produce spin speeds of up to 1.4×105 rad.s−1 and muzzle

velocities of up to 1600m.s−1. Importantly, this reinforces the idea that the stability factors

can be used as a primary design criterion by projectile designers.

2.3 Aerodynamic coefficients of projectiles

It is likely, since unconventional control methods and subsystems might be used in the

creation of a guided small calibre projectile, that an unconventional aerodynamic surface

will result. Thus, it is pertinent to investigate, at least superficially, the methods by which

projectile geometries are investigated for aerodynamic effectiveness, or any relevant novel

projectile geometries which have been considered by literature thus far. Discussed in

more depth in §A.1, aerodynamic coefficients are effectively constants of proportionality,

which represent the forces and effects a body will undergo in dynamic flight. There is no

formula to derive or calculate them, rather they are empirically computed either from CFD

analysis or real experiments. They are however functions of different flight aspects, such

as angle of attack α and velocity V . These parameters can be varied for each experiment to

derive a mapping of the coefficients over the whole flight envelope. Accurate computation
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of these coefficients is vital for improving the accuracy of dynamic simulations, and the

work necessary to compute them is very resource intensive. As such, coefficients for

specific projectile designs and especially active service munitions are highly controlled.

Coefficients and methodologies available in literature can only be used to verify a dynamic

model is in good agreement with those experiments, to within the uncertainty provided by

the coefficients and projectile trim data.

The aerodynamic characteristics of 105mm, 120mm and 155mm fin-stabilised pro-

jectiles have been investigated by experimental firings to understand the effect of canard

control on manoeuvrability, roll rate, and dynamic stability [84]. All of the tested pro-

jectiles had super-calibre tail fins to induce roll and canards to enact guided control. A

sensor suite was installed into all of the projectiles and they were fired from a mortar

platform at a dedicated firing range. Aerodynamic coefficients for all projectiles over a

small range of velocities were included in the paper. The 105mm projectile was found to

have a very small dynamic instability (1-3 degree coning motion) while allowing a 30%

increase in range due to the addition of canards. The 120mm projectile had very high

static stability which adversely affected the ability to correct the trajectory, however this

did guarantee a suitable dynamic stability for the airframe. The 155mm projectile was

found to be stable at subsonic speeds but highly sensitive to angle-of-attack differences in

the transonic region causing a coning motion of 10 degrees. It was suggested that careful

canard design could mitigate the unwanted coning motion in the transonic region. All

projectiles had a satisfactory roll rate for control purposes. The results of the experimental

firing were found to be in good agreement with traditional 6-DoF models.

A similar analysis was conducted by Ren et al. [85] using a novel mortar shell geometry

with a nose which can be deflected. The investigation methodology is largely the same as

seen before, however the modification made to the projectile is significant and therefore

the coefficients in this paper cannot be meaningfully compared to coefficients pertaining

the original unmodified mortar. Ren et al. used a ‘typical’ 120mm mortar round and

interchanging varying fixed nose structures, each having different angles of deflection. As

one would expect, increasing the deflection angle causes the aerodynamic coefficients to

be affected, primarily an increase in pitching moment. It was stated that the mortar would

be able to be sufficiently controlled using the overturning moment of the deflected nose,
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and simulations were used to compute trajectories using the coefficients generated from

the CFD analysis.

Wind tunnel experimentation was used to investigate the aerodynamic performance

of a standard 155mm M549 projectile and a variant of the round designed with less aero-

dynamic features, such as no ogive curvature [86]. The measurements were taken over a

Mach range of 1.8 to 4 and an angle-of-attack range of -5 to +5 degrees. The modified

round was found to have a lower drag and lower pitching moment derivative, both of

which are desirable for increased ballistic stability. However, there was no discussion on

the effect of reducing the projectile weight and shortening the distance between the CoM

and CoP, both of which are detrimental to projectile stability.

The aerodynamic characteristics of a dual-spin 155mm projectile have been investig-

ated using Navier-Stokes based CFD [87], utilising a spinning mesh. Canard shedding

vortices affect the aft body aerodynamics, at a rate proportional to the forward spin rate.

The spin rate of the aft section has a very large effect on the lateral body coefficient (CY ),

but minimal effect on the normal force coefficient (CN ). As Mach number increases, both

the time averaged CN and CY increase, while fluctuations within them decrease. An in-

creasing angle of attack increases the magnitude of canard shedding vortices and their

effect. Beyond a critical value, the cross-body flow will dominate in the detrimental effect

on aft section aerodynamics, while the canard shedding vortices will have less of an effect.

Yin et al. have investigated the aerodynamics of a spinning projectile which experi-

ences elastic deformation [88]. The Magnus force, Magnus moments, normal and lateral

coefficients are investigated at varying time-steps for against both elastic deformation

and angles of attack. The results of the analysis showed, amongst other things, that de-

formation frequency correlated to a high fluctuation amplitude of coefficients, as well as

coupling of the normal and Magnus force coefficients. In addition, the effective angle of

attack caused by body deformation lowers as Mach number increases. It was shown that

aerodynamic coefficients increase with movement frequency, that an elastic deformation

induces two aerodynamic components opposite and perpendicular to the deformation, and

that the induced angle of attack from deformation decreases as Mach number increases.

Liang et al. [89] have proposed a methodology for optimising the aerodynamic para-

meters of control canards. A 3D model is created with chosen canard parameters, then
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the aerodynamic coefficients for this are generated through the CFD program FLUENT

and the efficiency is analysed by mapping how the normal force coefficient (CNα ) changes

with respect to canard deflection angle, over different angles of attack and Mach numbers.

It would be interesting to see how this methodology could improve if used in conjunction

with all the works listed above, where the canards’ performance is quantified for each

mechanism of affecting projectile stability, for varying control strategies, and having the

optimum configuration selected based upon this. While this procedure is time consuming,

it can be automated by an external code structure. In addition, this reaffirms the procedure

of creating CAD models and deriving coefficients through CFD analysis.

Jiajan et al. have investigated the aerodynamic characteristics of a 155m M549 pro-

jectile [86]. The characteristics were measured over a speed range of Mach 1.8 - 4 and

angles of attack from −5◦ to +5◦. This was calculated by creating a metal model of the

projectile with a measuring sting inserted into the base, then placing the apparatus in a

wind tunnel. A render of the projectile and sting assembly is shown in figure 2.3.1. The

projectile model is constructed in two sections such that the ogive can be replaced to test

different profiles. The projectile coefficients were only measured for a non-spinning pro-

jectile, providing the static aerodynamic coefficients: Drag-minus-base-drag CBD, zero lift

drag CD0, Normal force derivative CNα and pitching moment derivative CMα . The ‘base-

minus-base-drag’ coefficient mentioned here accounts for the contribution of the sting to

the measured drag force, which would not be present in an actual free-fire of the projectile.

The results from these coefficients were then linked to the stability criterion which will be

discussed later. The design tested in the manuscript was found to lower drag and pitching

moment derivative coefficients, both contributing to enhanced range and stability.

Fresconi has also investigated the aerodynamic characteristics of an asymmetric, non-

spinning projectile with canards, through live-fire experiments at a ‘spark range’ [48].

The spark range is an indoor ballistic range with shadowgraphs (similar to Schlieren

photography) which are capable of capturing instantaneous images of the projectile and

disturbed air currents. The experiment uses a proprietary 105mm projectile shown in figure

2.3.2. The traditional 6-DoF projectile model is used to identify which coefficients are

being derived from the experiments: the pitch force coefficient derivative CZα , yaw force

coefficient derivative Cyβ , yaw damping coefficient, Cmq and the yaw damping coefficient
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F I G U R E 2 . 3 . 1 Apparatus for estimating aerodynamic coefficients [86]

Cnr. These coefficients and their error were measured against the predicted error, for 5

different projectile configurations which were achieved with masses to shift the centre of

gravity to different locations in the nose. It was found that 5 test firings were needed to

effectively derive the coefficients, but that the methodology was viable and a valid way of

experimentally determining the projectile coefficients.

F I G U R E 2 . 3 . 2 Depiction of custom 105mm projectile [48]

Hamel & Gagnon have conducted ANSYS-Fluent CFD analysis, as well as a Monte

Carlo parametric study on a NATO 155mm artillery shell adorned with a CCF [90]. The

CFD meshes ranged from 4.4× 106 cells for the finest and 9.7× 105 cells for the most

coarse. Rotation of the projectile was simulated by applying a constant rotational velocity

at the projectile wall. These coefficients are then used in a dynamic model, which is then

run multiple times in a Monte Carlo simulation. The parameters which were varied were

muzzle velocity, azimuth angle, elevation angle, crosswind, headwind and guidance lock

delay. The guidance lock delay is an artificial delay induced to emulate the latency from

sensor and actuator activation.

While it is stated that there is a control architecture implemented with associated gains,

there is no mention of the actual method of control, PID etc. A figure in the paper only

describes a generic ‘controller’ which takes expected, demanded, and measured pitch
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and yaw rates, then outputs a saturated normal and lateral control force. The guidance

law for generating the required pitch and yaw rates is also not shown. The projectile

position is assumed to be known, though it is usually determined by GPS or Inertial

Measurement System (IMU) measurements being fed through a Kalman filter. It was

found that the CCF was able to lower the present normal and lateral disturbances as well

as being able to reduce the muzzle velocity fluctuations. The CCF was noted as having

a small, non-negligible, ability to correct lateral, perturbations caused by wind. It was

unable to significantly correct the longitudinal perturbations. Importantly, it was found

that the accuracy provided by the CCF was most profound for low gun elevations, with

high muzzle velocities and low guidance lock delay.

Tipàn & Theodoulis et al. [56] have further investigated the stability of dual spin pro-

jectiles and have included a table showing the relative uncertainties that the authors would

expect for various aerodynamic coefficients; shown in table 2.1. A non-linear autopilot

was designed for a dual-spin projectile. A Zero-Effort-Miss based Guidance Law was

used for the trajectory simulation, which in both nominal and uncertain cases, indicated

the controller was able to provide satisfactory control. Importantly, the uncertainty as-

sociated with the aerodynamic coefficients was estimated to be very high by the authors.

Due to the variation in simulation type and parameters in combination with the close con-

trol over distribution of the coefficients, this high uncertainty is likely to be an accurate

representation of the current disparity.

Forces Moments
Coefficient Uncertainty [%] Coefficient Uncertainty [%]

CNα 5 Cmα 5
Cnpα 30

CY pα 30 Cl p 5
Cmq 30

CNδ 20 Clδ 20
Cmδ 20

TA B L E 2 . 1 Expected uncertainties for dual-spin 155mm coefficients used in ref. [56]

Wessam & Chen have also investigated the aerodynamic properties of the M107 shell

using ANSYS Fluent [91, 92]. The listed projectile parameters and initial conditions are

close to those used by [90]. The coefficients are then used with a point mass model to

generate examples trajectories one can expect from the projectile. The point mass model
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used is the traditional one as described by McCoy [93] for aero-ballistic analysis. A Monte

Carlo simulation was run using 100 rounds, including uncertainty for all of the projectile

parameters: mass, inertias and firing angles. Dispersion characteristics are investigated by

analysing the drift and range of each round, and taking an average over all, as opposed to

using CEP.

McCoy [64] is referenced by many authors in the field for the aerodynamic data it

contains; showing drag coefficients measured for a 155mm M107 projectile found exper-

imentally in a transonic range. It is one of the main texts in the field of ballistics, along

with others by Carlucci & Jacobson [83] and the UK MoD [94].

Khalil et al. have conducted a parametric investigation of the projectile parameters, to

determine their effect on the terminal dispersion of an M107 155mm projectile [95]. The

mass, inertia and roll rate etc. were swept over a small range and a 6-DoF trajectory is

run for various values within this range. The terminal impact points are recorded, and the

error is plotted against the parameter variation. To run these simulations, the aerodynamic

coefficients are of course needed, which were obtained in the manuscript using PRODAS

on a CAD model of the projectile.

Figures 2.3.3A and 2.3.3B compare the coefficients shown by Hamel [90], Wessam

[91, 92], Khalil et al. [95] and McCoy [64, 93]. Only the drag coefficient CD is shared by

all three sources, while pitching moment CMα is shared only by the two academic journals.

In both cases, the coefficients are of the same order of magnitude of the uncertainties

predicted by Tipan [56] in table 2.1. Figure 2.3.3A shows the sudden increase in CD at

the transonic boundary, which is an expected characteristic of the regime change. All

sources are in agreement with the gradual change in coefficient, but the coefficients shown

by Hamel et al. seem to be more noisy than the other points, though this is only apparent

for Mach numbers above Mach 1, where there are a few data points; the noise is likely

therefore to be an artefact of sparse data. This discrepancy would indicate the disagreement

for CMα shown in fig. 2.3.3B is due to inaccurate or noisy data from ref. [90].

Ko et al. have, in a similar manner, investigated the aerodynamic properties of a less

conventional 120mm projectile, using PRODAS and DATCOM CFD analysis [96]. The

Mach range investigated was from 0.14 to 1.2, a slightly lower but more densely populated

sweep than from Hamel [90]. The investigated coefficients are the zero CX0 and the quad-
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F I G U R E 2 . 3 . 3 Comparison of aerodynamic coefficients for M107 155mm projectile across
different sources

ratic drag coefficient CX20, lift force coefficient derivative CLα̇ , Magnus force coefficient

derivative CN pα̇ , overturning moment coefficient Cmα and spin-damping moment coeffi-

cient Cl p. The derivative coefficients were found by conducting a subsequent analysis of

the projectile at an angle of attack of 2.5◦. Importantly for both [90] and [96], the analysis

was conducted for speeds across Mach 1, so any non-linear transonic behaviour can be

observed. It was determined that the CFD modelling was able to predict and show the

non-linear behaviour of the derivative coefficients just before the transonic region, however

the semi empirical method PRODAS software, was unable to predict this behaviour and

assumed the coefficients would be linear in the transonic region. Without using CFD ana-

lysis, Navier stokes equations can be used to approximate the aerodynamic coefficients of

projectiles, as was demonstrated by Silton for a subsonic 0.50cal (12.7mm NATO) bullet
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[97]; which was shown to be in good agreement with experimental data for a 0.50cal M33

bullet [98].

S. Silton used Navier-stokes based CFD analysis to investigate the stability of a

12.7×99mm NATO (or .50 cal Browning) bullet [97]. The coefficients investigated were

CD, CD0, Cl p, CNα
,Cmα

, Cmq +Cmα̇
, and Cnpα

. They were investigated over a range of

angles of attack and Mach speeds. These coefficients were then used in conjunction

with the parameters for the bullet to investigate the fast and slow damping modes λF,S

respectively, which was discussed in §3.3. The paper gives a formula for these modes,

which is derived from McCoy [64], as:

λF,S =
ρS
4m

(
2CX − CNα

1∓ τ
+(1± τ)

(
Cmq +Cmα̇

2k2
y

±Cnpα

τ

k2
x

))
(2.3)

where τ is a substitution parameter given by

τ =

(
1− 1

Sg

)− 1
2

(2.4)

Here, Sg is the gyroscopic stability factor (§3.3.4) and all other terms and coefficients use

the respective definitions listed in the nomenclature. The coefficients were used to find

λF,S for an angle of attack of 2◦ and 5◦, but only the 2◦ is used here. This work reaffirms the

fact that the stability factors are vital to the design process and that due attention should be

paid to computing them as accurately as possible with bespoke aerodynamic coefficients

if possible.

2.4 Guidance laws

A projectile is comprised of many subsystems, each of which has an associated controller

and autopilot which is responsible for characterising the subsystem dynamics in such a

way that it can deliver precisely what is required of it. All of these subsystems together are

used to deliver a bodily motion of the projectile which will be demanded by the operator:

e.g. a lateral acceleration or a change in velocity. A guidance Law (GL) is responsible

for controlling these variables to dictate the approach behaviour of the projectile to the
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target, based on engagement scenario characteristics such as range and closing velocity.

Conventional control methods used in GLs include Proportional Navigation (PN), Pro-

portional Derivative (PD) and Sliding Mode Control (SMC) [99]. The most commonly

used GLs [100] include: Proportional Navigation (PN), Sliding-Mode-Control (SMC),

Zero-effort-miss (ZEM) [101] adaptive non-linear guidance (ANG) etc., though there

were many more speciality and more niche GLs which can be considered. In many cases

it is necessary to create a bespoke GL and it is common practice to neglect external forces

(gravity etc.) when doing so [102, 103, 104, 105]. GLs are usually a stand-alone frame-

work, independent from traditional system stability theory. However it has been shown

that GLs can be combined with traditional system stability theory, for example by utilising

both SMC and Lyapunov theory together whilst also considering impact time constraints

[106].

2.4.1 Proportional Navigation (PN)

Proportional navigation (PN) is a GL used in a large number of homing missiles [99, 107].

The aim of the law is to demand a lateral acceleration (latax) of the projectile such that the

velocity vector of the projectile rotates at the same rate and direction as the Line-of-Sight

(LoS). The LoS is defined as a straight line from the projectile to the target, connecting the

two. If the LoS doesn’t change with the reduction of range then the two are on a collision

course. The traditional PN equation is given by

α = Nλ̇V (2.5)

where α is the demanded latax of the projectile, N is the PN constant, λ̇ is the rate of

change of LoS and V is the closing velocity of the missile. In effect, the aim of the equation

is to reach a situation where the velocity vector of the projectile rotates at a factor N faster

than the LoS rate λ̇ . In conventional applications, the closing velocity is the magnitude

of both the downrange velocity and the lateral velocity. In turn, the lateral velocity is the

magnitude of both the normal and lateral velocities. As the distance between the projectile

and target gets smaller on final approach, any movement of the two relative to each other

causes a respectively large rotation of the line of sight. This is converted through the
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equation as demanding a large lateral acceleration from the projectile to compensate for

this. PN is primarily used in scenarios where the target dynamics are significant compared

to the missile dynamics. There is little actuator demand from a PN GL initially to get the

missile on course.

There are two primary classifications of PN navigation, categorised depending on the

direction of the acceleration demand with respect to the chaser’s velocity vector. ‘True

Proportional Navigation Guidance’ (TPNG) demands an acceleration which is perpendic-

ular to the missile-target LoS, which does not strictly include the missile velocity since

⋄(Vm ·λ ̸= 0) ‡. ‘Pure Proportional Navigation Guidance’ (PPNG) gives the demanded

acceleration perpendicular to the missile velocity vector. ‘Augmented Proportional Nav-

igation Guidance’ (APNG) includes an additional acceleration term with the demand to

account for any target acceleration which is known, but this can be a derivative itself of

either TPNG or PPNG.

F I G U R E 2 . 4 . 1 Traditional PN engagement scenario [108]

2.4.2 Sliding-Mode-Control (SMC)

Sliding-Mode-Control (SMC) is a non-linear, variable structure control method which

applies a set control signal with specified value to a non-linear system in order to change

the dynamics. SMC is sometimes referred to as Variable Structure Control (VSC). There

are two phases of executing SMC, firstly the sliding (hyper)surface must be constructed

and then the switching feedback gains must be constructed. Figure 2.4.2 shows an example

‡it is possible that Vm can be non-zero
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of a systems’ evolution under SMC. A single-input single-output (SISO) dynamic system

F I G U R E 2 . 4 . 2 Example of sliding mode control [109]

which is linear in the input can be written as:

ẋ(t) = f (x(t))+g(x(t)) .u(t). (2.6)

With state vectors x(t)∈ℜn and input vectors u(t)∈ℜm such that n≥m, and the functions

f : ℜn → ℜn and g : ℜm → ℜm such that both f and g are smooth functions. In which

case, Σ can be defined as the regular (n−1)D submanifold in ℜn:

Σ := {x ∈ ℜ
n | σi(x) = 0, i = 1,2, ...,m} (2.7)

where σ(x)i : ℜn → ℜ(i = 1,2, ...,m) is a smooth function. We define σi(x) = 0 as the

individual sliding (switching) surface. The sliding surface which is used for SMC is found

by intersecting m individual sliding surfaces:

Σ :=
m⋂

i=1

Σi =
m⋂

i=1

{x ∈ ℜ
n | σi(x) = 0} (2.8)
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∴ Σ := {x ∈ ℜ
n | σ(x) = 0} (2.9)

where σ(x) = [σ1(x),σ2(x), ...,σm(x)]
T . If the system states x(t) are on the sliding surface

Σ (i.e. σ(x(t)) = 0) then the behaviour of the states are referred to as being in the ‘sliding

mode’. If the sliding mode actually exists, then the state vector are forced to track along

the sliding surface. The sliding mode control law entries ui(t) (i = 1,2, ...,m) are found

from one the following values:

ui(t) =:





u+i , if σi(x(t))> 0,

u−i , if σi(x(t))< 0,
(2.10)

The resulting system defined by both equations 2.6 and 2.10 is defined as a variable

structure system. There is another condition called ‘attractiveness’, which states that the

motion of the system in the near vicinity of the sliding surface tends towards the sliding

surface. The conditions for this is σi(x(t))σ̇i(x(t))< 0, if fulfilled then the sliding surface

is a sliding mode. Raymong et al. have shown a variety of implementations of SMC

[110] and there are a variety of other sources which give origins and applications of SMC

[111, 112, 113, 114].

Sliding mode control has previously been implemented as the control method for air

to air interception for a projectile and target, again reducing the control problem to 2

dimensions [115]. Yang et al. have used SMC in conjunction with other control methods

to develop a robust controller for the formation flying of spacecraft [109]. A textbook by

Wu et al. [116] gives a description of SMC as well as example applications to systems

such as the inverted pendulum.

He et al. have created a SMC based composite GL for the missile-target intercep-

tions, which operates without line-of-sight information as well as considering actuator lag

[108]. While LoS rate information is critical for PN-like GLs, SMC is capable of operat-

ing without it. A sliding surface is constructed from actual and estimated system states.

Classic stability analysis of the system shows that the LoS rate can be definitely stabilised

locally around zero. The bounding is asymptotic around zero and the upper limit of the

stabilisation was shown to reduce if the GL parameters were correctly chosen. Numerical
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simulations were then used to validate the GL was delivering suitable performance.

A GL using SMC has been created to account for a missile with autopilot lag as well as

actuator fault [117]. Geng et al. have developed an Adaptive back-stepping SMC terminal

GL which accounts for accelerator saturation [118]. SMC based GLs have also been used

to consider impact angle and trajectory time constraints [119], angle of attack constraints,

damping factors [120]. Zeren [120] has also used Monte Carlo simulations to validate the

robustness of the method. A modified guidance and control sliding mode controller was

used to improve the chattering, miss-distance and finite time over conventional SMC and

PN methods [121]. The validity of the PN-like LoS GL has been investigated for a three

body (two aircraft, one missile) system where the launch platform is also moving [122].

A novel variation, called ‘airbourne-CLoS’ utilises two separate LoS rates with one gain

to control the three body problem [123]. A terminal GL using PN has been created with

manoeuvrability and terminal angle of attack constraints, such that there is no overloading

of the control system in the terminal phase [124].

2.4.3 Zero-Effort-Miss (ZEM)

Zero-Effort-Miss (ZEM) GLs are especially useful for ballistic projectiles. They use

a concept of zero-effort-miss distance Z, which is the distance between the projectile

impact point and target if the projectile is left completely unguided in a free ballistic

trajectory. ZEM GLs aim to produce an equation which relates the control variable, e.g.

canard deflection angle, to the ZEM distance. This equation usually involves the system

kinematics, and is used to achieve Z = 0 within the range of actions available to the

controller. If the current trajectory of a projectile is already on course to intercept the target,

then no controller input is required throughout the flight. At a time when the trajectory

indicates the projectile will miss, Z > 0, the required control inputs to put the projectile

back on a collision trajectory are calculated via the chosen equation/relation. This concept

makes ZEM very attractive for this novel projectile design, and indeed ballistic projectiles

in general, as actuator effort requires power which is the only consumable resource. In

addition, this means that corrections can be made early enough, when the disturbances

are still small, so that the GL always demands a controller response which it is feasible to

deliver during the later stages, as is sometimes uncharacteristic of PN. This is especially
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useful when actuator saturation is a primary focus of the GL.

F I G U R E 2 . 4 . 3 Reference frame of kinematic model used in ZEM GLs [125]

ZEM GLs traditionally use a kinematic model of the projectile/target system in addition

to considering motion only in the longitudinal-normal plane [126, 127, 128, 101], which

is shown in fig. 2.4.3. An advantage of modelling the GL using kinematics is that the full

body dynamics of the target are often unknown. In the case of a direct fire projectile, it is

unlikely that the target dynamic would be significant compared to those of the projectile,

i.e. the movement of the target is likely to be small. Instead, the control capabilities are

required for disturbance rejection, small drift corrections and minor target displacement

along the trajectory. In the longitudinal-normal reference frame, henceforth refereed to

as the ‘range frame’, the projectile and target have accelerations normal to their velocity

vectors, aP & aM respectively and normal to the LoS vectors, aPσ & aMσ respectively.

From the figure, and using the small angle scenario, the linearised kinematics of the

system can be written as

ẏ = v (2.11)

v̇ = aT σ −aMσ (2.12)

From the definition of ZEM, which is the miss distance if the projectile remains in its

current uncorrected ballistic trajectory, we can write the ZEM, or Z as

Z = y+ vtgo +
1
2

aT σ t2
go (2.13)
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where tgo is the remaining time until impact/collision/interception, which can be approx-

imated using the closing velocity Vc and distance R using

tgo =
R
Vc
. (2.14)

By combining equations 2.11 and 2.13, the time derivative of Z can be expressed as

Ż =−aMσ tgo (2.15)

Z̈ =− ˙aMσ tgo +aMσ (2.16)

For the projectile to intercept the target, Z should not depend on the time of interception.

In essence, ZEM GLs specifically link the terminal or instantaneous miss distance to

the actuator command or airframe control parameter, such as latax or velocity. This is

especially useful in direct-fire projectiles where there is very little comparative 3D motion.

Calise et al. have investigated a control and guidance methodology for a novel projectile

incorporating synthetic jets, which interact with the flow to produce a control force [129].

The projectile is both spin-stabilised and direct fire. The GL uses trajectory shaping,

whereby the trajectory of the projectile under no controller effort is derived with dynamic

model equations, this is the ZEM. The miss distance and calculated required time to go is

used to calculate the necessary latax throughout the remaining flight, which would result

in the projectile hitting the target. The projectile actuator is modelled as increasing the

control force over a given time. For T0 < t < T1 the jet is activated and for T1 < t < T2 the

jet is deactivated, according to the equation:

Fjet = F0 +
(F1 −F0)(1− e−at)

1− e−aT1
(2.17)

Here the actuator control force has been arbitrarily mathematically modelled, to represent

a real force loading situation. The control force demanded of the actuation mechanism

is given by Fc = m
√

A2
yc +A2

zc where Ayc and Azc are the lateral and normal accelerations

respectively, both of which are functions of the ZEM distance in the respective planes. The

roll direction the jet is activated along can be adjust by a use tunable parameter. Figure

2.4.4 shows the controller architecture considered in the paper, an adaptation of work pre-
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viously published by the same lead author [130]. The target and projectile coordinates are

fed into the GL, which is used to determine the control inputs u. Since the pulsing jets are

activated once per revolution, the desired control effort is update once every 25 revolutions,

since the spinning projectile is assumed to be spun sufficiently fast in comparison to the

update rate of the GL that a polling rate of 25Hz is sufficient. It seems that in reality, this

update rate is arbitrary and can be chosen to reflect the update frequencies of any system

being considered. An adaptive neural network is also used in the control architecture,

F I G U R E 2 . 4 . 4 Adaptive controller used by Calise et al. [129]

to modify the control signal u demanded by the GL for distance errors which become

present during the simulations. The low update rate means the neural network is polled

less often, which reduces the computational intensity of the simulations. Primarily how-

ever, it is done to reduce feedback in the guidance loop, caused by projectile precession.

The controller commands are then fed to both the projectile and the discretised actuator

model. The actuator model is used to calculate what the control force will be, which is

then in turn used to evaluate the dynamic model according to a point mass model, to be

compared to the simulated measurements of the dynamic model, to finally determine the

effectiveness of the control architecture and feed the error which needs correcting back
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into the neural network to update future control commands. This feedback is made via an

‘adaptive control term’ vap which scales the control demand u.

It was found that the induced moment of the actuator amplified the attenuation of the

control force and also, depending on the moment direction, increased the peak control

force. The resulting peak force on the projectile was no more than 0.9N, this is found to be

well within the desired limits described in [49]. We can assume this force is constant when

evaluated ‘from a distance’ in the sense that it is produced by each revolution continuously.

While the GL alone was sufficient to guide the projectile to the target in the cases presented,

introducing the adaptive controller reduces the actuator effort by 30% throughout the flight,

leading to a much more consistent control force profile throughout the flight. This is

essential for reducing the actuator demand during the terminal phase, when the actuator

may be saturated from the controller demanding a latax it is unable to deliver. Finally, the

augmented controller was able to reduce the peak control force by 70%, which is desirable

since the actual performance of the actuator was abstractly modelled.

Gao et al. have investigated the effect of impulse shapes on the correction capabilities

of fin-stabilised, guided projectiles [131]. The projectile is adorned with numerous impulse

thrusters, radially distributed about the circumference of the projectile body. The thrusters

deliver a force on the projectile over time after their actuation, which is shown in fig.

2.4.5A. These single-use thrusters are capable of firing at predetermined points in the

projectile roll rotation, shown in fig. 2.4.5B, to laterally impart a control force. Because

the rotation of the projectile in question is low compared to the actuation time of the

impulse thruster, the impulse is delivered in its entirety in addition to being symmetric

about the deployment point. This cannot accurately depict the radial direction of impulse

delivery in the event of an asymmetric impulse shape. A test projectile was manufactured

and tested; with a correction capability of 598.3m at a range of 30km, using a total impulse

of 600Ns. Simulations were in good agreement with the experimental tests, but neither the

simulation procedure or the requisite coefficients are described at all.

Fresconi describes a novel trajectory shaping method for an indirect fire projectile,

which reduces the burden on both the sensor and the actuator [78]. The intention is to

use the procedure on ‘control authority-limited’ projectiles, where volumetric or cost

requirements mean the projectile is unable to meet the demands of GLs. The comparisons
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( A ) Impulse shape ( B ) Radial trigger of impulse

F I G U R E 2 . 4 . 5 Actuation mechanism of impulse thrusters considered by Gao et al. [131]

showed that PN GLs demanded a latax that the projectile being considered was always

unable to deliver, while the impact point prediction method described was at all times,

demanding a latax within the capabilities of the projectile. The procedure involved finding

a relation between the canard correction angle and the miss distance. During the terminal

phase of flight, the projectile is assumed to be travelling near vertically downwards, with

negligible angle of attack, the only normal force present is the control force, which is

assumed to act through the centre of mass. It is noted that assuming the inertial reference

frame remains fixed to the airframe is ill-advised, but that by including controller feedback,

any concerns raised by asserting this assumption are mitigated. The relation found is

δc = KP
πItranseλ φ̇ 2

4qSNc
Nα

(δCoP − xCoG)
(2.18)

This shows the relation between the proportional gain KP, transverse inertia Itrans, angular

error eλ , angular rate φ̇ and demanded canard control angle δc. There is also the location

of the canard centre of pressure δCoP and the total projectile CoM, xCoG. There is no

stability analysis of the system, but Monte Carlo simulations were used to analyse the

performance of the control system subject to variations. The CEP was reduced from 200m

in the ballistic case to under 1m for the guided case. The analysis was verified with live-fire

experiments using a 155mm spin-stabilised projectile. This also confirms the conventional
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6-DoF ballistic model was a good representation of the experimental tests conducted and

that the inclusion of Monte Carlo simulations to test trajectory perturbations is also a

viable approach. Fresconi continued this work the following year with L. Fairfax [132],

detailing a position estimation procedure using low cost and therefore relatively inaccurate

sensors and augmenting the information with known flight dynamics and GPS. Using an

array or 10 Inertial Measurement Unit (IMU) sensors, the positional error was found to

reduce by a factor of 10, but increasing the array size to 100 led to no further increase in

positional measurement accuracy.

Common textbooks show that PN guidance can be derived from ZEM based laws,

but this is predominantly only shown in a planar engagement scenario [103]. V. Lam

has shown that ‘True’ Proportional Navigation (TPN) can be derived from ZEM [126].

Lam analysed the effectiveness of TPN, ‘Pure’ PN (PPN), ‘Augmented’ proportional

navigation (APN) and an ‘acceleration-compensated’ zero-effort-miss (ACZEM) against

various engagement scenarios. The performance of the GL is compared in terms of an

‘acceleration index’, given by the formula

aI =
∫ T

0
||ac||dt (2.19)

where ac is the instantaneous acceleration demand from the GL. In this sense aI is essen-

tially the total acceleration demand from the GL over the whole flight of the projectile and

as such. A higher aI is generally regarded as worse, since it translates to a higher actuator

effort. For constant accelerations where the acceleration is known perfectly, ACZEM

performed the best, with the lowest miss distances and lowest aI . The increase in perform-

ance is stated as being due to the early compensation for target movement. It was found

that when the acceleration data was noisy then ACZEM would begin to perform worse

because the projectile was incorrectly manoeuvring earlier to compensate for the incorrect

acceleration measurement data. To compensate for this, an acceleration confidence factor

was applied to the acceleration term which scaled from 0 for highly noisy data up to 1

for perfect data. This is a simplistic solution to the problem, which requires minimal

alterations to the GL, while also allowing the possibility to be a function which itself can

be optimised.
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Lee et al. have shown a different approach for shaping ZEM trajectories, such as that

considered in [129]. It is reinforced in the paper that it is difficult to guide projectiles

with a modelled actuator saturation using PN guidance, without using gain scheduling

or scaling. The proposed methodology is suggested as an alternative in such situations,

where it is undesirable to enact large changes in the guidance constant in PN-like GLs. In

essence, the proposed method adds a multiplicative weighting term to the ZEM distance

to be corrected. The weighting function can itself have as many gains or parameters as the

creator defines and optimises, but the functions itself adds another degree of freedom to

control the shaping of traditional ZEM. A GL is then presented in the paper which takes

the form of a PN GL with time varying controller gain. The desired ZEM is determined,

the weighting function necessary to produce this ZEM is derived and then the control value

is found. The application and performance of the GL is then tested on an arbitrary system

as well as a real-world system. The hybrid system was found to outperform traditional PN

for the considered scenarios.

ZEM and zero-effort-velocity control have been applied to a variety of other uses

aside from the missile scenario, such as asteroid interception and landing problem, orbital

transfer/raising [127] and as mid-course correction for exo-atmospheric ballistic missiles

[128].

2.4.4 Novel and bespoke guidance laws

A polar GL has been investigated which controls a missile based on the polar radius and

angle of the target from the missile [133]. However, the control force is assumed to be

variable and the roll rate and direction is adjustable. The lateral distance error of the

system was found significantly reduce over the duration of correction though there were

small amplitude oscillations present which were noted to also reduce toward zero. A polar

GL has been investigated which controls a missile based on the polar radius and angle of

the target from the missile [133].

An Expanded 2D proportional derivative GL (E2DPDGL) has been created for a skid-

to-turn command to line-of-sight anti-tank guided missile, which builds upon classical PD

GLs (CPDGL), with the objective of eliminating a spiral trajectory which is an artefact of

PD GLs [134]. The E2DPDGL law acts as a traditional PD GL when in close proximity to
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the target, outside of this area the GL includes additional terms which are functions of the

position vector derivatives. This approach was shown to successfully eliminate the spiral

trajectory present in the picture plane. An Expanded 2D PD GL (E2DPDGL) was created

for a skid-to-turn command to LoS anti-tank guided missile, which builds upon classic PD,

with the objective of eliminating a spiral trajectory which is an artefact of PD GLs [134].

Pamadi & Ohlmeyer have investigated two less common GLs for controlling the

flight angle of a spin-stabilised projectile [135]. These laws are the Generalized Explicit

(GENEX) and the Forward Integration of Terminal States (FITS). GENEX, primarily

designed for missiles with onboard propulsion, allows the designer to modify the extent

of the trajectory shaping, while still aiming to minimise the resulting miss distance at

impact. FITS is a predictive guidance method originally designed for ballistic projectiles.

Unlike GENEX however, FITS does not conventionally include the trajectory angle. A

method called Gravity Bias Scaling (GBS) is used to incorporate the trajectory angle con-

siderations into the FITS law. The effectiveness of both methods is compared in a 6-DoF

dynamic model. It was found that both laws provided a comparable performance, how-

ever when GPS information is removed (to emulate target jamming) GENEX performed

significantly better than FITS/GBS, albeit at the expense of miss distance. This will be a

consideration of the designer as to where trajectory following is more important than miss

distance minimisation. In instances where trajectory angle is more important than miss

distance, these GLs can be considered.

Gruenwald & Bryson use a relatively new adaptive control architecture, which in

turn uses an expanded reference model, to a fin-guided projectile [136]. The aim of the

paper is to address the limited actuator bandwidth that will likely be present in projectiles.

Linear matrix inequalities are used to relate the available actuator bandwidths present in

the actuator dynamics, to the system uncertainties and stabilities. While the approach

was proven to be effective at characterising the aerodynamic uncertainties and actuator

bandwidth, the approach appears convoluted; there are more suitable and bespoke solutions

available to novel systems without necessitating such mathematical complexity.

Park et al. have introduced a new GL which aims to improve upon some of the

shortcomings of proportional navigation, namely the high proportion of the flight in which

the actuator is unnecessarily engaged [137]. The premise of the proposed method is
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essentially a hybrid of trajectory shaping and ZEM laws, in that the ballistic flight is

altered at certain points to reduce the miss distance. The law follows a similar form to

PN, however the considered flight variable is the trajectory angle, the same which was

considered in [135], as opposed to the line-of-sight rate. In addition to this, the impact

point prediction uses a neural network as a non-linear function approximator, as opposed

to the traditional 6-DoF or modified point mass models. The authors do use 6-DoF models

to compare the predictions of the neural network approximators, as well as testing the

performance of the novel GL method against traditional PN. In all conditions, wind

and Magnus effects are neglected. The accuracy of the model is as expected, highly

dependent on the accuracy of the model used to predict the ballistic path of the projectile.

This guidance method would be more useful for projectiles which require minor accuracy

improvements, such as cluster munitions, where there is less emphasis on single projectile

maximum precision but a large group of them would benefit from having the CEP lowered

even slightly. In addition, the relatively more mass produced but inexpensive projectile

would take advantage from having less expensive computational hardware.

A CCF-equipped spin-stabilised projectile has been considered by Wang et al. for

their implementation of a guidance and control design [79]. They used an effective hybrid

strategy, combining both impact point prediction and perturbation theory. Monte Carlo

simulations showed that the control strategy is viable for the considered CCF adorned pro-

jectile, which was capable of reducing the CEP from approximately 200m to almost 20m,

nearly a 90% reduction. The authors mention that "The five main types of guidance most

considered in guided ammunition contexts are trajectory shaping, model predictive guid-

ance, path following, impact point prediction control, and proportional navigation. When

only small correction to a trajectory is possible, only the later four are applicable". Model

predictive guidance uses a high-fidelity dynamic model of the projectile and environment

to determine the outcome of the controller action space, but these method are computation-

ally intensive if a high degree of accuracy is required. Path following guidance compares

the current path of the projectile against an a priori or online generated path, the error

is used to generate the control action; however path following guidance only considers

position, as opposed to velocity, which can cause compounding errors in some cases. The

most popular subset of impact point prediction is trajectory integration, which suffers from
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the same dependency on high-fidelity dynamic models as model predictive guidance. In

addition, the gyroscopic stability of the projectile must be considered across the whole

trajectory, making this method more suited to short range projectiles, where the time scale

is short enough that there is no decay of the gyroscopic stability. Proportional navigation is

the most common form of guidance method for many guided weapons, especially missiles,

due to its simplicity and effectiveness. However, at the time of authoring the manuscript

they noted that only projectiles using jet motors had incorporated PN control [129, 138].

It is very common for literature to consider the impact angle of a projectile when

designing the GL since impact angle, especially with ballistic projectiles, have terminal

effectiveness directly proportional to the angle of attack upon contact [139, 140]. Novel

virtual target methods have been created for impact angle and burst height constraints

[141]. Some guided projectiles carry explosive payloads, and the detonation direction is

dependent on the angular orientation of the primary projectile. Wang et al. have considered

impact angle constraint using a state-dependent Riccati equation (SDRE) approach [142].

A Riccati equation is, in essence, any ordinary differential equation where the unknown

function is quadratic. Once the projectile engagement scenario is considered using a planar

kinematic model, the system is reduced to states, which can then be solved using the SDRE

approach. The resulting GL has a series of coefficients, which it is noted designers can

change for any given projectile. However, the GL proposed is tested on an unrealistic

kinematic model, thus the real-world performance is questionable, especially since this

methodology uses conventionally abstract mathematics.

Impact angle control with field of view constraints has been considered in similar

works by Sharma & Ratnoo [143], and Lee & Kim [144]. As with Wang et al. [142],

the GLs are tested entirely on a kinematic model of the engagement scenario. A ‘capture

region’ is defined, essentially being the effective region in which sufficient information

and capability is available for the GL and projectile system to successfully reduce the miss

distance. A closed form variation of direct-pure-pursuit (DPP) is used to derive what CR

will provide the desired impact angle, as a function of the initial position and trajectory

angle. When the missile FOV is small, the possible impact angles are also small and

possibly discontinuous in the output space.

Classic PN has been augmented with a polynomial which describes the heading error
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and the parameters of the polynomial are tuned with a ‘big-bang big-crunch’ (BBC) al-

gorithm [145]. The algorithm searches for the optimum parameters by moving along a

normal distribution with heuristic values. In testing, the GL is initialised with a high dis-

tance error and analysis is conducted with a latax constraint. The algorithm was compared

to Pure PN and Differential Evolution PN, and was shown to be the most time and energy

efficient of the three algorithms.

A few publications specifically pertain to the guidance of dual-spin projectiles. Iter-

ative impact point prediction has been used to create a GL for a dual-spin projectile with

control force imparted by fixed canards [146]. A modified form of projectile linear theory

is used to predict where the projectile will land and make the necessary corrections to the

control system. Proportional navigation has been used in the GL of a dual-spin mortar

during the ascent and descent phase [147]. The results of the GL were validated with

hardware-in-the-loop testing and Monte Carlo simulations. Intriguingly, there currently

exists no literature which describes a GL for a missile with roll-direction, roll-rate, and

control-force magnitude constraints.

2.5 Artificial intelligence and reinforcement learning in

guidance systems

Within the field of artificial intelligence (AI), machine learning is concerned with the

development of algorithms which a computer can use to complete a task optimally, without

being given explicit instructions on how to complete said task. Reinforcement Learning

(RL) is a specific type of machine learning where an agent autonomously derives an

optimal policy to maximise the future cumulative reward of every possible action.

Figure 2.5.1 shows a diagram for the operation of a typical RL agent. The Agent

uses a certain policy π(s,a)§, to evaluate which action a it should take given the current

state s of the system, in order to maximise its expected reward r. To determine what the

optimum policy should be, it uses a reinforcement learning algorithm, to change the policy

by comparing the actual to expected reward. Figure 2.5.2 shows a hierarchy of different

§Note that the policy is a function of the actions and states, hence π(s,a). However the operation of the
policy selects an action based on an observed state, consequently it is sometimes written as π(a|s)
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F I G U R E 2 . 5 . 1 Diagram of a typical Reinforcement learning agent

RL algorithms.

F I G U R E 2 . 5 . 2 Hierarchy of RL algorithms [148]

The first branching in figure 2.5.2 shows whether the algorithm is ‘model-based’ or

‘model-free’. In model-based RL, the agent will learn or be provided with a function

which maps state transitions. Only a few situations exist where the known model is a

perfect representation of the real system, since it will be the same system. One example

is the renowned AlphaZero, an adaptation of the AlhpaGo, which has been designed to

play the game of chess, shogi and Go [149]. In less than 24 hours of learning, "Starting

from random play, and given no domain knowledge except the game rules, AlphaZero

achieved within 24 hours a superhuman level of play [...] and convincingly defeated a

world-champion program in each case". In the majority of cases, there is no ground truth
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model available to the agent and a model will be used. In this case, the model used to

represent the system will never perfectly reflect the real-world environment, there will

always be some simplification or inaccuracy in the modelling process. Imperfect models

and improperly chosen reward functions lead to an agent exploiting certain aspects or

nuances of the training environment which will maximise the reward function, but in such

a way that doesn’t translate to the desired real-world performance. In some instances there

is zero prior knowledge and the model itself must be learned in its entirety; this learning

process is inherently difficult and can even be completely futile [148].

In model-free RL, no knowledge of the model is necessary for the algorithm to perform,

the operation is entirely abstract. Q-learning and policy optimisation are both types of

model-free reinforcement learning algorithms. Policy optimisation methods represent the

policy in by a set of parameters θ , i.e. πθ (s,a). The πθ is then maximised against θ

using either gradients ascent or some local maximisation. This allows one to optimise

for any chosen set of θ , but this method is hindered if the end performance of the model

cannot be quantified in terms of the chosen θ . In Q-learning, the agent uses a Q-value

Q(s,a) in addition to the policy. The Q-value of a given action represents the expected

reward from all successive actions in the current state. The action with the highest Q(s,a)

indicates it leads to the highest cumulative reward. We define the Optimal Action-value

function Q∗(s,a), as a function that returns the highest average Q(s,a) of every action

given the current state. Q-learning methods learn an approximator function Qθ (s,a) which

is updated during training so the Q(s,a) more accurately represent the reward and approach

the optimal action function. This update process used the Bellman equation:

Q(s,a)new = Q(s,a)+α

[
r(s,a)+ γ max

a′

[
Q∗(s′,a′)

]
−Q(s,a)

]
(2.20)

with learning rate α , reward r(s,a), discount factor γ updated Q-value Q(s,a)new. Table

2.2 contains a list of terminology for this section.

In relatively simple systems, there may be a computationally manageable amount of

states and actions within the environment. A common approach for the Q-function is to

use a lookup table, which maps every state-action pair to a Q-value, which is then updated

with every iteration of the loop. If the system is significantly complicated, or the states
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are continuous then a lookup table is no longer practical, and a new function must be

used. Deep¶ Q-Neural Network learning (DQN) is a variant of Q-learning which uses

a neural network to approximate the Q-function for a given state-action pair [150]. The

action space for DQN is binary, but can have any number of actions. Deep Q-learning

agents have been demonstrated to perform at least as well, in some cases considerably

better than humans in a variety of arcade style games [151]. There are also many other

variants of Q-learning, such as Fuzzy Q-learning [152]. Other deep methods include Deep

Deterministic Policy Gradient (DDPG), which has a continuous action space.

Another common structure in RL algorithms is the ‘actor-critic’ method. Here, the

actor can be thought of as the traditional policy function π(s,a), which determines the

optimal action to maximise the expected reward given the current state. In general, the

critic will in some way evaluate how well the actor is performing and will provide the

actor with feedback to adjust its performance based on this; i.e. the critic will compute

a value function, which assists the actor in learning the optimal policy. Q-learning is an

example of this, where the Q-value is what encapsulates the actor performance information.

The critic takes the current state and the action from the actor and uses these to compute

an expected reward. It then compares the expected reward value to the actual reward

once the action outputted from the actor has been fed to the environment. Actor-critic

methods can be ‘deep’, whereby either one or both of the actor-critic pair can be a neural

network. Common algorithms including actor-critic methods are A2C and the A3C used

by Deepmind [153]. Figure 2.5.3 shows a DQN agent using an algorithm, in which neural

networks are used for both the actor and critic. Using neural networks instead of traditional

functions allows the agent to handle a very large domain.

A general problem with reinforcement learning is that an agent which is perfectly

trained in the virtual environment will completely fail to perform when it is implemented

into a real-world system. This is because even the most accurate model is still not accurate

enough to portray the stochastic nature of the real-world. To combat this, a methodology is

being used where the observations are intentionally perturbed during the training process

to emulate real-world noise. The is done by means of an ‘adversary’, which introduces

pertubations according to its own policy. It has been shown that under such circumstances,

¶‘Deep’ in the title of any RL algorithm indicates the use of a neural network at some point
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F I G U R E 2 . 5 . 3 Diagram of a DQN agent using the actor-critic method

algorithms can be written which are able to successfully mitigate the impact perturbations

have on the training procedure successfully [154, 155]. Pinto et al. investigated the effect

of implementing an adversary which is also a deep learning agent, trained in tandem with

the primary agent [156].

When machine learning is being used for control, it is advantageous to make the system

it is controlling as simple as possible. A complex system requires a large neural network

to be able to process the different system states and interpret the correlation between

desirable actions and the specific parameter set which caused them. Also, the environment

the agent is trained in should be as similar as possible to the environment it will operate

in. For example, when using machine learning in image recognition [157], the images

used in training samples are identical to what the agent will experience when implemented.

By contrast, an agent can be trained using a computer simulated environment to control a

walking robot, but this is vastly different to the real-world environment the agent will be

implemented in [158].

2.5.1 Projectiles and guidance laws

Gaudet & Furfaro [159] used reinforcement learning to derive a homing-phase missile GL,

to compare against traditional proportional navigation (PN) methods. PN methods are very

accurate for ideal conditions, but system dynamics, noise and component delays cause

deterioration. In some cases systems are so complex they are modelled stochastically,

such as helicopter blades. The model used in the paper to train the AI agent is a statistical

representation of the system, pulled from flight telemetry and wind tunnel data. This is
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Term Definition

Action (a ∈ A) A parameter of the environment the agent can change
in order to cause a desirable change. In Deep Q-
learning the agent can be comprised of an actor and
critic network.

Actor A neural network responsible in place of the opera-
tional policy

Agent The operator which takes an action to change the state
of the environment

Critic A neural network which evaluates the performance of
the actor based on the new reward and is capable of
adjusting the actor to optimise the new reward

Discount factor (γ ) A scalar factor between 0 and 1 sets the importance of
immediate (γ → 0) or long term reward (γ → 1).

Environment The external place where the system evolves

Learning Rate (α ) A parameter which determines the step size of each
iteration when minimising a loss function

Loss function A function which maps an event to a real number char-
acterising the cost associated with that particular event

Observation Parameters or measurements of the system which are
taken from the environment and passed to the agent

Policy (π(s|a)) The decision-making function used by the agent
which calculates the action that provides the max-
imum reward

Reward A scalar value representing the desirability of a state

RL Algorithm The method used by the agent to optimise the policy
according to the received reward

Q-value (Q(s,a)) The cumulative reward which would be expected if an
agent in a state s, performed an action a and continued
to operate under the current policy π

Reward Function An equation which calculates the reward for a given
state/action combination.

State (s ∈ S) A particular combination of a given Observation and
actions

TA B L E 2 . 2 Terminology for Q-Learning environment
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stated to be, in some case, more accurate than using a simplified mathematical model. This

would be especially true when dynamic models are simplified to kinematic models. It was

found in the results that the neural network used in the agent was overtrained, likely due to

too many hidden layers being used (16 layers). The agent tested used weights and biases

from the optimisation phase before the agent overtrained. It was noted that a preferable

solution if time permitted was to penalise the agent via a regularization term, which sums

the squares of the non-bias weight values. The result of the comparison showed that the RL

agent was able to provide smaller miss distances in more complex engagement scenarios.

In addition, it was found that the RL agent was employing different GLs at different points

in space, instead of employing different controller gains for different points in space.

Gaudet et al. [160] have used proximal policy optimisation to construct a novel GL

relying only on observations of LoS angle and its rate of change. A 6-DoF kinematic

model was used and the agent was able to control the actuators of the missile. The agent

was unable to exceed the performance of the state-of-the-art conventional method (zero-

effort-miss policy), after 140,000 episodes of training, but the agent was robust enough to

perform when subjected to novel scenarios outside the scope of the training data. At the

time, a GL was unable to be formulated relying solely on the angle and angle rate as this

agent was.

Liang et al. [161] have developed a novel impact-angle GL under partial actuator

failure, using a model-based deep RL agent. A neural network is used as a predictive

model for the guidance dynamics, which is then fed into a model predictive path integral

(MPPI) control framework. MMPI methods falter when there is a discrepancy between

the training and real environments, to counteract this an online neural network learning

method is used to adapt to the changing model dynamics. A kinematic model is used in

the training, two hidden layers of 200 neurons were used in the neural network. There was

no mention of the number of episodes required to train the agent. The resulting agent was

shown to have better performance than the traditional MPPI method, due to the ability to

adapt to environment perturbations on the fly.

Yan et al. [162] have used RL and transfer learning as a way of designing projectiles.

Shared- Layer Deep-Deterministic-Policy-Gradient is used to generate dimensions of a

generic projectile frame with the intent to maximise the lift/drag ratio (RLD) while keeping
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the centre of pressure constant. Both DDPG and SL- DDPG RL techniques were compared

against NSGA-II, NCGA and MOPSO, which are optimization algorithms commonly used

in aerospace design. It was found that both DDPG and SL-DDPG methods converged

quickly to the terminal RLD, taking only around 50 episodes. While NSGA-II, NCGA and

MOPSO were still increasing when the training was terminated at 100 episodes. DDPG

provided the least accurate RLD of 3.35, while NSGA-II, NCGA and MOPSO all termin-

ated at approximately 3.47. SL-DDPG was the best algorithm, achieving a terminal value

of 3.53.

A Recurrent Convolutional Neural Network has been used in an Augmented PN GL

to switch the navigational constant online during the flight of the projectile [163]. It was

found that a combination of recurrence and convolution provided better results than either

method independently. In addition, positional error of the pursuer as well as a delay of the

evader’s acceleration was considered.

2.5.2 Path planning

Zhao et al. [164] have implemented a Deep Q-Network (DQN) agent as a path planning

method for a UAV. The environment is set to be a 2D plane with obstacles included which

the UAV must avoid. A neural network is implemented to reduce the time it takes for the

agent to learn in a continuous action space, as opposed to separating the environment into

discrete sections. There are no permissible actions for the agent listed, but from the data

provided the agent is allowed to move in any direction at any time; though it is likely the

bearing of movement is also discrete to reduce the action space. Zheng et al. [165] have

also used a DQN agent to implement path planning for a UAV. Similar to Zhao et al. [164],

the agent is free to move in any direction within the 2D planar environment. However, the

scope of work by Zheng focusses on the integration of radar data, which is outside the

scope of this project.

Zhang et al. [166] have used DQN to assist in manoeuvrer planning for air to air

UAV combat. The UAV is placed in a kinematic 3D environment and the states are the

air coordinates, rotation angles and air speed. The permissible actions of the agent are to

slightly turn left, right, up and down, accelerate, decelerate and maintain speed. The reward

function is designed to keep the UAV at a sufficient altitude to prevent stalling, keeping a
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close distance to the aircraft, and finally attaining a high relative velocity between the two

aircraft. This may be good for initial testing but as will be explained in §5.3.1, this will

lead to the agent flying straight past the target instead of holding on course. It is reported

that the agent is generating acceptable flight paths after only 200 episodes of training,

which is very quick considering one would expect a DQN agent to require more than 105

or even 106 episodes to train [149, 150, 154, 151, 158]

Gaudet et al. [167] have used a policy gradient learning to train an agent to control a

craft during powered descent and landing for planetary excursion missions. A dynamic

6-DoF model is used and the agent is responsible for controlling the thrust of 4 engines

placed on the bottom of the craft. The agent is rewarded for minimising the terminal pos-

ition, velocity, attitude and rotational velocity errors, and minimising control effort. The

observations are the velocity error and rotational velocity, time-to-go, estimated attitude

and altitude. A maximum reward was reached after approximately 75,000 episodes. The

trained agent was validated with a Monte Carlo simulation, where it proved robust against

noise and parameter variation while being able to "pinpoint accuracy and a soft landing

with minimal deviation from an ideal landing attitude and rotational velocity, with large

divert distance capability".

Wang et al. have used DQN in an effort to control an aircraft during the descent

for landing [168]. In essence, a 2D grid is used to describe the aircraft movement. The

effective objective is to move around the grid from a randomised initial location to a

runway of fixed location. The aircraft is fixed to move in a straight line at constant speed,

being able to turn left or right permitted the turning circle is at a constant radius. The

agent was able to produce satisfactory guidance for the kinematic model after around 1200

episodes.

Sung et al. have investigated the use of Neural Networks in controlling dual-spin

projectiles [169]. The design in question uses one set of canards to de-spin the front

section while a second pair of control canards provides a control force which is continuous

across a range. The NN is used in an adaptive controller in an attempt to decouple the

coupling dynamics of the two sections. Results showed that the NN was able to reduce

the coupling of the two sections to a point where control authority of the projectile was

possible.



2 . 5 . A RT I F I C I A L I N T E L L I G E N C E A N D R E I N F O R C E M E N T L E A R N I N G I N
G U I DA N C E S Y S T E M S 69

2.5.3 General applications

Yang et al. [170] investigated the effect of different reward terms in a deep-RL animation

of an agent based box manipulation task. The reward terms investigated were distance,

orientation, collision and time. The agent was then trained four separate times, in the same

environment for 5×105 episodes each. Each case omitted one of the four reward terms

from the reward function. Where distance was omitted, the agent completely failed to

learn any desirable behaviour, indicating that this was the most significant term. When

orientation, collision and time were omitted, the agent learned to perform acceptably after

approximately 2× 105 episodes in each case. When omitting orientation, collision and

time terms, the terminal mean rewards were approximately 26, 37 and 44 respectively.

