
Citation: Bae, S.; Shin, H.-S.;

Tsourdos, A. Structured Urban

Airspace Capacity Analysis: Four

Drone Delivery Cases. Appl. Sci. 2023,

13, 3833. https://doi.org/10.3390/

app13063833

Academic Editor: Augusto Ferrante

Received: 10 January 2023

Revised: 24 February 2023

Accepted: 6 March 2023

Published: 17 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Structured Urban Airspace Capacity Analysis: Four Drone
Delivery Cases
Sangjun Bae 1,2 , Hyo-Sang Shin 1,* and Antonios Tsourdos 1

1 School of Aerospace, Tranport, and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK
2 AI/BigData Optimization Team, LG Display, Paju-Si 10845, Republic of Korea
* Correspondence: h.shin@cranfield.ac.uk

Abstract: A route network-based urban airspace is one of the initial operational concepts of managing
the high-density very low-level (VLL) urban airspace for unmanned aircraft system (UAS) traffic
management (UTM). For the conceptual urban airspace, it is necessary to perform a quantitative
analysis of urban airspace to stakeholders for designing rules and regulations. This study aims to
discuss the urban airspace capacity for four different operation types by applying different sequencing
algorithms and comparing its results to provide insight and suggestions for different operation cases
to assist airspace designers, regulators, and policymakers. Four drone delivery operation types that
can be applied in the high-density VLL urban airspace are analysed using the suggested four metrics:
total flight time; total flight distance; mission completion time; the number of conflicts. The metrics
can be calculated from a flight planning algorithm that we proposed in our previous studies. The
algorithm for multiple agents flight planning problems consists of an inner loop algorithm, which
calculates each agent’s flight plan, and an outer loop algorithm, which determines the arrival and
departure sequences. For each operation type, we apply two different outer loops with the same inner
loop to suggest an appropriate sequencing algorithm. Numerical simulation results show tendencies
for each type of operation with regard to the outer loop algorithms and the number of agents, and
we analyse the results in terms of airspace capacity, which could be utilised for designing structures
depending on urban airspace situations and environments. We expect that this study could give
some intuition and support to policymakers, urban airspace designers, and regulators.

Keywords: drone delivery; flight planning algorithm; unmanned aircraft system (UAS) traffic
management (UTM); graph theory; capacity analysis

1. Introduction

Many civilian applications of small unmanned aircraft systems (sUASs) have been
envisioned to be operated in congested urban airspace for various purposes such as the
delivery of medical supplies and the delivery of packages to rural areas [1–7]. Such
applications are expected to significantly increase the quality of these services. However,
there is no infrastructure to enable and safely manage the use of urban airspace and sUAS
operations yet. Learning from the history of the air traffic management (ATM) systems,
numerous organisations have investigated concepts, functional designs, and prototypes of
unmanned aircraft system (UAS) traffic management (UTM) systems to support safe and
efficient sUAS operations for many applications in urban airspace [8–14].

One of the most fundamental tasks facing the stakeholders of the UTM system over the
world involves defining, measuring, and predicting of the capacity of urban airspace [2,15].
The capacity can be viewed from various perspectives such as safety, performance efficiency,
conflicts, noise, communication spectrum, etc. The difficulty of the task is due to the
numerous factors that affect the urban airspace capacity. In the ATM system most similar
to the UTM system, the general notion of the airspace capacity is the number of flights
that can be accommodated in a given airspace within a given time. In [16–20], the authors

Appl. Sci. 2023, 13, 3833. https://doi.org/10.3390/app13063833 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063833
https://doi.org/10.3390/app13063833
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8854-0674
https://orcid.org/0000-0001-9938-0370
https://orcid.org/0000-0002-3966-7633
https://doi.org/10.3390/app13063833
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063833?type=check_update&version=1


Appl. Sci. 2023, 13, 3833 2 of 23

proposed capacity estimation approaches, which are evaluated from the human workload
of air traffic controllers and pilots. These approaches are highly dependent on the subjective
assessment or judgment of the air traffic controllers. However, such human-dependent
airspace capacity estimation approaches are evaded and unsuitable for the UTM system
which is expected to operate a large number of sUASs by a small number of people or
by itself.

In [21], authors presented a method to calculate air traffic conflict probabilities. The
method is more scalable and robust than the previous approaches. Furthermore, the
method can be applied for any arbitrary stochastic distribution under the condition that the
method requires constant communication between the vehicles and cooperative operations.
In [22], the authors showed that the threshold-based mathematical definition to estimate
the capacity for free flight-based low-altitude airspace. The authors used two metrics
to estimate the capacity: safety (total loss of flight per flight hour) and performance
(percentage extension of travel distance). In [23], the authors investigated new deconfliction
schemes for unmanned aerial vehicles in high-density very low-level (VLL) uncontrolled
airspace, and assessed single-layered and multi-layered airspace designs. Their aim was to
provide a framework for choosing resolution strategies for regulators and policymakers for
the UTM system. In [13], the authors determined the situation-appropriate route network
for unmanned aircraft in urban airspace. The authors suggested three different types of
route networks (AirMatrix, Over Buildings, Over Roads), and showed the results of the
capacity and throughput for each route network. The results were obtained by generating
five two-way routes for aerial delivery missions from the supply point to five service points
where the routing problem was solved with an assumption that once a sUAS occupies a
segment, then any other sUASs cannot traverse the route.

However, the approach caused very conservative analysis results and might dis-
turb the optimality of solutions for the following problems: scheduling and separation
management, although these have a computational advantage. As presented in the lit-
erature [11,12,22–24], on the development of advanced technology, the free flight-based
operation in congested urban airspace can be an option for the UTM system. One of the
few options is route network-based operations as described in [13,25]. Additionally, in
the ATM context, opinions on the types of airspace operations diverge into two groups,
a reduction in the constraints research [26,27] and more structured operations-preferred
research [28,29].

Inspired by [13,25,30,31], we investigate strategies for analysing high-density VLL
structured and controlled urban airspace capacity, with the aim to support airspace design-
ers, regulators, and policymakers for determining tailored strategies in the consideration of
regional characteristics and environment. The benchmark scenarios considered to perform
capacity analysis are four different drone delivery operation types (1-to-M,M-to-1, N -to-
M, andM-to-N , whereM,N is a number of arrival or departure points andM > N ) in
a route network over the roads in a given urban airspace. To overcome the disadvantages
of the five two-way route planning used in [13] and perform quantitative capacity analysis,
we develop a flight planning algorithm which is an extended version of our previous
algorithm [32,33].

