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Abstract 

This study focuses on the development of an inversion procedure based on Markov Chain 

Monte Carlo (MCMC) integrating composites process monitoring with simulation to 

provide real time probabilistic estimations of process outcomes. The simulation 

incorporates material and boundary condition uncertainty. Quantification of resin 

viscosity uncertainty showed a variability of 30% in initial values, introducing variations 

of an equivalent magnitude in the filling stage of Liquid Composite Moulding (LCM). A 

surrogate model based on Kriging was developed to enable the use of process models 

iteratively within a stochastic simulation or optimisation loop. The Kriging model reduces 

run times by 99% compared to finite element simulation, introducing only an error below 

2%. A dielectric sensor appropriate for flow and cure monitoring in the presence carbon 

reinforcement was developed overcoming limitations of electrical sorting and 

interference with the electric field. The sensor functionality was demonstrated in both 

flow and cure LCM trials. Real time flow monitoring was integrated with simulation into 

an inverse algorithm achieving on line estimation of unknown variables and of the 

resulting flow field with an error lower than 5%, compared to visual measurements. The 

inversion was also used in curing, by combining thermal monitoring with simulation to 

identify the thermal conductivity and heat transfer coefficient probabilistically, leading to 

estimation of cure duration and final degree of cure with an error below 1%. A stochastic 

multi-objective optimisation methodology has been developed as a first step towards 

model based stochastic control of composite manufacturing. The method, which is based 

on Genetic Algorithms (GA), is capable of identifying process settings that optimise 

process objectives and their variance. In the case of cure of thick composites, the 

optimisation identifies cure profiles which achieve 40% reduction in temperature 

overshoot and process duration compared to standard profiles, whilst achieving increased 

process robustness through minimisation of the variance. 

Keywords: Thermosetting composites; Liquid Composite Moulding; Inverse problems; 

Stochastic simulation; Markov Chain Monte Carlo; Uncertainty quantification; Dielectric 

monitoring; Surrogate model; Cure; Filling. 
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1. Introduction 

1.1. Motivation and contribution 

The utilisation of continuous fibre composites has grown and expanded in different 

applications in the last decades due to their high specific stiffness and strength. In the 

aerospace industry, the use of thermosetting composite materials is attractive since the 

low weight results in significant savings in fuel consumption. Boeing 787 Dreamliner is 

made of 50% of composite materials with average weight savings of about 20% [1], whilst 

the Airbus A350 XWB is the first aircraft with both the wings and fuselage made 

primarily from composites exceeding 50% of its total weight [2]. However, the high cost 

of composite materials due to the complex and multi stage manufacturing process is still 

a major challenge related to the achievement of high quality within sort process cycles. 

The lack of full automation and the inherent uncertainty involved in composites 

manufacture increase process complexity introducing variations of process outcomes. 

Conservative processes are selected to prevent risks associated with input parameters 

uncertainty resulting in increased manufacturing costs. 
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Figure 1.1 A350 XWB wing lower cover (© Airbus S A.S.) [3]. 
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The continuous demand for cost reduction and accomplishment of the desired final part 

quality with zero defects has motivated the development of predictive simulation tools, 

process monitoring and automation of composites manufacture. The main objectives of 

designing a composite manufacturing process are the minimisation of process duration 

and manufacturing cost and the delivery of the desirable product quality. Part quality is 

characterised by fulfilment of design tolerances, surface state and absence of process-

induced defects. Typical examples of composites manufacturing processes are autoclave 

processing, pultrusion, filament winding and LCM. Resin Transfer Moulding (RTM) is 

an LCM variant, in which resin impregnates a dry preform under pressure in a sealed rigid 

mould followed by curing at elevated temperature. Processing decisions such as inlet and 

outlet locations, injection pressure, and cure profile are crucial for the quality of the final 

part. 

Process simulation can be used to model each stage of the manufacturing process, and to 

select process parameters to optimise the final part quality and eliminate potential defects. 

Process models are capable to provide accurate estimations of process outcomes such as 

permeability distribution after draping, dry spots formation, process duration, degree of 

cure and temperature gradients within the part. However, deterministic models treat 

material properties and boundary conditions as fully defined, without considering the 

presence of uncertainty. Stochastic simulation can be performed to investigate the input 

variability influence on process outcomes. Uncertainties in material properties and 

boundary conditions introduce significant variations in manufacturing process inducing 

potential defects such as dry spots, temperature overshoots and undercure. Stochastic 

simulation provides process outcome estimations with high uncertainty resulting in 

selection of conservative process cycles to prevent potential risks associated with inherent 

input variability. 

Process monitoring is used to acquire data for the manufacturing process state, such as 

flow front position, reaction progress and temperature distribution. Process monitoring 

can be useful by detecting unexpected defects during manufacturing process, such as race 

tracking, dry spots, exotherms, undercure and potentially triggering actions to avoid 

process failure. Process monitoring in industrial scale applications of carbon fibre 

composites presents significant challenges as the conductive reinforcement causes 

disturbances in the signal of sensors based on monitoring of the electromagnetic or optical 

2 



response of the measured material. The integration of process monitoring and process 

modelling into an inverse algorithm can provide estimations of input material properties 

and boundary conditions. Process monitoring results can be fed into an inverse solver, 

which can be used to minimise the difference between process simulation and monitoring 

results. Using an inversion scheme, local monitoring results can give accurate predictions 

of the temperature and degree of cure evolution during cure process [4]. However, 

material or parameter identification problems are often ill-posed and because of that, 

deterministic approximation is either unstable, or has to rely on considerable amount of 

data, which makes the whole process inefficient. Furthermore, the considerable 

computational time, required for process models based on Finite Element (FE) analysis 

to run, lead to off line implementation of the inversion schemes. Against this background 

a gap can be identified on the topic of utilisation of real time monitoring signals to drive 

stochastic simulation resulting in low uncertainty estimations related to composites 

manufacturing process. 

1.2. Aim and objectives 

The aim of this study is to develop a predictive simulation tool integrating stochastic 

simulation with process monitoring systems for the probabilistic prediction of composites 

manufacture process outcomes. To accomplish this, the following objectives have to be 

met: 

• Uncertainty quantification of material properties, such as high specification epoxy 

resin viscosity and thermal boundary conditions, such as surface heat transfer 

coefficient and tool/air temperature. 

• Development of stochastic objects representing the variability of material 

properties and boundary conditions. 

• Development of fast surrogate process models based on FE process simulation 

models for the LCM filling and curing stage. 

• Development and validation of process monitoring sensors for the continuous 

flow front monitoring in the filling stage and resin reaction progress monitoring 

in the curing stage applicable to the processing of carbon reinforced thermosetting 

composites. 
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• Integration of real time flow monitoring signals with stochastic filling simulation 

through an inverse scheme that takes into account process variability. 

• Inverse solution of the cure problem under uncertainty by integrating real time 

cure monitoring with cure simulation. 

• Development of a stochastic multi-objective optimisation methodology applied to 

the curing of composites. 

1.3. Project setting 

This work was supported by the EU through the Clean Sky 2 project Simulation tool 

development for a Composite manufacturing process Default prediction integrated into a 

Quality control system (SimCoDeQ) and EPSRC project Robustness-Performance 

Optimisation for Automated Composites Manufacture (RPOACM). SimCoDeQ 

integrates three approaches to provide a unified integrated simulation tool combining 

predictive modelling, variability propagation and process monitoring. The objectives 

related to SimCoDeQ and addressed in the present study focus on the development of the 

simulation tool combining sensing system signals with process simulation for the 

probabilistic estimation of input parameters and process outcomes. The SimCoDeQ 

project team included three organisations, Cranfield University, TWI and the University 

of Stuttgart, and was managed by Airbus Spain. RPOACM focused on the development 

of stochastic simulation of composites manufacturing and its combination with process 

monitoring and optimisation. The elements addressed in this study related to RPOACM 

are the development of an efficient process sensing system monitoring the flow and cure 

process in the presence of carbon fibre reinforcement and of a stochastic multi-objective 

optimisation methodology incorporating stochastic simulation into an optimisation 

algorithm for the minimisation of process duration and defects formation with respect to 

variability. The RPOACM consortium included Cranfield University, University of 

Nottingham and University of Bristol and was supported by Coriolis Composites SA and 

the ESI Group. 

1.4. Thesis road map 

The present thesis is organised into 12 chapters. Chapter 2 summarises the state of the art 

on stochastic simulation, inverse problem solutions and multi-objective optimisation of 

composites manufacture and application of process monitoring to the manufacturing of 

4 



carbon fibre composites. This chapter also identifies the gaps in literature related to the 

developments in this work. Chapter 3 describes the experimental and numerical methods 

used. Experimental methods include the characterisation of variability and the execution 

of manufacturing trials. Numerical developments encompass standard finite element 

models of filling and curing, fast surrogate models, inverse problem solution through 

Markov Chain Monte Carlo and multi-objective optimisation using Genetic Algorithms 

(GAs). Chapter 4 reports the constitutive material models used in process simulation, the 

results of uncertainty quantification and the corresponding stochastic objects of process 

parameters and material properties. Chapter 5 reports the sensor development and 

validation addressing the filling and curing of carbon fibre reinforced composites using 

impedance monitoring. Chapters 6 and 7 present the results of inverse solution of the 

RTM filling problem under uncertainty for two characteristic components, addressing 

application of the development within a slow and a fast filing process. Chapter 8 presents 

the inverse solution of the curing problem under uncertainty. Chapter 9 presents the 

results of the stochastic multi-objective optimisation methodology applied to curing of a 

thick composite flat panel. Chapter 10 presents an overall discussion of the findings of 

this study, whilst chapters 11 and 12 provide lists of the main conclusions of the work 

and of recommendations for further development and investigation. 
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2. Literature review 

2.1. Introduction 

This chapter presents the state of the art of stochastic simulation, inverse problems 

solution, and multi-objective optimisation applied to composites manufacturing processes 

as well as process monitoring techniques for carbon reinforced composites. The existence 

of uncertainty in the draping/forming, filling and curing stages of composites manufacture 

has motivated the development of stochastic process simulation [5]. The stochastic 

simulation methodologies developed, and their findings are presented providing an 

insight of the significance of input variations in each stage. The integration of process 

monitoring in composites manufacture can provide useful information regarding the 

process outcomes. The techniques developed so far have found limited application in 

industrial environments. One of the reasons for this is their limited applicability to carbon 

reinforced composites manufacture due to the interaction of carbon with electromagnetic 

fields. The current state of the art of this topic is reviewed here. The integration of 

simulation with process monitoring requires successful use of inverse solution schemes. 

This is an emerging area, in which activity has mainly focused on property identification. 

The complexity of composites manufacturing and design is reflected in the existence of 

different trade-offs manufacturing engineers come across when developing or adapting a 

process. Work on composites manufacturing optimisation has recently entered this area 

of investigation through the development of multi-objective optimisation methodologies 

which are reviewed here. 

2.2. Stochastic simulation of composites manufacturing 

The manufacturing of thermosetting matrix composite materials incorporates multiple 

stages, such as draping/forming, filling/consolidation, curing/cooling, which involve 

considerable variations in material properties and boundary conditions. These variations 

induce uncertainty into the manufacturing process affecting the outcomes of the process. 

This uncertainty can also initiate process defects resulting in significant amounts of 

rejected parts associated with considerable cost. For these reasons, stochastic simulation 

has been developed to address the variability in manufacturing process and to investigate 

its influence on process outcomes such as process time, geometrical distortion and 

temperature overshoot. The classification and quantification of process parameters 
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uncertainty is very critical for the development of reliable stochastic models expressing 

the associated variability. 

Variations are usually created during production, storage and handling of all forms of 

textile reinforcement and are related to fibre misalignment, tow geometry variations, 

distribution of fibres inside the tow and resin content variations [6]. A likely source of 

tow waviness (Figure 2.1) is due to wrinkles caused by the way that the fabric is wrapped 

on to a drum during storage [7]. Variations in fibre architecture of textiles may induce 

significant uncertainty in permeability and in thermal properties affecting subsequent 

processing steps such as impregnation/consolidation and curing. 

Permeability plays a significant role in the impregnation stage of LCM processes. 

Variations of permeability of dry reinforcement are caused by shear deformation during 

the draping stage, fibre architecture variability and nesting effects during lay-up. 

Furthermore, preform volume fraction variations can also induce uncertainty in the 

impregnation stage [5]. 

The cure process is a thermo-mechanical phenomenon in which the thermosetting 

polymer resin reacts exothermically and is transformed from an oligomeric liquid to a 

glassy solid. Curing involves several sources of variability related to 

environmental/boundary conditions and material properties [5]. These uncertainties can 

initiate undesirable defects into the part, such as excessive residual stress, geometrical 

distortion, low degree of cure or temperature overshoot. 

2.2.1. Forming/draping stage 

Variability in fibre architecture such as tow orientation of dry textiles may affect the 

outcome of the draping/forming stage resulting in uncertainty in permeability, thermal 

and elastic properties which in turn introduces variability in outcomes of subsequent 

process stages [8]. Fibre direction variations within a non-crimp fabric affect localised 

buckling and wrinkling during forming stage [9]. Uncertainty quantification experiments 

- using images processing - uncovered the presence of strong spatial correlated random 

fields in fibre tows direction of woven fabrics [10]. Fibre orientation variability 

represented by a Gaussian distribution [10-12] with a spatial autocorrelation over several 

unit cells of the fabric [10, 13, 14] affects the minimum and average wrinkling strain 

introducing a coefficient of variation in the range of 10-20% [10]. Boundary conditions, 

such as blank holder force and forming speed [15] or the frictional behaviour of the fabric 
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[16] affect the forming stage. Apart from fibre architecture variability and its 

consequences in draping, the manual work character of the draping stage and the lack of 

a standard procedure may also lead to potential variations [6, 17]. Mechanical 

conditioning of fabrics before draping results in an increased repeatability of forming 

results, since a balance of tow tension due to weaving can be achieved [17]. Uncertainty 

in fibre architecture and in forming process parameters should be considered in the 

development of draping/forming models acquiring an accurate view of the process and 

minimising the variability of process outcomes. 

A f\ 
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Figure 2.1 Tow waviness in warp and weft direction. 

2.2.2. Filling stage 

The impregnation stage of LCM processes presents considerable variations in boundary 

conditions and material properties [5]. The variability can lead to significant variations in 

filling duration and initiate process defects such as dry spots, non-uniform filling and 

voids, resulting in rejected parts. The permeability of textiles is a crucial material property 

that controls the filling step in LCM processing. Evaluating the permeability of fabrics 

and its variability is critical as this parameter controls the occurrence of potential 

problems during impregnation [18]. Variations in fibre architecture due to handling and 

storage, nesting effects during lay-up, fibre misplacement in the mould affect 

significantly permeability values and introduce variability [19-21]. Permeability can 
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show significant variations at the macro and micro scale [11, 22] with coefficients of 

variation reaching 20% [12, 21, 23]. 

Uncertainty hypothetically assigned to LCM process parameters such as the resin 

viscosity, preform permeability and length of the distribution medium can introduce a 

coefficient of variation of about 20% in filling duration [24, 25]. Potential imperfect 

placement of woven fabric plies during the lay-up stage results in local variations in 

through thickness permeability. Figure 2.2 illustrates two potential scenarios; i) nesting 

effects in which the fibre tows cover the tows spaces of the layer above or below and ii) 

by-pass paths formed as channels at the intersections of fibre tows. These heterogeneities 

play a significant role in processes in which the presence of distribution media accelerates 

the in-plane flow and the filling is performed predominantly in the through thickness 

direction. It has been observed that variations in through thickness permeability result in 

high scatter in the formation of dry spots [26]. Nesting effects can be represented by an 

equivalent permeability value treated as a random field with spatial correlation [27]. 

Stochastic simulation has demonstrated that nesting effects variations result in significant 

levels of voids formation in VARTM (Vacuum Assisted Resin Transfer Moulding) filling 

[28]. Furthermore, the utilisation of distribution media with higher permeability values in 

the VARTM process increases the average level of voids [29]. Stochastic modelling of 

in-plane permeability as a random field shows that there is a significant dependence of 

filling duration variability on permeability correlation length [30]. Variations of tow 

spacing and fibre angle represented by random fields have shown strong influence on the 

variability of overall part filling duration [31]. The coefficient of variation of the complete 

filling duration can reach up to 20% in the case where the standard deviation of fibre 

angles is about 10° [32]. Local variations of preform thickness due to potential wrinkles 

influence the flow front evolution, increasing the filling duration by up to 40% [33] . 
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Figure 2.2 a) Nesting effects; b) by-pass-paths. 

Race tracking, potentially occurring at the edges of LCM tooling, is caused either 

unintentionally by imperfect placement of the preform in the mould cavity or intentionally 

by introducing flow channels in the tool to accelerate the filling process. Flow channels 

are usually applied to the fabrication of large scale composites reducing the number of 

inlet/outlet ports needed. Careful consideration is required since flow channels may lead 

to uncomplete filling or formation of dry regions. Channels with high permeability can 

be unintentionally formed along the tool edges, resulting in high local flow front rate [34]. 

Race tracking effects can be represented by race tracking strength, which is the ratio of 

equivalent race tracking permeability over principal permeability [35]. The permeability 

values caused by race tracking effects can be represented by a Weibull [34] or normal 

distribution [36]. The measured variations of race tracking permeability highlight the 

stochastic nature of edge effects and their influence on filling introducing significant 

variability in resin flow front patterns [36]. However, only permeability variations have 

been quantified experimentally, whilst for viscosity which plays a dominant role in flow 

processes only assumptions have been made related to its variability [24, 25]. This is 

important for the comprehensive investigation of input parameters variability influence 

on filling stage outcomes. 

2.23. Curing stage 

Curing involves different sources of uncertainty such as tool/air temperature, heat transfer 

coefficient and cure kinetics behaviour [5, 37, 38]. The statistical modelling of these 
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variations provides a quantitative understanding of the influence of variability on process 

outcomes such as cure time or distortion. The estimation of process outcomes confidence 

intervals allows the selection of design process parameters which reduce the likelihood 

of potential defects formation such as under cure, temperature overshoot and distortion. 

However, this leads to selection of conservative process setups with long durations and 

consequently increased cost. Uncertainty in high specification fabrics, such as fibre 

misalignments, introduces variability in residual stresses and higher estimated average 

level compared to the nominal value resulted by deterministic analysis [8]. Furthermore, 

qualitative variations in geometrical distortions of thin L shape composite parts can be 

introduced by geometrical imperfections in the perform architecture. A stochastic 

simulation introducing artificial variations of up to 5% on cure kinetics model variables 

and tool temperature has shown that among these input parameters, the tool temperature 

causes greater variability on cure duration reaching up to 7% [39]. However, the 

quantification of cure kinetics variability of a high performance epoxy resin has shown 

greater variations in cure kinetics, especially in initial degree of cure affecting 

significantly the curing stage and resulting in a coefficient of variation of about 30% in 

exothermic effects in the case of thick composite parts [37]. Variability is pronounced in 

boundary conditions of the cure process [38]. Consideration of boundary conditions and 

cure kinetics variations indicates significant variability in cure time reaching 

approximately 22% [38]. The magnitude of uncertainty also affects the outcome of 

process optimisation problems. Higher levels of uncertainty increase the optimal cure 

time [40]. 

2.2.4. Stochastic simulation methods 

Conventional Monte Carlo (MC) is usually applied for the implementation of stochastic 

simulation in composites manufacture calculating the statistical moments of process 

outcomes with generating random samples of input stochastic variables from their 

respective statistical distributions [8-10, 37-39, 41]. The simplicity of this non-intrusive 

method - treating the corresponding model as independent - allows its application in 

different process models of draping, filling and curing stage. However, MC operates as a 

random sampler and in cases of high dimensionality a large number of model evaluations 

is required to ensure convergence of average and standard deviation. This increases 

significantly the computational cost. The Spectral Stochastic Finite Element Method 
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(SSFEM) is an intrusive method, which involves reformulation of the deterministic model 

equations, based on the Karhunen-Loeve (K-L) expansion for the discretisation of input 

random fields and polynomial chaos expansion for the representation of the outcome 

variables using a set of orthogonal functions [42]. The probability space is incorporated 

in the solution domain resulting in a system of equations larger than that of the 

deterministic model requiring additional computational resources [43] similar to the MC 

simulation. Stochastic simulation based on the Probabilistic Collocation Method (PCM) 

which is an intermediate between of MC and SSFEM [25, 37, 38] reduces the CPU time 

by 95% in stochastic simulation compared to MC. 

Stochastic simulation can provide probabilistic estimation for a given set of input 

statistical properties. However, the confidence intervals of process outcomes estimation 

are wide and, in some cases, reach up to 30%. This information leads to more conservative 

process cycles in order to prevent the extreme events predicted by stochastic simulation. 

2.3. Process monitoring in carbon fibre reinforced composites 

manufacturing 

Process monitoring techniques have been developed to provide information during the 

filling stage of LCM processes and the curing step of all variants of composites 

manufacturing identifying potential defects and monitoring the progress of each stage. 

The production of high quality parts with zero defects requires comprehensive control of 

the manufacturing process. The monitoring of filling provides an insight in cases of two 

sided closed tools related to flow front progression and to the occurrence of discrepancies 

compared to the predicted filling pattern. Monitoring of cure can be applied to all 

composite manufacturing processes. The implementation of monitoring systems within 

the manufacturing assembly faces several challenges in terms of sensors sensitivity, 

manufacturing integrity and the level of intrusiveness in the composite. In the case of 

carbon reinforcement, the electromagnetic behaviour of the fabric is an additional 

challenge for techniques that are based on monitoring the electrical or optical response of 

the material. 

2.3.1. Flow monitoring 

The main types of sensors implemented for flow monitoring in the manufacture of fibrous 

composites can be grouped into two main categories; lineal and local sensors. Lineal 
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sensors are based on dielectrics [44], fibre optics [45], electric time domain reflectometry 

(E-TDR) [46] and Direct Current (DC) measurements [47, 48] and are usually placed 

across the potential flow path. These sensors monitor continually the flow front position 

mainly in the presence of glass fibre reinforcement. However, high specification parts, 

which are the primary target of monitoring methodologies, usually involve carbon fibres. 

The conductive nature of carbon fibres introduces measurement issues in cases where the 

sensing system operation is based on measuring the electromagnetic or optical response 

of the resin system. 

A lineal flow dielectric sensor consisting of two parallel electrodes and placed between 

two polymeric films (Figure 2.3) can monitor continuously the resin flow front but only 

with non-conductive reinforcement as the presence of carbon disturbs the electric field 

around the electrodes [44]. An approach to overcome these disturbances is based on the 

utilisation of the conductive reinforcement as one of the electrodes of the sensing system 

[49]. However, this solution involves significant practical complexity as it requires 

electrical insulation of the reinforcement from the tooling assembly. Lineal flow sensors 

based on the E-TDR method [46] face the same monitoring limitations since the measured 

reflections in the impedance transmission line are disrupted by the carbon fibres. The 

utilisation of porous shield coaxial cables, as the conductors of the lineal sensor, provides 

insulation against carbon fibre reinforcement but increases the intrusiveness of the sensor 

[50]. Furthermore, the electric field around the conductors is formed only within the 

shielding resulting in potential differences between the material monitored and the 

material in the area of interest. 

Glass fibre tows 

Resin 

Electric field 

Polymer film Electrodes Adhesive 

Figure 2.3 Lineal flow dielectric sensor design and electric field. 
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Lineal fibre optical sensors have been used for the monitoring of flow front evolution [51, 

52]. In this method, light is transmitted through the optical fibre with part of the cladding 

around the core removed. This results in partial reflection of the transmitted light in the 

etched cladding region where an evanescence field is formed. The loss between the 

incident and the received signal depends on the refractive index of the medium (air or 

resin) in contact with the evanescence field. Optical fibres based on Fresnel reflection 

have been implemented for the monitoring of the through thickness resin flow front in a 

Resin Film Infusion (RFI) process [53]. The embedded optical fibre sensors are local, 

detecting resin arrival at the fibre-end/medium interface due to the significant differences 

in refractive index of resin and air. However, the use of optical fibres in the presence of 

carbon fibre reinforcement faces potential limitations since the light is absorbed by 

carbon. The careful placement of optical fibres to prevent contact between fibre-end 

interface and carbon increases the complexity and is currently unrealistic in the context 

of practical processing. The use of fibre optics as sensing system has some more 

disadvantages related to the high cost of the overall monitoring system and the complexity 

in preparation/installation of fibre optical sensors. 

Vacuum sensors [53], pressure sensors [54], ultrasonic [55] or thermal probes [56] are 

not affected by the presence of carbon fibre, and thus can be utilised for this purpose. The 

implementation of pressure transducers within the mould provides local information 

regarding the resin arrival [57], whilst 2-D pressure sensors allow the mapping of pressure 

distribution within the mould cavity area and thus the resin filling pattern. However, the 

accuracy of the measured flow front depends on the sensitivity of the monitoring system 

[58, 59]. Furthermore, the implementation of 2-D pressure sensors requires significant 

adjustments and modifications of the mould cavity, increasing the monitoring system 

complexity. An intermediate element such as a long needle can be used between the 

pressure sensors and the resin, which has been shown to be effective in vacuum assisted 

processes [60]. A similar approach uses hollow metal probes embedded within the 

preform, mounted at individual vacuum reservoirs, identifying resin arrival at specific 

locations from the vacuum pressure drop in the reservoir [61]. However, the intrusiveness 

of metal probes and needles is considerable, introducing local deformation in the preform. 

The utilisation of thermocouples placed in discrete positions within the part for 

monitoring of resin arrival does not depend on fabric type, but it is limited only to cases 
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in which there are high temperature differences between resin and the mould [56, 62]. 

Furthermore, the integration of thermocouples within the preform induces local 

disturbances in preform architecture. 

The though thickness flow in non-crimped carbon fibre preforms has been monitored by 

a sensing system based on ultrasound transmission by placing a sound source and an 

ultrasound receiver on the bottom and upper mould plate respectively [55]. The difference 

in speeds of acoustic waves in resin and air affects the time required for the wave to 

propagate from the sound source to the receiver as a function of the flow front position. 

This method faces practical implications in complex geometries, whilst the presence of 

potential through the thickness imperfections may result in internal reflection of the 

acoustic waves introducing measurement errors. 

Local sensors implemented in the filling stage can instantly provide information of resin 

arrival, whilst the technology applied is in a mature stage for integration in industrial 

applications. However, the local character of these sensors makes them not appropriate 

to monitor continuously the flow front, whilst the implementation of multi point sensor 

arrays at sufficient resolution within the tooling assembly is cumbersome in practice and 

increases the intrusiveness of the monitoring system. 

2.3.2. Cure monitoring 

Cure monitoring systems are based on tracking the evolution of a physical quantity 

connected either directly or indirectly to the cure state. Near-infrared [63-65] and infrared 

spectroscopy [66, 67] provide direct chemical information on cure evolution. Application 

of infrared techniques is usually performed in the near-infrared region of the spectrum 

providing correlation of observed peaks with the chemical behaviour of the resin [64]. 

The correlation between fluorescence and viscosity has been used as the basis for 

monitoring of the cure [68-70]. The refractive index is directly related to the density of 

the resin and can be used for cure monitoring through fibre optic sensors based on the 

densification occurring during cross linking [52, 71]. Consideration of the optical fibre 

core refractive index is required to select a fibre with an index slightly larger than that of 

the resin system for the effective monitoring of the cure process. Selection of an optical 

fibre with refractive index far larger than that of the resin index results in negligible 

dispersion of the transmitted light. 
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Dielectric cure monitoring methods are based on the dependence of the electric and 

dielectric properties on the chemo-structural properties of the resin and have been used 

successfully to follow the degree of cure, viscosity and vitrification [72-79]. The 

underlying phenomena occurring in a thermoset system by the application of an AC 

electric field are: i) dipolar relaxation ii) migrating charges conduction and iii) electrode 

polarisation. Dipolar relaxation is manifested as a step change in the permittivity spectrum 

and a bell-shaped curve in the dielectric loss spectrum due to the dipole orientation 

mechanism under AC excitation. The migration charges mechanism involves the mobility 

of extrinsic charge carriers such as sodium and chloride present in thermosets as well as 

intrinsic carriers mainly through a proton transfer [80]. The mobility of migrating charges 

is related to material state of the resin. Electrode polarisation effects occur around the 

electrodes forming a thin layer with low conductivity and permittivity due to diffusion 

limitations of charge discharging on the sensor electrodes. Interfacial polarisation, which 

is a mechanism similar to electrode polarisation, occurs due to differences in dielectric 

constant and conductivity between the phases in multiphase epoxy resins. This 

mechanism involves the accumulation of charges at an interface between the different 

phases within the material when an electric excitation is applied. Monitoring of interfacial 

polarisation has been utilised for the identification of phase separation occurred in curing 

of modified epoxy resins [81]. 

The implementation of monitoring techniques in processes using carbon fibre as 

reinforcement is problematic. The use of optical fibres correlating changes of the resin 

refractive index with reaction progress [82] faces significant limitations in the presence 

of carbon fibre reinforcement since potential contact between the measuring area and the 

carbon results in absorption of the transmitted light. Dielectric cure sensors have been 

successfully tested in the fabrication of carbon fibre composites when they are covered 

with a permeable non-conductive material such as thin porous PTFE film [72], glass cloth 

[78] or a peel ply [83] preventing the contact with conductive carbon fibres. However, 

these solutions reduce the reliability of the sensor since the intermediate medium 

increases the discrepancy between the material in the region of interest and the material 

in contact with sensors. Monitoring based on impedance/dielectric spectroscopy is 

considered advantageous due to the high sensitivity of sensor response, the robustness 
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and low cost of the measurement setup and the capability for easy incorporation in 

tooling. 