This shows that the order of importance for the inclusion of reward term, with the most

important being first and least important being last, were: distance to goal, orientation to

target, collision with obstacles, then time taken.

Selvi et al. [171] used machine learning, amongst genetic algorithms and particle

swarm algorithms as a solution for weapon allocation in the multi-layer defence scenario.

In this scenario, the aim is to decide which layer of defence is best to expend at a particular

time against a series of oncoming missile threats. This paper is objectively concerned

with developing an algorithm for resource distribution, as opposed to navigation. The

method described in the paper is a Learning Vector Quantisation (LVQ) - Radial Basis

Function (RBF), multi agent hybrid architecture. Essentially, the input observations are

intelligently quantised to reduce the dimensions Q function, which is approximated by an

RBF neural network. The proposed method proved more efficient at allocating resources

than conventional solutions to the problem.

Other notable works

Zhang Ruoyu et al. have investigated the radar reflection properties of projectiles with

high spin rates [172]. It was found that the reflected signal is an AM-FM combination. The

AM index indicates the attitude of the projectile while modulation frequency indicates the

spin rate. The ability of both Chirp-Z and Fast-Fourier-Transforms to improve the signal

precision was investigated. It was found that spin rates of up to 164Hz could be discerned
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with good signal to noise ratio. Other work has also taken place developing algorithms to

spatially locate projectiles without the use of GPS, as is tradition [173].

Wells describes the considerations of the GPS and receiver vulnerabilities in the pro-

jectile guidance modules [174]. The GPS receiver application module (GRAM) which

GPS equipped projectiles use to navigate, must also be fitted with a selective availability/anti-

spoof module (SAASM) to prevent electronic tampering in the battlefield. This is the GPS

technology currently used in the XM982, or Excalibur, 155mm artillery round.

Liu et al. have proposed a MEMS based IMU design, to measure spin-stabilised

projectiles with high spin rates [175]. A test platform was built, utilising off-centre accel-

erometers in conjunction with three single axis roll gyros. It was found that as projectile

speed increased, as well as flight time, the MEMS configuration was susceptible to a drift

error during the measurement. A flight test showed that the MEMS accelerometer gave

readings of 5deg/s what the gyroscopes measured, with an absolute error under 6deg. The

authors suggested that this configuration was thus more suited to projectiles with short

flight times, which in turn suggests smaller calibre projectiles. In addition, it was noted that

the vibrations present in the projectile during the launch phase and throughout the flight

led to errors in the accelerometer output, which were then compounded when calculating

the roll angle. If a projectile with a high spin rate relied on the accurate measurements of

the roll angle, then this MEMS configuration would be advantageous due to its simplicity

and low volumetric requirements. A ballistic projectile with no propulsion mechanism

would also have less vibrations and therefore benefit more from this design.

Barrett et al. [28] have conducted a review of flight control mechanisms pertaining to

bullets. The Barrel-launched adaptive munition (BLAM) uses piezoelectric actuators to

articulate a 10o, 37mm pivoting nose section of a projectile. The nose section was showed

to achieve a response rate of up to 200Hz at a speed of Mach 3.3.

Fresconi has proposed a flight control methodology for a 40mm projectile with a front

mounted camera with input from a roll angle sensor [77]. The projectile is adorned with a

singular control surface protruding from the aft section of the body. The control method

generates controller commands directly from the imager feedback using gain-scheduled

proportional control. The primary problem with this guidance method as a design is that

it relies on a relatively low, spin rate or at least some mechanism for slowing the roll
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rate to an acceptable level. Of course, while the methodology behind the mechanism has

no feasible limitations except for computer processing speed, the limiting factor of the

design is the response rate and resilience of the actuator and subsystems; any externally

mounted control surface or mechanism is subject to more extreme conditions. Monte

Carlo simulations showed that the completed architecture was able to reduce the circular

error probability (CEP) from 8.6m to 2.7m.

Low cost MEMS gave been proposed for orientation estimators in guided projectiles

[176]. Thermopile sensors and magnetometers are used in conjunction with a priori

trajectory information to account for the effects of weather disturbances. Monte Carlo sim-

ulations were used to evaluate estimator performance when the thermopile was rendered

useless by weather conditions as well as when realistic sensor errors and environmental

disturbances were introduced.

2.6 Summary

Upon consideration of the above literature, there are certain key points which should be

highlighted for their importance to this project. A 6-DoF dynamic model, using q-LPV

linearisation [54], can be used in conjunction with aerodynamic coefficients of a projectile

to provide a true likeness of the projectile and target dynamics [91, 92], including for

small calibre projectiles [177], at least to the degree of uncertainty of the parameters

and coefficients [129, 76]. This is also true for dual-spin projectile utilising a 7-DoF

model [53]. Effectiveness of the GL and resulting trajectories can then be quantified using

dispersion metrics such as CEP [74, 77, 78, 79]. This process has been used in its entirety

for understanding the feasibility of novel projectile concepts [178, 179]. CFD analysis

has been used to determine aerodynamic coefficients to calculate the stability factors of

projectiles with small geometry changes [180].

The ballistic stability factors are a primary criteria for projectile designers before [81],

and it is insufficient to rely on the actuation mechanism to provide stability; the passivated

projectile geometry itself must satisfy the gyroscopic stability criteria [5]. It is imperative

then that the ballistic stability of framework of dual-spin projectiles is thoroughly under-

stood and shown to be reconcilable with single-spin projectiles, to adequately describe
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any design. This framework can be used to bound the design and ensure early problems

are identified, however reliable trajectories necessitate that aerodynamic coefficients are

obtained. It has been shown that CFD programs such as ANSYS [181, 182], or semi

empirical programs like PRODAS [95], can be used to generate coefficients over chosen

flight envelope for novel [84, 85] and traditional [91, 90] geometries. CFD methods have

been shown to be in good agreement with experimental data [96].

The actual projectile actuation mechanism response can be modelled by a mathematical

functions [129, 131], of course provided treatment of the function can be mapped for the

whole function scope. These arbitrary functions often give rise to opportunities for bespoke

GLs which are better suited to guide a particular system given intrinsic knowledge of the

projectile dynamics. When proposing a bespoke GL for the projectile, certain aspects must

be considered. GLs are often described from the perspective of the XZ plane also known

as the ‘picture plane’ [120, 133, 134]. Some of the aforementioned sources use kinematic

models for the derivation and validation of the control law [121, 141, 124, 119, 122], but

dynamic models provide a better likeness of the system response and as such, a dynamic

model should be used during testing. The performance of GLs can be greatly improved

by modifying the GL with arbitrary terms to characterise imperfections in the modelling

of the system [126]. It is common to test the GL using arbitrary model parameters to

facilitate more efficient and reliable interpretation of the results [133, 134]. Any bespoke

GL parameters are shown to perform well when optimised using optimisation algorithms

[145].

Proportional Navigation (PN) is a very common and widespread GL due to the sim-

plicity of its fundamental operating principle. Almost all guided weapons system could

function using PN, but almost all guided weapons system could function more optimally

if they utilised other GLs which specifically characterise and address the nuances of the

engagement situations, such as impact angles and actuator capabilities. All literature re-

viewed at the time of writing shows that while PN does provide an effective guidance

solution, there is always a modification, adaptation or entirely different GL which delivers

better performance when considering a specific projectile/target situation. For the simpli-

city of its implementation and elegance of operation however, PN should be considered as

a baseline or reference GL to which any novel law or modification can be compared. ZEM
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is also a very strong candidate for direct fire projectiles due to the strength of simplifying

the flight to a flat fire trajectory [83] and as such, ZEM methods will likely form the basis

of a bespoke GL solution.

The implementation of SMC depends entirely on the existence of a well-defined slid-

ing surface, the creation of which is non-trivial. PN and ZEM can provide satisfactory

control with significantly easier implementation. This project is primarily focussed with

demonstrating whether the concept is a feasible alternative to current methods and as such,

there is no benefit in evaluating the performance of the projectile under every GL. The

use of SMC to guide this system should be investigated in future work, along with other

GLs. Finally, AI technologies including reinforcement learning are a rapidly growing

sector with many applications to guided weapons including: path planning [166, 164]

for kinematic and dynamic systems; GLs using two common types of RL architectures

DDPG [162] and DQN [167]. Due to the abstraction of RL agents, they are an ideal can-

didate for application to such a novel actuation mechanism. The blind operation requires

little detailed knowledge of the domain which is in the case of ballistic projectiles, highly

non-linear and coupled. As such, the viability of RL agents to control both the actuation

mechanism itself and as a GL will be investigated.





Chapter 3

Theory

IN this chapter, a coordinate system is established in order to build a non-linear, dynamic

model of the form ⃗̇x = f (⃗x(t), u⃗(t), t), with system motion ⃗̇x in terms of system states

x⃗(t) and measurable inputs u⃗(t). This model consists of a set of equations describing

the kinematic and dynamic motion of the body. It will include various aerodynamic

coefficients corresponding to the external forces acting upon the projectile in flight (these

forces and moments are discussed in Appendix A.1), which are in turn discussed. These

coefficients can either be used from existing databases or simulated using Computational

fluid dynamics (CFD) analysis. A linearisation process can be applied to simplify the

system into a format conducive with control theory design. The aim of the simplification

is to achieve a dynamic model framework of the form ⃗̇x = (A−BK⃗)⃗x(t) with dynamics

matrix A and input matrix B, where K⃗ is the control system gain. The resulting dynamic

model is validated against available literature.

The pitching and yawing motions of projectiles is then shown, along with how the

stability factors arise from the framework. The stability factors change depending on

whether they represent dual-spin or single spin projectiles in addition to them having

passivated control surfaces. The evolution of the factors is shown from literature and an

example is given to analyse the stability over the flight envelope. The stability theory

forms the basis of publication [40], in appendix C. A novel method of analysing stability

across the flight envelope is then shown in a technical note, in appendix C.

75
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3.1 Dynamic model of a dual-spin projectile

In 2008, Gkritzapis et al [183] constructed a ’Physicomathematical’ model of projectiles,

specifically small calibre bullets, with the purpose of estimating and analysing trajectories.

Their paper demonstrates a high agreement between their model and “other technical data

and recognised exterior atmospheric projectile flight computational models”. A 4th order

Runge-Kutta method is used to numerically solve, simultaneously, twelve first-order ordin-

ary differential equations. In 2013, L. Baranowski released a paper detailing the equations

of motion for a spin-stabilized projectile [184]. Its purpose is to define the system and

present a derivation in its entirety according to ISO (1151) standards. Both papers use

Tait-Bryan (as opposed to ‘Proper’ Euler) angles to convert between stationary and pro-

jectile axis, supplemented by quaternions where applicable. In 2017, Séve, Theodoulis

& Wernert et al. proposed a full non-linear, parameter-dependent dynamic model for a

dual-spin canard guided projectile [60], shown in fig. 3.1.1. Since the dual-spin projectile

is considered later, the model is included here. The paper builds on work by Costello et

al. [185] in 2000 and continues the joint contribution of Theodoulis & Wernert [57, 59],

in 2010 and 2013 respectively. This project uses a coordinate system, reference frame and

interaction consideration shared by all of the above texts as well as many industry standard

reference texts [93], though the nomenclature is altered for consistency within this project.

F I G U R E 3 . 1 . 1 Projectile design with fixed Fc

3.1.1 Coordinate axis and frames of reference

There are twelve state variables needed to describe the projectile throughout its entire

fight: the linear distances x,y & z, the translational speeds u,v & w, the angular positions

φ ,θ & ψ and the angular velocities p, q, & r. A dynamic model then uses two coordinate

systems, a stationary reference frame (usually an Earth frame) and another centred about
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the projectile. While the state variables are almost always consistent throughout different

models, the choice of coordinate systems and frames of reference change. Tricks are often

employed to reduce the mathematical complexity of conversions, which helps reduce the

burden on processing units which may need to calculate the system evolution and course

corrections. Most often employed is to align an axis, e.g. the ŷ axis, with either the pitch

(θ ) or yaw (ψ ) components of the total yaw; that way only one contribution need be

considered, since the other will be zero. Another example is to employ a no-roll frame

rotating axis, whereby φ = p = 0, since the axis rotates with the projectile. Figure 3.1.2

F I G U R E 3 . 1 . 2 Axis convention from the projectile reference frame [186]

shows the conventional axis definitions used in the field of ballistics, it is used in popular

textbooks by both McCoy [93] and Carlucci & Jacobson [83]. Motion of a projectile is

traditionally presented by the wind axis coordinates (V ,α ,β ), which describe the angular

displacement of the velocity vector with respect to the longitudinal axis of the projectile.

The axis x̂, ŷ, ẑ correlate to the translational distances x, y, z and translational speeds

u, v, w respectively. The figure shows how the wind []W axis coordinates are determined

from the Cartesian body []B axis coordinates for a present side-slip β and angle of attack

α . To clarify, [1B 2B 3B]T = [x y z]T and [1W 2W 3W ]T = [V α β ]T. The projectile velocity

relative to the medium V⃗ also has a scalar magnitude V , hence it is useful to define a unit

vector in the direction of motion v̂ = V⃗/V , where

V =
√

u2 + v2 +w2 (3.1)
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Pitch and Yaw deviation are measured by the angle of attack α and angle of side-slip β

respectively. They measure the angular displacement of the longitudinal axis (1B or x̂)

relative to the velocity vector V along the normal and lateral planes. We can write α and

β as

α = arctan
(w

u

)
(3.2a)

β = arctan
(

v√
u2 +w2

)
= arcsin

( u
V

)
(3.2b)

The above parameters, V, α & β are known as the ‘wind axis system’ variables. They are

differentiated here with respect to time for later use.

V̇ =
uu̇+ vv̇+wẇ

V
(3.3a)

α̇ =
uẇ−wu̇
u2 +w2 (3.3b)

β̇ =
−uvu̇+(u2 +w2)v̇− vwẇ

V 2
√

u2 +w2
(3.3c)

Equation 3.4a combines the wind axis variables into the total angle of attack αT , which

can be simplified under the small angle approximation (< 15o is a reliable boundary [93])

shown in equation 3.4b.

αT =
√

sinα2 cosβ 2 + sinβ 2 (3.4a)

αT =
√

α2 +β 2 (3.4b)

3.1.2 Aerodynamic coefficient inclusion

Section A.1 has described the various forces that affect a projectile in flight and the coeffi-

cients corresponding to them. Because the coefficients are representation of an instantan-

eous force being experienced, they change throughout the flight as a function of airframe

speed V , as well as α and β . A parametric investigation can be undertaken and the coeffi-

cients can be parametrised in terms of any flight variable, but it is predominantly the wind

axis coordinates. In addition to this, a non-zero α and β mean some forces no longer

act parallel to the projectile axis shown in figure 3.1.2, the axis along which the resultant
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forces and moments will be resolved in to determine airframe accelerations. As such, a

new set of coefficients are introduced, listed in full in the nomenclature (pg. xxii) , which

represent the total aerodynamic component acting in each projectile axis. It also shows the

constituent flight variables of each of the total aerodynamic coefficients where applicable.

All coefficients are dependent on the Mach number. The coefficients are directionally ori-

entated with the projectile axis, e.g. a positive CA0 produces a force acting in x⃗+. Likewise,

for moments, a positive Cn0 produces a turning force about the y⃗+ axis in the positive

mathematical direction.

Note that forces of a different kind, while they may act in along the same axis, must be

considered as separate contributions due to additional factors in their respective formulae.

For example, while a component of the Magnus force can act in the same axis as the

normal force, the Magnus force equation has an extra pd/V term; it is thus considered in

its own body coefficient, CN p, instead of CN0. Figure 3.1.3 shows a side view (X-Z plane)

of a projectile in flight for a zero and non-zero value α . From figure 3.1.3B, the body

( A ) α = 0 ( B ) α ̸= 0

F I G U R E 3 . 1 . 3 Variation projectile frame coefficients due to non-zero α

coefficient CN0 corresponding to the projectile z+-axis, is given by

CN0(α) =−CN −CL cos(α)−CD sin(α) (3.5)

The resultant force in this direction is given by

FN0 = Fz = q̄SCN0 (3.6)

Of course, the coefficients will need to be resolved in 3 dimensions, since β could also be

non-zero. The resultant decomposition for CX0, with only the effects considered in figure
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3.1.3, is given by

CX0(α,β ) =−CL sin(α)−CD cos(α)cos(β ) (3.7)

3.1.3 Equations of motion

The equations necessary for describing the system dynamics are derived from Newton’s

equations of motion:

F⃗ = m

(
d⃗V
dt

)
(3.8)

M⃗ =

(
dH⃗
dt

)
(3.9)

Here H⃗ is the angular momentum and M⃗ is the sum of externally applied moments. Sub-

script F denotes the forward section and subscript A denotes the aft section. The assump-

tion is made that the total CoM coincides with the aft CoM (the mass of the forward part

is small with respect to that of the aft part) and the nose moment of inertia Ixx,F is small

compared to the aft one Ixx,A. In general, I j j,(A/F/T ) is the Aft/Forward/Total moment of

inertia with respect to the jth axis of the body as a whole. Equations 3.10 & 3.11 are

the non-linear Kinematic translational and rotational equations, they describe the position

of the projectile with respect to the inertial Earth frame (subscript e). Equations 3.12 &

3.13 are the Dynamic translational and rotational equations of motion for the dual-spin

projectile, they describe the motion and rotation of the CoM respectively*.

Kinematic translational:




ẋe

ẏe

że


=




cos(θ)cos(ψ) −sin(ψ) sin(θ)cos(ψ)

cos(θ)sin(ψ) cos(ψ) sin(θ)sin(ψ)

−sin(θ) 0 cos(θ)







u

v

w


 (3.10)

*the kinematic equations describe the location of the CoM
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Kinematic rotational: 


φ̇F

φ̇A

θ̇

ψ̇



=




1 0 0 tan(θ)

0 1 0 tan(θ)

0 0 1 0

0 0 0 sec(θ)







pF

pA

q

r




(3.11)

Dynamic translational:




u̇

v̇

ẇ


=

1
m




FX

FY

FZ


−




0 −r q

r 0 r tan(θ)

−q −r tan(θ) 0







u

v

w


 (3.12)

Dynamic rotational:




ṗF

ṗA

q̇

ṙ



=




0

0

−
(

Ixx,A
Iyy

)
pAr− r2 tan(θ)

(
Ixx,A
Iyy

)
pAq+qr tan(θ)



+




1
Ixx,F

0 0 0

0 1
Ixx,A

0 0

0 0 1
Iyy

0

0 0 0 1
Iyy







m1,F

m1,A

mm

mn




(3.13)

The force matrix [FX FY FZ]
T in equation 3.12 and the moment matrix [m1,F m1,A mm mn]

T

in equation 3.13 are actually comprised of the forces and moments listed in §A.1. Both

matrices are shown in equations 3.14 & 3.15 respectively.




FX

FY

FZ


= q̄S








−CA0

CY 0

−CN0


+

pAd
V




0

CY p

−CN p


+




0

CY δ δy

−CNδ δz








+mg




−sin(θ)

0

cos(θ)


 (3.14)




m1,F

m1,A

mm

mn



= q̄Sd








0

0

Cm0

−Cn0



+

d
V




0

Cl p

Cmq

Cnr



+

pAd
V




0

0

Cmp

Cnp



+




0

0

Cmδ δz

Cnδ δy








+




τM + τF,A

−τF,A

0

0




(3.15)
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Here, M is the Mach number, τM is the motor torque which controls the roll angle of the

forward guidance section (φF ) and τF,A is the frictional torque which counteracts this. The

frictional torque can be modelled as a hydrodynamic and roller bearing in combination,

shown below, where ks and kv are the static and viscous friction coefficients respectively

τF,A =
1
2

ρSd CA0(M ,α,β ) sgn(pA − pF)(ks + kv|pA − pF |) (3.16)

The coefficients† of CD in equation A.1b are −q̄S which can be seen outside the

brackets of the first term in equation 3.14. By matching the coefficients of the respective

force and moment equations from §A.1, respective contributions can be easily substituted

into equations 3.14 & 3.15. This presentation of coefficient terms in the order of body-

static, Magnus effects and canard induced is present in many other literature sources

[186],[59], [57] [185].

Additionally, there are the ‘virtual signal’ normal and lateral controls from the canards,

δz and δy respectively, which depend on the forward section roll angle φF and the individual

canard roll angles. For clarity, δz is the contribution of all canards resulting in projectile

yaw in the xz plane, congruent with q⃗ (or the xy plane congruent with r⃗ for δy). Figure

3.1.2 shows the axis and deflection angle conventions, relative to the model.

Canards 1 and 3 (originally aligned with the y-axis) are a pair, their joint contribution

will be written as

δm = (δ1 +δ3)/2 (3.17)

like wise the contribution from canards 2 and 4 shall be expressed as

δn = (δ2 +δ4)/2 (3.18)

This notation makes the assumption that opposing canards are ‘locked’ in rotation about

the contribution axis. In other words, the canard pairs’ leading edge deflects in the direction

the body is to rotate in, this is shown with directional arrows in figure 3.1.2. Thus, we can

†coefficient in the mathematical sense, which CD is multiplied by
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write the control vector in terms of the standard rotation matrix R(φF) as


δz

δy


=

1
2


cos(φF) −sin(φF)

sin(φF) cos(φF)




δ1 +δ3

δ2 +δ4


= R(φF)


δm

δn


 (3.19)

For convenience during the trimming procedure later, the rotation matrix and its inverse

are explicitly written as

R(φF) =


cos(φF) −sin(φF)

sin(φF) cos(φF)


 R−1(φF) =


 cos(φF) sin(φF)

−sin(φF) cos(φF)


 (3.20)

Strub & Basset [186] investigated the design of a skid-to-turn autopilot, implemented in

an 80mm canard guided (fin stabilised) projectile body. Though their design was single

spin as opposed to dual-spin, many aspects of the dynamic model they developed are in

agreement with the presented framework. One notable inclusion is to account for the

rotational displacement of the canards due to pitch and yaw, as opposed to just roll. This

is represented by the δl term in the equation below, an extension of equation 3.19.




δl

δm

δn


=




−1
4 −1

4 −1
4 −1

4
1
2 0 −1

2 0

0 −1
2 0 −1

2


 ·




δ1

δ2

δ3

δ4




(3.21)

The dynamic and kinematic equations 3.12-3.11 also take into account any external forces

affecting the projectile during flight, the frame load factors at the CoM, a. However, the

frame load factors actually detected by the accelerometers, aS, will be different due to the

sensor location (assumed to be CoMF ) ahead of the CoM r⃗Fx > 0.

aS =




aS
x

aS
y

aS
z


=




1 0 0

0 cos(φF) −sin(φF)

0 sin(φF) cos(φF)











ax

ay

az


+

r⃗Fx

g




−q2 − r2

pFq+ ṙ

pFr− q̇








(3.22)
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a =




ax

ay

az


=

q̄S
mg








−CA0

CY 0

−CN0


+

pAd
V




0

CY p

−CN p


+




0

CY δ

−CNδ .δz








(3.23)

The rotational measurements from sensors ωS can be written as

ω
S =




pS
F

qS

rS


=




1 0 0

0 cos(φF) −sin(φF)

0 sin(φF) cos(φF)







pF

q

r


 (3.24)

There is a better representation for these coordinates which is more suited to autopilot

design, following the procedure of ref. [60], they are rewritten in the wind coordinate

system (V,α,β ). First, the translational speeds (u, v, w) are written in terms of wind axis

variables from equations 3.1-3.2b

u =V cos(α)cos(β ) (3.25a)

v =V sin(β ) (3.25b)

w =V sin(α)cos(β ) (3.25c)

These translational speeds (u, v, w), along with their derivatives (u̇, v̇, ẇ) from equation

3.12, are substituted into the derivative wind axis variables (equations 3.3a), yielding




V̇

α̇

β̇


=




0

q+ r tan(β )(cos(α) tan(θ)− sin(α))

−r (sin(α) tan(θ)+ cos(α))




+
1

mV




u v w

− sin(α)
cos(β ) 0 cos(α)

cos(β )

−cos(α)sin(β ) cos(β ) −sin(α)sin(β )


×




FX

FY

FZ




(3.26)

3.1.4 State-space non-linear system

The equations of motion from §3.1 shows how all different aspects and parameters of the

system are related, however the model is highly non-linear and coupled which is the case
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with most complex, real systems. To better define the system in a manner more conducive

to the application of a control and guidance architecture, the state and outputs dynamics

are defined and written in the generic form of a non-linear, parameter dependent system in

state-space. State-space representation is a powerful method of equation manipulation, as

it restructures many differential equations in a form more conducive for computer methods

to solve, in addition to being in a popular form to which established analytical control

methods can be applied. A system can be described in state-space as follows:

ẋ(t) = f x (x(t),u(t),σ(t))

y(t) = f y (x(t),u(t),σ(t))

σ̇(t) = f σ (x(t),σ(t))





t ∈ R+ (3.27)

and the definitions of the state-space matrices are shown in table 3.1. The functions listed

Matrix Expression

System states x = [α,q,β ,r]T

Outputs (system) y = [aS
z ,a

S
y ,q

S,rS]T

Outputs (from sensor) ym = [aS
z,m,a

S
y,m,q

S
m,r

S
m]

T

Parameters† σ = [V, pF , pA,h,φF ,θ ]
T

Controls (actual) u = [δm,δn]
T

Controls (desired) uc = [δm,c,δn,c]
T

Functions of x f x = [ fα , fq, fβ , fr]
T

Functions of y f y = [ faS
z
, faS

y
, fqS , frS ]T

Functions of σ f σ = [ fV , fpF , fpA, fh, fφF , fθ ]
T

TA B L E 3 . 1 Choice of state-space matrices
† - Though σ = σ(x), it is assumed to be a system input which varies slowly wrt.
system dynamics

are the right-hand sides of the relevant equation of the ith element in §3.1. The components

of the parameter matrix σ i are all assigned some operational range ensuring they are bound

within the flight envelope, Γσ ⊂ R6. The inclusion of ym and uc matrices represent the

imperfect performance of the installed hardware. Though we will demand a deflection uc

of the canards they will in practice output some different deflection u which will be the
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actual input for calculating system evolution. Likewise, the actual load factors the sensors

should read y will have some systematic or random error, causing an observed ym. The

sensor and canard actuators can be modelled as second order filters [60].

For a chosen parameter matrix σ̄ = [V̄ , p̄F , p̄A, h̄, φ̄F , θ̄ ]
T defining the system operation,

finding the equilibrium point consists of obtaining the corresponding input matrix ū at

which the system state derivative is zero, i.e.

dx(t)
dt

∣∣∣∣
σ̄

:= 0 (3.28)

An equilibrium manifold is obtained by calculating ū ∀ (σ̄ ∈ Γσ ), computing the manifold

is also known as ‘airframe trimming’. From equation 3.27, we can write a set of four

equations:

f x (x̄(t), ū(t), σ̄(t)) := 0 (3.29)

with equilibrium state x̄ = [ᾱ, q̄, β̄ , r̄]T and equilibrium input ū = [δ̄m, δ̄n]
T matrices, both

of which are unknown. The equilibrium states x̄ need to be calculated first, then used

in conjunction with the chosen σ̄ to obtain ȳ. Conventionally, this would be achieved

using Newton-Raphson-like numerical methods, but the highly coupled system requires

the use of alternative methods to distinguish the meaningful equilibrium points [60]. Since

there are a total of six unknowns in x̄ & ū with only four equations describing the system,

two of the unknown parameters must be set, α and β are chosen here. We then define

the trimming vector ρ̄(x,σ), again with each parameter assigned some operational value

which defines the trimming envelope Γρ ⊂ R8. Equation 3.29 can then be solved for the

remaining unknowns, q̄, r̄, δ̄m, δ̄n which will result in the state trim map X and input trim

map U fulfilling the conditions

X(ρ̄) = x̄

U(ρ̄) = ū

∴ f x (X(ρ̄),U(ρ̄), σ̄(t))≜ 0





∀ (ρ ∈ Γρ) (3.30)

A map for the measured outputs Y can then be computed by substituting X and U into
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equation 3.27

Y (ρ̄) = f y (X(ρ̄),U(ρ̄),σ(t))

Y (ρ̄) = ȳ



 ∀ (ρ ∈ Γρ) (3.31)

Table 3.2 surmises the equilibrium matrices and vectors used in the trimming process. The

Matrix Expression

Equilibrium system states x̄ = [ᾱ, q̄, β̄ , r̄]T

Chosen parameters σ̄ = [V̄ , p̄F , p̄A, h̄, φ̄F , θ̄ ]
T

Trimming vector ρ̄ = [α,β ,σ ]T = [α,β ,V̄ , p̄F , p̄A, h̄, φ̄F , θ̄ ]
T

Controls (actual) ū = [δ̄m, δ̄n]
T

TA B L E 3 . 2 Choice of state-space matrices and maps for manifold mapping

objective of the trimming algorithm in general is to compute the control input (δn, δm) re-

quired to maintain equilibrium for a given trim vector ρ(x,σ) = [α,β ,V, pF , pA,h,φF ,θ ]
T.

At equilibrium, the dynamic rotational and wind axis translational equations (3.13 & 3.26)

can be arranged to give 4 simultaneous equations which only have q, r, δy and δz as

unknowns, since we assume a known ρ(x,σ). The simultaneous equations are:

kα0 = q+ kαrr+ kαδz (3.32a)

kq0 = kqqq+ kqrr+ kqr2r2 + kqδzδz (3.32b)

kβ0 = kβ rr+ kβδyδy + kβδzδz (3.32c)

kr0 = krqq+ krrr+ krqrqr+ krδyδy (3.32d)

The various terms included above are of the form ki j, where i indicates the dynamic

equation they are derived from and j indicates the variable they are the coefficient of. e.g.

within α̇ = 0 (equilibrium assumption), after all like terms are grouped then kαr is the

coefficient of the r term. These terms are explained fully in appendix A.2. To solve these

simultaneous equations, they are first written terms of q and r. Rearranging equations

3.32a-3.32d, we can write

δz =
kq0 −q− kαrr

kαδz

(3.33)
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which can then be substituted into 3.32c to give an expression for δy:

δy =
kβδzq+(kαrkβδz − kαδzkβ r)r+(kαδzkβ0 − kα0kβδz)

kαδzkβδy

(3.34)

Substituting these expressions for δy and δz into equations 3.32b and 3.32d produces

k′q0 =k′qqq+ k′qrr+ k′qr2r2 (3.35a)

k′r0 =k′rqq+ k′rrr+ k′rqrqr (3.35b)

The k′ terms follow the same convention as the non-prime k’s, they are also shown in full

in A.2. Solving equation 3.35b for q yields

q =
k′r0 − k′rrr
k′rq + k′rqrr

(3.36)

This is substituted back into equation 3.35a yields a cubic equation in r:

C3r3 +C2r2 +C1r+C0 = 0 (3.37)

where Ci represents the coefficient of the term with ri. These are functions of the k′ terms,

and are as follows:

C3 =k′qr2k′rqr (3.38a)

C2 =k′qrk
′
rqr + k′qr2k′rq (3.38b)

C1 =− k′rrk
′
qq + k′qrk

′
rq − k′q0k′rqr (3.38c)

C0 =k′qqk′r0 − k′q0k′rq (3.38d)

Thus, we now have a singular cubic equation with the only unknown variable being r. This

can be solved by a computer, which will only consider the real solution. This value for r

can be substituted into equation 3.36 to obtain a value for q. These values are then used

to obtain δy and δz from equations 3.34 and 3.34 respectively. Finally, δn and δm can be
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obtained by using the inverse rotation matrix


δm

δn


=


 cos(φF) sin(φF)

−sin(φF) cos(φF)




δz

δy


 (3.39)

3.1.5 Quasi-LPV modelling of the non-linear system

State-space representation of the differential equations of motion is a powerful technique,

but the equations are still non-linear. Linearisation is a powerful systematic process in

which the state-space system is re-expressed in a specifc model form, each with their

own parametric dependencies. Figure 3.1.4 shows some examples using the notation

from table 3.1, namely Linear Parameter Varying (LPV), Linear Time Invariant (LTI) and

Linear Time Varying (LTV) models. A quasi-LPV (q-LPV) methodology is chosen here

due to its robustness and prevalence in the field of guided projectile control [57, 60].

F I G U R E 3 . 1 . 4 Partial classification of state-space forms (adapted from [187])

These LPV, LTI or LTV models can be good approximations of the non-linear system,

under rigorously justified assumptions, when evaluated in proximity to the equilibrium

manifold [187]. During the manifold computation the trimming vector ρ(x,σ) was used,

which has a dependency on both system parameters and states, thus the resulting linear

model S (ρ) is of the q-LPV variety. If the state-space model S (ρ) exists for all ρ ∈ Γρ

given the trim maps Y (ρ), X(ρ) and U(ρ), then there exists a family of q-LPV models

S (ρ̄) where the values of ρ are fixed close to the equilibrium manifold. The non-linear
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parameter-dependent model written in equation 3.27 can now be fully re-written as a

q-LPV model

S (ρ) :


ẋδ (t)

yδ (t)


=


A(ρ) B(ρ)

C(ρ) D(ρ)




xδ (t)

uδ (t)





 , ∀ (ρ ∈ Γρ), t ∈ R+ (3.40)

Or rather,

ẋδ (t) = A(ρ)xδ (t)+B(ρ)uδ (t) (3.41a)

yδ (t) =C(ρ)xδ (t)+D(ρ)uδ (t) (3.41b)

With the state deviation xδ (t) = x−x(ρ), input deviation uδ (t) = u−u(ρ) and output

deviation yδ (t) = y− y(ρ); these are known as the deviation variables. The state-space

matrices A(ρ), B(ρ), C(ρ) and D(ρ) are obtained from a Jacobian linearisation (Appendix

A.3) of (α̇ , q̇, β̇ , ṙ, aS
y , aS

z ) in terms of states (α , q, β , r) and virtual control inputs (δz, δy).

The parameters q̇ & ṙ, α̇ & β̇ and aS
y & aS

z are given by the airframe dynamics equations

in 3.13, 3.26 and 3.22 respectively. They are written in full as

α̇ = q+ r tan(β )
(

cos(α) tan(θ)− sin(α)
)
+

1
mV

[
sin(α)

cos(β )

(
q̄SCA0 +mgsin(θ)

)

− cos(α)

cos(β )

(
q̄S
(

CN0 +
pAd
V

CN p +CNδ δz

)
−mgcos(θ)

)]

(3.42a)

q̇ =

(
Ixx,a

Iyy

)
pAr− r2 tan(θ)+

1
Iyy

[
q̄Sd
(

Cm0 +
d
V

Cmqq+
pAd
V

Cmp +Cmδ δz

)]
(3.42b)

β̇ = − r
(

sin(α) tan(θ)+ cos(α)

)
+

1
mV

[
cos(α)sin(β )

(
q̄SCxBody +mgsin(θ)

)

+ cos(β )
(

q̄S(CY 0 +
pAd
V

CY p +CNδ δy)

)

+ sin(α)sin(β )
(

q̄S
(

CN0 +
pAd
V

CN p +CNδ δz

)
−mgcos(θ)

)]

(3.42c)

ṙ =
(

Ixx,y

Iyy

)
pAq+qr tan(θ)+

1
Iyy

[
q̄Sd
(

Cn0 +
d
V

Cnrr+
pAd
V

Cnp +Cnδ δy

)]
(3.42d)
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aS
z = − sin(φF)

(
q̄S
mg

(
CY 0 +

pAd
V

CY p +CY δ δy

)
+

xs

g
(pFq+ ṙ)

)

− cos(φF)

(
q̄S
mg

(
−CN0 −

pAd
V

CN p −CNδ δz

)
+

xs

g
(pFr+ q̇)

) (3.42e)

aS
y = − cos(φF)

(
q̄S
mg

(
CY 0 +

pAd
V

CY p +CY δ δy

)
+

xs

g
(pFq+ ṙ)

)

− sin(φF)

(
q̄S
mg

(
−CN0 −

pAd
V

CN p −CNδ δz

)
+

xs

g
(pFr+ q̇)

) (3.42f)

Where the right hand side of equations 3.42 are the Jacobian functions f J = [ fα , fq, fβ , fr, faz, fay ]
T.

The only variables in these equations are the states (α , q, β , r) and virtual control inputs

(δz, δy), since the value of the parameter matrix σ = [V, pF , pA,h,φF ,θ ]
T was fixed and

the values q̄, S, m, xs, g, Ii j,k and Caero are assumed to be all known, computable or at least

an estimate can be made. In the linearisation process, the state-space matrices of equa-

tions 3.41a are calculated using the matrix of partial derivatives for the full system, where

the summing iterator ki include both the states (α,q,β ,r)=(k1,k2,k3,k4) and controls (δz,

δy)=(k5,k6).

6

∑
i=1

∂ f
∂ki

=







fα,α fα,q fα,β fα,r

fq,α fq,q fq,β fq,r

fβ ,α fβ ,q fβ ,β fβ ,r

fr,α fr,q fr,β fr,r







fα,δz fα,δy

fq,δz fq,δy

fβ ,δz fβ ,δy

fr,δz fr,δy





 faz,α faz,q faz,β faz,r

fay,α fay,q fay,β fay,r





 faz,δz 0

0 fay,δy







=


A′(ρ) B′(ρ)

C′(ρ) D′(ρ)


 (3.43)

where fi,P = ∂ fi
∂P . Note by construction, faz,δy = fay,δz = 0. The full list of matrix terms are

computed in appendix A.3; the derivative of coefficient x with respect to y is left in the

form Cx,y. Since the linearisation was computed using virtual controls (δy, δz), the rotation

matrix from equation 3.19 is used to obtain the actual control inputs (δn, δm). This leads

to the matrices below which are actually used in equation 3.40, R̄(φF) is the conjugate of

the transformation matrix R(φF).
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A(ρ) = A′(ρ) (3.44a)

B(ρ) = B′(ρ)R(φF) (3.44b)

C(ρ) = R̄(φF)C′(ρ) (3.44c)

D(ρ) = R̄(φF)D′(ρ)R(φF) (3.44d)

Further inspection of the stability matrix A(ρ) better shows the coupling of pitch-yaw

dynamics. Firstly, A(ρ) is split into four regular 2×2 matrices, given by

A(ρ) =


ANN(ρ) ANL(ρ)

ALN(ρ) ALL(ρ)


 (3.45)

The diagonal submatrix ANN(ρ) represents the influence of the normal axis states on the

normal axis dynamics, ALL(ρ) represents the influence of the lateral axis states on the

lateral axis dynamics. The off-diagonal ANL(ρ) represents the influence of the lateral axis

states on the normal axis dynamics, ALN(ρ) represents the influence of the normal axis

states on the lateral axis dynamics. For clarity, the normal and lateral states are α , q and β ,

r respectively. For clarity, the normal and lateral dynamics are α̇ , q̇ and β̇ , ṙ respectively.

3.2 Validating 7-DoF dynamic model

The equations of motion above were expressed in state-space representation, linearised,

and expressed in wind axis coordinates (V , α , β ). The resulting EOM (eq. 3.42) are

now implemented into a MATLAB/Simulink environment. The Simulink environment has

been changed to use absolute tolerances for the solver error, to stop precision drift with a

varying state value. Since the simulations are not real-time, a Simulink environment can

be used opposed to Matlab, to utilise the more user friendly interfaces.

This 7-DoF dynamic model is capable of capturing all forces and moments along and

about the three principle projectile axis: normal, lateral and longitudinal. Each particular

aerodynamic interaction that causes a force or moment is characterised in magnitude by its

associated aerodynamic coefficient. As was shown in figure 3.1.3, individual aerodynamic
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effects acting along the same direction are amalgamated into the total aero coefficients,

CA, CY , and CN , normalising the individual coefficients with static pressure as needed.

Either individual or summated coefficients can be used in the simulations, but knowing

the individual coefficients is preferable since it will allow behaviour to be more accurately

modelled over a wider trajectory envelope. The accuracy of the dynamic models is thus

entirely dependent on the accuracy of these aerodynamic coefficients. If any are missing,

the contribution of the force they represent would be entirely absent or based on speculation

and educated predictions.

Aside from possessing true coefficients, the model must be also be shown to be per-

forming correctly. To this aim, coefficients published in articles or sources can be used

in the present MATLAB environment, along with the respective projectile parameters

and initial conditions to produce trajectories. If these trajectories are in good agreement

with those presented by the source from which they were obtained, then it is a positive

indicator that the dynamic model and system is working as expected, or at least similarly

to the comparisons. The viable trajectories which can be used to validate the model are

few in number, since aerodynamic coefficients are difficult to obtain, many authors and

companies are reluctant to publish them. In addition, even if more information is known

a posteriori about the coefficients than was available to the authors at the time their simu-

lations were conducted, this new information obviously cannot be used in the validation

experiment, else it would be an unfair comparison.

This section will use suitable works identified in the literature review which present

aerodynamic coefficients, projectile data, simulation parameters and trajectory data. It

will use that data in the present dynamic model and compare the resulting trajectories

against the material in whichever format it was presented, to ensure a fair comparison.

It is nonsensical to quantitatively compare the trajectory similarities if the results are in

different formats, such as only range data or angles of attack. Precisely what these results

are is of no relevance provided they are derived from the data output of the dynamic model

and can be faithfully replicated and compared; i.e. the results could be spatial path plots,

velocity profiles, angle of attack data or modal yawing analysis etc. The validation runs

may use any projectile, provided the accompanying data is included in the manuscript or

an exact model is given for which the information can be readily obtained. Due to the



94 C H A P T E R 3 . T H E O RY

relative novelty of dual-spin projectiles there currently exists no relevant literature looking

at dual-spin projectiles, as a result the 7-DoF model will be simplified to 6-DoF. Where

coefficients are omitted, they are set to 0 so there is no contribution from the respective

force or moment that particular coefficients represents.

In cases where numerical data was unavailable and only graphical results were presen-

ted, the numerical data is extracted from the figure using a custom MATLAB script. The

script determines a datum value based on its geometric location with respect to the axis.

More data points are shown where the figure uses plain lines instead of line markers, as

the algorithm samples more of the line to increase reliability of the method. All associated

errors in this transcription process are shown in the relevant figures.

BAE range data

In this section, velocity data is intentionally redacted from the figures. Figure 3.2.1 shows

the velocity profile of four different models of 7.62x51mm NATO bullets: Ball, tracer,

HP and EP. The tracer and ball rounds both weight 9.3g, the HP weighs 10g and the EP

weighs 8.8g. Multiple rounds were fired for each of the different models. Each of the

bullets were fired at the same operating muzzle velocity from the same mounted barrels

and were measured by a radar chronograph. There is minimal discrepancy in the firings

of the different models, aside from the divergences which are present for ranges above

600m, where instability leads to varying drag forces. EP rounds have a noticeably larger

range of velocities between bullets. The rate of deceleration between rounds is very

similar, indicating there was unlikely to be significant perturbation differences. There is

a noticeable difference in muzzle velocity in the EP rounds which, in combination of the

consistent decelerations, indicate that the muzzle velocity discrepancy is the cause of the

variations observed.

Figure 3.2.2 shows the average velocity profile for each of the four bullet models

compared on the same axis. Of particular note is the significantly high loss of velocity of

the tracer rounds. Tracer rounds are significantly longer than conventional ammunition so

that incandescent material can be packed into the aft section. The burning of material in

the base actually leads to a lower base drag. This is visible in the fig whereby the tracer

rounds maintain a higher velocity than the other rounds at larger ranges.
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Tracer
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F I G U R E 3 . 2 . 1 Individual firings of various 7.62x51mm bullets

Figure A.1.2 shows the drag coefficient for a 7.62x51mm NATO ball bullet measured

by radar from a firing range (from BAE). This provides a variable drag coefficient as

a function of bullet velocity, however there is no consideration of the variable angle of

attack and as such, the dynamic model is effectively operating under a flat fire assumption.

Figure 3.2.3 shows the results of the dynamic model, overlaid onto the individual radar

measurements. The trajectory from the dynamic model is in good agreement with all

the individual firings from the range. Up to a trajectory range of around 600m, all the

instances lay very closely to the same velocities. Past 600m, variations in the angle of

attack cause an increase in the drag force on the bullets at different rates. The dynamic

model trajectory also varies in the same way, but remains within the stochastic variations

seen from the individual range firings.
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F I G U R E 3 . 2 . 2 Average velocity profiles of different ammunitions

0 200 400 600 800 1000

Radar test

Dynamic Model

F I G U R E 3 . 2 . 3 Velocity profile for dynamic Model against radar measurements for 7.62x51mm
NATO ball ammunition

Range and Endgame Performance Assessment of a Smart Projectile Using Hingeless

Flight Control (Patel et al.)

Patel et al. have investigated the trajectory predictions from simulation for a novel 105mm

smart projectile which uses miniature deployable spoilers [32]. The investigated coeffi-

cients were then combined axial drag CA, pitching moment Cm and yawing moment Cn.
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These coefficients were measured in a wind tunnel using a physical prototype of the pro-

jectile, measured over a Mach range of 0.1, 0.56, 0.61, 0.76, 0.9, 0.95, 1.05, 1.15, 2.4,

and 3.0. These empirical coefficients have been supplemented with computations from

DATCOM. Selected from the paper is the trajectory (fig. 3.2.4A) and velocity profile

(fig. 3.2.4B) for the novel projectile in uncontrolled ballistic flight. Muzzle velocity of

600m.s−1 and 30◦ elevation. The results of the dynamic model are in good agreement

with predictions from the paper, with all points lying within the margin of error of the

data. This is to be expected since the trajectory shown is only two dimensions, which is

predominantly governed by the drag data, with coefficients determining spin damping etc.

having little effect. The path predicted by the dynamic model has a slightly longer range

than that from the authors, but the velocity profile is in complete agreement. In addition

to this, the angle of attack has no effect on the coefficients being used, so there is little

deviation.
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F I G U R E 3 . 2 . 4 Dynamic model predictions against results by Patel et al. [32] for unguided
novel 105mm projectile

Dispersion Analysis for Spinning Artillery Projectile (Khalil et al.)

Khalil et al. conducted a parametric investigation to understand how projectile parameters

affect the terminal impact error [95]. The simulations were varied form an initial launch

angle of θ = 44◦ and a muzzle velocity of 684.3m.s−1. From here the projectile mass,

inertia, velocity, spin rate and elevation/elevation-angle were all varied along a small
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given range; e.g. θ = 44± 0.4◦. The simulations were then run again throughout this

range, taking values at regular intervals and evaluating the terminal miss distance. These

values were the collated to produce a plot of miss distance against initial launch parameter

variation from the norm. In addition to these results, the authors also produced a trajectory

and velocity profile plot for the nominal case, which is used to compare against the output

of the dynamic model. Figure 3.2.5 shows the results for both the trajectory (fig. 3.2.5A)

and velocity profile (fig. 3.2.5B). In both cases, the output of the dynamic model agrees

very closely with that of the authors, lying within the error bounds of all extracted data

points.
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F I G U R E 3 . 2 . 5 Dynamic model predictions against results by Khalil et al. [95] for M107
155mm projectile

Physicomathematical simulation analysis for small bullets (Gkritzapis et al.)

Gkritzapis et al. have investigated the modelling of ballistic trajectories for a 7.62x51mm

NATO bullet [183, 177]. The simulations were run for incident angles of 1◦, 7◦ and

15◦, but only 15◦ is used for the comparison here, with initial velocity of 793m.s−1, as

the 15◦ trajectories have the largest data set and thus will better represent the data. The

trajectories and velocity profiles were investigated for both static and dynamic coefficients.

The dynamic coefficients were found through a linear interpolation of static coefficients

stated in McCoy [93], the average of these is used as the static coefficients.

Figure 3.2.6 shows the comparison of results from the dynamic model. Both simula-



3 . 2 . VA L I DAT I N G 7 - D O F DY NA M I C M O D E L 99

tions are in good agreement with the data from the article. Figure 3.2.6A uses the static

coefficients while fig. 3.2.6B uses the dynamic coefficients. The highest discrepancy is

shown on fig. 3.2.6B, after 300m.s−1 in the transonic region. Data from the article shows

a definite heel in the data where the deceleration suddenly changes. This is characteristic

of the projectiles slowing across the sonic boundary, where the drag coefficient increases

suddenly. The change is present in the dynamic model results, but to a lesser extent than

that from the article. However, the dynamic model is within the margin of error across all

points in both figures.
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F I G U R E 3 . 2 . 6 Dynamic model predictions against results by Gkris et al. [183] for a
7.62x51mm NATO bullet

Aerodynamic and trajectory characteristics of a typical mortar projectile with a

deflectable nose (Ren et al.)

Ren et al. have investigated the aerodynamic coefficients of a novel 120mm mortar shell

with interchangeable nose angles. The investigated coefficients were drag CD, lift CL and

pitching moment coefficient CMα
. The coefficients were investigated for nose angles of

0◦, 3◦, 6◦ and 9◦, each investigated at angles of attack ranging from α ∈ [−10◦,+10◦]

in 0.5◦ increments and also Mach speeds V ∈ [0.3,0.9] in 0.1 increments. A physical

prototype of the projectile was built, and the coefficients were measured empirically by

means of a wind tunnel. Because of this, the article provides a comparison between both

the results of the live experiments and those from a simulation. This means that the results
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from the dynamic model presented from this work can be compared against both. The

results are shown in fig. 3.2.7 for both the trajectory (fig. 3.2.7A) and velocity profile (fig.

3.2.7B). In both cases, the results of the dynamic model are in good agreement with both

the simulation and flight test data from the article. The terminal region of the trajectory in

fig. 3.2.7A shows that the simulations for both the dynamic model here and of Ren et al.

overestimate the range, however both simulations are in good agreement with each other.
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F I G U R E 3 . 2 . 7 Dynamic model predictions against results by Ren et al. [85] for novel 120mm
mortar

Conclusions

This section has shown that the dynamic model presented thus far is capable of recreating

the results of several academic sources, to the extent of the information provided within

them regarding simulation parameters and aerodynamic coefficients. This indicates that the

results from the dynamic model represent a true likeness of a realistic scenario, provided

the parameters aerodynamic coefficients used in the simulation accurately reflect said

scenario.
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3.3 Stability factor origins from projectile pitching and

yawing motion

In this section, the aerodynamic effectiveness of a projectile is quantified via ‘stability’.

Before discussing this it is necessary to define the principle axis of inertia. If the rotation

of a body can be encoded into a 3x3 matrix Mi j then the set of principal axis are the set

of eigenvectors v⃗λ such that Mi j is diagonal (mi j = 0 ∀ i, j ∈ {1,2,3}, i ̸= j). I.e. the

product of all moments of inertia about that axis are zero. Any inertial moment considered

in a cylinder about its longitudinal axis (x̂) will be perfectly counteracted by a circularly

symmetric moment, thus x̂ is a principal axis in this instance. Another useful concept is

to define is the distance from the CoM to the CoP as XCMCP, with the positive direction

taken to be from the aft to the ogive.

3.3.1 Static stability

If the CoP is regarded as the point through which the aerodynamic force acts, then the

CoM can be thought of as the fulcrum about which the projectile pivots in response to the

force. For non-spinning projectiles, if the CoP is ahead of the CoM (XCMCP > 0) then it is

statically unstable. A small deviation in airflow will cause projectile yaw, increasing the

susceptible moment arm, causing a cascade effect and the projectile will tumble during

flight. If the CoP is behind the CoM (XCMCP < 0) when a deviation occurs, the forces

that act are now aligning, bringing the principal axis back into alignment with V⃗ . This

is static stability; when an object disturbed from an equilibrium position experiences a

restorative force acting to return the object to the equilibrium position. It can be either

linear or rotational static stability, depending on the action of the restorative force. McCoy

defines a parameter M as the static stability parameter, but it is relabelled here as SS to

remain consistent with other nomenclature.

SS =
1

2⃗Iy
ρSD3mCMα

(3.46)

where CMα is the overturning moment coefficient as a function of angle of attack α , or

CMα ≡ ∂CM/∂α [188]. A body has ‘positive’ static stability (i.e. is statically stable) if
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SS < 0; SS = 0 and SS > 0 correlate to neutral and negative static stability respectively.

Depending on whether the static stability is positive, neutral or negative, the body’s align-

ment after a disturbance will respectively: return to its original position, maintain its new

alignment or continue moving in the direction of the disturbance. Apart from CMα , all

parameters in equation 3.46 are positive, hence to achieve SS < 0 we necessitate that

CMα < 0; for a non-spin stabilised body this means practically that the CoM is located

ahead of the centre of pressure (CoP). To optimise SS based on the coefficients of CMα ,

a heavy projectile with a large cross section and small transverse moment of inertia is

preferable, though this contradicts conventional ballistic design.

3.3.2 Simplified un-spun pitching & yawing motion

The linear equation of motion (EOM) for a statically stable, un-spun and symmetric

projectile is given by

I⃗yζ̈ −Mqζ̇ −Mαζ = 0 (3.47)

With complex yaw ζ = α + iβ . I⃗ j is the moment of inertia about axis j, e.g. I⃗y is the

transverse moment of inertia. By making the substitutions Jα = Mα/v2, Jq = Mq/v and

v = ds/dt we can write

I⃗yζ
′′−Jqζ

′−Jαζ = 0 (3.48)

where ζ ′ denotes the derivative of ζ with respect to the arc length of projectile trajectory,

ζ ′ = dζ/ds. The standard solution for second order differential equation of this form is

ζ = k1ea1s + k2ea2s + iσ (3.49)

with k1, k2, a1 & a2 being generic constants and the iσ term being the steady state solu-

tion. Figure 3.3.1 shows a graphical representation of this equation and one can see the

rudimentary origins of actual flight behaviour. Again, from standard solutions, we can

write

a1 +a2 =
Jq

I⃗y
(3.50a)

a1a2 =−Jα

I⃗y
(3.50b)
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F I G U R E 3 . 3 . 1 Pictorial representation of equation 3.49, with slow arm subscript 2 and fast
arm subscript 1

Let us then ‘arbitrarily’ redefine the generic constants, ak = λk + iωk such that

λ1 +λ2 =
Jq

I⃗y
(3.51a)

λ1λ2 −ω1ω2 =−Jq

2⃗Iy
(3.51b)

and rotation rate ω ≈
√

−Jα /⃗Iy. Now we can approximate the complex yaw angle as

ζ ≈ exp

(
sJq

2⃗Iy

)
([k1 + k2]cos(ω1s)+ i[k1 − k2]sin(ω2s))+ iσ (3.52)

This is a reoccurring mathematical form describing an elliptical, damped oscillatory mo-

tion. The exponential term is an envelope function, creating boundaries the oscillations

will stay within, while the rest of the equation forms the underlying oscillations. By com-

paring our values to the known elliptical equation, we see the values ω1 & ω2 are the

nutational and precessional rates of the projectile and λ1 & λ2 are the associated damping

rates (note by definition ω1 > ω2). Henceforth, we shall call the nutation rate λ1 = λn and

the precession rate λ2 = λp. These quantities describe the motion of a yaw rosette, see

figure 3.3.2. Mathematically, in order for the exponential term to converge as distance s

increases and velocity v decreases, the exponent Jq/2⃗Iy must be negative; therefore both

λn and λp must be negative. Note that for a generic damping coefficient the more negative

it is the more heavily the system it damps.
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F I G U R E 3 . 3 . 2 Nutation creating the characteristic ‘yaw rosette’ [189]

This oscillatory motion while in flight is highly unfavourable as it will lead to a large

increase in drag, thus the projectile must be stabilised. There are two main ways to achieve

this, fin stabilisation and gyroscopic stabilisation. Rear mounted fins stabilise the projectile

by increasing the restorative force when the projectile pitches. However, it is difficult to

adorn a SCP with flight hardened fins, which is the motivation behind imparting spin onto

bullets. Projectile spin is effective because the resulting moment of a spinning projectile

following a disturbance, is always at right angles to both the spin axis and the disturbance

force; the resulting precession helps mitigate the effects of the disturbance force. Too little

spin and the projectile will insufficient gyroscopic inertia to resist the disturbance force

and the precession will be too large. In bullets, a spin rate which is too low is audible as a

loud whirring noise [189]. Too much spin and the gyroscopic inertia will resist the aligning

aerodynamic forces creating too large an angle of attack; this is known as superstability.

Both of these states are illustrated in figure 3.3.3.