The proposed algorithm that iteratively solves multiple sUASs’ flight planning prob-
lems consists of an inner loop algorithm and an outer loop algorithm. At each iteration,
the inner loop algorithm generates each sUAS’ flight route and speed profile by solving
the shortest path problem, and the outer loop algorithm determines the departure and
arrival sequences. To suggest an arrival and departure algorithm for each operation type,
we utilise two different outer loop algorithms, which are the first-come-first-served (FCFS)
algorithm and the last-come-first-served (LCFS) algorithm, for allocating the sequences.
We utilise the obtained flight plans to analyse the urban airspace by defining four metrics
as follows: total flight time; mission completion time; total flight distance; and normalised
number of conflicts. For each operation type, we conduct 100 Monte Carlo simulations
for both the FCFS algorithm and the LCFS algorithm. From the results, we can either find
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an appropriate outer loop algorithm for regional characteristics and the cases or reconfig-
ure route networks as is required. We expect that the simulation results and its analysis
could provide insight for policymakers, urban airspace designers, and regulators from the
perspective of safety, capacity, etc.

The structure of this paper is as follows. We first focus on a design of the route network
over roads in Section 2. In the following section, we provide details of the flight planning
algorithms for the different cases, and describe the metrics to analyse the urban airspace
capacity. Note that, in order to avoid extraneous examples to explain the flight planning
algorithm in Section 3, we adopt one simulation case in Section 4 to explain it. In Section 4,
we perform numerical simulations for each operation type and analyse the results. Finally,
the conclusion and discussion are presented in Section 5.

2. Urban Airspace Concept: Route Network over Roads

Many studies have focused on the sUAS path planning problem [24,34–46]. The
majority of them solve the problem with the unstructured airspace assumption. For urban
airspace users in high-density VLL urban airspaces, however, many difficulties are expected
with sUAS studies, which are based on free routing and free flight operations, such as the
risk of unforeseen crashes, the invasion of privacy, etc. On the other hand, structured and
controlled airspace can predict crashes more easily than the unstructured airspace, and
privacy can be considered in the airspace structural design stage.

In this section, we suggest a route network-based urban airspace structure, which
can be a potential candidate for the high-density VLL airspace structure. The proposed
urban airspace structure concept resembles the airspace structure used in en-route phases
of the ATM system today that can be considered as a combination of the Layers and Tubes
concepts amongst four concepts Full Mix, Layers, Zones, and Tubes presented in [31].
The characteristics of the suggested airspace structure concept are as follows: consist
of waypoints (nodes) and segments (edges) connecting some pair of waypoints; flight
direction is strictly defined for all segments; at least two layers are stacked; separate traffic
based on a time-based separation concept within each layer. As shown in Figure 1, for
example, there is an eastbound layer and a westbound layer, and each layer consists of
parallel-aligned northbound segments and southbound segments. Such a route network
over roads with directions in urban airspace will increase the predictability of traffic by
using flight plans. In this concept, the urban airspace structure can be thought of as a
directed graph (or digraph) G = (E ,V), called an airspace graph to highlight the aerospace
context. In the airspace graph G, node v ∈ V is a point in Euclidean space of dimension
two or three representing a waypoint candidate to be traversed. Edge e ∈ E , corresponding
to a rectifiable curve, is a segment between some pair of waypoints in the airspace graph G.

Figure 1. An example of the proposed route network-based urban airspace structure concept.

The main assumptions we make for the route network-based operations in this study
are as follows: each flight route is composed of a series of linear segments as shown in
Figure 2; each sUAS flies along each segment at a constant speed while it changes speed in
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between segments; each sUAS is able to exactly follow the flight route without deviation; a
time-based separation concept is utilised for collision avoidance; uncertainties produced by
external sources are neglected such as adverse weather (i.e., true airspeed is considered);
a control tower exists (i.e., flight plans are shared between sUASs and a control tower);
the hovering and vertical manoeuvres are not considered; sUASs have limited payload
and flight range; we only consider flights within each layer (e.g., no transitions between
layers), but the transitions could be adopted by establishing the vertical segments in reality;
homogeneous sUASs.

Figure 2. A series of linear segments (sUAS αi’s flight route from its origin vi
1 to its destination vi

ni
).

3. Flight Planning Algorithm

In this section, we describe the flight planning algorithm that is used to analyse the
route network-based urban airspace. The algorithm that solves multiple sUASs flight plan-
ning problems consists of the inner loop algorithm and the outer loop algorithm. The inner
loop algorithm optimises each flight plan of an sUAS that minimises the flight time while
satisfying the time-based minimum separation requirement from other planned sUASs.
Then, the outer loop algorithm allocates arrival and departure sequences of the sUASs.

Definition 1. We define the flight planning problem as the following: (a) the flight route of each
sUAS, (b) its separation-compliant speed profile including arrival times at each waypoint, and
(c) the arrival and departure sequences (if it is a multiple sUASs flight planning problem).

This section consists of five parts: (a) a description of the time-based separation
concept; (b) flight planning problem formulation for each sUAS (inner loop); (c) the entire
flight planning algorithm with two different outer loop algorithms (FCFS and LCFS); (d) a
flight planning example using the proposed algorithm for a last-mile delivery case (1-to-M);
and (e) a description of four metrics to quantitatively analyse the urban airspace capacity.

3.1. Separation Concept in Route Network-Based Unban Airspace

Conflict detection is activated when the separation of two sUASs is less than the
minimum separation criterion. In this study, time-based separation is applied instead of
the widely used distance-based separation to stabilise the spacing between all the sUASs.
In this concept, a sUAS will occupy a waypoint when the sUAS passes the waypoint for
a predetermined time interval. Within this time interval, no sUAS is allowed to traverse
through the waypoint to satisfy the separation requirement. For each waypoint, a time
interval list is maintained to keep track of the times at which the waypoint is expected to be
occupied. These lists, called the flight schedule in this study, are shared between all sUASs
during operation. By satisfying the separation assurance flight time at each waypoint
rather than adjusting a distance between the sUASs, we can obtain results that satisfy the
minimum separation along routes as well as at waypoints at all times. Note that, even if
we consider homogeneous sUASs in this study, the separation concept can be applied to
both heterogeneous and homogeneous cases.

