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ABSTRACT 
 
Certain classes of slender structures of complex cross-section or fabricated from specialized 
materials can exhibit a bi-linear bending moment – curvature relationship that has a strong 
influence on their global structural behaviour. This condition may be encountered, for 
instance, in (a) non-linear elastic or inelastic post-buckling problems if the cross-section 
stiffness may be well approximated by a bi-linear model; (b) multi-layered structures such as 
stranded cables, power transmission lines, umbilical cables and flexible pipes where the drop 
in the bending stiffness is associated with an internal friction mechanism.  This paper 
presents a mathematical formulation and an analytical solution for such slender structures 
with a bi-linear bending moment versus curvature constitutive behaviour and subjected to 
axial terminal forces. A set of five first-order non-linear ordinary differential equations are 
derived from considering geometrical compatibility, equilibrium of forces and moments and 
constitutive equations, with hinged boundary conditions prescribed at both ends, resulting a 
complex two-point boundary value problem.  The variables are non-dimensionalised and 
solutions are developed for monotonic and unloading conditions.  The results are presented in 
non-dimensional graphs for a range of critical curvatures and reductions in bending stiffness, 
and it is shown how these parameters affect the structure’s post-buckling behaviour.   
 
Keywords: elastica, rod post-buckling, slender rods. 
 
 
1. INTRODUCTION 
 
The structural mechanics of complex layered structures is governed by internal physical 
mechanisms that have non-linear force versus displacement relationships.  In most practical 
instances, such behaviour has a small influence on the global behaviour of the structure and 
engineering analysis can be carried out using linearised constitutive equations.  However, as 
the complexity of the layered structure increases and the loading application becomes more 
demanding, this simplified approach breaks down and leads to significant and unacceptable 
errors in design analysis. 
 
Once such case is that of flexible pipes, umbilicals and marine cables used in the exploration 
of oil and gas deposits under the sea-bed in very deep water (1000 to 2000 m depth). 
 
These are slender structures of between 0.1 and 0.75 m in diameter and up to 3000m in length 
– freely suspended in the water column or laying on the sea bed.  The internal composition of 
these structures is a combination of cylindrical elastomer sheaths and fluid barriers combined 
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with helically wound armour wire or bar layers and in some cases helically wound inter-
linked carcass strips.  The interface between the layers relies only on contact forces with 
radial pressure transmission and tangential or axial friction forces being the only mechanisms 
that are in play. 
 
The structural mechanics of these complex layered structures has been extensively studied.  It 
is characterised by four principal phenomena as follows: 
 
1. The structure exhibits a bi-linear hysteretic bending moment against curvature 

relationship arising from the progressive activation of friction and consequential 
slipping between adjacent layers. 

2. Torsional and tensile forces and deflection are coupled due to the structural behaviour of 
the helical armour wires. 

3. The torsional movement against twist relationship is bi-linear and arises from the 
locking or un-locking of the helical armour wires due to the direction of twist. 

4. The axial stiffness is asymmetric for tensile and compressive loads as the armour wires 
encounter different resistance to inward and outward radial displacements. 

 
As the oil industry has pushed the deployment of these structures towards increasing water 
depth, the influence of the above effects on global behaviour and possible failure has become 
more important. 
 
These slender structures are used in deep water within catenaries at relatively low tension 
where dynamic effects can induce transient compression forces.  At the same time, the effect 
of very high external hydrostatic pressure in deep water is to induce a so called ‘effective 
tension’ term that is identical in its physical effects to a compressive loading on the structure.  
Seyed and Patel (1992) describe the formulation and effect of this ‘effective tension’ term.  A 
further issue is the axial-torsional coupled behaviour of these structures that, at low cyclic 
tension, can lead to looping instabilities which are influenced by the ratio of tensile to 
torsional stiffness.  Tan and Witz (1993 and 1995) give an analysis of this but only using a 
linearised stiffness and ignoring bi-linear force-displacement relationships. 
 