As reference, a 5.56x45mm NATO cartridge weighs 4g and has a muzzle velocity of

960± 11m/s from a 31cal./rev, 508mm match grade barrel. A spin rate of 86,400 rpm

is necessary to stabilize this bullet, though this is in the upper range of spin stabilisation

rates. There are two notable instances of amplified instability. Spin-yaw resonance occurs

when the spin rate approaches the yaw rate, the projectile may begin to undergo a large

amplitude yawing motion called ‘lunar’ yawing. The other is catastrophic yaw, where a

large yawing motion is amplified by non-linear Magnus effects creating further dynamic

instability which leads to a cascade effect.
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F I G U R E 3 . 3 . 3 Ideal effects of imparting spin [189]

3.3.3 Complete linearised pitching & yawing

We can use this same procedure to determine the effects of variable spin stabilisation and

variable velocity due to drag and gravity; this is called the ‘Complete linearised Pitching

& Yawing motion of projectiles’. The following assumptions are made:

1. The projectile is a rigid, Newtonian symmetric body. Small asymmetries can be

accounted for but are usually negligible [94]

2. Small yaw angles, sin(α)≈ 1 and cos(α)≈ α . This model is void for large yaw or

buff nosed projectiles (hollow points)

3. Medium & projectile densities as well as mass are constant

All vectors are in the fixed plane basis unless explicitly stated. The derivation, following

ref. [94], is largely the same as before; first we write the EOM in terms of the complex

yaw ζ as

ζ
′′+(H − iP)ζ ′− (M+ iPT )ζ =−iPG (3.53)

The substitution parameters are given by

H =C∗
Lα

−C∗
D − k−2

y (CMq +CMα̇
)∗+

k−2
x
2

C∗
Lp
−
(

8mgsin(θT )

πρd2V 2

)
(3.54)
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P =

(
|⃗Ix|
|⃗Iy|

)
|p⃗|d
V

(3.55)

M = k−2
y C∗

Mα
(3.56)

T =C∗
Lα

+ k−2
x C∗

MPα
(3.57)

k−2
j =

md2

|⃗I j|
(3.58)

G =
gd cosθT

V 2 (3.59)

()∗ = () · ρSD
2m

(3.60)

g is the gravitational constant. H is sometimes modified further in different texts [93][94]

to account for spin damping and velocity variation with gravity & drag, where g is the

acceleration due to gravity and θT is the trajectory angle subtended by V⃗ · x⃗. Note equation

3.56 is the same as the previously defined equation 3.46, with the new notation. Secondly,

the solutions to this equation can be written in the form

ζ =
[
A0 eλns

]
ei(ωn0+ω ′

ns)+
[
B0 eλps

]
ei(ωp0+ω ′

ps)+ζR (3.61)

with new generic constants A0 & B0 and steady state solution

ζR =
iPG

M+ iPT
(3.62)

From this we can write the complex rotation rates ωn/p and the complex damping terms

λn/p as

ωn/p =
1
2

[
P±

√
P2 −4M

]
(3.63a)

λn/p =−1
2

[
H ± P(2T −H)√

P2 −4M

]
(3.63b)

In order for this mathematical framework to predict a stable flight of real and damped

oscillations, we necessitate that the

1. Rotation rates ωn/p must be real

2. Damping exponents λn/p must be real and negative
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Thus from equations 3.63a & 3.63b we have

P2

4M
≥ 1 (3.64)

and
2T
H

<

(
1− 4M

P2

)2

+1 (3.65)

3.3.4 Ballistic stability and the gyroscopic & dynamic stability factors

From inequalities 3.64 and 3.65 we can define, for a single spin projectile with no control

surfaces (SSNC), the gyroscopic and dynamic stability factors

Sg(SSNC) =
P2

4M
(3.66a)

Sd(SSNC) =
2T
H

(3.66b)

Future iterations of the stability factors are written in this compact form and all substitution

parameters are shown in Appendix A. The mathematical condition for gyroscopic stability

is

Sg ≥ 1 (3.67)

though it has been shown that the ballistic coefficient of a bullet is adversely affected from

tumbling as Sg is lowered past a threshold of 1.3 [190]. The ratio p/V decreases along the

trajectory of an uncontrolled projectile (assuming flat-fire), and so it is apparent that since

P ∝ p/V , Sg will decrease down range. A projectile is dynamically stable if

Sg >
1

Sd(2−Sd)
(3.68)

If we substitute 3.66a into 3.67, we can define the axial spin limit Slim to be

Slim =
2ρSD3CMα

Sd(2−Sd)
(3.69)
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which shows the critical spin value for which inequality 3.68 is no longer satisfied. Figure

3.3.4 shows a plot of the corresponding equality of 3.68, with a label indicating where the

inequality is fulfilled.

F I G U R E 3 . 3 . 4 Stability regimes [94]

Dynamic stability is concerned with the oscillations induced in a moving body after

a disturbance is applied and as with static stability, it can be positive, neutral or negat-

ive. With positive dynamic stability the oscillations eventually damp towards the original

alignment, neutral dynamic stability causes oscillations to reside indefinitely with constant

amplitude, while negative dynamic stability has oscillations which amplify chaotically.

When Sd = 1 the body has positive dynamic stability or is perfectly dynamically stable. If

Sd < 1 the precession is unstable and if Sd > 1 the nutation is unstable, both catastrophic-

ally so at the asymptotes (Sd = 0 or Sd = 2 respectively). The transition from positive to

neutral to negative dynamic stability for a projectile is dependent on the magnitude of the

deviation from Sd = 1 The magnitude at which the transitions occur is dependent on the

projectile and trajectory parameters, but is not well characterised. Provided 0< Sd < 2 in

practice, the projectile can be spun sufficiently to ensure ballistic stability. Table 3.3 sum-

marises the ballistic stability which results from occupying different static and dynamic

regimes.

Note that the projectile geometry required to maximise aerodynamic efficiency and
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Static regime Dynamic Regime Ballistic result

Stable, SS < 0
0< Sd < 2 Ballistically stable

Sd < 0 or 0> Sd Ballistically stable if p< Slim

Unstable, SS > 0
0< Sd < 2 Ballistically stable if p> Slim

Sd < 0 or 0> Sd Never ballistically stable

TA B L E 3 . 3 Summary of ballistic stability criteria

terminal effectiveness, almost always results in negative static stability. From table 3.3

we can see that in the unstable static regime, a dynamically stable projectile can still

be ballistically stabilised if the spin rate is sufficiently high. Thus, projectile designers

can effectively disregard the static stability of a projectile, solely focusing on the relation

between Sd and Sg; i.e. it is sufficient, to ensure a prototype projectile lies in the stable

region (as central as possible) of figure 3.3.5 for the anticipated flight envelope. Figure

F I G U R E 3 . 3 . 5 Stability of different calibres for V = Mach(1.5+0.5m) | m ∈ {0,1, ...,5}

3.3.5 shows a dynamic stability plot for three conventional NATO calibres: 5.56x45mm,

7.62x51mm and 12.7x99mm. The bullet geometry is loaded into PRODAS ballistic soft-

ware and calculated for flat-fire trajectories. Each line represents one calibre, each point

on the line represents a pair of stability factors calculated at a given bullet velocity. The

velocity range is Mach 1.5 - 4 in increments of 0.5, the lowest speed corresponds to the
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lowest/left most point of each line, increasing progressively.

Single-Spin Projectile with passivated Control surfaces (SSC)

A simple method to account for the addition of control surfaces is to introduce an aerody-

namic moment generated by the canards, directly into the EOM for the complete linearised

system, shown below

ζ
′′+(H − iP)ζ ′− (M+ iPT )ζ =−iPG+m (3.70)

where m is given by [58]

m=
d2

Iyy
(−iδceiΦN +ζ )

dCNδ

dt
(3.71)

δc = iδz − δy = iδ13 − δ24 is the complex deflection of both pairs of canards. ΦN is the

roll angle of the canard adorned forward section. CNδ is the normal force coefficient for a

canard pair. Thus, we can write

ζ
′′+(H − iP)ζ ′− (Mc + iPT )ζ =−i(PG+K) (3.72)

and define

Mc = M+
d2

Iyy

dCNδ

dt
(3.73)

K =
d2

Iyy
δceiΦN

dCNδ

dt
(3.74)

In this simple case then we see from equations 3.66a & 3.66b that the only affected variable

is M. Thus only Sg will change under the implementation of canards, at least in this simple

model. The SSC stability factors are given by

Sg(SSC) =
P2

4Mc
(3.75a)

Sd(SSC) = Sd(SSNC) (3.75b)

It is possible therefore, to alter Sg by adjusting the canard shape to affect the normal force

coefficient CNδ .
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Dual-Spin projectile with No Control surfaces (DSNC)

A comprehensive paper by Costello et al. [185], provides a stability framework for a

dual-spin projectile. It takes into account a non-diagonal inertia matrix, considers all

rotational moments about the body connection, all with an arbitrarily located centre of

mass. Figure 3.3.6 shows an illustration of the dual-spin design, though there is assumed

to be no contribution from the canards until §3.3.4. The total projectile of mass m is

separated into an aft (rearward) and forward section with respective masses mA/F . The

distance between the cumulative CoM and a section CoM is r⃗(A/F)x. p⃗A & p⃗F are the

spin vectors of the aft and forward sections respectively. The procedure for deriving the

F I G U R E 3 . 3 . 6 Dual-spin projectile with passivated control surfaces

resulting stability factors is the same as both iterations of single spin: generate the system

EOM and solve the inequalities resulting from constraining the standard solutions. The

substitution parameters are defined in 3.76a-3.76e.

A =C∗
Nα =

(
CNα +

Sc

S
CNδ

)∗
(3.76a)

T ⇒ B =
1
V

kT
y
−2
(

CF
NPα

pF

2
(
Rm f x + r f x

)
+

CA
NPα

pA

2
(Rmax + rax)

)∗
(3.76b)

M ⇒C =
1
V

kT
y
−2
(

CF
Nα

(
R f x + r f x

)
+CA

Nα (Rax + rax)
)∗

(3.76c)

H ⇒ E = kT
y
−2
(
CMq +CMα̇

)∗

2
(3.76d)

P ⇒ F =
d
V

(
IA
x |p⃗A|+ IF

x |p⃗F |
)

IT
y

(3.76e)

kT
j
−2

=
md2

|⃗IT
j |

(3.76f)
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Here, R⃗(A/F)x is the vector distance between the aft/forward section CoM and the aft/forward

section Magnus CoP, Sc is the reference area of the canards and xc is the reference length.

All other parameters are as previously defined. Using these substitutions parameters and

the corresponding EOM, the DSNC stability factors can then be written as

Sg(DSNC) =
F2

4C
(3.77a)

Sd(DSNC) =
2((A+C∗

D0)F +B)
F((A−2C∗

D0)−E)
(3.77b)

Dual-Spin projectile with passivated Control surfaces (DSC)

Wernert [58] has considered the dual-spin design and the contribution from the canards.

The model assumes an ideal centre of mass with only rolling moments about the connection

and diagonal inertia matrices. The result is the modification to the following substitution

parameters:

A ⇒ A′ =
(

CNα +
Sc

S
CNδ

)∗
(3.78a)

C ⇒C′ = kT
y
−2
(

CF
Nα

(
R f x + r f x

)
+CA

Nα (Rax + rax)+
Scxc

S
CNδ

)∗
(3.78b)

Using these new stability factors, Wernert writes the DSC stability factors as

Sg(DSC) =
F2

4C′ (3.79a)

Sd(DSC) =
2((A′+C∗

D0)F +B)
F((A′−2C∗

D0)−E)
(3.79b)

Zhu et al. [191] developed this framework further, to account for the effects of gravity

and Euler pitch angle (θE ), as well as coupling between the two; yielding the modified

stability factors:

Sg(DSC) =
P2

4M̃
(3.80a)

Sd(DSC) =
2T
H̃

(3.80b)
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The substitution parameters here are given by

M̃ =
M

1− εαe
+

εβEPT
(1− εαe)2 +

εβEPM
(1− εαe)H̃

+
(εβePT + εβeM)2 −2εβePT M

(2− εαe)H̃2 (3.81a)

H̃ = (1− εαe)(H −2g∗) (3.81b)

g∗ =
gl sin(θT )

V 2 (3.81c)

ε =
1
2

tan(θE) (3.81d)

where αe and βe are the trim angles of attack and side-slip respectively.

3.3.5 Summary of projectile stability

Analysing equation 3.77a we can see that SDS
g depends on: the spin vectors p⃗A & p⃗F of

the aft and forward sections; the moments of inertia IT
yy and IF

xx; projectile geometry S,

D and CMα ; canard geometry Sc, xc and CNδ ; flight conditions ρ and V . Interestingly

canard cant angles δy/z and roll angle φ have no influence on SDS
g . On the other hand, SDS

d

depends on the whole range of aerodynamic coefficients explored. If IA
xx = 0, IF

xx = IT
xx

and we disregard any input from the canards, then we are modelling the conventional

spin stabilised projectile and as expected SDS
g reduces to Sg. Note that by design, S > 0,

Sc > 0 & d > 0. From this we can draw several very important implications for the design

of a GSCP. If the lifting surfaces are in fact canards (xc > 0) instead of fins (xc < 0)

then gyroscopic stability is reduced. If canard size Sc or normal force coefficient CNδ

increases, then gyroscopic stability is reduced. If the forward section has very little spin

(∆p ∼= p̄) with a small guidance fuse (0< Ĩxx << 1) then gyroscopic stability is preserved.

Additionally, gyroscopic stability can be increased by spinning the forward section faster

than the aft (pF > pA), or by imparting a high spin rate on the forward section opposing

the aft section (pF <−pA). However, both of these modifications increase the difficulty of

guidance due to the high forward spin (assuming canards) opposing the rationale behind

installing canards.





Chapter 4

Novel Design

TH I S chapter will explore the novel actuation mechanism which was shown in the

introduction, including a full description of the operating principle and the required

subsystems. As was shown in the preceding chapter, a projectile in flight undergoes many

different oscillatory and spinning motions. Projectile imperfections cause precession and

nutation in addition to imparted spin. Any such projectile motions, or combinations of

such, have been shown to interact with the flight medium causing aerodynamic effects, e.g.

a non-zero angle of attack induces an overturning moment. Such effects, while predom-

inantly detrimental, could be used to intentionally control the projectile; in the same way

that some aircraft are made intentionally unstable to allow them to perform acrobatic feats

that would be otherwise impossible.

Firstly, a mathematical description is given of how a control force is used to create

a controllable variable, which can be expressed either as an acceleration or as a change

in velocity. The acceleration of the projectile is shown from first principles and a set of

axioms is proclaimed which must be satisfied if the system is to be controlled. Certain

simplifications are made to test the fundamental operation of the mechanism. These

simplifications are explained in detail and then slowly relaxed, investigating the effect

each of them plays on the system response, primarily the rate of switching between the

two operating states. A process is then described whereby a designer can model the

actuator step response by an arbitrary mathematical function and obtain a conversion

between desired control vector and actuator instructions.

For the initial conceptualisation of the problem, it is pertinent to neglect some of

115
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the forces acting on the system, to understand the reasons behind any behaviour that is

observed. As complexity is added, system traits can be specifically attributed to certain

changes which can be noted as the analysis progresses. Table 4.1 shows a comparison

between the idealised parameters which are used during analysis of the idealised system,

and values that can be expected for real systems.

Parameter
Projectile system

Nominal 105mm 155mm

ωB [rad.s−1] π/2 N/A N/A

ω0 [rad.s−1] 2π 1050 [49] 1668 [69]

m [kg] 1 15 [49] 42.798 [72]

Fc [N] 1 [−35.48,58.33] [49] 20 [69]

TA B L E 4 . 1 Comparison of simulation parameters used against real-world projectiles

4.1 Simulation Design

This section describes how the dynamic model is implemented in Simulink/MATLAB to

test and explain the actuation mechanisms and any GLs which may be applied. Figure

4.1.1 shows a block diagram of the Simulink model. ODE4 Runge–Kutta (RK4) was

used throughout these simulations, which is widely accepted due to it being an accurate

numerical method while not being resource intensive [192]. RK4 was shown to be 84%

more accurate than Euler in some applications, while still executing computations at 100×
larger time steps and running 100× quicker [193].

The left most Guidance Law block includes any GLs which will be used. It includes

the primary equations as well as any supplementary information required. In proportional

navigation for example, the navigation constant N will be included in the block, but it may

also be passed to the block by a secondary outside controller which might be responsible

for optimisation procedures, such as gain scheduling N. Multiple GLs can be programmed

and computed in parallel but only one set of controller demands be passed onwards. The

GL takes feedback from the dynamics about the current system state, including position
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F I G U R E 4 . 1 . 1 Simulink block diagram for the velocity-based actuation mechanism and GL

and target velocities. In practical applications of this circuit, any value used by the GL

would have to be physically measured by a sensor, which introduces errors and uncertain-

ties with the data used. To emulate this, a Sensor dynamics box is included between the

projectile dynamics and GL block. At this point, noise or systematic bias can be added

to replicate the imperfect measurements, as well as being able to add post measurement

corrective measures to clean the measurement signals.

The controller demand from the GL block is then passed into the Controller loop,

which contains a controller H and the actuation mechanism. For the implementation used

in this project H only contains a PID controller, but it could contain any standardised

controller. The demands from the GL which will feed into the actuator mechanism are

split into two separate channels, a normal and lateral channel, whereby individual PID

controller gains can be separately applied. This allows separate tuning if certain effects

are more prominent in either of the two channels, as well as facilitating the application of

gain scheduling or other such optimisation methods.

The actuator mechanism is a separate script responsible for converting the GL demand

into the actual bias angles throughout which the actuator torque is applied, using whichever

actuation mechanism is to be considered. Both the actuation mechanism demand variable

(latax or δV ) and the state switching model will be discussed in this chapter. Once the bias

coordinates have been computed, this block is also responsible to changing the actuator

torque which affects the spin rate of the forward section. This change is enacted by directly

modifying ω (or φ̇ ) to reflect the performance delivered by the hardware. The output of the
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actuation mechanism into the projectile dynamics box is just the computed front section

roll rate, ω .

If at any instant during the roll, the inequality φi < φi−1 is true, then the projectile has

just completed one revolution and the angle has wrapped. At this point, the GL is polled

for the updated controller command, which is then converted into bias ranges. These bias

ranges are held in a loop constantly, until such a time when the projectile has completed

another rotation, whereby it is updated from the GL again. Until this time, the current

angle φ is compared against the range through which biases are required. Importantly, the

actuator mechanism block also keeps track of when the projectile has wrapped to φ = 0.

This allows analysis to consider only the wrapping points, when the GL is polled for an

update, to better understand and characterise the system behaviour as a whole continuous

system, without the data being obscured by the oscillatory nature of the system. Figure

4.1.2 shows how the angular region of the bias can overlap the zero-point of rotation. The

bias starts at φON and ends at φOFF . If the bias range overlaps the wrapping point, the

magnitude of φON is higher than φOFF , which while trivial to fix must be considered by

the actuation code block.

( A ) Unwrapped, |φON |< |φOFF | ( B ) Wrapped, |φOFF |< |φON |

F I G U R E 4 . 1 . 2 Wrapping of bias angles, bias starts at φON = φB − φa and ends at φOFF =
φB +φa

Within fig. 4.1.1 is the projectile dynamics, or Dynamics box, which contains the

q-LPV linearised state-space equations of motion. Initially, they are simplified from the

full model shown in chapter 3, by only considering lateral and normal motion in the

described picture plane. It is assumed for the initial purposes of controller validation
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that the only force acting within the system is the oscillatory control force, which was

shown to be common practice by many sources in chapter 2. Any optimisation using

the 7-DoF model would be very resource intensive, by only implementing it once the

optimisation procedure is ready a lot of time will be saved. Within the dynamics box

in the simulation code is a separate script, Integrate/Export, which is responsible

for integrating the model parameters for the next time step as well as exporting them to

the simulation workspace. The integrator blocks also import any initial conditions from

the external file initialConditions.m so the parameters can be tuned by the user or a

stochastic initialisation algorithm as needed. Algorithm 1 shows a step by step process of

the code used for the simulations and .

Algorithm 1 Dynamic model execution order
Require: initialConditions.m
Ensure:

1: while t < T
∣∣∣∣z> 0 do

2: if φi < φi−1 then
3: Poll GL for ax,Dem, ay,Dem, then convert to φB, φa.
4: else
5: Use existing φB, φa.
6: end if
7: if φ ∈ φB ±φa then
8: Bias, change to unlocked state ωB
9: else

10: Set locked state ω0
11: end if
12: Evaluate equation of motion for current time step.
13: Integrate and export the parameters to the workspace
14: end while
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4.2 Actuation mechanism, velocity based ∆V

The integral of Newton’s second law relates the impulse of a system to the change in

velocity:

F =
d p
dt

(4.1)
∫ t1

t0
F.dt = m

∫ t1

t0
adt (4.2)

∫ t1

t0
F.dt = m∆V (4.3)

Here the mass can be taken as constant since there are no onboard resources being con-

sumed. The contribution to Fx from Fc as it rotates through an angle φ relative to x̂ is given

by

Fx = Fc sin(φ) (4.4)

where φ is the roll angle of the projectile and force vector. However, this decomposition

can be generalised to a force along any orthogonal axis system i, j which would have the

corresponding forces Fi, Fj. Let the desired decomposition axis i be a bearing φB from

the normal axis ẑ (where φ = 0). Let φi be a particular angle between Fc and the arbitrary

decomposition axis i. Let φa be the angle through which Fc sweeps at a given rate ω such

that the sweep begins at the bearing (φB −φa) and ends at φB. This is scenario which will

be considered and is shown in fig. 4.2.1. The decomposition of Fc onto Fi at an angle φB

F I G U R E 4 . 2 . 1 Bias centre point φB with force sweep angle of size φa

is given by

Fi = Fc cos(φB) (4.5)
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Equation 4.1 can be combined with 4.5, to show the total impulse as Fc sweeps through

the full range of φa. ∫ t1

t0
Fc cos(φ).dt = m∆v (4.6)

The integration variable of time can be substituted in terms of the angle and angular rate,

since t = φa/ω , giving: ∫
φa/ωB

0
Fc cos(φ)

1
ωB
.dφ = m∆v (4.7)

The foundation of the control method is that the rotation of Fc is slowed or biased when

sweeping through a range of angles. We define the range of angles during which Fc

is slowed as being the bias angle. Let the mid-point of the bias angle coincide with

decomposition axis i, such that the symmetrical angle on either side of the midpoint is φa.

The bias angle thus starts at (φB −φa) and ends at (φB +φa) with a midpoint of φB. This

is shown in fig. 4.2.2. The total impulse on axis i from Fc throughout the bias angle on the

F I G U R E 4 . 2 . 2 Bias range with centre point φB and symmetric φa on either side.

full range [(φB −φa),(φB +φa)] is twice that of the impulse from the start to the midpoint,

on the range [(φB−φa),φB] or range [φB,(φB+φa)]. The total impulse through 2φa shown

in fig. 4.2.2 from Fc toward Fi, is therefore twice equation 4.7:

2Fc

ωB

∫
φa/ωB

0
cos(φi).dφi = m∆v (4.8)

assuming Fc, m and ω are constant. Calculating the integral gives

− 2Fc

ωB
sin(φ)

∣∣∣∣
φ=φa

φ=0
= m∆v

−2Fc

ωB
[sin(φa)− sin(0)] = m∆v



122 C H A P T E R 4 . N OV E L D E S I G N

−2Fc

ωB
sin(φa) = m∆v

Thus we can write a conversion between ∆v and half the angle swept during the bias φa as

∆v =− 2Fc

mωB
sin(φa) (4.9)

Equation 4.9 shows the change in velocity along the ith axis, as a result of Fc sweeping

through an angle φa either side of the ith axis, at a rate of ωB. However, Fc will continue

to rotate through the rest of the bearing φ eventually sweeping another angular range

(φB +π)±φa (wrapped so φ ∈ [0,2π]). During this time the resulting change in velocity

is directed along the negative ith axis. This destructive angular range, (φB +π)± φa, is

shown in figure 4.2.3. We define ∆V as the total change in velocity of one whole rotation

F I G U R E 4 . 2 . 3 Bias angle at φB corresponds to a counter bias angle of φB +π

in sweeping through equal but opposing angles at different rates ω0 and ωB. This is

calculated by

∆V =− 2Fc

mωB
sin(φa)−− 2Fc

mω0
sin(φa) (4.10)

giving

∆V =
2Fc

m
sin(φa)

(
ω0 −ωB

ω0ωB

)
(4.11)

Thus the bias angle required to produce a desired ∆V is given by

φa =
ω0ωB

ω0 −ωB
sin−1

(
m∆V
2Fc

)
(4.12)

Under the assumption that the bias axis coincides with the reference axis, then φB = 0
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and the two equations agree. The maximum of equation 4.11 is found when φa = π/2.

Using the ideal system parameters from table 4.1, equation 4.11 is used to calculate the

maximum ∆V per rotation as

∆Vmax = ∆V |
φa=π/2 =

2Fc

m

(
ω0 −ωB

ω0ωB

)
(4.13)

2×1
1

(
2π − (π/2)

2π(π/2)

)
= 0.9549ms−1 (4.14)
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4.2.1 System Axioms (After nominal simulation)

The Simulink environment is now used to prove certain aspects of the system in order to

create repeatable and predictable movement. Each of the following points must be satisfied

to guarantee robust foundation on which to formulate a complete guidance architecture.

In order of importance:

1. The integral of the contribution of Fc to Fx at all points through a set angle of rotation

will correlate to an acceleration of the projectile and thus a change in velocity ∆V .

2. The net acceleration of the system will be zero if a full rotation is completed at the

same ω . The cyclic motion of the projectile in this case will vary depending on the

initial velocities of the projectile at the start of the rotation.

3. Asymmetrical biasing of the spin through certain angles of one rotation, by switching

from the fast rate ω0 to the biased rate ω0, produces a net acceleration of the system.

4. After an acceleration has been imparted, the system will continue to move under

this new velocity in a new cyclic pattern.

5. Symmetrical biasing of the spin through opposing angles of one rotation, causes no

net acceleration of the system.

6. By biasing one rotation and imparting a net acceleration, the projectile will move in

a new cyclic fashion. If after some amount of unbiased rotations, a bias is applied

which opposes the initial bias, the system should be ‘decelerated’ and continue a

motion identical to that if the system experience no net acceleration at all.

Using the above discussion, the six axioms written above can be proven analytically

then corroborated experimentally, using the parameters from table 4.1 in the Simulink

model. The projectile is initialised at [x0,y0,u0,v0] = [0,0,0,0] with ωB = π/2 and ω0 =

2π . In the diagrams illustrating a manoeuvre, green indicates the resting rotation rate ω0

and red indicates the actively slowed bias rate ωB.
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1. The integral of the contribution of Fc to Fx at all points through a set angle of rotation

φ will correlate to an acceleration of the projectile and thus a change in velocity

∆V .

From equation 4.11, both the horizontal and vertical ∆V can be calculated from the

impulse through an angle of π/2 as

∆V =
2×1

1×2π
sin(π/2) = 0.1592 (4.15)

Figure 4.2.4A shows a pictorial representation of what happens in the simulation

and figure 4.2.4B shows the experimental results. Since the contribution to u and v

as Fc sweeps through the first angle of π/2, the resulting magnitude of both is equal,

which is visible from the figure. The y-coordinate shown on the figure represents

both the u and v value, which agrees with the analytical prediction in equation 4.15.

( A ) ωB =
π/2[rad.s−1]
through π/2

( B ) Position and speed profile

F I G U R E 4 . 2 . 4 Axiom 1
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2. The net acceleration of the system will be zero if a full rotation is completed at the

same ω . The cyclic motion of the projectile in this case will vary depending on the

initial velocities of the projectile at the start of the rotation.

Equation 4.13 can be used to calculate the ∆V of the system when the bias angle is

the same, for both horizontal and vertical velocities:

∆Vmax|ωB=ω0
=

2×1
1

(
0

ω2
0

)
= 0 (4.16)

Figure 4.2.5A shows a pictorial representation of what happens in the simulation

and figure 4.2.5B shows the experimental results. Since one complete rotation has

elapsed, there is no net impulse on the system and thus it should return to its initial

speeds. The coordinates on figure 4.2.5B show that for both u and v, the speed has

reduced to 1.63×10−13 compared to the analytical estimation of 0 from equation

4.16. This discrepancy is due to numerical integration errors, but is negligible.

( A ) ωB = π/2
through 2π

( B ) Position and speed profile

F I G U R E 4 . 2 . 5 Axiom 2
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3. Asymmetrical biasing of the spin through certain angles of one rotation, by switching

from the fast rate ω0 to the biased rate ωB, produces a net acceleration of the system.

From equation 4.11 the change in velocity of the system can be calculated for a

bias of certain angle. An angular segment of π/2 will be used, centred about the

bias angle φB = π/2. This equates to a φa = π/4, one either side of φB.

∆V =
2×1

1
sin(π/4)

(
2π −π/2
(π/2)2π

)
= 0.67524 (4.17)

Figure 4.2.6A shows a pictorial representation of what happens in the simulation

and figure 4.2.6B shows the experimental results. Figure 4.2.6A shows the opposing

π/2 angles for the bias at φB = π/2 and the corresponding opposing angle at φB+π ,

where Fc rotates at ωB and ω0 respectively. However, the rotation rate still continues

at ω0 when outside of this range, but since that motion is symmetrical it has no net

effect on the system, which was proven in axiom 2. Equation 4.17 predicts that ∆u

(∆V decomposed in the x direction) will be 0.67524, which agrees with the results

of the simulation shown on figure 4.2.6B. On the figure, the Y-value data point

indicates the speed of the horizontal velocity.

( A ) Bias of ωB

through φB ± φa,
ω0 otherwise

( B ) Position and speed profile

F I G U R E 4 . 2 . 6 Axiom 3 [φB,φa] = [π/2,π/4]
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4. After an acceleration has been imparted, the system will continue to move under

this new velocity in a new cyclic pattern.

Proof of this follows from axiom 3 which showed that a bias causes a change in

velocity. The same simulation is run twice more for 5 complete rotations each, once

where the first rotation is unbiased and second where the first rotation is biased. The

illustration of axiom 4 shown in figure 4.2.7A is the same as that for axiom 3, shown

in figure 4.2.6A. Equation 4.17 predicts the ∆V of the system after biasing which

should remain unchanged after subsequent unbiased rotations. The terminal speeds

of the simulation shown in figure 4.2.7B are identical to the speeds predicted by

equation 4.17.

( A ) Bias of ωB

through φB ± φa,
ω0 otherwise

( B ) Trajectory and speed profile

F I G U R E 4 . 2 . 7 Axiom 4: [φB,φa] = [π/2,π/4]
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5. Symmetrical biasing of the spin through opposing angles of one rotation, causes no

net acceleration of the system.

Equation 4.11 is again used to calculate ∆V , which gives:

∆V =
2×1

1
sin(π/4)

(
π/2−π/2
(π/2)(π/2)

)
= 0 (4.18)

Figure 4.2.8A shows a pictorial representation of what happens in the simulation,

which is similar to figure 4.2.6A except the destructive counter bias is now also a

bias with rate ωB. Again, the rotation rate still continues at the natural ω0 when

outside of this range having no net effect on the system. Equation 4.18 predicts

∆u = 0, which again agrees with the results of the simulation in figure 4.2.8B. The

terminal value of u shown on the fig. is 0.

( A ) Bias of ωB

through
φB ± φa and
(φB + π) ± φa,
ω0 otherwise
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F I G U R E 4 . 2 . 8 Axiom 5: [φB,φa]1 = [π/2,π/4], [φB,φa]2 = [3π/2,π/4]
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6. By biasing one rotation and imparting a net acceleration, the projectile will move in

a new cyclic fashion. If after some amount of unbiased rotations, a bias is applied

which opposes the initial bias, the system should be ‘decelerated’ and continue a

motion identical to that if the system experience no net acceleration at all.

This combines both axiom 4 and 5. The initial bias to the system causes an ac-

celeration to a new speed, which the system then maintains until the final counter-

bias, bringing it back to the initial state. The bias from axiom 5 is used, with 3

unbiased rotations between the acceleration and deceleration phases. An additional

2 unbiased rotations are included before and after the manoeuvre for reference. Fig-

ure 4.2.9 shows the results of the simulation. The coordinates included in the figure

show u after the bias manoeuvre and u after the deceleration manoeuvre. The figures

from the simulation, 0.67524ms−1 and 1.14×10−12ms−1 agree with the analytical

predictions from equations 4.17 and equation 4.18 respectively.

F I G U R E 4 . 2 . 9 Axiom 6: [φB,φa]1 = [π/2,π/4], [φB,φa]2 = [3π/2,π/4]
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4.2.2 Initial conditions for circular resting state

For proof of the axioms, the initial conditions were set to be [u0,v0] = [0,0], which

creates the paths shown in figure 4.2.6B and 4.2.9. If the initial conditions are set to

be equivalent to what would be expected from circular motion, then the resulting path

will be circular due to the circular nature of the system dynamics. The initial velocit-

ies necessary for this are equal in magnitude but opposite in direction to what can be

expected from a quarter rotation worth of acceleration, which is exactly what was cal-

culate in equation 4.15 for axiom 1. The initial conditions for circular motion are thus

[u0,v0] = [−0.1592,0]. Figure 4.2.10 shows a repeat of the axiom 6 manoeuvre with the

initial conditions [x0,y0,u0,v0] = [0,0,−0.1592,0]. It is visible on the graph that the pro-

jectile begins with circular oscillations as expected form the initial conditions, it moves

in a sinusoidal pattern due to the unequal right bias as predicted from axiom 4, then a

deceleration of the system resuming the circular motion as expected from axiom 6. This

F I G U R E 4 . 2 . 1 0 Circular initial conditions ([u0,v0] = [−0.1592,0]) with a bias, progression
then counter bias, showing the continuation of circular motion

circular motion is useful for the purposes of designing a control system as the circular

motion represents an equilibrium state of the system where there is no net motion of the

system. The radius of the circular oscillation will either be within the levels of accuracy

required of the projectile, which would require less control effort, or the projectile would

need terminal correction to account for its position in the circular path a particular time.



132 C H A P T E R 4 . N OV E L D E S I G N

Bias manoeuvres

The current relative velocity of projectile to target is the difference between the projectile

and target velocity, VR =V −VT , again noting that these velocities are in the YZ picture

plane. In full, this is given by

VR =


uR

vR


=


u−uT

v− vT


 (4.19)

As stated, the projectile must initiate the trajectory with some motion to ensure the result-

ing trajectory is circular. Thus, VDR0 is defined as the ∆V correction necessary to bring the

projectile to a stable circular orbit relative to the target which explicitly, may be written as

VDR0 =


uR +∆V |φ=π/4

vR


 (4.20)

For the idealised system of table 4.1, this becomes

VDR0 =


uR +0.159

vR


 (4.21)

To test the functionality of the above equations, they alone can be used as the desired

target speed. Since this is the only speed being demanded of the projectile, the motion

will act to bring the projectile to rest, relative to the target. In this case, the target can be

assumed to be a stationary point at any coordinate, since the residual velocity is obviously

only a function of target velocity, as opposed to including position. The implementation

is shown in algorithm 2. This algorithm is tested for effectiveness using initial residual

velocities directed into all four quadrants of the 2D plane. This approach helps to probe the

algorithm for any errors caused by wrapping calculations. Figure 4.2.11 shows the results

for initial velocities. A close up of the end trajectory of the [u+,v+] quadrant is shown

in figure 4.2.12. The figure shows that the residual velocity of the system is successfully

eliminated, leaving the projectile to rotate with the desired circular motion. Again, the

centre of this orbit is not yet directed towards any location in particular, the purpose of this

algorithm check is to ensure that any relative velocity between the two can be eliminated.
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Algorithm 2 Pseudo-code for bringing projectile to relative rest
1: if φi < φi−1 then
2: Set demanded speed to current residual speed:
3: [phi_B, phi_a] = bias([u_R, v_R])

4: Calculate bias angles
5: [phi_B, phi_a] = bias([u_R, v_R])

6: end if
7: if ((φB −φa)< φ ≤ (φB +φa)) then
8: Bias, ω = ωB
9: else

10: Natural, ω = ω0
11: end if

F I G U R E 4 . 2 . 1 1 Stop algorithm check for residual velocities in all four quadrants

The figure also shows the spin rate demanded by the controller to bring the system to

circular motion. Figure 4.2.12A shows the terminal phase of the stop manoeuvre where

the projectile should enter a circular orbit. The figure shows a thick line indicating a path

overlap where the orbit is near-circular, but imperfect. This is due to numerical errors in

the simulation as well as tolerances in the velocity check, to determine the bias points. If

there is an external force acting on the system, as is the case in figure 4.2.13, the drift

problem is exacerbated. The bias points are calculated when φ = 0 and the rotation will

continue with the bias being executed to eliminate the ∆VR which was present at φ = 0.

This means an external force can constantly accelerate the system during the rotation,
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( A ) Terminal phase during
stop manoeuvre

( B ) Spin rate demand from controller

F I G U R E 4 . 2 . 1 2 Terminal phase of stop algorithm check

introducing a ∆V which was unaccounted for. This would then have been accounted for on

the following rotation but the same process will happen again. If the forces which cause

the drift errors are constant and known, their effect through one rotation can be accounted

for during the bias point calculation. For example, in the current test system one rotation

takes 1s for ω0 = 2π . If an arbitrary continuous external force of 0.01N acts on the system

in the −ẑ direction an acceleration of 0.01/1 = 0.01ms−2 is produced which equates to

a ∆v per rotation of 0.01×1 = 0.01ms−1. This ∆V can then be accounted for in the bias

manoeuvre, to produce a constant bias which accounts for its affect. Figure 4.2.13 shows

the effect of both introducing the 0.01N force and accounting for the constant effects in the

bias manoeuvre. However, the fig. shows that the resting orbit is still imperfectly circular,

due to numerical inaccuracies during the computation. This shows that modelling external

forces acting on the projectile, using this velocity-based actuation mechanism is viable.

If the forces acting on the projectile are high compared to the control force, the system

will be unable to enact any significant change in trajectory. The effects of gravity are

traditionally accounted for in conventional projectiles prior to launch, such that the vertical

change in position coincides with the target position at range. A similar approach should

be taken with this prototype. As there are no on-board resources which can extend the

range of the projectile, any correction made throughout the duration of the trajectory is

at the expense of range, since the aerodynamic surface providing the lift/control force

increases the drag. Since effects such as gravity, wind and Coriolis forces etc. are already

well understood for launching conventional projectiles, the same practices can be used

when firing this novel design, leaving the control system free to account for the small

disturbances and perturbation present during flight. It is also pertinent to consider the
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F I G U R E 4 . 2 . 1 3 Drift effect in system

motion of the projectile in terminal approach to the target. In the current implementation,

the projectile will orbit a point close to the target. It may be advantageous to a designer

to implement such a terminal correction system that the projectile is able to coincide with

the target location precisely as the flight terminates. For example, a ‘virtual target’ point

can be set with respect to the actual target position. This could allow the projectile to orbit

such that the target is located precisely at the centre of the orbit, or it could be designed

such that the two intersect at a particular time in the orbit. While the design possibility is

acknowledged here the investigation is left as the topic of future work. This work focuses

mainly on the general guiding concept, the optimisation of which will allow more high-

fidelity movements and corrections such as the terminal interception manoeuvre described

here.

4.3 Actuation mechanism, latax based ã

A traditional missile operates by deflecting control surfaces, which produce a deflection

force, by some angle δ . If a GL demands a latax from the missile, the actuation mechan-

ism describes how the missile changes and orientates the control surface to deliver that

latax. The missile deflects the fins which produces a control force, roughly following

Fcα sin(δc). The missile often has two pairs of fins which are capable of control motion



136 C H A P T E R 4 . N OV E L D E S I G N

along orthogonal axis and thus the correction is continuous, in the sense that it is limited

only to the extent of the physical actuation hardware. The prototype described cannot

simply provide a latax demanded by the GL and sustain it, as the control force is always

rotating. This section discusses the conceptual actuation mechanism from a latax per-

spective, describing the limitations and the parameters which affect it. This uses the same

picture plane consideration as the preceding section which considered the ∆V perspective

of the actuation mechanism.

By definition, acceleration is the infinitesimal change of velocity per infinitesimal unit

time.

a =
dV
dt

(4.22)

Extrapolating this to the time taken for one complete revolution, the latax of the projectile

experienced over one complete revolution is

ã =
δV
τ

(4.23)

where δV is the picture plane net change in velocity for one full rotation and τ is the time

taken for one complete rotation. From the definition of angular rotation, we can write the

time taken for one rotation τ in terms of the instantaneous angular velocity as

dφ

dt
= ω(φ) (4.24)

1
ω(φ)

dφ = dt (4.25)

∴ τ =
∫

ω(φ)−1dφ (4.26)

where ω(φ) is the angular speed of the projectile as a function of φ , while assumed not

to be a function of time. Integrating Newton’s second law, we can write the net change in

speed over one complete rotation as

F = ma (4.27)
∫

τ

0
Fdt = m

∫
τ

0
adt (4.28)

∴ δV =
1
m

∫
Fdt (4.29)
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Where F is the vector sum of forces acting on the projectile which for the purposes of

derivation, we define as only comprising of the control force Fc. In addition, δV is

the change in velocity along the bias axis. Substituting the above into the definition of

acceleration yields the acceleration per rotation in the direction of bias

ã =

∫
τ

0 Fdt

m
∫ 2π

0 ω(φ)−1dφ
(4.30)

Herein lies a problem, as ω(φ) is the result of complex dynamics involving motor

bearing and couplings. The function ω(φ) is the roll rate ω after evolving for some

time according to given bearing dynamics. The bearing dynamics could be modelled

as a highly trivial instantaneous switching, where the spin rate assumes ω0 or ωB on

demand. Or, the function ω(φ) may be non-trivial, switching speeds according to a

sigmoid function with decay rates emulating the variable dynamics of the system, such as a

fast acceleration (lock) but a slow deceleration (unlock, caused by spin damping moment).

Finally, the function could be highly complicated, such as an interpolation from empirical

measurements of a real dynamic system, or non-linear a model with full aerodynamic

coefficients and material parameters. In any case, the system acceleration over one rotation

ã from equation 4.30 can then be decomposed along the desired correction axis via the

bias angle. Since the force biasing which produces the acceleration is by design, directed

along φB, the decomposition is given by


ax

ay


= ã


cos(φB)

sin(φB)


 (4.31)

This equation equates the projectile latax over one rotation to the bias angle φB and

size φa. To implement these equations, it is necessary to encapsulate the roll rate function

ω(φ). 
ax

ay


=

1
m
∫

τ

0 Fdt
∫ 2π

0 ω(φ)−1dφ


cos(φB)

sin(φB)


 (4.32)

This method of describing the radial impulse distribution is a more generic and com-

plete representation than other considered works [131], which have only considered fixed

roll rates and fixed impulse shapes. These works also assumed that impulse thrusters are
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used as the correction method, which are of course a limited correction resource. The

following subsections will consider the system behaviour in the most simplistic case, in-

stantaneous switching between states. These simplifications will then be relaxed, up until

the function is purely abstract, and the behavioural change in the system response will be

investigated.

4.3.1 Instantaneous switching

The most simple case that can be imagined is to assume instantaneous and binary switching

of the roll rate between a high speed ω0 and a low speed ωB during the bias. Figure 4.3.1

shows the evolution of spin speeds throughout flight under the simplified model. The

phases of flight are as follows*:

1. During the launch phase, the projectile is ballistically accelerated while the brake

mechanism is locked. Both the forward and aft sections accelerate to the natural

launch spin rate of the system ω0.

2. During free flight of the projectile, with the brake mechanism engaged, the spin rate

of the two sections are assumed to remain constant throughout the flight with no

decay.

3. At the point the lock mechanism is disengaged, the spin rate of the front section will

begin to decelerate quicker since, by design it has a higher spin damping instantan-

eously drops to a new equilibrium speed, ωB.

4. The de-coupled steady state speed ωB is maintained indefinitely for the duration of

the bias manoeuvre, in addition to the aft section maintaining the natural speed of

ω0

5. When the lock mechanism is re-engaged, the simplification used is that front section

instantaneously increases back to the natural roll rate ω0. There is assumed to be no

loss of spin rate of the aft section as a result of the front section being accelerated in

this manner

*referring to fig. 1.1.1 on pg. 13
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F I G U R E 4 . 3 . 1 Simplifications to spin rate for control architecture
† - Phase II is repeated because both instances represent free flight

The function ω(φ) can thus be expressed as

ω(φ) =





ωB, ∀ φ ∈ [φB ±φa]

ω0, otherwise
(4.33)

The sum of forces F acting on the projectile is written as

F = Fc cos(φB) (4.34)

The projectile parameters and spin rates are again shown in table 4.1. Considering a bias

of size φa located at angle φB as was shown in fig. 4.2.2 (pg. 121) it is now possible to

compute the change in velocity and time taken per rotation as a function of these bias

coordinates.

δV - Change in speed from one rotation along bias axis

Under the prior assumptions from Newton’s second law, it can be shown that the impulse

of the system reduces as

δVxy =
1
m

∫
τ

0
Fdt (4.35)
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δVxy =
1
m

∫
τ

0
Fc cos(φB)dt (4.36)

where δVxy is the change in velocity from one rotation, along non-rotating projectile axis.

Since the control force is assumed to be constant, a variable substitution results in

δVxy =
Fc

m

∫ 2π

0

cos(φB)

ω(φ)
dφ (4.37)

Due to the instantaneous switching shown in equation 4.33, this integrand can be written

as a linear sum of the integrands representing the motion in and outside of a bias.

δVxy
m
Fc

=
∫

φB−φa

0

cos(φ)
ω(φ)

dφ +
∫ 2π

φB+φa

cos(φ)
ω(φ)

dφ

︸ ︷︷ ︸
Unbiased, ω(φ) = ω0

+
∫

φB+φa

φB−φa

cos(φ)
ω(φ)

dφ

︸ ︷︷ ︸
Biased, ω(φ) = ωB

(4.38)

Computing this integral yields

δVxy
m
Fc

=
1

ω0

(
[sin(φ)]φB−φa

0 +[sin(φ)]2π

φB+φa

)
+

1
ω0

(
[sin(φ)]φB+φa

φB−φa

)
(4.39)

δVxy
m
Fc

=

(
1

ωB
− 1

ω0

)
(sin(φB +φa)− sin(φB −φa)) (4.40)

Using the identity sin(A±B) = sin(A)cos(B)±cos(A)sin(B) and substituting the respect-

ive values of ω0 and ωB, this can be written as

δVxy =
2Fc

m
sin(φa)cos(φB)

(
ω0 −ωB

ω0ωB

)
(4.41)

The factor of cos(φB) indicates the directionality of δVxy is along the vertical axis. By now

defining δVxy = δV the change in velocity resulting from a singular biased rotation along

the decomposition axis now coincides with the bias axis, and this factor tends to 1. By

also substituting the respective values of ω0 and ωB, this reduces to.

δV =

[
2Fc

m
sin(φa)

(
ω0 −ωB

ω0ωB

)]

ωB=π/2,ω0=2π

(4.42)

δV =
3
π

sin(φa) (4.43)
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Under the same simplifications, we have arrived at the equation used to describe the ∆V ,

shown in eq. 4.11 (pg. 122).

τ - Time taken for one revolution

From the definition of angular speed, we can relate τ to the angular speed function ω(φ)

by

φ = ω(φ)t
∫

τ

0
dt =

∫ 2π

0
ω(φ)−1dφ

Again, the time taken to complete the rotation can be split into bias and non-biased motion,

which yields

τ =
∫

φB−φa

0
ω(φ)−1dφ +

∫ 2π

φB+φa

ω(φ)−1dφ

︸ ︷︷ ︸
Unbiased, ω(φ) = ω0

+
∫

φB+φa

φB−φa

ω(φ)−1dφ

︸ ︷︷ ︸
Biased, ω(φ) = ωB

(4.44)

Computing this integral yields

τ =
1

ω0

(
[φ ]

φB−φa
0 +[φ ]2π

φB+φa

)
+

1
ωB

(
[φ ]

φB+φa
φB−φa

)
(4.45)

τ =
1

ω0
2(π −φa)+

1
ωB

φa (4.46)

τ =

[
2(π −φa)

ω0
+

2φa

ωB

]

ωB=π/2,ω0=2π

(4.47)

Upon substituting the values of ω0 and ωB, the time taken is thus

τ = 1+
3
π

φa (4.48)

ã - Latax for one revolution

Following these reductions, the acceleration per rotation is given by substituting the value

of δV from eq. 4.43 and τ from eq. 4.48:

ã =
δV
τ

=
3
π

sin(φa)

1+ 3
π

φa
=

3sin(φa)

3φa +π
(4.49)
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and so,

ã =
sin(φa)

φa +
π

3
(4.50)

which can be substituted into the latax equation (eq. 4.32) yielding


ax

ay


=

sin(φa)

φa +
π

3


cos(φB)

sin(φB)


 (4.51)

We can consider that equation 4.50 is of the form

f (x) =
sin(x)
x+ k

(4.52)

where k is a generic constant. By setting the derivative of this function with respect to x

equal to zero

f ′(x) =
(x+ k)cos(x)− sin(x)

(x+ k)2 = 0 (4.53)

the periodic inflection points are found when the equation

tan(x)− x = k (4.54)

is satisfied. Using this, the value of φa which produces the maximum acceleration is found

to be 65.32◦, and the corresponding maximum acceleration is 0.42ms−2. Figure 4.3.2A

shows a plot of equation 4.50, the function ã(φa), for φa ∈ [0,π/2].

The maximum latax ãmax is not located at φa = π/2 as one would expect, though

indeed φa = π/2 does produce the largest overall force along φB. However, when Fc is

towards the limits of the bias range, φ → (φB −φa)
+ or φ → (φB +φa)

−, the contribution

of motion towards the bias axis φ̂B is small compared to the time spend biasing through

those angles. i.e. There is a region of diminishing returns, henceforth referred to as the

deadzones, in which the time spend ‘accruing’ force in the desired direction of motion is

no longer worth the time it takes to do so. Figure 4.3.2B depicts the dead zones of the bias

angles. For the system speeds ω0 = 2π and ωB = π/2rad.s−1 (ωB = ω0/4rad.s−1), it was

found that ãmax is at φa ≈ 65o. If ωB is closer to ω0 such that ωB/ω0 → 1− then the time

spent in the outer limits of the bias range to increase ã is no longer substantially slower

than if the system was rotating at the natural frequency. It is thus worth while staying
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( A ) Latax of simplified system against bias angle
size
(ã(φa) in eq. 4.50)

( B ) Illustration of deadzone

F I G U R E 4 . 3 . 2 ‘Deadzones’ for bias manoeuvres with: ωB = π/2 [rad.s−1], ω0 = 2π [rad.s−1]

at the more extreme bias angles (higher values of φa) and the resulting dead zones are

smaller.

From equations 4.41 and 4.46, it can be shown that ã can be written in terms of φa, ω0

and ωB for the simplified system as

ã(φa,ω0,ωB) =
Fc
m sin(φa)
πωB

ω0−ωB
+φa

(4.55)

Under the assumption that Fc/m = 1 and πωB/(ω0 −ωB) = k, this equation then reduces

following the abstraction in equations 4.52-4.53. The dependency of both ã and ãmax on

ω0 and ωB is displayed entirely through the k term. It can also be inferred that it is not the

magnitude of the two rotational speeds which affects the acceleration of the system, but

the ratio of the two, ωB/ω0. It should also be noted that under the substitution of ω0 = 2π

and ωB = π/2 that eq. 4.55 reduces to eq. 4.50.

Figure 4.3.3 shows how changing the ratio of the bias to unbiased rotational speeds,

ωB/ω0, affects the maximum latax of the system as well as the φa at which it occurs and

therefore the boundary of the dead zone. As expected, when ωB/ω0 is close to 1, ãmax

occurs at values of φa close to π/2, meaning the dead zones are very small. Conversely,

when ωB/ω0 approaches 0, ãmax occurs at very low values of φa and thus the dead zones
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are very large. In addition, as was predicted above from the k term in eq. 4.52, the

magnitude of ãmax only depends on the ratio ωB/ω0, not the magnitude of the values.

F I G U R E 4 . 3 . 3 The effect of ωB/ω0 on the size of φa which produces the maximum accelera-
tion, ãmax

The latax ã demanded of the projectile by the GL can be expressed in either Cartesian

or polar coordinates, given the transforms


|a|

aφ


=



√

a2
x +a2

y

tan−1(ax/ay)


 (4.56)


ax

ay


= |a|


sin(aφ )

cos(aφ )


 (4.57)

N.B. the acceleration is a result of the bias which is assumed to be both symmetrical and

centred about φB in this instantaneous switching case, thus the bias angle and latax angle

are equivocal: aφ = φB.
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4.3.2 Non-instantaneous switching

The front and aft section behave as one body whilst the brake mechanism is engaged and

the spin rate of the two sections are identical and will reach an equilibrium. Throughout

the flight, the spin section of both sections will constantly decay due to the spin-damping

moment, of which each section will contribute a different amount. When the brake disen-

gages the two sections are no longer radially coupled and will, due to the discrepancy of

the spin-damping moments of each section, continue until they reach a new equilibrium.

Figure 4.3.4 depicts the spin rates of the front and aft sections throughout the initial section

flight. Each phase of flight is as follows:

1. During the launch phase, the projectile is ballistically accelerated while the brake

mechanism is locked. Both the forward and aft sections accelerate to the natural

launch spin rate of the system ω0.

2. During free flight of the projectile, with the brake mechanism engaged, the spin rate

of the two sections will decay at a rate proportional to the combined spin-damping

moment of the two sections.

3. At the point the lock mechanism is disengaged, the spin rate of the front section will

begin to decelerate quicker since, by design it has a higher spin damping moment

and a lower mass than the aft section. The behaviour of the front section spin rate

in the moments immediately following the de-coupling is referred to as the BiasON

function, which can also be a generic mathematical function chosen to model that

behaviour.

4. The de-coupled steady state is achieved when the two halves reach a new equilibrium.

During this phase, the spin rate of the two sections decays individually, according

to the spin-damping moment of the two sections, as well as any friction from the

bearing attaching the two sections.

5. When the lock mechanism is re-engaged, the front section will rapidly accelerate

due to the sudden increase in ‘friction’ through the bearing. The sudden acceleration

of the front section also accompanies a sudden deceleration of the aft section. The

spin speeds of both sections will converge again as equilibrium is achieved. The new
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whole body ω will be closer to the ω of the aft section before the locking, rather

than the forward section before the locking, because the aft section is more massive

and thus has a higher inertia.

F I G U R E 4 . 3 . 4 Spin rates of dual-spin sections throughout various flight phases
† - Phase II is repeated because both instances represent free flight

4.3.3 Procedure for deriving latax

The behaviour and spin rate of the two sections evolves according to the dynamics of the

system, which is itself a function of many different factors such as bearing torque and

spin damping moment. To gain a practical understanding of the system’s capabilities, it is

prudent to approximate the behaviour with a function. In this sense, the performance and

capabilities can be measured against any system metric and extreme cases can be analysed.

A procedure is therefore defined whereby the two functions BiasON and BiasOFF defined

above, are used to generate the latax response. i.e. for a given system behaviour, modelled

by the functions BiasON and BiasOFF, the resulting latax ã can be numerically mapped

for varying bias coordinates, [φON , φOFF ]. The bias manoeuvre can be defined by φON

and φOFF , which are the values of phi at which the BiasON and BiasOFF functions begin

respectively. While the bias is no longer symmetrical, the use of φB and φa is still useful.
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Now, φB defines the mid-point between φON and φOFF while φa is the half distance.

φa =
φOFF −φON

2
(4.58)

φB = φON +φa (4.59)

The procedure for identifying the latax is exactly as described in §4.3, except the values

of δV and τ are found by numerical methods instead of analytically solving them, due

to the arbitrary complexity of the BiasON and BiasOFF functions. In this instance, it is

still assumed that there is no global decay of ω0 or ωB caused by spin damping. The key

change here is that the switching between the two speeds is now governed by a function

instead of being instantaneous. Figure 4.3.5 shows the resulting ω(φ) function when

BiasON and BiasOFF connect two spin states, at the chosen points [φON , φOFF ]. Since

τ =
∫ 2π

0 ω−1(φ).dφ , τ can be found by numerically integrating the inverse of the function

ω(φ).

F I G U R E 4 . 3 . 5 Example ω(φ) created by inserting the chosen BiasON and BiasOFF functions
at φON and φOFF respectively

Figure 4.3.6 shows an instance in which the BiasON and BiasOFF functions overlap. In

this case, ω will evolve according to the BiasOFF function, since at this point the locking

mechanism would be engaged. In addition, when the BiasOFF function is triggered at

φOFF , the evolution of ω should be properly defined by the BiasOFF function as being

proportional to the speed difference, as opposed to the current spin rate. This ensures that

if φOFF is triggered at a later time, then ω is prevented from assuming the value it would

have at this point, had the BiasOFF function been incorrectly defined from some arbitrary

fixed point. Lastly, both BiasON and BiasOFF can be considered functions of the current
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spin rate and the target spin rate. This again, reflects the behaviour of a dynamic system,

e.g. where the force returning a displaced spring is proportional to the magnitude of the

displacement, as opposed to the distance location.

F I G U R E 4 . 3 . 6 Example ω(φ) when BiasON and BiasOFF functions overlap

Next, the net impulse of one rotation must be found, which requires knowing both

the magnitude and direction of the force at every point in time. Since ω(φ) is the known

function, one cannot simply integrate this analytically to find φ(t), since ω(φ) is not a

function of time. However by definition, ω is the gradient at every point on φ(t) and thus

numerical integration methods will work. Figure 4.3.7 illustrates a plot of φ(t) one can

expect to find from integrating a plot resembling fig. 4.3.5. Initially, the gradient φ(t)

is high, since the system begins the unbiased speed ω0. At φON , the BiasON function is

initiated and the gradient decreases until it reaches the bias value ωB, where it remains for

the duration of the bias. At φOFF the bias is instructed to end and the gradient increases

again throughout the duration of BiasOFF, back up to ω0.

F I G U R E 4 . 3 . 7 Example φ(t) produced by numerically integrating ω(φ) with chosen BiasON
and BiasOFF functions

Since φ(t) is the direction component of the force vector, it can be used to numerically
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solve for the resulting impulse, since τ has been computed. Since both δV and τ are

now know, ã can be computed. Figure 4.3.8 shows the flow of information and order of

operations for computing ã from ω(φ ,φON,φOFF). In summary, the bias functions and

coordinates are used to create ω(φ). The inverse of ω(φ) is integrated numerically to

calculate τ , which is used in conjunction with the instantaneous integrations of ω(φ) to

produce φ(t). From this, δV can be computed and finally ã can be computed for the given

inputs. This process can be repeated as necessary to map the latax response over the bias

range, highlighting any dead zones that may be present for the system configuration.