The separation concept allows time-based separation to be satisfied at merging points
and crossing points as shown in Figures 3 and 4, respectively. At the time t0 of Figure 3,
sUAS αi and sUAS αi′ fly towards the vC through the same merging point vY at speeds
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si
1 and si′

1 , respectively. The time t0 is stored at each start point T(vA) and T(vB), and no

sUAS can pass through both of the waypoints for separation time t(i
′′ ,i)

SP seconds and t(i
′′ ,i′)

SP

seconds before and after t0, respectively. Note that, where t(i
′ ,i)

SP is dependent on the types of
αi and αi′ . The time t1 of Figure 3, when αi′ just passes through vY, is stored at the merging

point T(vY), and no sUAS can pass through this waypoint for t(i
′ ,i)

SP seconds before or after
t1. The time t2 of Figure 3 is stored in T(vY) in the same way. Then, αi and αi′ traverse
towards vC at speeds of si

2 and si′
2 , respectively. If αi and αi′ fly from vM to vC at speeds of si

2
and si′

2 , respectively, the separation between the two sUASs will always meet the separation
requirement or be greater than that on the segment between vY and vC. At the time t3 of
Figure 3, αi and αi′ fly at the same speed while maintaining the minimum separation. The
flight schedule from t0 to t3 at each waypoint is as follows:

T(vA) = {0s},
T(vB) = {0s},
T(vY) = {0s, 120s, 210s},
T(vC) = ∅.

If no sUAS has passed waypoint vC, then T(vC) = ∅. Such a flight schedule at each
waypoint is used to formulate a flight planning problem that will be described in the
following section. Note that, in this study we assume that all sUASs are of the same type to
analyse the capacity with less decision parameters.

Figure 3. Time-based separation concept for merging points. αi and αi′ are represented by superscript
i and i′ in the figure, fly from their origin vA and vB to vC through the merging point vY at speeds
{si

1, si
2} and {si′

1 , si′
2}, respectively. The superscript and subscript of s are the sUAS index and segment

index, respectively.
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Figure 4. Time-based separation concept for crossing points. αi and αi′ are represented by superscript
i and i′ in figure, fly from their origin point vA and vB to their final point vA′ and vB′ through the
crossing point vX at speeds {si

1, si
2} and {si′

1 , si′
2}, respectively. The superscript and subscript of s are

the sUAS index and segment index, respectively.

3.2. Inner Loop: Single sUAS Flight Planning Problem

In this section, our focus is on flight planning a finite set of sUASs in a given route
network-based urban airspace.

Definition 2. Let A = {α1, α2, . . . , αi} be a finite set of sUASs. The set is partitioned into two
sets: a set of sUASs to be planned A+, and a set of planned sUASs A− such that A+ ∪A− = A,
A+ ∩A− = ∅.

In the urban airspace, each sUAS flies from its origin to its destination. A feasible
flight route for each sUAS in the urban airspace is defined as follows:

Definition 3. Is given in the airspace graph G = (E ,V), sUAS αi ∈ A+ to be routed in G, the
initial waypoint vi

1 ∈ V and the final waypoint vi
ni
∈ V to construct a flight route denoted by p(αi)

in G = (E ,V) defined by a sequence of waypoints.

Thus, in the airspace graph G = (E ,V), there can be an abundance of flight route
candidates denoted by C that satisfy the conditions as described in Definition 3. Through
Definition 3, each flight route candidate p(αi) ∈ C can be given a corresponding flight route
(a set of waypoints) as follows:

p(αi) : vi
1, vi

2, . . . , vi
ni

where ni is the number of waypoints sUAS αi traverses as shown in Figure 2. For each
sUAS’ flight route as given in above equation, there is a set of segments connecting the
waypoints, which is as follows:

E(p(αi)) : ei
(1,2), ei

(2,3), . . . , ei
(ni−1,ni)

.
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For each flight route candidate, it is assumed that a performance index for a set
of segments E(p(αi)) can be quantified as a set of positive numeric weighting values,
as follows:

W(p(αi)) : wi
1, wi

2, . . . , wi
ni−1.

Then, the airspace graph G = (E ,V) is transformed into a weighted directed graph
G = (E ,V ,W) by assigning a weight to each segment for all flight routes. In the airspace
graph G = (E ,V ,W), each flight route can be estimated by summing all weights of
W(p(αi)), as follows:

T (p(αi)) =
ni−1

∑
j=1

wi
j. (1)

Based on the airspace graph, G = (E ,V ,W), the routing problem that optimises the
performance index can be defined as follows:

Definition 4. Given an airspace graph G = (E ,V ,W) and corresponding flight route candidates
C, the routing problem is defined as finding a flight route (or a sequence of waypoints) such that

p∗(αi) = argmin
p(αi)∈C

T (p(αi)). (2)

The optimal flight route p∗(αi) can be found by using the well-known shortest path
algorithms such as Dijkstra’s algorithm, A∗ algorithm or exhaustive search algorithm [47].
Although the optimal flight route p∗(αi) can be obtained according to Definition 4, if the
airspace users want to manage the separation between each sUAS in sequential approaches,
the optimality of the obtained flight route might be disturbed in the following separation
management stages. One possible option is to solve the multiple sUASs flight planning
problem using numerical trajectory optimisation approaches, which is not scalable although
the approaches provide high-fidelity flight plans to each sUAS. Such approaches can also
require additional processes for managing separation, which might cause optimality or
scalability issues.