Some monitoring methods are independent of fibre type of the composite. The sensitivity 

of ultrasonic wave propagation (i.e. sound velocity, attenuation) to macroscopic polymer 

structure, viscosity and modulus has been used to capture the evolution of the curing 

reaction [84-86]. The strong dependence of ultrasonic velocity on temperature changes 

may cause difficulties in identifying the vitrification time in cases of non-isothermal 

curing, in contrast with the gelation time which is pronounced with a step change in 

ultrasound velocity [87]. The acoustic wave can be transmitted/received using one [88] 

or two probes [87, 89]. In the latter case, an ultrasound source is integrated into a RTM 

tool generating ultrasonic waves received by an embedded ultrasonic sensor. The use of 

direct transmission of ultrasound requires significant tool modifications, since the 

transmitter and the receiver need to be integrated into the two sides of the tool. This causes 

practical limitations in cases of complex geometries i.e. double curvature where the 

accessibility for the sensing system installation can be limited. Remote ultrasound sensing 

is performed using as an intermediate element such as optical fibres [90] or rod shaped 

waveguides [91] to guide the propagated wave from transmitter to receiver. However, 

this approach results in high noise to signal ratio compared to conventional ultrasound 

measurements. 

Thermal monitoring systems based on heat flux sensors [92-95] can provide local 

information regarding the heat generated during the cure process without the signal being 

affected by the presence of carbon fibre reinforcement. In this technique, the thermal 

properties of the composite are assumed to be constant during the curing so that all 

changes in the sensor signals can be attributed to the exothermic reaction of the resin. 

However, this approach may face potential limitations since thermal properties depend 

on reaction progress. 

2.4. Inverse problems in composites manufacturing 

An inverse problem of a physical model is defined as the process where physical 

observations are used to estimate unknown model parameters. Inverse problems are often 

ill-posed in nature. A problem is stated as ill-posed if at least one of the following 

conditions of well-posedness is violated: i) a solution exists, ii) the solution is unique and 

iii) the solution behaviour changes continuously and smoothly with the initial conditions. 
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Inversion schemes have been developed in composites manufacture to characterise 

material properties integrating monitoring data with process models. In the filling stage, 

inversion schemes based on error minimisation methods have been implemented for the 

estimation of preform permeability combining numerical flow models with process 

monitoring data [96, 97]. Most of the conventional methods for estimation of preform 

permeability are carried out off-line, without considering potential non-uniformity in 

permeability values due to perform imperfections. Local reinforcement permeability has 

been estimated on-line using least squares combined with visual and pressure sensor 

monitoring data [98, 99]. An interpolation algorithm has been used to integrate 

monitoring data from pressure sensors, placed at discrete positions within the tool cavity, 

with a numerical 2-D flow model for the prediction of flow front progression in RTM 

filling [54]. The use of local sensors provides limited information regarding the flow 

process resulting in estimation inaccuracies when unexpected local flow disturbances 

occur outside the measurable area of local sensors. Inverse schemes have been 

implemented in the curing stage for identification of cure kinetics model parameters 1 1(X) I 

and thermal properties such as thermal conductivity and specific heat capacity [4, 101] 

using experimental data acquired by thermocouples placed in composites parts. The 

methods used are based on error minimisation such as the Gauss-Newton algorithm [101] 

or the Levenberg—Marquardt algorithm [100] and zero order algorithms such as GAs [4]. 

Direct error minimisation or zero order algorithms cannot deal fully with the potential ill 

posedness of inverse composites manufacturing problems. In the filling stage, the 

problem involves a free boundary due to the moving flow front. Partial monitoring of 

flow front evolution may result in potential inverse solution discontinuities violating the 

third condition of well-posed problems. Curing involves a highly non-linear heat transfer 

problem, which can present ill-posedness in cases where the boundary conditions cannot 

be fully defined and/or there is limited access for placing monitoring sensors on the 

domain boundaries. Regularisation methods, such as the Tikhonov regularisation [102], 

are usually applied to deal with ill-posedness, giving accurate approximate solutions by 

including an additional term in the error minimisation function that ensures that the 

solution is either smooth or not too far from an expected value. Unlike deterministic 

approaches where only single estimates are obtained, Bayesian inference operates as a 

sampler providing probabilistic estimations of the problem. The Markov Chain Monte 
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Carlo method based on Bayesian inference addresses ill-posed problems through the 

regularisation of the solution by the use of a prior estimate [103-107]. MCMC operates 

as a sampler computing the uncertainty associated with the estimation by incorporating 

measurements and modelling into the inverse scheme. An application of Bayesian 

inference has been performed for the real time estimation of perform permeability in a 

simple 1-D filling problem [108]. The Bayesian posterior was numerically approximated 

using the regularising ensemble Kalman algorithm (REnKA) for the probabilistic 

estimation of volume fraction and permeability within the preform in a RTM filling [107]. 

The coupling of the inversion scheme with control actions in real-time has been 

performed in a 1-D problem to correct potential disturbances of the target flow front 

[109]. However, the use of conventional FE models representing 2-D or 3-D filling causes 

significant computational challenges since inversion schemes based on Bayesian 

inference require a large number of model evaluations to ensure convergence and thus 

they cannot be applied to real time applications. 

2.5. Multi-objective optimisation in composite manufacture 

Composites manufacturing involves complex interdependencies of different stages and 

physics, which cause complicated trade-off in process outcomes that need to be addressed 

during process design. In the filling stage, the selection of filling strategy i.e. location of 

injection ports and vents, governs the filling patterns, duration and dry spots formation. 

The use of many injection ports and high injection pressure results in acceleration of the 

flow, although potential dry spots or voids can be formed. In curing of thick components, 

severe temperature overshoots can be observed due to the heat generated during 

exothermic reaction of the resin. These can affect considerably the quality of the 

manufactured component. The risks associated with temperature overshoots in thick 

components are dealt with by adopting conservative cure cycles. This in turn results in 

long processing times and high manufacturing costs. The inherent trade-off between 

defects formation and process duration arises the need of exploration of potential solution 

that can balance the requirements of fast cycles combined with minimum defects 

formation. 

The optimisation of the manufacturing of continuous fibre thermosetting matrix 

composites is critical for minimising cost and the likelihood of occurrence of process 

failures defects. The optimisation of composites manufacturing has been addressed as 
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single objective optimisation problems considering one [110, 111] or multiple objectives 

merged in a weighted sum [112, 113]. In the latter case, the optimal solutions obtained 

are dependent on the weights assigned to the different objectives which imply a relative 

prioritisation between the different objectives. Multi-objective optimisation can 

overcome this limitation by treating the objectives independently. In this case, the set of 

optimal points forms an efficient frontier and the set of potential solutions forms the 

Pareto set. The efficient frontier constitutes the boundary of the feasible region of 

solutions as illustrated in Figure 2.4. The optimal trade-off between maximum absolute 

shear angle and the average shear angle in draping has been identified in a multi-objective 

optimisation problem considering as design parameters the pre-shear, drape starting point 

and draping direction [114]. An optimisation of RTM filling has been performed to find 

the optimal solutions resulting in minimisation of both filling duration and dry spots 

formation [115]. A two objectives optimisation problem based on filling duration and the 

presence of dry regions has provided optimal solutions where the competitive nature of 

the objects leads to an L-shape Pareto front [116]. In pultrusion processing, optimisation 

of heating system parameters i.e. number and dimensions of heaters and temperature 

along the die, has been addressed using a multi-objective optimisation scheme to 

maximise pulling speed and minimise energy consumption using constraints related to 

the maximum temperature and minimum final degree of cure [117-119]. A multi-

objective optimisation based on GAs has been used to address cure time and temperature 

overshoot minimisation in thick parts. with optimal solutions achieving improvements of 

about 50% with respect to both cure time and overshoot compared to standard cure 

profiles [120]. 
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Figure 2.4 Pareto set frontier against exhaustive search results. 

The benefits offered by the exploration of the design space by numerical optimisation can 

be accompanied by relative instability of some of the solutions with respect to 

perturbations of nominal process parameters leading to potential risks. The potential lack 

of stability of optimised solutions can be addressed by the combination of multi-objective 

optimisation with stochastic simulation aiming to address simultaneously efficiency and 

robustness. 

2.6. Overview 

Composites fabrication comprises different stages such as draping/forming, filling and 

curing and a wide range of physical phenomena. The accurate representation of these 

phenomena is performed by process models capable to estimate process outcomes such 

as shear angles, filling patterns, process duration, voids formation, temperature and 

degree of cure distributions and distortion. Stochastic simulation methods have been 

developed to investigate the influence of input parameters variations i.e. preform 

permeability, cure kinetics and thermal boundary conditions on process outcomes. The 

implementation of stochastic simulation is performed off-line the manufacturing process 

resulting in estimations with high uncertainty. 

Process sensing systems based on dielectrics or optical fibres can monitor the flow and 

cure process effectively. However, these methods are problematic in monitoring of 

carbon reinforced parts since the conductive carbon disturbs the electromagnetic field. 
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The proposed solutions, covering the sensor with a permeable nonconductive medium, 

are also problematic due to the increased intrusiveness of the covered sensor and potential 

measurements differences caused by the increased distance between sensor and material 

in the region of interest. 

The identification of unknown process parameters such as preform permeability or 

thermal properties has been performed integrating process monitoring data and process 

models into inverse algorithms. Algorithms based on error minimisation cannot be 

applied to more complex problems with potential ill-posedeness, whilst the real time 

implementation of inversion schemes faces limitations due to the computational 

expensive FE models. 

The selection of multiple objectives in an optimisation problem results in optimal 

solutions that balance the different objectives. However, optimal solutions based on 

deterministic multi-objective optimisation approaches may present instability in the 

presence of input parameters variations affecting the optimality of the solution. 

The gaps identified in literature are summarised as follows: 

• Resin viscosity variability has been only modelled hypothetically so far in the 

literature. This is an important gap since viscosity plays a significant role in the 

filling stage. The lack of experimental data related to the resin viscosity is tackled 

here by conducting uncertainty quantification tests of high performance resin 

viscosity which are presented in chapter 4. 

• Current flow monitoring systems applied to industrial scale processes either 

provide local information related to the resin arrival or are only applicable to non-

conductive reinforcement. The solutions provided to prevent the contact between 

sensors and the conductive carbon increase the intrusiveness of the sensing 

system and the mismatch between the material in contact with sensors and the 

material in the area of interest. The identified gap is addressed by developing a 

new dielectric sensor capable for effective monitoring in presence of carbon 

fibres, which is presented in chapter 5. 

• The integration of process monitoring signals with process modelling into an 

inverse algorithm has focused on the estimation of unknown input parameters 

such as perform permeability, resin thermal properties and boundary conditions. 

These approaches have not estimated process outcomes, whilst the 
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implementation has been performed off line. In order to fill this gap an inversion 

scheme is developed, which is presented in chapters 6-8, integrating process 

models with process monitoring data for the real time probabilistic estimation of 

input parameters and the corresponding process outcomes. 

• Multi-objective optimisation schemes applied to composites manufacture 

provide optimal solutions without considering the inherent uncertainty in material 

properties and boundary conditions. This leads to solutions highly sensitive to 

potential variations of material properties and boundary conditions. The lack of 

stability in deterministic optimal solutions is addressed by developing a 

stochastic multi-objective optimisation scheme, which is presented in chapter 9, 

optimising process objectives with respect to variability. 
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3. Methodology 

3.1. Introduction 

This chapter covers the methodological approaches followed in this work. The 

experimental methods employed for material characterisation and variability 

quantification for material properties and boundary conditions are presented. Validation 

tests of process monitoring sensors performed by conducting a series of LCM process 

trials are described. The materials used in the characterisation and manufactural trials are 

also specified. Process simulation models representing the filling and cure stage of LCM 

processing are presented and a procedure for the development of their surrogate 

equivalents based on Kriging is also described. An inversion scheme based on MCMC 

utilised to integrate on line process monitoring with stochastic process models for the real 

time probabilistic estimation of process outcomes is presented. A stochastic multi-

objective optimisation framework combining stochastic simulation with a multi-objective 

Genetic Algorithm used to address process design is detailed. 

3.2. Materials 

The resin utilised in this work was the Hexcel HexFlow® RTM6 epoxy system [121]. 

RTM6 epoxy resin is a premixed monocomponent resin, which is widely used in RTM 

processes for aerospace industry applications. At ambient temperature, it is a brown 

translucent high viscosity liquid, whilst its service temperature lies between -60 °C up to 

180 °C. Two carbon fibre fabrics were utilised: (i) Hexcel HexForce® G0926, which is a 

5H satin weave of HexTow® 6K AS4 carbon fibres tows evenly distributed in the warp 

and weft direction with areal density of 375 g/m2 [122] and; (ii) Hexcel HexForce® G1157 

D1300, which is a pseudo unidirectional fabric with Tenax® E HTA40 El 3 6K carbon 

fibre tows [123] in the warp direction and EC9 34 Z40 1383 glass fibre tows of about 400 

filaments in the weft direction with a 97% and 3% weight fraction respectively and an 

areal density of 277 g/m2 [124]. The G1157 UD carbon fabric was used in the simulation 

of VARTM cure processing of thick laminates, whilst the G0926 woven carbon fabric 

was utilised in experimental RTM filling of flat laminates and in the simulation of RTM 

filling of typical composite parts such as a C spar. The E-TX1769 (BTI Europe) tri-axial 

E-glass fabric with a surface density of 1770 g/m2 [125] was used for the simulation of 

RTM cure processing of thin flat panels. 
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Flow and cure dielectric sensors were fabricated using a 136-AWP solid copper wire with 

polyurethane enamel coating with the diameter of 127 pm [126]. Acrylonitrile Butadiene 

Styrene (ABS) was utilised to make a miniature loom used for the construction of woven 

dielectric cure sensor. 

3.3. Characterisation techniques 

Rheology was employed for the characterisation of RTM6 epoxy resin viscosity and its 

variability. The variability of thermal boundary conditions was quantified in a series of 

experiments using an apparatus mimicking LCM process thermal conditions in an oven. 

The quality of signals acquired by cure dielectric sensors, proposed in this work, was 

established during isothermal runs of neat epoxy resin using a heated copper cell. 

33.1. Rheology 

Rheology tests of RTM6 epoxy resin were carried out using a TA Instrument AR200ex 

rheometer. A plate and a 2° cone with a diameter of 40 mm and a truncation depth of 54 

pm were used. The gap between the cone and the plate was set to be identical to the 

truncation of the cone ensuring constant strain rate of the resin sample across the plate 

radius. An amount of about 0.5 g of resin was placed on the lower heating plate filling 

the gap between the cone and the plate once the upper cone was positioned in place. The 

excess resin around the cone/plate edge was carefully removed with the straight edge of 

a spatula ensuring a well-defined and reliably repeatable sample amount in the measuring 

system. The resin viscosity was characterised using a recently proposed rheology test 

applying a cyclic thermal profile [127]. This profile combines isothermal and non-

isothermal segments to capture both the dependence of resin viscosity on temperature and 

time effects due to the cure. The thermal profile - illustrated in Figure 3.1 - includes 

cooling/heating cycles applied periodically during an isothermal experimental at a 

constant temperature of 120 °C. The amplitude of the cooling/heating cycles was 40 °C 

resulting in a minimum temperature of 80 °C, whilst the ramp rate for both the heating 

and cooling phases was 10 °C/min. 

Samples from four different batches were utilised for the uncertainty quantification of 

RTM6 epoxy resin viscosity. All batches were within the shelf life of the material at the 

time of testing stored in the fridge as recommended by the manufacturer [121]. According 

to the recommendation, the resin is allowed to remain at ambient temperature for up to 
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15 days and at -18 °C for up to 9 months. Two resin samples of each batch were tested at 

the and the 15th day of ambient temperature exposure to investigate potential variations 

in resin viscosity due to differences in storage conditions. 
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Figure 3.1 Cyclic thermal profile used in rheology tests for RTM6 epoxy resin 

viscosity characterisation. 

33.2. Thermal boundary conditions 

The variability of thermal boundary conditions variability of processing in an oven was 

quantified in a series of 10 experimental runs. The experimental set-up employed is 

depicted in Figure 3.2. A 5 mm carbon/epoxy composite flat panel was used to create 

thermal conditions similar to those during VARTM cure of a composite part. The matrix 

system of the panel was RTM6 epoxy resin and the reinforcement G1157 UD carbon 

fabric. The composite part was placed on an aluminium tooling plate with 10 mm 

thickness inside a Caltherm E9321V2 oven with a Eurotherm 2408P4 PID controller. The 

part was covered with N64PS-x VAC Innovation peel ply fabric, whilst a VAC slip 10P1-

1420 PTFE coated glass fabric was used as flow media. A nylon xR1.2 VAC Innovation 

vacuum bag was placed on top of the assembly and sealing was achieved with VACsealY 

sealant tape to ensure vacuum conditions. Two K-type thermocouples were mounted on 
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the tool surface to measure the tool temperature, and a third one was placed outside the 

thermal boundary layer and close to the surface to measure the air temperature. Two heat 

flux sensors were placed on the vacuum bag to measure the convection heat flux and its 

variability. 

a) 

I Resin feed line 
Thermocouple 

Composite 

Peel ply  

Vacuum 

Heat flux sensor 

Vacuum bag 
1-1 

Oven Mould 

b) 

Figure 3.2 Instrumented VARTM set up a) VARTM process within the oven of 

carbon/epoxy composite flat panel; b) Schematic representation of experimental set-up. 

The micro-foil heat flux sensors used output a voltage signal which is proportional to the 

heat flux with the proportionality coefficient determined individually per sensor by the 

supplier [128]. The heat flux Q is given as follows: 

= CM TM 
(3.1) 

where H is the sensor output voltage, whilst CM and TM are a calibration multiplier and 

a temperature multiplication factor respectively. The sensors used in this study have a 

calibration multiplier of 0.15 µV/W/m2. The temperature multiplication factor is a 

function of temperature as illustrated in Figure 3.3. The surface heat transfer coefficient 

is calculated using the temperatures of the surface (Ts) and air in the oven (Tair) and the 

measured heat flux ((!1) as follows: 

h = 
 Ts — Tair 
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The temperature was set at 160 °C during all runs. Cranfield Measurement and Control, 

which is an in house LabVIEW software, was used for data acquisition. The data 

acquisition frequency was 0.8 Hz and its duration was 20 min and 30 min after the oven 

temperature controller reached a plateau at 160 °C for the surface heat transfer coefficient 

and tool temperature measurements respectively. 
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Figure 33 Micro-foil heat flux sensor output compensation factor as a function of surface 

temperature 11281. 

3.3.3. Cure monitoring 

A cure dielectric sensor, which is presented in chapter 5, was developed to monitor 

reaction progress during the curing stage of carbon fibre composites manufacture. The 

cure sensor signal was evaluated in isothermal curing experiments of neat RTM6 epoxy 

resin using the set-up illustrated in Figure 34. The setup comprises a Eurotherm 2408 

controller and an 235 W Acim Jouanin Nozzle Band Heater [129] with 38 mm height and 

38 mm diameter mounted on a hollow copper cylinder. The cylinder has an outer diameter 

of 36 mm and inner 12 mm. The dielectric cure sensor was fully immersed in a glass tube 

with internal diameter of 10 mm and depth of 50 mm, containing the liquid resin and 

subsequently placed in the heated copper cylinder. A control thermocouple was attached 
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in the copper cylinder, and a second thermocouple was placed in the tube to measure the 

actual thermal profile the resin follows during cure. RS Pro Brown RG179B/U thin 

coaxial cables were used for the connection between the cure sensor and a Solartron 1260 

Impedance Analyser. Impedance data were acquired over 31 frequencies swept 

logarithmically over the 1 Hz - 1 MHz range. The analyser communicates with a computer 

via an IEEE interface, whilst Cranfield Measurement and Control was utilised to drive 

the measurements and acquire the data. 

Figure 3.4 Experimental apparatus for isothermal curing of RTM6 epoxy resin. 

3.4. Manufacturing trials 

LCM processing was carried out to evaluate process monitoring sensors and the inversion 

procedure performance under industrial manufacturing conditions. RTM processing was 

employed for the fabrication of carbon/epoxy composite flat panels to test the flow 

monitoring capabilities in the presence of carbon reinforcement of a lineal dielectric 

sensor, which is presented in chapter 5, and to validate the real time inversion scheme 

developed in this work. The cure dielectric sensor was evaluated during the VARTM 

process of a carbon/epoxy composite flat part. 

3.4.1. RTM manufacturing trials 

The RTM facility illustrated in Figure 3.5 was utilised for the manufacturing of 

carbon/epoxy composite flat panels. The RTM tool includes a rectangular cavity with 

dimensions of 900x330x3.3 mm. The sides of the cavity are sealed with silicone rubber, 
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whilst a glass plate is placed on the top of the mould enabling the visual monitoring of 

the flow front during mould filling. The RTM tool is connected with an ISOJET 

Equipements injection system based on a piston with 21 capacity actuated by a brushless 

motor driven by a servo controller. This system is used to heat up, stir, degas and inject 

the resin into the RTM tool cavity. 
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Figure 3.5 Instrumented RIM facility. 

Two different part configurations were selected for RTM processing. The first 

configuration comprises a rectangular composite flat panel and is denoted as FP, with 

dimensions 800x330 mm and thickness of 3.3 mm. Two carbon/epoxy composite flat 

panels, denoted as FPI and FP2, were manufactured using the RTM tool to validate the 

lineal dielectric sensor in two different injection pressures. The lineal flow sensor with a 

length of 800 mm was placed in the centre of cavity of the RTM tool as illustrated in 

Figure 3.6 and was connected to the Impedance Analyser. Impedance data were acquired 

at seven frequencies selected logarithmically over the range of 100 Hz - 100 KHz. 
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Figure 3.6 Lineal flow sensor placed at the centre of the tool cavity; Inset: detailed view. 

The second configuration is a rectangular flat panel with a rectangular recessed edge 

denoted as FPR. The FPR part, illustrated in Figure 3.7, is 780 mm long and 330 mm 

wide with a thickness of 3.3 mm. The length of the recessed edge is 400 mm and the 

width 165 mm. A carbon/epoxy composite part based on this design was fabricated using 

the RTM tool to evaluate the performance of the inversion procedure developed in this 

work during the filling stage. Lineal flow dielectric sensors were embedded in different 

positions in the mould cavity for the monitoring of the flow front evolution. Three lineal 

flow sensors were utilised placed on the lower surface of the mould cavity as illustrated 

in Figure 3.7. Two sensors were placed across the straight and recessed edges of the 

mould to monitor potential race tracking effects, and one sensor was placed in the main 

flow path along the filling evolution in the main rectangle of the geometry. A Keithley 

7001 switch system was used as an intermediate system between the three sensors and 

the Impedance Analyser. Thin coaxial cables passed through the outlet port were utilised 

to connect the sensors with the switch system. The switch system was connected with the 

impedance analyser via an IEEE interface, whilst Cranfield Measurement and Control 
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was adapted for the switching actions between the channels. In this set-up the channels 

are scanned in a serial manner; the flow sensor impedance data are acquired over three 

frequencies 10, 31.6 and 100 KHz and the multiplexer switches to the next channel. The 

duration of the activation/deactivation process for each channel is around 20 s. 
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0 
o oc Inlet 

Flow channel 

Lineal sensor 3 Recessed edge 

kr, 

O YLx. 
0.78 m 

Vacuum 
O 

Figure 3.7 Mould cavity geometry and lineal dielectric sensors positions of FPR composite 

part. 

Table 3.1 RTM manufacturing trials specification. 

RTM manufacturing trials 

FPI FP2 FPR 

Preform G0926 fabric G0926 fabric G0926 fabric 

Plies 9 9 9 

Lay up [(0/90)2/0/(90/0)2] [(0/90)2/0/(90/0)2] [(0/90)2/01(90/0)2] 

Matrix RTM6 RTM6 RTM6 

Filling temperature 120 °C 120 °C 120 °C 

Vacuum level 10 mbar 10 mbar 10 mbar 

Injection pressure 2 bar 3 bar 2 bar 

Cure temperature 160 °C 160 °C 160 °C 

Cure duration 2h 2h 2h 

Frequency range 100 Hz — 100 KHz 100 Hz — 100 KHz 10 KHz -100 KHz 

Number of points 7 7 3 
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Table 3.1 summarises the details of RTM manufacturing trials. In all trials the 

reinforcement material was G0926 woven carbon fabric, whilst the matrix system was 

RTM6 epoxy resin. The preforms comprised nine fabric layers in a 

[(0F/90F)2/0F/(90F/OF)2] sequence resulting in a volume fraction of 57%. The filling was 

carried out at a constant temperature of 120 °C under a pressure of 2 bar for FPI and FPR 

cases and 3 bar for FP2, with the simultaneous application of vacuum at 10 mbar. The 

curing was performed after the end of filling at 160 °C for 2 h. A digital camera was 

placed on the top of RTM tool for visual measurement of flow front evolution. 

3.4.2. VARTM manufacturing trial 

The dielectric cure sensor performance was assessed during VARTM processing of a 

carbon/epoxy composite flat part. The preform, with in-plane dimensions of 150x75 mm, 

comprised six plies of 60926 woven carbon fabric in a [OF/90F]3 layup sequence resulting 

in a total thickness of 2.2 mm and fibre volume fraction of 57%. Infusion with RTM6 

epoxy resin was carried out at 120 °C under vacuum and cure at 160 °C for 2 h. A flow 

media was placed on top of the preform to assist the flow of the resin. The cure sensor 

and a K-type thermocouple were placed on the tool cavity in contact with the fabric to 

monitor the reaction progress and temperature evolution during the process. The cure 

sensor was connected to the Impedance Analyser for the acquisition of impedance data 

over 31 frequencies selected logarithmically in the range of 1 Hz —1 MHz. 

3.5. Process simulation 

Process simulation models of the different composite parts have been developed to 

represent the filling and curing stages of LCM processing. The process simulation models 

were used for the development of numerous computational methods i.e. stochastic 

simulation, inverse solution and stochastic multi-objective optimisation. 

3.5.1. Flow modelling 

The filling stage of composite manufacture can be modelled using Darcy's law expressing 

the viscous flow of a liquid through porous media as follows: 

xVP 
Vfi - 

11 
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where vfl is the Darcy velocity, x the permeability tensor, resin viscosity and P the 

pressure gradient. The resin velocity is driven by the applied pressure gradient and is 

affected by material properties such as resin viscosity and preform permeability. Liquid 

resin is considered as incompressible, and thus in order to preserve the balance of resin 

mass the velocity is expressed as follows: 

Vvfl = 0 (3.4) 

The modelling of filling was carried out using the Control Volume/Finite Element 

(CV/FE) solver PAM-RTM®. PAM-RTM® solves Eq. (3.3) using non-conforming 

elements, whilst the flow progression is computed with the volume of fluid (VOF) 

method. The flow models presented in this section have small thickness compared to their 

in plane dimensions. Therefore, the through thickness flow can be assumed to be 

negligible and the problem can be solved using three noded linear shell elements. User 

defined subroutines, written in Visual Studio C++ 2015, were used to incorporate a resin 

viscosity model expressing the evolution of rheological properties during the process. The 

modelling approach was implemented for the RTM filling of the carbon/epoxy composite 

flat panel with recessed edge (FPR) and a C spar. 

3.5.1.1. Filling simulation of RTM of the flat panel with recessed edge (FPR) 

A flow simulation model was developed to represent the filling of the FPR. The model 

illustrated in Figure 3.8 comprises 5,700 elements. A rectangular flow channel with an 

injection port and a vent located at the left and the right edge of the part respectively 

results in a linear filling. The boundary conditions used were a prescribed injection 

pressure of 2 bar applied to the nodes of the left edge - where the flow channel is - and 

vacuum applied to the outlet port. A constant temperature of 120 °C was applied to all 

nodes, representing isothermal filling. The model was divided into seven zones with 

different permeability values; one representing the main flow in the preform and the other 

six the flow across the part edges to simulate potential race tracking effects. Race tracking 

effects were modelled by assigned an equivalent permeability KRi value [130] to each of 

the six edges as shown in Figure 3.8, In the case of the main flow zone, the preform 

permeability values K. and Ky of each element were aligned to the longitudinal (x) and 

transverse (y) direction of the mould. 
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Figure 3.8 Schematic representation of the flow model of FPR composite part. 

3.5.1.2. Filling simulation of RTM process of a carbon/epoxy composite C spar 

A flow model was developed representing the filling of a carbon/epoxy composite C spar. 

The flow model is illustrated in Figure 3.9. The part thickness is equal to 2 mm, the total 

length is equal to 900 mm, the width 100 mm and the height of the two side flanges 50 

mm. The model comprises 1,900 elements. A prescribed injection pressure of 2 bar was 

applied to the central injection port and vacuum to the six outlet ports located at the two 

edges corner of the C spar flanges. A flow channel across the top surface of the part 

accelerates the resin flow. The filling temperature applied to all nodes was constant and 

equal to 120°C. The reinforcement consisted of 6 plies of G0926 woven carbon fabric 

corresponding to a 62% volume fraction. The preform layers were considered to be 

aligned to the C-spar direction so that warp tows are parallel to the x direction in Figure 

3.9. The flow model comprises two zones assigned with different permeability values; 

one representing the main flow and the flow across the channel where a relative high 

permeability KR value was assigned. 
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Figure 3.9 Flow model of RTM filling of carbon/epoxy composite C spar. 

Four artificial lineal sensors were considered, placed in the assembly to acquire flow 

monitoring data during the filling stage used in the application of inversion scheme. 

Figure 3.9 depicts the location of each of the artificial sensors in the part. Artificial sensors 

1 (ASO and 2 (AS2) were placed symmetrically at a distance of 160 mm from the injection 

port. AS1 is 75 mm long placed on the C spar top surface in parallel to the weft direction 

also covering a half of the C spar flange. AS2 has a length of 50 mm placed on the C spar 

top surface parallel to they direction. Artificial sensor 3 (AS3) is 75 mm long and Aligned 

parallel to the x direction to acquire monitoring data sensitive to longitudinal 

permeability. Artificial sensor 4 (AS4) was placed 400 mm from the injection port parallel 

to the y direction and has a length of 50 mm. 
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3.5.2. Cure modelling 

The heat transfer mechanism governing cure after completion of filling/consolidation is 

heat conduction, since convection due to buoyancy flow plays only a negligible role. The 

governing energy balance is: 

8T da 
pcp 

at 
= VKVT + (1 — vf)Priltot dt 

(3.5) 

where p is the density of the composite, cp is the specific heat capacity, T the temperature, 

K the thermal conductivity tensor, vf the fibre volume fraction, pr the resin density, 

Hot the total heat of the curing reaction, and a the degree of cure. The left-hand side of 

Eq. (3.5) expresses the rate of change of volumetric enthalpy. The first term of the right-

hand side of Eq. (35) represents heat conduction, whilst the second term heat generated 

due to the exothermic resin reaction. 