F I G U R E 4 . 3 . 8 How BiasON/BiasOFF functions are used to generate ã for a system

Non-instantaneous method reduces to instantaneous results

To ensure this numerical method is in agreement with the instantaneous switching cal-

culations, the BiasON and BiasOFF functions are modelled to be instantaneous switches.

While this entirely defeats the point of introducing the functions, with this simplification,

the system is now behaving as it does in the simplified model from §4.3.1. Firstly, the ana-

lytic predictions from equation 4.50 predict the amag which results from a given φa in the

simplified model; this equation was plotted in fig. 4.3.2A. Secondly, the numerical meth-

odology described in §4.3.3 is executed for φa ∈ [0,π/2], with the BiasON and BiasOFF

functions being instantaneous switching. Lastly, the dynamic model is run multiple times,

manually triggering the biases for each point in the analytic and numerical sweeps, for
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φa ∈ [0,π/2]. The results are shown in fig. 4.3.9.

F I G U R E 4 . 3 . 9 Analytic and Numeric predictions of simple latax response for varying φa

Note that because the bias is no longer symmetric, φa has been replaced with the ef-

fective φa, which is computed from the bias points as (φOFF −φON)/2, instead of when

the spin rate actually assumes the biased and unbiased spin rates. Both the analytic predic-

tions and the numerical method are in good agreement with the results of the simulations.

Importantly, the simulations and numerical methods support the discussion of §4.3.1 about

the deadzones, where extreme values of φa do not translate to an increases latax, due to

the increased time spent accruing the impulse. Figure 4.3.10A shows the error of each

prediction against the simulation results

Figure 4.3.10B shows the effects of modifying the sample interval on the accuracy of

the numeric predictions. That is, the step size in the φ array used to calculate ω(φ) and

therefore, φ(t). It can be observed that as the sample frequency of the numerical method

increased, there was no change in the magnitude of the error, indicating that the error is

unlikely to be caused by reproduction and interpolation errors, rather it is a present and

real error likely caused by machine rounding errors, especially since the error is inversely

proportional to the numerical value of φa for the analytic, numeric and simulation results.

The important conclusion to draw from these results is that the numerical method

of computing latax response is valid, when analytical solutions are unfeasible, such as

for arbitrarily complex bias transition functions. In addition, the resolution with which
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( A ) Error ( B ) Varying sample intervals

F I G U R E 4 . 3 . 1 0 Error of Analytic and Numeric predictions against simulation results

the function ω(φ) is defined has no effect on the accuracy of the numerical analysis in

predicting the latax of the system (behaving according to the specified ω(φ)). As such,

ω(φ) need only be defined to a resolution which is capable of producing a sufficiently

smooth latax range, to then be used by the GL. i.e. if the GL requires the latax to be

distinguishable at 0.1ms−2 intervals, then the step size of the φ array used in the numerical

domain must be sufficiently small that the step size of the latax output in the numerical

range can accommodate a 0.1ms−2 demand. It is also possible that the function could be

generated roughly to conserve resources during the analysis period, then interpolated after

the fact in regions of interest.

Numerical procedure example, introducing φa offset from φB

Let the BiasON and BiasOFF functions be defined by the following:

fON = kON

(
ω −ωB

ω0 −ωB

)
, kON = 0.2 (4.60)

fOFF = kOFF

(
1− ω −ωB

ω0 −ωB

)
, kOFF = 1 (4.61)

where kON and kOFF are the decay and growth rates of the ON/OFF switching functions

respectively. A higher switching rate produces a function which transitions faster from
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one state to another. The bias coordinates are chosen as


φON

φOFF


=


 π/2

3π/2


 (4.62)

Using this information, the function ω(φ) is constructed, which is shown in fig. 4.3.11.

This function is numerically integrated to produce both value of τ , as well as the function

φ(t), which is shown in fig. 4.3.12. Both latax response ã and the rotation time τ are

shown in table 4.2

F I G U R E 4 . 3 . 1 1 ω(φ) for equation 4.60 with [φON, φOFF] = [π/2, 3π/2]

F I G U R E 4 . 3 . 1 2 Resulting φ(t) from ω(φ) generated in fig. 4.3.11

With that function generation demonstrated, the latax response can be evaluated by

varying φOFF and φON, for φOFF − φON ∈ [0,π]. Figure 4.3.13 shows the aMag which is

generated for every value of φa, for both the instantaneous switching simplified model



4 . 3 . AC T UAT I O N M E C H A N I S M , L ATA X BA S E D Ã 153

Parameter Value

|ã| 0.3970[ms−2]2

φa 3.3507[rad]

τ 2.3048[s]

TA B L E 4 . 2 Numerical method results for equation 4.60 with [φON, φOFF] = [π/2, 3π/2]

and the non-instantaneous model from eq. 4.60. It is noted that the value of φa at which

ã = ãmax increases as the switching functions become less instantaneous. In addition, the

rate at which ãmax increases depending on φa decreases as the switching functions become

less instantaneous. At low values of φa, the situation in fig. 4.3.6 is observed, where there

is insufficient time for the system to transition into the biased state and therefore cannot

‘accrue’ acceleration before the bias ends.

F I G U R E 4 . 3 . 1 3 Latax generated across for every bias size for bias functions in eq. 4.60

While fig. 4.3.13 shows the magnitude of the latax response across a range of bias sizes

it is also important to observe how the direction of latax changes for non-instantaneous

switching. Firstly, it must be noted how much the latax direction aφ is offset from the

centre of the bias coordinates, φB. Secondly, it should be understood whether this offset

is then itself scaled proportional to the magnitude of the bias φa. For a given φON and

φOFF, the value of φa and φB are calculated from equation 4.58. It is of no importance

what the absolute values of φON and φOFF are, only the distance between them, since it
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is the offset of aφ from φB that is being observed, rather than the angles themselves. The

numerical analysis procedure is then conducted as above, to compute τ , aMag and aφ . Each

increasing value of φa produces a specific aφ , which is compared against φB. Figure 4.3.14

shows the offset of the system described in eq. 4.60 for varying φa.

F I G U R E 4 . 3 . 1 4 Offset of aφ from φB as a result of non-instantaneous switching

A slow bias activation means the force vector is not travelling as slowly as it could

in the bias window, if there is an instantaneous de-activation then the actual acceleration

aφ will be ahead of the intended bias centre φB. A slow bias deactivation means the

force vector keeps acting for longer than it should after the bias window which, if there

is an instantaneous activation, also results in the actual acceleration aφ being ahead of

the intended bias centre φB. This means that any non-instantaneous switching function

results in an actual acceleration aφ being ahead of the intended bias centre φB. Thus,

aφ > φB and following from this it can be seen that aφ − φB will always be positive †,

which is shown on figure 4.3.15. Next, the effect of varying the ratio of switching function

rates kON/kOFF will be investigated. The bias coordinates are fixed at φON = π/2 and

φOFF = 3π/2, resulting in a fixed value of φa = π/2. Then, a value of kOFF is chosen,

varying from 0.5 to 2.5 in increments of 0.5. The numerical procedure is conducted for

values of kON as a fraction of these chosen kOFF values, such that kON/kOFF ranges from

0 to 1. This range is chosen because the bias activation function is always longer than

the deactivation function, hence the rates follow the inequality kON < kOFF and so it is
†Assuming there is wrapping
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necessitated that (kON/kOFF)< 1. The results of this are shown in fig. 4.3.15. Figure

4.3.15A shows a broad sweep for kON/kOFF ∈ [0,1], while fig. 4.3.15B shows a higher

resolution sweep on values of kON/kOFF ∈ [0,10e−3].

( A ) Full range ( B ) Close up

F I G U R E 4 . 3 . 1 5 Effect of modifying kON/kOFF on offset for various kOFF

As the switching rates get larger, the switching becomes more instantaneous and the

offset decreases. This is shown on figure 4.3.15A, as lines representing higher values of

kOFF give lower values of aφ −φB across all ratios. As kON/kOFF → 1, the rates assume

their maximum values for the fixed kOFF . Higher rates equate to faster switching and so

the offset is lower. This is also seen on the figure, as kON/kOFF → 1 for all values of

kOFF give a lower offset. As expected for the opposite of this, lower values of kON/kOFF

increase the offset. In the limit that kON/kOFF → 0 (and thus kONzrightarrow0) the bias

activation is so slow that there is effectively no bias manoeuvre at all. There is no change

in ω induced by the function over the duration of the bias and hence there can be no

overshoot. The resulting latax reduces to ã = [aMag aφ ] = [0 φB]. This is also supported

by the figure, as kON/kOFF → 0 yields an offset of 0 for all values of kOFF .

As is shown in fig. 4.3.15A, there is a point of inflection around kON/kOFF = 9×10−4,

at which the higher values of kOFF begin to produce the highest overshoot errors. This

is an artefact of this particular investigation. While each data point is equally spaced on

the figure, the values it represents are not. The values comprising the line representing

kOFF = 0.5 are all 5 times smaller than those data points in the line representing kOFF =

2.5. In the extreme region of kON/kOFF → 0, this results in kON approaching zero 5 times



156 C H A P T E R 4 . N OV E L D E S I G N

quicker. This phenomenon is present in the region of kON/kOFF → 0 because the rates are

too small to cause a significant offset.

For small values of kON the transition becomes less instantaneous. Figure 4.3.16A is

a modified version of fig. 4.3.5, highlighting how aφ can be defined in terms of the area.

Since the integral of ω dictates the magnitude of the resulting latax, the centre point of the

integral denotes the angle. The latax direction aφ can thus be defined as

aφ := AON = AOFF (4.63)

or

aφ :=
∫ aφ

φON

(ω0 −ω(φ)).dφ =
∫

φω0

aφ

(ω0 −ω(φ)).dφ (4.64)

where

φω0 | fOFF(φω0) = ω0 (4.65)

While this does not simplify the procedure for arbitrarily complex switching functions,

this representation of aφ is useful for explaining the inflection phenomena for small values

of kON shown in figure 4.3.15. For normal values of kON shown in fig. 4.3.16A there will

be some offset between aφ and φB. As kOFF decreases, the bias on function gets slower

and aφ increases so that the areas on either side remains balanced. There eventually comes

a critical point, represented in fig. 4.3.16B where any further decrease of kON requires that

aφ decreases in order to keep equal areas either side.

Transition functions longer than rotation period τ

While the previous sections have all considered the latax of the system from one revolution,

there might be an instance in which the duration of the switching functions is significantly

longer than τ . In this case, the system must be left under the influence of the switching

functions for multiple revolutions and the latax sampled over as many revolutions as it

takes to activate and deactivate the bias. To consider the offset of the biases over multiple

rotations, φB will still be used, but the location of φON and φOFF will be superimposed

onto a singular τ window. Figure 4.3.17 shows an example system where the switching

functions are significantly longer than the duration of one rotation, meaning the system un-
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( A ) Normal kON

( B ) Small kON

F I G U R E 4 . 3 . 1 6 How offset of aφ from φB can be interpreted from integrals of ω(φ)

dergoes 4 full rotations before the bias is fully engaged then fully disengaged. Computing

the resulting latax from this system using the numerical method is functionally identical

to the previous cases except that the integrals are evaluated over all of the rotations. Due

to the commutative nature of integrals, the rotations can either be considered individually

and then compiled at the end or considered as one full episode. The main difference for a

bias over multiple rotations is that the magnitude of the latax is considerably lower, since

the system spends longer in the slower, bias spin state ωB.

F I G U R E 4 . 3 . 1 7 Example ω(φ) when the switching duration is longer than τ
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Any fully symmetric rotations can be completely neglected from the perspective of

analysing latax, as symmetrical rotations have no contribution to the net impulse. Figure

4.3.18A shows an ω(φ) signal which has been constructed with one entirely redundant bias

rotation during the bias, highlighted in red. In this figure, when φ ∈ [4π,6π], ω(φ) = ωB

which results in no net contribution to the impulse. The only purpose this section serves

is to increase the time taken for all rotations in the bias, Στ . The spin signal ω(φ) should

be designed without this detriment, and a suitable alternative such as that shown in fig.

4.3.18B, should be used instead. The result of eliminating this redundant section is evident

from the latax results in the captions of figure 4.3.18: eliminating the redundant rotation

reduces the total time from Στ = 14.46 to Στ = 10.46 and the total acceleration is therefore

increased from ã = 0.028 to ã = 0.039. This change in time of 4s also agrees with theory,

since ωB = π/2[rad.s−1] over one complete revolution takes 4s.

( A ) Στ = 14.46, ã = 0.028 aφ = 3.91 ( B ) Στ = 10.46, ã = 0.039 aφ = 3.91

F I G U R E 4 . 3 . 1 8 Unnecessary rotations during bias increase τ reduce effective latax

4.3.4 Design parameters affecting bias manoeuvre

This section discusses the design parameters available to the designer, which can be

modified to affect different aspects of the bias manoeuvre. The main aspects of the bias

manoeuvre which a designer would desire to control are the switching time to the biased

speed TON and switching time to the unbiased spin speed TOFF , as well as the biased roll

rate ωB itself. It is desirable to have the shortest TON and TOFF possible as this allows

the highest fidelity control and therefore more bias manoeuvres for the whole flight. Both
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switching speeds and ωB depend upon the relation between the torques acting on the front

section. The acceleration from friction in the bearing τF,A and deceleration from the roll

damping moment. The net torque from resolving these contributions about the bearing

will cause the front section to accelerate, which affects TON and TOFF , but also a variation

between them causes equilibrium to be reached at a different roll rate, which affects ωB.

From chapter 3, the friction torque from the bearing is given by

τF,A =
1
2

ρSD CA0 sgn(pA − pF)(ks + kv|pA − pF |) (4.66)

and the spin damping moment, assuming the entire contribution comes from the forward

section with the asymmetric aerodynamic features, is given by

MlP =

(
q̄SD2 pF

V

)
ClP (4.67)

From these equations is can be seen that the friction in the bearing τF,A is a function of the

the total body longitudinal coefficient CA0, the static friction coefficient ks, viscous friction

coefficient kv and the spin section discrepancy pA − pF . The spin damping moment MlP is

a function of the spin damping coefficient Cl p and forward spin rate pF .

Figure 4.3.19 shows the relation between τF,A(CA0,ks,kv,(pA − pF)) and the negative

MlP(Cl p, pF) as a function of front spin rate pF . The spin damping moment will always

produce a torque opposing the spin direction of the front section, hence it will always be

negative. However on the figure, it is plotted as a positive, so that its absolute value can

be more easily compared with the bearing friction. In addition, one would conventionally

think of friction as an adverse and so negative force, however in this system it is the

driving force keeping the front section spinning in the desired direction and is hence,

positive. Another behaviour of note from fig. 4.3.19 is the magnitude of the bearing

friction. When the front and aft section spin rates are equal, there is no friction in the

bearing because there is no spin discrepancy; this is evident on the figure where τF,A = 0

where pF = pA. If pF < pA, then the bearing friction will be positive, since it is acting

to accelerate the front section. Conversely if somehow pF > pA, then the bearing friction

would act to slow the spin rate of the front section. As one would logically expect for the

spin damping moment, the figure shows Ml p > 0 ∀ pF > 0
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F I G U R E 4 . 3 . 1 9 Relationship between torques which affect bias manoeuvre

When the spin damping and bearing friction torques are in equilibrium (τF,A(pF) =

MlP ) it is possible to solve for the equilibrium forward spin rate; which is by definition the

bias speed ωB. So pF = ωB when the equation

1
pF

sgn(pA − pF)(ks + kv|pA − pF |) =−V D
Cl p

CA0
(4.68)

is satisfied. This coincides with the value of pF on fig. 4.3.19 where the lines intersect.

The result of the system evolving under these forces is shown in fig. 4.3.19B, which is a

MATLAB output representing the depiction of fig. 4.3.5 (pg. 147). Here it is apparent

that the time it takes after the bias manoeuvre has begun, until the system reaches the new

equilibrium speed ωB is the time, TON .

As stated however, the torques τF,A(CA0,ks,kv,(pA − pF)) and MlP(Cl p, pF) are both

functions of variables which are available to the designer to alter to effect a change in the

behaviour of the bias manoeuvre. The adjustable parameters from the torque equilibrium

are CA0, ks, kv and Cl p. Since the net torque causes the acceleration it is obvious that the

acceleration can be changed by altering the mass and thus mF is also a design variable. It

is now possible to vary these parameters and observe how the response changes, such that

designers know how the parameters should be tuned in relation to one another to achieve

the desired effect.

Firstly, by varying Cl p we can observe the change in behaviour shown by fig. 4.3.20.
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We can see from fig. 4.3.20A that varying Cl p only alters the spin damping moment, as

expected. In addition, as Cl p increases, the equilibrium point is reached at a lower frontal

spin rate. This is because an increasing Cl p means the spin-damping moment is greater

by a proportional increase, thus it can counteract a larger bearing friction before being

opposed completely. The spin rate response can be seen in fig. 4.3.20B, whereby and

increasing Cl p causes the spin rate to tend towards incrementally lower equilibrium ωB

values. However, the increase in Cl p causes no significant decrease in response time TON

beyond what one would expect the system to achieve from simply tending towards a lower

target speed. This is because the force and therefore acceleration increases proportional to

the variation of Cl p.
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F I G U R E 4 . 3 . 2 0 Effect of varying Cl p on torque equilibrium and spin response

Next, fig. 4.3.21 shows the effect of varying the bearing friction coefficients. The

friction is varied here simply by doubling the respective static (ks) and viscous (kv) coeffi-

cients. Only the bearing friction moment varies, as can be seen in fig. 4.3.21A. Logically,

an increase in friction coefficients induces a greater restorative torque for a greater roll rate

disparity. Similar to the variation of fig. 4.3.20A, it can be seen that increasing the friction

coefficients leads to a higher equilibrium roll rate ωB. However, from fig. 4.3.21B we can

see that decreasing the friction coefficients results in a lower magnitude equilibrium spin

rate ωB, but also increases the time taken (TON ) to reach it when compared to the response

rates of fig. 4.3.20. This is because increasing the coefficients affects the equilibrium state

as well as the motion of the spin speed moving towards the equilibrium state.
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F I G U R E 4 . 3 . 2 1 Effect of varying bearing friction coefficients ks & kv on torque equilibrium
and spin response

Finally, we can investigate the effect of modifying the front section mass, mF . Because

neither τF,A(CA0,ks,kv,(pA − pF)) or MlP(Cl p) depend on the mass, there is no effect on

the torque equilibrium and as such, they are omitted. However, the resulting acceleration

from resolving torques is affected and this is shown in fig. 4.3.22. As expected, the

equilibrium spin speed ωB is unaltered, however the switching time TON is altered. As

mF increases it is apparent that TON increases, which is logical following the decrease in

acceleration caused by the F = ma relation.
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F I G U R E 4 . 3 . 2 2 Effect of varying front section mass mF on spin response

In summary, it is apparent that it is highly desirable from a control fidelity perspective

to keep mF as low as possible, to shorten the switching time in the bias manoeuvres. If the
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designer needs to lower the bias speed ωB, then it is advantageous to do this by increasing

Cl p, rather than by decreasing the bearing friction as there is no associated increase in

switching time. It is likely that the bearing friction will be fixed out of necessity, using

which ever bearing technology is suitable for this use, and then achieving the maximum

possible Cl p permitted by the geometry restrictions. This of course assumes that Cl p is not

a function of pF . However, Cl p is a function of V , and since both V and pF are intrinsically

linked, Cl p will likely be a function of pF in much the same way CD is a function of V .





Chapter 5

Guidance Laws

A traditional control architecture includes the projectile, with the accompanying actu-

ator and body dynamics. The dynamic equations of motion governing the projectile

and target are shown in chapter 3, which are implemented in simulations to emulate the

real-world and test any proposed solutions. The actuator dynamics describe the operation

of the physical hardware which enacts the controlling manoeuvres, and any simplifications

which are made to the models. The actuator dynamics describe the transform between

the controller input, for example an applied voltage, and the output, such as the missile

latax. In §4.3 it was shown how the actuator dynamics are in this instance, combined

into an overarching actuation mechanism. This additional step describes how the discrete,

instantaneous latax can be viewed as continuous across consecutive roll rotations. The GL

is responsible for deciding what latax is actually demanded of the projectile to successfully

hit a target. The GL will consider things such as minimising controller effort, actuator

saturations, target movements, impact angles etc. which were discussed in depth in §2.4.

Firstly, a Methodology is described whereby a Monte Carlo simulation is used to char-

acterise aspects of the trajectory for a meaningful comparison of the GLs against desirable

flight behaviour. The description of the velocity-based actuation mechanism in the pre-

ceding chapter naturally leads to a bespoke GL, whereby the bias points are kinematically

linked to a velocity change of the system. This bespoke GL is discussed in detail, the para-

meters it contains and their effect on the system response are investigated in a parametric

study and finally, these parameters are optimised using a genetic algorithm. The bespoke

∆V based GL can be modified to include the time taken for a rotation and thus demand a

165
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latax instead of a ∆V . This can then be used in conjunction with the acceleration-based

actuation mechanism considerations to provide more options for future implementations.

A brief description of artificial intelligence and machine learning algorithms is then given.

The most applicable and promising ideas are then proposed with a scenario for implement-

ation. The reward function used to train the RL agents is then explored in depth and the

reward space is explored. The agents are trained according to this reward function and

their performance is analysed using the Monte Carlo methods described at the beginning

of the chapter.

5.1 Monte Carlo batch analysis

To verify a GL is producing a satisfactory level of correction and also compare the per-

formance of different GLs against each other, a Monte Carlo Simulation (MCS) procedure

is defined here. This procedure runs a MCS with the projectile and target each being

initialised with different speeds and positions in the picture plane. The projectile will then

approach the target in the picture plane as dictated by a given GL. The approach behaviour

and terminal miss distance after time has elapsed can then be quantified numerically and,

under the assumption of large numbers, be compared meaningfully.

Table 5.1 shows the range in which the parameters can be randomised upon initial-

isation, unless otherwise explicitly stated. Once the projectile and target are initialised

with randomised speeds and positions the simulation runs for a fixed time of 50s, unless

otherwise specified. This time is completely arbitrary, but was specifically chosen to be

sufficient to allow the projectile to close on the target given the maximum initial distances

and also to hold a sufficient duration to observe the approach behaviour dictated by the

chosen GL.

Each simulation produces a system response, a plot of radial miss distance against

time, which is then normalised against the random initial distance. Multiple MCSs are run

in a ‘batch’. The average system response for a batch is formed by averaging the system

responses for each individual simulation in the batch. Increasing the batch size results in

an average system response which is sampled over a larger number of simulations and is

thus more representative of the true system performance. If the average system response is
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Parameter Value (stationary) Value (Moving)

(x0,y0) [−100,100] [−100,100]

(u0,v0) (0,0) [−1,1]

(φ0) [0,2π] [0,2π]

(xT0,yT 0) [−10,10] [−10,10]

(uT 0,vT 0) (0,0) [−1,1]

TA B L E 5 . 1 MC initialisation values

compared for multiple batches of the same size, the maximum discrepancy between them

is inversely proportional to the batch size; i.e. if a batch size is larger, there should be less

variation in batch mean if the same batch size is run repeatedly. The demonstrate this, the

projectile GL is set to move at 1m.s−1 radially towards the target, then at 0m.s−1 once

it is within 1×10−3m. Figure 5.1.1 shows the maximum discrepancy in average system

response against time, for multiple batch sizes. For each batch size: 102, 103 simulations

per batch etc., five batches are run. The Normalised error at each point in time is compared

across all five batches of the given batch size and the maximum difference is plotted on

the figure.

0 10 20 30 40 50

Time [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M
a

x
 B

a
tc

h
 D

if
fe

re
n

c
e

102

103

104

105

Batch size

F I G U R E 5 . 1 . 1 Instantaneous miss distance discrepancy between five batches of varying batch
size

All batch sizes on the figure start with the same zero error, since the error curves which

are being averaged are normalised, they each begin at their respective maximum error. In



168 C H A P T E R 5 . G U I DA N C E L AW S

addition, the same GL parameters are used in every simulation across all batch sizes, so

the terminal error reduction capabilities produce the same steady state error in all cases;

assuming of course the GL is in fact stable and that there is sufficient time in the simulation

to allow a convergence. This results in the maximum error difference being small at the

beginning and end of every batch. Table 5.2 shows the peak error difference, total integral

error and computation time for each batch size. A batch size of 104 was chosen as the

optimal trade-off between peak difference and computation time. While a batch size of

103 produced an integral error of the same magnitude as 104, the peak difference was

unacceptably high.

Batch Peak Difference Integral Error Time

102 15.56% 2.95×104 13 mins

103 4.70% 7.16×103 2 hrs

104 1.43% 2.90×103 22 hrs

105 0.42% 6.88×102 9 Days

TA B L E 5 . 2 Maximum error against computation time

The system response of each individual simulation is normalised against the initial

distance error, which was in turn randomised at the beginning of each simulation. The

instantaneous normalised error for and individual simulation, εt is given by

εt =
dt

d0
(5.1)

The integral error of the normalised system response is thus given by

ε =
∫

τ

0
εt .dt (5.2)

By integrating the whole system response in this way, the system response for different GL

configurations can be numerically compared. The size of the steady state error amplitude is

small compared to the initial and transient error amplitudes. Thus, εm is representative only

of the initial convergence and transient errors. However, the error amplitude of overshoots

are significant compared to transient error amplitudes, thus overshoots will be detected

by the integration. Likewise, the ‘batch average integral’ error, ε̂ , can be computed for a
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batch size M as

ε̂ =
M

∑
m=1

εm

M
(5.3)

where εm is the normalised integral system response (ε ) of MCS m. This value allows

a direct and meaningful numerical comparison of batches with different GL parameter

configurations.

5.2 Bespoke ZEM-based GL for ∆V actuation mechanism

As was shown in §4.2.2, VDR0 is the change in velocity needed to bring the projectile to a

stable, circular orbit relative to the target motion in the picture plane. However, with this

speed alone the projectile will never actually approach the target. We thus define the term

VPT (d), which is the closing speed of the projectile to the target as a function of its current

distance. This is analogous to the latax which would be demanded by a traditional GL, i.e.

it is the speed at which the guidance method dictates the projectile should approach the

target. Again, analogous to a traditional system, the velocity demand of the autopilot will

be a linear combination of the term required for equilibrium and the term demanded for

projectile closing:

VDem =VDR0 +VPT (d) (5.4)

The bias points for VPT (d) are calculated at a distance di when the force vector is

located at φ = 0. Since the system can only change velocity during a roll rotation, the

system won’t reach the target speed until one full rotation has elapsed after it was calcu-

lated. The system will thus reach VPT (d) not at di, but at di+1. The function VPT (d) will

need to account for this lag in the system. Importantly, the function must demand speeds

which remain within the capabilities of what the system can correct, instead of being a

further source of overshoot or error. The projectile will constantly adjust its speed to match

the VPT (d) function. While there may initially be a high-speed discrepancy between the

current and demanded speeds, over time the current speed will converge to the demand.

In addition, the bias manoeuvres could be turned off entirely at very large distances when

a certain speed cap has been reached. This is so there is no unnecessary demand on the

actuator, as well as avoiding causing the system to reach very high speeds which it is
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unable to recover from the event of suddenly changing system dynamics.

From §4.3, the maximum permitted ∆V of the most simplistic system from one bias

manoeuvre is 0.955ms−1 and the time it takes to complete this is 2.5s, both theoretically

and experimentally. This leads to an acceleration of 0.382ms−2. By assuming the max-

imum correction that can be made at each step, the maximum permitted relative speed for

a given distance can be calculated as

Vlim(d) =

√
2d

∆VMax

t∆VMax

(5.5)

As mentioned above, this speed is what the projectile should have at the current distance di.

However, the system only reaches this speed one full rotation after it has been designated

as the goal, at which point it will actually need to have assumed some lower velocity

VPT (di+1) at this new closer distance di+1. This is shown in figure 5.2.1. The dashed

black line shows Vlim(d) at every d as described by equation 5.5. Every check mark on

the figure indicates a specific coordinate when φ = 0 and the bias angles were calculated.

Fig. 5.2.1 shows the system response when VPT (d) =Vlim(d) if the projectile is initialised

with [x0 y0 VR0] = [200 200 11]. These initial values are arbitrary but show the system

response over a significantly large distance. The solid blue line shows what the controller

demands the speed to be at that given value of d, which matches the speed limit by design.

The result of this lag is that the system constantly exceeds the speed limit and is thus

unable to bring itself to an orbit in time, overshooting the target. Note that by definition,

if the projectile overshoots Vlim(d), the intrinsic speed limit, at any point in the trajectory

there will be an overshoot error.

Figure 5.2.2 shows how the resulting closing speeds change if the goal speed is mod-

ified by a multiplicative factor k, such that the final function is of the form VPT (d) =

Vmax(kd). The value used in the figure is k = 0.7, but this is arbitrary for demonstration

purposes. The same initial conditions are used as in fig 5.2.1. The system still exceeds the

goal speed, as it still achieves the speed it was supposed to on the prior rotation. However,

Vlim(d) is never exceeded meaning there will be no overshoot of the system. The optimal

closing velocity function will be designed such that the overshoot of the system perfectly

follows Vlim(d). In other words, this means that the actual system response following the
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F I G U R E 5 . 2 . 1 System response when VPT (d) =Vlim(d)

lag caused by the roll rotation, is always at a point where it can be corrected in time so

that there is no overshoot.

F I G U R E 5 . 2 . 2 VPT (d) when the target speed is set to Vmax(kd), for k = 0.7

Figure 5.2.2 uses a scale factor to adjust VPT (d), but a translation is required for op-

timum performance since the lag which causes the overshoot is directly proportional to the

function (velocity) itself, rather than have a quadratic, cubic or other dependence. Figure

5.2.3 illustrates this modification to VPT (d), adding an external vertical displacement term,
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instead of the internal multiplicative factor that was shown in fig. 5.2.2. Since the error is

proportional to the function itself, or the speed of the projectile, it is logical to append the

linear term externally rather than internally in the function. Translating the function in this

way is analogous to DC Gain correction. Importantly, the figure now shows a consistent

change in the system response along the whole path, rather than just the initial distance i.e.,

the system response is more uniformly close to VLim, as opposed to the large discrepancy

shown in fig. 5.2.2. Again, this modification is made with the intention that the system

response at no point exceeds the system limit, which would have resulted in an overshoot.

The linear translation constant ξ is incorporated into the closing speed term as

F I G U R E 5 . 2 . 3 Idyllic system response for chosen VPT (d)

VPT (d) =Vlim(d)−ξ , ξ ∈ R≥ 0 (5.6)

where ξ is a constant such that VPT (d) =Vlim(d)−ξ | VR(d) ̸>Vlim(d). In translating the

function in this way, the closing speed is undefined when d ≤ d1 where d1| (Vlim(d1)−ξ =

0). As such, the function Vlim(d)−ξ is only valid for d ∈ (d1,∞] and must be defined by

other means for d ∈ [0,d1]. Using the value of Vlim(d) from eq. 5.5 we can write

Vlim(d1)−ξ = 0

∴

√
2d1

∆VMax

t∆VMax

−ξ = 0
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which, using the value of VMax for the simplistic system from eq. 4.13, becomes

√
4d1Fc

m.t∆VMax

(
ω0 −ωB

ω0ωB

)
−ξ = 0

Solving this equation for d1 yields

d1 =
m

4Fc
t∆VMaxξ

2
(

ω0 −ωB

ω0ωB

)−1

(5.7)

The motion of the projectile within this region (d ≤ d1) is split into different regimes,

to enforce desired behaviours of the projectile. Firstly, the projectile must remain relatively

stationary when it is on course to hit the target. The distance d2 is arbitrary, but is chosen

to represent the desired level of precision for the projectile; so VPT (d) = 0 ∀ d ∈ [0,d2].

Secondly, a region is defined where the projectile takes small steps toward the target in

anticipation of either stopping or accelerating by a larger amount. This is represented by

VPT (d) =Vk ∀ d ∈ [d2,d1] where d2 < d1 and Vk is a constant speed. Actuator and resource

preservation is the priority in this region, where it is likely the projectile will remain for

the majority of the flight, correcting small drift errors. In its entirety the function VPT (d),

and thus the GL, in the range [0,∞] is given by

VPT (d) =




Vlim(d)−ξ

Vk

0


∀ d ∈





d1 ≤ d

d2 ≤ d < d1

0 ≤ d < d2

(5.8)

Figure 5.2.4 shows an example system response with annotations showing the different

regimes governed by equation 5.8. VPT (d) =Vlim(d)−ξ is the closing regime, VPT (d) =

Vk is the linear regime and VPT (d) = 0 is the stationary regime. In addition, the aspects

of the steady state error are the transient, the steady state amplitude and the oscillation

amplitude. The transient is also the motion of the projectile in the linear regime; a faster

Vk provides a faster transient speed. The steady state amplitude can be thought of as the

distance d of the ‘orbital centre’ from the target. The oscillation amplitude and oscillation

frequency is governed by Fc, ω0 and ωB; neither can be affected by modifying Vk or ξ .



174 C H A P T E R 5 . G U I DA N C E L AW S

These oscillations are caused by the orbit described above, if the orbit locus coincides

with the target then there will be no oscillations. However, any small perturbation offsets

the orbit loci and thus increases the amplitude of the steady state error. If the steady

state oscillation continues then the orbit is stable, and the projectile is remaining in the

stationary regime. If the steady state has another, lower frequency oscillation, the orbit is

unstable. This is caused by the linear regime velocity Vk being too great for the current

d2, causing the projectile to pass straight through the stationary regime. N.B. the regimes

are governed by d and so the vertical lines representing them on figure 5.2.4 should be

horizontal; this was done to aid interpretation.

F I G U R E 5 . 2 . 4 System response to GL eq. 5.8

Figure 5.2.5 shows a diagram of how Vlim is modified in the GL to account for the

system response lag. Vlim acts as the reference signal which the GL then modifies using ξ ,

according to the parameters of a given system. The closing speed function VPT (d) is then

passed to the autopilot, which calculates the change in speed per revolution demanded from

the projectile’s actuator mechanism VDem. The VDem can then be passed through a chosen

controller H, such as a PID. The VDem which has been modified by the controller H is then

passed to the actuator mechanism which saturates the signal such that VDem ∈ [0,∆Vmax].

N.B. Vmax is an absolute limit of the system resulting from the maximum bias angle half

of one roll revolution, rather than the characteristics of a physical hardware actuator. If

VDem >VMax the system will saturate and will only be able to deliver VMax. As such, any

H > 1 when the autopilot is already demanding VPT = Vmax will have no effect on the

system whatsoever.

The sensor block shown in fig. 5.2.5 represents the sensor dynamics of the system
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F I G U R E 5 . 2 . 5 Modification of Vlim for speed controller with velocity feedback

which are assumed in the idyllic system to be perfect and instantaneous. For practical

implementation, conventional onboard sensors or an external detection system could be

used to measure the roll angle, similar to that described in [194]. If space restrictions

permit, onboard image sensing hardware could be used [77]. Linear ballistic theory could

also be used to estimate the change in roll rate of the projectile along the trajectory beyond

what is known from projectile launch and then used to supplement the information from

the sensors.

5.2.1 Parametric studies and investigations

The above discussion has shown how the velocity-based mechanism and controller closing

speed rely on the parameters Vk, ξ , d1 and d2. This section explores the effect of these

parameters and conducts a parametric study and optimisation on them where applicable.

It is emphasised again that d2 is a completely arbitrary value, chosen by the designer to

represent the desired degree of accuracy for the system, below which the velocity controller

demands a stationary hold to ensure the projectile hits the target. The parameter d1 is the

distance at which the closing velocity function becomes ill-defined at the boundary of the

closing regime, d1 | (Vlim(d1)−ξ = 0). As a result, the values d1 and d2 are omitted from

the optimisation process. The study uses the most simplistic system with instantaneous

switching.
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Parametric investigation

Figure 5.2.6A shows how modifying ξ to extreme values affects the system response.

The projectile and target are initialised at rest with [x0 y0 xT 0 yT 0] = [0 0 8 8] and the

simulation is run for 50s. When ξ = 0, the system response exceeds Vlim which was the

case in fig. 5.2.1; leading to a large overshoot and oscillatory motion where the projectile

closes with a speed which is too high. The purpose of ξ is to translate the speed limit

down. Any negative value of ξ would increase the demanded speed above the limit, which

is counter-intuitive and is therefore omitted from the figure. For low values, 0 < ξ < 1,

the error is reduced quickly with a low amplitude steady state error and no higher order

oscillations. High values, ξ ≥ 1, produces a large amplitude steady state error.
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F I G U R E 5 . 2 . 6 How extreme values of ξ affect the system response

Figure 5.2.6B shows three example trajectories which correspond to the extreme values

of ξ from fig. 5.2.6A. The high steady state error for large ξ is represented by the projectile

being brought to rest too far from the target. The high amplitude decaying oscillations in

normal error for ξ = 0 are visible as the projectile overshoots the target by a large margin.

This is caused by too high a speed being demanded and the projectile is unable to reduce

its speed in time due to the system lag. For low values of ξ the projectile is brought

sufficiently close to the target to initiate a regime change.

Figure 5.2.7 shows the effect of modifying the linear regime constant velocity Vk. All

speeds initially follow the same error reduction path, from t = 0 to t = 12. This is the

range governed by VPT (d) = Vlim(d)− ξ and thus modifying Vk has no effect. If Vk is
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sufficiently small, as the projectile transitions from the linear velocity to the stationary

regime, the orbital centre is brought to rest very close to the boundary of the stationary

regime, d2. This results in a higher amplitude steady state error than if the velocity was

high enough to reduce the distance to d → 0 before it was brought to rest. This is apparent

from the figure, as an increasing value of Vk results in a lower amplitude of steady state

error, up to the point that Vk is too high resulting in an overshoot. The optimal Vk is a trade

off with d2 to deliver the orbital centre sufficiently close to the target before switching to

the stationary regime.
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F I G U R E 5 . 2 . 7 How varying Vk affects transient and steady state error

In this case for Vk = 0 the linear regime vanishes, merging with the stationary regime

i.e. VPT (d|d ∈ [0,d2]) = VPT (d|d ∈ [d2,d1]) = 0. The result of this is that the projectile

enters the stationary regime at a distance d1 and this is apparent from the figure, with a

steady but large magnitude steady state error. For low values of Vk the transient is very

slow, but the amplitude of the steady state error is small. For medium values of Vk, the

most desirable system behaviour can be observed. There is a very quick transient period

followed by a low steady state error amplitude. For high values of Vk there is an unstable

switch between the linear and stationary regimes, caused by a sufficiently high overshoot

to exceed d2.

Figure 5.2.8 shows the effect of modifying the boundaries of the linear regime, d1 and

d2. While d1 is determined after a value of ξ has been selected, since d1| (VPT (d1)−ξ = 0),

it is varied manually here to illustrate the impact. Likewise, d2 is selected based on the

chosen level of accuracy of the system. If the boundaries are set to be equal, d1 = d2, then
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there is no linear regime, it is bypassed completely, and the velocity is brought to relative

rest immediately. This leads to a large steady error, as was the case for low values of ξ

and Vk. The steady state oscillation amplitude is the same as for any other case, since

Fc, ω0 and ω1 remain unmodified. If d2 is small, then the projectile gets closer to the

target before switching to the stationary regime. When d2 is sufficiently small it becomes

significant compared to the distance that can be travelled by the projectile travelling at

speed Vk during the time for one complete roll rotation. This results in an unstable steady

state oscillation from overshooting, where the projectile continuously switches between

the linear and stationary regime, which is indicated by the late regime termination on the

figure. Desirable system behaviour is observed from the ideal duration on the figure, with

a steady transient from the dynamic to the stationary regime followed by a stable steady

state oscillation. With an early regime activation, the speed demanded of the projectile is

significantly lower than Vlim(d), resulting in a transient period significantly longer than in

the other cases.
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F I G U R E 5 . 2 . 8 How varying linear regime boundaries affects transient and steady state error

The steady state amplitude for early regime activation is lower than the ideal scenario,

which is not expected since the lower bound of the linear regime is the same for both

simulations. The stationary regime governs all d < d2, which describes a circular area

around the target of radius d2. Since the projectile only calculates the bias points when

φ = 0, the projectile will switch regimes at a different point depending on where the first

bias calculation takes place within d2. Small deviations in trajectory can thus cause a

discrepancy in steady state amplitude, though the oscillation amplitude will remain the
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same in all cases. This discrepancy must be mitigated by averaging a large number of

simulations.

Heuristic variation

Before conducting any optimisation process, it is advantageous to conduct a preliminary

manual sweep of the candidate parameters. For the variation of the parameters, the accur-

acy level of the system is chosen to be d2 = 0.1. The value of d1, can be computed after

the values of ξ and Vk are found.

Figure 5.2.9 shows the effect of varying ξ on the normalised error. In all cases, any

value of ξ provides the same initial error reduction rate up to approximately 25s. In this

region the projectile is constantly accelerating at Vmax in order to reach the target speed

designated by VPT (d)− ξ . When ξ = 0.9 the steady state error is too large to provide a

convergence to the stationary regime. For ξ = 0.8 the transient is slow but is does converge

to the stationary regime. A small overshoot is present for ξ = 0.6 and a large overshoot

is present for ξ = 0.5. The quickest transient and lowest steady state error is found for

ξ = 0.7.
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F I G U R E 5 . 2 . 9 Variation of ξ on normalised error

Figure 5.2.10 shows a close-up of the linear and steady state regimes for varying

values of Vk. A value of Vk = 0.06 provides the slowest transient but the lowest steady

state amplitude. When Vk = 0.14 the transient is fastest but there is also a small overshoot,

increasing the steady state amplitude slightly. All other values of Vk provide a consistent

transient with no overshoot and similar steady state errors. This indicates that Vk = 0.14 is

the maximum closing speed for the current system where there is no significant induced

overshoot.
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F I G U R E 5 . 2 . 1 0 Variation of Vk on normalised error

From the above analysis, the modification parameter and closing speed are ξ = 0.7

and Vk = 0.1 respectively. This value of ξ is then used as above to calculate d1 from its

definition in eq. 5.7. This becomes

d1 =
1
4
×2.5× (0.7)2

(
2π − (π/2)

2π(π/2)

)−1

≈ 0.64

Using the values [ξ Vk d1 d2] = [0.7 0.1 0.64 0.05], the heuristic closing function can be

written as

VPT (d) =




Vlim(d)−0.7

0.1

0


∀ d ∈





0.64 ≤ d

0.1 ≤ d < 0.64

0 ≤ d < 0.1

(5.9)

Implementing PID controller

Figure 5.2.5 included a block H which represents the chosen controller for VDem. A PID

controller is used to investigate the effect of controlling VDem with conventional methods,

as it may reveal system behaviour that was otherwise unobvious from the previously

discussed framework. The MATLAB algorithm for executing the GL first calculates the

VPT (d), then VDem given information from the simulated sensors. The bearing of the target

from the projectile in the YZ plane is then calculated using the same information and VDem

is then decomposed into the YZ axis giving [uDem vDem]
T. This vector is then modified by

the chosen controller and exported to the actuator block which calculates the bias angles

using the ∆V method discussed in chapter 4. This means that one controller can act on both

channels simultaneously or two controllers could act separately on each channel. Since
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the environment is simplified to a point of planar symmetry, one controller is chosen to act

on both channels simultaneously. If external forces are introduced into the environment

then two controllers would be better suited to account for forces which are biased to one

direction, such as gravity. Using two controllers requires re-normalising the signal so

any gain applied to one channel isn’t lost during saturation by the actuation mechanism.

Figures 5.2.11, 5.2.12 and 5.2.13 show the effect of individually altering the proportional

kP, integral kI and differential kD gains for the PID controller. For each gain value, a batch

size of 104 MC simulations are run against static targets.

In fig. 5.2.11, kI = kD = 0 while the value of kP is varied for the values shown on the

figure. This value directly scales the VDem that is sent to the actuator. Any kP < 1 results

in a VDem which is lower than what the system is capable of delivering without overshoot.

This is visible on the figure for the gains of 0.8, 0.6 and 0.4, with each successively lower

gain taking increasingly more time for the projectile to close the distance sufficiently to

being an orbit. For kP > 1 the value of VDem will regularly be scaled beyond Vlim. As a

result, the projectile will have too high a velocity and while it will reduce the error quicker,

it will also over shoot and never be able to reach steady state. This is visible for gains

of 1.2, 1.4 and 1.6 on the figure. There is little difference between the gains for kP > 1

since VDem saturates and there is no difference between the effective demand of each gain.

The proportional constant is effectively scaling Vlim. As was previously discussed, Vlim

requires a translation transformation which is provided by ξ , instead of the linear scaling

provided by kP. A linear scalar cannot evenly map the system response to Vlim and thus

varying kP is only detrimental.
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F I G U R E 5 . 2 . 1 1 Effect on normal error for different Proportional Gain kP

To observe the effect of varying the integral error, the MC simulations are run with
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kP = 1, kD = 0; the results are shown in fig. 5.2.12. The integral error term keeps a history

of error from the beginning of the simulation. As the integral term increases so does the

factor by which VDem is multiplied with the factor itself being multiplied by kI . Since the

error of this system to begin with is initially large, the integral term quickly grows too

large and saturates VDem. This is visible on fig. 5.2.12 as any value of kI shows a projectile

overshoot where there is a consistent VDem =Vlim.
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F I G U R E 5 . 2 . 1 2 Effect on normal error for different Integral Gain kI

In fig. 5.2.13, the simulation is run with kP = 1, kI = 0 for all values of kD shown on the

figure. The differential term takes the rate of change of error at each step in the simulation,

multiplied by kD. The differential term will initially be low as the relative speeds are low.

As the projectile reduces error and closes the distance, the differential term will increase

and has the effect of increasing the time it takes for the projectile to begin decelerating.

As a result, the projectile will overshoot the target, by a smaller margin than was present

when modifying kI . A value of kD = 0.05 on fig. 5.2.13 shows the projectile reduces error

quicker than the unmodified kD = 0. As predicted however the projectile does overshoot

causing a large initial steady state error. To investigate the effect of small kD further, the

simulation is run again for a smaller and narrower range of kD, shown in fig. 5.2.14.
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F I G U R E 5 . 2 . 1 3 Effect on normal error for different Differential Gain kD
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All values of kD provide a slower response in the regime governed by Vlim(d)− ξ .

In the linear regime transient, all values of kD correct this error discrepancy to a point

where all values reconverge to the same error at the same time. In the stationary regime,

all values of kD induce an unstable steady state error, indicating the constant switching

between Vk and 0 as the projectile oscillates about the boundary point d2. This is caused

by Vk + kD.V̇k being too great and preventing a convergence. However, while kD = 0.01

still has an unstable steady state error, it is on average a lower error than using kD = 0,

though this could be an inconsistency from averaging MC simulations. It is apparent
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F I G U R E 5 . 2 . 1 4 Effect on normal error for different Differential Gain kD over a small range

from fig 5.2.14 that while kD is applied to VPT (d) for the whole trajectory, there is only a

benefit in the linear and steady state regimes. The supports the evidence in fig. 5.2.11 and

5.2.12 which indicated any scalar modification to Vlim(d)−ξ causes the system response

to either exceed Vlim(d) causing an overshoot or be sufficiently below it to slow the system

response. This suggests the application of a PID or PD controller is an alternative method

of controlling system convergence characteristics beyond directly modifying ξ , Vk and d2.

Figure 5.2.15 shows the effect of modifying the PID gains, as was shown in section

5.2.1, but instead of using 104 MC simulations per dataset, this figure compares a specific

set of initial conditions to observe the difference in one trajectory. The case shown here

follows the trend seen in section 5.2.1. If kP > 1 the system overshoots and kP < 1 causes

an extended transient. Any value of kI saturates the controller causing a divergence. This

figure shows that any value of kD produces a less satisfactory system response, but section

5.2.1 showed that over a large number of simulations, a small value of kD can be used in

the linear and steady state regimes instead of modifying the GL parameters ξ and Vk.
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F I G U R E 5 . 2 . 1 5 Effect on system response by varying PID controller gains

Fuzzy logic PID controller

To further investigate the effect of kD on the transient and steady state error, a fuzzy logic

scheduler is used to apply kD only in the linear and stationary regimes. The fuzzy rules

are:

• Rule 1: IF d is LOW (d<0.7) THEN kD is ON (kD = 0.03)

• Rule 2: IF d is HIGH (d>0.7) THEN kD is OFF (kD = 0)

The ON membership function is governed by the sigmoid function

S(d) =
1

1+ eκ(d−λ )
(5.10)
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and the OFF membership function is governed by the zigmoid function

Z(d) =
−1

1+ e−κ(d−λ )
(5.11)

where κ is the steepness of the function and λ is the value of d where S(d), Z(d) = 0.5.

Figure 5.2.16 shows the S(d) and Z(d) with the values κ = 10 and λ = 0.07.
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F I G U R E 5 . 2 . 1 6 Output Membership functions

The differential gain value at the output of the fuzzy scheduler, kD,OUT is thus

kD = kD,ON.S(d)+ kD,OFF.Z(d) (5.12)

where kD,OFF = 0 and kD,ON = 0.03. Figure 5.2.17 shows how the fuzzy logic scheduler

is incorporated with the VPT (d) scheduler and implemented in the Simulink code. When

φi+1 < φi, which triggers the calculation of VPT (d) and the bias angles according to the

GL, the current d is fed into the fuzzy logic controller. N.B. the fuzzy logic scheduler acts

concurrently with the VPT (d) scheduler. The fuzzy logic controller calculates a differential

gain kD, which the controller H then applies to the demand of the VPT (d) scheduler.

In this sense, all the intricacies of the VPT (d) scheduler (such as response lag) are still

captured with the fuzzy logic implementation. When the fuzzy controller is implemented

the computation time for one simulation increased by a factor of 300.

Figure 5.2.18 shows the results of using a fuzzy gain scheduler to selectively modify

kD throughout the trajectory. Similar to fig. 5.2.14, the trajectory is unaltered through

the closing regime. Figure 5.2.19 shows a close up of the transition between the closing
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F I G U R E 5 . 2 . 1 7 Illustration of fuzzy kD scheduler implementation

and linear regime. At this boundary, kD.ḋ provides a more significant contribution to

VDem. Since ḋ is effectively constant in this regime, from the perspective of the bias

calculation points, the effect of kD is consistent. Importantly, it can be seen the application

of kD = 0.03 using the fuzzy scheduler provides a faster system response in the linear

regime. While the steady state error amplitude is lower, it is not significantly lower

than the variation present from the MC batch size variation The linear regime response

being faster shows that using a fuzzy equipped PID controller to alter VPT (d) is a viable

alternative to modifying Vk, though it was over 300 times slower to compute when using

the fuzzy controller.
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F I G U R E 5 . 2 . 1 8 Impact of fuzzy kD scheduler on normal error

Genetic Algorithm Optimisation

Genetic algorithms (GAs) are a well understood and proven method of optimising system

parameters and PID controller gains [195, 196, 197, 198]. A GA is chosen as the optim-

isation method here due to this N-dimensional reliability as well as the low number of test

candidates, which is an important factor in this instance because one specific configuration
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F I G U R E 5 . 2 . 1 9 Annotated effects of fuzzy kD scheduler

is evaluated as a batch (shown in §5.1, pg. 166). GAs emulate the process of natural

selection, to optimise an N-dimensional system. A candidate is comprised of N values

for each of the problem dimensions, which have a value within a predefined range. A

population of candidates are evaluated against some function which produces a numeric

output. The candidates that perform well will score highly and the top performers are

selected to enter the next generation. They are then used to re-populate the population

back up to the starting number, and the values which scored highly undergo an artificial

cell division mitosis and mutation stage. The mutation rate is then lowered throughout

the subsequent generations. This evaluation, selection, reproduction and mutation cycle is

continued for all chosen generations until eventually the mutation rate decays sufficiently

that the population is comprised solely of optimum or near-optimum solutions; the per-

formance of which can be seen by the user and thus the optimum solution identified. A

basic genetic algorithm is implemented using the parameters shown in table 5.3.

The algorithm chosen uses a fitness-proportional roulette-wheel-like selection method.

When the population is evaluated, each candidate will have a fitness score or value, e.g. f .

The total fitness of all candidates is given by F = ∑i f . A ‘fitness space’ is constructed

by defining regions in the range [0,F ] such that each region corresponds to a particular

candidate, by linearly appending and summating the fitness of each subsequent candidate

to that preceding it. For example, if f1 = 4, f2 = 5 and f3 = 8 then F = 4+ 5+ 8 = 17.

The fitness space is defined by the range [0,17]; where [0,4], (4,9) and (9,17] correspond
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to f1, f2 and f3 respectively. A random number r is generated following r ∈ [0,F ], such

that the probability of r being in the region of the ‘fitness space’ pertaining to specimen i

is given by fi/F . The larger the fitness function of a specimen, the higher the probability

the random number will land in the corresponding region. Because of this, if a specimen is

chosen in this way it is deemed ‘successful’ in this generational stage and it will be chosen

as a seed for the next generation. If a specimen is chosen, its fitness is removed from the

fitness space so that no duplicate selections can be made.

Parameter Value

Generations G 200

Population size N 100

Mutation chance η 50%

Mutation decay ηλ 0.02

MC Batch size M 104

TA B L E 5 . 3 Range of values for initialisation of MCS

To verify the algorithm is operating as expected, the GA is first tested on a drop-wave

function of the form

f (x1,x2) =−
1+ cos

(
12
√

x2
1 + x2

2

)

0.5(x2
1 + x2

2)+2
(5.13)

which is a non-convex, multi-modal, continuous function with

min [ f (x)] =−1 when x = (0,0) (5.14)

The drop-wave function is shown in fig. 5.2.20. As can be seen from the figure this

is an ideal function to use to test the GA functionality as there are many local minima

in the function, which could easily be mistaken as the global minima to a poorly tuned

GA. While the figure only shows x,y ∈ [−4,4], the GA is tested on the function with

x,y ∈ [−10,10] and a step size of 10−3. The GA converged to the same optimum value

for 10 individual trial runs, to within 3 s.f., verifying the GA can repeatedly converge to a

known optimum solution in the given configuration.

Using this MCS batch procedure, each specimen of each generation within the GA
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F I G U R E 5 . 2 . 2 0 Drop-wave function for x,y ∈ [−4,4]

can now be meaningfully compared such that an optimal solution may evolve. Algorithm

3 shows the order of operations for the GA. The fitness function, FIT, of the GA to be

minimised is simply ε̂ , since this represents the average error over time for many instances

for a particular GL parameter candidate.

FIT = ε̂ (5.15)

The normalised integral error of the system response for the mth MCS follows from eq.

5.2 as

εm =
∫

τ

0
εt .dt (5.16)

Likewise, the mean normalised integral error of system response for a MC batch of size

M for specimen n follows from eq. 5.3 as

ε̂ =
M

∑
m

εm

M
(5.17)

The MC batch size for the proceeding is M = 104, the justification for which was discussed

in section 5.1.
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Optimising the VPT (d) parameters: ξ and Vk

To reduce computation time, a preliminary search is conducted to inform the scope of the

GA. Figure 5.2.21 shows a ε̂ surface for the joint variation of ξ ∈ [0.2,1] and Vk ∈ [0,1.5].

Low regions on the figure correspond to a low ε̂ and the lowest point is with certainty,

bounded by ξ ∈ [0.3,0.8] and Vk ∈ [0,0.5]. High values of ξ or VK lead to a large ε̂ . Large

values of ξ produce a saturated response regardless of the value of Vk. In either case,

VPT (d) > Vlim(d) and there is a substantial overshoot, confirming what was seen in fig.

5.2.6A & 5.2.7. In addition, low values of Vk have a small rise in ε̂ . Rather than being

caused by an overshoot, it is instead due to a slow transient, which produces a residual error

which is not present for higher values of Vk which reduces the error quicker. In addition,

this surface is less complex than the drop-wave function on which the GA was evaluated

during the preliminary tests, indicating the GA will with high probability, converge to the

true solution.

F I G U R E 5 . 2 . 2 1 System response error ε̂ as function of GL parameters ξ and Vk

Algorithm 3 shows the steps involved with executing the GA to optimise the GL

parameters. To increase the computation time the results for a specific pairing of (ξ ,Vk)

are saved at the end of each batch. This way, if there are numerous duplicates of the same

candidate there is no substantial amount of time lost re-doing the same computations which

will lead to very little deviation, as was shown by the very small discrepancy between

batches when the MC procedure was described (§5.1).

Figures 5.2.22 and 5.2.22B show the convergence rate for the GA operating under the

boundary conditions for ξ and Vk. The optimal GL parameters from the GA were found
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Algorithm 3 Execution of GA optimisation using MCS procedure

1: Randomly initialise N specimens, (ξ ,vK)n
2: for Each generation g ∈ [1 : G] do
3: for Every Specimen in the population n ∈ [1 : N] do
4: Set GL parameters equal to specimen (ξ ,vK) = (ξ ,vK)n
5: for For MCS m ∈ [1 : M] do
6: Run MCS m with random initial conditions
7: Compute εm
8: end for
9: Compute specimen Fitness: FITn = ε̂n

10: end for
11: Rank specimens in order of fitness and select candidates for reproduction
12: Create offspring from candidates and cull resulting population to size
13: Mutate population, then reduce mutation factor
14: end for
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F I G U R E 5 . 2 . 2 2 2D GA to optimise GL parameters

to be ξ = 0.54 and Vk = 0.18.