Our objective of formulating the flight planning problem is to find a flight route and
speed profile that minimises the flight time of each sUAS while satisfying the separation
requirement. The main idea for achieving the objective is to assign a weight to each segment
(edge) of the airspace graph where the weight is expressed as a flight time. Then, each
sUAS’ speed profile also can be obtained by finding its flight route in the airspace graph as
defined in Definition 4. We set a flight time of each sUAS as weight w ∈ W to each segment
e ∈ E of the airspace graph G = (E ,V ,W). Note that, a flight time and speed of each sUAS
are mutually interchangeable using geographic data included in the airspace graph. Where
each speed profile of sUAS is determined within a feasible speed range of each sUAS.
Another issue we have pursued is to satisfy the separation requirement between every pair
of sUASs. To assign a flight time that satisfies the separation requirement to each edge of G ,
we need the flight schedule of the set of planned sUASs including the arrival times of each
sUAS at each waypoint as discussed in Section 3.1. The flight schedule T will be included
in the airspace graph G = (E ,V ,W ,T), and used to calculate the weights of the airspace
graph. By finding a solution of the airspace graph G, then, we can obtain a flight route
and speed profile of the sUASs while satisfying the separation requirement simultaneously.
Each sUAS has different weightsWi because of different specifications such as the feasible
speed range or the separation requirement depending on nearby sUASs. Therefore, sUAS
αi ∈ A+ has its own airspace graph Gi, as shown in Figure 5.
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Figure 5. Independent airspace graphs for each sUAS.

Flight Time WeightsWi,t on Gi

We propose a weighting scheme to be applied to the airspace graphs Gi to fulfil
separation-compliant speed profiles. First of all, we introduce a set of constant speeds for
each sUAS as follows:

s(αi) : si
1, si

2, . . . , si
ni−1

where each element of the set s(αi) must be within a feasible speed range [si
min si

max],
∀αi ∈ A. Furthermore, we define a set of flight distances using geographical data allowing
to compute the set s(αi), ∀αi ∈ A+

d(αi) : di
1, di

2, . . . , di
ni−1.

Let ui
j = 1/si

j, ∀j ∈ {1, 2, . . . , ni − 1}, ∀αi ∈ A+ , ui
max = 1/si

min, and ui
min = 1/si

max,
we formulate a linear programming problem and solve the problem to obtain the flight
time weightWi,t, ∀αi ∈ A+ as follows:

min
ni−1

∑
j=1

ui
jd

i
j, (3)

s.t. di
1ui

1 + di
2ui

2 + · · ·+ di
ni−1ui

ni−1

≥ max(T(vi
ni
)) + t(i

′ ,i)
SP , (4)

di
1ui

1 + di
2ui

2 + · · ·+ di
ni−2ui

ni−2

≥ max(T(vi
ni−1)) + t(i

′ ,i)
SP , (5)

...

di
1ui

1 + di
2ui

2 ≥ max(T(vi
3)) + t(i

′ ,i)
SP , (6)

di
1ui

1 ≥ max(T(vi
2)) + t(i

′ ,i)
SP , (7)

ui
min ≤ ui

1, ui
2, · · · , ui

ni
≤ ui

max (8)

where t(i
′ ,i)

SP is the minimum time-based separation requirement between preceding sUAS
αi′ and following sUAS αi at waypoints as shown in Figures 3 and 4. The objective function
of Equation (3) is to minimise the sum of flight time of each segment. The constraints of
Equations (4)–(7) are for satisfying the minimum separation requirement at each waypoint.
In Figure 2, for example, if E(p(αi)) consists of ni − 1 segments for sUAS αi, each segment
requires a flight time that satisfies the separation requirement. The left-hand side of each
constraint of Equations (4)–(7) is the flight time for the segment of each constraint, which
must be greater than and equal to the time that satisfies the separation requirement. For
the constraints, flight distances between waypoints and the flight schedule are required.
The flight schedule is stored in T for each waypoint v ∈ V , and T is updated every time a
sUAS is allocated and shared with ∀αi ∈ A+.

T(v) = {tv
1, tv

2, . . . , tv
A}. (9)

A is the number of elements in A. Then, the formulated optimisation problem can be
solved by any well-known linear programming algorithm. In this study, we utilise the
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interior-point algorithm. In Equation (8), decision variables, si
1, si

2, · · · , si
ni−1, are constant

speeds for the flight segment, which are transformed into flight times, and assigned into
weightsWi,t for each flight route candidate of sUAS αi ∈ A+.

Wi,t : wi
1,t, wi

2,t, · · · , wi
ni−1,t.

Therefore, a solution to the airspace graph Gi = (E ,V ,Wi,t, T) can simultaneously
provide a flight route and its speed profile for sUAS αi, ∀αi ∈ A+ while satisfying minimum
separation at all times.

We also construct flight distance weightsWd on Gi to utilise the flight distance d as
a second criterion. The weights Wd are the same for all sUASs, which are necessary to
prioritise for the multiple sUASs’ flight planning problem when two or more sUASs arrive
at the same destination at the same time, more details about the priority are discussed in
Section 3.3. The single sUAS flight planning problem that motivated this study can be
formulated as follows:

Problem 1. Given an unique airspace graph Gi = (E ,V ,Wi,t,Wd, T), sUAS αi in Gi, and its
origin vi

1 ∈ V and destination vi
ni
∈ V reachable from the origin, construct a flight route p(αi) and

a speed profile s(αi), ∀αi ∈ A+ such that

• the separation requirement is satisfied from the planned sUAS ∀αi ∈ A−;
• the speed profile of each sUAS must be within its feasible speed range;
• and the airspace graphs are updated every time when a sUAS αi ∈ A+ is planned.

In this study, we solve Problem 1 using Dijkstra’s algorithm [47].

3.3. Outer Loop: Multiple sUASs Flight Planning

The main idea of this study is that the single sUAS flight planning problem can be
formulated by assigning the separation-satisfied flight time weights in the airspace graph
as described in Section 3.2. By doing so, the problem is able to not only manage separation
between every pair of sUASs, but also consider operational factors such as the feasible
speed ranges, available routes, the separation requirements. However, the separation of
each sUAS only satisfies the separation requirement from a set of allocated sUASs. In this
section, we address the multiple sUASs flight planning problem by solving each single
sUAS flight planning problem in an iterative way. At each iteration, each sUAS finds the
optimal flight route including its speed profile by solving Problem 1 (inner loop), and one
of the sUASs is allocated using a criterion-based algorithm (outer loop). In this study, we
utilise the FCFS and LCFS algorithms for the outer loop algorithm.