Three types of boundary conditions can be applied to the general case: i) prescribed 

temperature ii) convection iii) prescribed heat flux. The prescribed temperature boundary 

condition is expressed as follows: 

T(d, t) = T1, (d, t), d E Dl (3.6) 

where d denotes the spatial coordinates at the boundary Di, whilst Tb is the prescribed 

temperature. The convection boundary condition is: 

—ns,,KVT(d, t) = h(T(d, t) — ), d E D2 (3.7) 

where n„ denotes the surface vector at the boundary D2, h the surface heat transfer 

coefficient, and Too the ambient temperature. The prescribed heat flux (q) condition is 

expressed as follows: 

where 

—ns,,KVT(d, t) = q(d, t), d E D3

D1 UD2 UD3 =D 
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where D is the boundary of the whole domain, and D1, D2, D3 the corresponding parts of 

the boundary at which the prescribed temperature, convection and prescribed heat flux 

conditions apply respectively. 

The simulation of cure process was performed using the Finite Element solver MSC.Marc 

[131]. The modelling approach is based on 3-D iso-parametric eight-node composite 

brick elements (175 MSC.Marc element type [132]) for thermal analysis. These elements 

allow the modelling of laminates with layers of different material properties, fibre 

orientations and thicknesses. Each element includes four integration points used for 

numerical integration based on Gaussian quadrature [132]. The parts used for cure 

modelling consists of rectangular flat panels with uniform thickness and are symmetrical 

in the in-plane directions. Assuming uniform heating across the tool cavity, the heat 

transfer problem is one-dimensional -in the through the thickness direction- requiring the 

use of only one element across the in-plane dimensions. A perfect insulation boundary 

condition is implied at the sides of each element to represent the symmetry of the 

geometry. User defined subroutines written in FORTRAN 90 [133] were used for the 

incorporation of constitutive material properties and boundary conditions in the cure 

model. More specifically, the UCURE subroutine was used for the computation of cure 

kinetics and heat of reaction. In the cure model, the degree of cure is calculated for each 

element at each simulation increment. The specific heat capacity model was incorporated 

into the model using subroutine USPCHT calculated at each integration point of each 

element. Subroutine ELMVAR is called to extract degree of cure information at each 

element integration point to incorporate the dependence of specific heat capacity on 

temperature and degree of cure. The thermal conductivity matrix is calculated using 

subroutine ANKOND. Considering the one-dimensional nature of the heat transfer 

problem only the through thickness thermal conductivity (K33) was computed. The 

ELMVAR subroutine is also incorporated into ANKOND in order to acquire the degree 

of cure at each integration point. In the case of boundary conditions, subroutine FORCDT 

was used for the time dependent prescribed temperature and UFILM for the convection 

applied. The initial degree of cure and temperature were implemented using subroutine 

USINC. PLOTV calls ELMVAR to acquire the degree of cure values of each element and 

writes the minimum value in the post file. The UPSTNO subroutine calls the NODVAR 
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subroutine to extract nodal temperature values in order to calculate and save in the post 

file the maximum temperature overshoot in the case of thick composite parts. 

3.5.2.1. Cure simulation of RTM process 

A thermal cure simulation model was developed, based on model presented in [4], to 

simulate the RTM cure of a glass/epoxy composite flat panel used for the development 

of the inversion procedure. Figure 3.10 illustrates a schematic representation of the model 

geometry. The model comprises two parts; a glass/epoxy composite flat panel, denoted 

as GFP, and the glass top plate of the RTM tool. The thermal properties of the glass top 

plate are reported in Table 3.2. The composite part comprises two layers of E-TX1769 

(BTI Europe) tri-axial E-glass fabric and total layup sequence of [+45°/-45°/0°/0°/-

45°/+45°] resulting in fibre weight fraction of 62% at a thickness of 3.3 mm. The model 

is built using six elements representing one ply of E-glass with 0.55 mm nominal 

thickness. The prescribed thermal profile assigned to the nodes of the lower element of 

the model includes an initial dwell at 120 °C for 30 min to ensure equilibration of the 

temperature gradient in the thickness direction. A heating ramp of 1.5 °C/min was applied 

from 120 °C to 160 °C followed by a 90 min dwell. A natural convection boundary 

condition was applied on the top surface of the upper element. The initial degree of cure 

in the model was 2%. User subroutine UPSTNO was used to extract the temperatures 

evolution with time at the mid-thickness and at the top surface of the cure model which 

correspond to the thermocouples responses during RTM curing of the part. 

Table 3.2 Glass top plate thermal properties [4]. 

Properties Value Units 

Density 2.7 

Specific heat capacity 0.84 

Thermal conductivity 0.78 

Heat transfer coefficient 8.5 

gcni3

j g-loc-1 

wm-2oc  I 
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Figure 3.10 Cure model of RTM curing of glass/epoxy composite flat panel (GFP). 

3.5.2.2. Simulation of oven cure 

A heat transfer cure simulation model was developed to represent the cure of a 

carbon/epoxy thick flat panel, denoted as TFP, in an oven. The cure model was used for 

the assessment of the stochastic multi-objective optimisation framework. Figure 3.11 

illustrates a schematic representation of the model. The model includes 26 elements 

representing a 15.6 mm thick laminate. Each element represents two layers of G1157 UD 

carbon fabric with a thickness of 0.3 mm each and total sequence of [0/90]26. A prescribed 

temperature profile was applied to the lower boundary of composite flat panel, whilst 

forced air convection was applied to the top surface as specified in section 3.4.2. The 

initial temperature assigned to all nodes was 120 °C and the initial degree of cure applied 

to all elements was 0.02. 

Subroutines PLOTV and UPSTNO were used to compute and save in post files the cure 

time and the maximum temperature overshoot used as objectives in the optimisation. Cure 

time is defined as the time at which the minimum degree of cure of the part is greater than 

88%, which is the degree of cure that RTM6 epoxy resin reaches in an isothermal cure at 

180 °C as determined by Differential Scanning Calorimetry (DSC) [134]. When the 

degree of cure reaches this threshold the simulation ends. The maximum temperature 

overshoot is defined as the maximum difference between the prescribed tool temperature 

and the temperature in the composite during the process. 
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Figure 3.11 Cure model of VARTM curing of carbon/epoxy thick composite flat panel 

(TFP). 

3.6. Surrogate models 

Process simulation using FE analysis is computationally expensive. Conventional 

computing resources are inadequate to handle large number of function evaluations of an 

FE model required by computational methods such as stochastic simulation, inverse 

solutions and stochastic multi-objective optimisation. Therefore, surrogate models were 

developed using the Kriging method to overcome this issue by substituting the FE 

solution for the filling and curing stage of the manufacturing process. Kriging allows the 

unbiased estimation of untried parameter values to be made with minimum variance and 

more accurately in comparison to low order polynomial regression [135]. Figure 3.12 

illustrates the procedure of surrogate model development adopted in this work. Kriging 

requires a set of sampling points at which the model response is known. Latin Hypercube 

Sampling (LHS) [136] was utilised for generating a large sample of N points, whilst the 

filling and cure FE models were used to compute the response at these points. 

The Kriging metamodel expresses the model response Y,n (x) E 118 for the input vector x E 

llIn as follows: 

Y. (x) = f(x)111 r(x)Ty* (3.10) 

where term f(x)Tp corresponds to a 2nd order regression model expressing the output 

variable as a linear combination of p basis functions f, (x): lle H 118 expressed as: 

f(x)TP = Pifi(x) + •••+ 13p fp (x) (3.11) 
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Figure 3.12 Surrogate model methodology 

Here 13 E RP is the vector of regression parameters computed using generalised least 

squares and p is: 

(n + 1)(n + 2) 
p —  (3.12) 

2 

with n the dimensionality of the model. 

Term r(x) corresponds to a vector of cross-correlations between input point x and each 

of N sampling points (sx E DV): 

r(x) = [R(0, x, ..., R(0, x, s,r4,1)]T (3.13) 

Here R(0, x, sT) denotes the correlation between input point x and sampling point sr 

and depends on the parameter vector 0 E R n and the distance between them. A Gaussian 

function was chosen for the correlation structure as follows: 

R(0, x, s) = e-°q l̀q, dq = Xq — Sq, q = n (3.14) 

The parameter vector 0 allows the correlation function to represent anisotropy in the 

correlation across different directions of the model. The optimal correlation parameter 

vector 0 can be estimated by solving the following minimisation problem [137]: 
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0 = arg min (IRIFil cr2) (3.15) 

where [RI is the determinant of the correlation matrix R E if  of all sampling points 

involved in the model and r2 is the predictor Gaussian process variance, expressed as 

follows [138]: 

1 4 - f(SD T I3

o2 = is l f(4)113 syN f(snT/31 RR-1 (3.16) 
sy - f(4)Tp 

Y
N 

The minimisation problem in Eq. (3.15) is combined with the estimation of the regression 

coefficients (P) in Eq. (3.11) and of the process variance (O2 ) based on maximising the 

likelihood of responses 4, ..., 4 1 at sampling points respectively. 

Vector y. E fi N is computed as follows: 

Y* = R -1 

4— f (sDT 131 
(3.17) 

4 1 — f(44).13 

Surrogate models were constructed utilising Eqs. (3.10)-(3.17) to represent process 

outcomes and the response of dielectric sensors and thermocouples integrated into the 

RTM filling and RTMNARTM curing stage as a function of stochastic and/or unknown 

variables. The inputs and the corresponding responses of each of the surrogate models are 

summarised in Table 3.3. Four surrogate models were constructed based on the flow 

model described in section 3.5.1.1, denoted as FPR SM, representing the RTM filling of 

the FPR composite. FPR SM1, FPR SM2 and FPR SM3 describe the response of the three 

lineal dielectric sensors, specified in section 3.4.1, as a function of stochastic parameters 

i.e. preform permeability, resin viscosity, race tracking permeability and time. FPR SM4 

calculates the duration of the filling stage for a given set of stochastic parameters. Five 

surrogate models, denoted as C spar SM were built based on the model representing the 

artificial RTM filling of composite C spar presented in section 3.5.1.2. C spar SM1 - C 

spar SM4 express the response of the four artificial flow sensors as a function of stochastic 

parameters such as principal permeability and resin viscosity, whilst C spar SM5 

computes the duration of the filling stage. 
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Table 33 Surrogate models inputs and outputs parameters. 

Kriging parameters 

Surrogate models (SM) Response: Y Inputs x 

FPR SM1
FPR SM2
FPR SM3

FPR SM4 

C spar SM1
C spar SM2
C spar SM3
C spar SM4

C spar SM5

GFP SM1
GFP SM2

GFP SM3 

TFP SM1
TFP SM2

Sensor 1 response 
Sensor 2 response 
Sensor 2 response 

Filling duration 

Artificial sensor 1 response 
Artificial sensor 2 response 
Artificial sensor 3 response 
Artificial sensor 4 response 

Filling duration 

Thermocouple 1 response 
Thermocouple 2 response 

Final minimum 
degree of cure 

Cure duration 
Maximum overshoot 

Preform permeabilities 
Race tracking permeability 

Initial resin viscsoity 
Filling time 

Preform permeabilities 
Race tracking permeability 

Initial resin viscosity 

Principal permeabilities 
Initial resin viscsoity 

Filling time 

Principal permeabilities 
Initial resin viscosity 

Heat transfer coefficient 
Resin thermal conductivity 

Cure time 

Heat transfer coefficient 
Resin thermal conductivity 

Cure profile parameters 
Cure kinetics parameters 
Heat transfer coefficient 

Tool temperature 

In the case of RTM curing of a glass/epoxy flat panel (GFP), described in section 3.5.2.1, 

three surrogate models were developed denoted as GFP SM I, GFP SM2 and GFP SM3. 

GFP SM1 and GFP SM2 represent the outputs of thermocouples as a function of unknown 

thermal properties and boundary conditions. GFP SM3 estimates the final minimum 

degree of cure for a given set of unknown input parameters. The surrogate models of FPR, 

C spar and GFP are used for the development of the inversion scheme. Two surrogate 

models were developed for the stochastic multi-objective optimisation of cure based on 
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the model described in section 3.5.2.2. The surrogate models, denoted as TFP SM1 and 

TFP SM2, calculate the cure time and maximum temperature overshoot for a given set of 

inputs which include cure profile parameters, cure kinetics parameters and boundary 

conditions parameters. 

The estimation problem corresponding to Eqs. (3.10)-(3.17) was implemented and solved 

using the MATLAB® toolbox for Kriging modelling [139]. The estimated Kriging 

coefficients vectors of regression and correlation model (p and y*), the optimal 

correlation parameter vector (A) and the initial sample matrix (S) were utilised for the 

implementation of the predictor in Eq. (3.10). The surrogate model predictors expressed 

by Eq. (3.10) were implemented in Visual Studio C++ 2015. 

3.7. Stochastic simulation 

A Stochastic simulation methodology is developed to model input parameters uncertainty 

in order to investigate its effect on filling and curing process outcomes. The Ornstein-

Uhlenbeck (OU) process is used for the modelling of residuals of the de-trending of 

periodic signals. The Monte Carlo scheme was used for stochastic simulation to account 

for the influence of process parameters variability on the uncertainty of process outcomes 

for the filling and curing stages. 

3.7.1. Ornstein-Uhlenbeck process 

The OU process is an autoregressive second order stationary Gaussian process used for 

modelling of mean reverting processes. These processes tend to drift towards a long term 

mean with a rate proportional to the distance from it. In composite manufacture the OU 

process has been employed to model autocorrelation structures of random fields such as 

imperfections in fibre architecture [8, 10] and residuals after de-trending applied to tool 

and air temperature periodic signal [38]. An OU process can be expressed as follows 

[140]: 

dSou = Aou (Etou Sou)dt + coudWt (3.18) 

where Sou is the OU process, Wt a Brownian motion following a normal distribution with 

mean 0 and standard deviation 1 so that Wt —N(0,1), whilst dWt follows a normal 

distribution with mean 0 and standard deviation Vsrt so that Wt--N (0, ), Abu controls 
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the speed of mean reversion to the long term average of the process, crou is the process 

volatility and you is the long term mean of the stochastic process. The analytical solution 

of Eq. (3.18) has been used in this study to develop the stochastic objects of tool and air 

temperature and can be written as follows [140): 

I(1— e-noudt) 
Sou = e-Aou dtSou-i + — e-Aoudt1 !Jou + crou  

2Aou 
Wt (3.19) 

where dt is the time increment. The parameters of Eq. (3.19) are calculated using the 

experimental data acquired for the tool and air temperature based on maximisation of the 

likelihood function [140]. 

3.7.2. Monte Carlo scheme 

The stochastic simulation carried out in this work is based on the MC scheme involving 

the generation of Nmc realisations of random input stochastic variables using the 

Mersenne Twister random number generator [141]. In each realisation, the deterministic 

model is executed calculating the process outcomes and subsequently computing the first 

and second statistical moments using the overall set of realisations up to the current point. 

The outputs of the stochastic simulation are the average and standard deviation of relevant 

process outcomes. The total number of deterministic model realisations depends on the 

convergence of first and second statistical moments. The Cholesky decomposition was 

applied to transform stochastic variables which present strong correlation to the set of 

uncorrelated random variables. 

The MC scheme is applied to the RTM filling of the FPR and C spar part described in 

sections 3.5.1.1 and 3.5.1.2 respectively to investigate the influence of stochastic flow 

parameters on the filling duration. In curing, MC is implemented in the case of the GFP 

composite part described in section 3.5.2.1 examining the variability of final minimum 

degree of cure due to variations of material properties and boundary conditions. The 

stochastic multi-objective optimisation scheme, which is presented in chapter 9, 

incorporates the MC scheme in order to calculate the average and standard deviation of 

cure process outcomes specified in 3.5.2.2 considering the variability of input parameters. 

3.8. Inversion scheme using Markov Chain Monte Carlo 

An inversion scheme was developed integrating monitoring data in real time with the 

process models for the probabilistic prediction of the unknown stochastic parameters and 
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the process outcomes. The inversion scheme illustrated in Figure 3.13, utilised the 

Markov Chain Monte Carlo method. MCMC is based on Bayes' theorem and is utilised 

in many inverse problems due to its simplicity [104-106]. Bayesian inference operates as 

a sampler and addresses potential ill-posedness of inverse problems by incorporating 

prior knowledge about the parameters values. MCMC draws a series of parameter 

realisations with a probability of acceptance proportional to the conditional incremental 

likelihood of process monitoring data. The accepted realisations constitute the solution of 

the inverse problem in the form of a probabilistic estimate of process outcomes. 

According to Bayes' theorem, the monitoring data matrix Yexp(t) E Rnexpxnset is linked 

to the corresponding surrogate model responses Ym as follows: 

P(YffilYexp) a P(Yexp Yffi)P (Yn) (3.20) 

where P(Y. V I -exP) denotes the posterior probability, P(YexplYm) the likelihood 

distribution and P (Ym) the prior distribution. Eq. (3.20) expresses the probability of 

model response Ym for a given set of unknown stochastic parameters V conditional to 

process monitoring data Yexp. MCMC utilises Bayes' theorem to accept or reject the 

proposed set of input samples which in this case are the unknown stochastic parameters. 

The random walk Metropolis Hastings algorithm was utilised to generate samples VI E 

IlInP where np is the number of unknown stochastic input parameters from a symmetric 

normal proposal distribution q(VI IV1_1) resulting in a simplified draw of new samples. 

Due to symmetry, the new sample VI is calculated using an incremental step drawn from 

the multivariate Gaussian variable EE P with mean value 0 and standard 

deviation a c E IlknP, applied to sample from the previous step. An acceptance 

criterion is applied to each of the samples generated and by accepting or rejecting it the 

posterior probability converges to the target distribution P (I'm (V, t) lYexp (0). The 

algorithm operates as shown in Table 3.4 and the procedure is repeated M times, where 

M is the number of MCMC iterations. 

The likelihood distribution is expressed as: 

Nk 

P(Yexp (t) Yin (Vi, t)) = fN (Yexp (t k); Yin (Vi , t k), a„„) 
k=1 

48 

(3.21) 



where Nk denotes the total number of experimental data acquired by time t k. The 

likelihood incorporates all the distributions which are computed with experimental data 

Yexp using a normal distribution with the model values Ym (VI, tk) as a mean and a 

standard deviation crexp. The prior distribution of input vector VI including the unknown 

stochastic variables is computed in a similar way: 
npp(vo=nN(vio.,11/)rior, aP nor) 
0=1 

(3.22) 

where µ prior E lanP and ° prior mean E Rni) are the  and standard deviation of the prior 

distributions. 

Table 3.4 Metropolis Hastings algorithm. 

Algorithm 1 Metropolis Hastings algorithm 

Initialise V0

for j = 1 to M 

Draw a sample u—U (0,1) from a uniform distribution. 

Draw sample E— N (0, o) Vi = + E 

f p(Yexp(t)IY.(M, 0)P01) I Calculate acceptance probability a = min I., 
P(Yexp (t)IYm (M-1, 0)P( 71-1) 

if u ≤ a then 

accept V, 

else 

vi = Vi_l 

end if 

end for 
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Simulations of a single chain may be trapped in a local mode. Parallel tempering was 

applied to address this problem. In this method a temperature parameter Tpt with the 

property 1 ≤ Tpt ≤ 00 is introduced where Tpt = 1 corresponds to the desired target 

distribution and is referred to as cold sample. Values with Tpt >> 1, which are referred to 

as hot samples, flatten the target distribution and allow the acceptance of a wider range 

of proposed parameters. Hence, these distributions explore a wider parameter region. In 

parallel tempering a parameter defined as z = 1/Tpt is assigned to the likelihood term as 

follows: 

TOT(Vi, t) I Ye„p(t), = 13(l'exp(t) I VVI, t) rP(Vi) for 0 < z < 1 (3.23) 

This tempering posterior distribution is calculated using Eq. (3.20). A different discrete 

value of z is assigned to each of the nth chains resulting in a ladder with different 

temperatures. After a certain number of iterations (ns) a parameter swap algorithm is 

initiated which exchanges parameters between two chains, if 111 —U[0,1] ≤ 1/ns with 

U1 being a random number drawn from a uniform distribution. If the swap occurs, a chain 
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1 is randomly selected to swap the parameter set with the chain 1 + 1. A swap is accepted 

if a pt ≥ U2 where U2 —U[0,1] and apt is the acceptance probability expressed as: 

it(ym(V1+1, 
t) I Yexp (t), zm )7[(Ym(Vjt) I Yexp (t), zi+i)) 

apt = min [1, 
TE(Ym(Vii, t) I Yexp (t), zm)Tr(YmNri , I Yexp (t), zl+i) 

(3.24) 

Chains with higher temperatures can explore different modes, whilst chains within the 

ladder allow the possibility to refine these sets. Only the results of the cold chain 

corresponding to the target distribution are considered for the final sample, whilst the 

results from the remaining chains are disregarded [142]. 

The inversion scheme was implemented in real time in the RTM filling of the FPR 

composite part and composite C spar using flow monitoring data acquired by lineal 

dielectric and artificial flow sensors. The monitoring matrix (Yexp) at time tk comprises 

the flow front position SI 3 and ASi 4 of each of the flow dielectric and artificial flow 

sensors. The inversion procedure was also used in a cure heat transfer problem integrating 

temperature signals for the manufacturing of a glass/epoxy composite flat panel, which is 

described in chapter 8, with cure models for the estimation uncertainty of thermal 

properties and boundary conditions. In this case, Yexp includes the thermocouples 

response Tmk id and '11`,,p up to time tk placed in the middle and on the top of the glass/epoxy 

composite flat panel. The response vector (Ym) calculated using the models corresponds 

to estimations of monitoring sensors and process outcomes using the drawn sample of 

unknown stochastic parameters V as an input. Standard deviation crexp is utilised in the 

likelihood distribution in Eq. (3.21) to express the accuracy of the experimental data. 

Table 3.5 summarises the main parameters of the MCMC for each of the three case 

studies. The standard deviation vector ; defines the size of the sampling step of the chain 

[143] and needs to be adjusted before the initiation of the inversion procedure. A short 

sequence of MCMC iterations is carried out at the beginning of the inverse algorithm to 

tune the vector of ac of the algorithm targeting an acceptance probability between 30% 

and 50% [143]. 
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Table 3.5 Inversion scheme parameters for each implementation. 

Filling stage Curing stage 

FPR C spar GFP 

Monitorin 
p 

g matrix 
Si AS141 Trl id Ttio 

SÌ  S/3̀ AS Ì  AS Trt d Ttli; p 

Yexp(tk) 

Number 

of sensors 3 4 2 

(nset) 

Type of 
Lineal dielectric flow Artificial lineal flow Thermocouples 

sensors 

Number 

of points 96 19 220 

(N) 

Model 
Response of sensros 

Response of sensors Response of sensors 
response Final minimum 

Filling duration Filling duration 
degree of cure 

Ym(Vp tk) 

Unknown Preform permeability 
Principal permeabilit3 Thermal properties 

Race tracking permeabilit 
s (111) Resin viscosity Resin viscosity Boundary condition 

Standard 

deviation: 

( 0-exp) 

10 mm 10 mm 1 °C [144] 

3.9. Stochastic multi-objective optimisation 

A stochastic multi-objective optimisation scheme was developed integrating the Monte 

Carlo scheme described in section 3.7.2 with a GA for multi-objective optimisation [120]. 
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The stochastic multi-objective optimisation framework illustrated in Figure 3.14 was 

implemented in Visual Studio C++ 2015. In this, the GA begins with the generation of 

the first population of individuals corresponding to a solution of design space. The 

individuals correspond to the average and standard deviation of the optimisation objective 

parameters calculated using the MC simulation. A fitness function, which evaluates the 

goodness of a solution, is assigned to each individual. Individuals are compared with 

others within the population and a dominance rank is formed by decreasing dominated 

individuals rank by a fixed value where in this case is five. A sharing ranking is also 

applied to ensure evenly distributed optimal points. This includes the penalisation by one 

of an individual which is within a defined radius of another one. When the ranking process 

completes the individuals of the population are sorted according to their fitness value. 

The best individuals are sent to the next generation, whilst the others compete in a 

tournament procedure. Four individuals called parents are selected through a tournament 

selection to generate new offsprings. In this selection process, which the selection 

probability increases with the increased fitness, four individuals are compared and the 

best among these is selected as first parent. Following the same procedure, the four 

selected individuals (parents) generate four individuals through two operators: uniform 

cross-over and mutation. These operations are repeated until a new population has been 

generated. The output of the GA is the Pareto set of optimal design parameters and the 

corresponding objective values; the average and the standard deviation. The algorithm 

accepts as inputs the number of generations, the number of individuals in each generation, 

the reproduction, the elite number and the size of the optimal Pareto front, the number of 

objectives, the number of the optimisation parameters and their ranges, and the 

probability of cross-over and mutation. The algorithm stops when a maximum number of 

generations has been met. 
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Pareto front 

YES 

Max. 
Generations 

NO 

Figure 3.14 Stochastic multi-objective optimisation methodology. 

The stochastic multi-objective optimisation was implemented in the case of the cure 

process of a carbon/epoxy thick composite flat panel described in section 3.5.2.2. In this 

case, four minimisation objectives were considered for the stochastic optimisation 

problem; the cure time (tcure) and the maximum temperature overshoot (ATma.) mean 

values and their corresponding standard deviations. The design parameters are the 

parameters of the two-dwell cure profile illustrated in Figure 3.15, such as the temperature 

of first (T1) and second dwell (T2), the duration of the first dwell (At1) and the heat ramp 

rate (r). The second dwell time is not considered as a design parameter in the optimisation 

due to the definition of cure time. The stochastic variables for the integrated MC 

simulation were the cure kinetics parameters and thermal boundary conditions i.e. tool 

temperature and heat transfer coefficient. 
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Figure 3.15 Two-dwell cure profile for the cure process of thick carbon/epoxy composite 

flat panel. 

3.10. Overview 

This chapter reports all methodological aspects of the work, detailing both experimental 

and computational methods. The rheology set-up presented in this chapter is used for the 

characterisation of the RTM6 epoxy resin viscosity and the quantification of its variability 

in chapter 4. The apparatus for isothermal curing of neat resin is used for the assessment 

the accuracy of the cure dielectric sensor developed and described in chapter 5. Process 

simulation models representing the filling and curing stage of LCM processing form the 

basis for the construction of surrogate models used for inversion and process optimisation 

in chapters 6-9. The stochastic processes presented in this chapter are used for the 

development of stochastic objects representing material properties and boundary 

conditions variability. The stochastic simulation based on MC is applied to the filling 

stage of FPR which is presented in chapter 6. The use of surrogate models results in 

reducing of computational time, allowing the real time application of the inversion 

scheme in the RTM filling and curing stage which is presented in chapters 6-8. The 

implementation of stochastic multi-objective optimisation - which is presented in chapter 

9 - is performed for the cure of a thick composite part with the use of surrogate models to 

address the high computational cost of the stochastic simulation integration into the GA. 
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4. Material models and uncertainty quantification 

4.1. Introduction 

In the present chapter, the constitutive models of material properties such as cure kinetics, 

specific heat capacity and thermal conductivity are specified for their integration into the 

process models described in section 3.5. The results of uncertainty quantification tests of 

resin viscosity and thermal boundary conditions described in sections 3.3.1 and 3.3.2 

respectively are presented, whilst stochastic objects are developed based on the 

methodological approach presented in section 3.7 representing the corresponding 

variability. The stochastic variables such as preform permeability, cure kinetics and race 

tracking considered in the stochastic simulation of filling and cure are specified as well. 

4.2. Constitutive material models 

The filling stage of composites manufacture involves the flow of a thermosetting resin 

through a preform under the application of pressure. This process can be described by 

Darcy's law presented in Eq. (3.3), where the volume rate of flow is proportional to 

preform permeability and inversely proportional to resin viscosity. The resin viscosity is 

strongly affected by the material state and temperature. 

A constitutive material model representing resin viscosity has been developed based on 

rheology results, and cure kinetics, glass transition temperature development and thermal 

properties models such as specific heat capacity and thermal conductivity of carbon fabric 

and epoxy resin are presented based on literature data. 

4.2.1. Resin viscosity 

Figure 4.1 illustrates the applied cyclic thermal profile and the corresponding resin 

viscosity results obtained following the procedure described in section 3.3.1. The 

viscosity increases exponentially with time due to the increasing cross-linking density of 

the thermosetting material and is a decreasing function of temperature. Raising the 

temperature results in higher mobility of resin molecules reducing the energy required for 

their movement and consequently the viscosity. 
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Figure 4.1 RTM6 epoxy resin viscosity model fitting. 

For the representation of RTM6 epoxy resin viscosity a model was implemented utilising 

the viscosity tiref at a reference temperature Tref as a state variable [127]. The reference 

viscosity follows its own kinetics and can be expressed as: 

dinliref - E rlref 
= Ae wrOn 

dt 
(4.1) 

The rate of change of the reference viscosity in Eq. (4.1) follows an Arrhenius dependence 

on temperature where A is the pre-exponential factor and E is the activation energy of 

Arrhenius factor. The dependence of the rate of change on the logarithm of reference 

viscosity has an autocatalytic behaviour with m denoting the order of this dependence 

and y a coefficient. The viscosity at any temperature can be estimated, using the reference 

viscosity calculated by the integration of Eq. (4.1), as follows: 

D(1 1 , 

= IlrefAe T 
Tref' (4.2) 

where D is the temperature dependence coefficient. 