Optimising PID controller gain

Figure 5.2.23 shows a preliminary search of independently varying the PID controller

gains, corollary to figure 5.2.21. The gains are initially held at [kP kI kD]
T = [1 0 0]T,

which emulates the absence of a PID controller. Each gain is individually swept over

the given range while the other gains remain fixed, and a MCS batch is run to determine

the corresponding ε̂ for each specific gain configuration. As with the optimisation of the

GL parameters, the intention is to reduce the scope of the GA optimisation and therefore

computation time. The ranges bounding the optimum solution were found to be kP ∈
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[0.6,1.4], kI ∈ [0,0.1] and kD ∈ [0,0.5]. The GA is then modified from algorithm 3, such

that each specimen is now (kP kI kD)n ∀ n ∈ N.
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F I G U R E 5 . 2 . 2 3 Contribution of independent kP, kI and kD to system error

Figures 5.2.24 and 5.2.24B show the convergence rate of the 3D-adapted GA. The

optimal configuration of PID gains was found to be [kP kI kD]
T = [1 0 0]T, indicating that

tuning the GL parameters is a sufficient and complete optimisation, without the need of an

external controller. It is of note that the GA converged to a local minimum much quicker

than when optimising for ξ and Vk. This is likely due to the adverse effect any kI, kD > 0

has on the system response, which quickly coerces the evolution, effectively reducing the

search to a 1D GA. The minimum ε̂ achieved during the optimisation of the PID controller

gains was equal to the minimum ε̂ during the optimisation of the GL, to 3sf. This is within

the expected MCS batch error.
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Testing and Disturbance rejection

With the relative methods shown for optimising the GL parameters and PID controller

gains, the resulting architectures can be compared for efficiency. Figures 5.2.25A and

5.2.25B show example trajectories for both stationary and moving targets respectively.

The black/red cross and line shows the starting point and trajectory of the projectile/target.

One trajectory corresponds to one MC simulation. An average system response from a

batch size of 104, discussed in section 5.2.1, is an average of 104 of these trajectories.
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F I G U R E 5 . 2 . 2 5 Example trajectories for bespoke GL and ∆V actuation method

The optimised GL is now tested for disturbance rejection capabilities and perform-

ance against different target profiles. Figures 5.2.26 and 5.2.27 show how the projectile

responds to different disturbances. In each case, the projectile and target are initialised at

a specified distance, the target closes the distance under normal operation and is then al-

lowed to remain in steady state for a sufficient time until the chosen disturbance is applied,

synchronised at 50s.

Figure 5.2.26 shows disturbance displacements, where at 50s the target coordinates

are set to be a magnitude of 0.5x, 1x and 2x that of the initial displacement, as indicated

by the figure. For all magnitudes of displacement, the error change is discontinuous. The

initial correction response is similar for all, due to the demand of the velocity autopilot

saturating the control mechanism. Once the projectile has slowed sufficiently it enters

the linear regime at the same point in each case, d ≈ 10−2, since the regime switching

is governed by a certain distance. There is a small discrepancy between linear regime
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switching for the disturbances and the initial reference signal. The reference signal enters

slightly later at a lower distance. This is likely caused by the projectile crossing the regime

threshold d2 with more of the roll rotation left to complete, meaning it will travel longer

before the speed is corrected again. The similarity in response is because in all cases, the

initial relative velocity between the projectile and target is zero and thus the system will

respond as if the simulation has just been initialised at different distances.
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F I G U R E 5 . 2 . 2 6 System response to various target distance disturbances

Figure 5.2.27 shows velocity displacements, where at 50s the relative velocity of the

target is instantaneously changed to a low, medium and high respective speed, radially

away from the projectile. The positions of the projectile and target are initialised at the

same positions, whereby they are then free to dynamically evolve. When the velocity

disturbance is low, within what the actuator mechanism is capable of correcting in one

roll rotation, the disturbance is corrected quickly. With a medium disturbance, beyond

the correction of one bias manoeuvre, the system takes longer to recover. Since this is a

velocity disturbance the maximum error increase is non-instantaneous, rather it coincides

with the instant where the target is no longer moving away from the projectile and the

relative speed is zero. From this point, the closing of the projectile is similar to the distance

disturbances. This is the same for the high velocity disturbance, except rate of reduction

of error divergence takes longer to correct.

Figure 5.2.28 shows the normalised error for 104 MC simulations against both sta-

tionary and moving targets using the values shown in table 5.1. The distance over time

is normalised with the initial distance of each episode and then averaged over all 104
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F I G U R E 5 . 2 . 2 7 System response to various target velocity disturbances

simulations. Against stationary targets the error reduces exponentially which is expected

from the described GL. Against moving targets however, the error initially increases a

small amount before decreasing in a manner similar to the response against static targets.

This initial increase is due to the random chance of the projectile being initialised with

speeds directed away from the target, then having to correct this dispersive motion before

beginning the correction procedure. They system takes less than 3 seconds to mitigate this

separation and begin closing the distance.
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F I G U R E 5 . 2 . 2 8 Performance of GL against target profiles

5.2.2 Conclusions

The most important aspect of this GL is that it operates by first determining the maximum

velocity the projectile can be going at any point in the 2D plane, relative to the target
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such that it has sufficient time and distance to bring itself to rest. The target and projectile

positions are overlaid, then the projectile is given maximum acceleration, radially away

from the target, while the velocity of the projectile is measured at any given point. The

next consideration must be the lag between demanding a velocity of the projectile and what

it can deliver. The parameters ξ and Vk were used to account for this lag and the above

procedure has detailed a variety of optimisation and control methods. In the procedure

shown, the projectile was assumed to have instantaneous switching and the velocity profile

(fig. 5.2.1) was determined under kinematic assumptions from this. However, using the

process described, it is completely feasible to model the actuator using the described bias

functions, to increase the domain knowledge of the GL if the response of the actuator is

known.

In addition to increasing the complexity of the actuator model, external forces and

effects can be considered here. The velocity profile of fig. 5.2.1 for example is effectively

in vacuo, thus the profile is completely symmetric radially about the target reference

frame. If one considers an asymmetric external force, such as gravity, the acceleration of

the projectile is dependent on its orientation. Figure 5.2.29 shows how the effect of gravity

on the projectile closing speed is biased. Depending on whether the projectile is above or

below the target in the picture plane, gravity is aligned with or against the desired direction

of motion respectively. Below the target, part of the actuator effort is spent counteracting

the acceleration due to gravity, leaving only a subset of the available actuator effort to

actually enact the demand. This means the velocity limit is lower, directly below the

target, since the projectile has less acceleration available to it. The opposite is true directly

above the projectile, where gravity works to assist the deceleration of the projectile. The

implication of this may seem to be that the projectile can close with a higher speed when

above the target, however the speed must still be eliminated to bring the projectile and

target in alignment. The projectile will have less deceleration available to it above the

target because of gravity, and so it will need to start decelerating sooner. The result of the

external force asymmetry is that the closing speed velocity can no longer be determined

purely as a function of radial distance d, but must be computed depending on the spatial

orientation with respect to the target, i.e. VPT =VPT (δx,δy) ̸=VPT (d)
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F I G U R E 5 . 2 . 2 9 Maximum picture plane closing velocity variation due to gravity

5.3 Reinforcement Learning AI control

This section will discuss the implementation of machine learning algorithms into different

aspects of the novel control mechanism. Two different reinforcement learning algorithms

are used, DQN and DDPG. Firstly, there is a discussion on the reward function which will

be used during the agent training. It must be designed in such a way as to mitigate and

prevent undesired actions. A DQN agent is then used to directly control the brake between

the front and aft section, or rather it controls when the roll rate switches between ω0 and

ωB. Then a DDPG agent is used to generate a target latax, which takes the place of a

traditional GL. This DDPG GL is then modified to account for lag in the system response.

5.3.1 The reward function

The concept of reinforcement learning is that and agent will, for a given system state, use

a policy to determine which action it should take to maximise a ‘reward’. This reward

is calculated from the reward function R. The reward function does not have to contain

any of the observations the agent makes of the environment or be any states of the system.

Since the reward is computed externally it can be completely arbitrary, the purpose of

the reward function is to characterise the behaviour we require of the agent. It can use

a reward to reinforce good behaviour or a penalty to penalise undesirable behaviour. In
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general, rewards incentivise the agent to keep doing what it’s doing to accumulate reward,

while penalties cause the agent to attempt to reach a terminal state as quickly as possible

to minimise loss.

By design, the policy used by the agent should maximise the expected reward by any

means necessary. Quite characteristic of machine learning is the concept of a local minima,

where the agent has learnt to exploit a particular aspect of the environment to increase its

short-term reward. It is possible for the agent to continue exploration and navigate out

of this local minimum, but the agent may continue the exploitation if the training doesn’t

contain sufficient episodes. Alternatively, the gradient between the local minima and the

global maxima may be so great that the chances of the agent exploring through it is very

low, even with sufficient episodes. As such, the reward function should be chosen very

carefully and may even require different iterations after observing the results of agent

training.

If rewards are only given for achieving a goal, the agent may never fully explore the

environment to attain the reward and even if it does, it may happen very slowly. To rectify

this, additional reward can be given for behaviour which tends towards the final goal but

even this must be carefully chosen. If the reward is given in discrete chunks then the same

problem will arise as with only rewarding success, the agent will learn much slower. As

such, the given reward for good behaviour should be continuous where possible, with a

bonus given for success. This is the same for penalties*, where bad behaviour should

be penalised continuously with a substantial negative reward accompanying a failure. A

common idea is to reduce the scope of the search by prematurely terminating an episode

if the parameters stray outside a certain range, where a large penalty will accompany the

termination. This should be tested during implementation, as a successfully trained agent

should still achieve its goal when operating outside of the given range.

Take for example a simplified robot golf, where an agent must move a ball around a

field with the aim of dropping it into a target hole. Initially, a reward will be given for

achieving the goal of getting the ball in the hole, which is a success. Equally there is no

point exploring millions of miles away from the hole. If for example, the ball strays further

*A ‘penalty’ is simply a negative reward, e.g. a penalty of 5 equates to a ‘reward’ of -5, with the associated
negative connotations.
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than 10m away then the episode can then be terminated along with a substantial penalty.

One could provide a reward directly proportional to the distance from the hole in

addition to a lump sum reward for achieving the goal. This incentivises the ball to move

closer toward the hole. Unfortunately, the agent is able to exploit this system in two

ways. Firstly, the ball can orbit the hole, to indefinitely accumulate a mediocre reward as

shown in figure 5.3.1A. Alternatively it could move straight past the hole, to maximise the

reward in one quick burst but never actually achieve success, as shown in figure 5.3.1B. A

( A ) Accumulate reward by ‘orbiting’
the goal indefinitely

( B ) Maximise reward by moving
past the goal

F I G U R E 5 . 3 . 1 Effects of adding a reward proportional to distance

temporal aspect can be added to the reward by penalising the agent for the time it takes

to complete the episode. If the ball continues to orbit the hole as in figure 5.3.2A, it will

continue to be penalised. There is a larger probability the agent will explore alternative

options and find a more ideal path toward the hole. If the goal of an agent is to avoid

failure as opposed to achieving a goal, as in the inverted pendulum system, then a reward

might be given for each consecutive time-step the system doesn’t fail.

A notable case of exploitation is where the penalty for terminating an episode early

is small compared to the reward for moving straight past hole. This, combined with a

penalty for taking a long time to achieve the objective causes the agent to move the ball

past the hole and fly outside the search range as fast as possible. This is referred to as a

‘dive-bomb’, shown in figure 5.3.2B. This maximises the reward, terminates the episode

early to stop the agent being penalised. From this, it can be deduced that the reward

magnitude for moving towards success should be significantly smaller that the magnitude
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of the penalty for premature termination, which should in turn be significantly smaller

than the reward for achieving the goal.

( A ) A time penalty can fix the orbit-
ing issue

( B ) Adding time can cause a ‘dive-
bomb’ issue

F I G U R E 5 . 3 . 2 Effect of adding a time penalty

Following the justification in §5.3.1, the reward function is chosen to be:

R(d, ḋ, t) =





ktt for d < dL

−d for dL ≤ d < dT

kT for dT ≤ d





+−ḋd (5.18)

where kt = 10 is the time dependent reward coefficient, kT = −1000 is the early termin-

ation penalty, dT = 12 is the early termination distance and dL is the lower accuracy

threshold. This reward function is shown graphically in figure 5.3.3. The first term of

equation 5.18 provides the associated reward for the distance around the target. If the

projectile is more than dT away from the target at any point in time, the episode is imme-

diately terminated and a 1000-point penalty is incurred. For dL < d < dT the penalty is

directly proportional to distance. Lastly, a reward of kt is given for a any value of d < dL.

Note that d cannot be negative, since it is a radial distance. This reward is then scaled by

the time duration of the episode, if d < dL at the end of the episode it will receive a much

higher reward than travelling through the target initially. While this may cause the agent

to attempt to arrive at the target right at the end of the episode, it will achieve substantially

more reward by hovering over the target throughout the episode. This is shown in fig.
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5.3.4A.

F I G U R E 5 . 3 . 3 Graphical representation of Reward function (eq. 5.18) for the preliminary test

The second term includes the error rate, ḋ. This dynamic system has a constant force

vector. It is a reasonable assumption that to guide the projectile to the target, the agent will

keep the force vector pointed in direction of the target for as long as possible to achieve

the goal. However, since the episode doesn’t terminate when the target is reached the

projectile will likely fly straight past the target in a scenario similar to the ‘sling-shot’

shown in figure 5.3.1B. By observing ḋ, the agent will be able to deduce when both ḋ

and d are small, the reward is maximised. i.e. if the projectile moves slower when in

close proximity to the target it will maximise the reward over time. Note that a negative

ḋ indicates the projectile is moving towards the target. The −ḋd term in equation 5.18

punishes the agent for moving away from the target and is scaled proportional to d. This

is still consistent with the goal of being less than dL away; a perfectly circular orbit with a

radius of less than dL will have ḋ = 0, which results in no punishment for the agent, while

still rewarding it for the close proximity. This is shown in fig. 5.3.4B.

The boundary of dL used during training is arbitrary, but the reasoning is justified. For

the creation of a direct-fire guided-projectile to be worthwhile it must deliver dispersion

characteristics that are at least the same or better than the equivalent unguided projectile.

As such, this dL boundary, in a more complete training environment, will represent the

accuracy level required by the round at that range. This also leads onto the justification
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( A ) Effect of time, ∂R/∂ ḋ = 0 ( B ) Effect of ḋ, ∂R/∂ t = 0

F I G U R E 5 . 3 . 4 Reward function dependency on t and ḋ

for continuing to run the episode when the projectile arrives at the target. The purpose of

the guided weapon is to account to for variation in target location caused by factors only

introduced during the projectile’s flight. This includes range, which would affect the time

of impact, even if that is accounted for at launch. Since the prototype is designed to be a

beam rider, this logic for the agent is used to keep the projectile on the beam.

5.3.2 Implementing RL agents into Simulink dynamic model

MATLAB has a Reinforcement Learning toolbox which can be used to create a variety

of RL agents, as well as a Deep Learning Toolbox which can be used for the implement-

ation of neural networks [199]. The Simulink model for the AI controller is the same

implementation as in fig. 4.1.1. Where applicable, the AI agent will either replace the

actuator autopilot or the GL block. Instead of having a MATLAB function responsible for

executing the controller logic, the MATLAB function takes parameters from the system

and uses them to compute the inputs for the RL agent training: observation assignment,

the reward function and the criteria for determining the end of an episode. The output of

the MATLAB function is then forwarded to a pre-made Simulink box which is responsible

for feeding the observations, reward and completion check to an RL agent which has been

created in the workspace.

The environment is set to be the Simulink model described in §4.1. The number of

observations with their upper and lower bounds are set. The number of actions is defined
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by the allowed values, which are taken from the output of the dynamics box. A reset

function is also defined, which sets initial conditions of the observations for the simulation;

these can either be randomised or fixed. Before the training begins, the parameters of the

actor and critic neural networks are defined, with the number of hidden and active layers,

their types (e.g. ReLU Layer), and the paths between them. DQN agent parameters are

configured, including the discount factor γ . In any implementation described in the coming

analysis, a full description of the neural network parameters will be given.

The agent training options are configured, such as maximum number of episodes,

steps per episode and the reward threshold at which the training is terminated. The agent

is trained in the defined environment using the set parameters and the resulting trained

agent is saved to by implemented by a controller in any environment.

In more detail, algorithm 4 shows how MATLAB updates the neural networks for each

episode.

Algorithm 4 Step algorithm for actor/critic update

Ensure: Critic Q(s,a) is initialised with parameter values θQ, then the target critic is
initialised with the same parameter values: θQ′ = θQ
At each time step:

1: if RAND > ε then
2: Given the current observation S, select a random action A with probability ε

3: else
4: Select and action for which the critic value function is greatest e.g. A =

maxA |Q(S,A|θQ)|
5: end if
6: Execute action A and observe the reward R and next observation S′

7: Store the combined experience S,A,R,S′ in the buffer
8: Sample a random batch of M experiences, Si,Ai,Ri,S′i
9: if S′i is a terminal state then

10: Set the value function target to be the current reward yi = Ri.
11: else
12: Set the value function target to be: yi = Ri + γ maxA′

∣∣∣Q(S′i,A
′|θ ′

Q)
∣∣∣

13: end if
14: Update the critic parameters by minimising the loss L across the M sampled experi-

ences:
L = 1

M ∑
M
i=1(yi −Q(Si,Ai|θQ))

2

15: Update the target critic periodically: θQ′ = θQ
16: Update ε for selecting a random action.
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5.3.3 DQN direct control

This section will investigate the direct application of a DQN agent to control every aspect

of the system in one instance. The actuation mechanisms described above, responsible for

converting the bias points φON , φOFF to either a latax or ∆V , will be combined with the

GL. The DQN agent will have direct control over whether the projectile is in the biased or

natural state and will be responsible for taking all simulation parameters into account to

produce a desirable approach to the target. In essence, the DQN agent will be controlling

a fixed magnitude force vector rotating clockwise at the two selectable speeds, ω0 and ωB.

This is the most complex application of AI to the considered system.

A full list of the training parameters for the neural network, simulation and training

are shown in appendix A.4. Both the target and projectile have no initial velocity and they

are initialised at the same point every episode. The positions can then be randomised to

continue the training if the agent shows improvement. The observations are distance d,

closing velocity ḋ, target bearing from projectile φT and current roll angle of control force

φ . Figure 5.3.5 shows the training results for the first batch of training episodes. A segment

of the raw training data is shown in fig. A.4.1 in appendix A.4. The agent did show a

F I G U R E 5 . 3 . 5 Training for the first 105 episodes of the implementation test

very small development in controlling both the actuator mechanism and the GL as a whole.

Figures A.4.2 & A.4.3 in appendix A.4 show the small performance increase of the DQN

agent. There was a significant improvement in reward at episodes 5×104 and 8×104, but
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the agent was unable to retain significant knowledge of the gained experience to capitalise

on this reward increase. The fact that the increase in reward was only temporary, and that

there was no subsequent permanent increase in performance, indicates the surge was likely

caused by the agent exploring the action space. In addition, it is a characteristic trait of

under-training, where there is an insufficient action space to map all possible system states

which in the environment considered above, is very large due to it being near-continuous.

Since the initial conditions for this simulation were held constant, it is likely that in this

configuration, the agent was unable to learn the system to a degree that it could effectively

enact control. Due to time constraints, it was not possible to train the agent any longer.

Future work should allow the agent to train for longer, using a neural network with more

nodes and layers. This will allow the agent to explore a larger action space, mapping the

actions to desirable outcomes. The larger number of nodes and layer in the neural network

also means the agent will avoid being under-trained.

Another possible change that could be made to improve training success and times is to

discretise the observation space. Consider that the current target bearing φT is continuous

∈ [0,2π] at least to within the bounds of machine and rounding errors in MATLAB. Instead

of feeding this raw data to the agent it could be categorised such that φT is binned in 10◦

increments. This reduces the observation space from being effectively continuous to

having 36 discrete possibilities, making it much more efficient to map every possible

system state to an action. While this will reduce the precision and fidelity of the action

system it will return some performance by the agent to ascertain whether this method

of complete control is viable. There could be either some secondary architecture which

allows further control fidelity within these bins, or the agent could be retrained with a

more continuous or less discretised environment.
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5.3.4 DDPG Guidance Law

While the DQN agent described in the previous sections is capable only of discrete actions,

a Deep Deterministic Policy Gradient (DDPG) has a continuous action space. Different

implementation methods must be used to accommodate the continuous action space of the

DDPG agent. Whereas the DQN agent used in 5.3.3 was responsible for both the actuation

mechanism and the GL, the DDPG implementation will be constructed so it is responsible

for only one or the other. In this implementation, a DDPG agent is used to create a GL

which dictates the trajectory of the projectile on approach to the target, by demanding a

latax.

A key difference must be made to the neural network when using a DDPG agent as

opposed to a DQN. The output of action layer in the DQN network was a binary 0 or 1,

depending on what the weighting activation of the layer decided. The output of a DDPG

action layer is continuous in the range A ∈ [−∞,∞], but this is well outside the range

of the latax which can be demanded of the projectile, due to saturation of the actuation

mechanism. To account for this, a tanh layer is used to map the action range to A ∈ [−1,1].

This is then also passed through a scaling layer, so that the action which is actually fed to

the actuation mechanism is A ∈ [−ãmax, ãmax].

Guidance laws usually demand latax both horizontal and normal to the projectile travel,

though sometimes they may demand purely a lateral acceleration. In this sense, they are

dual-channel, where each channel represents the acceleration normal and lateral to the

longitudinal velocity of the direct fire projectile. While the implementation of the DQN

agent in §5.3.3 encompassed actuator control and dual-channel latax, the operation and

output of the agent doesn’t necessarily have to cover both channels. Much like conven-

tional Cartesian control, the agent can have full control over a single channel and two of

them can be used in combination, to generate the final signal sent to the projectile. In this

sense the agent can be trained in a 1D environment, which is shown in fig. 5.3.6. Two

point masses of m = 1, the projectile and target are free to move along a generic 1D axis

with distances from the origin being xP and xT respectively. Both have respective speeds

of vP and vT directed solely along this axis. The DDPG agent is responsible for issuing an

acceleration command to the point mass projectile.

Table A.2 in appendix A.4 shows the model parameters for the training. The agent



5 . 3 . R E I N F O R C E M E N T L E A R N I N G A I C O N T RO L 207

F I G U R E 5 . 3 . 6 Illustration of 1D latax problem

is trained using the reward function described in §5.3.1. Notable differences are that the

episode will be prematurely terminated depending on the single axis distance xT − x, as

opposed to the 2D radial distance d. This means the termination distance in the reward

function becomes dT = xT = 50. Likewise the observations have been reduced to simply

the 1D equivalents, (d, ḋ)→ (x, ẋ). As mentioned, the agent action is no longer controlling

the bias points, but the acceleration demand of the projectile. The action space is a single

latax demand A = ax ∈ [−ãmax, ãmax], mapped into this range from [−∞,∞] using the tanh

layer.

Figure 5.3.7 shows the training data for the DDPG agent in the 1D latax control system.

There is an obvious disparity between episodes which were terminated early due to too

great a miss distance, and the episodes which had a poor performance. Around the 3000th

episode, the agent was capable of preventing the early termination of the episodes. A

reward of between -300 and 0 indicates an episode wasn’t a failure, but also the agent

was insufficiently reducing the error to increase the reward. By episode 7000, the agent

could reliably reduce the error to within the accuracy bound demanded. In the last 3000

episodes, the agent steadily improved performance to a mean reward of 3×104

Since the agent was able to control the 1D dynamic system with the neural network

configuration additional complications can be made. The primary difference the novel

actuation mechanism faces in comparison to a traditional point mass model is the lag of

the system in achieving the desired control variable. As such, an actuator lag is added to

emulate the delay in system response caused by the projectile needing to complete one

full rotation before enacting the command of the GL. The delay is modelled by a simple

time-based signal delay block in Simulink, which holds a given signal by a predetermined

amount of time, before passing it along. In this way, the agent is still receiving valid



208 C H A P T E R 5 . G U I DA N C E L AW S

F I G U R E 5 . 3 . 7 Training data for basic 1D control model (MATLAB 2020a)

information about the state of the system, it merely must learn that there is a delay present

before the actions are executed. There is also no dynamic noise which goes unobserved,

causing perturbations which would go unnoticed by the agent. The signal delay, or actuator

lag, is set to 0.1, 0.02 and 0.01 seconds; since the agent sample time TA is 0.1s these

actuator lags correlate to TA, TA/5 and TA/10 respectively. Figure 5.3.8 shows the training

data for agents with different levels of actuator lag.

The figure shows that for both delay times of 0.01s and 0.02s, the agent is capable

of learning actions which substantially increase the episode reward. For a 0.1s delay,

the agent was unable to learn desirable actions as defined by the reward function. It

should be noted that the agent may eventually have been able to learn the environment

given sufficiently more episodes with the current network configuration. However, project

constraints must be imposed somewhere and the results presented in the figure show that

the capability is present within a suitable training time. Such neural-network optimisations

should be considered during any higher TRL implementation but are outside the scope of

this project.

Figure 5.3.9 shows the performance of the agent with a 0.02s actuator lag after the

105 episodes of training from fig. 5.3.8. The DDPG based GL visibly reduces the miss



5 . 3 . R E I N F O R C E M E N T L E A R N I N G A I C O N T RO L 209

F I G U R E 5 . 3 . 8 Training data for single channel environment and actuator lags

F I G U R E 5 . 3 . 9 Performance trajectory for trained agent with 0.02s actuator lag

distance of the projectile and is able to hold in an effort to reduce the steady state error.

Summary

This section has discussed different RL AI agents, their implementations and has shown

two ways in which they can be used to control different aspects a novel projectile with

relative ease. A DQN agent was utilised to control both the actuation mechanism and GL of

the system. This implementation was unsuccessful, but did show behaviour improvements,

indicating the success is likely limited by time and resources. A larger and more complex

NN capable of capturing more macroscopic system behaviours is necessary for further
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improvements, as well as the time to run significantly more training episodes. Next, a

DDPG agent has been used to create a single channel GL capable of reducing the miss

distance along a single dimension and holding it there with an actuator delay modelled.

This single channel GL can then be implemented along both vertical and lateral controls

of the picture plane simplistic system to allow the agent to control the projectile flight

completely.

The field of AI and reinforcement learning is still a relatively new one. While this

section does demonstrate the feasibility of the technology and its applications to guided

projectiles, the approach will be able to be refined significantly as the field progresses

more. The performance of the agent is heavily dependent on the reward function used to

train it and the reward function is entirely subjective. One approach to reduce the prejudice

and inaccuracy of the reward function might be to create one which is linearly paramet-

rised in terms of the model dependencies, such as distance, with different coefficients.

The coefficients could then be optimised using a chosen algorithm, for example the GA

discussed here. However, whereas the GA discussed here runs a batch of MC simulations

for each candidate, optimising an AI agent would require a full training session. Multiple

thousands of episode per training session each for multiple thousands of generations and

candidates may make this method computationally unfeasible with current hardware, but

the procedure itself would likely eliminate much of the perceived bias creators have when

assigning importance to different aspects of the reward function.



Chapter 6

Simulations and Discussion

IN this chapter, the various combinations of actuation method and GLs are then com-

pared against each other and the free ballistic case. Firstly, in the picture plane, the

nominal case, shows which configuration is able to reduce the miss distance under the

most simplistic conditions. While this is more mathematically abstract and quite removed

from a 7-DoF implementation, the results will help identify intricacies and nuances in the

system behaviours which may otherwise be imperceivable in a realistic simulation. The

initial conditions are varied from random to normal to isolate different characteristics of

the correction trajectory. An optimal GL and actuation mechanism candidate can then be

selected for further analysis.

A novel projectile design is then proposed. This is an illustration of how the actuation

mechanism can be implemented into a traditional projectile form factor. The designs are

created in CAD, then undergo CFD analysis to determine the corresponding aerodynamic

coefficients. The output of the CFD process is compared against the results of other similar

publications to verify it is producing satisfactory coefficients. Because CFD simulations

are time consuming and resource intensive, only a few illustrative designs will undergo the

analysis. The coefficients are then used to conduct ballistic stability analysis, described

in chapter 3. At this point, the optimal GL from the preceding analysis is incorporated in

the full 7-DoF model from chapter 3, along with the aerodynamic coefficients for different

projectile types, to understand what level of correction can be expected when this control

method is used with traditional projectiles.

211
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6.1 Nominal Guidance Law comparison

With the descriptions of the guidance laws, actuation mechanisms, Monte Carlo procedures

and system responses now given, an experiment can now be undertaken to compare the

effectiveness of different combinations to reduce the miss distance. Figure 6.1.1 illustrates

the flow of information, order of operations and a general overview of how the enclosed

concepts and methodologies come together in the simulations. The GL will be chosen

from those listed in Chapter 5, and as described it will either demand a ∆V or ã depending

on the model of actuation mechanism. This demand passes through a generic controller

H of the autopilot loop and then enters the actuation mechanism. The first process is to

saturate the demand according to which regime the GL assumes; velocity will either be

bound as ∆V ∈ [0,∆VMax] or latax will be bound as ã ∈ [0, ãMax]. The bias computer is

then responsible for computing which values of φON and φOFF are necessary to produce

the saturated aDem. In the event a GL has perfect knowledge of the system it would never

demand a value in excess of what the mechanism is capable of delivering and as such the

demand would not need to be saturated. In a more practical implementation, the saturation

block need only be present as a fail-safe, to ensure the algorithms present in the Bias

computer need only work within a designated range.

Alongside this the actuator model function ω(φ) is chosen, which represents the beha-

viour of the actuator and the resulting front section spin rate ωF , or φ̇F . This is a description

of the BiasON and BiasOFF functions which can be used to re-create the actuator response

for any combination of φON and φOFF . Any complications to this model can be made,

representing real world imperfect knowledge. For the implantation in the coming analysis,

such complications are omitted and perfect knowledge is assumed. Before the simulation

begins, for the given actuator model function, the numerical procedure from §4.3.3 (fig.

4.3.8) is used to produce a connection between φa and ã. This is then fed into the Bias

Computer block which uses the procedure to determine which φa is needed to produce a

ã, to meet the controller demand aDem. Additionally the procedure also determines the lag

of the latax direction ãφ behind the intended bias centre φB, caused by non-instantaneous

switching functions. Taking this lag into account, φB is adjusted so that the actual latax

direction is in the direction required by the controller, ãφ ·aφ = 1. In the following nominal
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analysis the instantaneous switching model of ω(φ) is used,

In addition to this, the actuator model is fed into the actuator dynamics box, which in

its entirety acts as a simplification of the 7-DoF equations of motion responsible for the

ogive section behaviour. The φON and φOFF coordinates generated by the Bias Computer

are used by the actuator dynamics box, in conjunction with the actuator model to create

the actuator response function to this particular rotation. The projectile dynamics box then

evolves according to the equations of motion, where the front section roll rate is dictated

by the function supplied by the actuator dynamics box. The projectile dynamics compute

one step, integrate the outputs using RK4 and then proceed to the sensor dynamics box,

which again is capable of emulating any noise or bias in the measurement equipment or

methodology. This information is fed back into the guidance law to compute the next set

of instructions, when the roll rate next wraps to φ = 0. The system state information is

also fed back directly into the projectile dynamics box for constant iteration.

The simulation is run for T = 50s, and the update rate of the dynamics is set to 10−3s,

while the GL is polled every time the roll angle wraps to zero. This way the Bias points

are only calculated when needed in order to avoid slowing the computation unnecessarily.

In §5.3.4, it was found that in the current configuration, the DDPG agent could only

accommodate the delay if the actuator lag TL was at most 1/5 of the agent poll rate TA.

The actuator lag time in the nominal system is TL ∈ [1,2.5]*, and so the agent is polled

every 5×max[TL] = 5s. The lower bound is chosen here so there is never a period where

the agent could go without instruction. The observations of the agent are x and ẋ, so the

actual measurements d and ḋ are first decomposed into x, y, ẋ and ẏ. The agent is then

polled twice, once for (x,ẋ) then again for (y, ẏ). The axial latax demands of the agent are

then recombined to give a [ã aφ ]
T .

For the implementation of the PN GL, the navigation constant is set to N = 1. It can

be shown that the traditional GL structure of eq. 2.5 (pg. 45) can be written in the form

a⃗ = NV⃗R × Ω⃗ (6.1)

*Using the values from table 4.1
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where the LoS rotation vector Ω⃗ is given by

Ω⃗ =
R⃗×V⃗R

R⃗ · R⃗
(6.2)

This allows the LoS to be computed directly from the relative range R⃗ and relative ve-

locities V⃗R. While the simulation runs for 50s, the PN GL requires information on

the relative speeds and distance, as such a representative downrange speed is fixed at

w = 10m.s−1. The relative values can easily be computed using VR = (u2 + v2 +w2)1/2

and R = (x2 + y2 +(w(T − t))2)1/2.

Because the simplified switching model is assumed for the coming analysis, the values

of ξ and Vk found from the GA optimisation can be used. When the actuator dynamics

are modelled using the ∆V framework, the demands of the GL can be converted directly

to bias coordinates. When the actuator dynamics are modelled using the ã framework, the

∆V which the GL demands must first be converted into a latax. This can be done with

relative ease, since the roll time taken for the bias manoeuvre τ can be calculated, and

used in combination with the ∆V to produce the equivalent ã.

The procedure for evaluating the performance of the guidance laws against each other

is as follows. MATLAB will be programmed to cycle through each configuration of

the actuation mechanism, and then through each GL which operates using it. In each

configuration, a Monte Carlo batch will be executed according the procedure in §5.1.

Each batch must contain a sufficiently high number of simulations such that any difference

between the performance of candidates is due to the configuration, as opposed to the

random initial conditions; this batch size was determined to be 104. The data from each

individual run is then saved for access later.

Dispersion

The control architecture presented thus far has of course been designed for a direct fire

projectile. The best metric for comparing the corrective capabilities of such a system is

to compare the terminal dispersion at the target. To emulate variation in trajectories, the

launch conditions are no longer initialised randomly within a given bounds, but generated
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according to the Gaussian probability density function; given by

f (x) =
1

σ
√

2π
e−

1
2(

x−µ

σ )
2

(6.3)

where σ is the standard deviation and µ is the mean of the parameter. It is assumed that

using direct fire projectiles, before launch the operator would try and ensure the projectile

will ballistically intercept the target: the control system more fulfils a disturbance rejection

role than being solely relied upon to impact the target. Because of this, both the target

and projectile have the same initial position in the picture plane and there is taken to

be no relative velocity between the two. To emulate deviations in the firing conditions,

perturbations are generated following the normal function, such that the majority of firings

lie as close as possible to nominal conditions, with few outliers as would be expected with

conventional ammunition. Thus, positional perturbations are generated with µ = 0, σ = 3,

while velocity perturbations are generated using µ = 0, σ = 0.3. The MATLAB function

normrnd(mu,sigma) is used to generate the normal numbers. Figure 6.1.2 shows a test of

the function, using µ = 0 and σ = 3, to ensure the function is generating numbers over the

correct function. It is visible from the figure that the generation distribution is satisfactory,

in addition the returned mean of the data was 0.000 with a standard deviation of 3.000 to

4 significant figures.

F I G U R E 6 . 1 . 2 Test of MATLAB ‘normrnd(mu,sigma)’ function for 108 generated numbers
(µ = 0, σ = 3)

There are many different ways to evaluate or compare the planar dispersion of projectile



6 . 1 . N O M I NA L G U I DA N C E L AW C O M PA R I S O N 217

impact points. The majority of them involve placing a circle with a centre which coincides

with the mean point of all the considered impacts. The radius of this circle is then increased

until a certain threshold of projectile lie within the resulting circle. The most widely used

dispersion metric counts 50% of the impacts within this circle, known as Circular error

probability (CEP); other metrics include Distance Root Mean Squared (DRMS) which

includes 63.21% (or 2σ ) and R95 which includes 95%. CEP is the most commonly

used metric across both the academic and industrial fields of ballistics, and the validity

of using it has been critiqued by a variety of sources including the US Army Laboratory

[32, 200]. A parametric investigation has been undertaken to understand the effect of

varying projectile parameters on terminal miss distance by measuring CEP [95]. CEP is

predominantly the metric for artillery dispersion, but not small calibre projectiles. As such,

CEP will be used when referring to the impact dispersion of artillery shells, while R95

will be used when to compare the dispersion of small calibre direct fire projectiles, where

accuracy is paramount.

103 simulations are run for each guidance law, with initial conditions generated ac-

cording to the normal distribution in eq. 6.3. For each simulation, the terminal impact

points are recorded as (x,y) coordinates, which can then be used to record the radial miss

distance d. The mean impact points (µx,µy) can then be computed using the number of

impacts NI = 103 as

µx =
1
NI

NI

∑
i=1

xi , µy =
1
NI

NI

∑
i=1

yi (6.4)

Once the mean impact point has been calculated, the radial distance from the mean impact

point for the ith impact d̄i, is calculated with

d̄i =
(
(µx − xi)

2 +(µy − yi)
2)1/2

(6.5)

The impacts are then ordered according to this mean miss. The radius of the circle con-

taining P percentile of impacts RP%, where P = 0.5 for CEP etc., can then be computed

by accessing the index of the ordered impacts

RP% = Impact[n], where n = ⌈P ·NI⌉ (6.6)
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Note that the ceiling function is used here instead of the floor to represent a worst-case

scenario of this frequentist approach, instead of the more continuous, Bayesian methods

which have been considered in other literature [200].

Table 6.1 shows the results of the described simulations, with a range of dispersion

metrics corresponding to each guidance law. In the ballistic case the controller effort is

switched off and the projectile trajectory evolves according to the initial conditions. It is

apparent that the novel guidance law provided the highest level of error correction, with

the lowest value of CEP, DRMS and R95 against all other guidance laws. This was the

case for both the ∆V based and acceleration-based controller demands.

Actuation
Mechanism

GL CEP [mm] DRMS [mm] R95 [mm]

Ballistic 1.94×104 2.21×104 4.05×104

ã

PN 83 90 160

DDPG AI 404 457 874

Novel ã 50 61 101

∆V Novel ∆V 48 58 105

DQN AI N/A

TA B L E 6 . 1 Dispersion measurements for nominal system

Fig. 6.1.3 shows 100 impacts from each of the guidance laws, selected at random from

the 103 runs. N.B. no impact points are covered by the legend. Because the ∆V based

and acceleration-based controller demand GLs had some similar performance dispersion,

the acceleration-based novel GL dispersions are shown. It is apparent that all guided

cases have fairly even distribution of rounds, with a small deviation of outliers. All 100

impacts that were selected from the set are shown on the figures, there were no impact

points extreme enough to warrant exclusion from the plots. There is a high density region

of impact points which would indicate a bias in the GLs towards specific locations in

space. AI does show a circular dense region of impacts centred directly over the target

at (0,0), in addition to a semi-circular cluster along the right side of the CEP and DRMS

circumferences. Further statistical data analysis will confirm whether the dispersion bias



6 . 1 . N O M I NA L G U I DA N C E L AW C O M PA R I S O N 219

is significant. All guidance laws implemented under these nominal simulation conditions

provided satisfactory levels of dispersion correction.
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F I G U R E 6 . 1 . 3 Terminal dispersion of various guidance laws controlling ã, with target at (0,0)
*The legend present for AI represents all sub-figures and no data points are
obscured
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Statistical data analysis

In addition to the dispersion circles shown in table 6.1, more rigorous statistical analysis,

following ref. [201] is shown in table 6.2. The impact location means were calculated in

eq 6.4. The standard deviations are of course calculated using

σx =

√
∑

NI
i=1(xi −µx)2

NI
and σy =

√
∑

NI
i=1(yi −µy)2

NI
(6.7)

and the correlation coefficient ρ(x,y) is given by

ρ(x,y) =
1

NI −1

NI

∑
i=1

(
xi −µx

σx

)(
yi −µy

σy

)
(6.8)

Whilst there is no Hypothesis H to imply any causative correlation between a spatial x

and y impact coordinate, it is useful to suggest that any significant correlation between

the impact points is indicative of a bias in the guidance laws. As such, we define the null

hypothesis H0 (eq. 6.9) and alternative hypothesis HA (eq. 6.10) as:

There is no significant correlation or bias in the impact point dispersions

H0 := lim
NI→∞

ρ ≈ 0 (6.9)

There is significant correlation or bias in the impact point dispersions

HA := lim
NI→∞

ρ >> 0 (6.10)

To determine if a significant bias is present it is necessary to calculate the p-value,

which illustrates the probability, under assumption of H, of observing data with equal or

lesser compatibility with H relative to the current data †. In Bayesian statistics, the p-value,

under the assumption of a hypothesis H can be defined in terms of a test statistic t, from a

t-distribution, as

pH =
∫ t

−∞

f (t ′|H)dt′ (6.11)

where f (t ′|H) is the probability density function of a counted test statistic t under the

assumption of H. This assumes a left-tailed test which evaluates the integral between

[−∞, t], but a right tailed test can also be used which evaluates on the range [t,∞]. The

†As opposed to the probability that the hypothesis is true, P(H)
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t-distribution can be defined in terms of the gamma function Γ(n), or the beta function

B(x,y). Following ref. [201] it shall be defined in terms of the beta function, given by

B(x,y) =
∫ 1

0
tx−1(1− t)y−1.dt (6.12)

The t-distribution probability distribution function (PDF) can be written as

f (t,ν) =
1√

ν B(1
2 ,

ν

2 )

(
1+

t2

ν

)− ν+1
2

(6.13)

where the number of degrees of freedom is ν = NI − 2 and t is the test statistic. Where

one has knowledge of the Pearson correlation coefficient, which is the case from eq. 6.8,

then following can be used to generate the test statistic t:

t =
ρ
√

ν√
1−ρ2

(6.14)

Finally, the p-value is computed by integrating the t-distribution PDF up to this computed

t-statistic

p =
∫ t

−∞

f (t,ν)d.t ′ (6.15)

using t from eq. 6.14 and ν = NI −2. If p ≤ α the null hypothesis H0 is rejected and the

alternative hypothesis HA is accepted. If p > α the null hypothesis H0 is accepted. This

analysis is computed for each of the GLs using all NI = 103 impact points in the set, using

a significance level of α = 0.05. The results are shown in table 6.2.

Guidance Law µx µy σx σy ρ p-Value

Ballistic 1.095 1.786 16.893 15.312 0.165 0.102

PN 0.019 0.038 0.056 0.085 -0.045 0.65

AI 0.267 -0.005 0.277 0.389 0.264 0.008

Novel ã 0.0013 -0.008 0.044 0.050 0.038 0.229

Novel ∆V -0.006 0.026 0.042 0.049 -0.004 0.971

TA B L E 6 . 2 Statistical Analysis of GL dispersions with α = 0.05

From table 6.2 it is apparent that only the AI had a p-value less than the significance
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level. This means that the correlation of impact dispersion observed when the nominal

system projectile controlled by the described AI based GL, is statistically significant,

indicating there is a significant bias. The correlation present for AI is weak, appearing to

be more clustered than following a traditional linear relation. However, the significance

of the results indicate that this pattern is unlikely to be due to chance. The clusters that

are present are centred about the target location, (0,0). The ‘off-target’ cluster, along

the right side of the CEP and DRMS circumferences, is the cause of the correlation.

This overcorrection to the right is indicative of a skew-trained agent with non-optimal

actions. It is unclear at present whether this is due to insufficient training, training in a

non-representative environment, or implementing a single-channel agent in a dual-channel

configuration. Due to the stochastic initialisation of the simulations these clusters are

unlikely to be an artefact of identical agent actions, it is more likely that it may be a result

of the dual-channel implementation or biased agent experience.

For no other guidance laws are the p-values lower than the significance level α , indic-

ating that any correlation present in the impact dispersion are likely due to chance and that

there is no significant indication of bias in the correction performance of the GL.

Correction characteristics

Figure 6.3 shows the integral errors for each implementation, with the batch average

system responses are shown in fig. 6.1.4. Figure 6.1.4 shows a comparison of the Monte

Carlo batch averages for the considered guidance laws, or the zero-effort miss along the

trajectory. Note that the ballistic case is omitted from the following analysis since there is

no controlled error reduction to be compared.

The integral error for the averaged system response indicates how much of the traject-

ory was spent with high error, thus a lower integral error is desirable as this shows a fast

convergence and stable steady state. It is apparent that PN had by far the largest integral

error compared with the other guidance laws. This is highly likely due to the nature of

the PN GL itself, which is to ensure a collision between the projectile and target upon

impact, as opposed to mitigating disturbances during the flight. This is an undesirable

behaviour for the projectile, due to the saturation of the actuation mechanism. Figure

6.1.4 shows that the error correction rate of PN is very similar to that of the novel GL, but
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Actuator Method Guidance Law Integral Error (×104)

ã

PN 4.115

DDPG AI 1.435

Novel 1.287

∆V Novel 1.264

DQN AI N/A

TA B L E 6 . 3 Comparison of actuation mechanisms and guidance laws for instantaneous switch-
ing

the correction of PN only significantly begins when the projectile is already significantly

closer to the target. If any present error remains uncorrected in the early phases of the

flight, any subsequent perturbation may induce a scenario where the available latax is

insufficient to reduce the error to a satisfactory level. As such, one cannot recommend PN

for this implementation and configuration of the described dual-spin, direct fire projectile.

It is possible that PN can be modified in some way as has been done in the majority of

the considered literature. One possibility is to set a ‘virtual target’, closer to the projectile

than the main target actually is, such that PN begins correcting the error sooner. Once the

ZEM has been reduced, the virtual target can be removed and replaced with the real target

for usual guidance. In addition to this, the steady state error of PN is higher than that

of the novel GLs. This is caused by N being too great and scaling up any small demand

in the governing equation, i.e. there is a minimum, non-zero acceleration demand which

can be issued by the GL. Finally, there is a sharp rise in error at the termination of the

trajectories. As the projectile is on terminal approach to the target the LoS rate increases

rapidly. This inflates the acceleration demand of the system to near maximum causing

an overshoot from actuator saturation. However, both artefacts can likely be fixed by

implementing a gain scheduling procedure to ensure a high-fidelity acceleration command

can be issued when precision guidance is required. The scheduling would need to be a

function of both longitudinal distance R, as well as radial distance d, which would result

in a PN-like guidance law effectively operating in different regimes like that of the novel

GLs.
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Initially, AI converged at the same rate as both novel GLs, but the error reduction rate

slowed for t/T ≳ 0.3, due to the agent slowing the projectile sooner than was necessary.

For t/T ≳ 0.3 The AI agent is trained in a single-channel environment but implemented in

a dual-channel configuration. The coupling between the channels will lead to differences

in operation which the agent cannot perceive and therefore act to mitigate. In addition to

this, the single channel environment only contained an actuator lag which emulated the lag

which the agent would experience in the actual implementation. Since the lag is variable,

an artefact of the time taken to enact a bias, an optimisation of the training lag would

be non-trivial. The lag would have to be modelled after the actuator response function

ω(φ). This eliminates the simplicity of the point mass training system and would require

a more complex neural network and AI agent to learn in the environment. In such a case,

resources would be better spent training a dual-channel GL agent directly on the system.

Both novel guidance laws considering ∆V and acceleration begin to converge at the

same rate and unlike the AI or PN GLs, there is no overshoot. This is the expected outcome,

seeing as the GL parameters ξ and Vk were optimised to minimise the overshoot of the

system entirely. For values of 0 ≤ t/T ⪅ 0.4 the both novel approaches converge at nearly

identical rates. For values of t/T ⪆ 0.4 the acceleration-based method provides a quicker

convergence than the ∆V . In this region, the projectile is close enough that the controller

is no longer demanded maximum acceleration and discrepancies in the methodologies

will show. Because the acceleration-based model includes the time when considering the

approach velocities, the velocity changes are enacted quicker, primarily due to the ∆V

method demanding velocity changes located in a dead-zone which of course it has no

knowledge of. The acceleration-based GL begins switching to the transient regime at

t/T ≈ 0.6, whereby it approaches at the designated approach speed Vk.

The ∆V based GL continues to reduce error throughout the transient regime until it

reaches the steady state regime at t/T ⪆ 0.85. At this point, the optimisation of Vk ensure

that any residual or relative velocity is completely eliminated at the time the projectile

reaches the desired level of accuracy. The steady state error for the ∆V based system is

lower than the acceleration-based novel GL, but by a small margin. As was shown in

table 6.1, this discrepancy in steady state error led to no significant or in fact discernible

difference between the impact point accuracy, at least with the considered metrics.
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F I G U R E 6 . 1 . 4 Error reduction capability of GLs

6.2 Novel geometry analysis

In this section, two examples of projectiles are created to demonstrate how the novel

actuation mechanism can be implemented. The first is a direct fire 7.62x51mm NATO, the

second is a 155mm M107, which is traditionally an indirect fire artillery shell. The designs

are created in the CAD software Space Claim. These CAD files are then used in CFD

simulations to determine aerodynamic coefficients which are in turn used in combination

with the stability framework outlined in the previous chapters to map the ballistic stability

of the projectiles over the expected flight envelope. In both instances, the novel projectile

model is made to resemble the original as closely as possible in terms of physical properties.

In particular, the mass is kept the same in both projectiles; while the physical volume of

the ogive is reduced, it is assumed that the mass distribution and density is modified in

such a way as to preserve the centre of gravity and moments of inertia. Table 6.4 shows

the parameters for both of the projectiles.

6.2.1 CAD models

The actual geometry of the projectile will require a considerable amount of further research

and optimisation. The boattail angle alone of projectile has undergone decades of research

before the optimal geometries used by modern projectiles were found and this is tradition-

ally something which is found through trial and error. Guided projectiles are obviously

significantly more expensive to manufacture per-round than traditional projectiles, as such
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Parameter Artillery Shell (M107) Bullet (L54) Units

D 155 7.83 mm

L 698 29.93 mm

m 43 9.33×10−3 kg

xCoM 459 12 mm

Ixx 0.144 7.228×10−8 kg.m2

Iyy = Izz 1.216 5.379×10−7 kg.m2

TA B L E 6 . 4 Projectile parameters

it is impractical to use a large volume of test rounds when optimising the designs empir-

ically. It is likely that as with traditional guided projectiles, a large amount of theoretical

research will need to be conducted using simulations. What follows are two illustrations

of projectile designs which utilise the novel actuation method.

7.62x51mm NATO

Figure 6.2.1 and fig. 6.2.2 show different perspectives of a modified 7.62x51mm, with

the blunted face or facet highlighted to distinguish it. Due to the length of the ogive, the

curvature of the hybrid ogive (Appendix B.2.2, fig. B.2.4) is visually quite subtle and thus

facet is difficult to distinguish in the profile view of fig. 6.2.1B. The blunted surface is

the upper side of the ogive on fig. 6.2.1B, the lower is the regular hybrid curvature. Since

the curvature of the surface frontally exposed to the oncoming free stream velocity has

been partially reduced, the drag force will increase. Since the surface area of the ogive has

reduced, the skin friction will reduce which would in turn lead to a reduction in the spin

damping moment. However, the reduction in surface area also causes the surface area of

the projectile to be perpendicular to the surrounding air, as the projectile rotates, which

causes the spin-damping moment to increase more than it decreases from the surface area

reduction. It is this mechanism which provides the roll damping moment necessary for the

actuation mechanism to function, but any method of achieving the increase is acceptable.

Figure 6.2.2 shows the front (fig. 6.2.2A) and rear (fig. 6.2.2B) trimetric views of

the design. The blunted ogive can be described by a plane which intersects with the
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( A ) Front ( B ) Side

F I G U R E 6 . 2 . 1 Plan views of 7.62mm projectile design with blunted face

traditional geometry. A point p1 is identified on the projectile meplat, centred laterally but

raised in the normal axis. This point can be on the outer edge of the meplat, such that it

coincides with the meplat-ogive vertex, or it can be closer to the longitudinal axis of the

projectile. Another point p2 is located on the ogive, at the tangent-secant boundary. The

line connecting p1 and p2 is then used as the limit at which all material above is removed,

to create the blunted surface. Simply, these points can be moved to reduce or increase the

surface area of the blunted face. However, it is more likely that a more optimal design will

consider a complex topology to achieve the desired increase in roll damping moment and

lift force, while keeping the drag force low. In this case, p2 is chosen to be the tangent-

secant boundary and p1 is chosen to be
1
2

the distance from the centre to the outer edge of

the meplat.

( A ) Front ( B ) Back

F I G U R E 6 . 2 . 2 Trimetric view of 7.62mm projectile design with blunted face
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155mm M107

Figure 6.2.3 and fig. 6.2.4 show different perspectives of a modified M107 shell. A frontal

view is shown in figure 6.2.3A, where the blunted face visibly occupies a considerably

smaller proportion of the projectile cross section than the 7.62mm projectile in fig. 6.2.1A.

The blunted face is created using the same two-point placement system as in the 7.62mm

design. However, the boundary of the hybrid ogive in the M107 projectile is defined by the

projectile fuse, which carried across in this design. Physically, the blunted section of the

M107 is considerably larger than the 7.62mm, but obviously accounts for a significantly

smaller amount of the M107. The resulting effect on the trajectory, for the spin damping,

lateral control force and drag will be considerably smaller. Figure 6.2.4 shows a side view

of the 155mm projectile. The front section has the blunted face on the top side of the

image, while the regular ogive profile is on the bottom.

( A ) Front ( B ) Isometric

F I G U R E 6 . 2 . 3 Views of novel M107 155mm projectile design

F I G U R E 6 . 2 . 4 Side view of novel M107 155mm projectile design
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6.2.2 Aerodynamic coefficients using CFD analysis

This section describes the CFD process used to determine the aerodynamic coefficients of

the novel projectile, which are necessary to determine the efficiency of the novel control

mechanism. In addition, it will allow the trajectory changes which have resulted from

the geometric differences to be differentiated. While semi-empirical code architectures

such as PRODAS, can be used to determine the coefficients, Navier-stokes based CFD

approaches have shown to provide significantly more accurate coefficient data when com-

pared to available experimental flight data [84]. The process of using CFD simulations to

determine projectile aerodynamic coefficients over a range of flight conditions has been

well documented, predominantly ANSYS-Fluent [90, 97, 96] but other CFD packages

have also been used [88, 202].

The process for obtaining the coefficients is as follows. Firstly, the projectile is de-

signed in CAD software, which has already been shown in the preceding section. Next,

the mesh and cell type are defined such that they can sufficiently capture the behaviour of

the fluid flow around the projectile. Then, the boundary conditions are set and the solver

type chosen. Finally, the simulations are run and the resulting coefficients are calculated

from the corresponding force and moment outputs.

Validation of methodology

Before the novel geometry is evaluated, the coefficients obtained from the CFD procedure

are validated against available literature using a traditional geometry. In ref. [92] the

coefficients for an M107 projectile are computed, on the same M107 design on which

the novel design described here is based. Importantly, the drag, lift and spin damping

coefficients are explicitly stated. Following Wessam and Chen, the M107 CAD geometry

is imported into ANSYS-FLUENT and the mesh is created using quadrilateral cells for

the fluid domain and hexahedral cells for the projectile. The domain was defined by a 3.5

calibre cylinder centred about the projectile centroid, extending 1 calibre in front of the

tip and 7 calibres below the base. In total, 3.5×105 cells were used compared to 346352

in the reference. A coarser mesh could be used, but it has been shown that coefficients

vary around 2% on average between fine, medium and coarse meshes [203]. The far field
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boundary condition is pressure far field density-based, with free stream values

of T = 300K and P = 1atm. Figure 6.2.5 shows the results of the CFD analysis against

those obtained from the literature for the drag force CD (fig. 6.2.5A) and spin damping

moment Cl p (fig. 6.2.5B).
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F I G U R E 6 . 2 . 5 CFD results against those from ref. [92]

It is apparent that all of the coefficients obtained are in good agreement with respective

source they are being compared to. There is no bias or consistent discrepancy across the

two comparisons, which would indicate a systematic error in the procedure in a certain

Mach region. There appears to be a larger discrepancy in Cl p than in CD, but this is

likely due to the very low resolution for that coefficient. The spin damping moment often

varies by only 10−2 across the investigated Mach range and so the parametric variance is

often only a few multiples of the machine computation resolution. This is partly why Cl p

have the lowest uncertainty in many literature sources [64, 56], because there is so little

variation across the Mach range.

Because the traditional design is completely radially symmetric, there is no differ-

ence between the normal and lateral force coefficients. When the geometry has radial

symmetry, a non-zero values of α and β induces the normal and lateral forces via the

angle of attack/side-slip dependant force terms, CNα and CY β respectively. A radially

symmetric projectile will have no lift at α = 0, as it is by definition an aerofoil asymmetry

which causes lift. As such, the normal and lateral force coefficients are omitted from the

investigation.
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Results for novel geometry

The value of the novel coefficients has been intentionally redacted, but they are shown

without a scale to illustrate the relative variance. Figure 6.2.6 shows the aerodynamic

coefficients for the drag force (fig. 6.2.6A) and spin-damping moment (fig. 6.2.6B) for

novel geometry modifications made to the 155mm M107 projectile. The Mach range used

for the investigations is the same, concentrating the data points around Mach 1 to capture

behaviour in the transonic regime. Because the total area of the 155mm projectile effected

by the modification was so small, even from the frontal free stream perspective, the change

to the drag coefficient is nearly negligible. Because the lift coefficient is at the expense

of drag, it is apparent that the control force available for the projectile to use during the

correction manoeuvres is also low.