Once inputs of the multiple sUASs flight planning problem are given, Algorithm 1
starts the flight planning process until A+ is empty (Line 3). The algorithm first generates
airspace graphs Gk

i = (E ,V ,Wd, Tk), ∀αi ∈ A+ (Line 2). Assigning separation-satisfied
flight time weights to all possible flight paths in the airspace graph is a time-consuming task.
In order to reduce the complexity of the problem caused by the high degree of the airspace
graphs, we select the h-shortest routes for Gk

i = (E ,V ,Wd, Tk), ∀αi ∈ A+ by using Yen’s
algorithm, and generate Ḡk

i only considering the h-shortest routes (Line 4–5) [48]. Then,
each sUAS has its unique airspace graph that contains flight time weightsW k

i,t determining
the optimal flight route with its speed profile. The optimal flight route p∗(αi) and its speed
profile s(αi) are obtained by using Dijkstra’s algorithm, ∀αi ∈ A+ (Line 6) [49]. sUAS α∗i
that arrives first to its destination is obtained by using the FCFS algorithm (Line 7), and
allocated (Line 15). The flight plan of sUAS α∗i is transferred from A+ to A− (Line 12).
Note that, in this study, αi refers to a flight as well as a sUAS. In the case that more than
two sUASs arrive at the same destination at the same time (Line 8), the flight distance
weightsWd are utilised to allocate sUAS α†

i amongst them (Line 9–13). In either case, a
sUAS is allocated and its flight schedule is shared with sUAS αi, ∀αi ∈ A+. Based on the
flight schedule each airspace graph Gk

i is updated, ∀αi ∈ A+ (Line 20). Note that, to change
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the outer loop algorithm to other criterion-based algorithms, such as the LCFS algorithm,
users are only required to change the outer loop algorithm Line 7 and Line 10 to what the
users want.

Algorithm 1: The multiple sUASs flight planning algorithm

Input: vi
1, vi

ni
∈ V , ∀αi ∈ A, airspace information

Output: p∗(αi), s∗(αi), ∀αi ∈ A
1 k = 1
2 generate Gk

i = (E ,V ,Wd, Tk), ∀αi ∈ A+

3 while A+ 6= ∅ do
4 find h-shortest routes for Gk

i = (E ,V ,Wd, Tk), ∀αi ∈ A+ (using Yen’s
algorithm);

5 generate Ḡk
i = (E ,V ,W k

i,t,Wd, Tk) that only considers the best h routes,
∀αi ∈ A+;

6 find p∗(αi) of Ḡk
i = (E ,V ,W k

i,t, Tk), ∀αi ∈ A+ (using Dijkstra’s algorithm);
7 α∗i ← argmin∀αi∈A+ p∗(αi) (using FCFS algorithm);
8 if There are more than two α∗i exist then
9 find p∗(αi) of Ḡk

i = (E ,V ,Wd, Tk) amongst them (using Dijkstra’s
algorithm);

10 α†
i ← argmin∀α∗i

p∗(αi) (using FCFS or LCFS algorithm);

11 allocate α†
i ;

12 transfer α†
i from A+ to A−;

13 share A− with ∀αi ∈ A+;
14 else
15 allocate α∗i ;
16 transfer α∗i from A+ to A−;
17 share A− with ∀αi ∈ A+;
18 end
19 k = k + 1;
20 update Gk

i = (E ,V ,W k
i,t,Wd, Tk), ∀αi ∈ A+ ;

21 end

We illustrate an example in Figure 6 for a better understanding of Algorithm 1 with
an case that A sUASs fly in the urban airspace. In the first iteration, each sUAS generates
its airspace graph G1

i , ∀αi ∈ A+ = {α1, α2, . . . αA}. Through the inner loop algorithm, each
sUAS’s p∗(αi) is determined, ∀αi ∈ A+, and the most flight-time-efficient sUAS, which is
α2, is allocated using the FCFS algorithm. In the second iteration, sUAS αA is allocated
through the same process. In the (A− 1)th iteration, sUAS α3 is allocated, and sUAS α1 is
allocated last.
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Figure 6. Iteratively generated airspace graphs.

3.4. Flight Planning Example for 1-to-M Case (Last-Mile Delivery with a Single Retail Point)

We used a simulation case in Section 4 to explain the flight planning algorithm and
did not include extraneous examples to avoid confusion. We appreciate the readers’
understanding in this matter. This example is a sample of the Monte Carlo simulations
for the 1-to-M case, and its simulation settings are described at the beginning of Section 4.
Put briefly, thirty sUASs traverse from the retail point (E68) to each predetermined sUAS’
service points (E1∼E67) in Figure 8. We apply both the FCFS and LCFS algorithms to this
example, and thirty flight plans for each case are shown in Tables 1 and 2, respectively. The
results show each sUAS’ separation requirement-satisfied flight route and speed profiles
for each outer loop algorithm. Due to a 5 s departure separation, 5 s horizontal separation
as well as the single retail point of this case, all sUASs find their flight routes with the
maximum speed without any conflicts for both cases. For the same reasons, most of the
flight routes are the same as the shortest path of each sUAS. Table 3 shows a comparison
of the results between the FCFS and LCFS algorithms for this example. The total flight
time and the total flight distance of thirty sUASs for the FCFS algorithm case is almost
same as the LCFS algorithm case. However, the mission completion time for the LCFS
algorithm case is 34.5% more efficient than the FCFS algorithm case. Therefore, although
the total flight time and the total flight distance are very similar for both cases, the LCFS
algorithm case is more efficient with regard to the urban airspace operating time. Both
airspace users and airspace service providers prefer to operate as many sUASs as possible
in a given time within a given urban airspace. However, if there are more than two urban
airspace users with more than two retail points, the urban airspace usage priority will be
an essential factor to be considered for the flight planning problems, which is a similar
situation reported for today’s airspace for commercial aircraft.

Advantages of the proposed algorithm are as follows: able to adopt different sequenc-
ing algorithms; providing separation-compliant speed profiles that satisfy each sUAS’s
performance; applicable to various types of route networks; enlarge a solution-searching
space by finding a flight route and speed profile of each sUAS simultaneously; and fast
computational time. Therefore, we expect that the advantages of Algorithm 1, which
provides not only the flight route but also the detailed schedule, will be appropriate to
analyse the capacity of the high-density VLL urban airspace populated by many sUASs
with short flight times, and many service providers.
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Table 1. Flight planning results of 30 sUASs for the 1-to-M case (outer loop: FCFS algorithm).

sUAS
ID

Retail
Point

Service
Point

Waypoint Sequence
(Arrival Time at Each Waypoint (s))

Speed Profile (km/h)

...
...