Parameters A, E, y, m, D in Eqs. (4.1) and (4.2) and the initial reference viscosity lb were 

estimated using the hybrid Genetic Algorithm implemented in the Solver of Microsoft 

Excel [145]. The reference temperature was set equal to the lowest temperature of cyclic 
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thermal profile 80 °C. The overall viscosity model parameters were obtained by 

conducting an overall fitting, using published values for the resin system of this study as 

initial guess [127]. The error minimisation indicator for model fitting is expressed as 

follows: 

Error = E(logilex, —10811mod) 2

where N„ denotes the number of viscosity experimental data, Tlexp 

(4.3) 

the experimental 

measured viscosity and ihnod the viscosity as computed by the model. Table 4.1 summarises 

the results of RTM6 epoxy resin viscosity model fitting of a fresh sample of the 3rd resin 

batch. The average fitting error in this case is equal to 0.003. 

Table 4.1 RTM6 resin viscosity model fitting parameters. 

Parameter Symbol Value 

Initial reference viscosity ilo 0.13 Pas 

Temperature dependence coefficient D 6,500 1/K 

Pre-exponential factor A 171,508 1/s 

Activation energy of Arrhenius function E 70,485 J/mol 

Coefficient y 0.059 Pas 

Reaction order m 1.31 

4.2.2. Cure kinetics 

The cure kinetics model for the resin system of RTM6 epoxy resin is a combination of an 

nth order term and an autocatalytic term [146]: 

da 

dt 
= ki (1 — + k 2 (1 — a)'12am (4.4) 

where a is the instantaneous degree of cure, m, n1, n2 the reaction orders and k1 and k2

the reaction rate constants defined as follows: 

1 1 1 

ki kd
i = 1,2 (4.5) 

Here ki,c are Arrhenius functions of temperature for the chemical reaction and kd is a 

diffusion rate constant, which expresses the deceleration of the reaction as the 

instantaneous glass transition of the curing material approaches the cure temperature. 

These are expressed as follows: 
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= Aie(-Ei/aT), = 1, 2 

kd = Adel-Ed/RT)e(-bifv) 

(4.6) 

(4.7) 

where Ai, Ad are pre-exponential factors, b is a fitting parameter, Ei and Ed the activation 

energy for the chemical reactions and diffusion process respectively, R the universal gas 

constant and k the equilibrium free volume, which is expressed as follows: 

fv = w(T — Tg) + g (4.8) 

Table 4.2 Parameters values for the RTM6 resin cure kinetics and glass transition 
temperature models [37]. 

Parameter Symbol Value 

Pre-exponential factor of the nth order term Al 19,000 s-1

Pre-exponential factor of the autocatalytic term A2 22,080 s-1

Pre-exponential factor of diffusion Ad 6.76 1018 s-1

Activation energy of the nth order term El 72,900 Jmol' 

Activation energy of the autocatalytic term E2 57,820 Jmol' 

Activation energy of diffusion Ed 138,000 Jmol-1

Autocatalytic reaction order m 1.29 

Reaction order of the nth order term n 1 1.97 

Reaction order of the autocatalytic term n2 1.53 

Exponent of diffusion term b 0.452 

Equilibrium free volume model slope w 0.00048 K-1

Equilibrium free volume model intercept g 0.025 

Glass transition temperature of uncured material Tg0 262.15 K 

Glass transition temperature of fully cured 
goo 479.15 K 

material 

Glass transition temperature convexity constant 71 0.435 Jg-1K-2

Here w and g are constants and Tg is the instantaneous glass transition temperature 

following the Di Benedetto equation [1471: 
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('I'gv Tgo)Aa 
T = T + g g° 1 — (1 — A)a 

(4.9) 

where Tgeo and Tgo are the glass transition temperature of the fully cured and uncured 

material respectively and A. is a parameter controlling the convexity of the dependence. 

Model constants of Eqs. (44)-(4.9) are reported in Table 4.2 [37] . 

4.2.3. Composite specific heat capacity 

The specific heat capacity of the composite is computed making use of the rule of 

mixtures as follows: 

Cp = VfCpf + (1 - Vf) Cpr (4.10) 

where wf is the fibre weight fraction, cpf the fibre specific heat capacity and cpr the 

specific heat capacity of the resin. The specific heat capacity of the resin and the fibre are 

computed using the models [120]: 

cpf = Afci)T + Btcp (4.11) 

c, 
Cpr = ArcpT + Brcp + 

1 + ecrcPAr(r-Tg-ar) 
(4.12) 

where Afcp, Bfcp control the linear dependence of fibre specific heat capacity on 

temperature, Arcp, Brcp describe the linear dependence of the specific heat capacity of the 

uncured epoxy on temperature and Arcp, Crcp, and ar are the strength, width and 

temperature shift of the specific heat capacity step occurring at resin vitrification. The 

values of the parameters involved for the resin system of this study in Eqs. (4.10)-(4.12) 

are reported in Table 4.3 [120]. The densities of RTM6 epoxy resin pr, Tenax® E HTA40 

E13 6K carbon fibre prf and E-TX1769 (BTI Europe) E-glass fibre pgf used in 

manufacturing trials and process simulation are reported in Table 4.3 [121, 123, 125]. 

4.2.4. Composite thermal conductivity 

The thermal conductivity of the anisotropic composite material in the transverse direction 

is calculated as follows [148): 
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K33 = Vfixr (- 

Kt f 
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2 2K
—  

( U 
— 1) + 

Kr ,- 

( t.Kf + 1 )
2

- Vf + 

(2Ktf 
2\ 2 

l Kr ) 

(4.13) 

where Ktf is the thermal conductivity of the fibre in the transverse direction. The thermal 

conductivity of the carbon fibre in the transverse direction can be expressed as: 

Ktf = Btf (4.14) 

where Btf is a constant. 

Table 43 Model parameters values for the specific heat capacity of RTM6 epoxy resin 

[120] and density values for epoxy resin [121], Tenax® E HTA40 E13 6K carbon fibre 

[123] and E-TX1769 (BTI Europe) E-glass fibre [125]. 

Parameters Symbol Value 

Carbon fibre specific heat capacity model slope 

Carbon fibre specific heat capacity model intercept 

E-glass fibre specific heat capacity model slope 

E-glass fibre specific heat capacity model intercept 

Resin specific heat capacity model slope 

Resin specific heat capacity model intercept 

Resin specific heat capacity model step 

Resin specific heat capacity model step breadth parameter 

Resin specific heat capacity model step shift parameter 

Resin density 

Carbon fibre density 

E-glass fibre density 

Acfcp 

Bcfcp

Agfcp

Bgrcp

Arc!)

Br cP

Cp 

Crap 

Cf r

Pr 

Pcf 

Pgf 

0.0023 Jg 1°C 2

0.765 Jg 1°C 2

0.0014 Jg 1°C 2

0.841 Jg 1°C 2

0.0025 Jg 1°C 2

1.8 Jg 1°C 2

-0.25 Jg 1°C 2

1.1 °C-1

16.5 °C 

1.11 gml-1

1.76 gm1-1

2.54 gm1-1

The thermal conductivity for the epoxy resin system RTM6 is a function of degree of cure 

and temperature and is expressed as [4]: 

Kr = ksTa2 — k4Ta — k3T — k 2a2 + ki a + k 
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Here k5, k4, k3, k2, k1, k are coefficients of the polynomial function. The parameters of 

the thermal conductivity model are reported in Table 4.4 [4]. 

Table 4.4 Model parameters values for thermal conductivity constitutive models of RTM6 

epoxy resin [4], Tenax® E HTA40 E13 6K carbon fibre [4] and E-TX1769 (BTI Europe) E-

glass fibre [125]. 

Thermal conductivity parameters Symbol Values 

Carbon fibre transverse thermal conductivity 

E-glass fibre transverse thermal conductivity 

Resin model quadratic coupling 

Resin model coupling constant 

Resin model linear temperature constant 

Resin model quadratic conversion constant 

Resin model linear conversion constant 

Resin model intercept 

Btcf 

Btgf 

k5

k4

k3

k2

k1

k 

0.84 Wm 1°C 2

1.03 Wm 1°C 2

0.0008 Wm 1°C 2

- 0.0011 Wm 1°C 2

- 0.0002 Wm 1°C 2

- 0.0937 Wm 1°C 2

0.22 Wm 1°C 2

0.12 Wm 1°C 2

43. Uncertainty quantification of resin viscosity 

Rheology results of resin sample of different batches and storage conditions are presented 

in Figure 4.2. All curves present the same qualitative behaviour as observed in 

characterisation results of resin viscosity described in section 4.2.1. The isothermal 

segments of thermal profile result in an increase of resin viscosity attributed to material 

state changes, whilst short term temperature drops/rises cause considerable changes of 

resin viscosity manifested as spikes in Figure 4.2. 

Significant variability can be observed in both the comparison across batches and material 

exposed at ambient temperature for different durations. The samples used in this study 

were taken from four different resin batches (A, B, C, D) at the lst (fresh) and 15th day of 

exposure at ambient temperature as described in section 3.3.1. Batches B and D present 

similar quantitative viscosity behaviour for both fresh samples and samples kept at 

ambient temperature for 15 days. However, the viscosity evolution of batches A and C 

presents significant differences in comparison to that of B and D. The batch to batch 

variability can be attributed to variations of thermal history due to different resin 

handling/storage conditions. Resin batches B and D have been defrosted several times 

within a certain time of period for different applications, whilst the utilisation of batches 

A and C resin was limited, whilst all batches were within their self-life. Samples tested at 
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the 1' day of exposure at ambient temperature present an initial resin viscosity in the 

range of 0.02-0.024 Pas. In contrast, the initial viscosity range of samples left for 15 days 

at ambient conditions is in the range of 0.025-0.042 Pas. 
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Figure 4.2 a) Viscosity uncertainty quantification results for RTM6 epoxy resin samples at 

1" (A-1, B-1, C-1, D1) and 15th day (A-15, B-15, C-15, D-15) of exposure at ambient 

temperature; b) detailed view of initial stages of viscosity evolution. 
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The initial resin viscosity increases by 25-40% within the 15 days exposure in the case of 

batches A and C that have undergone limited defrosting cycles. In the case of batches B 

and D that have undergone a greater number of defrosting cycles, the initial viscosity 

increase is more pronounced in the 65-80% range indicating a strong influence of storage 

conditions on initial material state. In addition, the resin viscosity of samples left for 15 

days at ambient temperature increases faster with time than that of fresh samples. This 

behaviour is attributed to the autocatalytic character of the epoxy resin curing reaction in 

which the reaction rate is accelerated as the process progresses. 

The procedure presented in section 4.2.1 was followed for the identification of viscosity 

model parameters using fitting for the different batches and samples. The model 

parameters values of Eqs. (4.1) and (4.2) were calculated for each resin sample providing 

an estimation of average and standard deviation of each model parameter. Figure 4.3 

illustrates the viscosity model fitting. The model follows closely the rheology results with 

some slight discrepancies in the cooling/heating segments. The overall average squared 

absolute logarithmic error reported in Eq. (4.3) of the model fitting is 0.5. Table 4.5 

summarises the average and standard deviation values of the viscosity model parameters 

as estimated by the overall fitting. Initial. The initial reference viscosity presents the 

highest variability with a coefficient of variation of about 29%. In contrast, the coefficient 

of variation of the rest of the parameters is below 6%. Considerable variations of about 

18% have also been observed in the initial degree of cure of RTM6 epoxy resin [37]. The 

difference in variability of resin initial material state is attributed to the fact that the resin 

storage conditions have not been considered in cure kinetics uncertainty quantification 

tests and to the nonlinear dependence of viscosity on cure state. 

Table 4.5 Statistical properties and sensitivity analysis results for RTM6 resin viscosity. 

Parameter IL (%) 
no (Pas) 0.17 0.05 28.6 

D (1/K) 6,800 371.5 5.5 

A (1/s) 370,379 8456 2.3 

E (J/mol) 70,309 336 0.5 

y (Pas) 0.061 0.004 6.2 

m 1.34 0.07 5 
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Figure 4.3 Viscosity model fitting for different batches and samples for RTM6 epoxy 

resin; a) batches A and B at 1st (A-1, B-1) and 15th (A-15, B-15) day of exposure at ambient 

temperature; b) batches C and D at (C-1, D-1) and 15th (C-15, D-15) day of exposure at 

ambient temperature. 
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Table 4.6 Sensitivity analysis results for RTM6 epoxy resin viscosity model parameters. 

Filling duration (sec) 

Parameter 
Realisation 1 

µ +0 

Realisation 2 

µ - a 

Average relative 

absolute difference 

lo (Pas) 149.2 289 29% 

D (1,11C) 219 193 5.7% 

A (1/s) 216.4 208.6 1.7% 

E (J/mol) 211.2 214.0 0.6% 

y (Pas) 218.4 208.1 2.3% 

m 211.8 212.4 0.1% 

Nominal case 212 

A sensitivity analysis was carried out using the RTM6 epoxy resin viscosity model to 

determine which of the model parameters should be considered in stochastic analysis. 

Each parameter of Eqs. (4.1) and (4.2) was varied by one positive and one negative (-a) 

standard deviation around the average and inserted as an input in the PAMRTM® model 

of the carbon/epoxy composite C spar described in section 3.5.1.2, whilst the rest of the 

model parameters were set equal to their mean values. The relative absolute difference of 

filling durations of realisations 1 (µ+a) and 2 (µ-a) with the filling duration of the nominal 

case (i.e. model parameters set equal to their mean values) was calculated. The average 

relative absolute difference of the two realisations was used as an indication of the model 

sensitivity to the level of variability of each of the model parameters. Table 4.6 reports 

the realisation viscosity model parameters values and the corresponding results. The 

nominal case illustrated in Figure 4.4 corresponds to the viscosity model with coefficients 

set to mean values. The average filling duration is 212 sec. The extreme cases of the 50% 

confidence intervals of initial reference viscosity sensitivity analysis are illustrated in 

Figure 4.5. The filling duration is affected significantly by initial reference viscosity 

variations resulting in an average relative difference of about 30%. Uncertainty of the 

other viscosity model parameters does not introduce significant variations in filling 

duration with the average relative differences being below 6%. Therefore, the main source 

of uncertainty in the experimental results is the variability in the initial reference viscosity 

and was considered as stochastic. The distribution of the stochastic variable no can be 
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treated as uniform on the interval 0.1-0.22 Pas assuming that the probability of resin 

usage within the permitted time range is constant. 
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Figure 4.4 Nominal filling time of carbon/epoxy composite C spar. 
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Figure 4.5 Extreme cases of initial reference viscosity sensitivity analysis of carbon/epoxy 

composite C spar. 
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A.A. Uncertainty quantification of tool temperature and surface heat 

transfer coefficient 

The uncertainty of tool temperature and surface heat transfer coefficient in LCM 

processing of carbon/epoxy composite flat panel has been quantified in a series of 

experiments. Ten experiments were carried out utilising the experimental setup described 

in section 3.3.2. Figures 4.6 and 4.7 illustrate the results of surface heat transfer 

coefficient and tool temperature evolution variability experiments. Both parameters 

present two types of variation: (i) short term variability over time, and (ii) level variability 

across the different experiments. The air streams inside the oven produced by its fan cause 

forced convection at the carbon/epoxy composite part top surface. Short term variability 

of the heat transfer coefficient can be attributed to the continuous air movement caused 

by buoyancy forces arisen by air density differences due to temperature variations within 

the oven. The forced convection results in higher values of heat transfer coefficient in 

comparison to natural convection which is in the range of 10-15 W/m2/°C [38]. The level 

variability across different experimental runs for both the surface heat transfer coefficient 

and tool temperature can be attributed to the varying conditions within the oven. The 

average surface heat transfer coefficient for each run is in the range of 15-20 W/m2/°C is 

illustrated in Figure 4.6b. The tool temperature presents a periodic behaviour with time 

around the setting value, which is attributed to the action of the PID temperature controller 

of the oven. The corresponding periodic fluctuation is in the range of 2 °C around the set 

temperature. The same tool temperature periodic behaviour is also presented in a contact 

heating process [38] where a PID controller was also utilised. 
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Figure 4.6 a) Surface heat transfer coefficient evolution with time for different 

experimental runs of LCM process of carbon/epoxy composite flat panel in an oven; b) 

surface heat transfer coefficient mean value across different experimental runs. 
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Figure 4.7 Tool temperature evolution with time for different experimental runs of LCM 

process of carbon/epoxy composite flat panel in an oven. 

The autocorrelation structure of tool temperature illustrated in Figure 4.8 was calculated 

using the autocorrelation function rklag for lag kin as follows [149]: 

Nexp—klag 
1 

riciag = (Yn D(Yn+iciag — Yr) 
Nexp 

n-1 

(4.16) 

where y1, y2,..., yNev denote the experimental measurements, y the average, cry the 

sample variance of the experimental run and Nexp the number of measurements. The tool 

temperature autocorrelation structure presents a periodic trend including negative values 

as a result of a long term periodic trend, implying that there is strong autocorrelation with 

time resulting in a non-stationary process. Consequently, de-trending needs to be applied 

to generate a stationary process in which the autocorrelation structure decays to zero in 

short time lag. 
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Figure 4.8 Autocorrelation structure of tool temperature of LCM process of carbon/epoxy 

composite flat panel in an oven. 

Fast Fourier Transformation (FFT) implemented in MATLAB [150] was utilised to 

calculate the spectrum of the periodic component of the tool temperature signal. FFT 

transforms the experimental signal from time domain into a representation of frequency 

domain. Figure 4.9 depicts the spectrum over the 0-0.1 Hz frequency range. The 

amplitude decays to values below 0.1 after the third discrete frequency component. 

Therefore, only the first three components were considered for the representation of the 

tool temperature series. The three frequency components occur at multiples of a principal 

signal frequency of 0.0028 Hz. Figure 4.10 illustrates the cosinusoidal fitting for one of 

the experimental runs. The number of frequency components in FFT analysis depends on 

temperature controller operation and type of heating as a different setup using contact 

heating for infusion and curing showed only one principal frequency driving the 

temperature periodic behaviour [38]. 

The residuals from the de-trending process were modelled using the Ornstein-Uhlenbeck 

process (OU) described in section 3.7.1. This procedure was repeated for each of the ten 

experimental runs. Overall, the stochastic process of tool temperature can be expressed 

as follows: 
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Ttool = At Bu cos(icot t) + Sou (4.17) 
i=1 

where At is the level of each experimental curve, Bt; and coti the ith amplitude and 

angular frequency of the cosinusoidal fit respectively, and Sou the mean reverting 

stationary stochastic process (OU) expressed using Eq. (3.19). Figure 4.11 illustrates the 

autocorrelation structure for a time lag of 6 min after de-trending and the simulated 

residuals generated by the OU process. It can be observed that the OU process reproduces 

the decay of the autocorrelation structure successfully. The same procedure was applied 

to all experimental runs. The average and standard deviation of each parameter of Eq. 

(4.17) are reported in Table 4.7. 
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Figure 4.9 FFT single-sided amplitude spectrum of tool temperature of LCM process of 

carbon/epoxy composite flat panel in an oven. 
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Figure 4.11 Autocorrelation structure of the residuals after the de trending of periodic 

trend of tool temperature of LCM process of carbon/epoxy composite flat panel in an 

oven. 
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The same periodic behaviour and level variability as in the case of tool temperature is 

also observed in the case of air temperature (Tau.) in the oven illustrated in Figure 4.12. 

Therefore, the same statistical properties as those reported in Table 4.7 for tool were 

considered. The air temperature data of each experimental run were utilised in order to 

estimate the heat transfer coefficient value as described in section 3.3.2. 
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Figure 4.12 Air temperature evolution with time for different experimental runs of LCM 

process of carbon/epoxy composite flat panel in an oven. 

The surface heat transfer coefficient does not involve a periodic trend since the 

autocorrelation structure decays relative fast to zero as illustrated in Figure 4.13. 

Therefore, it can be modelled as a realisation of a random scalar variable as follows: 

h= Ah Bh Yh (4.18) 

where Ah is the level, Bh the volatility of the process for each run, and yh is a standard 

normal variable. The coefficients Ah and Bh were calculated for all experimental runs 

and their statistical properties are reported in Table 4.7. 
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Table 4.7 Statistical properties of boundary conditions. 

Boundary conditions 
Stochastic model 

parameter 
Average 

Standard 

deviation 

h 
Ah (W/m2 /°C) 17.8 1.33 

Bh (W/m2/°C) 2.1 0.1 

At, (°C) 151.8 1.63 

Bt, (°C) 0.79 0.084 

Bt2 (°C) 0.28 0.079 

Bt3 (°C) 0.11 0.027 
Ttool' Ta it 

cot (rad/s) 0.017 9.810-11

At (°C) 1.14 0.82 

at (°C) 0.4 0.04 

µt (°C) 0.025 0.055 
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Figure 4.13 Autocorrelation structure of heat transfer coefficient of LCM process of 

carbon/epoxy composite flat panel. 
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4.5. Influence of short term variability of boundary conditions 

The stochastic objects of tool and air temperature and surface heat transfer coefficient 

described by Eqs. (4.17) and (4.18) were used to investigate the influence of short term 

variability on cure time and maximum temperature overshoot of the cure process of the 

thick carbon/epoxy composite flat panel described in section 3.3.2. The FE cure model of 

the thick carbon/epoxy composite flat panel described in section 3.5.2.2 was utilised using 

a time increment of 2 sec to represent accurately short-term temperature variations. A 

standard thermal profile for the resin system of this study was utilised as the prescribed 

temperature boundary condition. The profile comprises one dwell at 160°C and a second 

dwell at 180 °C with dwell time of 75 min, and a heating ramp of 1.5 °C/min. The short 

term variability was investigated using constant tool temperature level At equal to the 

cure temperature and a convection coefficient level Ah equal to the estimated mean value 

of 17.8 W/m2/°C. Ten FE cure model evaluations were carried out. The values of 

stochastic model parameters Bh, Bti, Gat, at, µt, and at were randomly selected using the 

Mersenne Twister random number generator [141] from normal distributions using their 

statistical properties. 

The influence of the short term variability is illustrated in Figures 4.14 - 4.16. The 

periodic temperature trend as depicted in Figure 4.14 is diffused relatively quickly 

through the part thickness, appearing less pronounced at 3 mm distance from the tool 

surface. The short term variability of the surface heat transfer coefficient introduces weak 

temperature variations only at the top surface of the part without affecting the through 

thickness temperature evolution, as illustrated in Figure 4.15. Figure 4.16 shows the cure 

profile applied on the lower surface of the composite and the temperature evolution at the 

location of maximum temperature overshoot, which occurs at a height of 12.6 mm from 

the lower surface of the flat panel, as calculated by the deterministic cure model and one 

realisation of the stochastic cure simulation. Table 4.8 summarises the details of the 

deterministic and stochastic model realisation and the corresponding results. The 

deterministic model predicts a cure duration and temperature overshoot of 115 min and 

40 °C respectively. The mean values of the cure duration and temperature overshoot of 

the ten stochastic cure models realisations are 114.9 min and 39.6 °C, whilst the 

corresponding standard deviations are equal to 0.07 min and 0.3 °C. Figure 4.17 compares 

the conversion evolution for the lower surface and the location corresponding to the 
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maximum temperature overshoot. It can be observed that the stochastic model parameters 

corresponding to short term variability introduce negligible differences in process 

outcomes. The coefficient of variation is about 0.06% and 0.8% for the cure time and 

maximum temperature overshoot respectively. Consequently, stochastic simulation can 

be carried out considering only the variability of the level of tool and air temperature and 

surface heat transfer coefficient. The influence of forced convection short term variability 

is similar to that of natural convection [38]. Eqs. (4.17) and (4.18) can be expressed as 

follows: 

h = Ah (4.19) 
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Figure 4.14 Short term variability of tool and air temperature influence on temperature 

distribution through the thickness of a thick carbon/epoxy composite flat panel (TFP) 

curing. 
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Figure 4.15 Short term variability of heat transfer coefficient influence on temperat li re 

distribution through the thickness of a thick carbon/epoxy composite flat panel (TFP) 

curing; inset: detailed view of temperature overshoot region. 
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Figure 4.16 Short term variability of boundary conditions influence on temperature 

overshoot of curing of thick carbon/epoxy composite flat panel (TFP) curing; inset: 

detailed view of temperature overshoot region. 
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Figure 4.17 Short term variability of boundary conditions influence on degree of cure of 

thick carbon/epoxy composite flat panel (TFP) curing. 

Table 4.8 Boundary conditions parameters values and cure process outcomes for 

deterministic and stochastic cure model of thick carbon/epoxy composite flat panel (TFP). 

Model 

parameter/outcome 

Deterministic Stochastic model 

model realisation 

Ah (W/m2/°C) 

Bh (W/m2/°C) 

Bti ( °C) 

Bt2 (°C) 

Bt3 (°C) 

63t 

you ( °C) 

CrOU (°C) 

µou (°C) 

17.82 17.82 

2.2 

0.082 

0.077 

0.026 

9.910-11

0.81 

0.05 

0.057 

Cure time 115 min 115.3 min 

Temperature overshoot 40 °C 40.7 °C 
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4.6. RTM6 epoxy resin cure kinetics and thermal conductivity 

variability 

Cure kinetics variability investigated in [37] can introduce significant variations in cure 

process outcomes reaching coefficients of variation of approximately 30%. The main 

parameters of the cure kinetics model presented in Eqs. (4.4)-(4.9) which show significant 

variations and thus considered as stochastic are the activation energy of the autocatalytic 

term (E2), the autocatalytic order (m) and the initial degree of cure (a0) [37]. The mean 

values and the corresponding standard deviation of stochastic cure kinetics parameters 

are presented in Table 4.9. Table 4.10 summarises the correlation matrix of cure kinetics 

stochastic objects in which significant positive correlation is observed between the 

reaction order and the activation energy. Cure kinetics stochastic parameters can be 

represented by a normal distribution [37]. 

The experimental scatter presented in the early stages of resin thermal conductivity 

characterisation, while the degree of cure is low, leads to significant uncertainty of the 

initial resin thermal conductivity estimation. The intercept k in Eq. (4.15) controls the 

overall level of conductivity representing the initial state of resin thermal conductivity. 

Therefore, the thermal conductivity intercept was considered as unknown stochastic 

parameter in the inversion scheme implementation of cure process which is presented in 

chapter 8. 

Table 4.9 Stochastic properties of cure kinetics parameters [37]. 

Parameter Average Standard deviation 

Initial degree of cure: ao 0.033 0.006 

Activation energy E2 (J/mol) 57,820 600 

Reaction order: m 1.29 0.094 

Table 4.10 Correlation matrix of uncertain parameters [37]. 

Parameter ao E2 m 

ao 1 -0.09 0.55 

E2 -0.09 1 -0.84 

m 0.55 -0.84 
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4.7. Variability of woven carbon fibre fabric permeability 

Variations in fibre architecture due to handling and storage, nesting effects during lay-up 

and preform misplacement in the mould affect permeability significantly [19, 21] . The 

nominal values of longitudinal and transverse permeability of G0926 woven carbon fabric 

in the warp and weft direction corresponding to volume fraction of 57% respectively are 

reported in Table 4.11 [31]. Statistically characterisation of a glass fibre woven fabric 

principal permeabilities indicates a Gaussian distribution with a coefficient of variation 

of about 20% [12]. Therefore, considering the woven architecture of G0926 a normal 

distribution was assigned around the nominal value in order to result in a coefficient of 

variation of 20%. Preform permeability variability was represented as a scalar variable 

rather than a random field with autocorrelation structure [25]. This simplified approach 

does not consider the variations of preform permeability in local scale and spatial 

correlation; however, it results in a significant reduction of flow models dimensions 

enabling the construction of efficient surrogate models. The effective in-plane 

permeabilities of the G0926 fabric of the composite flat panel with the recessed edge and 

composite C spar described in sections 3.5.1.2 and 3.5.2.2 respectively were considered 

stochastic with average and standard deviations based on statistical properties of principal 

permeability values reported in Table 4.11. 

4.8. Race tracking variability 

Race tracking effects can be represented in flow simulation by an equivalent permeability 

[130] characterised by the race tracking strength, which is the ratio of equivalent race 

tracking permeability over fabric permeability in the same direction [35]. The RTM 

mould described in section 3.4.1 is sealed with silicone rubber along the edges which may 

cause compaction to the preform edges after closing the mould. This effect was 

represented by a lower limit of 0.5 in race tracking strength. Conversely, inaccuracies in 

fabric cutting or fabric misplacement may result in small gaps between the reinforcement 

and the seal which results in increasing the local permeability in the longitudinal direction 

of the gap. This potential effect was represented by adopting a maximum value of race 

tracking strength of 10. Variability in race tracking equivalent permeability is usually 

represented by a Weibull or a Gaussian distribution. In the present study, a normal 

distribution was selected with its statistical properties summarised in Table 4.11 utilised 
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in the filling simulation of carbon/epoxy composite flat panel with the recessed edge 

(FPR) described in sections 3.5.1.2. 

Table 4.11 Nominal values of 60926 carbon fibre woven fabric [31] and the corresponding 

standard deviation [12] of principal permeabilities and the equivalent race tracking 

permeability statistical properties. 

Parameter Average Standard deviation 

Longitudinal permeability: K1 (m2) 1.7 10-" 3.4 10-12

Transverse permeability: K2 (m2) 1.4 10-" 2.6 1012

Race tracking permeability: KRi (m2) 4 10-" 15 mu 

4.9. Overview 

Initial viscosity of RTM6 epoxy resin presents significant variability and is considered as 

a stochastic variable as well as the preform permeability and race tracking for the 

implementation of the inversion scheme in the RTM filling stage presented in chapters 6 

and 7. Thermal boundaries conditions such as tool temperature and surface heat transfer 

coefficient present considerable variability. The stochastic objects developed 

representing are used in the inverse solution of the cure problem in chapter 8 and in the 

stochastic multi-objective optimisation framework described in chapter 9. 
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5. Dielectric sensor for process monitoring of carbon fibre 

composites manufacture 

5.1. Introduction 

Process monitoring techniques are used to follow critical parameters of manufacturing 

such as flow front position and cure reaction progress and to identify potential defects. 