0 0.5 1 1.5 2 2.5

Mach number

( A ) Drag

0 0.5 1 1.5 2 2.5

Mach number

( B ) Spin Damping

F I G U R E 6 . 2 . 6 Aerodynamic coefficients of novel geometry against traditional 155mm M107

The change of the roll damping moment is more significant for the novel case. Because

symmetric projectiles have very little roll damping moment, the only contribution being

skin friction drag, any asymmetric modification to the projectile will cause an increase.

Note that the novel projectile actually has more negative values than the traditional pro-

jectile. This is due to the sign convention, a more negative spin-damping moment means

the moment causes a larger deceleration of the roll rate. Because the magnitude of the

traditional spin damping moment is so low, the presence of any induced Cl p is visually

more significant.

Figure 6.2.7A shows the drag coefficient change across a Mach range resulting from
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the novel geometry changes on a 7.62x51mm NATO round. It is apparent that the drag

coefficient for the novel geometry is significantly higher for all observed Mach numbers.

The drag coefficient for the traditional 7.62mm round is significantly higher than the tra-

ditional 155mm M107 is, without modifications. This is due to the ogive profile of the

7.62x51mm being substantially less aerodynamic than the 155mm; it is shorter propor-

tional to the body and the cross section subjected to the frontal free stream velocity has a

lower radius of curvature. The increase in CD in fig. 6.2.7A after the geometry modific-

ation is more significant because the blunted section of ogive contributes a much larger

proportion of the frontal area presented to the oncoming free stream. The drag also in-

creases by a larger amount in the transonic regime than towards the higher Mach numbers,

which is in part due to the formation of bow shocks at the higher Mach speeds, preventing

flow separation around the blunted face. This variation in CD as a result of the geometry

modification is similar to the results seen in Appendix B.2.2, during modification of the

meplat tip diameter in the PRODAS parametric investigation.

The increase in drag coefficient leads to a decrease in effective range of up to 10%

of what can be expected by a traditional round. It is a rule of thumb that 80J is required

of ballistic projectiles to achieve the desired terminal effects. Because kinetic energy is

proportional to V 2 and the velocity drop is directly proportional to the drag coefficient

increase, the geometry modifications will cause the projectile to drop below this energy

threshold approximately 10% sooner than it would do otherwise. The associated lift

coefficient is only computed at V = 2.4 Mach for the 7.62mm and V = 1.6 Mach for the

155mm. This is because the lift coefficient is assumed to be constant throughout the flight

to more closely represent the discussions of the control mechanisms.

Figure 6.2.7B shows the spin damping moment coefficient for the modified 7.62mm

round. It is apparent that the novel design has a significantly lower spin damping moment

than the traditional design over all evaluated speeds, especially in the expected operating

region of V >Mach 1.5. Of interest is that the novel Cl p was not significantly lower than

the traditional round in the transonic region, where one would expect asymmetric shock

formation
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F I G U R E 6 . 2 . 7 Aerodynamic coefficients of novel geometry against traditional 7.62x51mm
NATO

6.2.3 Stability analysis

With the projectile geometries established, using the blunted ogive modification to a stand-

ardised projectile design, stability analysis can now be conducted using the framework

outlined in chapter 3. Coefficients are only non-zero if they were derived from the pre-

ceding analysis. Figure 6.2.8 shows the stability plots for various projectile velocities

expected for the flight envelope of the 7.62x51mm NATO and 155mm M107 projectiles.

Figure 6.2.8A shows the 7.62x51mm NATO and fig. 6.2.8B shows the 155mm M107. The

dual-spin projectile with passivated control surfaces is used and the effect of the blunted

face is modelled as canard contribution: the surface area and angle are calculated from

the CAD software. The traditional 7.62mm remains ballistically stable for all projectile

velocities above V = 1.8 Mach, below which there is insufficient gyroscopic stability.

Removing a significant portion of the ogive during the blunting process lowers the mo-

ments of inertia and also shifts the CoM towards the rear. This increases the moment

arm, increases the overturning moment and decreases the dynamic stability by decreasing

the stability factor. This leads to the novel projectile being significantly less stable than

the traditional, becoming ballistically unstable below velocities of V = 2.2 Mach. This

indicates the novel actuation method will be able to provide satisfactory control at least

above these velocities, for the considered simulation parameters. However, the control

force is achieved at the expense of an increase in drag which will ultimately decelerate the
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F I G U R E 6 . 2 . 8 Projectile stability change from geometry alteration

projectile quicker, meaning the controllable range is significantly shorter than it would be

otherwise.

The M107 projectile remains stable for all velocities covered by the calculations, in-

dicating the unstable region is below Mach 1. The material removed from the ogive is

very small compared to the whole projectile, a significantly smaller fraction than that from

the 7.62mm. The reduction in moment of inertia, both longitudinal and transverse, is

therefore nowhere near as significant. Figure 6.2.8B shows that the change in ballistic

stability of the 155mm projectile across the considered flight envelope, as a result of the

novel geometry changes, is near-negligible. This indicates that the guidance method can

be implemented on the M107 with little effect. However, the ballistic instability is caused

by the increased drag and reduced inertias which is a trade off with the increased lateral

control force. The fact that ballistic stability remains relatively unchanged, indicates that

the magnitude of terminal correction which can be provided by the novel control mechan-

ism may be small. This will become apparent once the aerodynamic coefficients derived

in the coming sections are used in the dynamic model to produce example trajectories.

From fig. 1.1.1 (pg. 13) it can be seen that there is a fairly even distribution of internal

material which is assumed to be removed from the projectile and replaced with components

and subsystem necessary for the prototype operation. The heaviest component which will

be introduced is the power supply. This means, from a design perspective, the CoM and
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therefore the stability can be fine tuned by shifting the power supply towards either the

front or back of the aft section.

6.3 7-DoF dynamic model example trajectories

This section will use the 7-DoF dynamic model in combination with the novel aerodynamic

coefficients and the control architectures compared in the previous section, to produce

a comparison between the free ballistic flight and the novel guidance method. A step

response graph is shown using an estimation of the bearing dynamics following academic

literature to establish equilibrium. Using this model of bias response, a trajectory is

generated for both ballistic and controlled flight. Dispersion analysis is then conducted,

identical to §6.1, to show the magnitude of dispersion changes.

Bias manoeuvre step response

The preceding aerodynamic analysis characterised the spin damping moment coefficient

Cl p of the projectile, and therefore the ogive. However, it is not possible to faithfully create

a step response function to model a bias manoeuvre of the projectile, because the roll rate

decay modelled by the BiasON and BiasOFF functions is caused by an equilibrium being

reached between both the roll damping moment and the torque of the bearing. Both Wang

et al. [72] and Guan et al. [204] have included values of the static and viscous friction

coefficients, ks and kv respectively, which are used to model the bearing dynamics. Wang

et al. use the values ks = 2×10−3 and kv = 4×10−5, while Guan et al. use ks = 1×10−3

and kv = 1×10−5. While the actual estimates may vary, importantly both authors agree on

the order of magnitude of the variables, though neither cite the sources for their respective

values. Guan et al. investigated the spin rate as part of their work and so their respective

values of the friction coefficients are used here, so that the results here might be given

some context.

Figure 6.3.1 shows the spin rate of the front section pF of the 155mm and 7.62mm from

the 7-DoF model. The brake is engaged up until the front section has attained the initial

spin rate of 1200rad.s−1, whereby it is immediately disengaged at t = 0s to decelerate

under the effect of the spin damping moment. The spin rate takes approximately 1s to
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F I G U R E 6 . 3 . 1 Forward spin rates during bias switching

reach the equilibrium roll rate of ωB, dropping from 1200rad.s−1 to 1076rad.s−1. In the

results shown by Guan [204], the canards activating, therefore increasing the spin damping

moment‡, causes pF to drop from 1300rad.s−1 to 450rad.s−1 in 10 seconds. While the

drop time it took for the deceleration was longer, the forward mass used by Guan was

not shown, only the composite whole-body mass. This would indicate the discrepancy is

caused by some combination of a more massive forward section and varying spin damping

and bearing friction moments. Small calibre direct fire projectiles often have flight times

of only a few seconds, which would indicate that the time it takes for the bias to passively

engage is too long with the current configuration. However, from chapter 4 it was shown

that it is unnecessary for the front section to fully reach the equilibrium roll rate. The bias

can be cut short and still have sufficient asymmetric roll rate to produce a control impulse,

it is only of importance that the spin speed is significantly different to produce an impulse

of usable magnitude. In the present system however, the deceleration of the front end was

comparable to that demonstrated by Guan.

The front section of the 7.62mm projectile de-spins significantly quicker than the

M107, taking approximately 0.1s to reach the bias spin state. Furthermore, the natural

roll rate is achieved almost instantaneously. This increase in switching rate by a factor

of ∼ 10, correlates with the mass discrepancy between the two sections, which are also

different by a factor of ∼ 10. The reason for this significantly faster switching speed is that

‡though it should be noted this was not their primary purpose
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the geometry blunting constituted a significantly larger portion of the ogive. In addition,

the mass of the ogive is significantly less than for the M107, so the larger de-spinning

moment acts on a less massive section which creates a larger acceleration. The initial spin

rates of the projectile are set to be the same, even though the traditional implementations

of these projectile would not have the same spin rates. This is done to compare how the

geometry and mass changes affect the transition. It can be seen that ωB for the 7.62mm

projectile is lower than for the M107. While the same bearing torque profile was used for

both projectiles, the spin damping moment was higher. As was shown in §4.3.4, increasing

Ml p without altering the bearing torque results in the bias rate being lower. The results

observed from the 7-DoF model thus agree with the theoretical predictions of §4.3.4.

The data shown on the figure is used to create the BiasON and BiasOFF functions.

These functions are then used as part of the inputs for the numerical procedure described in

§4.3.3, whereby the latax is computed for the corresponding sizes of φa and offset distance.

Error reduction capabilities

Now that the bias manoeuvre has been characterised for this system, it is possible to in-

vestigate the dispersion and correction capabilities of the novel design. To achieve this,

relevant sources will be identified which detail the dispersion characteristics of the tradi-

tional projectile geometries which were used as the base for the novel modifications. The

sources will include a description of the scenario which produced the described dispersion,

target distance, muzzle velocity etc. A Monte Carlo simulation will then be conducted

with the 7-DoF model, using the initial conditions described by the real-world source

material. The variance of the MC initialisation parameters will then be tuned such that

the dispersions achieved from the dynamic model, using the traditional geometry models,

match the dispersions of the real projectiles from the literature. The projectile can then be

swapped to the novel geometry equivalent with the MC run again, but with a passivated

control scheme. In this way, the effect of purely altering the geometry can be observed.

Finally, the control system can be activated, and the resulting CEP compared against the

passivated novel and traditional geometries from the model, and the real-world geometries.

From the above analysis it was concluded that the ã based actuation mechanism using the

novel GL provided the best correction capabilities in the nominal comparison and so that
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configuration will be used for the actively controlled novel projectile below.

While it is possible to vary a plethora of environmental factors, such as air density,

temperature and humidity etc., the variation was restricted to only factors directly accoun-

ted for in the 7-DoF model, which are shown in table 6.5. One issue that arises from this

is how to arrange the distribution of the MC initialisation conditions to replicate the CEP

shown in the literature, as different configurations may produce the same dispersion, but

be unrepresentative of a real environment. For example, a greater lateral dispersion can

be achieved by increasing crosswind, or azimuth angle. The distributions are chosen to

follow those shown in ref. [90], which follow experimental observations. As before, the

values are varied by generating perturbations following a normal distribution with mean µ

and standard deviation σ shown in the table. The mean is taken to be the noted values in

the accompanying experimental reports, while σ is adjusted until the model CEP reflects

the experimental CEP.

Parameter
7.62mm† 155mm‡

µ σ µ σ

V m.s−1 834 5 550 2

Elevation ◦ 0.2 5×10−4 45 0.1

Azimuth ◦ 0 5×10−3 0 0.1

Crosswind m.s−1 0 2 0 2

Headwind m.s−1 0 2 0 2

TA B L E 6 . 5 Mean and standard deviation of variables in 7-DoF MC dispersion tests
† - From BAE quality control tests, ‡ - Ref. [90]

The 7.62mm is fired directly at a target located 500m away as per test data, while the

155mm is fired for maximum range, at 45◦, landing at a distance of 30km over flat ground.

When either projectile meets the respective impact criteria, the simulation is terminated,

and the miss distance is recorded. As for the nominal analysis, the mean impact point

is computed using eq. 6.4 & 6.5, then the CEP or R95 is computed using eq. 6.6. For

both projectiles, 104 rounds are fired in both the test data and MC simulations. This is

significantly more rounds than would be used in a real experimental test, but computer-

based simulations can afford the luxury of large sample sizes. There is assumed to be no
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variance in the mass or calibre of the projectiles.

The actuation mechanism and GL in chapters 4 & 5 are described from the picture

plane. For implementation in the 7-DoF model, the target resolution plan is defined such

that the normal axis of the plane n̂ is the longitudinal axis of the projectile. In addition, the

angle of attack is fixed at 0◦ such that n̂ = V⃗ = x̂pro j. The guidance system is enabled for

the 7.62mm round at t = 0.5s and for the 155mm at t = 30s. These values are heuristically

chosen as the points where the respective projectiles are on a relatively straight trajectory

at terminal approach.

Source Projectile variant
7.62mm R95

[mm]
155mm CEP

[m]

Experimental Traditional 70† 270 ‡

7-DoF
Dynamic model

Traditional 70 267

Novel passivated 71 268

Novel guided 33 264

TA B L E 6 . 6 Dispersion comparison for range of projectiles
† - From BAE quality control tests, ‡ - From ref. [205, 206]

Table 6.6 shows the final comparison of dispersions between each iteration of the novel

projectiles. N.B. that R95 is the dispersion metric for the 7.62mm, while CEP is used for

the 155mm. In addition, the dispersions of the 155mm are in the ground plane (lateral-

longitudinal), while the 7.62mm uses a target plane (lateral-normal). This is because

CEP is traditionally used when discussing larger artillery calibres, whereas R95 captures

variations which would affect the consistent high precision demanded by the lower calibres.

Changing the traditional 155mm projectile for the novel variant causes the CEP to increase

by an insignificant amount, within the variation to be expected from using a Monte Carlo

simulation. This is reassuring that the blunted ogive was unable to significantly affect

the trajectory when no control system was present, as would be the case in the event of a

software malfunction. However, when the guidance system was activated, the CEP was

reduced from 268m to 264m, a reduction of less than 2%. While the is a significant change

caused by the guidance system being in operation, it is very small and thus unlikely to be

useful when considering the financial cost increase compared to the traditional ballistic
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rounds. This very small reduction is primarily due to the very small lateral control force

being generated by the blunted ogive, which in turn causes a very small acceleration of

the projectile due to the large mass.

The dynamic model provided an estimate for the traditional ballistic 7.62mm identical

to that found in experiments. This projectile being direct fire and considerably shorter

range than the artillery shell results in the perturbations having less of an effect on the tra-

jectory, i.e. the dispersion is less sensitive to a change in initialisation standard deviations.

Replacing the traditional geometry with the novel geometry did not cause a significant

increase in the R95 value. However, the guidance system activation reduced the R95 from

70mm to 33mm, a reduction of 53%. This is a significantly larger reduction in dispersion,

which is due to the significantly higher latax available because of the significantly lower

projectile mass. Because a larger proportion of the projectile was altered during the blunt-

ing process, a higher Cl p resulted which generated a larger latax when acting on the less

massive 7.62mm projectile. In scenarios where accuracy is paramount and a dispersion

of 70mm offered by the traditional rounds is unacceptable, this guidance method may be

an attractive alternative considering the reduction in dispersion it provides. In the event

the guidance system fails, the natural stability guaranteed by the being designed to be

ballistically stable has been demonstrated to perform at least as well as the traditional

round.

Figure 6.3.2 shows trajectories from the Monte Carlo simulations for the 7.62mm

projectile. Only 50 trajectories were selected, at random, from the full sample size to

be displayed on the figure. The guided paths observably tend towards the target region

and impact closer than the unguided case. The correction capability of the novel 155mm

geometry was too small to be distinguished in a similar graph and is hence, omitted.

The scale on the figure makes it difficult to distinguish any significance in the trajectory

difference when the control and guidance architecture is enabled.

Figure 6.3.3 show the terminal dispersion for the 7.62mm projectile for the unguided

traditional (fig. 6.3.3A) and novel guided (fig. 6.3.3B) cases. The origin has been zeroed

on the impact point for the unperturbed impact point and the axis distances and scales are

the same on both figures to aid interpretation. The same randomly selected 50 samples

from fig. 6.3.2 are shown here, to represent the full Monte Carlo batch.



6 . 3 . 7 - D O F DY NA M I C M O D E L E X A M P L E T R A J E C T O R I E S 241

F I G U R E 6 . 3 . 2 Monte Carlo trajectories of traditional ballistic and novel guided 7.62mm pro-
jectiles

The dispersion for the ballistic case is evenly distributed with no bias in impact location.

There are insufficient impacts shown to appear normally distributed about the mean, as

would be expected from the normally distributed launch variables. This is caused by the

low number of displayed impacts, as opposed to being a characteristic of the behaviour.

The guided impacts are significantly more clustered with what appears to be a vertical bias.

There is a centrally located, vertical line of impacts. This indicates the guidance system is

able to reduce the lateral error more than the vertical error. Because the preceding section

showed that there was no significant bias present for GLs operating in the nominal system,

any bias present here is an artefact of the specific implementation and system dynamics.
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F I G U R E 6 . 3 . 3 Dispersion patterns of traditional ballistic and novel guided 7.62mm projectiles;
origin centred on unperturbed impact point
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The same statistical data analysis conducted for the nominal GL comparison is re-

peated here. Because the dispersion of the 155mm projectile was reduced only by a very

small amount, only the 7.62mm is evaluated. The mean impact points µ and standard devi-

ations σ are calculated from the impact points, which are used to compute the correlation

coefficient from eq. 6.8. This is used to compute the t-statistic using eq. 6.14 which is

used in conjunction with the t-distribution PDF (eq. 6.13) to compute to the p-value from

eq. 6.15. The null hypothesis H0 and alternative hypothesis HA (pg. 220) are also reused

here. The results of this procedure is shown in table 6.7.

Projectile µx µy σx σy ρ p-Value

Traditional -8.600 -18.901 28.553 33.581 0.014 0.460

Novel 0.2165 -7.2989 7.384 17.310 0.129 0.187

TA B L E 6 . 7 Statistical Analysis of 7-DoF MC dispersions with α = 0.05

In both the traditional and guided implementations, the mean impact points were

beneath the unperturbed impact point µy < 0, while the guidance system was able to

correct the µx < 0. The standard deviation of both the lateral and normal axis were close

to equal in the ballistic case, which is what one would expect from an unbiased and

normally distributed initial conditions. However, σy was more than double σx in the

guided case, further supporting the fact that the lateral error is being reduced more than the

vertical error. While the dispersion correlation was significantly non-zero in the guided

case, indicates the presence of a positive correlation, neither of the p-values were less than

the significance level α . This shows that while there is a non-zero correlation present, it is

insignificant given the number of rounds fired; that H0 should be accepted and that there

is no significant dispersion pattern in the impact points.



Chapter 7

Conclusions

TH I S chapter will present the key findings of the project. The primary focus of the

project is to prove the feasibility of operating principle underlying the actuation

mechanism; can a rotating control force be used to control a projectile by only slowing the

rate of rotation? However, other supporting material has been investigated in depth, such

as AI reinforcement learning and ballistic stability. Firstly, a detailed narrative overview of

the enclosed works is given. Secondly, the main conclusions, results and findings from the

enclosed chapters are presented, specifically addressing the aims and objectives described

in the introduction. Thirdly, an explicit list is given which highlights the novel contribu-

tions of the project, as well as any areas where existing knowledge has been applied in

novel ways. Finally, there is a discussion on future work to improve understanding of

the enclosed discussions, from improvements in the actuation mechanism and design to

auxiliary works such as the GL and AI implementation.

7.1 Project summary

In chapter 3, the coordinate axis and reference frames are established for a projectile

adorned with lifting surfaces. The aerodynamic interactions are described along with

the importance of accurately characterising the aerodynamic coefficients which describe

them. The non-linear equations of motion, expressed in state space notation, are linearised

using q-LPV method and a Jacobian linearisation method is applied to trim the model at

certain operating conditions. The equations are then implemented in a MATLAB/Simulink

243
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environment to form the 7-DoF dynamic model. It was shown to reduce to the conventional

6-DoF model under the assumption that the ogive (or aft section) is negligible in every

way. The model was validated by comparing the predictions with relative literature.

The pitching and yawing motion of projectiles is explored, leading to the fast and

slow yawing modes, whereby analysis of the boundary conditions leads to the gyroscopic

and dynamic stability factors, Sg and SD respectively. The relationship between these

two factors is imperative early in the design process as it indicates whether the projectile,

under free ballistic flight, will remain stable without further consideration of the guidance

system activity. Literature pertaining to these stability factors has been reconciled to show

the evolution from simple ballistic single-spin projectiles through to guided dual-spin

projectiles. This resulted in a publication [40]. The stability of various bullet calibres is

computed over a predicted flight envelope. Lastly, a rudimentary parametric and sensitivity

study is conducted, investigating the effect of projectile geometry on the stability factors,

which is shown in appendix B.

Chapter 4 explored the novel design focused on the fundamental operating principle.

A control force and roll damping moment are constantly present. The control force is

constantly rotating and is slowed by disengaging the brake, causing the front section to

spin-down under the influence of the roll damping moment. During favourable angles, the

roll rate is slowed, which results in a biased distribution of the force through a roll rotation.

This results in a net impulse, the magnitude and direction of which can be controlled by

intelligently choosing the bias start φON and bias stop points φOFF .

Two different approaches for describing the impulse as a function of bias coordinates

were investigated. The change in motion from the bias can be characterised as a change

in velocity ∆V , which can then be combined with the time it takes for a singular rotation

τ to produce an acceleration ã (latax). The actuation mechanism is implemented into the

7-DoF model. While ∆V and ã both describe the motion of a singular discrete rotation, it

has been shown by verifying a set of axioms that the motion can be extrapolated across

multiple rotations to control the lateral motion of the projectile on a continuous, macro

scale. This means that the projectile bias manoeuvres can be governed in the classical way

by a GL which either controls ∆V or ã. In either case, an instruction set is created which

converts the value demanded by the GL into bias coordinates.
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Simplifications are first made to the system, primarily the switching between the

natural roll rate ω0 and the biased roll rate ωB is assumed to be instantaneous. The

switching simplification is relaxed, and the motor/bearing dynamics are modelled by an

arbitrary mathematical function ω(φ), which emulates the real actuator response reacting

to engaging and dis-engaging the bearing brake at certain roll orientations. Because this

function is arbitrary, the enclosed treatment is independent of modelling method, meaning

the same treatment can be applied to a real system when the complex and non-linear

behaviour of the actuator dynamics can be modelled or obtained. This function ω(φ)

is generated using ω0, ωB and the arbitrary functions BiasON and BiasOFF . BiasON

represents the spin deceleration resulting from the spin damping moment when the brake

is disengaged; BiasOFF represents the spin acceleration from the increase in bearing

torque when the two sections a re-coupled after the brake is re-engaged. In summary,

for a given system dynamic model, the function ω(φ) and the accompanying numerical

treatment act to directly link a desired magnitude and direction of ∆V or ã with the φON

and φOFF which produces it. The magnitude of the latax which can be achieved during

bias manoeuvres with arbitrary switching functions are investigated in addition to how

the magnitude changes as the ratio of spin speeds ωB/ω0 changes. Lastly, the switching

profile is explored as a function of the bearing torque, spin damping moment and front

section mass.

In chapter 5, various GLs are explored for their applicability in guiding the novel

system. A Monte Carlo procedure is defined, which runs a batch of simulations with

randomised initial conditions to characterise the performance of a specific GL/AM config-

uration. This allows different configurations can be meaningfully compared against one

another.

During the formulation of the actuation mechanism from a ∆V perspective, an oppor-

tunity presented itself to formulate a ZEM-based GL derived from the maximum kinematic

motion permitted by the mechanism. This novel GL uses a function VPT (d) to determine

the closing velocity as a function of the instantaneous miss distance d. It has two tun-

able parameters; the global scaling factor ξ and the terminal closing speed Vk which are

used to increase response rate and prevent an overshoot. The GL is comprised of three

independent regimes to allow higher fidelity control over the projectile in close proximity
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to the target, since accuracy is paramount in small calibre. A parametric investigation

and sensitivity study is conducted to observe the effect of modifying ξ and Vk, on the

trajectory. A PID controller is applied, along with a fuzzy logic controller. The GL para-

meters and PID controller gains were then optimised using a genetic algorithm for a GL

controlling a nominal, instantaneously switching projectile. The genetic algorithm search

was bounded using heuristic variation. It yielded optimum values of [ξ Vk] = [0.54 0.18]T

and [kP kI kD] = [1 0 0]T which indicates that the PID controller provides no significant

benefit over just the GL parameters with the analysed configuration.

Two different implementations of RL AI agents investigated. Firstly, the reward func-

tion is constructed based on a discussion of possible agent behaviours, attempting to

mitigate undesirable performances and exploitations. In the first implementation, a DQN

agent was given direct control over both the actuation mechanism and GL. The agent acted

continuously to activate or release the bearing brake; the action space is A = [ω0 ωB]
T.

The chosen observations were the relative kinematic differences of both the projectile

and target. The relatively simple neural network (NN) used here was unable to learn the

environment sufficiently to deliver desirable correction performance, using the discussed

reward function. However, the agent did show signs of improving and it is speculated

that the agent will be able to learn the environment significantly given a larger NN with

more layers and training time. In the second implementation, a DDPG agent is used in a

single axis (channel) model to reduce the distance error of a point mass to a target. The

action space is chosen to be A = [−ã ã]T. This model is modified to include an action lag,

which emulates the delay in command caused by the one full roll rotation being required

to enact a change. The single channel agent was successfully trained on using values from

the instantaneous switching model and then implemented in a dual-channel configuration,

operating as a GL.

The performance of traditional PN, novel ZEM-based, and the AI GLs are compared

against each other in a nominal case for instantaneous switching. This directly compares

the miss-distance reduction capabilities of the GLs without the actuation mechanism com-

plexities. The dispersion characteristics are then measured using CEP, DRMS and R95

metrics by running a Monte Carlo simulation with normally distributed initial conditions.

All GLs provided significant levels of error correction compared to the free ballistic case,
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with the bespoke ZEM based GL providing the best capabilities of all. Statistical tests

indicated that only the AI GL generated any significant correlation, which is suspected to

be caused by incomplete training and dual-channel implementation of a single-channel

agent. The correction characteristics were investigated which showed that the PN GL

corrected the error very late, towards the terminal stages of the trajectory which is undesir-

able. Due to the intrinsic saturation of the actuation mechanism, early error correction

is paramount to avoid actuator saturation ending in an avoidable miss distance. This can

likely be corrected easily in future iterations using gain scheduling, to correct this error

sooner.

F I G U R E 7 . 1 . 1 Correction capabilities of 7.62mm using novel control method against hu-
manoid target at 500m; in proportion.

To provide the main findings of the project with context, a design process is shown.

Two illustrative CAD models are created, which modify existing traditional projectile

geometries to include the dual-spin, blunted ogive design. A rudimentary CFD analysis

is conducted to obtain aerodynamic coefficients, which are used to compute the ballistic

stability and investigate the front roll rate response during a bias manoeuvre. Finally, the

projectile models, actuation model and GL are combined using the full 7-DoF model in

a Monte Carlo simulation to generate dispersion patterns. The current implementation

was unable to significantly reduce the CEP for a 155mm projectile. However, the 7.62mm
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design R95 was reduced from 70mm to 33mm, which is shown in fig. 7.1.1. There was a

correlation present in the guided impacts, however statistical data analysis showed this to

be insignificant, meaning there is no indication of bias. The lift coefficient was assumed

to be constant throughout the flight, which is more reconcilable with the shorter ranges

of the small calibre projectile. This assumption would not necessarily hold for the larger

calibre indirect fire artillery shells, but it has been shown regardless that the presented

control mechanism is sub-optimal for larger calibres.

7.2 Key findings

This section will highlight the most important aspects of the enclosed work. It is split

into two section. Firstly from a manufacturers perspective, the ‘Design variables and

discussion’ heading encompasses aspects of the architecture which are key to controlling

and manipulating elements of the system. These design variables and limitations can be

discussed from the perspective of what purpose this system has. Finally the ‘Aims and Ob-

jectives’ heading specifically addresses each of the respective goals from the introduction,

clearly indicating where and how these requirements have been fulfilled.

Design variables and discussion

This project has demonstrated to a satisfactory standard, that the proposed control mech-

anism is a viable method of controlling a projectile and provides certain key benefits over

conventional control methods to warrant further investigation. Namely:

1. The design is volumetrically small. The only components required to guide the pro-

jectile according to the enclosed discussions are the power supply, bearing/motor,

brake mechanism, receiver and supplementary IMU. Because direct fire projectiles

traditionally don’t carry a payload, they rely entirely on kinetic energy to achieve

a desired target effect, the whole body of the projectile can be used, unlike the

CCFs used in artillery shells. The tracking method, either passive or active would

be adorned on the outside of the projectile, the stability effects of which can be

modelled fully and considered by the framework in §3.3, and is thus excluded from
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the volumetric budget inside the projectile.

2. The design is power efficient. This is primarily due to the absence of conventionally

power intensive components, such as active laser homing equipment or indeed any

onboard optical tracking equipment. Additionally, if the tracking method is passive,

e.g. a reflective panel, then no or very little power will be consumed.

3. The design is robust, to withstand the hostile launch conditions. There are no protrud-

ing aerodynamic surfaces which could be damaged during launch through contact

with the weapon barrel. Furthermore, there is no delicate deployment mechanism

which is susceptible to failure or shock damage. Due to the fact that imaging equip-

ment is optional and possible only requiring passive base tracking methods, the

number of electronic systems susceptible to launch damage or failures is generally

reduced. The main mechanism susceptible to damage during launch is the bearing,

the functionality and frictionless operation of which is paramount to the control

strategy. Projectile bearings have already beginning to see use in artillery shells

with CCFs, which is an assuring statement as to the state of the bearing techno-

logy, since the launch conditions in artillery systems are more extreme than in small

calibre-projectiles. The reliability and repeatability of the design can be ensured

in the sense that, even if the mechanism fails and seizes completely, the projectile

geometry will still have been designed to be stable, along the trajectory, meaning

the path is predictable.

4. The design is effective and can deliver control as long as the projectile has suffi-

cient velocity to remain in flight. Since the control mechanism doesn’t need to be

deployed, a lift force will be imparted from the blunted ogive as long as there is a

free stream being deflected by it. This means control can be initiated as soon as

the projectile leaves the barrel, turbulent conditions permitting, so that significant

correction can be enacted in the short flight duration



250 C H A P T E R 7 . C O N C L U S I O N S

5. The frequency of the control and guidance architecture is significant compared to

the spin rate of the projectile. The frequency response of the system is limited by

the actuation hardware used in the braking mechanism. Piezoelectric actuators have

an effective mechanical frequency response approaching the MHz range, which is

significant compared to the roll rate of the fastest spinning projectiles in the KHz

range. Note that from §3.3 it is detrimental for a projectile to have too high a spin

rate, thus the MHz response frequency of the piezoelectric actuators is likely to be

sufficient for almost all spin-stabilised atmospheric projectiles in the foreseeable

future. For an actuator response frequency fA and a projectile spin rate fP, the con-

trol mechanism is capable of making fA/ fP corrections per revolution. Assuming

fA/ fP = 106/103, this equates to 103 possible corrections per revolution, or a fidel-

ity of 0.36deg.

The control fidelity and magnitude can be improved by increasing the difference between

the natural and biased roll rates. The natural rate is fixed by the rifling of the weapons

system, but the bias rate is a result of the equilibrium between the bearing friction and roll

damping. The friction of the bearing is also likely to be fixed by whatever hardware is

suitable to be used in a prototype (unless intentionally variable as an additional method of

control), leaving only the roll damping moment as a critical design parameter. It should

be noted that if the spin damping moment is too high, then rotational energy will be lost

during flight to a point where the roll rate of the aft section be drop to a point where

the projectile is at risk of becoming gyroscopic unstable. This is unlikely to be realised

however as the drag would become an issue before this point. In summary, the geometry

should be designed so as to achieve the following:

• Increase lift force as much as much as possible while keeping the geometry stable

as dictated by the stability factors.

• Increase drag as little as possible, so the projectile range is remains as close to the

unaltered design as possible. This means designing a geometry with a high CL/CD

ratio.

• Remove as little weight as possible from aft for gyroscopic stability.
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• Remove more weight from the ogive section to enable quicker bias switching

• Spin rate discrepancy between the two should be as large as possible for more

correction distance and control fidelity, which requires a low bearing friction and

high spin damping moment.

The blunted ogive utilised in this project is not essential to the operating mechanism.

It is suggested here as a possibility due to the simplicity, robustness and relatively low

manufacturing costs compared to electromechanical or novel actuation mechanisms. The

investigations of §4.3.4 showed that the mass of the front section should be as low as

possible to increase the control fidelity. As such the front section needn’t be a complete

section at all, but it may comprise some aerodynamic shell, still attached via a bearing,

which envelops the ogive and being comprised of a light weight composite material. This

would drastically reduce the weight while still allowing the structural strength on which

to build an aerodynamic structure capable of both producing a lift force and spin damping

moment. It could take the form of an end cap, or heavily contorted asymmetric fin-like

structures extending down the sides of the ogive. This would also free up room for critical

subsystem inside the projectile.

While the mass of the front section should ideally be reduced for a more responsive

control system, mass reduction is intrinsically constrained by the desired terminal effect-

iveness of the round. Small calibre projectiles are mostly used as anti-infantry rounds

either in a suppressive role or direct engagement. As such they are not expected to defeat

significant quantities of reinforced armour, but should still be able to penetrate relatively

lighter body armour. Predominantly, it is hardness, mass and shape of the penetrator com-

bined with mass which is the effector mechanism for small calibre projectiles. The mass

required to maintain this capability must be considered when designing the control system,

let alone before the adoption of a payload system.

If a definitive and immediate effect on target is required, the tendency in modern

warfare is to employ guided missiles rather than higher risk small calibre fire; be it high

volume or high accuracy. Or it may simply be that the engagement profile does not permit

use of direct fire small calibre, and that only guided missiles can make any effect on target.

The results of this project show a scenario whereby a 7.62x52mm round has the CEP
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reduced from 70mm to 33mm. The main use cases which would benefit from such an

improvement are scenarios in which small arms are necessitated and accuracy is paramount.

A predominant example of this would be snipers or designated marksmen, small calibre

equipped drones or unmanned aerial vehicles, and light infantry fighting vehicles. As

technology improves and this design becomes cheaper, it can also be used to augment the

effectiveness of any small calibre direct fire systems.

Aims and objectives

The aims and objectives outlined in §1 have been completed in the following:

1. Objective 1: Can a mathematical framework be formulated which robustly describes

the motion of the system as a response to the controller instructions?

• Can the motion of the projectile be characterised in terms of a controllable

parameter?

It was shown that the net impulse from a biased rotation induces motion which

can be described by both a change in velocity ∆V (§4.2) and a lateral accelera-

tion ã (§4.3).

• Can this parameter be expressed linearly in terms of control variable?

Both the magnitude and direction of ã (and therefore also ∆V ) have been

characterised in terms of the bias coordinates φON and φOFF for arbitrarily

complex switching dynamics (§4.3.2).

2. Objective 2: Does a projectile geometry exist which can fulfil the requirements of

the control mechanism?

• Does the geometry provide sufficient lift at expected operational conditions?

An illustrative design was shown to create a sufficient lift (control) force and

roll damping moment, without generating an unacceptably high level of drag,

to achieve sufficient control authority to reduce the dispersion by a satisfactory

amount 6.3

• Does the geometry fulfilling the above do so without detriment to the stability

of the ballistic trajectory, in the event no control authority is exerted?
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The example design was shown to maintain ballistic stability across the expec-

ted flight envelope (§6.2.3) according to a well-defined framework of ballistic

stability (§3.3.4)

7.3 Summary of objective novelty

Many subjects were covered in this project to realise the aim and objectives. Some of

the work has been novel and some of the work has applied existing methodologies in

new ways. What follows is a brief summary, highlighting the most important original

contributions which have arisen.

1. First and foremost, the novel actuation mechanism described utilising the dual-spin

design with biased rotation rates. During the patent submission process with the

project co-sponsor BAE, prior art [207, 41] was highlighted featuring similar designs

to that presented here. In all cases, the designs relied on active de-spinning of the

front section via a motor, as well as relying on the front section being rotationally

stationary with respect to the earth frame. The design enclosed herein passively

de-spins the front section using the roll damping moment and does not require the

front section to be significantly de-spun. Lastly since patents are intentionally quite

vague, no mathematical description as to the fundamental operation is given, which

this project shows in its entirety. Formulating two approaches, both ã and ∆V , to

describe the inherently discrete behaviour of the actuation mechanism as a variable

which can be continuously controlled by autopilots.

2. The bespoke ZEM-based GL with tunable parameters optimised a genetic algorithm

and fuzzy-gain scheduled PID signal control.

3. Using a DQN RL agent to control the novel projectile design with binary action

space, effectively representing a complete control and guidance loop, by acting as

the actuator controller, autopilot and GL.

4. Use of a DDPG RL agent trained in a single channel environment with artificial

action lag, emulating real actuation mechanism delay. The agent is cloned and



254 C H A P T E R 7 . C O N C L U S I O N S

used in a dual-channel configuration to represent a GL, dictating the motion of the

projectile to reduce the ZEM distance.

5. Numerically quantifying the performance of a GL to guide a projectile in a 7-DoF

non-linear model. This forms the basis of a Monte Carlo simulation to generate a

metric capable of assessing different GL configurations, implementations as well as

directly comparing different GLs. Finally using this Genetic Algorithm as a function

emulator to define the fitness of specimens used in GA optimisation.

6. The conference paper in appendix C, uses the stability coefficients from chapter 3 to

investigate the ballistic stability continuously through the full flight trajectory, rather

than trimming the simulation at certain operational points.

7.4 Future work

This section shall briefly describe any opportunities which have arisen from this project

and should be pursued in more detail.

As discussed in the conclusions, the blunted ogive is just one possible candidate to

robustly provide a lift force and roll damping moment, but other solutions can be used. If

the blunt face is to be selected, then its implementation should be investigated in more

depth, primarily characterising how the geometry of the blunt face affects the factors

dictating controllability and stability: Cl p, FC, CD, Sg and SD etc. The lift to drag ratio

should be increased as much as possible, while still keeping the lateral force below that

which can cause instability. In addition, what effect if any does the asymmetric ogive have

for internal ballistics?

Traditional control and guidance solutions such as the M982 Excalibur, can cost as

much as 3000% more than an unguided 155mm (∼£110,000 compared to £500) while

reducing the CEP by more than 95% [208]. While the results from §6.3 showed that

this specific design was unable to significantly reduce the CEP of a 155mm projectile,

the geometry was only illustrative. Optimising the geometry could lead to significant

reductions in CEP using hardware at a fraction of the cost of the traditional means. This

would be an attractive alternative to operators.
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Suitable candidate technologies for the brake actuator should be identified; piezoelec-

tric actuators are suggested here for their robustness and high operating bandwidth. A

frequency response study should be undertaken for the candidates. Is the necessary hard-

ware robust enough to survive the launch conditions? What force must the actuators exert

to brake the two halves of the projectile at operation spin rates? What are the power

requirements to exert this force over the flight envelope? An upper bound can be found be

anticipating constant actuator effort along the whole flight. Importantly, the magnitude of

the braking force and resulting torque will determine the acceleration of the ogive roll rate

and thus the bias off function. What is the longevity of the brake pad in flight and can it

be expected to operate throughout the entire flight? This is primarily considering friction

or other resulting contact interaction between the two sections when the brake is applied.

The magnitude of coupling interactions and gyroscopic drift during actuation should

be investigated. Is gyroscopic stability enough to keep the projectile stable during the

brake operation?

The bias coordinates are currently computed, for any GL and either ã or ∆V perspective,

when φ = 0. The projectile then executes the bias and computes a new one. Further work

should investigate whether there is a system improvement having the bias coordinates

continuously being computed online and allowing multiple switches mid-rotation. Further,

work should investigate whether any improvement is worth the increased computational

burden.

Lastly for the control method, the projectile could theoretically be guided by inverting

the control mechanism, such that the ogive remains in the biased state for the majority of

flight, locking and switching to the natural state through unfavourable roll angles. This

would be less efficient in terms of overall acceleration but may be more conducive to

the use of high speed actuators which could ‘pulse’ the brake at a fixed force instead of

requiring a slow and controlled application.

Aside from the direct improvements to the actuation mechanism and physical imple-

mentation of it in a working prototype, there are two notable points of interest which have

been highlighted from the auxiliary work conducted using AI.

There are two notable aspects for the use of AI in this project. Firstly, using an RL AI

agent as a function generator to control φON and φOFF to produce a desired ∆V or ã for
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both instantaneous and function governed bias switching. This paper investigated using an

agent purely for the GL and as direct control over the GL and actuation mechanism, but

function generation is achievable by AI methods and as such this may be another useful

approach. Secondly, RL agent scheduling along different points of the trajectory could

be used, similar to conventional gain scheduling. In this sense an agent can be trained

to control the projectile during the initial, intermediate and terminal flight phases for the

optimum and most efficient control over all which may otherwise not be possible. This

may prove a more resource effective method than simply adding range as an observation,

which would increase the observation space by orders of magnitude.

Gain scheduling is an approach used in control theory where a non-linear system is con-

trolled using linear controllers [209]. Multiple linear controllers are optimised at different

operating points of the system. Parameters are then chosen to identify when the operating

points of the system switch and this, when the linear controllers should be substituted with

another. RL agents have already been used to learning scheduling algorithms for data

processing jobs [210]. Work could investigate the feasibility of scheduling different agents

which have been trained at different operating points of a system. For example, updating

controllers during different phases of a missile flight. Conventionally, the guidance phase

of a missile prioritises resource management and stability with slower sweeping motions

to correct a course. During the homing phase, the missile uses more resources and updates

the trajectory at a much higher rate to ensure the highest accuracy possible. Analogous

to this, two different agents could be trained against two different reward functions. One

reward function could prioritise resource management and a low actuator demand while

the other could prioritise a low distance to target. The finished missile could then switch

between the two depending on the proximity to the target. The time required to fully train

an agent is substantial and is as such, outside the scope of this project.
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Appendix A

Explicit calculations

This appendix shows in full, any important equations, derivations or terms which are used

throughout the manuscript.

A.1 Aerodynamic forces & moments

This section describes the main interactions between a body in motion, and the medium

through which it travels. In general, any ‘x’ aerodynamic attribute has a corresponding

coefficient Cx, force Fx and moment Mx, though not all interactions have both a force and a

moment. An important concept in aerodynamics is the Centre of pressure (CoP), defined

as the point where the total sum of a pressure field acts towards and is considered the point

through which a resulting force vector will act. Importantly, a body can have one CoP for

each field it is subjected to, e.g. the Magnus force CoP may be different to the lift force

CoP. The discussions in the section can be found in many aerodynamics text, but ref. [93]

is used here.

A.1.1 The drag force

The main opposition to motion a projectile will experience during flight is the resistance of

the ambient fluid medium, known as drag. This causes the drag force FD. It is comprised

of pressure drag normal to the surface area, skin friction parallel to the surface area and

wave drag caused by the shock wave of local surface speeds in excess of Mach 1. FD is a
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function of the density of host medium ρ , V⃗ and the reference area S. The reference area is

generally arbitrary, it can either be the total surface area, the area of frontal projection or a

cross section. For projectiles it usually taken as the largest permissible planar cross section,

perpendicular to the longitudinal axis x⃗. We define the dynamic pressure as q̄ = 1
2ρ V 2, a

term often used in fluid mechanics which represents the effective pressure of the oncoming

airflow. In ballistics the reference area is therefore S = πD2/4*,with projectile diameter

D being the projectile calibre. Note that S and D must be considered with regards to

each individual application of the dynamic pressure, e.g. S & D will be different when

considering the lift force acting on a set of fins and the body they are attached to. The

magnitude of drag force is defined in full vector or simplified scalar notation as

F⃗D =−1
2

ρ V.⃗V S CD (A.1a)

FD =−q̄S CD (A.1b)

We see FD is quantified by the non-linear drag coefficient,

CD =CD0 +CD2 sin2(αT ) (A.2)

expressed as the sum of the yaw-independent, linear CD0 and the yaw-dependent, cubic

CD2 terms; the latter term taking into consideration any rotational displacement caused

by yaw, pitch or roll movements. The linear/cubic terms are named as such since their

dependency on the yaw angle is sin(αT ) and sin3(αT ) respectively. This non-linear coef-

ficient representation is a common model and will be used throughout section A.1. CD is

introduced to scale FD(V ) according to the projectile shape. Neither FD nor CD can be cal-

culated theoretically, the force must be measured empirically or found through computer

simulations, then the coefficient is calculated from it. The coefficients are purely propor-

tional constants which represent the forces and moments that are actually observed in real

life. Figure A.1.1 shows a stereotypical ‘drag curve’, a plot of CD against Mach number,

for two different bullet geometries. While there is a wide range of industry standard bullet

shapes, for our purposes now it is sufficient to know that they are used as a benchmark

*In ballistics, the reference diameter is usually the diameter immediately following the ogive [93]



A . 1 . A E RO DY NA M I C F O R C E S & M O M E N T S 285

F I G U R E A . 1 . 1 Drag curves against Mach number [211]

that any design can be compared to. We can see that the more streamlined G7 projectile

has a lower drag coefficient across all Mach ranges than the more blunt G1 projectile. At

the critical Mach number M∗ (≈ Mach 0.8) parts of the body will have a local airflow in

excess of Mach 1, creating local shock waves which impart a considerable amount of drag.

In the supersonic regime, when all airflow around the body exceeds Mach 1, these local

shocks coalesce into a singular shock front, lowering the experienced drag. This is the

cause of the characteristic peak of CD about Mach 1.

Figure A.1.2 shows a comparison of the drag coefficient for a 7.62x51mm NATO bul-

let from both live fire range data, conducted by BAE, and CD obtained using the ballistic

modelling software PRODAS and DATCOM. To compute the coefficients experimentally,

radar is used to measure the speed, which is in turn used to compute the deceleration.

Knowing the dynamic pressure and projectile properties, the deceleration can be used to

compute the slowing force which is assumed to be entirely because of drag, meaning the

drag coefficient can be computed at every instant. Appendix B shows a brief study of

projectile geometry using PRODAS, to illustrate simply how one might obtain various

coefficients using computer programs instead of needing to conduct live fire experiments.

Coefficients obtained from the semi-empirical methods used in PRODAS or DATCOM

are slightly less accurate than one would get from refined CFD analysis [96], but even

semi-empirical methods produce coefficients in good agreement with that which can be ob-

tained from live fire experiments; especially considering the large source of measurement

error from measuring the projectile speeds used to calculate CD from eq. A.1b. For the
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preliminary projectile design phase, using such methods are highly attractive due to the

vast improvement of computation time compared to CFD methods, while still delivering

dependable coefficients for analysis.

1 1.5 2 2.5 3

Bullet Velocity [Mach]

Radar Data

PRODAS

DATCOM

F I G U R E A . 1 . 2 BAE Radar range data against PRODAS and DATCOM CD coefficients for a
7.62x51mm NATO round

A.1.2 Spin interaction

Gyroscopic stabilisation provides an inherent degree of resistance to external trajectory-

altering effects, hence it is useful to impart spin on projectiles in order to increase weapon

accuracy. It is therefore useful to define a spin vector p⃗, which has encoded the axis of

rotation and rotational speed p (the magnitude), and is conventionally a right handed spin.

Ideally the projectile would have p⃗ · x⃗ = x⃗ · v⃗ = 0 but in practice there is usually p⃗ · x⃗ ̸= 0

and some precession of p⃗ about x⃗. This will be discussed in greater detail in §3.3.2.

When a projectile spins in a medium there is a viscous interaction between the two

causing the projectile roll rate to slow, the magnitude of which can be quantified in the

spin-dampening (or spin damping) moment MlP , given by

MlP = q̄SD
(

pD
V

)
ClP (A.3)

Note the additional reference length D included here, since a moment is the product of

a force over a distance. In addition, the term pD
V is known as the spin per calibre of
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projectile travel; or the ratio of axial spin rate to forward velocity. If the projectile has

control surfaces such as canards or fins, a roll torque Mlδ causes spin up; this torque vector

is orientated in the same direction as p⃗, written as

Mlδ = q̄S D δF Clδ (A.4)

Here δF is the cant angle applied to the fins to achieve lift.

A.1.3 Lift

In general lift is the aerodynamic force orthogonal to the velocity vector, not necessarily

p⃗ or x⃗. As with the drag force, lift can be represented in vector or scalar notation as

FL =
1
2

ρ SCLα
[⃗V × (⃗x×V⃗ )] (A.5a)

FL = q̄SCLα
sin2(αT ) (A.5b)

where the non-linear lift coefficient CLα
is

CLα
=CLα0 +CLα2 sin2(αT ) (A.6)

From equation A.5b it is obvious that if there is no zero-yaw lift, CLα0 = 0, then no total

yaw (αT = 0) results in no lift force, since δ = 0. Having no zero-yaw lift is common for

symmetric airframes such as projectiles.

A.1.4 The Magnus force

The Magnus force is a spin-medium interaction where the effects are amplified by any

flow of the host medium, such as wind. The Magnus force arises when a circular cross-

sectioned rotating objecting is immersed in a flow field. Referring to figure A.1.3, the

free stream velocity on the lower side of the object is additive with the surface velocity

(red, dense mesh), but subtractive on the upper side (blue, sparse mesh). This creates a

high pressure area on the lower half, which induces movement toward the relatively low

pressure area above. Bernoulli’s relation for two laminar flow points of equal density ρ
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F I G U R E A . 1 . 3 The Magnus effect

and height h under gravity g is shown in equation A.7.

P1 +
1
2

ρV 2
1 +ρgh = P2 +

1
2

ρV 2
2 +ρgh (A.7)

The turbulent high pressure area of our object will have the lower relative velocity, which

agrees with Bernoulli’s equation. The Magnus force FNPα
is described by

F⃗NPα
= q̄S

(
pD
V

)
CNPα

(î× x⃗) (A.8a)

FNPα
= q̄S

(
pD
V

)
CNPα

δ (A.8b)

with non-linear Magnus force coefficient

CNPα
=CNPα0

+CNPα2
δ

2 (A.9)

Note the Magnus force disappears entirely for spinning projectiles with zero yaw value.

The Magnus moment MMPα
arising from this force however is given by

MMPα
= q̄SD

(
pD
V

)
CMPα

(î× x⃗) (A.10a)

MMPα
= q̄SD

(
pD
V

)
CMPα

δ (A.10b)

with non-linear Magnus moment coefficient

CMPα
=CMPα0

+CMPα2
δ

2 (A.11)
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Equation A.10 shows how the Magnus moment acts perpendicular to both the Magnus

force and the V⃗ . N.B. the Magnus force is sufficiently small to be neglected in most

scenarios, however, the Magnus moment must be considered since it is a major contributor

to projectile instability, making other aerodynamic forces such as drag have a greater effect

[203, 212].

A.1.5 Overturning moment

Given a small rotational perturbation to the free stream velocity causes the drag to be

asymmetrically distributed. This creates a moment arm which can either create further

rotation or act to realign. This is known as the overturning moment Mα , which is given by

Mα = q̄SDCMα
(î× x⃗) (A.12)

Again the non-linear form of CMα
can be written as

CMα
=CMα0 +CMα2δ

2 (A.13)

From equation A.12 we can deduce the sign implications of the overturning moment

coefficient. CMα
> 0 produces a positive Mα , meaning the projectile will act to pitch about

the CoM. If CMα
= 0 then we have the trivial Mα = 0 and there is no moment. CMα

< 0

produces a negative Mα , this implies the resultant moment counteracts the displacement

that caused it. Thus, the condition CMα
< 0 is required for static stability (see §3.3.1).

A.1.6 Pitch damping

Consider a right circular cylinder immersed in a flow field parallel to x⃗. If the cylinder

rotates about x⃗ then it will experience a small drag force from the fluid. However, if the

rotational axis is changed to be perpendicular to x⃗, then the retarding effect of viscous

action will be substantially larger. This is known as pitch damping; the pitching motion

of a projectile being reduced due to air resistance. The pitch damping force is given by

Nq +Nα̇ . The reason for this long naming convention will become be clear momentarily,

for now however it is abbreviated to FN . For projectiles, the pitch damping force is given
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by

FN =
1
2

ρV SDCNq

(
d⃗x
dt

)
+

1
2

ρV SDCNα

(
d⃗x
dt

− d⃗l
dt

)
(A.14)

When reduced to a scalar, this becomes

FN = q̄S
d
V

(
qt CNq + α̇ CNα

)
(A.15)

where we have defined the total pitching motion qt and the total rate of change of angle of

attack α̇ as

qt =
√

q2 + t2 α̇ =
dαT

dt
(A.16)

Figure A.1.4 illustrates of the difference with arrows showing the orientation of the pro-

jectile at increasing time intervals. In other words, qt is the projectile pitch relative to a

reference axis and α̇t is the change of angle of attack relative to the velocity vector of the

projectile itself. These are the two distinct contributions which give rise to the multi-term

definition of the Pitch damping force. The Pitch damping moment, likewise known by

F I G U R E A . 1 . 4 Illustrating the difference between qt and α̇t . The angular frequency ω = p

Mq +Mα̇ and here abbreviated to MN , is given by

1
2

ρV SD2CMq

(
x⃗× d⃗x

dt

)
+

1
2

ρV SD2CMα̇

[(
x⃗× d⃗x

dt

)
−
(

x⃗× d⃗l
dt

)]
(A.17)

For clarity, Mq & Mα̇ are the pitch damping moments caused by projectile pitch and angle

of attack respectively. This can be reduced into a somewhat more manageable scalar form

MN = q̄SD
(

qtd
V

)
[CMq +CMα̇

] (A.18)
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The pitch damping force can usually be disregarded however the moment must always

be considered due to its effect on the dynamic stability (§3.3.3). A positive MN usually

increases the transverse angular velocity which has a destabilising effect. The condition

for dynamic stability is CMq +CMα̇
< 0.

A.1.7 Summary

This section has shown the fundamental interactions between a spinning projectile and the

medium (fluid) it is travelling through. Assuming that there is no yaw the spin-interaction

forces can be entirely neglected, apart from the Drag force. When there is yaw present,

the forces are still considered negligible compared to the increase in drag force their

corresponding moments contribute to.

A.2 Airframe trimming coefficients

Below are the terms which result by rearranging the dynamic rotational and wind axis

translational equations (3.13 & 3.26) in equilibrium. As mentioned in the text, the terms

are of the form ki j, where i indicates the dynamic equation they are derived from and j

indicates the variable they are the coefficient of.

kα0 =− 1
mV

(
cos(α)cos(θ)+ sin(α)sin(θ)

cos(β )

)
mg+ ...