...
...

a4 E68 E4
E68-E24-E17-E1-E2-E3-E4

(180)-(197)-(217)-(244)-(268)-(280)-(293)
25-25-25-25-25-25

a5 E68 E5
E68-E24-E17-E1-E2-E3-E4-E5

(220)-(237)-(257)-(284)-(308)-(320)-(333)-(345)
25-25-25-25-25-25-25

...
...

...
...

a22 E68 E36
E68-E32-E33-E34-E35-E36

(130)-(147)-(169)-(181)-(193)-(206)
25-25-25-25-25

a23 E68 E38
E68-E32-E33-E34-E35-E36-E37-E38

(170)-(188)-(209)-(221)-(234)-(246)-(258)-(271)
25-25-25-25-25-25-25

...
...

...
...

Table 2. Flight planning results of 30 sUASs for the 1-to-M case (outer loop: LCFS algorithm).

sUAS
ID

Retail
Point

Service
Point

Waypoint Sequence
(Arrival Time Each Waypoint (s))

Speed Profile (km/h)

...
...

...
...

a4 E68 E4
E68-E24-E17-E1-E2-E3-E4

(110)-(127)-(147)-(173)-(197)-(210)-(223)
25-25-25-25-25-25

a5 E68 E5
E68-E24-E17-E1-E2-E3-E4-E5

(70)-(87)-(107)-(133)-(157)-(170)-(183)-(196)
25-25-25-25-25-25-25

...
...

...
...

a22 E68 E36
E68-E32-E33-E34-E35-E36

(160)-(177)-(198)-(211)-(223)-(236)
25-25-25-25-25

a23 E68 E38
E68- E32-E33-E34-E35-E36-E37-E38

(120)-(137)-(158)-(171)-(183)-(196)-(208)-(221)
25-25-25-25-25-25-25

...
...

...
...
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Table 3. Comparison between the FCFS and LCFS algorithms for the 1-to-M case.

FCFS
Algorithm

LCFS
Algorithm

Total flight time (s) 7035.1 7031.1

Total flight distance (km) 19.3 19.3

Mission completion time (s) 468.7 307.0

Number of conflict 0 0

3.5. Four Metrics for the Capacity Estimation

In the ATM system, typically, the airspace capacity is defined as the maximum number
of aircraft that can be accommodated by the air traffic controllers in a given airspace at any
point of time, while throughput is defined as the number of aircraft that land at an airport
over a specific time window. In the sUASs’ flights in high-density VLL urban airspace,
however, it is expected that it might be difficult to construct and negotiate multiple sUASs’
flight plans a few days in advance, such as the flight plans in the ATM system, and it might
be complicated to conduct separation management through conventional human air traffic
controllers due to the large number of sUASs. In addition, compared with commercial
aircraft, very short flight times, many landing points, many flights, and fewer operators are
expected. Thus, we can expect that one option is to analyse the urban airspace capacity
based on the detailed flight plans with regard to the flight time to complete the given
mission, the total flight time, the total flight distance, and the number of conflicts. We utilise
such detailed flight plans to define four metrics to analyse the urban airspace capacity.

3.5.1. Total Flight Time (Mt f t)

Intuitively, one metric to analyse the urban airspace capacity is the total flight time for
a given mission. The total flight time can be calculated as follows:

Mt f t =
A

∑
i=1

ni−1

∑
j=1

wi
j,t (10)

where A is the number of sUASs to be planned. Mt f t can also be utilised as a metric to
measure the operating costs for the sUAS operators.

3.5.2. Mission Completion Time (Mmct)

Once missions are given to a set of sUASs, each sUAS generates its separation-
compliant flight plan. Then, the mission completion time is the latest arrival time at
a service point or a retail point of the last sUAS, which can be found as follows:

Mmct = argmax
∀vs.∈V

TA(v). (11)

The meaning of this metric can be used as an indicator to determine which algorithms
are effective to operate the route network-based urban airspace under the same conditions.
This will be one of the most important metrics for the urban airspace operators.

3.5.3. Total Flight Distance (Mt f d)

The flight distance is a commonly used as a criterion for analysing the flight perfor-
mance to find the optimal path in the urban airspace. Each sUAS’ flight distance, which is
used for the second criterion in Algorithm 1, can be obtained from the geometry information.
The total flight distance can be calculated as follows:

Mt f d =
A

∑
i=1

ni−1

∑
j=1

di
j. (12)
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3.5.4. Normalised Number of Conflicts (Mcn f )

Algorithm 1 generates a flight plan that only fulfils the destination separation require-
ment within the permissible speed range when the algorithm could not find a flight route
that satisfies the separation requirement during the whole flight as well as the destination
separation requirement and the permissible speed range. Namely, the sUAS could conflict
with other sUASs during the flight based on the obtained flight plans. Although this paper
does not provide overtaking manoeuvres, it is assumed that overtaking manoeuvres via
vertical manoeuvring is sufficiently possible using current CD and R (conflict detection
and resolution) technologies. Then, the number of conflicts is counted whenever a sUAS
overtakes a preceding sUAS. Naturally, the number of conflicts increases with the number
of sUASs in the urban airspace. We divide the number of conflicts by the total number of
possible conflicts to normalise, and use it as a metric:

Mcn f =
nconf
ntot

(13)

where ntot is the total number of possible conflicts, which is A×(A + 1)
2 , and nconf is the

number of conflicts.

4. Monte Carlo Simulations

In this section, we conduct Monte Carlo (MC) simulations with two different outer
loop algorithms (the FCFS and LCFS algorithms) that are based on the proposed flight
planning algorithm for four drone delivery operation types. We investigate how the
different operation types’ performance and safety behave with regard to the different flight
planning algorithms and the number of sUASs in the high-density VLL urban airspace
using the suggested four metrics. It aims to provide an approach for choosing between
resolution strategies for urban airspace management by regulators, policymakers, and
urban airspace designers.

The representative operation being considered in this study is drone delivery, es-
pecially last-mile delivery and first-mile delivery. Last-mile delivery is defined as the
movement of items from transportation hubs (which are retailers in this study) to final
delivery destinations, typically personal residences. First-mile delivery refers to the move-
ment of goods from sellers to courier services who will take these goods to their final users.