There is an extensive body of research literature characterising the structural behaviour of 
slender structures with helically wound armour layers.  This has been built upon the work of 
Love (1944) setting out a definitive derivation of equilibrium equations for curved and 
helically wound rods.  Although Love's equations are complex and difficult to solve 
analytically, an alternative approach was suggested by Lutchansky (1969), which directly 
calculates the deformation states of the helical elements according to different geometrical 
configurations before and after loading.  Spillers et al (1983) followed a similar approach to 
investigate the mechanical behaviour of a helical tape on a bent cylinder.  This work was 
continued by Oliveira et al (1985) who used Timoshenko's (1956, 1964) formulae, describing 
the bending stiffness of a spring with a large helical angle, to evaluate the bending stiffness of 
helical armour layers.  Oliveira et al neglected the effects of friction and cylindrical restriction 
- these are important aspects of the behaviour of such unbonded layered structures.  The 
corresponding results are questionable since the helical angle of the armour layers is not 
usually large enough for Timoshenko's formulae to be applicable.  Other contributions to the 
field have been made by Costello and Phillips (1976), Costello (1977), Le Clair and Costello 
(1986), Féret and Bournazel (1987), Out (1989), Harte and McNamara (1990), McNamara 
and Harte (1992), Saevik (1992), McIver (1992) and Custódio and Vaz (2002) for both axial - 
torsional loads and bending of these flexible structures. 
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However, much of the early work neglected the combined effects of inter-layer friction and 
cylindrical restriction which are an essential ingredient to accurately model the structural 
behaviour of helically armoured structures.  This problem has been addressed by Witz and 
Tan (1992a, 1992b), Tan et al (1991) and Pearson et al (1993) to arrive at a mathematical 
formulation that includes friction and cylindrical restriction effects.  The non-linear difficulty 
of the problem is resolved by deriving complex equilibrium equations that describe the 
behaviour of each helical and cylindrical layer.  These equations are in a form that can be 
solved by a numerical scheme that takes account of friction and cylindrical restrictions and 
deals with axial variations along the structure’s length.  This approach has the advantage of 
not requiring empirical coefficients, these being a feature of the models of Knapp (1975, 
1988, 1989) and Feld (1992).  Internal friction has a significant influence on the apparent 
bending stiffness of the pipe - see Raoof and Huang (1992), Feld (1992), and Witz and Tan 
(1992b). 
 
The stability in buckling of a slender, homogenous rod was first addressed by Euler in 1744.  
This has been followed up by a substantial body of work that considers the post-buckling 
problem.  Usually a perturbation expansion technique is used for insight into the initial post-
buckling response for the type of equilibrium achieved.  Asymptotic solutions also enable 
analytical investigation on extreme conditions.  However, recent advances in numerical 
processing capability have allowed solution of complex post-buckling configurations, 
involving geometrical and physical non-linearities. 
 
The elastica solutions via elliptical integrals are presented, for instance, in Timoshenko and 
Gere (1961) and Shames and Dym (1991), respectively for encastré and double-hinged rods.  
The search for post-buckled equilibrium configurations in slender rods still attracts 
considerable attention, given the gamut of boundary conditions, load fields, cross-section 
geometry, type of material etc, see recent works, for instance, from Theocaris and 
Panayotounakos (1982), Stemple (1990), Lee et al (1993), Koenig and Bolle (1993), Lu and 
Perkins (1995), Heinen and Fischer (1998), Gottlieb and Perkins (1999) and Lee and Oh 
(2000). 
 
Boundary conditions play an important role in the buckling and post-buckling response as 
they indicate the degree of the system stiffness.  Wang (1997) presents a solution for 
asymmetric boundary conditions employing a shooting method for numerically integrating the 
set of governing equations for an initially perfectly straight rod.  In addition initial post-
buckling and extreme load analyses are respectively dealt with by perturbation and asymptotic 
expansions.  Vaz and Silva (2003) extend Wang’s work by considering a rotational spring so 
a solution is obtained from double-hinged to hinged-built-in end conditions. 
 