(
q̄S
mV

)[
cos(α)

cos(β )

(
CN0 +

d
V

CN p pa

)
− sin(α)

cos(β )
CA0)

]

(A.19a)

kαr = tan(β )(cos(α) tan(θ)− sin(α)) (A.19b)

kαδz =−
(

q̄S
mV

)(
cos(α)

cos(β )

)
CNδ (A.19c)

kq0 =−
(

q̄Sd
Iyy

)(
Cm0 +

(
d
V

)
Cmp pA

)
(A.19d)

kqq =

(
q̄Sd
Iyy

)(
d
V

)
Cmq (A.19e)

kqr =− IA
x
Iy

pA (A.19f)

kqr2 =− tan(θ) (A.19g)
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kqδz =

(
q̄Sd
Iyy

)
Cmδ (A.19h)

kβ0 =
1

mV
sin(β )(cos(α)sin(θ)− sin(α)cos(θ))mg+

(
q̄S
mV

)[
...

cos(α)sin(β )CA0 + cos(β )
(

CY 0 +
d
V

CY p pA

)
+ sin(α)sin(β )

(
CN0 +

d
V

CN p pA

)]

(A.19i)

kβ r =sin(α) tan(θ)+ cos(α) (A.19j)

kβδy =−
(

q̄S
mV

)
cos(β )CY δ (A.19k)

kβδz =−
(

q̄S
mV

)
sin(α)sin(β )CNδ (A.19l)

kr0 =−
(

q̄Sd
Iyy

)[
Cn0 +

d
V

Cnp pA

]
(A.19m)

krq =
IA
x
Iy

pA (A.19n)

krr =

(
q̄Sd
Iyy

)
d
V

Cnr (A.19o)

krqr = tan(θ) (A.19p)

krδy =

(
q̄Sd
Iyy

)
Cnδ (A.19q)

(A.19r)

The above ki j values are used to reduce four, linear simultaneous equations to two. The

resulting coefficients of those equations are shown below, denoted by k′i j, and are functions

of the above ki j.

k′qq =kqq −
kqδz

kαδz

(A.20a)

k′qr =kqr −
kαrkqδz

kαδz

(A.20b)

k′qr2 =kqr2 (A.20c)

k′q0 =kq0 −
kα0kqδz

kαδz

(A.20d)

k′rq =krq +
kβδzkrδy

kαδzkβδy

(A.20e)
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k′rr =krr −
kβ rkrδy

kβδy

+
kαrkβδzkrδy

kαδzkβδy

(A.20f)

k′rqr =krqr (A.20g)

k′r0 =kr0 −
kβ0krδy

kβδy

+
kα0kβδzkrδy

kαδzkβδy

(A.20h)

(A.20i)
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A.3 Jacobian partial derivatives matrix coefficients

Given the non-linear differential equation

ẋ(t) = f (x(t),u(t)) (A.21)

with states x(t), inputs u(t) and functions f mapping Rn ×Rm → Rm, a point is called an

equilibrium point x̄(t) if the following condition is satisfied:

x̄ ∈ Rn ⇐⇒ {ū ∈ Rm | f (x̄(t), ū(t)) = 0}

where ū(t) is the equilibrium input. Given the system in equation A.21 is initialised at

a starting point x(t0) = x̄ and has an input u(t) = ū, ∀ (t ≥ t0) applied, then we can also

say that x(t) = x̄, ∀ (t ≥ t0) due to the nature of equilibrium points. Let us then define

the deviation variables xδ (t) = x(t)− x̄ and uδ (t) = u(t)− ū, for point and input deviation

respectively. Substituting these into equation A.21 we have the exact solution

δ̇x(t) = f (x̄+δx(t), ū+δu(t))

Computing a Taylor expansion, neglecting second order terms and above, we have

δ̇x(t)≊ f (x,u)|x=x̄
u=ū

+
∂ f
∂x

∣∣∣∣x=x̄
u=ū

δx(t)+
∂ f
∂u

∣∣∣∣x=x̄
u=ū

δu(t)

though f (x̄, ū) = 0. Thus we have a linear, time-invariant, differential equation describing

the variation of the variables δx(t) and δu(t) providing they are small. We can then write

the Jacobian linearisation of system A.21 about the equilibrium point (x̄, ū) as

δ̇x(t) = A ·δx(t)+B ·δu(t) (A.22)

where

A :=
∂ f
∂x

∣∣∣∣x=x̄
u=ū

∈ Rn×n (A.23a)
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B :=
∂ f
∂u

∣∣∣∣x=x̄
u=ū

∈ Rn×m (A.23b)

Note here that A and B are partial differential matrices, e.g. if f ∈ Ri and x ∈ R j, then A

has the form

A :=
∂ f
∂x

=




∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂x j

∂ f2
∂x1

∂ f1
∂x1

. . .
...

...
... . . . ...

∂ fi
∂x1

. . . . . . ∂ fi
∂x j




i× j

(A.24)

Equation 3.14 is the Force vector which carries the aerodynamic coefficient depend-

ency in the stated dynamic translational EOM. The terms are non-zero when differentiated

with respect to α , β , δz and δy. The derivatives with respect to α and β are written

here for the sake of formatting in later equations. Throughout this appendix, the notation

FG,H = ∂FG
∂H and fi,P = ∂ fi

∂P is used.




FX ,α

FY,α

FZ,α


=−q̄S




CA0,α

−
(

pAd
V

)
CY p,α

CN0,α +
(

pAd
V

)
CN p,α


 (A.25a)




FX ,β

FY,β

FZ,β


= q̄S




−CA0,β

CY 0,β +
(

pAd
V

)
CY p,β

−
(

pAd
V

)
CN p,β


 (A.25b)

The following is a list of partial derivatives of the airframe dynamics with respect to the

state and control vectors. Normal force faa pitch moment fqa pitch damping moment fqq

magnus moment fqb gyroscopic moment fqr

fα,α = − r tan(β )
(

sin(α) tan(θ)+ cos(α)
)
+

(
1

mV

)[
−
(

cos(α)

cos(β )

)
FX

−
(

sin(α)

cos(β )

)
FX ,α −

(
sin(α)

cos(β )

)
FY +

(
cos(α)

cos(β )

)
FY,α

] (A.26)

fα,q = 1 (A.27)
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fα,β =

(
r

cos2(β )

)(
cos(α) tan(θ)− sin(α)

)
+

(
1

mV

)[
−
(

sin(α)sin(β )
cos2(β )

)
FX

−
(

sin(α)

cos(β )

)
FX ,β −

(
cos(α)sinβ

cos2(β )

)
FY +

(
cos(α)

cos(β )

)
FY,β

]

(A.28)

fα,r = tan(β )
(

cos(α) tan(θ)− sin(α)
)

(A.29)

fα,δz = −
(

1
mV

)(
cos(α)

cos(β )

)
q̄SCNδ (A.30)

fα,δy = 0 (A.31)

fq,α =
1

Iyy

[
q̄SdCm0,α + q̄Sd

(
pAd
V

)
CmP,α

]
(A.32)

fq,q =
1

Iyy
q̄Sd

(
d
V

)
Cmq (A.33)

fq,β =
1

Iyy
q̄Sd

(
pAd
V

)
Cmp,β (A.34)

fq,r = −
(

Ixx,a

Iyy

)
pA −2r tan(θ) (A.35)

fq,δz =

(
1

Iyy

)
q̄SdCmδ (A.36)

fq,δy = 0 (A.37)

fβ ,α = − r
(

cos(α) tan(θ)− sin(α)
)
+

(
1

mV

)
+

[
sin(α)sin(β )FX − cos(α)sin(β )FX ,α

+ cos(β )FY,α − cos(α)sin(β )FZ − sin(α)sin(β )FZ,α

]

(A.38)

fβ ,q = 0 (A.39)

fβ ,β =

(
1

mV

)
+

[
cos(α)cos(β )FX − cos(α)sin(β )FX ,α − sin(β )FY + cos(β )FY,α

− sin(α)cos(β )FZ − sin(α)sin(β )FZ,α

]

(A.40)

fβ ,r = − (sin(α) tan(θ)+ cos(α)) (A.41)

fβ ,δz =

(
1

mV

)
q̄S sin(α)sin(β )CNδ (A.42)
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fβ ,δy =

(
1

mV

)
q̄Scos(β )CY δ (A.43)

fr,α =
1

Iyy
q̄Sd

(
pAd
V

)
Cnp,α (A.44)

fr,q =

(
Ixx,a

Iyy

)
pA + r tan(θ) (A.45)

fr,β =
1

Iyy

[
q̄SdCn0,β + q̄Sd

(
pAd
V

)
CnP,β

]
(A.46)

fr,r = q tan(θ)+
(

1
Iyy

)
q̄Sd

(
d
V

)
Cnr (A.47)

fr,δz = 0 (A.48)

fr,δy =

(
1

Iyy

)
q̄SdCnδ (A.49)

faz,α =

(
1

mg

)[
−q̄SCN0,α − q̄S

(
pAd
V

)
CN p,α

]
−
(

xs

g

)
fq,α (A.50)

faz,q = −
(

xs

g

)
fq,q (A.51)

faz,β = −
(

1
mg

)
q̄S
(

pAd
V

)
CN p,β −

(
xs

g

)
fq,β (A.52)

faz,r =

(
xs

g

)
(pF − f q,r) (A.53)

faz,δz = −
(

1
mg

)
q̄SCNδ −

(
xs

g

)
fq,δz (A.54)

faz,δy = 0 (A.55)

fay,α =

(
1

mg

)
q̄S
(

pAd
V

)
CY p,α +

(
xs

g

)
fr,α (A.56)

fay,q =

(
xs

g

)
(pF + f r,q) (A.57)

fay,β =

(
1

mg

)[
q̄SCY 0,β + q̄S

(
pAd
V

)
CY p,β

]
+

(
xs

g

)
fr,β (A.58)

fay,r =

(
xs

g

)
fr,r (A.59)

fay,δz = 0 (A.60)

fay,δy =

(
1

mg

)
q̄SCNδ +

(
xs

g

)
fr,δy (A.61)
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A.4 AI Agent training parameters

This section contains list the auxiliary information for any of the AI material in the project.

DQN

Table A.1 shows values of the parameters used during the training of the DQN agent.

Training parameters

Maximum Episodes 200,000

Max Steps per Episode 1000

Episode termination t > 100 or d > 12

Reward value to terminate 20,000

Observations [d, ḋ,ψ]

Actions ω = ω0 or ωB

Neural Network configuration

Discount factor γ 0.99

MiniBatchSize 256

ExperienceBufferLength 105

TargetUpdateFrequency 4

Episode Initial conditions

ω0 2π

ωB π/2

x0,y0 (2,2)

u0,v0 (0,0)

φ0 0

xT0,yT0 (0,0)

uT0,vT0 (0,0)

TA B L E A . 1 Full parameters for DQN implementation

Figure A.4.1 shows the reward progression for the first 5×103 episodes of the 2×105

training set. It is visible that the agent does make significant learning progress compared

to no improvement at all.
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F I G U R E A . 4 . 1 Reward data for the first 5000 episodes of DQN agent training

Figures A.4.2 and A.4.3 shows the performance of the DQN agent at different stages of

the training procedure. While the training process is conducted using randomised positions

and orientations, for a fair comparison both of these figures utilise fixed projectile and

target parameters at the beginning of the simulation. It can be seen that the agent does

improve in its ability to stay near the target, but still has too large of a steady state error,

as well as a divergence at the end of the simulation.
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F I G U R E A . 4 . 2 Performance of DQN agent after 104 episodes

F I G U R E A . 4 . 3 Performance of DQN agent after 2×105 episodes

DDPG

Table A.2 shows values of the parameters used during the training of the DDPG agent.
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Training parameters

Maximum Episodes 200,000

Max Steps per Episode 1000

Episode termination t > 50 or x> 50

Reward value to terminate 20,000

Observations x and ẋ = ux both ∈ [−∞,∞]

Actions ax ∈ [−ãmax, ãmax]

Neural Network configuration

Discount factor γ 0.99

MiniBatchSize 256

ExperienceBufferLength 105

TargetUpdateFrequency 4

Episode Initial conditions

x0 [−10,10]

u0 [−10,10]

xT0 [−10,10]

uT0 [−10,10]

TA B L E A . 2 Full parameters for single channel DDPG implementation





Appendix B

Geometry modelling in PRODAS and

Ballistic stability analysis

In this appendix, a cursory procedure is shown as to how the design of a small calibre-

direct fire projectile can be tested for ballistic stability along the flight trajectory. being

ballistically stable across the range of velocities present in the flight envelope ensure that

a projectile will remain on a predictable trajectory even in the event a mounted control

system fails; this assumes that the failure state (e.g. seized deflection angle of canards) can

be captured and also ensured by the factors. One can calculate the stability factors using

the framework discussed in §3.3.4 or use a ballistic package like PRODAS, which is used

here.

B.1 PRODAS modelling

This section shall detail the methods for constructing and then analysing a model using

PRODAS. Since flight stability is largely dependent on a higher projectile weight, one

should remove the relatively less dense steel to maximise available volume for guidance

hardware. As such, the primary aim of this model is to remove or drastically reduce the

weight of the steel penetrator and observe the change in stability. Other aspects of the

bullet geometry will then be changed. The projectile stability of these changes will be

measured, to determine whether it is feasible to install guidance systems on the selected

range of calibres.

303
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A model in PRODAS is called an ‘assembly’. To construct it, one adds various ‘com-

ponents’ which in turn contain ‘elements’. The components are the fundamental constitu-

ents of the the projectile: the lead core, steel penetrator and protective jacket. The elements

within these are rudimentary shapes which are superimposed in order to give the compon-

ent dimensions. They are rotationally symmetric by default though this can be changed

for structures such as fins. Figure B.1.1 shows the finished design of a 5.56x45mm ball

projectile, both the view from PRODAS (B.1.1A) and a coloured version (B.1.1B) to rep-

resent how the design is interpreted by the computer. In figure B.1.1B we see the full metal

( A ) Raw design as seen in PRODAS ( B ) Coloured to represent computer
interpretation

F I G U R E B . 1 . 1 Design of 5.56mm Ball projectile constructed in PRODAS

jacket in orange, the lead core in grey, the steel tip (to be modified) in green and an air

cavity at the front of the ogive in white. This air cavity is a remnant of the manufacturing

process after the steel tip is set inside the jacket. When constructing a component, the

metal jacket for example, elements are constructed from left to right. The user can change

the left/right diameters and the curvature of the top/bottom connecting lines. By default,

the end (right side) of previous element defines the start (left side) of the next however,

this can be changed. This is continued until the perimeter of these elements describes the

exterior surface geometry of the jacket component. If the component is hollow, this pro-

cess is then repeated, but the perimeter of the next string of elements should describe the

interior surface geometry. The property type Void is set to Yes which tells the interpreter

that this region is empty space. Note while the bullet is in itself, not hollow, the jacket

alone can be considered as a hollow shell which is what we are representing; the final

model raster will superimpose all the components and evaluate the projectile as a whole.

Figure B.1.2 shows the model with penetrator material set as steel (note the character-

istic density of 7.87 g/cm3) and a brief glimpse of the Assembly->Component->Element

hierarchy. Once the desired values have been entered we initiate the Calc Mass com-

mand, which determines the centres of mass & pressure and the transverse & longitudinal
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F I G U R E B . 1 . 2 Design of 5.56mm Ball projectile constructed in PRODAS

axial moments of inertia, results shown in figure B.1.3. PRODAS uses a semi-empirical

method for calculating the aerodynamic coefficients which have been shown to be inferior

to CFD based approaches [96]. For the demonstration purposes used here, the methods

are sufficient to demonstrate proceedings. These results are then used in the aerodynamic

F I G U R E B . 1 . 3 Results of Calc Mass analysis

analysis to determine the drag coefficient CD as a function of Mach number, figure B.1.4.

A combination of the mass and aerodynamic analysis can be viewed pictorially as in figure

B.1.5. All of this data can be combined to produce a graph gyroscopic stability factor

Sg against Mach number, shown in figure B.1.6. Note that the CD data will not change

between substitution of the penetrator materials, since CD is based solely on the surface

geometry of the projectile. In order to change the material type of a component, one need

only select the component followed by the Retrieve Data function of the built-in mater-

ial library. Since in practice the volume will not be empty space, a generic miscellaneous

plastic with reference density of 1.66 g/cm3 is used, slightly less dense than the plastic

composite used in circuit boards.
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F I G U R E B . 1 . 4 Zero yaw drag as a functions of Mach number

F I G U R E B . 1 . 5 Pictorial representation of Calc Mass

F I G U R E B . 1 . 6 Gyroscopic stabilisation coefficient as a function of Mach number
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B.2 Parametric investigation of projectile geometry af-

fecting ballistic stability factors

This section briefly investigates how the parameters of projectile geometry affect the

ballistic stability. While a more detailed optimisation and approach would need to be

considered for any serious designs, this informs the reader of the effect of extreme modi-

fications to major parameters including: penetrator density, ogive radius, meplat (tip)

diameter, body length and boattail angle.

B.2.1 Calibre Comparison

Figure B.2.1A shows the design of the 7.62mm L51A1 projectile, note that it has a pro-

portionately larger penetrator size in comparison to the 5.56mm. Great care was taken to

reproduce the curvature of the jacket near the boattail, though the displacement of lead

immediately inside caused by this was not replicated. This discrepancy caused a total

projectile mass of 10.4g, a 4% increase compared to the actual stated mass of 10.0±0.1g.

The mass imperfection is likely not solely caused by this however, as the curvature profile

of the jacket at the ogive is difficult to perfectly replicate and some thickness deviations

are almost certainly prevalent. Figure B.2.1B shows the 12.7x99mm NATO design, with

even larger steel penetrator size, this time located towards the aft of the projectile with the

lead load in the ogive. For both 5.56mm and 7.62mm, the penetrator material is changed

( A ) 7.62mm L51A1 ( B ) 12.7x99mm NATO

F I G U R E B . 2 . 1 PRODAS geometry of the 7.62mm L51A1 and 12.7mm NATO projectile pro-
jectiles

and all of the analysis steps above are re-run to generate new values. 12.7mm is omitted

since we are trying to implement guidance systems in the smallest feasible calibre.

The data is extracted and imported into MATLAB as previously mentioned. Figure

B.2.2 show a comparison of Sg for the two calibres with different penetrator materials.
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Here we can see that at higher Mach levels the heavier steel core provides better gyroscopic

( A ) 5.56x45mm ( B ) 7.62x51mm

F I G U R E B . 2 . 2 Sg against Mach number for different penetrator materials

stability, which is to be expected due to the higher moments of inertia. Interestingly at

lower levels, the 5.56mm plastic penetrator has a higher Sg. This is likely due to the very

low weight of the projectile. Though unlikely it could also be an artefact of the model

design. The steel penetrator of the 7.62mm provides a higher Sg than plastic at every

calculated Mach number. This is likely due to the increase in mass of this round compared

to the 5.56mm, thus we should see even more consistent Sg increases at projectiles with

even more mass. Even at this stage of analysis, we can see that using a larger calibre

is going to be advantageous, due to the additional weight stabilization and the volume

available to accommodate guidance components.

Now we will extract the dynamic stability coefficient SD data, which will illustrate how

stable the projectiles are. The condition for dynamic stability is

Sg >
1

SD(2−SD)
(B.1)

The Textbook of Ballistics and Gunnery [94] gives an excellent treatment of this. Figure

B.2.3A shows a comparison of all 3 standard calibres while figure B.2.3B shows the

stability diagram for both 5.56mm & 7.62mm calibres with both penetrator types. A

projectile is dynamically stable if it satisfies equation B.1 i.e. it lies above the parabola.

Each line is a data set of Sg vs SD coordinates for increasing Mach numbers. Mach numbers

range from 1 to 4, with Mach 1 being the left most data point of each line; this is logical
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( A ) Calibre comparison ( B ) 5.56mm & 7.62mm calibres with plastic
and steel penetrators

F I G U R E B . 2 . 3 Dynamic stability plots with the criteria for dynamic stability

since SD correlates highly with projectile velocity. In figure B.2.3A, we can see that the

smaller calibres have a lower Sd but a much higher Sg in general over all speeds. This is

due to the much higher spin speed and lower mass. Figure B.2.3B shows, as expected,

that a reduction of mass, moving the CoM towards the aft, causes a reduction in Sd with a

small reduction in Sg. Since the reduction in mass was similar for both calibres, the effect

is more apparent for the lighter 5.56mm calibre.

B.2.2 Surface geometry

Let us, before adding any canards, confirm how modification of the existing surface geo-

metry will alter the drag and stability characteristics.

Ogive Radius

There are three classifications of ogive curvature: tangent, secant and hybrid, which are

shown in figure B.2.4. This section describes modification of a tangent ogive, which is the

default configuration for the selected model bullet. The ogive properties define how much

of the body surface is normal to the flow field (assuming no yaw) and this is where the

biggest difference will be made. Figure B.2.5A shows varying ogive curvatures, keeping

projectile & ogive length the same. No parameters have been held fixed during these

alterations, as such the weight is free to fluctuate as material is added/lost. This is of no

concern unless otherwise stated as we are looking at CD. As would be expected, there is
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F I G U R E B . 2 . 4 Different Ogive profiles [213]

( A ) Drag coefficient against ogive curvature ( B ) Plastic penetrator

F I G U R E B . 2 . 5 Dynamic stability plots for various body lengths and penetrator materials

a correlation between a lower ogive radius and a lower CD. This is because there is less

surface area normal to the fluid flow able to produce drag. The exception to this is the

zero-curvature ogive, which produces a much higher CD immediately after Mach 1 which
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then provides the lowest CD after Mach 4. This is due to the sharp angle of the ogive

joining the main body causing an oblique shock wave at lower Mach numbers.

Tip Diameter

Next, the tip diameter of the projectile can be varied, again keeping all other parameters the

same, which is shown in figure B.2.6A. Here again we see what is expected, a correlation

( A ) Drag coefficient against projectile tip dia-
meter

( B ) Plastic penetrator

F I G U R E B . 2 . 6 Dynamic stability plots for various body lengths and penetrator materials

between a lower tip diameter and a lower CD, again due to a lower normal surface area.

Body Length

Now we can change the projectile body, such that the ogive and boattail lengths remain

the same. Varying the projectile length will have two major impacts on drag and dynamic

stability. Firstly, a longer projectile means there is additional mass to improve gyroscopic

stability. Secondly, the distance between the CoM and CoP is increased, meaning the

overturning moment will be higher and dynamic stability will be reduced. The initial

body length is 11mm. For the following comparisons this length is increased and reduced

by ≈ 36% (4mm), giving lengths of 7mm and 15mm respectively. These lengths are

arbitrary but have sufficient differences to show any correlations. Figure B.2.7A shows

a comparison of CD for the three body lengths. There is a direct correlation between a

shorter projectile length and a lower CD. However, for the 36% change in body length

there is a minuscule change in CD, especially compared to the ogive changes made above.
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( A ) Drag coefficient against projectile length ( B ) Plastic penetrator

F I G U R E B . 2 . 7 Dynamic stability plots for various body lengths and penetrator materials

Figure B.2.7 show drag coefficients and the dynamic stability plots for the different body

lengths.

Boattail

The boattail, though located at the rear of the projectile, still contributes a very large

amount to the drag forces acting on a projectile. When flow separates at the front of the

projectile it must then re-join at the aft section. If the flow re-joins too quickly, this can

create relatively low pressure turbulent flow, which imparts a very large pressure drag on

the projectile. The projectile must be shaped like a wing aerofoil to ensure the flow is

reunited with minimum disturbance. This is what the boattail design achieves, by gradually

bringing the separated flow back together.

Figure B.2.8A and B.2.8B show the drag coefficient and dynamic stability plots re-

spectively, for different angles of boattails. Only 3 variations were used, though this is

sufficient to observe the effects of positive boattail curvature, i.e. curving inwards towards

the back of the bullet as opposed to flaring outwards: No angle, standard angle and double

angle. Here we can see the slightly counter intuitive effect, that while a larger boattail

angle improves the drag performance to a degree it actively hinders the stability of the

projectile.
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( A ) Drag coefficient ( B ) Dynamic Stability

F I G U R E B . 2 . 8 Aerodynamic characteristics against boattail angle

Geometry Summary

Modern Exterior Ballistics by McCoy [93] is a very comprehensive review of the subject

and is used here for validation of findings. In addition to what was explored here, McCoy

also details the results of varying ogive length. He notes that by varying ogive length

from 1.5cal to 3.5cal in 0.5cal increments at Mach 1.8, "short nose lengths dramatically

increase the drag at this speed". The effect of ogive radius is then described however, the

parametrisation is slightly different. McCoy characterises the radius with the ‘headshape’

parameter RT/R, where R is the arc radius responsible for the ogive curvature (as used

in this report) and RT is the radius of the necessary tangent ogive (§B.2.2) for the given

nose length. A tangent ogive has RT = R and a headshape parameter of 1, while a conical

ogive has a headshape parameter RT/∞ = 0. As such this parameter can characterise

all permutations of tangent/secant ogive shapes by plotting a ratio range between 0 and

1. Figure B.2.9 shows the data presented by McCoy. Comparing this to B.2.5A we can

see both graphs show characteristic improvement of the RT/R = 0 straight ogive at lower

Mach levels. At least in this instance of ogive curvature, this data supports that produced

by PRODAS.

Next the change in tip diameter, or the blunting of a sharp nose to produce a ‘meplat’. It

is noted that a meplat less than 0.1cal is insignificant, though, just above Mach 1, a meplat

between 0.10cal and 0.15cal is generally advantageous, providing a lower drag coefficient

than can be expected from a sharp nose projectile. While this cannot be directly seen
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F I G U R E B . 2 . 9 Drag performance of various ogive curvatures

from figure B.2.6A its presence is apparent, since the order of the lowest 3 tip diameters

changes either side of the Mach 1 transition peak; again, the two are in agreement.

Boattail length is a highly discussed topic, with many more factors taken into account

than are discussed in this report. In summary the longer a boattail is, the lower the

associated CD, although this will make the projectile dynamically unstable very quickly.

Ideally, a boattail should be between 0.5cal and 1cal. A boattail angle of approximately 7

degrees provides the lowest CD for all lengths, CD increases with any deviation from this

low point. Figure B.2.8A shows only two boattail angles and neither accurately represent

what would be expected from the deviation, this is worthy of further exploration at a later

date.

Data validation was conducted simply, by comparing the results with those produced

by the manufactures (BAE Systems) engineering department. Figure A.1.2 shows the

results. It was found in all analysed cases of modifying bullet geometry, that Sg was a

factor of 2 higher in the results presented here than it has been found to be experimentally;

Sg ≈ 4 compared to the experimental Sg ≈ 2. Upon closer inspection of the equations used

to generate this data, the discrepancy was found to be caused by an inaccurate twist rate

in the rifling profile used in the initial conditions. As a guideline the 7.62x51mm NATO

calibre, a projectile should have one full revolution imparted on it per travel distance of

30 calibres. That is, a rifling profile of approximately 30cal/rev should have been used,

not the default 20cal/rev. This mistake was caused by assuming the parameters initialised

by PRODAS were representative of our baseline conditions. Upon correcting this value

SD analysis was conducted again using the new rifling profile and all the figures included



B . 3 . C O N C L U S I O N S 315

within this report show this updated data.

B.3 Conclusions

In general, geometry modifications which reduce drag also lower the static stability. The

main result of increasing the ogive radius is that there is less material and thus less mass in

the ogive; this shifts the CoM backwards. In addition, the surface geometry change makes

the projectile more aerodynamic and thus reduces the drag. Together this means that as the

ogive radius increases, SD decreases and at first, Sg also decreases. As the mass and thus

inertia increase sufficiently with the radii, this will dominate the increase in drag which

results in Sg increasing again. Sg thus has an inflection point with a minimum. Similar

to the ogive radius, as the tip diameter increases there is more mass in the ogive which

results in a forward shifted CoM, as well as leading to a higher drag. An increasing tip

diameter causes Sg to increase, while SD increases at first but then decreases. Increasing

the projectile length greatly increases the mass and also the moments of inertia, while

having a minimal effect on the drag, since neither the forward or rear cross sections change

with respect to the free stream velocity. The result is a direct correlation; increasing the

projectile body length decreases Sg but increases SD. Finally, as the boattail angle increases,

there is less mass in the aft section and the CoM will shift forwards. In addition, the drag

will increase slightly, and a sharper (higher) boattail angle will result in vortex shedding.

Increasing the boattail angle causes SD to decrease linearly, while Sg will increase at first

due to the inertia increase, but then begins to decrease as the CoP moves forward with

respect to the CoM.
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Geometric
change

Main implications Sg Action SD Action

Ogive Radii in-
crease

- Less mass in ogive
- CoM shifted
backwards
- Less drag

Inflection
w/ minima

Decreases

Tip diameter
increase

- More mass in ogive
- CoM shifted forwards
- More drag

Decreases
Inflection

w/ maxima

Projectile body
length increase

- More mass
- Longer projectile
- Larger distance
between CoM & CoP

Decreases Increases

Boattail angle
increase

-Less mass
-CoM shifted forwards

Inflection
w/ maxima

Decreases

TA B L E B . 1 Summary of parametric investigations on the effect of projectile geometry on bal-
listic stability

B.4 Example analysis of Tungsten Tipped 7.62x51mm NATO

using ballistic stability framework

This section briefly shows how the ballistic stability framework and the associated factors

Sg and SD can be used to guide the design of novel ammunition. While further refinement

of the design must always be undertaken, for example optimising ogive profiles and boat-

tail angles to minimise drag, this process guarantees at least satisfactory and repeatable

firings. Traditional guidance system in projectiles, even in the relatively more technolo-

gically advanced dual-spin projectiles, contain all of the control and guidance hardware

on the ogive. From the discussion on projectile stability it was observed that small calibre

projectiles are spin stabilised to ensure they remain stable throughout the flight. A key

factor to this stability is that the CoM be located as far forward as possible. This how-

ever, is in direct contraction to the first point, since the control and guidance hardware is

substantially light than the lead traditionally found at the front of small calibre projectiles.

A proposed solution is suggested here, and evaluated using the stability framework as
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a guide, is to utilize a much harder and more dense material for the ogive. Figure B.4.1A

shows the US Army’s M855A1 5.56x45mm cartridge. It features an exposed steel core

in the ogive which the Guilding metal wraps around, as well as a non-toxic bismuth-tin

alloy core. Guilding metal is a brass (copper alloy) comprised of 95% Copper and 5%

Zinc. In military applications Guilding metal comprises the full metal jacket of most ball

ammunition, the driving band of artillery shells as well as the jacket of some of the shells

themselves. It can be annealed between 427-788◦C. Here we propose the use of the even

harder and more dense Tungsten as a tip, shown in figure B.4.1B. More dense materials

have already been used in some ammunition, such as depleted Uranium, but that is not

considered here due to the ethical and health issues surrounding its usage. The Guilding

( A ) US Army M855A1 5.56x45mm
cartridge

( B ) Dynamic stability

F I G U R E B . 4 . 1 Design of a custom Tungsten tipped 7.62mm projectile

metal jacket is cut a certain degree along the ogive in order to accommodate the Tungsten.

Tungsten is strong enough to withstand the launch and so there is no need to cover the tip

with the jacket. The tip is then hollowed to create room for the guidance system, but still

extends a small way under the jacket to allow the two surfaces to be crimped together. A

portion of the lead core can then be removed to create even more space. Additionally, the

lead could be substituted for a different material which would also adhere to new ‘green’

policies.

Figure B.4.2A shows CD analysis and figure B.4.2B shows SD analysis. Since there

is no change in the geometry of the projectile, there is no significant change in the drag

profile. Above Mach 4 there is a slight increase which is likely due to the joining of
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( A ) Drag coefficients ( B ) Dynamic stability

F I G U R E B . 4 . 2 Characteristics of Tungsten design against standard 7.62mm

the two jacket materials. The dynamic stability is improved across all Mach numbers.

This is a novel idea that maybe worth consideration in the future, at present however

the manufacturing techniques are not refined enough to produce titanium parts of the

desired thickness. Additionally, it would be infeasible to put exposed titanium rounds into

production due to the direct damage to the barrel during launch.



Appendix C

Academic Publications

Review of Dual-spin projectile stability

This manuscript is a review of the stability factor frameworks used to describe different

configurations of projectile. It also reviews any auxiliary material pertaining to projectile

stability which doesn’t necessarily consider the stability factors. At the time of writing,

this paper has been published in Defence Technology journal [40].

Technical Note: Stability analysis of a dual-spin 155mm artillery projectile

This note shows a methodology for evaluating the stability of projectiles across a flight

envelope. Instead of evaluating the stability at discrete trim points offline, this paper

continuously evaluates the stability factors online as a method of determining the control

inputs necessary to re-establish stability. At the time of writing, this paper has been

submitted to the Defence Technology journal.

A novel quasi-dynamic guidance law for a dynamic dual-spin projectile with non-

conventional, asymmetric roll constraints

This paper describes the novel actuation mechanism and accompanying ZEM based GL

enclosed in the paper. It shows how the GLs can be used to successfully control the mech-

anism in a nominal comparison with traditional GLs, similar to the analysis conducted in

chapter 6. At the time of writing, this paper has been submitted to the Proceedings of the

iMeche, Part G: Journal of Aerospace Engineering.
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This paper gives a succinct review of dual-spinprojectile stability and some technologies relating to them.
It describes how the traditional stability factors from linear projectile theory are modified to better
describe a controlled dual-spin projectile. Finally, it reviews works which have investigated how different
aspects of a controlled dual-spin design can affect flight stability, primarily airframe structure and canard
properties. A conclusion is given, highlighting important guidelines from the enclosed discussions.
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1. Introduction

Generic airframe stability has three distinct forms: static, dy-
namic and gyroscopic, quantified by the stability factors SS, Sd & Sg
respectively. At a specific instance, a projectile is ‘stable’ in one of
these ways if the associated stability factor fulfils its respective
inequality. If a body is statically stable then, under the influence of a
small disturbing force, the body will act towards its original
alignment. If a body is dynamically stable, the disturbance induces
an oscillatory motion, which will damp until the body attains its
initial alignment. Gyroscopic stability is the resistance of a rotating
body to changing its axis of rotation. Stability factors are advanta-
geous for projectile designers, as they allow a good estimate of
ballistic stability without having to analyse a large flight envelope
with numerical analysis, which can be time consuming and
resource intensive.

Projectiles are spun to mitigate aerodynamic disturbances
which may detrimentally affect the flight of the projectile. Guided
projectiles are far more effective, albeit more expensive per unit, at
achieving a desired effect on target; however they are primarily
designed to be non-spinning. A Dual-spin projectile design is one

possible solution to imparting the benefits of controlled flight onto
spin-stabilised projectiles. This paper consolidates the major works
to date, which describe the stability factors for single spin (un)
guided and dual-spin (un)guided projectiles. Additional literature
describing any aspect of dual-spin flight stability is enclosed and
discussed. Any meaningful conclusions about projectile design
which can be drawn from the enclosed analysis or discussions are
listed.

Section 2 presents the origin and justification for the use of
dual-spin projectiles, some useful technologies and novel guidance
methods for generic guided projectiles. Section 3 provides a brief
origin of the static, dynamic and gyroscopic stability factors from
linear projectile theory, followed by a review of the major works to
datewhich have built upon these factors to account for the addition
of control surfaces, a dual-spin design and a combination of both.
Section 4 gives a review of works which have investigated how
stability can be analysed from other perspectives, as well as how it
is affected by both projectile and control mechanism parameters.
Section 5 gives a summary of the paper and important elements of
the enclosed discussions.

2. Dual-spin projectiles and related technologies

This section explains why spin stabilisation is useful for pro-
jectiles along with some of the problems which can arise after
implementing it. Guided projectiles are introduced along with the
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rationale behind the dual-spin configuration. Finally, relevant
technology such as MEMS, piezoelectric actuators and novel
methods of imparting a control moment are presented.

The projectile, as an effector, has been used inwarfare for almost
as long as warfare has existed. It has long been known that spinning
a projectile improves stability and since Greenhill's formula [1],
that there is an optimal spin rate. Too little spin and the projectile
will not have the gyroscopic inertia to resist the disturbing force
experienced during flight and the precession will be too large. Too
much spin and the gyroscopic inertia will resist the aligning aero-
dynamic forces from the aerodynamic design creating too large an
angle of attack; known as super-stability [2]. Ballistic stability, as it
is understood today, is defined as the ability of a projectile to
maintain its trajectory, ensuring the desired range and designated
level of accuracy is achieved. A ballistically unstable projectile will
tumble during flight, adversely affecting the aerodynamics and
thus the range and accuracy. Hence, spinning a projectile intends to
alleviate the inconsistency and inaccuracy caused by these
disturbances.

However, there are two notable instances of amplified insta-
bility when projectiles are spun. Spin-yaw resonance occurs when
the spin rate approaches the yaw rate, the projectile may begin to
undergo a large amplitude yawing motion called ‘lunar’ yawing [2].
Catastrophic yaw occurs when a large yawing motion is amplified
by non-linear Magnus effects, which creates further dynamic
instability, leading to a cascade effect. Indeed, Magnus force in-
teractions affect a projectile's flight in many ways, Seifert [3] has
provided a comprehensive review of the Magnus effect and its
implications in aeronautics. In another relevant study [4] CFD
simulations were used to predict the aerodynamic coefficients and
flow fields for a 25mm spin-stabilised projectile. The goal being to
deduce which parameters are necessary for an accurate

computation of the Magnus moment and roll damping moment.
While spun projectiles are subject to Magnus forces in flight, these
can be reliably accounted for prior to projectile launch [5].

The accuracy demanded by today's weaponry has led to the
development of guided weapons, where control and guidance
hardware is incorporated directly into the projectile. Guided
weapons provide substantial benefits over conventional ammuni-
tion, namely reduced collateral damage, improved lethality and
effectiveness per unit. Conventional, non-spun, guided munitions
are already well established in modern arsenals (e.g. M982 Excal-
ibur [6], M712 Copperhead [7]), primarily using control surfaces
such as canards for control. However, the high RPM inherent with
spin stabilisation is not conducive to the use of tracking sensors or
guidance hardware. A relatively recent solution to this problem is to
use a ‘dual-spin’ configuration, shown in Fig.1. The aft section of the
projectile retains its high spin rate and innate gyroscopic stability
while the foreword section, adorned with the guidance and control
hardware, has a much lower spin rate. This design allows spun
projectiles to be controlled in instances where reducing the spin is

Nomenclature

aðeÞ (Trim) Angle of attack
bðeÞ (Trim) Angle of sideslip
CDð0Þ (Zero yaw) Drag coefficient
CLa Lift (slope) coefficient
CLp Spin damping moment coefficient
CMa Overturning (Static) moment coefficient
CMd Overturning moment coefficient of canards
CMPa Magnus moment coefficient
CMq þ CM _a Pitch damping moment coefficient
CðA;FÞ
Na Normal force coefficient (of the Aft/Forward section)

CNd Normal force coefficient of canards
CðA;FÞ
NPa Magnus force coefficient (of the Aft/Forward section)

d Projectile reference diameter
dc; dy;z Canard deflection, in the y/z plane
g Gravitational constant
IðA;FÞx Axial moment of inertia (of the Aft/Forward section)
IðA;FÞy Transverse moment of inertia (of the Aft/Forward

section)
l Projectile length
ln;p Damping frequency of nutation/precession
mðA;FÞ Projectile mass (of the Aft/Forward section)
pðA;FÞ Spin rate (of the Aft/Forward section)
FT Roll angle of de-spun front section
RðA;FÞx Distance between section COM and section COP
RmðA;FÞx Distance between section COM to section Magnus

COP

rðA;FÞx Distance from composite COM to section COM
r Density of medium
S Projectile reference area
Sc Reference area of canards
Sd Dynamic stability factor
Sg Gyroscopic stability factor
Slim Axial spin limit
SS Static stability factor
qE Euler pitch angle
qT Trajectory angle subtended by V

!
: x!e

V Projectile air-relative velocity
VM Projectile velocity [Mach]
up;n Frequency of nutation/precession
x! Longitudinal axis of projectile
xc Distance of canard root chord from total COM
x Complex yaw, aþ ib
ðÞ* ðÞ� rSd=2m

Abbreviations
SSNC Single-spin, no control
SSC Single-spin, with control
DSNC Dual-spin, no control
DSC Dual-spin, with control
COM Centre of Mass
COP Centre of Pressure
DOF Degree of freedom

Fig. 1. Depiction of dual-spin projectile (Liang et al. [57]).
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detrimental or otherwise undesired, an example of this would be
smaller calibres which are more susceptible to aerodynamic dis-
turbances. If stockpiles of unguided, spin-stabilised munitions
exist, they can be upgraded by replacing the existing fuse with a
course-correcting fuse (CCF) which contains the control and guid-
ance hardware [8].

Restricting the control and guidance hardware to such a small
volume is driving the miniaturisation of sub-systems. As a result,
technology is being adopted from other fields. Micro-
electromechanical Systems (MEMS) for example, are already being
made more resilient due to use in aerospace [9]. MEMS describe
any system with moving parts on the micro-scale; relevant exam-
ples used in guided projectiles would be gyroscopes and acceler-
ometers. Additionally, experiments are being conducted to adapt
newer technologies, such as piezoelectric actuators, which are
robust, have very high operational frequencies and nomoving parts
(aside from the physical deformation of the actuator). Different
designs of piezoelectric actuators, such bi-morph actuators [10,11]
and snap-through actuators [12], have been incorporated into
projectile fins and control methodologies have been considered
[13,14]. Smaller designs usually equate to higher projectile speeds
[15]. It has been shown both numerically and experimentally, that
conventional fin designs are able to produce significant deflections
when subjected to supersonic speeds in excess of Mach 4 [16] (a
25mm projectile achieved 1.4m of deflection over a range of
160m).

Much research has been conducted into unconventional control
methodologies. While fins are still the primary source of control
moments for projectiles, developments in these novel methods
may prove useful in future guided weapon design, dual-spin or not.
Project SCORPION, a collaboration between DARPA, U.S. Army
Research Labs (USARL) and Georgia Institute of Technology, inves-
tigated the feasibility of mircoadaptive flow control (MAFC) as a
means to control spin stabilised projectiles [17]. It utilised the
Coand�a effect interaction with the projectile boattail, in combina-
tionwith a high frequency piezoelectric actuator which distorts the
boattail. The USARL have also proposed and analysed an asym-
metric, spin stabilised projectile controlled by a singular fin or
‘paddle’ [18]. ‘Tail-spoilers’ have been proven able to manoeuvre a
105mm projectile at speeds up to Mach 3 [19], with a range
enhancement of 7% or a controllable deflection of 1.5 km, over a
10 km range. Tests have been conducted with an articulable nose/
ogive, achieving bandwidths of up to 200 Hz at Mach 3.3 [15].
Microvanes have been investigated as a method for flow control on
a supersonic spinning projectile [20]. It was found that the vanes
inhibit flow separation on the surface of the projectile, the normal
force coefficient and pitching moment stabilised, which led to
greater projectile stability via reduced oscillations. In addition,
there exist a plethora of patents [21e25] describing novel guidance
methods such as air jets, gyroscopes and asymmetric ogives. Since
fin control methods are so predominant, they are assumed to be the
source of all control moments throughout this paper.

3. Stability factors

Many popular textbooks and literature [2,26e30] can provide a
detailed derivation of the stability factors from linear projectile
theory, this section gives a brief description following McCoy [26].
It then elaborates on the relation between these factors and their
importance in determining the effect projectile dimensions have on
ballistic stability. Then it is shown how different works to date have
modified these factors to account for different iterations of pro-
jectile models. The DOF models formwhich the stability factors are
derived from have been shown able to replicate technical data and
atmospheric flight models, when applied to small calibremunitions

[31]. The NATO Armaments Ballistic Kernel (NABK) also utilises a 6-
DOF model, which has also been shown to predict the behaviour of
small calibre munitions (7.62mm� 51mm) [32]. Additionally, the
statistical methodology used to evaluate projectile dispersion
during that study characteristics is sufficient [33].

3.1. Classical aeroballistic stability factors

The static stability factor Ss, for a projectile of massm, is given by

SS ¼ 1
2Iy

rSd3mCMa (1)

where CMa is the overturning moment coefficient as a function of
angle of attack a, or CMa≡vCM=va [34]. A body has ‘positive’ static
stability (i.e. is statically stable) if SS <0; SS ¼ 0 and SS >0 correlate
to neutral and negative static stability respectively. Depending on
whether the static stability is positive, neutral or negative, the
body's alignment after a disturbance will respectively: return to its
original position, maintain its newalignment or continuemoving in
the direction of the disturbance. Apart from CMa, all parameters in
Eq. (1) are positive, hence to achieve SS <0 we necessitate that
CMa <0; for a non-spin stabilised body this means practically that
the COM is located ahead of the centre of pressure (COP). Fig. 2
shows a plot of the relation between CM and a, static stability is
present when the line pertaining to a given body has negative
gradient. To optimise SS based on the coefficients of CMa, a heavy
projectile with a large cross section and small transverse moment
of inertia is preferable, though this contradicts conventional bal-
listic design.

The procedure for deriving the gyroscopic and dynamic stability
factors involves solving, under a series of assumptions, the equa-
tions of motion (EOM) for a projectile model and imparting
boundary conditions on the solutions. In the most basic case pre-
sented, we assume a spin stabilised, uncontrolled projectile which
is aerodynamically symmetric, has a rigid body, a uniform density
and the centre of mass (COM) located on the longitudinal axis. Euler
angles and angles of attack are assumed to be small and the effects
of gravity are neglected. The solutions to a projectile's EOM
describe damped oscillatory motion with two modes; a large
amplitude slow frequency ‘precession’ (up) and a low amplitude
fast frequency ‘nutation’ (un) with damping frequencies lp and ln
respectively. For the solutions to represent real and damped

Fig. 2. Example of overturning moment coefficient CMa against angle of attack a for
two abstract bodies.
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oscillations, we impose boundaries on the oscillation and damping
rates. From the resulting inequalities, the gyroscopic stability factor
is defined as

Sg ¼ p2I2x
4IyV2C*

Ma

(2)

The dynamic stability factor is defined as

Sd ¼
2

 
C*
La þ md2

Ix
C*
Mpa

!

C�
La � C*

D � md2

2Iy

�
CMq þ CM _a

�* þ 1
2k

�2
x C�

Lp � 8mg cosðqTÞ
prd2V2

(3)

N.B. the last two terms in the denominator of Eq. (3) are only
included by some texts [26,29] to account for variable velocity due
to drag and gravity. These equations are cumbersome so they are
written in a more compact notation using substitution parameters,
the gyroscopic stability factor is written as

SgðSSNCÞ ¼ P2

4M
(4)

and the dynamic stability factor is represented as

SdðSSNCÞ ¼
2T
H
: (5)

Future iterations of the stability factors are written in this
compact form and all substitution parameters are shown in Ap-
pendix A. The mathematical condition for gyroscopic stability is
Sg � 1 , though it has been shown that the ballistic coefficient of a
bullet is adversely affected by tumbling as Sg is lowered past a
threshold of 1.3 [35]. The ratio p =V decreases along the trajectory of
an uncontrolled projectile (assuming flat-fire), thus it is apparent Sg
will decrease down range. A projectile is dynamically stable if

Sg >
1

Sdð2� SdÞ
(6)

By substituting Sg from Eq. (4) into Eq. (6) we can define the
axial spin limit Slim from the resulting inequality,

P2 <
4M

Sdð2 � SdÞ
bSlim (7)

which shows the critical value of P2 for which the inequality in Eq.
(6) is no longer satisfied. Fig. 3 shows a plot of the corresponding
equality of Eq. (6), with the shaded region indicating where the
inequality is fulfilled.

Dynamic stability is concerned with the oscillations induced in a
moving body after a disturbance is applied and as with static sta-
bility, it can be positive, neutral or negative. With positive dynamic
stability the oscillations eventually damp towards the original
alignment, neutral dynamic stability causes oscillations to reside
indefinitely with constant amplitude, while negative dynamic
stability has oscillations which amplify chaotically. When Sd ¼ 1
the body has positive dynamic stability, or is perfectly dynamically
stable. If Sd <1 the precession is unstable and if Sd >1 the nutation
is unstable, both catastrophically so at the asymptotes (Sd ¼ 0 or
Sd ¼ 2 respectively). The transition from positive to neutral to
negative dynamic stability for a projectile is dependent on the
magnitude of the deviation from Sd ¼ 1. The magnitude at which
the transitions occur is dependent on the projectile and trajectory
parameters, but is not well characterised. Provided 0< Sd <2 in
practice, the projectile can be spun sufficiently to ensure ballistic
stability. Table 1 shows the effect on ballistic stability of occupying

different static and dynamic regimes.
Note that the projectile geometry required to maximise aero-

dynamic efficiency and terminal effectiveness, almost always re-
sults in negative static stability. From Table 1 we can see that in the
unstable static regime, a dynamically stable projectile can still be
ballistically stabilised if the spin rate is sufficiently high. Thus,
projectile designers can effectively disregard the static stability of a
projectile, solely focusing on the relation between Sd and Sg; i.e. it is
sufficient, to ensure a prototype projectile lies in the stable region
(as central as possible) of Fig. 3 for the anticipated flight envelope.

Fig. 4 shows a dynamic stability plot for three conventional

Fig. 3. Stability relations [29].

Table 1
Criteria for stability regimes.

Static regime Dynamic Regime Ballistic result

Stable SS <0 0< Sd <2
Sd <0 or Sd >2

Always ballistically stable
Ballistically stable if P2 < Slim

Unstable SS >0 0< Sd <2
Sd <0 or Sd >2

Ballistically stable if P2 > Slim
Never Ballistically stable

Fig. 4. Dynamic stability plot of various NATO calibres for different projectile
velocities.
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NATO calibres: 5.56mm� 45mm, 7.62mm� 51mm and
12.7mm� 99mm. The bullet geometry is loaded into PRODAS
ballistic software and calculated for flat-fire trajectories. Each line
represents one calibre, each point on the line represents a pair of
stability factors calculated at a given bullet velocity. The velocity
range is Mach 1.5e4 in increments of 0.5, the lowest speed corre-
sponds to the lowest/left most point of each line, increasing
progressively.

3.2. Stability factor development

To account for the contribution of passivated control surfaces
(canards or fins), a term n can be appended to the EOM [30,36],
where

n ¼ 1
Iy
d2
�
� idc eiFT þ x

�dCNd
dt

(8)

Note that the n term could be modified to account for any of the
novel control methodologies described at the end of Section 2,
provided the control moment can be characterised and integrated
into the EOM. If the same mathematical treatment as above is
applied to this modified EOM, the result is that Sd is unaffected,
while Sg becomes:

SgðSSCÞ¼ P2

4

 
M þ d2

Iy
dCNd
dt

! ¼ P2

4Mc
(9)

SdðSSCÞ ¼ SdðSSNCÞ (10)

At least for the assumptions of this model, the canard parame-
ters considered only affect Sg, not Sd. In a comprehensive paper by
Costello et al. (2000) [37] a dynamic model was produced for a
dual-spin projectile with no control surfaces, which utilised a 7-
DOF model. The stability factors derived from this are shown
below in Eq. (11) and Eq. (12).

SgðDSNCÞ ¼ F2

4C
(11)

SdðDSNCÞ ¼
2
��
Aþ C*

D0
�
F þ B

�
F
�
A� 2C*

D0 � E
� (12)

Burchett et al. [38] developed this model further to analyse the
effect that lateral pulse jets, as a method of control, have on the
swerving motion of a projectile; though they did not derive any
stability factors for their model. Costello uses the same assump-
tions as the classical case with the addition that V ; fA & fF are
large compared to the dynamic model coordinates q; j; q; r; v; & w,
so a product of any of these small quantities and any of their de-
rivatives is negligible.

Wernert (2009) [39] expanded this dual-spin model to include
the contribution of passivated canards, leading to the following
stability factors

SgðDSCÞ1 ¼ F2

4C0 (13)

SdðDSCÞ1 ¼ 2
��
A0 þ C*

D0
�
F þ B

�
F
�
A0 � 2C�

D0 � E
� (14)

Comparing Eq. (11) and Eq. (13), we can see the method for
including canard effects for the dual-spin design is analogous to the
single-spin design between Eq. (4) and Eq. (9), the addition of a

term in the denominator. However, Wernert remarks that the Sd he
arrived at is not satisfactory since the contribution of the canards to
the Magnus forces/moments was not considered.

Zhu et al. [40] further developed this model by including terms
to account for the effects of gravity and Euler pitch angle (qE), which
led them to the following stability factors.

SgðDSCÞ2 ¼ P2

4 ~M
(15)

SdðDSCÞ2 ¼ 2T
~H

(16)

Using the assumption of a flat fire trajectory, qE ¼ 0, the stability
factors were then shown to reduce and remain consistent with the
previously established theory. Fig. 5 illustrates the model and
various parameters used by both Wernert and Zhu et al. The value
of Sg in Eq. (4) for a single spin, uncontrolled projectile has been
validated for conventional small scale projectiles [35], though the
dual-spin modifications to Sg made by Costello, Wernert and Zhu
et al. are yet to be validated for small scale, due to the absence of
such small scale dual-spin prototypes.

Fig. 6 shows a comparison of each iteration of the stability fac-
tors, equations (4), (5), (9)e(14), for a 155mmprojectile. There is an
inherent difficulty in directly comparing these equations, since they
model fundamentally different projectiles. We can assume the total
mass of a single spin projectile is the sum of masses of the forward
and aft sections. Canards are assumed to have negligible mass, yet
still provide an aerodynamic moment. The aft spin rate is chosen to
be equal to the single-spin (1445 rad/s) while the forward section is
chosen be sufficiently low to allow the operation of control and
sensing hardware (30 rad/s). The aerodynamic coefficients, mo-
ments of inertia and balancing distances (RðA;FÞx, RmðA;FÞx rðA;FÞx)
were calculated using a projectile model in PRODAS, once the single
spin projectile was divided into two distinct sections. It is worth-
while to note which modifications to a dual-spin projectile are
necessary to achieve the stability of a single-spin projectile. How-
ever, this optimisation task is very complex and beyond the scope
of this paper, since all aerodynamic coefficients are functions of
projectile geometry.

4. Works pertaining to dual-spin stability

This section reviews publications which consider different ele-
ments affecting projectile stability from a perspective other than
stability factors. The chapters categorise a number of publications
which have a similar focal point.

An alternative method of stability analysis, conducted by The-
odoulis et al. [41], created a linear-parameter-varying (LPV) model
for a canard guided, single spin projectile. The aerodynamic infor-
mation is encoded into certain state spacematrices, the eigenvalues
of which correspond to the precession and nutation frequencies of
the projectile at any given instance. Additionally, root locus analysis
of the system can identify stable operating regions, the parameters
of which can be obtained and substituted into the stability criteria,
depending on how the system is modelled. Indeed, ISL have con-
ducted a significant amount of research into the modelling and
control of dual-spin projectiles [39,41e45].

The ‘Miller twist rule’ is an imperial unit formula which can be
used to calculate the optimal twist rate of a barrel as a function of
bullet attributes and Sg [5], thus it can also be used to determine Sg
if the twist rate is known. Courtney et al. has shown empirically,
that the Miller rule can be modified for use with plastic tipped
bullets with non-homogenous densities [46], as well as for open tip
style bullets [47].
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4.1. Airframe

Lahti et al. [48] designed a methodology to control the exterior
ballistic properties of a spinning projectile by re-distributing the
centre of mass around the inside of the bullet. The stability factors
used in the paper follow McCoy [26], an appropriate usage since
bullets are single-spin stabilised projectiles with no control
method. The aerodynamic coefficients used in the analysis are
calculated from a modified version of Slender Body Theory [49],
where a correction term

ffiffiffiffiffiffiffi
Mv

p
is appended to account for flow

compressibility. While it is stated the coefficients are not well
estimated near the transonic boundary, they are assumed to be
representative based on experimental data [50]. A bullet model was
created with a large number of cells populating the interior, each
may possess a specific density. A global optimisation algorithmwas
then used to find the mass distribution which can provide ballistic
stability at the lowest velocity, by satisfying the stability factors.
Since velocity decreases with projectile range, this methodwill find
the mass distribution which enables the longest range (a training
round with limited range was also investigated, but this review is
mainly concerned with results from the long range specimen).
Fig. 7 shows the result from their paper.

It is stated the Magnus effect is the main method by which the
mass distribution affects stability, especially toward the aft of the
projectile [26]. From Fig. 7, it is apparent the algorithm selected the
largest available density to populate mostly the aft of the projectile,

which has the effect of minimising the resulting Magnus moment.
These results indicate that mounting control and guidance hard-
ware in the forward section of a projectile is beneficial for projectile
stability, since electronic components generally have a lower den-
sity than the conventional core material, lead.

Jintao et al. [51] have investigated the effects to flight stability
and manoeuvrability caused by the elastic deformation of a spin-
ning projectile by conducting numerical simulations. It was shown
that aerodynamic coefficients increase with movement frequency,
that an elastic deformation induces two aerodynamic components
opposite and perpendicular to the deformation, and that the
induced angle of attack from deformation decreases as Mach
number increases.

Xu et al. [52] have modelled the stability factors for a missile
under thrust, assuming a flexible chassis. It was shown that thrust
has a ‘critical value’where dynamic stability is maximised; if thrust
is higher or lower than the critical value, then dynamic instability is
induced by elastic or rigid vibrational frequencies respectively.
Additionally, structural stiffness is lowered as thrust increases,
which leads to reduced static stability.

4.2. Canard modification and general control

Chang et al. [53] have investigated the spin-rate of dual-spin
projectiles as a function of canard properties, by characterising
the ratio of aft to forward axial moment of inertia, IAx =I

F
x. The ca-

nards were modelled with zero deflection angle, so any contribu-
tion comes purely from the roll dampingmoment. It was found that
for an initial spin rate of 420 rev/s (muzzle velocity 980m/s with
elevation angle of 45�), the dual-spin configuration itself causes a
spin-rate discrepancy of 25 rev/s between the aft and forward
sections, while deploying the canards led to a difference of 250 rev/
s. The spin attenuation of the aft section was greater for values of
IAx =I

F
x <1, while the spin attenuation of the forward section was

greater for values of IAx =I
F
x >1. For very large values of IAx =I

F
x, the aft

section spin-rate was found to drastically reduce at first, then in-
crease for a short period and finally attenuate as prior. Impact point
drift was caused by any deviation from IAx =I

F
x ¼ 1. The maximum

angle of attack was found to increase drastically to 16� for
IAx =I

F
x <0:3, but remain around 1.7� for all IAx =I

F
x >0:3. The ratio of

inertial moments has significant effects on both spin rate and angle
of attack and must therefore be considered carefully during the
design of a dual-spin projectile.

Wang et al. [54] have conducted numerical simulations inves-
tigating the effect of yawing force frequency on the angular motion
and ballistic characteristics of dual-spin projectiles. The precession
and nutation rates (lp and ln) were calculated following the linear
theory described in Ref. [26]. It was found lp and ln for the system

Fig. 5. Depiction of dual-spin projectile model (modified from Ref. [40]).