Monitoring sensors, based on impedance spectroscopy, are considered beneficial due to 

the high response sensitivity, the efficiency and low cost of the data acquisition setup and 

the capability for incorporation on tooling. However, their applicability is limited by the 

influence of carbon reinforcement on the electrical signals. This chapter presents the 

development of a dielectric sensor capable of operating with the presence of carbon 

reinforcement. The main concept is used for the design of two sensor types; a lineal sensor 

used to monitor the flow front and a woven arrangement able to track the cure. Sensor 

signals are analysed using the corresponding equivalent circuits. The lineal sensor is 

validated in RTM filling of a carbon/epoxy composite flat panel, described in section 

3.4.1, in different injection pressures. The cure sensor is evaluated in isothermal neat resin 

cure processing using the experimental set-up presented in section 3.3.3 and in VARTM 

processing of the carbon/epoxy composite flat part described in section 3.4.2. 

5.2. Sensor set-up 

5.2.1. Principle of operation 

The design of the dielectric sensor developed in this work is illustrated in Figure 5.1a. It 

comprises two twisted solid copper wires coated by an insulator. The insulating coating 

prevents contact of the copper wire with the conductive fibres. An electric field is formed 

between the wires upon application of voltage. The field goes through the insulating 

coating and penetrates the gaps between the wires. The twisting increases the effective 

length as well as the air gaps between the wires resulting in stronger signal. Although the 

reinforcement can interfere with the fringing field, it only screens it partially. The sensor 

principle can be adapted to address both flow and cure monitoring applications. 

A lineal sensor made using the twisted pair can be used to monitor the resin flow front 

position. An example of the configuration of the lineal sensor in an RTM tool is presented 

in Figure 5.1b. The measurement area of the sensor is divided into two parts: the wetted 

area impregnated by resin, which fills the gaps between the wires, and the dry area in 
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which the gaps are filled with air. As the flow process progresses the wetted area 

percentage increases, whilst the dry area decreases. The very large contrast in dielectric 

properties between liquid resin and air results in significant sensitivity of the sensor 

response to its covered length. The sensor can be placed either on the tool surface in 

contact with the carbon fabric or between two layers of reinforcement. One potential 

configuration is where the sensor is placed on the lower tooling in contact with the fabric 

as illustrated in Figure 5.1b, in which case the presence of the sensor only causes a small 

disturbance to the fibre architecture, similar in size to the diameter of the wires. The lineal 

sensor was made by twisting two solid insulated copper wires specified in section 3.2 

using a hand drill. The pitch of the twist was 500 twists/m. A detailed view of the 

dielectric sensor is illustrated in Figure 5.2. The diameter of each wire is 127 gm which 

is smaller than the tow width. Therefore, the disturbance in reinforcement architecture 

can be considered similar to the resin rich channels that are present in the composite 

material, 

Insulation Copper wire 

a) 

Wetted part 

rt 

... 

Lower tool Sensor Carbon fibre plies 

b) 

Figure 5.1 Lineal flow sensor: a) sensor geometry; b) schematic representation of the 

operational principle of the flow sensor. 
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Figure 5.2 Detailed view of lineal flow sensor. 

In the case of cure monitoring, the local material state is estimated based on the sensitivity 

of electrical properties on cure progress. For the sensing concept based on the twisted pair 

proposed here, the strength of the signal is governed by the total length of the sensor. A 

woven configuration of the dielectric sensor was utilised for the cure sensor concept 

implementation. The cure sensor was made using 1.2 m of twisted wire and a nominal 

weaving distance of 2 mm. The miniature loom illustrated in Figure 5.3a is made of ABS 

filament and was produced in a Lulzbot TAZ 5 3-D printer as detailed in section 3.2. 

Figures 5.3b and 5.3c present the sensor production and the resulting woven configuration 

with dimensions 20x20x0.25 mm. The woven configuration allows fitting a large length 

within a small area. This results in sufficient sensitivity combined with local cure sensing. 

The dielectric sensor design presented here overcomes the difficulties related to shorting 

in the presence of carbon fibre reinforcement. The presence of the insulation material 

precludes the use of glass cloths or veils on the dielectric sensor to ensure electrical 

insulation from the carbon fibre. The twisted pattern increases the available air pockets 

between the wires strengthening the signal and allowing the monitoring of resin state 

during cure. The relative small size of the sensor allows its implementation on complex 

geometries where other sensing systems such as pressure sensors require tool 

modifications as described in section 2.3.1. 
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Figure 53 Cure sensor: a) miniature loom; b) production of sensor and; c) woven sensor. 

5.2.2. Analysis of lineal flow sensor signal 

The lineal sensor response has been examined following the analysis in [44]. The electric 

circuit representing the sensor response is illustrated in Figure 5.4. The wetted and dry 

parts of the sensor are connected in parallel, whilst within each part the element 

corresponding to the gaps and the element corresponding to the coating are connected in 

series. The admittance per unit length of the wetted part is: 

and of the dry part 

YwgYc 
Yw (5.1) 

Ywg , Yc 

YdgYc 
Yd (5.2) 

Ydg Yc 

where y, is the admittance per unit length of the coating, ywg the admittance per unit 

length of the filled gaps and ydg the admittance per unit length of the dry gaps. 

The admittance measured by the sensor is: 

YwgYc YdgYc 
Y = Lw + (L Lw) 

Ywg Yc Ydg Yc 
(5.3) 

where the length of the sensor is L and the length covered by resin Lw. Eq (5.3) can be 

rearranged as follows: 

Y — Yo
L,

N
, =  

— Yo
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where Yf = Ly,,, is the admittance of the fully wetted sensor and Yo = Lyd the admittance 

of the dry sensor. 

Insulated coating  Dry part 

Insulated coating Wetted part 

Figure 5.4 Electrical circuit representing the lineal sensor response. 

Eq. (5.4) describes the linear response of the sensor to the flow front position and allows 

the online estimation of the length of sensor covered by resin using the measured 

admittance , the admittance of the dry sensor and the admittance of the fully wetted sensor. 

It should be noted that the latter two need to be determined for the conditions of the 

measurement, matching the reinforcement architecture and pressure applied during 

impregnation. 

5.23. Analysis of cure sensor signal 

In order to uncover the quantitative characteristics of the resin reaction during cure 

process it is necessary to translate the dielectric/impedance signal to information related 

to resin reaction state. The behaviour of a thermoset under AC electrical excitation is 

governed by three phenomena: dipolar relaxation, charge migration and electrode 

polarisation. These phenomena can be represented by the equivalent circuit illustrated in 

Figure 5.5a [151]. The circuit comprises two constant phase elements (CPE) representing 

the electrode-material interface connected in series with a sub-circuit corresponding to 

dipolar relaxation and migration charges. It is expected that the action of the insulating 

coating of the sensor developed in this work is incorporated into this part of the equivalent 

circuit coating, with the CPE representing both electrode effects and the capacitive 

response of the insulator. The presence of dipolar relaxation is represented by a 

capacitance (Csd), in series with a resistance (11,d) which correspond to static dipoles due 

to molecular asymmetry of the material, connected in parallel with a capacitance of the 

dipoles induced by electric field (Cid). The migrating charges mechanism is considered 
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by a resistor (Rm) connected in parallel with the sub-circuit of dipolar relaxation. The 

imaginary part of the complex impedance of the equivalent circuit can be expressed as 

follows: 

Z" — Rm[co3CLRLRmCid + coRm(Cid + Csd)]  2 
co-(CsdRm + CsdRsd + CidRm)2 + (co2 CsaRsaRmCid — 1)2 + (Aeco)ncpE (5.5) 

where Ae and ncpE are coefficients of the constant phase element and w the angular 

frequency. 

For a lossy dielectric such as a curing epoxy resin with electrical behaviour dominated by 

migrating charges and a small contribution by dipolar relaxation, the equivalent circuit 

can be simplified by replacing the sub-circuit corresponding to dipolar relaxation and 

migration charges with a parallel R-C sub-circuit [80]. The simplification is possible in 

intermediate frequencies where the electrode polarisation and dipolar relaxations effect 

are negligible. The capacitive element C represents the overall ability of the material to 

store energy through polarisation, whilst the resistance R Rm includes all the 

dissipative contribution of migrating charges. Hence, Eq. (5.5) is transformed as follows: 

Z" — coCR2 2 

1 + co2C2R2 + (Aeco)'cPE 
(5.6) 

Figure 5.5b illustrates the imaginary impedance spectrum of the simplified equivalent 

circuit. The imaginary impedance decreases linearly in a log-log plot, with a slope equal 

to the exponent of the electrode polarisation and coating term (ncpE) in the low frequency 

zone of the spectrum where this term dominates the signal. The peak region observed in 

intermediate frequencies is dominated by migrating charges. In this region the electrode 

polarisation effect is negligible and the corresponding term in Eq. (5.6) can be excluded. 

Consequently, the imaginary impedance can be rewritten as follows: 

coCR2
Z" — 

1 + co2C2 R2
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Figure 5.5 a) Equivalent circuit representing the behaviour of a curing thermoset; b) 

Imaginary impedance spectrum of simplified equivalent circuit expressed by Eq. (5.6). 
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The derivative of Eq. (5.7) can be expressed as follows: 

dZ" cR2 (1 _ u.,2c2 R2) 

dO) (1 u.,2c2 R2)2 

which has a root corresponding to the imaginary impedance maximum at: 

and the corresponding maximum imaginary impedance is: 

R 

2 

(5.8) 

(5.9) 

(5.10) 

The local imaginary impedance maximum (IIM) is related directly to the resistor 

corresponding to migrating charges as highlighted by Eq. (5.10) [80]. The high frequency 

zone is governed by the capacitive elements of the circuit, which in the case of the 

simplified spectrum expressed by Eq. (5.6) is manifested as a line with a slope of -1 in a 

log-log plot. In the case of the more complex behaviour represented by Eq. (5.5), the high 

frequency response incorporates a small shoulder corresponding to dipolar relaxation 

with a linear behaviour with a slop of -1 at very high frequencies. 

The imaginary impedance maximum is used in practice to monitor the cure based on the 

dependence of resistivity on migrating charges mobility, which in turn depends on local 

material viscosity [152]. This can implemented through a normalised form of the IIM [74, 

75, 80] or through treating its time derivative as a signal equivalent to heat flow in 

differential scanning calorimetry [153]. 

5.2.4. Evaluation of the signal of the dielectric sensor 

The dielectric sensor signal was evaluated by placing it in different locations within the 

RTM assembly under vacuum. The RTM assembly comprises a carbon fibre composite 

flat panel with thickness 3.3 mm and the tool which consists of a steel metal cavity and a 

glass top plate allowing the visual monitoring of the filling stage as described in section 

3.4.1. Three different setups were tested by evaluating the response prior to filling; the 

sensor placed between the tool cavity and the lower side of the preform, at preform mid 

thickness — between the carbon fibre layers - and between the glass top plate and the upper 

surface of the preform. For all three configurations impedance data were acquired over 

31 frequencies swept logarithmically from 1 Hz to 1 MHz. 
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Figure 5.6 illustrates the imaginary impedance spectra for the three different sensor 

configurations alongside the spectrum of the lineal sensor in air. The imaginary 

impedance spectrum corresponds to a capacitive circuit in all cases. The air between the 

two copper wires operates as an insulation material thus forming a nearly ideal capacitor. 

The migrating charges effect present in resin and illustrated in Figure 5.5b is not 

manifested as the sensor is dry. The sensor response is identical in the three different 

placements configurations and in air. 
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Figure 5.6 Imaginary impedance spectrum of dielectric sensor for different sensor 

placements in contact with carbon reinforcement. 

The imaginary impedance evolution with time at a fixed frequency of 10 kHz is illustrated 

in Figure 5.7. The sensor signal does not present fluctuations over time showing stability 

under industrial manufacturing conditions. The results show that the sensor is not affected 

negatively by the presence of the electrical conductive carbon reinforcement. This allows 

the placement of the dielectric sensor in different locations within the RTM tool and 

preform. Therefore, the sensing system implementation can be modified according to 

different process conditions, especially where the complexity of the manufacturing 

process is increased and the available space options for the sensor installation are limited. 

The dielectric sensor developed here can be used in composites manufacturing processes 
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without affecting significantly process parameters decisions due to its geometrician 

flexibility and robustness. 
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Figure 5.7 Imaginary impedance evolution with time at 10 kHz for different sensor 

placements. 

5.3. Flow monitoring 

Two RTM runs of the carbon/epoxy composite flat panel (FP) presented in section 3.4.1 

have been conducted for the validation of the lineal flow sensor. The RTM runs (FPI, 

FP2) were carried out using two different injection pressures; 2 and 3 bar. The sensor was 

placed centrally along the long direction of the mould in contact with the lower tool. More 

details regarding the process can be found in section 3.4.1. The evolution of the flow front 

for the case of FP2 part is shown in Figure 5.8. It can be observed that there is race tracking 

on the sides of the mould, affecting the flow in a region extending to about 80 mm from 

the edge by the end of filling. The filling pattern is uniform in the central region of the 

mould where the sensor is placed. The filling pattern is similar in the case of the FPI part 

filling. 
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a) 

b) 

c) 
Figure 5.8 Visual flow front evolution in the 3 bar RTM filling stage of epoxy/carbon 

composite flat panel (FP2): a) 3 min; b) $ min and; c) 16 min. 
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Figure 5.9 illustrates the lineal sensor response for the 2 and 3 bar RTM experiments and 

compares it with the visual flow front measurements. It can be observed that the sensor 

response, represented as real length using Eq. (5.4), follows closely the parabolic 

behaviour of the flow front position during the whole duration of the impregnation. The 

sensor signal is sensitive to changes in flow front speed with an error that never exceeds 

3% of the actual front position measured visually. 

According to Eq. (5.4) the length estimated using the admittance measurements is the 

ratio of two complex numbers. In an ideal situation, in which the sensor field, material 

state and environmental conditions are uniform across the length of the sensor, the 

numerator and denominator of the fraction are in phase resulting in a negligible imaginary 

part of the estimated length. Deviations from these ideal conditions, as well as 

measurement noise, cause higher values of imaginary length. Consequently, the sensor 

response provides a direct indication of measurement and analysis errors [44]. In the 

results presented in Figure 5.9 the imaginary impedance length in predominantly between 

-10 and 10 mm with a few extreme values reaching an absolute value of 25 mm. This is 

below 3% of the overall length, indicating a high quality estimation based on the real part 

of the length computed using Eq. (5.4). 

The results obtained using the flow sensor show clearly that the concept developed in this 

work is applicable to liquid moulding of carbon composites under industrial conditions. 

The sensor withstands RTM level pressures, whilst its placement between the metal tool 

and the carbon fabric tested here is the worst case scenario in terms of potential 

interference by conductors as well as potential damage to the insulating coating_ The 

lineal flow sensor provides similar signal stability when it is placed in different location 

in the RTM assembly. The lineal flow sensor flexibility overcomes practical complexities 

presented in flow dielectric sensors set-ups which use the conductive carbon 

reinforcement as one of the electrodes of the sensing system [49] and thus their operation 

requires electrical insulation of the reinforcement from the tooling assembly. The air/resin 

pockets formed around the sensor by the fabric are sufficient to guarantee high sensitivity 

to filling state. The disturbance in the fabric architecture caused by the presence of the 

sensor is minimal, whilst the sensor is easily removed after curing if it is placed on the 

surface. The fabric conforms around the sensor forming a groove with a maximum 

dimension of around 250 µm as illustrated in Figure 5.10. The dimension of the 
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disturbance is governed by the wire diameter, which can be minimised by selection of a 

thinner coated wire for the twisted pair. 
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Figure 5.9 Comparison of visual with dielectric flow measurement for RTM filling stage of 

epoxy/carbon fibre flat composite panel at a) 2 bar (FP,) and; b) 3 bar (FP2). 
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Sensor 

Figure 5.10 Microscopic view of the epoxy/carbon composite flat panel (FP,) deformation 

caused by the flow sensor. 

5.4. Cure monitoring 

Isothermal cure runs of neat epoxy resin in different temperatures and a VARTM process 

were carried out for evaluation of the cure sensor. The isothermal cure processes of neat 

resin were conducted at 150 °C and 160 °C using the experimental set-up specified in 

section 3.3.3. The VARTM process involved the cure of a carbon fibre composite flat 

panel comprising six plies of carbon fibre woven fabric, whilst the matrix was RTM6 

epoxy as described in section 34.2. The evolution of the imaginary impedance spectrum 

during the isothermal cure of neat resin at 150 °C and 160 °C is illustrated in Figures 

5.11a and 5 .111b respectively. A linear log-log reduction of imaginary impedance at low 

frequency is observed as expected. At intermediate frequencies the plot shows a shoulder 

at the location where the local imaginary impedance peak is expected, whilst at high 

frequency the plot reverts to a linear log-log behaviour. The manifestation of migrating 

charges as a shoulder in the spectrum instead of a peak, which is the case for standard 

sensors [153], can be attributed to the insulating coating of the twisted wires, which 

behaves as an additional - mostly capacitive - element acting alongside electrode 

polarisation resulting in a higher effective value of Ae in the equivalent circuit. In terms 

of physical phenomena, the presence of the coating limits direct charge migration towards 

the electrodes, with the migration mostly occurring up to the boundary of the coating and 

the curing material and limited by the polarisation of the insulating layer as the field 

alternates. As the curing progresses the spectrum shifts to lower frequency and higher 

impedance. This behaviour, which is the same as that observed with conventional sensing 

elements, is attributed to the effect of increasing viscosity during the cure, which results 

in reduced mobility of charge carriers and increased timescale in their response. 
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Figure 5.11 Imaginary impedance spectra evolution during isothermal cure of neat epoxy 

resin at a) 150 °C and; b) 160 °C. 

The manifestation of migrating charges as a shoulder instead of a peak in imaginary 

impedance does not allow use of the conventional analysis based on the JIM to monitor 
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progress of cure [74, 75, 80]. For the spectra obtained by the sensor presented here, this 

is carried out by estimating the values of Ae and ncpE for the CPE element of the 

equivalent circuit from the low frequency response and subtracting the contribution of the 

constant phase element corresponding to electrode polarisation and the insulating coating 

from Eq. (5.6). The values of Ae and ncpE were calculated for different times and using 

the log-log plot of imaginary impedance versus frequency at low frequencies and linear 

regression. As illustrated in Figures 5.12 and 5.13 the values of Ae and ncpE for the CPE 

element can be considered constant during the experiments and equal to 100 MOhm/s°96

and 0.96 respectively. The resulting spectrum after subtraction of the constant phase 

element from Eq. (5.6), termed material impedance (Zmn ), is illustrated in Figure 5.14 

alongside the original spectrum. The material impedance spectrum incorporates a 

pronounced peak which can be used instead of the IIM for estimating the state of cure. 
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Figure 5.12 Imaginary impedance in low frequencies evolution during isothermal cure of 

neat epoxy and equivalent circuit response at ISO °C. 
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Figure 5.13 Imaginary impedance in low frequencies evolution during isothermal cure of 

neat epoxy and equivalent circuit response at 160 °C. 

9 7 

7 6 

I 

0 • O 
• 5 E 

o 
• 

• s

N 
ao 

3 4 

-Impedance of the equivalent circuit 
- - - Impedance after substraction of CPE contribution 

1- 3 
0 1 2 3 4 5 6 

log Frequency (Hz) 

Figure 5.14 Imaginary impedance of equivalent circuit before and after subtraction of the 

CPE contribution: spectrum obtained at 64 min during the cure of neat RTM6 at 160°C. 
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Figure 5.15 Material impedance maximum evolution and comparison with fractional 

conversion computed using non-parametric kinetics for the isothermal cure of neat RTM6 

epoxy resin at a) 150 °C and; b) 160 °C. 
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Figures 5.15 a and b illustrate the evolution of the maximum of Z... for the two isothermal 

neat resin experiments and compare it with the results of a non-parametric cure kinetics 

model for the resin system of this study based on calorimetric data [134]. In both 

experiments the response of the cure sensor follows closely the resin reaction. The results 

highlight the cure sensor efficiency in terms of monitoring the degree of cure evolution 

during the whole process. 
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Figure 5.16 Imaginary impedance at fixed frequencies and comparison with the evolution 

of specific heat capacity for the isothermal cure of neat RTM6 epoxy resin at 150 °C. 

Imaginary impedance spectroscopy can also be used for identifying the vitrification point 

of the resin during the cure. This follows from the influence of vitrification on dipolar 

relaxation and is manifested as a secondary shoulder in the evolution of imaginary 

impedance at fixed frequency [154]. Figures 5.16 and 5.17 illustrate the imaginary 

impedance evolution at 1 kHz and 10 kHz alongside the specific heat capacity for the 

isothermal curing of neat resin at 150 °C and 160 °C. The imaginary impedance at fixed 

frequency shows a two-step behaviour; the first major step corresponding to the effect of 

curing on migrating charges and the secondary step to vitrification. The vitrification is 

manifested at 50-70 min and 35-55 min at 150°C and 160°C respectively. This time can 

be compared with the vitrification time identified as a step change in specific heat 

capacity during the cure. The specific heat capacity for the resin system of this study was 
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calculated based on the results presented in [155] using the model reported in section 

4.2.3. The step in specific heat capacity curves occurs at 65 min and 50 min at 150°C and 

160°C respectively, which shows that the sensor identification of vitrification is in 

agreement with the calorimetric manifestation of the phenomenon. The comparison 

highlights the capability of the cure sensor to identify the vitrification of the resin during 

isothermal runs. 
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Figure 5.17 Imaginary impedance at fixed frequencies and comparison with the evolution 

of specific heat capacity for the isothermal cure of neat RTM6 epoxy resin at 160 °C. 

The results of cure monitoring during VARTM processing of the carbon/epoxy composite 

flat panel described in section 3.4.2 are illustrated in Figures 5.18 and 5.19. The response 

is very similar to that of the neat resin, showing that the sensor monitors resin material 

changes in the presence of carbon reinforcement and is able to follow the cure_ The 

reaction progress, as monitored by the cure sensor, is in very good agreement with the 

corresponding estimation of the cure kinetics model, as observed in Figure 5.18. The 

woven cure sensor allows the monitoring of resin reaction under industrial conditions in 

the presence of carbon fibre reinforcement. The disturbance caused by the cure sensor in 

the preform is small compared with other solutions where the sensor is covered with a 

permeable non-conductive material such as glass cloth or a polymer weave [72, 78, 83]. 

Figure 5.19 illustrates the imaginary impedance evolution at fixed frequencies alongside 
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the evolution of specific heat capacity during the cure of the carbon part. The vitrification 

is manifested as the second step of imaginary impedance during the cure process at 40-

50 min. The signal sensitivity obtained for the length of twisted wire corresponding to the 

woven sensor is about 20% higher than the sensitivity of conventional interdigitated 

electrode sensors (Pearson Panke, GIA) [153]. More specifically, the sensitivity during 

the isothermal cure of neat resin is equal to 1 order of magnitude per 20% progress of 

cure and 1 order of magnitude per 25% progress of cure for the sensor presented here and 

a conventional interdigitated sensor respectively. Despite the fact that the insulation 

covers the sensor electrodes, increasing the contribution of the constant phase element, 

the resulting sensitivity is higher than a conventional sensor covering a similar area. 
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Figure 5.18 VARTM cure of epoxy/carbon composite flat panel: material impedance 

maximum evolution and comparison with fractional conversion computed using non-

parametric kinetics. 
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Figure 5.19 VARTM cure of epoxy/carbon composite flat panel: imaginary impedance 

evolution at fixed frequencies and comparison with the evolution of specific heat capacity. 

The lineal flow sensor signal was evaluated after the completion of RTM filling of the 

RTM6 epoxy/carbon composite flat panel (FP) in order to investigate its cure monitoring 

capabilities. Figure 5.20 illustrates the imaginary impedance evolution of the lineal flow 

sensor at a fixed frequency of 3.16 kHz during cure at 160°C in RTM process. The 

vitrification is pronounced as a secondary step at 40 -50 min in imaginary impedance 

evolution and is in good agreement with the specific heat capacity step change. The lineal 

sensor response is noisy in comparison to the cure sensor, highlighting the improvements 

in terms of sensitivity due to the woven configuration of the cure sensor. The local 

character of cure sensor allows the monitoring of resin presenting uniform material state. 

In the case of lineal sensor, the interrogated material is distributed across the length of the 

sensor and potential dissimilarities in boundary conditions may affect the uniformity of 

the measured resin introducing noise. 
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Figure 5.20 Lineal sensor imaginary impedance evolution at fixed frequency during RTM 

cure of epoxy/carbon composite panel and comparison with the evolution of specific heat 

capacity. 

2.6 

2 

S
pe

ci
fi

c 
he

at
 c

ap
ac

it
y
 (

J/
g/

°C
) 

5.5. Overview 

The new approach of dielectric sensing developed in this study overcomes limitations 

related to the presence of conductive carbon-fibre reinforcement monitoring the filling 

and curing stage of composites manufacture. The intrusiveness of the sensor in preform 

architecture is negligible due to its small size, whilst the sensor design allows its 

placement anywhere in composite part. Validation RTM tests have been conducted 

demonstrating the accuracy and robustness of the flow sensor with an error never 

exceeding 3%. The cure sensor evaluated in curing of neat resin and VARTM processing 

allows the monitoring of resin reaction progress, whilst it identifies the vitrification time 

in different isothermal runs. A set of lineal flow dielectric sensors are used as the process 

monitoring system in the RTM filling stage for the evaluation of the inversion procedure 

performance which is presented in chapter 6. 
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6. Inversion scheme development in the RTM filling of a 

carbon/epoxy composite flat panel with recessed edge 

6.1. Introduction 

The presence of uncertainty in composites manufacture [5] can lead to significant 

variations in filling duration and initiate process defects such as dry spots and voids 

resulting in rejected parts. Variability of resin viscosity, preform permeability and length 

of the distribution medium can introduce up to 20% variance in filling duration [25] . The 

inverse algorithm described in section 3.8 is implemented in the case of the RTM filling 

of a carbon/epoxy composite flat panel with recessed edge specified in section 3.4.1 for 

the probabilistic estimation of unknown stochastic parameters and the corresponding 

process outcomes. Lineal flow sensors, presented in chapter 5, are placed in strategic 

positions in the mould cavity providing data during the flow stage. Surrogate flow models 

are constructed based on the methodology described in section 3.6 to represent the 

response of sensors allowing the real time implementation of the inverse scheme. The 

stochastic objects presented in chapter 4 related to the filling stage were considered in 

this part of the work. 

6.2. Surrogate flow models of carbon/epoxy composite flat panel 

construction and validation 

Four surrogate models based on the methodology described in section 3.6 were 

constructed for the implementation of the inversion procedure. The surrogate models 

were constructed based on an initial sample generated using the flow model described in 

section 3.5.1.1. This represents the RTM filling stage of an epoxy/carbon composite flat 

panel with a recessed edge (FPR). Three surrogate models (FPR SM I. FPR SM2 and FPR 

SM3) represent the covered lengths S1 , S2 and S3 of the three sensors as function of the 

stochastic variables and time t. Sensors S1 and S3 were placed on the straight and recessed 

edge of the part respectively, whilst sensor S2 was placed across the main flow. More 

details regarding the lineal flow sensor placement can be found in section 3.4.1. The 

fourth surrogate model (FPR SM4) represents the filling duration (tf,ii ) as a function of 

the unknown stochastic parameters. The unknown stochastic parameters are the initial 
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reference viscosity (im), preform permeabilities (Ku, Ky) and the equivalent race tracking 

permeabilities (KR). 

Table 6.1 Sensitivity analysis parameter values and results for filling process of 

carbon/epoxy composite flat panel with recessed edge (FPR). 

Parameter Lower value Upper value 

Average relative difference 

Sensor 1 Sensor 2 Sensor 3 

K. (m2) 
1 10-H 2.4 1041 38% 41% 40% 

KY (m2) 9 10-12 1.9 1O" 3% 2% 22% 

KRi (m2) 1 10-11 7 10' 44% 28% 14% 

KR2 (m2) 
1 10-11 7 10-11 2% 2% 65% 

KR3 (m2) 1 10-11 7 10-11 3% 3% 3% 

KR4 (m2) 1 10-11 7 10-11 8% 9% 30% 

KR3 (m2) 
1 10-11 7 1O11 1% 1% 20% 

KR6 (m2) 
1 10-11 7 10-1I 0.04% 0.05% 4% 

The resulting high dimensional input space of the surrogate models requires a very large 

initial set of sampling points to ensure model accuracy compared to the PAM-RTM®

model. A sensitivity analysis was carried out in order to reduce model dimensionality 

investigating the model response by altering each parameter by two positive and two 

negative standard deviations about their mean values. The initial reference viscosity 

affects the response of all sensors given the global role of viscosity in the evolution of 

filling. In contrast, the preform permeability and race tracking permeability have a local 

role and only affect significantly some of the sensor responses. Therefore, only the 

preform permeability and equivalent race tracking permeability were considered in the 

sensitivity analysis. The values of the parameters used in the analysis are reported in 

Tables 4.5 and 4.11. The PAM-RTM® model was utilised for the evaluation of the filling 

of carbon/epoxy composite flat panel for the 256 input parameter combinations_ The 

average absolute relative difference of covered sensor length was computed for each of 

the input parameters as the average difference over all corresponding cases with the upper 

and lower value of the specific parameter. Table 6.1 summarises the results of the 

sensitivity analysis. An absolute relative difference of 10% in sensor response was 

considered as the threshold beyond which the sensor is considered sensitive to the 
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corresponding parameter. Sensors Si and S2 are sensitive only to Kx, KRi and KR4, 

whereas S3 to Kx, Ky, KR2 , KR4 and KRS. The equivalent race tracking permeability KR3 

does not affect significantly the response of any of the sensors since the flow front at that 

area is dominated by K. In the case of KR6 , the flow at the last section of recessed edge 

of the part is governed by Ky due to the presence of the recessed edge. Table 6.1 presents 

the parameters of each of the surrogate models and their corresponding ranges. Therefore, 

FPR SMi and FPR SM2 result in an input vector of five variables, whilst FPR SM3 in 

eight parameters. The surrogate model representing filling duration has a dimensionality 

equal to seven. 