A scenario for the simulations is based on the town ‘Oldbrook’, which is one of the well-
planned towns in Milton Keynes in the United Kingdom. Two-dimensional infrastructure
data of the town is obtained from Google Earth Pro. The scenario has an area size of
0.98 km2 as shown in Figure 7. Similar to the en-route airspace for commercial aircraft,
in this route network, we construct two layers of nodes that are set above the roads at
heights of 15 m and 25 m as shown in Figures 8 and 9 for eastbound and westbound routes,
respectively. We assume that each layer consists of 70 points (3 retail points (red pins) and
67 service points (green pins)) and 107 directed routes as shown in Figures 8 and 9. All
sUASs are of the same type as shown in Table 4. The sUAS type can be later changed
and varied based on the missions and operators. For the separation between sUASs, it
is assumed that the time-based minimum vertical and horizontal separation requirement
during the flight is 5 s. No hovering manoeuvres are allowed for any sUASs.
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Figure 7. Oldbrook, Milton Keynes, United Kingdom (from Google Earth Pro). Green pins (1∼67)
and red pins (67∼70) represents retail points and service points respectively.

Figure 8. Eastbound at 15 m, 3 retail points (E68, E69, E70) and 67 service points (E1∼E67) and
107 directed routes, (Oldbrook, Milton Keynes, United Kingdom).
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Figure 9. Westbound at 20 m, 3 retail points (W68, W69, W70) and 67 service points (W1∼W67) and
107 directed routes, (Oldbrook, Milton Keynes, United Kingdom).

Table 4. sUAS specification.

Small UAS

Speed Range (km/h) [5–25]
Endurance (s) 900
Separation (s) 5

Max Weight (kg) 25 (FAA Part 107)

We conduct 100 MC simulations for each outer loop algorithm (FCFS and LCFS
algorithms) by increasing the number of sUASs from 5 to 50 with 5 s interval for the four
drone delivery operation types (1-to-M,M-to-1, N -to-M,M-to-N ) as shown in Table 5.
At each simulation a service point and a retail point for each sUAS are randomly chosen
except for the 1-to-M andM-to-1 cases in which there is the single retail point E68 and
W68, respectively. Once the route network and each sUAS’ retail point and service point
are given, which are the input of Algorithm 1, the algorithm generates each sUAS’ flight
plan as described in Section 3. From the output of the algorithm, we obtain Mt f t (total flight
time), Mmct (mission completion time), Mt f d (total flight distance), and Mcn f (normalised
number of conflicts).

Table 5. Eight Monte Carlo simulation cases.

FCFS Algorithm LCFS Algorithm

1-to-M case X X
M-to-1 case X X
N -to-M case X X
M-to-N case X X

Both the FCFS and LCFS algorithm results quantify the route network-based urban
airspace based on the four metrics. For each operation type, we analyse both results, and
suggest one of the two outer loop algorithms that is more appropriate for the operation type.
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4.1. 1-to-M Last-Mile Delivery Case (Eastbound)

In the 1-to-M operation type, each sUAS traverses with an item from the single
retail point (E68) to each sUAS’ predetermined service point between E1 and E67 in
Figure 8, where we disregard two retail points (E69 and E70) and two routes (E69→E17
and E70→E43).

In both of the outer loop algorithms, multiple sUASs traverse at maximum speed due
to the five second time interval between each sUAS departure at the single retail point
(E68). Thus, there is no significant difference between the two algorithms in Mt f t and Mt f d,
as shown in Figure 10a,c, respectively. Furthermore, the interval allows them to satisfy
the separation requirement at all times, so there is no conflict between any pair of sUASs.
However, Figure 10b shows that the LCFS algorithm results in more efficient mission
completion times compared to the FCFS algorithm, which means the LCFS algorithm
allows more sUASs to fly at a given time within the urban airspace. Therefore, in the
operation type of 1-to-M, the LCFS algorithm is more efficient than the FCFS algorithm in
terms of total flight distance Mmct.

(a) Mt f t (total flight time (s)) (b) Mmct (mission completion time (s))

(c) Mmct (total flight distance (km))

Figure 10. 1-to-M Case: Standard deviation comparisons between the FCFS algorithm and the LCFS
algorithm for Mt f t, Mmct, and Mt f d.

4.2.M-to-1 First-Mile Delivery Case (Westbound)

In theM-to-1 operation type, multiple sUASs fly from their predetermined service
points between W1 and W67 to the single retail point (W68) in Figure 9, where we ignore
two retail points (W69 and W70) and two routes (W17→W69 and W43→W70). We assume
that all sUASs depart from each sUAS’ service point at the same time to consider the worst
case scenario.

Figure 11c shows that Mt f d of the LCFS algorithm is slightly higher than the FCFS
algorithm, and Figure 11a shows that Mt f t is rapidly raised as the number of sUASs
increases compared to Mt f d. As a result, it is seen that the LCFS algorithm causes not only
detours but also low flight speeds. These results are inextricably linked to Mcn f shown
in Figure 11d, resulting in inefficient and unpredictable results for Mcn f . In all respects,
therefore, the FCFS algorithm is better than the LCFS algorithm for theM-to-1 operation
type for the urban airspace.
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(a) Mt f t (total flight time (s)) (b) Mmct (mission completion time (s))

(c) Mt f d (total flight distance (km)) (d) Mcn f

Figure 11. M-to-1 Case: Standard deviation comparisons between the FCFS algorithm and the LCFS
algorithm for Mt f t, Mmct, Mt f d, and Mcn f .

4.3. N -to-M Last-Mile Delivery Case (Eastbound)

In the N -to-M operation type, each sUAS traverses with an item from the predeter-
mined retail points (E68, E69, and E70) to the each sUAS’ predetermined service point from
E1 to E67 in Figure 8. It is assumed that each retail point has five second departure intervals.

From the safety and flight performance perspective, the FCFS algorithm results in
more efficient results for Mt f t, Mt f d, and Mcn f , as shown in Figure 12. However, Mmct
shows that the LCFS algorithm can allow to accommodate more sUASs in the given space
within a given time. Therefore, in the case of N -to-M for the urban airspace, the algorithm
is dependent on the situation as shown in Figure 12. For example, it is appropriate to use
the LCFS algorithm when a large number of items must be delivered in the given urban
airspace, while the FCFS algorithm could be used for safety and individual performance
when there is more room in the given urban airspace.