Fig. 6. Dynamic stability comparison for each iteration of stability formula.
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decrease over the projectile trajectory. As a result, the spin-rate of
the aft or forward section could coincide with these intrinsic fre-
quencies at certain intervals, which are dependent on the chosen
projectile parameters. At resonance, there is an increase in angle of
attack (~0.2�) and decrease in projectile range (~0.4 km decrease
over ~33.5 km). A Monte Carlo simulation was then conducted,
which showed a 10 Hz control force applied to the projectile re-
duces projectile dispersion, but not significantly.

Cooper et al. have investigated the implications on flight sta-
bility caused by projectile asymmetry from the addition of canards
[55]. Linear projectile theory was extended to account for radial
mass asymmetries, which was shown to reduce back to standard
theory when the asymmetry was zero. The dynamic stability of the
projectile was found by root locus analysis of the system eigen-
values in state space, in the sameway as Theodoulis et al. [41,42,44].
The canards were modelled with sinusoidal actuation, when the
frequency of this driving wave is close to lp or ln, dynamic insta-
bility results; this is in agreement with the investigation of [54].
When the actuationmoment of the canards was sufficiently large, it
was shown to adversely affect the oscillatory motion of the pro-
jectile, leading to ballistic instability.

Chang [56] has studied the dynamic response of a dual-spin,
canard-stabilised projectile, when the coupling between canard
control and gravity are considered. A new analytical solution was
proposed to predict the maximum angle of attack induced by
canard actuation, the yaw of repose due to canard control and the
phase shift of the swerve response. It was found if the moment
imparted on the projectile by the canards, or ‘control moment’, is
large then it will more drastically alter the trajectory, but lead to
airframe instability.

Wang et al. [36] investigated the effects of different control
strategies on the flight stability criterion derived in Ref. [40], by
assuming all parameters other than those associated with the
rollingmotion of the body to be invariant. It was found that canards
should be designed so the produced roll moment is as small as
possible. During the period in which the roll angle is adjusted, it
was found that control strategy has no impact on flight stability; it
was suggested that the target spin rate of the forward section
should be as low as possible for practical purposes (as discussed in
Section 1). The behaviour of the motor torque was also charac-
terised in terms of both trajectory and projectile parameters.

Liang et al. [57] have proposed amethodology for optimising the
aerodynamic parameters of control canards. A 3D model is created
with chosen canard parameters, then the aerodynamic coefficients
for this are generated through the CFD program FLUENT and the
efficiency is analysed by mapping how the normal force coefficient
(CNa) changes with respect to canard deflection angle, over
different angles of attack and Mach numbers. It would be inter-
esting to see how this methodology could improve if used in
conjunction with all the works listed above, where the canards’
performance is quantified for each mechanism of affecting pro-
jectile stability, for varying control strategies, and having the

optimum configuration selected based upon this.

5. Conclusions

This paper has shown the origin of stability factors, their use and
interpretation for projectile design and how they should be
modified to describe a dual-spin, controlled projectile. When more
dual-spin prototypes are available, further work should involve
validating the 7-DOF models used in numerical analysis. What
follows is a summary of the publications reviewed here, aiming to
provide guidelines to maximise the ballistic stability of a prototype
projectile; full detail being found in the accompanying reference.

Lahti et al. [48] have shown that mass should be concentrated at
the back of the projectile as much as possible, to increase the range.
Jintao et al. [51] have shown that an increasing airframe vibrational
frequency, or increasing elastic deformation amplitude, will in-
crease aerodynamic coefficients through an increasing angle of
attack, at a rate proportional to Mach number. Xu et al. [52] showed
that projectile thrust has an optimal value to maximise dynamic
stability, which is dependent on airframe parameters. This is not so
applicable to gun-launched projectiles but is an important
consideration nonetheless. Chang et al. [53] showed that spin
attenuation of the aft/forward section increased for IAx =I

F
x <1 and

IAx =I
F
x >1 respectively, and that maximum angle of attack increases

drastically (~16�) for all IAx =I
F
x <0:3, remaining almost constant

(~1.7�) otherwise. The intrinsic nutation and precession frequency,
which are dependent on airframe parameters, decrease over a
trajectory. It has been sown that the control force frequency (Wang
et al. [54]) and canard actuation frequency (Cooper et al. [55])
should be chosen to avoid these modes if possible. Chang [56] has
shown that if the control moment of the canards is too large then
ballistic stability is affected. Finally, Wang et al. [36] have shown
that the roll moment of the canards should be as small as possible.
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APPENDIX

A. Substitution parameters

Single-spin no canards (Classic)
The last two terms of H are added by certain authors [26,29] to

represent variable velocity due to gravity and drag.

Fig. 7. The optimal mass distribution of a long range bullet, Lahti et al. [48].
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P ¼ Ix
Iy

pd
V

M ¼ k�2
y C*

Ma

T ¼ C*
La þ k�2

x C*
MPa

H¼C*
La � C*

D � k�2
y
�
CMq þ CM _a

�* þ 1
2
k�2
x C�

Lp � 8mg cosðqTÞ
prd2V2

where

k�2
x;y ¼ md2

Ix;y

Canard Guided

Mc ¼M þ d2

Iy

dC*
Nd

dt

Dual-spin without canards
Any symbol with an A or F subscript or superscript indicates the

usual meaning of the symbol, but with respect to the Aft or forward
section of the projectile respectively.

F ¼ d
V

�
IFxpF þ IAxpA

�
ITy

C ¼ md

ITy

��
Rfx þ rfx

�
CF
Na

� þ ðRax þ raxÞCA
Na

*�

A ¼ C*
Na

B ¼ md2

ITy

1
V

 �
Rmfx þ rfx

�CF
NPa pF
2

þ ðRmax þ raxÞC
A
NPa pA
2

!*

E ¼ md2

2ITy

�
CMq þ CM _a

�*

where

ITy ¼ IFy þmf r
2
fx þ IAy þmar2ax

Dual-spin with canards

A
0 ¼

�
CNa þ

Sc
S
CNd

�*

C
0 ¼ md

ITy

��
Rfx þ rfx

�
CF
Na þ ðRax þ raxÞCA

Na þ
Scxc
S

CNd

�*

Then by Zhu

~M¼ M
1� εae

þ εbePT

ð1� εaeÞ2
þ εbePM

ð1� εaeÞ~H

þ ðεbePT þ εbeMÞ2 � 2εbePTM

ð1� 2εaeÞ~H2

~H ¼ ð1� εaeÞðH�2g*Þ

Where g* ¼ gl sinðqTÞ=V2 and ε ¼ 0:5 tanð qEÞ.
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Technical Note: Stability analysis of a dual-spin
155mm artillery projectile
James Norris, Prof. Amer Hameed, Dr. John Economou

Abstract—The gyroscopic and dynamic stability factors are
used to investigate the ballistic stability of a dual-spin 155mm
projectile. A dynamic model is used to generate trajectory
profiles. The ballistic stability is investigated over the flight
envelope as a function of various projectile parameters and
aerodynamic coefficients.

Index Terms—Dual-spin, Guided, Projectile, Stability

I. INTRODUCTION

THE dual-spin projectile (DSP) design is one solution to
incorporating guidance hardware into projectiles where

the preservation of high spin is important. Figure 1 illustrates
the design, where the forward and aft section can both roll
independently through a bearing connecting the two sections.
Control hardware is mounted on the forward section, while the
guidance computer and auxiliary systems are not relegated to
the forward section, but are assumed to be located there as
well.

Fig. 1. DSP with fixed control force Fc

The stability factor framework determines whether a projec-
tile is ballistically stable under certain trim conditions by cal-
culating gyroscopic and dynamic stability factors. A review of
dual-spin projectile stability [1] has shown how the gyroscopic
and dynamic stability factors, Sg and Sd respectively, are
used to determine whether a projectile will remain ballistically
stable throughout the flight envelope. The validity of these
factors to predict ballistic stability is supported experimentally
[2], [3]. If instability occurs at any point in flight, drag
and other aerodynamic effects become sufficiently large to
adversely affect the range and the ability of the guidance
system to exert control. This paper investigates how certain
parameters and coefficients, which can be modified during the
design process, affect the stability of the projectile in flight.
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Section II describes the 7 degree-of-freedom (DoF) model
used to describe the DSP. Section III discuss the procedure
used to evaluate the stability after modifying parameters and
coefficients. Section IV presents and discuss the results of the
proceeding analysis. Section V summarises the findings of the
paper.

II. PROJECTILE DYNAMICS

This section describes the 7 DoF dynamic model of the DSP,
which has previously been used to investigate DSPs [4], [5],
[6] and is a derivative of the well-established conventional
projectile model used by McCoy [7]. Subscript F denotes
the forward section and subscript A denotes the aft section.
The assumption is made that the total centre of mass (COM)
coincides with the aft COM, i.e. the mass of the forward part is
small with respect to that of the aft part and the nose moment
of inertia Ixx,F is small compared to the aft one Ixx,A. The
forces and moments the projectile is subject to are represented
by an aerodynamic coefficient. The whole body longitudinal
CA0, transverse CY 0 and normal CN0 coefficients represent
the combined effect of these individual forces, and are shown
in figure 2 for non-zero angle of attack α. Aerodynamic co-
efficients for projectile were computed from projectile models
in DATCOM, PRODAS and ANSYS Fluent.

Fig. 2. Projectile coefficients when α 6= 0

The non-linear kinematic translational and rotational equa-
tions are given by equations 1 and 2 respectively.

ẋe = Tx · ve (1)

Θ̇e = TΘ ·Ωe (2)

where ẋe = [ẋe ẏe że]
T is rate of change of earth axis position

coordinates, Tx is the earth axis positional transformation
matrix, ve = [u v w]T are the current earth axis positional
speeds, Θ̇e = [φ̇F φ̇A θ̇ ψ̇]T is the rate of change of earth
axis rotational coordinates, TΘ is the earth axis rotational
transformation matrix, and Ωe = [pF pA q r]T are the current
earth axis rotational speeds.
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Accordingly, the dynamic translational and dynamic rota-
tional equations are shown in eq. 3 and 4 respectively.

v̇e =
1

m
F−TΩ · ve (3)

Ω̇e = Tv + I ·m (4)

where Tv is the body velocity transformation matrix, TΩ

is the body rotational-velocity transformation matrix and
I is the inertia matrix. In addition, the body axis forces
F = [FX FY FZ ]T and body axis moments m =
[m1,F m1,A mm mn]T are given by equations 5 and 6
respectively

F = q̄S

(
CX +

pAd

V
CXp + CXδ · δX

)
+mgTg (5)

m = q̄Sd

(
CX0 +

d

V
Clθ +

pAd

V
Clp + Clδ · δ

)
+ τ (6)

The coefficient matrices are the body axis CX , the Magnus
force CXp, canard forces CXδ , body moments CX0, spin
coupling Clθ, Magnus moment Clθ, and canard moments Clδ .

III. PROCEDURE

A comprehensive review of the stability framework and
terms can be found in reference [1], which includes a review of
relevant works [8], [9]. The gyroscopic and dynamic stability
factors are shown in equations 7 and 8 respectively.

Sg =
P 2

4M̃
(7)

Sd =
2T

H̃
(8)

The substitution parameters are shown in appendix B. The
projectile is ballistically stable if

Sg > (Sd(2− Sd))−1 (9)

Henceforth, let f(Sd) = (Sd(2− Sd))−1. Aerodynamic coef-
ficients and thus the stability factors, are a function of many
terms included in the dynamic model. We define the parameter
vector as

ζ = [Vt αt βt]
T (10)

At any instant in the trajectory, the parameter vector is
determined from the current simulation parameters. The in-
stantaneous stability factors are then computed under this trim
condition such that Sg|ζ and Sd|ζ . This allows the stability of
the projectile to be evaluated over the whole trajectory, taking
time tτ . Figure 3 shows an example trajectory illustrating the
points where the projectile becomes unstable, by no longer
fulfilling equality 9. The projectile becomes unstable at time
t1 and becomes stable again at time t2 (if at all).

Figure 4 shows the value of the terms in equality 9 over the
entire trajectory. When Sg < f(Sd) the projectile becomes
unstable, indicated by the highlighted region on the figure,
which corresponds to the unstable section of the path on fig.
3. It is obvious that equality 9 has a singularity when Sd = 2,
such that

lim
Sd→2±

[f(Sd)] =∞∓ (11)

Fig. 3. Stability of 155mm shell during flight

which presents as the asymptote in fig. 4. Of note is the
intersection of the two inequality terms:

∇Sg · ∇f(Sd)
∣∣∣
t1
≈ 1 (12)

∇Sg · ∇f(Sd)
∣∣∣
t2
→ 0 (13)

While the behaviour of f(Sd) is extreme, the change in the
dependent parameters and coefficients are not as volatile.
i.e. the smoothness of the physical transition from stable to
unstable (at t1) is the same as unstable to stable (at t2), even
though the rate at which the inequality terms converge to each
other in either case is not similar.

Fig. 4. Equality terms over entire trajectory

Figure 5 show the value of stability factors themselves
when evaluated at the parameter vector at intervals along the
trajectory. Sg decreases along the trajectory primarily due to
the reduction in rotational velocity caused by spin damping.
Sd increases primarily due to the fluctuation of V along the
trajectory.

To demonstrate the importance of majority flight stability,
the overturning moment of the projectile is varied for multiple
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Fig. 5. Equality terms over entire trajectory

simulations. Figure 6 shows the percentage of trajectory over
which the projectile remained stable, against the loss in range.
N.B. these preliminary simulations only account for inertial
and coupling losses, they neglect aerodynamic interactions
such as a massively increased drag which would result from
the tumbling. Since the inertial and coupling losses are the
least significant contributions, the losses in the figure indicate
the effective minimum losses which one could expect from
the flight instability percentages.
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Fig. 6. Range loss caused by flight instability of uncontrolled projectile at
16.5km

IV. RESULTS

The effect on flight stability of modifying various design pa-
rameters and coefficients is now investigated. All simulations
are initialised with the same initial conditions, shown in table
I. Each coefficient is scaled, from 0x to 2x, a multiple of its
original value. By independently varying the coefficients and
parameters in this way, the magnitude of their contribution
to the stability can be directly observed. However, during
the design phase of a projectile, any modification of the
geometry to enact a change in one coefficient will inevitably

lead to others unintentionally changing, due to the intrinsically
coupled nature of the coefficients.

TABLE I
SIMULATION INITIAL CONDITIONS

Parameter Value

θ 30 [deg]

p 1445 [rad.s−1]

V0 452 [m.s−1]

Figure 7 shows the percentage of the flight over which the
projectile remains stable, as various aerodynamic coefficients
are swept as a function of their initial value. This shows
which coefficients are the predominant cause for instability.
It is apparent that the Magnus moment coefficient Clp has the
greatest proportional effect on the flight stability.

Fig. 7. Flight stability for various coefficient scaling

Figure 8 shows the effect of modifying canard deflection
angles for the side canards δY , vertical canards δN and both
simultaneously δY , δN . Note that any modification of the side
mounted canards δY produces a deflection in the normal axis
and vice versa.

Figure 9 shows the effect of modifying the normal force
coefficient for the side canards CY δ , vertical canards CNδ and
both simultaneously CY δ, CNδ . Both lateral and normal canard
pairs are held at 0.5δmax for the duration of the simulation.

V. CONCLUSIONS

The dynamic model of a dual-spin projectile is shown
and various simulations are run for an indirect-fire, 155mm
artillery shell. The stability factors and thus the projectile
stability is evaluated at trim conditions along the trajectory,
whereby the percentage of the trajectory the projectile remains
stable for is deduced. Projectile parameters and aerodynamic
coefficients are then varied

APPENDIX A
DYNAMIC MODEL TERMS

The following terms are used in the dynamic model for the
dual-spin projectile.
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Fig. 8. Flight stability for varying canard deflections
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Fig. 9. Flight stability for canard lift coefficients

A. Transformation Matrices

Tx =




cos(θ) cos(ψ) − sin(ψ) sin(θ) cos(ψ)
cos(θ) sin(ψ) cos(ψ) sin(θ) sin(ψ)
− sin(θ) 0 cos(θ)


 (14)

TΘ =




1 0 0 tan(θ)
0 1 0 tan(θ)
0 0 1 0
0 0 0 sec(θ)


 (15)

Tv =




0 −r q
r 0 r tan(θ)
−q −r tan(θ) 0


 (16)

TΩ =




0
0

−
(
Ixx,A

Iyy

)
pAr − r2 tan(θ)(

Ixx,A

Iyy

)
pAq + qr tan(θ)




(17)

Tg =



− sin(θ)

0
cos(θ)


 (18)

B. Other

I =




I−1
xx,F 0 0 0

0 I−1
xx,A 0 0

0 0 I−1
yy 0

0 0 0 I−1
yy


 (19)

δX =



δx
δy
δz


 (20)

τ =




τM + τF,A
−τF,A

0
0


 (21)

Here, τM is the motor torque which controls the roll angle of
the forward guidance section (φF ) and τF,A is the frictional
torque which counteracts this:

τF,A =
1

2
ρSd CA0sgn(pA − pF )(ks + kv|pA − pF |) (22)

where ks and kv are the static and viscous friction coefficients
respectively

APPENDIX B
SUBSTITUTION PARAMETERS

Substitution parameters for the gyroscopic and dynamic
stability factors are given by. A full description of the terms
can be found in reference [1].

M̃ =
M

1− εαe
+

εβePT

(1− εαe)2
+

εβePM

(1− εαe)H̃
+

+
(εβePT + εβeM)2 − 2εβePTM

(1− 2εαe)H̃2
(23)

H̃ = (1− εαe)(H − 2g∗) (24)

and
M = IyV

2C∗Mα (25)

P =
Ix
Iy

|p|d
V

(26)

T = C∗Lα +
md2

Iy
C∗MPα (27)

H = C∗Lα − C∗D − k−2
y (CMq + CMα̇)

∗
+

+
1

2
k−2
x C∗Lp −

8mg cos(θT )

πρd2V 2
(28)
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Abstract
A novel quasi-dynamic guidance law (QDGL) is presented for a dual-spin projectile (DSP) with unconventional
constraints on roll direction. A 7 Degree-of-freedom (DoF) dynamic model is established and the projectile operational
mechanism is presented with a description of how it is used to enact control. The QDGL is presented and a parametric
study is conducted to show how the QDGL parameters affect the system response. A procedure of using batches of
Monte Carlo simulations is described, to numerically compare the system response with different QDGL configuration. A
Genetic Algorithm is then used to optimise both the innate system parameters and PID controller gains. The disturbance
rejection capabilities of the optimal QDGL is then evaluated along with the performance against different target profiles.
It was found that the GA optimised QDGL is able to provide satisfactory control capabilities against static and dynamic
targets.

Keywords
Guidance Law, Dual-spin, Projectile, Genetic-Algorithm

Introduction

The calibre of guided weapons is getting ever smaller to meet
the evolving needs of modern engagement scenarios. This
is in turn driving a reduction of critical subsystem volumes
of guidance and control hardware. It is thus pertinent to
develop a novel method of control so as to either minimise
the necessary subsystems occupying a volume or reduce the
demand on subsystems / materials which are included in
the projectile. This would allow a reduction in calibre with
currently available technology without having to advance the
capabilities of any specific subsystem / material.

Dual-spin projectiles (DSPs), such as STARSTREAK1,
are becoming more prevalent in today’s military arsenals
as they enable a wide scope of target engagement profiles.
The dual spin configuration slows the roll rate of the
forward section to a point where the response rate of the
actuators is sufficiently high compared to their roll rate
such that effective control can be enacted. The aft section
stays at the high roll rate and the projectile thus maintains
gyroscopic stability. Guidance modules in the form of course
corrected fuses are also being retrofitted onto conventional
munitions, such as the Orbital ATK Armament Systems’
M1156 Precision Guidance Kit2 and BAE’s Silver Bullet3.
In these larger weapon systems (155mm), the roll rate of
the projectiles is relatively low compared to smaller calibres.
For smaller projectile calibres with high roll rates, it may
not prove feasible to mitigate the high roll rates to apply
conventional control methods.

Some prevalent examples of conventional guidance laws
(GLs) used in projectiles include Proportional Navigation
(PN), Proportional Derivative (PD) and Sliding Mode
Control (SMC)4. Conventional SMC or variations thereof

have already considered constraints such as autopilot lag
and actuator fault5, accelerator saturation6, and modelling
uncertainty in missile/target dynamics. Impact angle is often
the considered aspect for control in a GL. In addition to
purely controlling the impact angle7, secondary constraints
have also been placed on trajectory time8, field-of-view9–11,
and manoeuvrability12. External uncertainties and missile
jerk have also been considered13

A modified SMC GL was used to improve the chattering,
miss-distance and finite time over conventional SMC and
PN methods14. The validity of the PN-like LOS GL has
been investigated for three body (two aircraft, one missile)
system where the launch platform is also moving15. A novel
variation, called ‘airborne-CLOS’ utilises two separate LOS
rates with one gain to control the three body problem16.

A novel GL has been created utilising virtual targets for
impact angle and burst height constraints17. A polar GL
has been investigated which controls a missile based on
the polar radius and angle of the target from the missile18.
An Expanded 2D PD GL was created for a skid-to-turn
command to LOS anti-tank guided missile, which builds
upon classic PD, with the objective of eliminating a spiral
trajectory which is an artefact of PD GLs19. A proposed
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method uses a weighted zero-effort-miss (ZEM) to shape
the actual ZEM, presenting as a PN GL with an extra time
varying gain.

A few publications specifically pertain to the guidance
of DSPs. Iterative impact point prediction has been used
to create a GL for a DSP with control force imparted by
fixed canards20. A modified form of projectile linear theory
is used to predict where the projectile will land and make
the necessary corrections to the control system. Proportional
navigation has been used in the GL of a dual-spin mortar
during the ascent and descent phase21. The results of the GL
were validated with hardware-in-the-loop testing and Monte
Carlo simulations.

It is common practice to neglect gravitational forces when
creating a GL22–25. Once an idealistic GL has been created,
constraints can then be placed on the model which reflect
conditions present in chosen real world systems. GLs are
often described from the perspective of the Y Z plane (shown
in fig. 3) also known as the ‘picture plane’7,18,19. Some of
the cited literature use kinematic models for the derivation
and validation of the control law8,12,14,15,17, while this paper
uses a dynamic projectile model. It is common to test the GL
using arbitrary model parameters to facilitate more efficient
and reliable interpretation of the results18,19.

Conventional projectile control utilises control surfaces
which are able to adjust the roll angle of a projectile as
well as the magnitude of the control force. The conventional
guidance strategy is to roll the projectile to align the
controllable pitch axis with the desired direction, then
increase the force by actuating the control surfaces which
results in lateral movement. Dual spin projectiles use a
similar method with the addition of a coaxial motor to assist
the correction of the forward section roll angle26. This paper
proposes a quasi-dynamic GL (QDGL) for a DSP, with a
fixed roll direction as well and a fixed magnitude control
force; however the phase of the force can change, hence the
quasi nature. Control is enacted by adjusting the roll rate of
the control force, slowing it down through certain roll angles
to bias the force in the desired direction. There currently
exists no literature which describes a GL for a DSP with roll-
direction, roll-rate and control-force magnitude constraints.

Section describes the 7 Degree-of-freedom (DoF)
dynamic model of the projectile used in simulations. Section
introduces the projectile design and describes how control is
enacted with the asymmetric roll constraints. The QDGL and
associated parameters are introduced, with a brief parametric
investigation showing their effect on the system response.
Section presents a Monte Carlo procedure which is used
to numerically compare the effect that different QDGL
configurations have on the system response. A Genetic
algorithm is then run to optimise the QDGL parameters
as well as the gains of a PID controller. The system
response of the optimised QDGL is evaluated against various
disturbances and target profiles. Section gives a summary of
the paper and the key findings.

Projectile dynamics
This section describes the 7 DoF dynamic model of the DSP,
which has previously been used to investigate DSPs21,27–29

and is a derivative of the well-established model for a

conventional projectile used by McCoy30. Subscript F
denotes the forward section and subscript A denotes the
aft section. The assumption is made that the total centre of
mass (COM) coincides with the aft COM, i.e. the mass of
the forward part is small with respect to that of the aft part
and the nose moment of inertia Ixx,F is small compared to
the aft one Ixx,A. The forces and moments the projectile is
subject to are represented by an aerodynamic coefficient. The
whole body longitudinal CA0, transverse CY 0 and normal
CN0 coefficients represent the combined effect of these
individual forces, and are shown in figure 1 for non-zero
angles of attack α. The non-linear kinematic translational

Figure 1. Projectile coefficients when α 6= 0

and rotational equations are given by equations 1 and 2
respectively.



ẋe
ẏe
że


 =




cos(θ) cos(ψ) − sin(ψ) sin(θ) cos(ψ)
cos(θ) sin(ψ) cos(ψ) sin(θ) sin(ψ)
− sin(θ) 0 cos(θ)





u
v
w




(1)



φ̇F
φ̇A
θ̇

ψ̇


 =




1 0 0 tan(θ)
0 1 0 tan(θ)
0 0 1 0
0 0 0 sec(θ)







pF
pA
q
r


 (2)

Accordingly, the dynamic translational is shown in eq. 3



u̇
v̇
ẇ


 =

1

m



FX
FY
FZ


−




0 −r q
r 0 r tan(θ)
−q −r tan(θ) 0


 ·



u
v
w




(3)
while the dynamic rotational equation is shown in eq. 4




ṗF
ṗA
q̇
ṙ


 =




0
0

−
(
Ixx,A

Iyy

)
pAr − r2 tan(θ)(

Ixx,A

Iyy

)
pAq + qr tan(θ)




+

+




I−1
xx,F 0 0 0

0 I−1
xx,A 0 0

0 0 I−1
yy 0

0 0 0 I−1
yy


 ·




m1,F

m1,A

mm

mn




(4)

Here, the forces [FX FY FZ ]T and moments
[m1,F m1,A mm mn]T are given by equations 5 and 6
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respectively



FX
FY
FZ


 = q̄S







−CA0

CY 0

−CN0


+

pAd

V




0
CY p
−CNp


+

+




0
CY δδy
−CNδδz





+mg



− sin(θ)

0
cos(θ)


 (5)




m1,F

m1,A

mm

mn


 = q̄Sd








0
0
Cm0

−Cn0


+

d

V




0
Clp
Cmq
Cnr


+

+
pAd

V




0
0

Cmp
Cnp


+




0
0

Cmδδz
Cnδδy








+




τM + τF,A
−τF,A

0
0


 (6)

Here,M is the Mach number, τM is the motor torque which
controls the roll angle of the forward guidance section (φF )
and τF,A is the frictional torque which counteracts this. The
frictional torque can be modelled as a hydrodynamic and
roller bearing in combination where ks and kv are the static
and viscous friction coefficients respectively

τF,A =
1

2
ρSd CA0(M, α, β)sgn(pA − pF )(ks + kv|pA − pF |)

(7)

Quasi-dynamic guidance law formulation
This section describes the control method of the DSP
design with unconventional roll constraints. The QDGL is
formulated and the resulting system response is shown. A
brief parametric study is conducted to illustrate how the
QDGL parameters affect the system response.

Most guided projectiles have fins which can roll the
projectile and induce a variable control force along a pitching
axis. If lateral deflection is required, the projectile adjusts its
roll angle such that the axis of the control force is parallel
to the direction of required travel, whereby it increases the
control force and therefore imparts an acceleration. Fig.
2 shows the DSP design, a control force Fc is produced
by aerodynamic lifting surfaces on the forward section.
At launch, the aft section engages with the rifling which
accelerates the roll rate, while the forward section producing
Fc remains de-spun. During flight, the two sections will
reach an equilibrium through the bearing torque τF,A and
the forward section will have a relatively slow roll rate, ω0.
If τF,A is increased during flight (e.g. by means of a brake)
then there will be new equilibrium where the forward section
has a higher roll rate, ω1.

Figure 3 shows the key parameters of the control method,
as well as the YZ plane, referred to as as the picture plane.
The constant magnitude Fc moves through a roll angle φ
with rate ω0 or ω1, where ω0 < ω1. The φ ∈ [0, 2π] describes
the roll orientation of Fc with respect to the normal axis. It
sweeps in the negative mathematical direction, since most
conventional projectiles have a right hand twist. The novel
guidance strategy proposed herein uses a fixed magnitude Fc

Figure 2. DSP with fixed control force Fc

rolling at speed ω1. The roll rate is slowed to ω0 through
favourable roll angles when Fc is aligned with the desired
correction axis, then accelerated back to ω1 through the
remaining unfavourable roll angles. The act of slowing Fc
when sweeping through favourable roll angles is henceforth
referred to as a ‘bias’. All measurements and symbols
henceforth are given in the ‘picture plane’ reference frame
unless explicitly stated.

Figure 3. Earth axis perspective of picture plane and control
force Fc rotating at rate ω1 through angle φ

The integral of Newton’s second law relates the impulse
of an object, J , to its change in velocity ∆v.

J |∆t = m ∆v|∆t (8)

Here the mass is assumed constant since there are
no on-board resources being consumed. A generalised
decomposition of Fc onto any orthonormal axis i, j in the YZ
plane has the corresponding forces Fi, Fj . Let the desired
decomposition axis i be an angle φB from the normal axis
ẑ (where φ = 0). Let φi be a particular angle between Fc
and the arbitrary decomposition axis i. Let φa be the angle
through which Fc sweeps at a given rate ω such that the
sweep begins at the angle (φB − φa) and ends at φB .

The range of angles during which Fc is slowed is defined
as the bias angle. Let the mid-point of the bias angle coincide
with decomposition axis i, such that the symmetrical angle
on either side of the midpoint is φa. The bias angle thus starts
at (φB − φa) and ends at (φB + φa) with a midpoint of φB .
This is shown in fig. 4. However, Fc will continue to rotate
through the rest of the angle φ eventually sweeping another
angular range (φB + π)± φa (wrapped so φ ∈ [0, 2π]).
During this time the resulting change in velocity is directed
along the negative ith axis.

We define ∆V as the total change in velocity of one whole
roll rotation in sweeping through equal but opposing angles
of size 2φa, at different rates ω0 and ω1. Assuming Fc, m
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Figure 4. Bias manoeuvre of size φa centred about φB

and ω are constant, it can be shown from eq.8 that

∆V =
2Fc
m

sin(φa)

(
ω0 − ω1

ω0ω1

)
(9)

The maximum bias angle is half of a roll rotation, φa,max =
π/2. The maximum ∆V per rotation is thus given by

∆Vmax = ∆V |φa=π/2 (10)

which is evaluated for a given system. Table 1 shows a
comparison between the idealised parameters which are
used during analysis of the QDGL, and values that can be
expected for real systems. Lloyd & Brown31 investigated the
maximum lateral control force Fc which can be applied to
the nose of a projectile before flight instability occurs. For
a 15kg, 105mm projectile, no more than 40N (0.34g) could
be applied. Li et al.29 continued this work and concluded
that the same projectile would remain stable provided Fc ∈
[−35.48, 58.33]. Provided Fc is within the limits defined by
these frameworks, projectile stability is ensured by satisfying
the gyroscopic stability criterion32. When designing such a
projectile, the gyroscopic and dynamic stability framework
for DSPs33 or other methods34 can be used.

Since the purpose of this paper is to test whether the
uni-rotational, fixed magnitude control force can be used to
guide a projectile in the 2D plane, all forces and moments
except the control force are neglected. Additionally, there
is no transient between the fast and slow oscillations, the
switching is instantaneous.

By design, the QDGL calculates a desired change in speed
when φ = 0, then calculate the bias angles from eq. 9. The
projectile will then continue to roll, whereby the actuator will
slow the roll down if the current roll angle lies within the bias
range previously calculated. In practice, the desired speed
change and resulting bias angles are calculated when φ lies
in a small range, φ ∈ [0, 0.001], to account for the machine
computation inaccuracy. While this calculation could be
conducted and updated continuously, the relative speeds
would have to transformed to the φ = 0 reference frame
which adds another layer of computational complexity. In
addition, this discrete computation of speeds at the beginning
of each rotation accommodates the bandwidth of hardware
with respect to the roll rate of the projectile.

The current relative velocity of projectile to target is the
difference between the projectile and target velocity, VR =

V − VT , or in full

VR =

[
uR
vR

]
=

[
u− uT
v − vT

]
(11)

N.B. the projectile having [u0, v0] = [0, 0] and undergoing
consecutive unbiased rotations does not result in a circular
trajectory; instead a semi-circular trajectory would result. To
achieve a circular trajectory in the resting state, the horizontal
velocity at the beginning of the bias calculation must assume
the control force has already rotated through one quarter
rotation. Taking this into consideration, we define VDR0 as
the ∆V correction necessary to bring the projectile to a stable
circular orbit relative to the target, including the current
relative velocity

VDR0 =

[
uR + ∆V |φ=π/4

vR

]
(12)

This only allows the autopilot to bring the projectile to
relative rest, the desired closing speed VPT (d) describes
the chosen approach speed as a function of d. The total
demanded velocity change from the velocity autopilot VDem
is then a linear combination of the necessary relative speed
correction to bring the system to an orbit, VDR0, and the
closing velocity VPT (d) dictated by the QDGL:

VDem = VDR0 + VPT (d) (13)

VPT (d) must only demand speeds which can be delivered
by the actuation mechanism, given that ∆V can never exceed
∆Vmax. Let the function Vlim(d) be the maximum relative
speed the projectile can have at a distance d ≥ 0, such that
it is still able to decelerate in time to be at relative rest
when d = 0. This function can be calculated by starting
with a stationary projectile and applying consecutive ∆Vmax
biases, since the process is reversible. From the rates given
by the idealised system parameters in table 1, a ∆Vmax =
0.9549ms−1 bias is enacted by the projectile in 2.5s. An
effective acceleration value, ã, is measured from simulations
for consecutive ∆Vmax biases. Using this, it can be shown
that

VLim(d) = (2ãd)
1
2 (14)

Since the function VPT (d) is calculated when φ = 0 at a
particular distance d1, the desired ∆V will not be achieved
until after the bias manoeuvre has been executed, one full
rotation later. Hence, the process is discontinuous. By this
point the projectile will have moved to some new distance
d2 under its residual velocity. Fig. 5 shows the delay of
the system response when the target speed is set to be
the limit of the system, e.g. VPT (d) = Vlim(d). The data
points indicate specific positions where φ = 0, triggering the
calculation of the bias angles. The fig. illustrates how the
value of Vlim(d) demanded at a specific point is achieved
at the next calculation point, but after the delay caused by
the roll rotation. This delay causes the system to exceed
Vlim(d), resulting in an overshoot. To account for the delay,
the demanded speed is modified by a factor ξ which ensures
the relative speed never exceeds Vlim(d). The delay does not
directly scale with distance but rather with VPT (d) as it is the
result of dynamic system evolution. Hence the closing speed
function is written as

VPT (d) = Vlim(d)− ξ, ξ ∈ R ≥ 0 (15)
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Table 1. Comparison of simulation parameters used against real-world projectiles

Parameter Idealised System 105mm 155mm Projectile

ω0 [rad.s−1] π/2 N/A N/A

ω1 [rad.s−1] 2π 105029 166835

m [kg] 1 1529 42.79836

Fc [N] 1 [−35.48, 58.33]29 2035

where ξ is a constant to be optimised. The result of this
modification is also shown in fig. 5, where the adapted
system response never exceeds the limit, e.g. VPT (d) =
Vlim(d)− ξ | VR(d) 6> Vlim(d).
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Figure 5. Effect of ξ to prevent system response exceeding
Vlim(d)

By including ξ, VPT (d) is not properly defined when d ≤
d1 where d1| (VPT (d1)− ξ = 0). From eq. 14 this boundary
is

d1 =
ξ2

2ã
(16)

As such, the function Vlim(d)− ξ is only valid for d ∈
(d1,∞] and must be defined by other means for d ∈ [0, d1].
Firstly, the distance d2 is chosen to represent the desired level
of precision for the projectile. The projectile will remain
relatively stationary within this threshold, when it is on
course to hit the target, so VPT (d) = 0 ∀ d ∈ [0, d2] where
d2 ∈ R ≥ 0. Secondly, a linear region is defined where the
projectile moves at a low constant velocity toward the target
in anticipation of either stopping or accelerating by a larger
amount. This is represented by VPT (d) = Vk ∀ d ∈ [d2, d1]
where d2 < d1 and Vk ∈ R ≥ 0 is a constant speed. In its
entirety the function VPT (d), and thus the QDGL, for d ∈
[0,∞] is given by

VPT (d) =



Vlim(d)− ξ

Vk
0


∀ d ∈





d1 ≤ d
d2 ≤ d < d1

0 ≤ d < d2

(17)

Figure 6 shows an example system response with
annotations showing the different regimes governed by
equation 17. VPT (d) = Vlim(d)− ξ is the closing regime,

VPT (d) = Vk is the linear regime and VPT (d) = 0 is the
stationary regime. In addition, the aspects of the steady state
error are the transient, the steady state amplitude and the
oscillation amplitude. The transient is also the motion of
the projectile in the linear regime; a faster Vk provides a
faster transient speed. The steady state amplitude can be
thought of as the distance d of the ‘orbital centre’ from
the target. The oscillation amplitude, and in addition the
oscillation frequency, is governed by Fc and ω0,1, neither
can be affected by modifying Vk or ξ. These oscillations
are caused by the holding orbit described in eq. 12, if
the locus of the assumed circular orbit coincides with the
target then there will be no oscillations. However, if any
small perturbation offsets the orbit loci or the orbit isn’t
perfectly circular, the amplitude of the steady state error
and steady state oscillations will increase. If the steady state
oscillation continues periodically then the orbit is stable,
and the projectile is remaining in the stationary regime. If
the steady state has another, lower frequency oscillation, the
orbit is not stable. This is caused by the linear regime velocity
Vk being too great for the current d2, causing the projectile to
pass straight through the stationary regime. N.B. the regimes
are governed by d and so the vertical lines representing them
on fig. 6 should be horizontal; this was intentional, to aid
interpretation.

Figure 7 illustrates how Vlim is modified in the QDGL
to account for the system response lag. Vlim acts as the
reference signal which the QDGL then modifies using
ξ. The closing speed function VPT (d) is then passed
to the autopilot, which calculates the change in speed
per revolution demanded from the projectile’s actuator
mechanism VDem. The VDem can then be passed through
a chosen controller H , such as a PID. The VDem, modified
under the action of controller H , is then passed to the
actuator mechanism which saturates the signal such that
VDem ∈ [0,∆Vmax]. N.B. Vmax is an absolute limit of the
system resulting from the maximum bias angle of one half
roll revolution, it is not a characteristic of any physical
actuator hardware. If VDem > VMax the system will saturate
and will only be able to deliver VMax. As such, any H > 1
when the autopilot is already demanding VPT = Vmax will
have no effect on the system whatsoever.

The sensor block shown in fig. 7 represents the
sensor dynamics of the system which are assumed in
the idyllic system to be perfect and instantaneous. For
practical implementation, conventional on-board sensors or
an external detection system could be used to measure
the roll angle, similar to that described in37. If volumetric
restrictions permit, on-board image sensing hardware could
be used38. Linear ballistic theory could also be used to
estimate the change in roll rate of the projectile along the
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Figure 6. System response showing different QDGL regimes

Figure 7. Modification of Vlim for speed controller with velocity feedback

trajectory beyond what is known from projectile launch, to
supplement information from the sensors.

Parametric investigation

With the QDGL fully presented, the system parameters Vk, ξ,
d1 and d2 can be investigated, with extreme variation in the
parameters being shown to demonstrate their functionality
and impact on system response. A more high-fidelity
optimisation is conducted in section .

Figure 8 shows how modifying ξ to extreme values affects
the system response. When ξ = 0, the system response
exceeds Vlim which was the case in fig. 5; leading to a large
overshoot and oscillatory motion where the projectile closes
with a speed which is too high. Any negative value of ξ yield
a steady state error that is unacceptably high, thus it is not
shown on the figure. For low values, 0 < ξ < 1, the error is
reduced quickly with a low amplitude steady state error and
no higher order oscillations. High values, ξ ≥ 1, produces a
large amplitude steady state error

Figure 9 shows three example trajectories which
correspond to the extreme values of ξ from fig. 8. The high
steady state error for large ξ is represented by the projectile
being brought to rest too far from the target. The high
amplitude decaying oscillations in normal error for ξ = 0
is visible as the projectile overshoots the target by a large
margin. This is caused by too high a speed being demanded
and the projectile is unable to reduce its speed in time due to
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Figure 8. How extreme values of ξ affect the normalised error

the system lag. For low values of ξ the projectile is brought
sufficiently close to the target to initiate a regime change.

Figure 10 shows the effect of modifying the linear regime
constant velocity Vk. All speeds initially follow the same
error reduction path, from t = 0 to t = 12. This is the range
governed by VPT (d) = Vlim(d)− ξ and thus modifying Vk
has no effect. If Vk is sufficiently small, as the projectile
transitions from the linear velocity to the stationary regime,
the orbital centre is brought to rest very close to the
boundary of the stationary regime, d2. This results in a higher
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Figure 9. How extreme values of ξ affect picture plane
trajectory

amplitude steady state error than if the velocity was high
enough to reduce the distance to d→ 0 before it was brought
to rest. This is apparent from the figure, as an increasing
value of Vk results in a lower amplitude of steady state error,
up to the point that Vk is too high resulting in an overshoot.
The optimal Vk is a trade off with d2 to deliver the orbital
centre sufficiently close to the target before switching to the
stationary regime.
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Figure 10. How varying Vk affects transient and steady state
error

In this case for Vk = 0 the linear regime vanishes,
merging with the stationary regime i.e. VPT (d|d ∈ [0, d2]) =
VPT (d|d ∈ [d2, d1]) = 0. The result of this is that the
projectile enters the stationary regime at a distance d1 and
this is apparent from the figure, with a steady but large
magnitude steady state error. For low values of Vk the
transient is very slow, but the amplitude of the steady
state error is small. For medium values of Vk, the most
desirable system behaviour can be observed. There is a
very quick transient period followed by a low steady state
error amplitude. For high values of Vk there is an unstable
switch between the linear and stationary regimes, caused by
a sufficiently high overshoot to exceed d2.

Figure 11 shows the effect of modifying the boundaries of
the linear regime, d1 and d1. While d1 is determined after a

value of ξ has been selected, since d1| (VPT (d1)− ξ = 0),
it is varied manually here to illustrate the impact. Likewise,
d2 is selected based on the chosen level of accuracy of the
system. If the boundaries are set to be equal, d1 = d2, then
there is no linear regime, it is bypassed completely and the
velocity is brought to relative rest immediately. This leads to
a large steady error, as was the case for low values of ξ and
Vk. The steady state oscillation amplitude is the same as for
any other case, since Fc, ω0 ad ω1 are not being modified. If
d2 is small then the projectile gets closer to the target before
switching to the stationary regime. When d2 is sufficiently
small it becomes significant compared to the distance that
can be travelled by the projectile travelling at speed Vk
during the time for one complete roll rotation. This results in
an unstable steady state oscillation from overshooting, where
the projectile continuously switches between the linear and
stationary regime, which is indicated by the late regime
termination on the figure. Desirable system behaviour is
observed from the ideal duration on the figure, with a
steady transient from the dynamic to the stationary regime
followed by a stable steady state oscillation. With an early
regime activation, the speed demanded of the projectile is
significantly lower than Vlim(d), resulting in a transient
period significantly longer than in the other cases.
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Figure 11. How varying linear regime boundaries affects
transient and steady state error

The steady state amplitude for early regime activation is
lower than the ideal scenario, which is not expected since
the lower bound of the linear regime is the same for both
simulations. The stationary regime governs all d < d2, which
describes a circular area around the target of radius d2. Since
the projectile only calculates the bias points when φ = 0, the
projectile will switch regimes at a different point depending
on where the first bias calculation takes place within d2.
Small deviations in trajectory can thus cause a discrepancy
in steady state amplitude, though the oscillation amplitude
will remain the same in all cases. This discrepancy must be
mitigated by averaging a large number of simulations.

Results and discussion
This section discusses a procedure of using a batch of Monte
Carlo simulations (MCSs) to compare different QDGL
configurations. This procedure is then used in a genetic

Prepared using sagej.cls



8 Journal Title XX(X)

algorithm to optimise the QDGL parameters, ξ and VK , as
well as the gains of a PID controller. As discussed in section
the values of d1 and d2 cannot be optimised and are therefore
not included in this section. The performance of the QDGL
with the optimised ξ and VK is then assessed for performance
rejection capabilities and evaluated against stationary and
moving targets.

Monte Carlo Procedure
MCSs are used to compare the performance of different
QDGL parameter configurations. Table 2 shows the range
in which the model parameters are randomised upon
initialisation. Once the projectile and target are initialised
with randomised speeds and positions the simulation runs for
a fixed time of 50s, unless otherwise specified.

Table 2. Range of values for initialisation of MCS

Parameter Initialisation range

x0, y0 [−100, 100]

(u0, v0) (0, 0)

φ0 [0, 2π]

xT0, yT0 [−10, 10]

(uT0, vT0) (0, 0)

Multiple MCSs are run in a ‘batch’. Fig. 12 shows the
average system responses for four batches of 104 MCSs.
The difference in response is caused by the stochastic nature
of the MCS initialisation. Increasing the batch size results
in an average system response which is sampled over a
large number of simulations, providing more consistency
between batches as well as being more representative of the
true system behaviour. Obviously, the maximum discrepancy
between multiple batches is inversely proportional to the
batch size.
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Figure 12. Response discrepancy between multiple batches of
104 MCSs

Figure 13 shows the instantaneous maximum error for
varying batch sizes over time. For a given batch size, four
separate batches are run. The maximum discrepancy between
any of the four batches at any specific instances is plotted, for

duration of the simulations. This process is repeated for four
different batch sizes.
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Figure 13. Instantaneous maximum variation of normalised
error of different batch sizes

All batch sizes on the fig. start with the same zero error,
since the error curves which are being averaged all begin at
the maximum error. In addition, the same QDGL parameters
are used in every simulation in a given batch, so the identical
terminal error reduction capabilities produce the same steady
state error in all cases. This results in the maximum error
difference being small at the beginning and end of every
batch. Table 3 shows the peak error difference, total integral
error and computation time for each batch size shown in fig.
13. A batch size of 104 was chosen as the optimal trade-
off between peak difference and computation time. While
a batch size of 103 produced an integral error of the same
magnitude as 104, the peak difference was unacceptably
high.

Each MCS produces a system response like that shown
in fig. 6. The system response of each MCS is normalised
against the initial distance error, which was in turn
randomised at the beginning of each simulation. The
instantaneous error, εt is given by

εt =
dt
d0

(18)

The integral of the normalised system response is thus given
by

ε =

∫ τ

0

εt
ε0
.dt (19)

where ε0 is the initial error. By integrating the whole system
response in this way, the system response for different
QDGL configurations can be numerically compared. The
size of the steady state error amplitude is small compared
to the initial and transient error amplitudes. Thus, εm is
representative only of the initial convergence and transient
errors. However, the error amplitude of overshoots are
not negligible compared to transient error amplitudes, thus
overshoots will be detected by the integration. Likewise, the
‘batch average integral’ error, ε̂, can be computed for a batch
size M as

ε̂ =
M∑

m=1

εm
M

(20)

where εm is the normalised integral system response of MCS
m. This value allows a direct and meaningful numerical
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Table 3. Error characteristics and computation time for varying MCS batch sizes

MCSs per batch Peak difference Total envelope error Computation time
102 15.56% 2.95× 10−1 13 mins
103 4.70% 7.16× 10−2 2 hrs
104 1.43% 2.90× 10−2 22 hrs
105 0.42% 6.88× 10−3 9 Days

comparison of batches with different QDGL parameter
configurations.

System parameter optimisation using Genetic
Algorithm
Genetic algorithms (GAs) are a proven method of optimising
system parameters and PID controller gains39–42. A basic
genetic algorithm is implemented using the parameters
shown in table 4. The GA was first tested on a drop-wave
function of the form

f(x1, x2) = −
1 + cos

(
12
√
x2

1 + x2
2

)

0.5(x2
1 + x2

2) + 2
(21)

which is a non-convex, multi-modal, continuous function
with

min [f(x)] = −1 when x = (0, 0) (22)

The GA converged to the same optimum value for 10
individual trial runs, to within 3sf, verifying the GA can
repeatedly converge to a known optimum solution in the
given configuration.

Both the initialisation of the GA and the MCS procedure
are stochastic in nature, hence the optimum value found
is not necessarily the ‘true’ optimum. However, the MCS
procedure consistently represents the system response to
within the desired degree of accuracy. In addition, the GA
is of low dimensionality and is operating in a relatively low
complexity space. This, in conjunction with the consistent
performance of the GA when optimising the drop-wave
function, reaffirm the optimum values provided by the GA
are satisfactory for the scope of this paper.

Table 4. Range of values for initialisation of MCS

Parameter Value

Generations G 200

Population size N 100

MC Batch size M 104

Using this MCS batch procedure, each specimen of
each generation within the GA can now be meaningfully
compared such that an optimal solution may evolve.
Algorithm 1 shows the order of operations for the GA. The
fitness function, FIT, of the GA to be minimised is simply
ε̂, since this represents the average error over time for many
instances for a particular QDGL parameter candidate.

FIT = ε̂ (23)

The normalised integral error of the system response for the
mth MCS follows from eq. 19 as

εm =

∫ τ

0

εt
ε0
.dt (24)

Likewise, the mean normalised integral error of system
response for a Monte Carlo batch of size M for specimen
n follows from eq. 20 as

ε̂ =
M∑

m

εm
M

(25)

The Monte Carlo batch size for the proceeding is M = 104,
the justification for which was discussed in section .

Algorithm 1 Execution of GA optimisation using MCS
procedure

1: Randomly initialise N specimens, (ξ, vK)n
2: for Each generation g ∈ [1 : G] do
3: for Every Specimen in the population n ∈ [1 : N ] do
4: Set QDGL parameters equal to specimen (ξ, vK) =

(ξ, vK)n
5: Set d1 = ξ2/2ã (From eq. 16)
6: for For MCS m ∈ [1 : M ] do
7: Run MCS m with random initial conditions
8: Compute εm
9: end for

10: Compute specimen Fitness: FITn = ε̂n
11: end for
12: Rank specimens in order of fitness and select

candidates for reproduction
13: Create offspring from candidates and cull resulting

population to size
14: Mutate population, then reduce mutation factor
15: end for

To reduce computation time, a preliminary search is
conducted to inform the scope of the GA. Fig. 14 shows
a ε̂ surface for the joint variation of ξ ∈ [0.2, 1] and Vk ∈
[0, 1.5]. Low regions on the fig. correspond to a low ε̂ and
the lowest point is with certainty, bounded by ξ ∈ [0.3, 0.8]
and Vk ∈ [0, 0.5]. High values of ξ or VK lead to a large ε̂.
Large values of ξ produce a saturated response regardless of
the value of Vk. In either case, VPT (d) > Vlim(d) and there
is a substantial overshoot, confirming what was seen in fig.
8 & 10. In addition, low values of Vk have a small rise in ε̂.
This is not due to an overshoot, rather a slow transient results
in residual error which is not present for higher values of Vk
which reduces the error quicker. In addition, this surface is
less complex than the drop-wave function which the GA was
evaluated on during the preliminary tests, indicating the GA
will with high probability, converge to the true solution.

Figures 15 and 16 show the convergence rate for the GA
operating under the boundary conditions for ξ and Vk.

The optimal QDGL parameters from the GA were found
to be ξ = 0.54 and Vk = 0.18.
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Figure 14. System response error ε̂ as function of QDGL
parameters ξ and Vk
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Figure 15. Convergence of 2D GA to optimise QDGL
parameters
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Figure 16. Generation distribution during initial convergence of
GA for QDGL parameters

PID controller gain optimisation
Figure 7 included a block H which represents the chosen
controller for VDem. A PID controller is used to investigate
the proportional, integral and differential aspects of VDem
during feedback. The use may reveal system behaviour that

was not otherwise obvious from the previously discussed
framework and highlight any weaknesses of the QDGL
approach. During the simulation, VDem is decomposed in the
YZ plane to the YZ earth axis giving [uDem vDem]T. This
vector is then modified by the chosen controller and exported
to the actuator block which calculates the bias angles using
the method discussed in section . This means that one
controller can act on both channels simultaneously or two
controllers could act separately on each channel. Since the
environment is simplified to a point of planar symmetry, one
controller is chosen to act on both channels simultaneously.
If external forces are introduced into the environment then
two controller would be better suited to account for non-
symmetrical forces which are biased to one direction, such
as gravity. Using two controllers may require re-normalising
the signal so any gain applied to one channel isn’t lost
during saturation by the actuation mechanism. Figure 17
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Figure 17. Contribution of independent kP , kI and kD to
system error

shows a preliminary search of independently varying the PID
controller gains, corollary to fig. 14. The gains are initially
held at [kP kI kD]T = [1 0 0]T, which emulates the absence
of a PID controller. Each gain is individually swept over
the given range while the other gains remain fixed, and a
MCS batch is run to determine the corresponding ε̂ for each
specific gain configuration. As with the optimisation of the
QDGL parameters, the intention is to reduce the scope of
the GA optimisation and therefore computation time. The
ranges bounding the optimum solution were found to be
kP ∈ [0.6, 1.4], kI ∈ [0, 0.1] and kD ∈ [0, 0.5]. The GA is
then modified from algorithm 1, such that each specimen
is now (kP kI kD)n ∀ n ∈ N . Figures 18 and 19 show
the convergence rate of the 3D-adapted GA. The optimal
configuration of PID gains was found to be [kP kI kD]T =
[1 0 0]T, indicating that tuning the QDGL parameters is a
sufficient and complete optimisation, without the need of an
external controller. It is of note that the GA converged to a
local minima much quicker than when optimising for ξ and
Vk. This is likely due to the adverse effect any kI , kD >
0 has on the system response, which quickly coerces the
evolution, effectively reducing the search to a 1D GA. The
minimum ε̂ achieved during the optimisation of the PID
controller gains was equal to the minimum ε̂ during the
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Figure 18. Convergence of 3D GA to optimise PID controller
gains
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Figure 19. Generation distribution during initial convergence of
GA for PID controller gains

optimisation of the QDGL, to 3sf. This is within the expected
MCS batch error.

Disturbance rejection and system performance
The optimised QDGL is now tested for disturbance rejection
capabilities and performance against different target profiles.
Figures 20 and 21 show how the projectile responds to
different disturbances. In each case, the projectile and target
are initialised at a specified distance, the target closes the
distance under normal operation and is then allowed to
remain in steady state for a sufficient time until the chosen
disturbance is applied, synchronised at 50s.

Figure 20 shows disturbance displacements, where at 50s
the target coordinates are set to be a magnitude of 0.5x,
1x and 2x that of the initial displacement, as indicated by
the figure. For all magnitudes of displacement, the error
change is discontinuous. The initial correction response is
similar for all, due to the demand of the velocity autopilot
saturating the control mechanism. Once the projectile has
slowed sufficiently it enters the linear regime at the same
point in each case, d ≈ 10−2, since the regime switching is
governed by a certain distance. There is a small discrepancy
between linear regime switching for the disturbances and the

initial reference signal. The reference signal enters slightly
later at a lower distance. This is likely cause by the projectile
crossing the regime threshold d2 with more of the roll
rotation left to complete, meaning it will travel longer before
the speed is corrected again. The similarity in response is
due to the fact that in all cases, the initial relative velocity
between the projectile and target is zero and thus the system
will response as if the simulation has just been initialised at
different distances.
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Figure 20. System response to various target distance
disturbances

Figure 21 shows velocity displacements, where at 50s the
relative velocity of the target is instantaneously changed to a
low, medium and high respective speed, radially away from
the projectile. The positions of the projectile and target are
not changed, they are then free to dynamically evolve. When
the velocity disturbance is low, within what the actuator
mechanism is capable of correcting in one roll rotation, the
disturbance is corrected quickly. With a medium disturbance,
beyond the correction of one bias manoeuvre, the system
takes longer to recover. Since this is a velocity disturbance
the maximum error increase is not instantaneous, rather it
coincides with the instant where the target is no longer
moving away from the projectile and the relative speed
is zero. From this point, the closing of the projectile is
similar to the distance disturbances. This is the same for the
high velocity disturbance, except rate of reduction of error
divergence takes longer to correct.

Figure 22 shows the average normalised error for a 104

MCS batch against both stationary and moving targets. The
response against stationary targets is the same as previously
in this section. Against moving targets however, the error
initially increases a small amount before decreasing in
a manner similar to the response against static targets.
This initial increase is due to the random chance of the
projectile being initialised with speeds directed away from
the target, then having to correct this dispersive motion
before beginning the correction procedure.

Conclusions
A 7DOF dynamic model for a dual-spin projectile (DSP)
is presented and implemented in computational simulations.
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Figure 21. System response to various target velocity
disturbances
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Figure 22. Performance of QDGL against target profiles

A novel projectile design is presented along with the
unconventional control method of asymmetric roll-rate
biases. The Quasi-Dynamic Guidance Law (QDGL) is
developed and a parametric study is conducted which
shows how modifying QDGL parameters affect the system
response. A Monte Carlo simulation (MCS) procedure is
described, which is used to meaningfully compare the
system response for different parameter configurations. A
Genetic Algorithm which utilises the MCS procedure is then
used to optimise the QDGL parameters and PID controller
gains. The disturbance rejection capabilities of the optimised
QDGL are tested, as well as the effectiveness against both
static and dynamic targets. In all cases, the QDGL is able to
reduce the distance error to a satisfactory level.
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