The surrogate models representing the flow front position of each sensor and the filling 

duration were evaluated against the PAM-RTM® flow model. Three different cases were 

tested for the surrogate models which correspond to sensor response. The surrogate model 

of Si was compared with the simulation for three different initial reference viscosity 

values with the preform permeability values equal to 1.7 10-11 and 1.3 10-" m2

respectively and race tracking permeability values equal to 1.3 10-" m2. The results are 

illustrated in Figure 6.1. The estimated flow front position of Si is in good agreement 

with the corresponding PAM-RTM® model results and reproduces trends of dependence 

on viscosity correctly. Figure 6.2 depicts the evolution of flow front position of the second 

sensor (S2) as computed by the FPR SM2 and PAM-RTM® models for three different Kx

values, with Ky equal to 1.3 10-" m2, race tracking permeability values equal to 1.3 10-

u m2 and initial reference viscosity equal to 0.15 Pas. The discrepancy between the two 

models is negligible with an average absolute error of about 15 mm. 
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Figure 6.1 FPR SAM validation of RTM filling of carbon/epoxy composite flat panel with 

recessed edge (FPR) against the CV/FE simulation. 
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Figure 6.2 FPR SM2 validation of RTM filling of carbon/epoxy composite flat panel with 

recessed edge (FPR) against the CV/FE simulation. 
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The response of FPR SM3 corresponds to a total covered length greater than the other two 

models as this sensor covers the recessed edge of the part. Figure 6.3 illustrates S3 for 

three different initial reference viscosity values with K. and Ky equal to 1.7 10-1I and 1.3 

10-1I m2 respectively and race tracking permeability of 1.3 10-11 m2 as estimated by the 

two models. The average absolute error of surrogate model is about 12 mm highlighting 

the accuracy of the surrogate model. Figure 6.4 illustrates the comparison between the 

filling duration surrogate model and the PAM-RTM® solution for different initial 

viscosity values with K. and Ky equal to 1.7 10-" and 1.3 10-11 m2 respectively and race 

tracking permeability equal to 1.3 10-1I m2. The estimated average absolute error is about 

50 sec or less than 2% of the filling duration estimated using the simulation. The input 

parameters and the ranges of the validation cases are reported in Table 6.2. 

Table 6.2 Input parameters values used for the construction of validation curves fin• the 

comparison of surrogate and CV/FE models of carbon/epoxy composite flat panel with 

recessed edge (FPR). 

Parameter FPR SMI FPR SM2 FPR SM3 FPR SM4 

K. (m2) 1.7 10-11 110'11 - 210'11 1.7 10-n 1.7 10-" 

K (m2) 1.3 10-11 1.3 10-11

KR1 (m2) 1.3 10-11 1.3 10-" 1.3 10-n 1.3 10-11

KR 2 (m2) 1.3 10-1I 1.3 10-11

KR4 (m2) 1.3 10-11 1.3 10-" 1.3 10-n 1.3 10-11

KR5 (m2)
1.3 10-n 1.3 10-11

110 (Pas) 0.1 - 0.2 0.15 0.1- 0.2 0.1 - 0.2 
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Figure 63 FPR SM3 validation of RTM filling of FPR composite part against the CV/FE 

simulation. 
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Figure 6.4 FPR SM, validation of RTM filling of carbon/epoxy composite flat panel with 

recessed edge (FPR) against the CV/FE simulation. 
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6.3. Stochastic simulation of RTM filling of carbon/epoxy composite 

flat panel with recessed edge (FPR) 

A stochastic simulation of the RTM filling of FPR composite part (Figure 3.7) was carried 

out in order to investigate the influence of the stochastic input parameters on the filling 

process outcomes. The stochastic simulation is based on Monte Carlo and involves the 

generation of Nmc realisations of random input stochastic variables. The MC sampling 

points are generated using a set of normally distributed uncorrelated random variables. 

More details regarding the stochastic simulation are reported in section 3.7. The random 

variables considered in this study were the initial reference viscosity, preform 

permeability, equivalent race tracking permeability and the tool temperature as described 

in chapter 4. In each realisation, the flow model is executed calculating the filling duration 

and subsequently computing its first and second statistical moments using the overall set 

of realisations. A total of 400 realisations are required to ensure convergence in average 

and standard deviation. 

The average and standard deviation evolution of filling duration are illustrated in Figure 

6.5, whilst Figure 6.6 shows the cumulative probability. The mean value converges after 

80 iterations to 2400 sec, whilst the standard deviation reaches a plateau of about 780 sec 

after 300 realisations. The filling duration presents high variability with a coefficient of 

variation of about 30%. This can be attributed mainly to the significant variations of the 

initial state of resin viscosity and preform permeability. Also, tool temperature 

uncertainty affects resin viscosity resulting in filling time variations. The results highlight 

the initial uncertainty existing before the initiation of the manufacturing process. Potential 

uncertainties in material properties and boundary conditions may lead to significant 

variations during the manufacturing process resulting in unexpected defects and long 

process cycles. 
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Figure 6.5 Stochastic simulation of RTM filling of carbon/epoxy composite flat panel with 

recessed edge (FPR): filling duration average and standard deviation evolution with MC 

iterations. 
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Figure 6.6 Stochastic simulation of RTM filling of carbon/epoxy composite flat panel with 

recessed edge (FPR): cumulative probability of filling duration. 
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6.4. Real time uncertainty estimation during filling stage of 

carbon/epoxy composite flat panel with recessed edge 

6.4.1. Inversion procedure implementation 

An inversion scheme was developed for the real time uncertainty estimation of the 

unknown stochastic parameters and the filling duration. Figure 6.7 summarises the 

inversion procedure framework. The analysis is initiated when the filling stage of the 

RTM process of FPR composite part takes place. The sensors monitor the covered 

lengths S1, S2 and S3 at each time increment tk. The inverse scheme integrates the 

monitoring data Yexp(tk) E 11RNIcx3, with Nk the number of experimental data which 

correspond to covered lengths of the three lineal sensors at times t1 tk, in real time with 

the surrogate flow models "I'm = [S1, S2 , S3} using the MCMC method described in 

section 3.8 for the probabilistic prediction of the unknown stochastic parameters and the 

filling duration. 

Process 
monitoring system 

174 

to 
.2 O 

0 

RTM process 
Inverse scheme 

Yexp (tk) = [Si S2 S13( 

- 25 

- 20 

-15 

-10 :4.
Yexp(t2) = [Sj. Si S3] 

Ye p(t1.) = Si SI] 0

0. 

Surrogate flow models 
Si = f(Kx,Kki,KR4,10,tk) 

S2 = f(Kx,KRi,KR4,110, tk) 
= f(Kx,Ky, KRi,KR2, KR4, KR5,10, tk) 

t

Markov Chain 
Monte Carlo 

Process outcomes estimation: 
Stochastic variables estimation • Filling patterns • 
K,,Ky, KR1,KR2, KR4, KR5, tlo • Process duration: 

tflii = f(Kx,Ky, KRi ,KR2, KR4, KR5, no) 

Figure 6.7 Inversion scheme implementation for the RTM filling stage of carbon/epoxy 

composite flat panel with recessed edge (FPR). 
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In the real time implementation of the inversion procedure the monitoring matrix Ye., is 

updated every minute with a new batch of monitoring data. In this case, every new batch 

includes three data points corresponding to the three sensor responses. The number M of 

MCMC iterations carried out in the real time implementation of the inversion procedure 

in the filling of carbon/epoxy composite flat panel can be calculated based on the time of 

the execution of an MCMC iteration. The execution time of one iteration for the given 

computer increases with the increase of the size of Yexp. The number of MCMC iterations 

executed at the beginning of the process is about 2,500 points/min on the 4 cores @3.2 

GHz computer used, whilst this number decreases gradually to about 170 point/min in the 

last stage of the process. The total number of MCMC iterations was approximately 

20,000. Table 6.3 summarises inversion procedure parameters values. 

Table 6.3 Inverse scheme parameters values of carbon/epoxy composite flat panel with 

recessed edge (FPR). 

Parameter Symbol Value 

Noise level EKx standard deviation aEx„ 
3 10-B m 2 

Noise level EKy. standard deviation CKy 3 10-13 m2

Noise level EKR1 standard deviation 
^R1 

3 1043 m2

Noise level EKR2 standard deviation GE, 
R2 

3 10-13 m2

Noise level £KR4 standard deviation 
- ^R4 3 10-13 m2

Noise level £KR5 standard deviation 
EKRS 3 1043 m2

Noise level Eno standard deviation 
6£110 0.001 Pas 

Number of MCMC iterations M 20,000 iterations 

Number of monitoring data Nk 96 

Number of data batches ktot 32 
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6.4.2. RTM filling results of carbon/epoxy composite flat panel with 

recessed edge 

Figure 6.8 depicts the flow front evolution of the RTM filling stage of FPR composite 

part presented in section 3.4.1. The duration of the filling was 32 min. Race tracking 

occurs at the recessed edge at the beginning of the process. In the straight edge, the flow 

is slightly slower than the main flow due to local compaction by the silicone rubber. The 

presence of the rectangular insert results in asymmetric flow in which the resin fills the 

straight edge of the part first and then the area close to the recessed edge. Figure 6.9 

illustrates the flow monitoring results of the three lineal flow sensors. The flow front 

evolution of the first sensor (S1) presents some noise potentially due to measurement 

effects or the presence of local reinforcement variations leading to non-uniform flow 

across the straight edge of the part. The latter can be attributed to the preparation of the 

preform and its placement in the mould resulting in variations of the gap size between 

preform and mould across the edge and in turn in variations of local edge permeability. 

The flow front curve of sensor 3 (S3) indicates the different flow front velocities of each 

of the sub-sections of the recessed edge of the mould. At the beginning of the flow process 

the slope of the S3 curve is greater than those of S1 and S2 implying a race tracking effect 

on the recessed edge of the mould, which is also observed by visual monitoring. 
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Figure 6.8 Flow front position during RTM filling process of carbon/epoxy composite flat 

panel with recessed edge (FPR) in different time frames: a) 015 min; b) 2 min; c) 3.25 

min; d) 11 min; e) 14 min; f) 26 min. 
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Figure 6.9 Flow monitoring results on the filling of carbon/epoxy composite flat panel with 

recessed edge (FPR). 
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6.4.3. Results of the inverse solution 

The flow monitoring data were integrated into the inverse scheme for the real time 

uncertainty estimation of the stochastic parameters. The results of the inversion scheme 

for the unknown stochastic parameters and the filling duration are presented in Figures 

6.10 - 6.13. The use of the surrogate models allows the execution of MCMC iterations as 

the filling process evolves. Consequently, the results are presented as a function of filling 

time, which corresponds to the monitoring data and inverse estimation up to the specific 

point in the filling process. The estimated preform permeabilities reach a plateau of 1.31 

IV m2 and 1.17 10-1I m2 respectively after about 25 min from the beginning of the flow 

stage as depicted in Figure 6.10. Both parameters present significant variations in the 

initial stages of the inversion due to the limited monitoring data available at that time. As 

the inversion proceeds, the uncertainty is narrowed down. 
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Figure 6.10 Unknown stochastic parameters estimation: preform permeabilities of the 

filling of carbon/epoxy composite flat panel with recessed edge (FPR). 

The predicted KRi, KR2 , KR4 and KRS values present similar behaviour as depicted in 

Figure 6.11. The equivalent permeability of the straight edge (KRi) converges after 5 min 

as the monitoring data of sensor 1 are sufficient to provide information regarding the flow 

front evolution in the corresponding region. The other three equivalent race tracking 

permeabilities (KR2, KR4, KR5) are in the range of 4-6 10-11 m2 and are mostly stabilised 

after about 10 min, highlighting the occurrence of race tracking effects in the recessed 

edge. The initial reference viscosity reaches a plateau of 0.17 Pas after about 25 min 

(Figure 6.12). Table 6.4 summarises the statistical properties of the estimated stochastic 

parameters. Parameters such as K., the equivalent permeability of race tracking channel 

1 (KRi) and the initial viscosity present lower variability than the other parameters due to 

the greater sensitivity of the monitoring dataset to these variables. 

122 



1 x10-t0

0.8 

ce 

E
<1.> 

0.4 

a. 

0.2 

—Race tracking permeability (KRI) 

- - - Race tracking permeability (KR2) 

Race tracking permeability (KR4) 

V \' \•/..' 
- - - ---------- 

--- Race tracking permeability (KRs) 

^
I,

'I 

0 
0 500 1000 1500 2000 

Filling time (s) 

Figure 6.11 Unknown stochastic parameters estimation: equivalent race tracking 

permeabilities of the filling of carbon/epoxy composite flat panel with recessed edge (FPR). 
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Figure 6.12 Unknown stochastic parameters estimation: initial reference viscosity of the 

filling of carbon/epoxy composite flat panel with recessed edge (FPR). 
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Table 6.4 Statistical properties of estimated parameters on the filling of carhon/epox!, 

composite flat panel with recessed edge (FPR). 

Parameter Average 
Standard 

deviation 

K. (m2) 1.312 1O11 4.52 10-14

Ky (m2) 1.168 1O11 1.26 10-13

KR]. (m2) 5.044 1042 3.81 1O14

KR2 (m2) 4.056 10-11 1.07 1042

KR4 (m2) 4.318 1041 5.22 10-13

KRS (m2) 6.422 1O11 5.63 1O13

10 (Pas) 0.1691 5 10-4
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Figure 6.13 Unknown stochastic parameters estimation: filling duration estimation of 

carbon/epoxy composite flat panel with recessed edge (FPR). 

It is possible to predict the duration of the filling as well as other features of the process, 

using the unknown parameter values estimated in real time by the inversion scheme. 

Figure 6.13 illustrates the estimation of filling duration as the filling stage evolves. 

Initially, the uncertainty of filling duration estimation is significant since the available 

monitoring data are insufficient for an accurate prediction with low uncertainty. However, 
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as the monitoring data are enriched, the probabilistic estimation of filling duration is 

narrowed down as illustrated in Figure 6.14. Initially, the coefficient of variation of the 

estimated filling duration is about 25%, whilst after about 20 min the uncertainty is 

reduced by 80% to a coefficient of variation of 5%. The predicted filling duration 

converges to an average of 31 min with a standard deviation of 1.5 min, whilst the actual 

filling takes 32 min. 
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Figure 6.14 Cumulative density function evolution of estimated filling duration of 

carbon/epoxy composite flat panel with recessed edge (FPR). 

Figures 6.15 - 6.17 illustrate the efficiency of the inversion procedure in terms of reducing 

the uncertainty of flow front estimation. The 95% confidence intervals of the response of 

the three sensors, illustrated in Figures 6.15a, 6.16a and 6.17a, were calculated 

considering the initial uncertainty of the input parameters (Table 6.1). The confidence 

intervals of the prior estimate are wide due to the initial uncertainty of the problem, whilst 

the coefficient of variation of the predicted filling duration is equal to 30%. Figures 6.15b, 

6.16b and 6.17b illustrate the 95% confidence intervals of the three sensors calculated 

considering the inverse solution. The confidence intervals of the estimated covered 

lengths have been narrowed down significantly, whilst there is a good agreement between 
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posterior prediction and the actual covered length. The real time implementation of the 

inverse scheme is able to estimate the flow front evolution and filling duration with high 

accuracy. The discrepancies observed between FPR flow model predictions and sensor 

data are attributed to the fact that the scheme does not consider local flow phenomena 

such as nesting or preform imperfections, in contrast to sensors which are sensitive to 

local effects. The representation of preform permeability and race tracking variability 

with random fields [25] would result in estimations of local phenomena monitored by the 

sensing system. However, this approach increases significantly the dimensionality of the 

surrogate flow models causing practical difficulties related to computational resources 

requirements. The inversion procedure gives a probabilistic estimation of the main flow 

parameters such as preform permeability, viscosity and boundary conditions such as race 

tracking effects allowing the probabilistic on 1 ine prediction of the filling duration and 

flow front evolution. 

The flow fronts corresponding to the lst and 3"1 quartiles of the prior estimate and using 

the outcome of the inversion scheme are illustrated in Figure 6.18 and compared to the 

flow front measured visually during RTM filling of FPR part. The uncertainty obtained 

by the prior estimate is high. The probabilistic estimations of the flow front with the 

initiation of the inverse scheme present low variations and are very close to the visual 

observations. There are small differences between the inverse scheme estimations and the 

actual flow front at the beginning of process mainly due to noise effects in the 

experimental data and the presence of local flow phenomena. As the flow evolves the 

estimated flow front follows closely the actual resin front position identifying potential 

disturbances such as race tracking effects at the part edges. 
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Figure 6.15 Estimation uncertainty of covered length of a) sensor 1 before the filling; 

b) sensor 1 after 1500 s on the filling of carbon/epoxy composite flat panel with recessed 
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Figure 6.16 Estimation uncertainty of covered length of a) sensor 2 before the filling; 

b) sensor 2 after 1500 s on the filling of carbon/epoxy composite flat panel with recessed 

edge (FPR). 
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Figure 6.17 Estimation uncertainty of covered length of a) sensor 3 before the filling; 

b) sensor 3 after 1500 sec on the filling of carbon/epoxy composite flat panel with recessed 

edge (FPR). 
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Figure 6.18 Experimental flow front and iso-probability contours at different times for 

prior and posterior flow front estimates of carbon/epoxy composite flat panel with 

recessed edge (FPR). 

For the geometry examined here, the use of three lineal sensors in the mould is sufficient 

for the inverse scheme to predict accurately the resin flow front evolution and to identify 

potential flow disturbances and defects such as edge effects by estimating the equivalent 

race tracking permeability. The location of lineal sensors in the mould is crucial for the 

successful estimation of unknown parameters. In the general case, the number of sensors 

used needs to be selected considering the trade-off between minimising monitoring 

complexity and monitoring system intrusiveness and maximising the sensitivity of the 

data obtained to all stochastic parameters of interest. In this case, the utilisation of three 

sensors placed across part edges and the main flow allows the model to capture the main 

process parameters such as Kx, Ky and 1 0 and provide sufficient information on race 

tracking phenomena. 

6.5. Overview 

The application of the inverse scheme in RTM filling of carbon/epoxy composite part 

with complex geometry reduces the initial uncertainty of the problem estimating the 

preform permeability values, initial viscosity, race tracking effects, filling duration and 

flow front evolution with significantly lower variability than prior estimates within a 

fraction of the process duration. In the experimental demonstration of the scheme 

presented here the inverse scheme is able to provide a low uncertainty real time prediction 
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of filling approximately 10 min after the initiation of the process, which corresponds to 

30% of the whole duration. The utilisation of surrogate models allows the implementation 

of inversion in parallel with the RTM filling of the composite part. Furthermore, the 

strategic placement of flow sensors within the tool increases the sensitivity of the problem 

resulting in a faster convergence of the inverse solution. This is of importance, especially 

in cases of fast filling processes where the inversion scheme needs to find a solution in 

short time. The capability of the inverse algorithm to operate in short process cycles is 

investigated in the next chapter for the case of the artificial RTM filling of a carbon/epoxy 

composite C spar. 
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7. Inversion procedure development in the RTM filling 

stage of a carbon/epoxy composite C spar 

7.1. Introduction 

In chapter 6 the inversion procedure was applied and validated in the case of a filling 

process with a duration of about 30 min. In order to fully uncover the inversion scheme 

capabilities, the algorithm needs to be evaluated in a sort term filling stage. Therefore, 

the artificial RTM filling of the carbon/epoxy composite C spar described in section 

3.5.1.2 was carried out. Artificial lineal sensors are placed in strategic positions in the 

mould cavity providing data during the flow stage. The methodology described in section 

3.6 is employed in order to build computationally efficient surrogate models representing 

the flow front evolution of lineal sensors and the filling simulation described in section 

3.5.1.2 is utilised for the construction of surrogate models. 

7.2. Surrogate models of filling of carbon/epoxy composite C spar 

construction and validation 

Five surrogate models (C spar SMi - C spar SMs) were constructed to represent the 

response of sensors and the total filling time for the case of the C spar. The inputs of the 

surrogate models in the case of the C spar are the longitudinal and transverse permeability, 

the initial reference viscosity and the filling time, whilst the outputs are the covered length 

of the four artificial flow sensors and the filling duration. The resulting dimensional input 

space of the sensors surrogate models requires a large initial design space to ensure model 

efficiency compared to the PAM-RTM® model. The initial design input space and the 

corresponding responses were calculated using the PAM-RTM® model described in 

section 3.5.1.2 Table 7.1 summarises the input parameters of the four surrogate models 

and their ranges. 
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Table 7.1 Surrogate models parameters and their range of filling process of carbon/epoxy 

composite C spar. 

Parameter Ranges 

Longitudinal permeability 

Transverse permeability 

Initial reference viscosity 

5 10-12-2 1041 m2

5 10-12-2 10' m2

0.11-0.22 Pas 

The surrogate models corresponding to the response of the four flow sensors were 

compared to the PAM-RTM® flow model described section 3.5.1.2. Response surfaces 

were constructed using both the surrogate and the PAM-RTM® models representing the 

covered length as a function of filling time and unknown parameters, whilst the remaining 

inputs were assigned with the nominal values reported in Table 7.2. The results of 

surrogate models validation tests are presented in Figures 7.1-75. The covered length of 

sensors depends on initial reference viscosity as illustrated in Figures 7.1-7.3. The effect 

of resin viscosity on sensor covered length increases significantly as the resin flows away 

from the inlet as illustrated in Figures 7.1 and 7.3. This is attributed to the fact that, as the 

filling evolves the effect of injection pressure on flow front velocity decreases, whilst the 

role of resin viscosity becomes more dominant as indicated by Eq. (3.3). The longitudinal 

principal permeability does not affect the covered length of sensors 1, 2 and 4 as the 

presence of flow channels on the top surface of the C spar geometry (Figure 3.9) 

accelerates the flow front in the x direction reducing the role of Ki. Figure 7.4 illustrates 

the covered length evolution with time as a function of Ki for artificial sensor 4 where 

the remaining inputs were assigned with the nominal values as reported in Table 7.2. A 

slightly faster flow front evolution can be observed in sensor 4 when the longitudinal 

permeability value increases. 
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of carbon/epoxy composite C spar. 
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The discrepancies between the surrogate and PAM-RTM® models are negligible with an 

average square error equal to 10 mm. The error is more pronounced in the beginning of 

the flow process for high values of initial viscosity. In a more advanced flow state the 

error is significantly lower reaching a minimum error value of 0.01%. This can be 

attributed to the reduced estimation efficiency of the surrogate model in the boundaries 

of input parameters range, where the initial sampling points in which the surrogate model 

is based for its prediction are limited. Figure 7.5 depicts the filling duration as a function 

of initial reference viscosity as computed by the surrogate and the PAM-RTM® models. 

The rest of the input parameters are kept constant and are reported in Table 7.2. The 

viscosity affects the flow front position of each sensor as well as the total filling duration 

significantly. The filling duration increases in a linear manner with the initial reference 

viscosity with values in the 150-300 s range, whilst the comparison between the models 

highlight the efficiency of the surrogate model. 

Table 7.2 Surrogate models validation cases input parameters. 

Parameter 

Surrogate models validation cases 

C spar 

SM I

C spar 

SM2 

C spar 

SM3 

C spar 

SM4 

C spar 

SM5

Longitudinal 

permeability (m2) 
1.7 10.11 1.7 10.11 1.7 10-11 1.1910'11 1.7 1041

Transverse 

permeability (m2) 
1.5 10-11 1.5 10-" 1.5 10-11 1.5 10-u 1.5 10-II 

Initial reference 

viscosity (Pas) 
0.11-0.22 0.11-0.22 0.11-0.22 0.17 0.11-0.22 

136 



75 - 

E 60

45

as 
zs 30
as 
r3 
t 15 - 

(..) 

MFE model 
—Surrogate Model 

250 
200 — - 

150 
100 

Filling time (sec)

0.05 

50
 0.25 0.2 0.15 

0.1
cosity (Vas)

0 

Initial reference vis 

Figure 73 Response surfaces of surrogate model sensor 3 response and PAM-RTM model 

of carbon/epoxy composite C spar. 

50 - 

E 40-

40
40 

9:$ 20 - 
as 

t 10-
U

0 

10- - 2 1.8 

I,
"gig-Mina/ 

Peri 
1 .4 

1.2 
neability 1 100 

MFE model 
—Surrogate Model 

• 136 
148 

112 
124

01i4 tIVAe (sec)

160 

Figure 7.4 Response surfaces of surrogate model sensor 4 response and PAM-RTM model 

of carbon/epoxy composite C spar. 

137 



350 - 

300 

t 250 

1 1 
tg 200 

150 
bA 
CI 

100 

50 

0 
0 1 0.15 0.2 

Initial reference viscosity 

—PAM-RTM model 
- - -Surrogate model 

0.25 

Figure 7.5 Filling duration surrogate model validation against CV/FE model as a function 

initial reference viscosity of carbon/epoxy composite C spar. 

7.3. Real time uncertainty estimation during filling stage of 

carbon/epoxy composite C spar 

7.3.1. Inversion procedure implementation for the filling of carbon/epoxy 

composite C spar 

The inversion procedure described in section 3.8 was applied to the filling stage of the 

carbon/epoxy composite C spar. The inversion scheme runs in parallel with the filling 

stage updating the flow monitoring matrix every 30 sec with the four artificial flow 

monitoring datasets corresponding to the four artificial lineal sensors. The inversion 

scheme integrates the surrogate models with the flow monitoring data into the MCMC 

algorithm for the real time probabilistic prediction of unknown parameters and filling 

duration. The parameters of the MCMC algorithm are reported in Table 7.3. The total 

number of MCMC iterations was approximately 40,000. 
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Table 73 Inversion scheme parameters values for carbon/epoxy composite C spar. 

Parameter Symbol Value 

Likelihood distribution standard deviation Crexp 10 mm 

Noise level Eici standard deviation crEici 3E-13 m2

Noise level EK2 standard deviation acK2 3E-13 m2

Noise level El . standard deviation 6 £,10 0.001 Pas 

Number of MCMC iterations M 40,000 iterations 

Number of monitoring data N k 19 

Number of data batches ktot 6 

7.3.2. Artificial flow monitoring results of filling stage of carbon/epoxy 

composite C spar 

The artificial flow monitoring data were generated using the artificial flow sensors 

integrated in the PAM-RTM® model as described in section 3.5.1.2. The artificial filling 

process data generated using the PAM-RTM® model of the C spar utilised a set of 

unknown input parameters go, K1, and K2 randomly selected from their averages and 

standard deviations reported in Tables 4.5 and 4.11 respectively. The selected input 

parameters for the artificial filling are reported in Table 7.4. The artificial results of the 

filling of the carbon/epoxy C spar are illustrated in Figure 7.6. The duration of the filling 

stage was 230 s. The resin flow accelerated across the x direction due to the presence of 

the rectangular flow channel on top surface of C spar. The filling follows an elliptical 

pattern due to the presence of the rectangular flow channel and to the slight fabric 

anisotropy. The vacuum ports at the four corners of the C spar assist the resin flow to fill 

the preform without introducing dry spots. 

Table 7.4 Artificial filling process of carbon/epoxy composite C spar input parameters. 

Parameter Value 

Longitudinal permeability 

Transverse permeability 

Initial reference viscosity 

1.45 10' (m2) 

1.12 10-11 (m2) 

0.175 (Pas) 
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Figure 7.6 Artificial filling results of carbon/epoxy composite C spar. 

y 

x 

An artificial noise was applied to the flow monitoring data points of each sensor as 

depicted in Figures 7.7-7.10 to simulate the effect of potential measurement error of the 

lineal flow sensors. The applied noise of each artificial data point was randomly selected 

from normal distributions with average equal to the nominal values and standard 

deviation equal to the real dielectric sensor error of about 10 mm reported in section 5.3. 

The first 20 mm of the length of the artificial flow sensors placed on the top surface of 

the C spar is covered in a short time due to the rectangular flow channel (Figure 3.9) 

which accelerates the flow in this region. The second slope observed is governed mainly 

by resin viscosity and transverse permeability. Sensors 1 and 2 are located closer to the 

inlet port and thus their filling times are lower than those of sensors 3 and 4. 
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Figure 7.7 Artificial filling monitoring data with and without noise of sensor 1 of 

carbon/epoxy composite C spar. 
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Figure 7.8 Artificial filling monitoring data with and without noise of sensor 2 of 

carbon/epoxy composite C spar. 
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Figure 7.9 Artificial filling monitoring data with and without noise of sensor 3 of 

carbon/epoxy composite C spar. 
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Figure 7.10 Artificial filling monitoring data with and without noise of sensor 4 of 

carbon/epoxy composite C spar. 
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7.3.3. Inverse solution results 

Figures 7.11-7.14 illustrate the results of the inversion scheme for the real time estimation 

of the unknown stochastic parameters. The estimated longitudinal permeability reaches a 

plateau of 1.52 10-1I m2 after about 150 s from the beginning of the filling process as 

depicted in Figure 7.11. The high variability of K1, which is aligned to the C spar x 

direction, during the first 150 s is attributed to the fact that the resin flow speed is 

governed by the flow channel on the top surface of the C spar rendering the role of K1

negligible. Sensor 3 is placed across the x direction right after the flow channel. The 

uncertainty in estimation of the longitudinal principal permeability is narrowed down 

when the first artificial data of sensor 3 are included in the flow monitoring dataset. The 

predicted transverse principal permeability illustrated in Figure 7.12 converges faster than 

K1 to a value of 1.2 10-11 m2 and the uncertainty in its estimation is narrowed down after 

100 s. Sensors 1, 2 and 4 are placed across the y and z direction on the top and on the 

sides of the C spar respectively. Therefore, the flow monitoring set is updated with data 

directly related to K2 allowing fast convergence of its estimate. The initial reference 

viscosity reaches a plateau of 0.174 Pas after about 40 s (Figure 7.13). This is attributed 

to the fact that the response of all sensors is sensitive to initial viscosity regardless of their 

location and orientation. Therefore, the scheme is able to converge to a plateau with few 

available monitoring data points. 