(a) Mt f t (total flight time (s)) (b) Mmct (mission completion time (s))

(c) Mt f d (total flight distance (km)) (d) Mcn f

Figure 12. N -to-M Case: Standard deviation comparisons between the FCFS algorithm and the
LCFS algorithm for Mt f t, Mmct, Mt f d, and Mcn f .
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4.4.M-to-N First-Mile Delivery Case (Westbound)

In theM-to-N operation type, each sUAS traverses with an item from each sUAS’
predetermined service point between W1∼W67 to the predetermined retail points (W68,
W69, W70) in Figure 9. We assume that all sUASs depart from each sUAS’ service points at
the same time to consider the worst case scenario.

Figure 13 shows that the results of Mt f t, Mt f d, and Mmct are very similar to the results
of theM-to-1 operation type. Namely, the FCFS algorithm is appropriate for this case with
regard to the three metrics. However, the Mcn f result of the LCFS algorithm approaches
to 0.05, while in the FCFS algorithm results steadily increases. This is because of the
overtaking manoeuvres caused by the outer loop algorithm. The FCFS algorithm finds
flight plans while satisfying the minimum separation requirement when there are a small
number of sUASs. However, as the number of sUASs increases, Mcn f is increasing because
of a bottleneck phenomenon around the retail points. In the case of the LCFS algorithm,
even when a small number of sUASs are flying, the Mcn f always shows a similar tendency
because the following sUASs may outstrip the preceding sUASs. Because of the same
reason, when there are a small number of sUASs in the urban airspace, the variation is
large as shown in Figure 13d. Due to the tendency, the result of the FCFS algorithm shows
a higher Mcn f than the LCFS algorithm’s one from when the number of sUASs is 45. From
this result, we suggest applying either the FCFS algorithm or LCFS algorithm to the airspace
users according to the number of sUASs in the urban airspace.

(a) Mt f t (total flight time (s)) (b) Mmct (mission completion time (s))

(c) Mt f d (total flight distance (km)) (d) Mcn f

Figure 13. M-to-N Case: Standard deviation comparisons between the FCFS algorithm and the
LCFS algorithm for Mt f t, Mmct, Mt f d, and Mcn f .

4.5. The Improvement in Mmct and Mcn f between the FCFS and LCFS Algorithms

In order to complement Figures 10–13, we provide Table 6 to show the improvement
in Mmct and Mcn f between the FCFS and LCFS algorithms with the following equations:

Improvement in Mmct =
MFCFS

mct −MLCFS
mct

MFCFS
mct

× 100. (14)

Improvement in Mcn f =
MFCFS

cn f −MLCFS
cn f

MFCFS
cn f

× 100. (15)

The metric, Mcn f , is the cause of increasing Mt f t and Mt f d. Namely, Mt f t and Mt f d,
which also indicate sUASs’ performance, are directly related to Mcn f . Mission completion
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time, Mmct, is an indicator of the performance of the urban airspace within a given period
of time, although its relationship with Mt f t and Mt f d is not prominent. From the results,
the following analysis can be made: (1) For the four operation types, the FCFS algorithm
generates more efficient results than the LCFS algorithm for Mt f t and Mt f d. This is because
sUASs with short flight times complete the flight first, and then the other sUASs can fly in
relaxed urban airspace at high speed; (2) for the 1-to-M operation type, the LCFS algorithm
shows very efficient results for Mmct. This indicates that the LCFS algorithm efficiently
uses the urban airspace for a given time period; and (3) from the standard deviation of the
results except for the 1-to-M operation type, the FCFS algorithm is easier to predict each
metric as the number of sUASs increases than the LCFS algorithm. The main reason why
the standard deviation of the LCFS algorithm results are high is that the variation of each
sUAS’ speed profile dependent on the randomly selected starting point and destination
point is very large.

Table 6. The improvement in Mmct and Mcn f between the FCFS and LCFS algorithms (%).

# of sUASs 5 10 15 20 25 30 35 40 45 50

1-to-M
Mmct 19.3 32.0 38.8 40.3 39.6 37.6 36.3 34.7 33.4 32.2

Mcn f 0 0 0 0 0 0 0 0 0 0

M-to-1
Mmct −10.2 −21.1 −32.6 −45.2 −59.5 −68.9 −73.4 −76.4 −79.7 −86.0

Mcn f −∞ −∞ −45,300.0 −9475.0 −3600.0 −1281.8 −623.0 −297.5 −200.0 −146.5

N -to-M
Mmct 6.1 16.9 21.5 23.1 20.0 18.6 16.8 16.5 15.0 12.4

Mcn f −36.3 −20.6 −21.3 −22.8 −26.3 −23.3 −27.5 −24.4 −27.4 −27.3

M-to-N
Mmct −15.6 −28.5 −46.4 −54.1 −59.0 −58.9 −51.9 −43.1 −34.9 −28.4

Mcn f −178.6 −181.9 −181.5 −131.1 −70.8 −51.0 −22.8 −7.7 11.7 18.2

5. Conclusions

This work investigated the capacity analysis for the route network-based very low-
level urban airspace with regard to the four cases of drone delivery operations. Two dif-
ferent flight planning algorithms were compared for each operation type using the Monte
Carlo simulations. From the analysis, the following implications can be made. Firstly,
for efficient operation on the same operation type, flight planning should be carefully
determined depending on operation factors such as the number of retail points, number
of service points, number of sUASs, etc. Secondly, in this study, the FCFS and LCFS flight
planning algorithms were used for homogeneous sUASs. For practical operations, however,
it is required to consider the airspace users’ priorities, i.e., non-cooperative operation cases
with heterogeneous sUASs. Further simulation and verification methodologies will be nec-
essary for future studies because decentralised cases are more complex than the centralised
instances studied in this research. Finally, such analyses and results could be used for
designing airspace structures depending on urban airspace situations and environments.

We expect that the results could give the following support to policymakers, urban
airspace designers, and regulators: (1) When the stakeholders configure a new structure
of the urban airspace, they can utilise the metrics to estimate the capacity according to
the situation and environment; (2) it is easy to analyse the entry of new stakeholders
by increasing the number of retail points; and (3) it is also available as a test-bed for
new algorithms.
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