Table 7.4 summarises the statistical properties of the estimated stochastic parameters. The 

transverse permeability and the initial viscosity present lower variability than K1 due to 

the greater sensitivity of the monitoring data set to these variables. The predicted average 

viscosity is equal to 0.174 Pas which is very close to the input value of artificial filling 

0.175 Pas. The longitudinal and transverse permeability present higher error of about 5% 

and 7% respectively compared to the input parameters of the artificial filling. The error 

of the inversion scheme predictions is attributed to the introduced noise in the nominal 

artificial data. The MCMC tries to maximise the posterior distribution considering the 

conditional probability of monitoring data, and the applied noise leads to deviation of the 

real solution. The uncertainties in inversion solution estimations can be reduced by 

increasing the acquisition rate of monitoring data. The increased coefficients of variation 

of Ki and K2 compared to that of initial reference viscosity are also associated with the 

lower sensitivity of artificial flow sensors to principal permeability values. The sensitivity 
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is directly related to the placement and the orientation of flow sensors. The strategic 

position of flow sensors contributes to the reduction of the overall number minimising 

the complexity of flow monitoring system [156]. 

The estimation of the filling duration of the filling of the composite C spar is illustrated 

in Figure 7.14. In the first 30 s the uncertainty in filling duration estimation is relatively 

high due to the limited flow monitoring data in that period. The inversion scheme yields 

a low uncertainty estimation after about 100 s with an average equal to 226 s and a 

standard deviation of 13 s. The predicted filling duration is in very good agreement with 

the actual filling duration with an absolute error of about 4 s or below 2%. The time frame 

within which the inversion scheme is capable of providing an accurate prediction with 

low uncertainty corresponds to 45% of the total filling stage. It should be noted that this 

is in a short filling time moulding, which corresponds to the most challenging conditions 

for the numerical scheme developed in this work. The early low uncertainty estimation 

provided by the inversion scheme allows potential control actions in order to avoid 

potential defects or to reduce the duration of the process. 

Figure 7.15 illustrates the cumulative probability of filling duration with and without the 

estimation provided by the inversion scheme. The coefficient of variation of the estimated 

filling duration without inversion is about 25%, whilst after about 100 sec the uncertainty 

is reduced by 80% to a coefficient of variation of 5%. 

Table 7.5 Statistical properties of estimated parameters of filling of carbon/epoxy 

composite C spar. 

Parameter Average Standard deviation 

K1 (m2) 1.52 10-" 1.96 10.12

K2 (m2) 1.2 10-11 1.28 10.12

10 (Pas) 0.174 0.009 
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Figure 7.11 Unknown stochastic parameters estimation: longitudinal permeability of the 

filling of carbon/epoxy composite C spar. 
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Figure 7.12 Unknown stochastic parameters estimation: transverse permeability of the 

filling of carbon/epoxy composite C spar. 
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Figure 7.13 Unknown stochastic parameters estimation: initial reference viscosity of the 

filling of carbon/epoxy composite C spar. 

350 

3 300 

o 250 

s. 
.0 200 
bu 

,F. 
= 150 tz' 

'a' 100 
5 

W 50 

0 
0 50 100 150 200 

Filling time (sec) 

Figure 7.14 Unknown stochastic parameters estimation: filling duration estimation of 

carbon/epoxy composite C spar. 
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Figure 7.15 Cumulative density function evolution of estimated filling duration. 

Figures 7.16a, 7.17a, 7.18a, and 7.19a illustrate the 95% confidence intervals of the four 

flow sensor responses calculated considering the initial variability of the input stochastic 

parameters . Figures 7.16b, 7.17b, 7.18b, and 7 .19b illustrate the 95% confidence intervals 

of the four flow sensor responses calculated considering the inverse solution. The 

reduction of the width of the confidence intervals indicates the efficiency of the inversion 

scheme in providing accurate estimations of the unknown parameters with low 

uncertainty. The confidence intervals include the artificial flow monitoring data. The 

resulting spread is attributed mainly to the noise of artificial data. The confidence 

intervals of sensors 1-3 as estimated by the inversion are narrower than that of sensor 4. 

This is attributed to the fact that sensors 1-3 are more sensitive to transverse permeability 

and initial reference viscosity rather than to longitudinal permeability due to their 

placement. This results in lower uncertainty in estimation as the coefficient of variation 

of K2 and tio is lower than that of Kl. The influence of longitudinal permeability is more 

pronounced in the response of sensor 4. Consequently, the uncertainty in the estimation 

of Ki results in wider confidence intervals for sensor 4. 
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Figure 7.16 Estimation uncertainty of covered length of a) sensor 1 before the filling; b) 

sensor 1 after 100 sec of carbon/epoxy composite C spar. 
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Figure 7.17 Estimation uncertainty of covered length of a) sensor 2 before the filling; b) 

sensor 2 after 100 sec of filling of carbon/epoxy composite C spar. 
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Figure 7.18 Estimation uncertainty of covered length of a) sensor 3 before the filling; b) 

sensor 3 after 100 sec of filling of carbon/epoxy composite C spar. 
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Figure 7.19 Estimation uncertainty of covered length of a) sensor 4 before the filling; b) 

sensor 4 after 100 sec of filling of carbon/epoxy composite C spar. 
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Figures 7.20a and b illustrate the flow front positions at 20 s, 70 s and 120 s as estimated 

by the PAM-RTM® flow model using prior information for the lower and upper bounds 

of the 95% confidence intervals respectively. The filling pattern is qualitatively the same 

in these six cases. The filling times present significant differences due to the initial 

uncertainty of the problem. The 95% confidence interval of the filling duration is 

estimated from 120 s to 350 s which is considerably wide. The efficiency of the inversion 

scheme in narrowing down the uncertainty prediction is illustrated in Figures 7.21a and 

b. The 95% confidence interval of filling patterns at 20 s, 100 s, and 200 s as predicted 

using the inverse solution is relatively narrow, whilst the estimated filling duration of the 

lower and upper bound is between 200 s and 270 s, which is considerably lower compared 

to the prior estimate. 

The inversion scheme results highlight that the utilisation of four lineal flow sensors in 

the C spar manufacture can yield low uncertainty estimates of unknown parameters and 

of the duration of the filling stage. Sensor placement and orientation plays a crucial role 

on how fast the simulation tool can reach a low uncertainty estimation. In this case, the 

placement of the four sensors results in a relative fast convergence of transverse 

permeability and initial viscosity in contrast to longitudinal which reaches a low 

uncertainty plateau at about 50% of the total duration of the filling process. The sensitivity 

of sensor response to unknown parameters needs to be taken into account in order to 

minimise the number of sensors and consequently the intrusiveness of the monitoring 

system. Maximising the sensitivity of the monitoring system can lead to early low 

uncertainty prediction and thus to potential control actions to prevent undesirable 

phenomena which will affect final part quality. 
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Figure 7.20 Prior estimation of flow patterns of carbon/epoxy composite C spar: a) lower 

bound of 95% confidence intervals and; b) upper bound of 95% confidence intervals. 
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Figure 7.21 Inverse solution of flow patterns of carbon/epoxy composite C spar: a) lower 

bound of 95% confidence intervals and; b) upper bound of 95% confidence intervals. 
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7.4. Overview 

The inversion procedure was implemented in the RTM filling of a carbon/epoxy 

composite C spar using artificial flow monitoring data. The results highlight the 

efficiently of the inversion scheme to operate in different flow conditions either the filling 

is sort —below 5 min — or slow over 30 min as presented in chapter 6. The decision of the 

number of lineal flow sensors and their placement and orientation in the part plays a 

significant role since it affects the uncertainty of predictions. The solution provided by 

the inversion scheme presents errors up to 7% in predictions of unknown input parameters 

highlighting the influence of the applied noise to nominal artificial flow monitoring data. 

The inversion scheme is implemented in the case of cure heat transfer process of 

carbon/epoxy composite flat panel in the next chapter in order to evaluate its performance 

in a heat transfer problem which constitutes potentially an ill-posed problem with more 

complex and non-linear phenomena. 
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8. Inversion procedure development in the RTM curing of 

a glass/epoxy composite flat panel. 

8.1. Introduction 

The low uncertainty prediction capabilities of the inversion scheme have been 

investigated in two case studies of filling stage presented in chapters 6 and 7. In the case 

of the curing stage, the presence of resin thermal properties and boundary conditions 

variations, described in chapter 4, introduces significant variability in cure duration and 

exothermic effects reaching a coefficient of variation of 20% [38] and 30% [37] 

respectively. The inversion scheme developed in this work is applied in the RTM curing 

of a glass/epoxy composite flat plate (GFP), specified in section 3.5.2.1, to investigate its 

performance in a nonlinear heat transfer problem with potential ill-posedness. The 

inversion scheme integrates cure monitoring data with the cure model into the MCMC 

algorithm for the real time probabilistic estimation of unknown thermal property, 

boundary conditions and cure process outcomes. 

8.2. Validation of surrogate models corresponding to inversion 

procedure cure process implementation. 

The inversion procedure based on MCMC and described in section 3.8 requires thousands 

of cure model evaluations increasing significantly the computational time if an FE cure 

model is utilised. Surrogate cure models have been developed to reduce computational 

time allowing implementation of the inversion procedure in real time. Three surrogate 

models (GFP SM i - GFP SM3) were constructed based on the implementation of Kriging 

as detailed in section 3.6. Figure 8.1 illustrates the surrogate model implementation for 

the cure process. The construction of the surrogate model requires a set of design points 

and their response as inputs. Latin Hypercube Sampling (LHS) was used for generating a 

sample of N input points, whilst the FE cure model was used to compute the response at 

these points. The FE cure model created in MSC.Marc simulates the RTM curing of the 

GFP composite part. More details regarding the cure model can be found in section 

3.5.2.1. The input variables of the GFP SM I and GFP SM2 surrogate models include the 

unknown stochastic parameters k and h of the cure process as described in chapter 4 and 

the cure time (t), whilst the outputs are the temperatures measured by the corresponding 

sensors. These are the temperature at mid-thickness (Tmid) and on the top surface (Trop) 
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of the curing composite component. The third surrogate model (GFP SM3) computes the 

minimum final degree of cure (afmin) as a function of the unknown stochastic variables 

k and h. The final minimum degree of cure is defined as the minimum degree of cure over 

the volume of the part at the end of the process. Its practical significance is related to the 

glass transition temperature reached at the end of the process, which governs the softening 

temperature of the composite material beyond which the component cannot play a 

structural role. Table 8.1 summarises the parameters of the surrogate cure models used in 

the inversion scheme implementation and their ranges. Considering the relative small 

dimensionality of the problem an initial sample of 2,000 points was selected. 

FE model 
MSC.MARC 

Validation 

Latin Hypercube Sampling 
(LHS) 

Kriging 

Surrogate models 

Ttop) = f(k,h, tk) 

afmin = f(k, h) 

Figure 8.1 Surrogate models methodology. 

Response surfaces, expressing the relationship between models outputs and inputs, were 

constructed to compare the surrogate model with the FE model results. Figures 8.2 and 

8.3 illustrate the dependence of GFP SM1 and GFP SM2 outputs (Tmid• Top) on inputs (k 

and h) at 60 min in the cure process. It can be observed that the heat transfer coefficient 

causes greater changes in Tinid and Tthp than the thermal conductivity level. This is 

attributed to the fact that the response surface corresponds to a time at which the tool 

temperature has reached a plateau and the influence of the thermal conductivity has been 

reduced. The temperature at the top of the part is more sensitive to parameter changes 
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than the temperature at mid-thickness. The temperature decreases when the surface heat 

transfer coefficient increases and the thermal conductivity level decreases. Figure 8.3 

illustrates the relationship of minimum final degree of cure with the underlying 

parameters of the surrogate model. The minimum final conversion decreases with 

increasing surface heat transfer coefficient and decreasing thermal conductivity level. A 

pronounced steep decrease of the final degree of cure occurs when the thermal 

conductivity level is in the range between 0.01-0.05 W/m/°C. In this area, the minimum 

final conversion reaches values as low as 0.7. 

The three surrogate models are in very close agreement with the FE model with the 

average absolute difference being equal to 0.2°C for GFP SM1 and GFP SM2 and 3x10-6

for GFP SM3. The surrogate model execution time is approximately 4 ms on the 4 cores 

@3.2 GHz computer used, whilst the FE model takes 30 sec to solve the cure problem. 

This difference in execution times, which is about 4 orders of magnitude, highlights the 

efficiency of the surrogate model on estimating cure models outputs within the input 

domain, whilst the very short computation required for the surrogate model allows its 

utilisation in real time computational processing. 

Table 8.1 Surrogate models parameters and their ranges 

Parameter 

Thermal conductivity level 

Heat transfer coefficient 

Cure time 

Symbol Range 

k (Wm-1°C-1) 0.01-0.2 

h (Wm-2°C-1) 3-21 

t (min) 0-110 

159 



NIFE model 
—Surrogate model 

160 

158 

156 

154 - 
F 

152 - 

150 
3 

6 
9 

h 

12 5
Pv/in2/Oe) 18 

21 
0.05 

0.15 
0.1 00 
,A 014101

0.2 

Figure 8.2 GFP SMI validation case: response surface of temperature at mid thickness 

as a function of the heat transfer coefficient and the thermal conductivity level at 60 min 

during the cure of a 3.3 mm thick glass/epoxy panel (GFP). 
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Figure 8.3 GFP SM2 validation case: response surface of temperature on the top as a 

function of the heat transfer coefficient and the thermal conductivity level at 60 min 

during the cure of a 3.3 mm thick glass/epoxy panel (GFP). 
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Figure 8.4 GFP SM3 validation case: response surface of minimum final degree of cure as 

a function of the heat transfer coefficient and the thermal conductivity level during the 

cure of a 33 mm thick glass/epoxy panel (GFP). 

8.3. Real time uncertainty estimation of during the cure stage. 

8.3.1. Inversion procedure implementation 

The inversion procedure integrates cure monitoring data with surrogate cure modelling 

for the on line probabilistic estimation of the unknown thermal properties and boundary 

conditions and the corresponding process outcomes such as the minimum final degree of 

cure. The inverse algorithm framework is illustrated in Figure 8.5. The setup includes an 

RTM moulding of an glass/epoxy composite flat panel (GFP) in which three K-type 

thermocouples are placed on the bottom, at the mid-thickens and on the top of the part 

measuring the temperature evolution with time. More details on the process 

implementation and the corresponding datasets can be found in [125]. The inverse 

analysis starts when the first cure monitoring data arrive and uses this information to 

predict k and h and consequently the minimum final degree of cure in real time. The 

MCMC is executed, while the monitoring matrix Yexp(t) = [ Tinid Tug)] E ilekx2 is 

updated with new data every minute, which in this case is a matrix representing the 

temperatures at mid-thickness and on the top surface of the composite part at the time tk . 
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The standard deviation aex, used in the likelihood term in Eq. (3.21) represents the 

accuracy level of experimental data and is assigned a small value taking into account the 

low noise levels of thermocouple signals. In the case of K-type thermocouples the error 

can reach up to 2 °C [144]. The standard deviation vector of the Gaussian variable a£ = 

[a€k, a€J, a£ E il82 , presented in Table 34, was adjusted by performing a short sequence 

of MCMC iterations every minute after acquisition of the new data in order to achieve 

the desirable acceptance probability in the range of 30-50%. The initial noise (c) standard 

deviation (as) was set equal to the standard deviation of the prior distributions of k and 

h. The MCMC parameter values for the inverse glass/epoxy cure solution reported in 

Table 8.2. 
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Figure 8.5 Real time uncertainty estimation framework. 

The number of MCMC iterations in real time depends on the execution time of a single 

iteration. The execution time increases with increasing experimental data. In the 

beginning of the process the rate of MCMC iterations was about 20,000 per minute for 

the computer used, whilst towards the end of the process the rate decreased to about 500 
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iterations per minute. The total MCMC iterations of the inversion procedure were 

approximately 210,000. Table 8.2 reports the inverse algorithm parameters values. 

Table 8.2 MCMC parameters values for the inverse glass/epoxy flat panel (GFP) cure 

solution. 

Parameter Value 

Likelihood distribution standard deviation 

Thermal conductivity prior mean value 

Heat transfer coefficient prior mean value 

Thermal conductivity level prior standard deviation 

Heat transfer coefficient prior mean value 

Initial noise (£k) standard deviation 

Initial noise (Eh) standard deviation 

Initial thermal conductivity level 

Initial heat transfer coefficient 

Total number of MCMC iterations 

Total number of experimental data 

Total number of data batches 

aexp 

„k 
Ftprior 

h 
µprior 

° prior 

pilot 

1 (°C) 

0.12 (Wm- 1°C-1) 

8.5 (Wm-2°C-1) 

0.02 (Wm-1°C-1) 

1.5 (Wm-2°C-1) 

° £k 0.02 (Wm-1°C-1)) 

°Eh 1.5 (Wm-2°C-1) 

ko 0.12 (Wm-1°C-1)) 
8.5 (Wm- 2°C-1) 

M 210,000 

220 

110 

ho 

Nk 

ktot 

8.3.2. Results obtained by the inverse glass/epoxy cure solution 

Figure 8.6 illustrates the process monitoring results obtained during the cure of the 

glass/epoxy composite flat panel [125]; the temperature evolution with cure time at the 

lower surface, at mid-thickness and on the top of the curing composite. It can be observed 

that the temperature is lower away from the heated tool surface reaching a plateau after 

60 min from the beginning of the cure process. Temperature overshoots due to the 

exothermic nature of the resin reaction are not detected due to the small thickness of the 

composite part. The measurement noise is small observed at 18-22 min and 8-10 min in 

the temperature of the lower surface and mid-thickness respectively. 

Figure 8.7 illustrates the evolution of thermal conductivity level, surface heat transfer 

coefficient and minimum final conversion of the cold chain during the process_ The 

thermal conductivity level converges faster than the surface heat transfer coefficient 

reaching a plateau after 20 min in the cure. This can be attributed to the fact that in the 

first 20 min the tool temperature increases, and transient phenomena governed by thermal 

163 



conductivity dominate the evolution of the thermal field. The surface heat transfer 

coefficient and minimum final degree of cure converge after 70 min as depicted in Figures 

8.8 and 8.9, showing a step decrease/increase pattern as a result of the periodic updating 

of monitoring data. At about 70 min the top surface temperature reaches a plateau of 155 

°C and the thermal response becomes more sensitive to the surface heat transfer 

coefficient. 
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Figure 8.6 Temperature evolution with time at the bottom, mid-thickness and top surface 

of glass/epoxy composite flat panel (GFP) [125]. 
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Figure 8.7 Real time evolution of thermal conductivity level during the cure of glass/epoxy 

composite flat panel (GFP). 
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Figure 8.8 Real time evolution of surface heat transfer coefficient during the cure of 

glass/epoxy composite flat panel (GFP). 
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Figure 8.9 Real time evolution of minimum final degree of cure of glass/epoxy composite 

flat panel (GFP). 

The sample after convergence can be used to calculate the statistical properties of 

variables of interest. The values within the stationary sequence are highly correlated due 

to the nature of the MH algorithm. Consequently, a step size calculated considering the 

autocorrelation structures of the initial sampling of the k, h and afmin was used for 

thinning the sample. Figure 8.10a shows the autocorrelation structure of the thermal 

conductivity level. The autocorrelation reaches a relatively small value after 400 samples 

indicating a strong correlation between the drawn samples. The autocorrelation structures 

of heat transfer coefficient and final minimum degree of cure present similar behaviour 

reaching a plateau after about 10 samples as illustrated in Figure 8.10b and 8.11. 

Therefore, a step size of 400 and 10 was selected fork and h, afmin respectively. 
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coefficient of glass/epoxy composite flat panel (GFP). 
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Figure 8.11 Sample autocorrelation of minimum final degree of cure of glass/epoxy 

composite flat panel (GFP). 

Figures 8.12, 8.13 and 8.14 depict the prior estimate and inversion solution cumulative 

probabilities of the thermal conductivity level, heat transfer coefficient and minimum 

final degree of cure respectively. The mean value of thermal conductivity level is 0.095 

W/m/°C, which is relatively close to the prior mean value of 0.12 W/m/°C, whilst the 

standard deviation is very low and equal to 0.002 W/m/°C. The heat transfer coefficient 

average is 8.2 W/m2/°C with a standard deviation of 0.2 W/m2/°C, whereas the nominal 

value is 8.5 W/m2/°C. In terms of variability, the inversion procedure reduces the 

estimation uncertainty of surface heat transfer coefficient lowering its coefficient of 
variation from 18% [38] to 3%. In the case of the estimated minimum final degree of cure 

the mean value is 0.845 with standard deviation of 7 104 resulting in a 0.08% coefficient 

of variation. 

A Monte Carlo simulation has been carried out using the prior statistical properties of the 

unknown stochastic variables to estimate the minimum final degree of cure without the 

information acquired from process monitoring system. The results of this simulation are 

illustrated in Figure 8.14. Prior estimates result in a wide range of minimum final 

conversion values of 0.82 - 0.86. This uncertainty may result in variations of final glass 
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transition temperature potentially affecting high temperature performance. The estimated 

minimum final degree of cure variability was reduced by 90% as a result of the inversion 

procedure. The low uncertainty prediction of the minimum final conversion during the 

curing stage allows control decisions to be made preventing undesirable effects such as 

under cure. 
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Figure 8.12 Cumulative probabilities before and after inverse analysis of thermal 

conductivity level of glass/epoxy composite flat panel (GFP). 

Figure 8.15a illustrates the experimental measurements on the lower surface, the mid-

thickness and the top of the curing glass/epoxy composite flat panel alongside the 95% 

confidence intervals of model response estimated using the prior statistical properties of 

thermal conductivity level and surface heat transfer coefficient (Table 8.2). The 

confidence intervals of model prior estimations are wide, highlighting the influence of 

stochastic variables on the through thickness temperature distribution. These results 

indicate the benefits of estimating the resin thermal conductivity level and surface heat 

transfer coefficient from the real time data. After inverse analysis the confidence intervals 

are narrowed down, and the model approximations of measured temperatures calculated 

with the estimated mean values of unknown variables are in close agreement with the 

experimental data with an average error of 1 °C (Figure 8.15b). The inversion procedure 
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runs simultaneously with the manufacturing process, estimating in real time the process 

outcomes by updating the cure model with the upcoming monitoring data. 
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Figure 8.13 Cumulative probabilities before and after inverse analysis of heat transfer 

coefficient of glass/epoxy composite flat panel (GFP). 
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Figure 8.15 Experimental data and probabilistic model response comparison: a) prior 

knowledge; b) estimated values of glass/epoxy composite flat panel (GFP). 
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Figure 8.16 Evolution of minimum degree of cure and 99% confidence intervals of 

estimated minimum final degree of cure with time (GFP). 

Figures 8.16 and 8.17 depict the evolution of the 99% confidence intervals of the 

minimum final degree of cure estimation and actual minimum degree of cure with time 

and the corresponding results for the evolution of the final minimum predicted glass 

transition temperature of glass/epoxy composite flat panel. The evolution of the actual 

minimum degree of cure was calculated using a non-parametric cure kinetics model for 

the epoxy resin system of this study [134] considering as an input the top surface 

temperature evolution with time and the glass transition temperature based on Eq. (4.9). 

The comparison of the predicted with the actual minimum final conversion indicates the 

estimation capabilities of the cure model during the inversion scheme. The estimated error 

is approximately 0.9%. The final glass transition estimate involves uncertainty of about 

4 °C. This is reduced as a result of taking into account the monitoring data to about 1 °C. 

This, as well as the potential correction of glass transition temperature levels using 

monitoring data, can have significant implications in the high temperature performance 

of the produced composite. The overall scheme allows the continuous updating with new 

monitoring data sets enhancing the cure model fidelity on predicting the unknown 

parameters and consequently the desirable process outcomes with low uncertainty. 
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Figure 8.17 99% confidence intervals of estimated minimum final glass transient 

temperature with time of glass/epoxy composite flat panel (GFP). 

8.4. Overview 

The findings of the application of the inversion scheme to curing highlight the 

effectiveness of the MCMC method in terms of reducing the inherent uncertainty of the 

process and of predicting the process outcomes and their uncertainty using the results of 

process monitoring. The inversion scheme predicts the minimum final degree of cure with 

very low uncertainty with an error of about 0.9%. This accuracy is translated directly to 

an accurate estimate of the final glass transition of the material. The real time inversion 

procedure demonstrated in chapters 6, 7 and 8 can forms the basis of a control strategy 

that takes into account the prediction of process outcomes and their variability. This 

necessitates the use of an optimisation algorithm that can, in light of estimated current 

variability of process inputs, identify modifications of process parameters that maximise 

process efficiency and robustness. As a first step in this direction a stochastic multi-

objective optimisation scheme is developed and implemented in chapter 9 to identify 

optimal cure process designs. 
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9. Stochastic multi-objective optimisation of the curing of a 

thick carbon/epoxy composite flat panel 

9.1. Introduction 

The inversion scheme presented in chapters 6-8 narrows down initial problem variability 

estimating unknown process parameters and their variability as well as their evolution 

during the process. The increased process simulation fidelity achieved as a result of the 

real time application of the inverse algorithm can be utilised in the context of the 

stochastic multi-objective optimisation scheme described in section 3.9 to identify 

efficient and robust process parameter adjustments that can potentially lead to process 

control. This can be accomplished in real time since the inversion provides fast low 

uncertainty estimation of process outcomes. In the present chapter a stochastic multi-

objective optimisation framework is developed and demonstrated for the cure stage of 

composite manufacture based on the curing of a thick carbon/epoxy composite flat panel 

described in section 3.5.2.2. This is carried out off line considering only the known 

variability at the beginning of the cure process. The stochastic objects related to cure 

process such as cure kinetics and thermal boundary conditions described in chapter 4 are 

considered. This development is a first step in the integration of the inverse scheme 

developed in this work with process optimisation and control. 

9.2. Surrogate cure models of curing of thick carbon/epoxy 

composite part 

Surrogate models TFP SM1 , TFP SM2 representing the cure process outcomes for the 

thick carbon/epoxy composite flat panel (TFP) were constructed based on the Kriging 

technique described in section 3.6. Figure 9.1 summarises the methodology of surrogate 

model construction used for the stochastic multi-objective optimisation of curing of the 

TFP. These models are based on an initial cloud of sampling points at which the cure 

model responses are known. The FE cure model, described in section 3.5.2.2, was used 

in order to generate the initial sample points and the corresponding responses. The FE 

cure model represents the cure of thick carbon/epoxy composite flat panel with thickness 

of 15.6 mm. A sample of 30,000 points was selected taking into account the 

dimensionality and the nonlinear character of the problem and following preliminary 

testing of the behaviour of the surrogate model. The input variables of the surrogate model 
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include the optimisation parameters such as first and second dwell temperature, heating 

ramp and dwell time, described in section 3.9, and the stochastic variables of the cure 

kinetics model i.e. initial degree of cure, reaction order and activation energy and 

boundary conditions i.e. tool temperature and surface heat transfer coefficient presented 

in sections 4.6 and 4.4 respectively. 

MSC.Marc 
FE model 

Validation 

Latin Hypercube Sampling 
(LI IS) 

Kriging 

Surrogate models 

= f(Ti, T2, At], r, ao,E2,m, h) 
tcure = T2, it1, r, ao,E2,m, h) 

Figure 9.1 Surrogate model construction methodology. 

Response surfaces, representing the relationship between process outputs and inputs, for 

two different cases detailed in Table 9.2, were constructed to assess the accuracy of the 

surrogate model. The response surface of tcure over the space of Ti and T2 is illustrated 

in Figure 9.2a for constant values for the rest of the input parameters (At1, r, h, m, E2, 

ac,) as reported in Table 9.3 (Case 1). It can be observed that, for the values of parameters 

considered, increasing T1 reduces cure time significantly, whilst the effect of T2 is weaker. 

The reduction of cure time is non-linear with increasing temperature as a consequence of 

the non-linear nature of cure. The negligible influence of the second dwell temperature 

on cure time in the region of high first dwell temperatures is attributed to the fact that the 

cure process is already completed before the second dwell. The contribution of T2 is of 

importance when the first dwell temperature is below 165 °C, in which case the cure time 

is decreasing with increasing T2 . The comparison of the two surfaces shows that the 

surrogate model is an accurate representation of the FE cure simulation. The mean 

absolute difference between the two is 0.9 min, which corresponds to a very small 

percentage of cure time (0.5% to 2%). Figure 9.2b illustrates the probability density 

function (PDF) of absolute difference between the FE and surrogate models. The region 

with the highest probability is between 0 and 0.7 min, with probability becoming very 

small over 1.2 min. 
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Table 9.1 Range and role of surrogate model input parameters of the cure of thick 

carbon/epoxy composite flat panel (TFP). 

Optimisation Stochastic 
Parameter Symbol (unit) Range 

variable variable 

First dwell temperature T1 (°C) 135 — 175 Yes Yes 

Second dwell 

temperature 
T2 (°C) 175 — 215 Yes Yes 

Duration of first dwell At1 (min) 33 — 300 Yes No 

Heating rate r (°C/min) 1 — 4 Yes No 

Convection coefficient h (W/m2 /°C) 14 — 22 No Yes 

Activation energy E 2 (KJ/mol) 56 — 60 No Yes 

Autocatalytic reaction 

order 
111 1 — 1.6 No Yes 

Initial degree of cure ao (%) 1.5 — 5.1 No Yes 

Table 9.2 Input parameters values used for the construction of the response surfaces of the 

two validation test cases for surrogate and FE models comparison. 

T1 Tz E2 ao

(°C) (°C) (min) (°C/min) (W/m2 /°C) (KJ/mol) m (%) 

Case 1 135-175 175-215 84 2 17.8 57.8 1.29 3.3 

Case 2 135-175 195 84 1-4 17.8 57.8 1.29 3.3 

Figure 9.3a illustrates the dependence of on T1 and r for constant values for the 

rest of the parameters (T2, At1, h, m, E2, a0) as reported in Table 9.2 (Case 2) during 

the cure of a thick carbon/epoxy composite flat panel. The agreement between the 

surrogate model and the simulation is very good. The temperature overshoot increases 

with increasing T1. In the region of low heating ramp and high first dwell temperature, 

the temperature overshoot decreases with increasing first dwell temperature as a result of 

the occurrence of maximum reaction during the ramp. The PDF of absolute error (Figure 

9.3b) indicates that the region of high probability is from 0 to 0.8 °C. The mean absolute 

error is 0.9 °C, whilst the probability of error greater than 1.6 °C is negligible. 
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Figure 9.2 FE and surrogate model response surfaces: a) Case 1 (Table 9.1) cure time as a 

function of the first and second dwell temperature; b) PDF of absolute differences between 

surrogate and FE model for Case 1 of the curing of thick carbon/epoxy composite flat 

panel (TFP). 
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The surrogate model accuracy was also tested in the case of the MC simulation 

implementation presented in section 3.7.2. A standard two dwell cure profile applied 

during the cure of the thick carbon/epoxy composite flat panel with first dwell 

temperature of 160 °C for 75 min and second dwell temperature of 180 °C [28] was 

simulated using 400 realisations. Figure 9.4 illustrates the cumulative density function 

(CDF) of temperature overshoot as computed by the FE and surrogate models. The 

average temperature overshoot is 37 °C, whilst the standard deviation is 4.5 °C implying 

a coefficient of variation equal to 12 %. It can be observed that the two CDFs are in very 

close agreement. The computational time of stochastic simulation is reduced significantly 

with the use of the surrogate model. The stochastic simulation using FE takes 420 min on 

the 4 cores @3.2 GHz computer used, whilst the surrogate model based solution needs 3 

min. This represents a reduction by more than 99%. 
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Figure 9.4 Cumulative density function (CDF) of a standard cure profile of temperature 

overshoot of thick carbon/epoxy composite flat panel (TFP). 
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9.3. Results of stochastic multi-objective optimisation of curing of 

thick carbon/epoxy composite flat panel 

Stochastic multi-objective optimisation incorporates the MC method into a GA 

minimising cure time and temperature overshoot average and their corresponding 

uncertainty during the cure process of a thick carbon/epoxy composite flat panel as 

described in section 3.9. The evolution of the GA population during stochastic multi-

objective optimisation run is illustrated in Figure 95 in terms of mean cure time and 

temperature overshoot. As the stochastic optimisation progresses, the population sample 

is improved compared to populations of previous generations. The GA converges — i.e. 

the Pareto set is stabilised — between 7 and 12 generations. 
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Figure 9.5 Population evolution of stochastic multi-objective optimisation on the cure of 

thick carbon/epoxy composite flat panel (TFP). 

Figure 9.6 shows the average cure time-average temperature overshoot cross section of 

the stochastic Pareto front, with the variability with respect to both variables presented in 

box plots. The deterministic Pareto front is also illustrated with a solid line. The Pareto 

fronts of both the stochastic and deterministic optimisation are in the form of an L-shape 

curve comprising two regions: (i) a horizontal region in which cure time can be reduced 

significantly without considerable changes in temperature overshoot; and (ii) a vertical 

region in which high temperature overshoots occur with small changes in cure time. The 
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majority of the stochastic Pareto points are shifted up compared to the deterministic 

Pareto front. The stochastic Pareto set includes points in which the mean values are 

dominated by other optimal points, but they dominate them in terms of variability 

resulting in a 4-D front. In contrast, in the deterministic case the domination ranking 

occurs only in terms of nominal values and consequently the Pareto front is 2-D. 

Deterministic optimisation schemes address only the minimisation of process duration 

and defects formation without considering the associated variability [120]. However, the 

benefits offered by the exploration of the design space by numerical optimisation can be 

accompanied by relative instability of some of the solutions with respect to perturbations 

of nominal process parameters leading to potential risks. This can be problematic, 

especially in cases where the deterministic optimisation exploits high sensitivity areas of 

the landscape. For example, optimal points in the vertical region of the deterministic 

Pareto set can be highly sensitive to variations resulting in temperature overshoots 

significantly different than predicted by the simulation. This possibility necessitates the 

use of more conservative cure profiles. In order to demonstrate this weakness of 

deterministic optimisation and the way the stochastic optimisation can overcome it, two 

points of the vertical region of deterministic and stochastic Pareto front with similar cure 

time and temperature overshoot were selected and analysed. The details of these design 

points are reported in Table 9.3. Table 9.3 also summarises the results of the stochastic 

simulation for these points. The average cure time and temperature overshoot of 

deterministic and stochastic point are similar, whilst the cure time coefficient of variation 

is about 2.5 % in both cases. The standard deviation of temperature overshoot of the point 

of deterministic optimisation is 6.6 °C, which is approximately twice that of the stochastic 

point. Furthermore, the nominal overshoot determined by deterministic simulation is 

lowered by 7°C compared to the average computed by stochastic simulation. 

Consequently, deterministic simulation provides a biased estimate of average overshoot 

underestimating risks. This explains the upward shift of the stochastic Pareto front with 

respect to the deterministic points observed in Figure 9.6. The temperature overshoot in 

the deterministic case is 9 °C - 43 °C, whilst the stochastic one is in the range of 15 °C -

30 °C. The sensitivity of the deterministic point can be attributed to the higher first dwell 

temperature of its cure profile. These differences highlight the high sensitivity of 

deterministic optimal points and the robustness offered by stochastic optimal points. 
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Table 93 Sensitivity analysis of deterministic and stochastic optimal points of cure process 

of thick carbon/epoxy composite flat panel (TFP). 

Parameter 
Stochastic optimal 

point 

Deterministic optimal 

point 

1' dwell temperature (°C) 144 152 

2nd dwell temperature (°C) 214 214 

Dwell duration (min) 35 33 

Heating ramp (°C/min) 3.7 3.8 

Average cure time (min) 58 55 

Average temperature overshoot (°C) 21 27 

Cure time standard deviation (min) 1.3 1.9 

Temperature overshoot standard 

deviation (°C) 
3.6 6.6 

The stochastic Pareto front contains some points with cure time values twice as high as 

that of deterministic solutions. These points are located at the end of the horizontal region 

of the stochastic Pareto front and present low variations with standard deviations of 0.4 

min and 2.5 °C for cure time and temperature overshoot respectively. These individuals 

are generated using conservative cure profiles with low first dwell temperature and long 

first dwell time. In these cases, overshoots are negligible and the cure process long. The 

vertical region of the stochastic Pareto front includes two points with temperature 

overshoot higher than 50 °C, a low cure time below 50 min and significant variations 

especially in the case of temperature overshoot with standard deviation of 4-4.5 °C. 
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Figure 9.6 Pareto front of stochastic and deterministic multi-objective optimisation a) cure 

time box plots; b) temperature overshoot box plots of cure process of thick carbon/epoxy 

composite flat panel (TFP). 

The variations of cure time in extreme points in the vertical region of the 4-D Pareto front 

can be observed clearly in Figure 9.7 which depicts the Pareto front of average cure time 

with the corresponding standard deviations. The Pareto front presents an L shape trade 

off, with a vertical region corresponding to aggressive cure profiles with high temperature 

overshoot and a horizontal region with more conservative profiles resulting in higher cure 

times. The variability is high for aggressive cure profiles and can reach up to 6 min. 

However, for cure times above 65 min the corresponding variability reaches a plateau 

with a standard deviation of 0.3-1.5 min. 
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Figure 9.7 Pareto front of average cure time and the corresponding variability in the case 

of carbon/epoxy thick composite flat panel (TFP). 

MC simulation of the two standard cure profiles of thick carbon/epoxy composite flat 

panel has been carried out. The first profile comprises two dwells at 160 °C and 180 °C 

[157] and the second one dwell at 180 °C [121]. A detailed analysis of the cure process 

has been performed to uncover the qualitative characteristics of two optimal points with 

short and intermediate dwell profile and compare them with the standard cure profiles. 

Table 9.4 reports the inputs of this analysis. Figures 9.8-9.11 illustrate the evolution of 

temperature and degree of cure at the tooling side and in the middle of the laminate for 

the three realisations. In the mean realisation stochastic variables (T1, T2, h, m, E2, cco) 

are equal to the mean values reported in Table 4.7 and 4.9. Aggressive and conservative 

realisations correspond to the cases where each stochastic variable was shifted by two 

standard deviations in the positive and negative direction according to the influence of 

each on cure time and overshoot. The aggressive realisation represents an extreme 

scenario in which all stochastic variables have values resulting in acceleration of the 

process, whilst the conservative realisation corresponds to values leading to a slower cure. 
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Table 9.4 Comparison of optimal and standard cure profiles and their response under 

aggressive and conservative uncertainty scenarios of thick carbon/epoxy composite flat 

panel (TFP) curing. 
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Figure 9.8 One dwell standard profile: a) temperature evolution; b) degree of cure 

evolution of thick carbon/epoxy composite flat panel (TFP). 
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The results obtained at the optimal points illustrate the significant improvements in terms 

of minimising both the mean value and the standard deviation of cure time and 

temperature overshoot in comparison with standard cure profiles as reported in Table 9.4. 

In the intermediate dwell optimal profile, the average and the standard deviation of cure 

time were reduced by about 20% and 30% respectively compared to the standard two 

dwell profile. In addition, the optimal point presents a decrease of 60% in average 

temperature overshoot in comparison with both the one and two dwells standard profile. 

A higher first dwell temperature (Figure 9.8a) results in an early reaction rate peak in the 

case of the one dwell standard profile. Consequently, the maximum temperature 

overshoot occurs during the first dwell. The selection of a cure profile with high first 

dwell temperature results in low cure time and causes significant temperature overshoots 

that can reach up to about 50 °C in the aggressive realisation (Figures 9.8a, 9.9a). The 

temperature evolution of the different realisations, as illustrated in Figure 9.10a, 

highlights the stability of the intermediate optimal profile. The first dwell temperature is 

lower than that of the standard profiles reducing significantly exothermic effects and 

resulting in relative uniformity of temperature across the thickness. Also, the cure occurs 

almost at the same time in the three realisations, as shown in Figure 9.10b, whereas for 

the standard profiles there are significant variations in cure duration between realisations 

(Figures 9.8b and 9.9b). The short dwell optimal profile results in slightly faster cure 

(Figure 9.11b) than the standard one-dwell profile and approximately 40% reduction of 

cure time in comparison to the standard two dwell profile. The evolution of degree of cure 

through the thickness is more uniform for all realisations in the case of optimal profiles 

in comparison to standard profiles. This can be attributed to the fact that the cure reaction 

in the optimal solutions occurs more gradually than in the standard profiles, in which the 

high first dwell temperature accelerates aggressively the exothermic reaction. The 

average temperature overshoot of the short dwell optimal profile is lowered by about 

40%, whilst the standard deviation by about 20% and 10% compared to the standard one 

and two dwell profiles respectively. 
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Figure 9.10 Intermediate dwell optimal profile: a) temperature evolution; b) degree of 

cure evolution of thick carbon/epoxy composite flat panel (TFP). 
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Stochastic multi-objective optimisation yields a multi-dimensional Pareto front with 

optimal profiles that can be chosen based on the relative weightings of the different 

objectives relevant to specific applications. These are usually implied in the 

manufacturer's choices; e.g. in thick high cost components a low overshoot long cure 

process might be prioritised, whilst in inexpensive non-critical components a short and 

relatively unstable process might be preferred. In this sense, in an application in which 

duration is not prioritised, cure cycles such as the intermediate dwell optimal case can be 

implemented with process duration of about 1.5 h and temperature overshoots in the range 

of 10 °C - 20 °C. In the case of high throughput lower specification composite parts, the 

short optimal profile can be chosen resulting in faster cure cycles of about 1 h, associated 

with temperature overshoots in the 20 °C - 35 °C range. 

9.4. Overview 

The stochastic multi-objective optimisation methodology presented in this chapter 

accounts for different sources of uncertainty by implementing a Monte Carlo simulation 

integrated into a GA to minimise temperature overshoot, cure time and their variability. 

Current deterministic optimisation methodologies generate optimal solutions that are 

sensitive to variations of the input parameters. The findings highlight the efficiency of 

stochastic optimisation in minimising cure time and temperature overshoot uncertainty in 

comparison with the standard cure profiles. The stochastic multi-objective optimisation 

can be applied to composite manufacturing processes alongside with the inversion 

scheme described in chapters 6-8. The utilisation of surrogate models which reduce 

significantly computational time enables the implementation of the stochastic multi-

objective optimisation framework in real time. The inversion procedure can provide low 

uncertainty estimations of unknown stochastic input parameters to the stochastic 

optimisation tool in order to find optimal solutions which minimise the process duration, 

potential defects and the corresponding variability on line. Consequently, control actions 

can be taken based on the outcomes of on line optimisation during the manufacturing 

process preventing undesirable phenomena which can be detrimental for final part 

quality. In the case of cure the coupling of inversion with stochastic optimisation can lead 

to optimal cure profiles which result in low cure duration and temperature overshoot, 

whilst their corresponding uncertainty can be reduced by inversion alongside the 

optimisation. The stochastic multi-objective optimisation can be applied to the case of the 
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filling stage identifying optimal design parameters such as inlet/outlet ports number and 

position, flow channels and applied pressure gradient to minimise filling times and 

induced defects as well as variability. Furthermore, control actions, such as switching of 

gates and vents, applied pressure or flow rate levels changes can be activated based on 

the results of optimisation obtained in conjunction with a real time inverse scheme like 

the ones described in chapters 6 and 7. 
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10. General discussion 

10.1. Introduction 

The present study achieved the development and implementation of an inversion scheme 

integrating process monitoring with process modelling for the real time uncertainty estimation 

in composites manufacture. In the current state of the art, it has been demonstrated that the 

variability of material properties and boundary conditions affects composites manufacture 

inducing significant variations in process outcomes [5]. This inherent uncertainty of input 

parameters leads to estimations with wide confidence intervals, reducing the predictive fidelity 

of process simulation models. The method put forward in this study narrows down the 

uncertainty in model predictions in the filling and curing stage of composites manufacture. The 

sensors developed are capable of monitoring the flow and cure process in the presence of 

carbon fibre reinforcement. The incorporation of real time process monitoring into the inverse 

algorithm provides reliable data related to phenomena occurring during the process, enhancing 

the predictive capabilities of models. The real time application of the inversion scheme was 

accomplished by developing fast surrogate models replacing computationally expensive 

conventional FE process models. The approaches presented here progress the state of the art 

significantly towards the minimisation of the mismatch between stochastic simulation 

estimations and real phenomena in composites manufacturing processes. The following 

sections discuss the main outcomes of the work, with a focus on progress beyond the state of 

the art and its implications for further development and industrial application. 

10.2. Uncertainty quantification in composites manufacture 

Uncertainty in the filling stage has been experimentally investigated in then literature focusing 

on preform permeability. This variability is attributed to fibre imperfections in the preform, 

such as tow misalignment and nesting effects. Resin viscosity variability has not been 

examined in the literature and only assumptions have been made for its incorporation in 

stochastic flow simulations [24] . Hypothesising the levels of resin viscosity variability can lead 

to inaccurate estimations of process outcomes. This gap was addressed in this study by 

conducting a series of rheology tests to quantify the variability of a high performance epoxy 

resin viscosity. All resin samples were within self-life as recommended by the supplier. The 

results show significant variability of about 30% in initial resin viscosity. This is attributed to 

the dependence of resin viscosity on storage conditions. Resin conditioning governs viscosity 

variability since the initial viscosity increases by up to 80% with increasing days of exposure 
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at ambient temperature. Stochastic objects have been developed in this work to represent initial 

resin viscosity variability. Stochastic flow simulations have demonstrated that variations in 

resin viscosity introduce variability in the filling duration of about 30%. The resulting 

variability highlights the importance of resin viscosity uncertainty. 

The quantification of resin viscosity uncertainty advances the current state of the art providing 

a greater insight regarding the sources of variability in the filling stage. The selection of a 

uniform distribution for the initial resin viscosity reflects accurately the dependence of initial 

material state on storage conditions considering an even probability of resin usage within the 

recommended time range. Resin viscosity plays a dominant role in the filling stage. Therefore, 

stochastic simulations focused on filling should consider viscosity variability alongside with 

preform permeability and boundary conditions variations. The characterisation of material 

properties and boundary conditions variability and their integration into stochastic simulations 

offer a solution in terms of bridging the gap between real phenomena and process simulation 

allowing a more efficient process design. 

The cost of composites manufacture and the final part quality are of importance and are 

governed by material properties and process design. A process design that does not consider 

the existence of variability in material properties and boundary conditions can result in 

inaccurate estimations of process outcomes potentially leading to increases amounts of scrap 

due to unexpected process induced defects. The utilisation of resin, conditioned as 

recommended by the supplier, may lead to variations in process outcomes, such as the filling 

duration and presence of defects. The application of a control plan in resin storage conditions 

can reduce variations related to viscosity resulting in more uniform filling process eliminating 

unanticipated defects. This is of importance in manufacturing of high performance parts, such 

as the C spar investigated in chapter 7, in which the tolerances are narrow and the probability 

of rejected parts due to process parameters variability high. 

In the case of preform permeability and race tracking, variability has been modelled in this 

study as a scalar variable in order to reduce the dimensionality of the flow model. This approach 

does not consider local scale variations and autocorrelation. Local scale phenomena were 

observed in the results of the lineal flow sensor placed across the tool edge during RTM filling, 

where the monitored resin flow front presented some noise attributed mainly to the 

nonuniformity of the gap size between the preform and tool across the edge and in turn in 

variations of local edge permeability. Using this simplified approach, the process models can 

provide estimations of output scalar variables, such as the filling duration but may result in 

accuracies in estimations of outcomes linked to local scale phenomena such as micro/macro 
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voids percentage. Local variations and autocorrelation of preform permeability have been 

quantified extensively in literature [24, 25] and modelled with random fields, whilst race 

tracking has been modelled only as a scalar variable [36]. The investigation of race tracking 

variability can be expanded to develop a more comprehensive representation. In the case of 

RTM processing, race tracking variability and its spatial correlation across the tool edge can 

be quantified by measuring the size of the gap between the preform and tool edges. This 

information can be captured in 1 -D stochastic objects. 

10.3. Fast surrogate flow and cure process models 

Fast surrogate models have been developed in this work based on Kriging estimating the filling 

and curing stage outcomes as a function of design and/or stochastic input parameters. Surrogate 

models provide accurate estimations of process outcomes 99% faster than conventional FE 

analysis models. The comparison between surrogate and FE models highlights the accuracy of 

surrogate models with an average error below 2%. The fast execution of surrogate models 

advances the state of the art on process simulation by making feasible the implementation of 

computational iterative methods requiring a large number of models evaluation such as inverse 

algorithms, stochastic simulation and optimisation. Especially in the case of stochastic multi-

objective optimisation, the required model executions can reach up to 2 106 due to the 

integration of MC into a GA. In this case, the utilisation of FE models introduces significant 

limitations making the implementation of stochastic multi-objective optimisation method 

computationally cumbersome. The methodological approach presented in this study offers an 

easy way to construct robust surrogate models representing different phenomena in each stage 

of the manufacturing process. The number of initial sampling points, needed for the 

construction of surrogate models, depends on the complexity and the dimensionality of the 

problem and should be carefully selected to achieve the desirable accuracy. The computational 

efficiency of surrogate models allows the incorporation of process modelling into the 

production line through integration with process monitoring and control equipment. This is of 

great importance, since control actions can be taken not only based on process monitoring 

signals but also on robust real time process modelling predictions related to process outcomes 

i.e. duration and occurrence of defects. 

The developed surrogate model methodology faces limitations in cases of problems with high 

dimensionality of input variables. The initial points required for the construction of surrogate 

models based on Kriging has a nonlinear dependence on dimensionality of the problem. In this 

study the maximum number of input parameters were eight, in which case 30,000 initial points 
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were required to achieve the desirable accuracy. Further increase of model dimensions makes 

the application of Kriging difficult due to the large number of required initial points and the 

corresponding computational resources needed for the estimation of Kriging parameters. 

Dimensionality reduction methods such as Principal Component Analysis (PCA) [29] can be 

used to treat problems with high dimensionality. PCA transforms a large set of correlated 

variables into a smaller number of uncorrelated variables. This capability will allow the 

incorporation of surrogate models into stochastic simulations that represent input parameters 

variability with random fields, i.e. fibre imperfections [8, 10], preform local permeability 

variations [25, 30]. 

Process monito 
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related to the final part quality. The ability to scale down the size of the sensor -currently at 

about 250 µm can enhance the non-intrusive character of the concept 

The form of the sensing element lends itself to direct incorporation in fabrics, offering potential 

routes for producing smart materials with process monitoring capabilities. Self-sensing multi-

functional composites can be developed by tufting the lineal dielectric sensor within the 

preform. The use of copper wire as tufted through thickness reinforcement has been 

demonstrated successfully [158] showing significant improvements in electrical and 

mechanical properties as well as lighting strike performance [159]. Furthermore, a local 

dielectric sensor can be tufted in the preform making a spot cure sensor for the monitoring of 

curing. The integrated sensing system has also the potential provide health monitoring 

information related to potential defects induced during service life. 

10.5. Real time uncertainty estimation in composites manufacture 

The on-line integration of process simulation models with process sensing systems requires 

successful implementation of an inverse solution scheme. Activity in this area in the literature 

has focused on off-line property identification such as preform permeability and thermal 

properties. Stochastic simulation, performed prior to process, provide predictions with high 

uncertainty up to 30% considering the full input process parameters variability. The developed 

inversion methodology overcomes limitations presented in deterministic approaches, 

addressing successfully potential ill-posedness of inverse flow and cure problems considering 

the prior distribution of stochastic variables. The capabilities of the inversion scheme have been 

demonstrated in both filling and curing of LCM processing providing low uncertainty real time 

estimations of process duration at a fraction of the process duration. The methodology 

presented in this study is the first comprehensive attempt to integrate process monitoring with 

process modelling in real time for uncertainty estimation in composites manufacture. The use 

of fast surrogate models is a major enabler of this approach. The successful online 

implementation of the inversion procedure eliminates the gap between stochastic simulation 

and manufacturing process. 

These findings highlight the importance of combining process simulations with process 

monitoring for the reduction of the uncertainty of off-line estimations. The design of the 

monitoring system setup with respect to the number and position of monitoring sensors within 

the part plays a significant role in the convergence behaviour of the inverse solution. Inefficient 

design of the embedded sensing system can result in low sensitivity and convergence issues. 

Increasing the number of sensors increases the complexity and intrusiveness of the monitoring 
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system. An optimisation scheme can be applied identifying the optimal trade-off between the 

number of embedded sensors and the sensitivity of the monitoring system. 

The inversion procedure contributes towards the development of a probabilistic hybrid twin for 

composites manufacture. The integration of models and monitoring within an inverse solution 

allows the on-line estimation of the evolution of the process and its uncertainty. This can be 

utilised to carry out control and corrective actions during manufacturing, potentially increasing 

process efficiency, improving part quality and reducing process failures and defects. The 

integration of the inversion scheme with control can be achieved by developing the framework 

illustrated in Figure 10.1. The inversion scheme is fed by monitoring data predicting the 

probability of defects formation, such as micro/macro voids, distortion or exotherms and the 

final degree of cure, within the part. At the end of each estimation cycle the results of the 

inversion scheme are imported into a control system calculating the actions needed to prevent 

or correct potential undesirable effects. The updated process parameters such as 

activation/deactivation of injection/outlet ports, cure profile changes or tool geometry 

adjustments, applied to manufacturing process by appropriate actuators, are inserted back to 

the inverse algorithm as inputs to estimate the process outcomes considering at the same time 

the new monitoring data batch. This loop continues until the completion of the process, where 

the final inverse solution, which includes probabilistic estimations of defects formation within 

the part, is imported into the quality inspection equipment. Non-destructive testing can be 

focused on areas of the part with high probability of defects formation as identified by the 

inversion scheme. This will result in improved quality and significant savings of inspection 

time. 
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Figure 10.1 Framework for integration of the inversion scheme with control system and 
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ports, applied pressure and/or flow rate and tool temperature can be identified which can lead 

to minimisation of the filling duration and presence of defects with minimum variance. 

Stochastic multi-objective optimisation identifies a set of optimal solutions forming a trade-off 

between the process duration and defects formation alongside with the corresponding 

variability. The selection of an optimal solution among the others in the Pareto set is crucial 

and should be tailored according to each application type. The consideration of process 

outcomes variability as objective in optimisation scheme can provide additional paths for the 

decision of design process parameters. In cases of high performance parts, where the 

specifications of part quality are strict, the focus can be placed on optimal solutions which 

result in defect occurrence below the tolerance thresholds with minimum variance. In processes 

where the production rate is the highest priority, optimal solutions corresponding to sort 

process cycles would be preferred. The identification of optimal solutions with the minimum 

variance is particularly important in processes in which the variability is higher due to the use 

of lower specification materials and tooling equipment. 

The stochastic multi-objective optimisation approach developed in this study can be 

implemented in real time as a means of process control. The proposed framework illustrated in 

Figure 10.1 can be expanded incorporating the stochastic multi-objective optimisation scheme. 

In the framework depicted in Figure 10.2 the stochastic multi-objective optimisation scheme is 

incorporated between the inversion scheme and the control system. The stochastic optimisation 

scheme can identify optimal and stable using the low uncertainty estimates provided by the 

inverse algorithm. The identified optimal solution, which includes the updated process design 

parameters, can be applied to the manufacturing process directly through control actions 

leading to faster process cycles and improved final part quality. The proposed development 

would result in a multi-functional automated tool optimising the manufacturing process in real 

time considering unexpected phenomena occurring during the process. 
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Figure 10.2 Framework for real time uncertainty prediction, stochastic multi-objective 

optimisation and control in composites manufacture. 

10.7. Overview 

The findings presented in this study highlight the importance of integrating process monitoring 

techniques with process modelling for real time low uncertainty estimations of process duration 

and defects formation. Resin viscosity uncertainty, quantified in this study, affects significantly 

the filling process introducing variations in filling duration up to 30%. This uncertainty is 

narrowed down during the manufacturing process by the inversion scheme enhancing the 

predictive capabilities of process models. The inverse algorithm based on MCMC method takes 

into account the prior distributions of stochastic variables addressing successfully potential ill - 

posedness of inverse problems of the filling and curing process. The use of fast surrogate 

models makes the real time implementation of the inversion procedure computationally 

feasible. The dielectric sensor developed here presents significant efficiency in terms of 

monitoring flow and cure process phenomena in LCM processing of carbon composites. The 

flexibility and the small size of the lineal sensor allow its implementation in manufacture of 

complex composites parts without affecting preform architecture significantly. The stochastic 

multi-objective optimisation methodology put forward in this study identifies process design 

parameters which leads to advanced stability of process outcomes in variations of input 

parameters. The inversion scheme and stochastic multi-objective optimisation, presented in this 
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study, can be combined with control to develop an automated optimisation tool operating in 

real time. 
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11. Conclusions 

The main conclusions of this study are as follows: 

• Viscosity variations present in high performance epoxy resins, attributed to 

discrepancies in initial material state, introduce variability in filling duration of typical 

composite parts of about 30%. 

• Surrogate flow and cure models based on the Kriging technique provide accurate 

estimations 99% faster than FE models with 2% error, allowing the real time 

implementation of computational methods with large number of model evaluations 

such as Monte Carlo, Markov Chain Monte Carlo and Genetic Algorithms. 

• Lineal dielectric sensors comprising two twisted insulated copper wires monitor flow 

successfully in the filling stage of LCM of carbon composites with an error lower than 

3%. 

• A woven arrangement of two twisted insulated copper wires can be used to monitor the 

reaction progress and identify vitrification time during the cure of carbon fibre 

reinforced composites with a signal sensitivity increased by 25% compared to 

conventional interdigitated dielectric sensors. 

• An inversion scheme integrating on line process monitoring data and surrogate models 

can be applied to the filling and cure stages of composites manufacturing process in 

real time, reducing the estimation uncertainty computed by stochastic simulation by 

80% and 90% respectively. 

• The real time estimation of material properties and boundary conditions in the filling 

stage of LCM leads to prediction of the filling patterns and duration with 97% accuracy 

compared to experiments. 

• The inversion scheme applied to the cure stage provides real time predictions with 0.9% 

error compared to experiments at approximately 70% of cure process completion. 

• The incorporation of monitoring sensors within the manufacturing tool results in faster 

convergence of the inverse solution at about 50% of process duration. 

• The integration of a stochastic simulation into a multi-objective optimisation 

framework implemented in the curing stage allows the identification of optimal points 

with improved stability in terms of corresponding variability by about 20% compared 

to deterministic optimal solutions. 
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12. Suggestions for further investigation 

Suggestions for further work that can expand the outcomes of this work and also lead to 

industrial application are presented in the following order of importance: 

• Integration of stochastic multi-objective optimisation scheme with the inversion 

procedure and process control into a single tool operating in parallel with the 

manufacturing process to identify stable optimal solutions leading to fast and 

effective process cycles. 

• Development of efficient surrogate models representing high dimensionality 

problems such as fibre orientation random fields. Dimensionality reduction 

methods such as Principal Component Analysis can be used to capture a large 

number of correlated variables in a two or three dimensional space. 

• Development of self-sensing composites by tufting dielectric sensing lines within 

the preform. Tufting can provide effective monitoring of in plane flow front 

evolution and the increase of though the thickness mechanical and electric 

properties. 

• Uncertainty quantification of race tracking effects in LCM processing. 

Quantification of gap size between the preform and tool edges and its 

autocorrelation structure using image analysis can provide the datasets required 

for the development of a one dimensional stochastic object of race tracking 

permeability. Similarly, the variability of porous media permeability for flexible 

tooling LCM process variants can be quantified as a random field. 

• Development of an optimisation scheme for the selection of the number and 

position of lineal flow sensors within the part minimising monitoring system 

intrusiveness while maximising sensitivity. 

• Application of the stochastic multi-objective optimisation framework to the filling 

stage, setting as objectives the minimisation of the filling duration and presence 

of defects with respect to variability using the number and position of 

inlets/outlets, the injection pressure and flow rate and the applied tool temperature 

as design parameters. 
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