Initial geometric imperfections are known to play an important role in the buckling and post-
buckling behaviour in many stability phenomena, see Tauchert and Lu (1987), but this effect 
is not investigated in this paper. 
 
This paper is concerned with developing a methodology for the buckling and post-buckling 
behaviour of a slender structure with a bi-linear bending moment versus curvature property.   
A generalized solution is used to show the variation of displacement behaviour that can arise.  
This generalized methodology is an intermediate step towards more representative modeling 
of the global behaviour of slender structures that have bi-linear bending moment 
characteristics and are subjected to cyclic tensile and compressive loadings. 
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2. THE MATHEMATICAL FORMULATION 
 
Consider a homogeneous, inextensible and initially straight rod with length L  subjected to a 
perfectly centered axial load P , as shown in figure 1a.  As the load is progressively increased 
the rod becomes unstable and buckles laterally at a critical load followed by large post-
buckled deflections as the load is increased further.  For linear elastic isotropic materials and 
assuming a pure bending cross-section behaviour, the critical buckling load is given by 

22
LEIP

cr
!= , where E  is the Young’s Modulus and I  is the principal minimum inertia of 

the cross-section area.  Furthermore, a closed form analytical solution via elliptical integrals is 
available for description of the post-buckled regime. This latter problem is referred to in this 
paper as simple elastica.  Now let’s assume that the bending moment versus curvature of the 
rod exhibits bi-linear behaviour, that is, the rod cross-section bending stiffness is substantially 
reduced after a given critical curvature is reached.  This paper aims to consistently investigate 
the effect of the loss of bending stiffness in the post-buckled configuration of such slender 
rods. 
 
Figure 1a indicates that the curvature distribution in the rod ranges from zero at 0=S  (point 
O) to a maximum value at 2LS =  (point B).  If this maximum curvature is smaller than the 
critical curvature the post-buckled configuration is described by an analytical solution.  
However, when the critical curvature reaches point B for a certain load (or end angle ! , or 
free end displacement ! ) the rod starts “yielding”, and two regions with different constitutive 
relations will take place.  The segment OA, herein referred by the index 1=i , remains stiff, 
whereas segment AB ( 2=i ) will be subjected to a smaller bending stiffness and is then more 
“flexible”.  Continuity conditions must be assured at point A ( LS != ), where the parameter 
! , 210 !< " , defines the transition point.  Furthermore note that the curvature is critical at 
the transition point. 

 
Classically, a mathematical model that describes the rod equilibrium configuration may be 
constructed from geometrical compatibility, equilibrium of forces and moments and 
constitutive relations applied to an infinitesimal rod element, depicted in figure 1b.  Note that 
there is no force component in the Y  - axis direction since no distributed load is considered 
and the boundary conditions are assumed hinged-hinged. 
 
Geometrical Compatibility 
The trigonometrical relations in the rod infinitesimal element dS  (see figure 1b) yield: 
 

( )
i

i

dS

dX
!cos=  (1a) 

( )
i

i

dS

dY
!sin=  (1b) 

 
Where S  is the rod arch-length ( LS !!0 ), ( )

ii
YX ,  are the Cartesian coordinates of the 

post-buckled rod and 
i

!  is the angle between the tangent of the deflected rod centroid and the 
X  - axis.  Note that due to the symmetrical nature of the problem the material domain may be 
limited to 20 LS !! .  Consequently regions 1=i  and 2=i  are respectively defined for 

LS !""0  and 2LSL !<" .  From differential geometry the curvature 
i

!  is defined as: 
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i

i

dS

d
!=

"

 
(1c) 

 
Equilibrium of Forces and Moments 
A schematic of the internal forces and moments in the rod infinitesimal element is also shown 
in figure 1b.  The equilibrium of forces and bending moment respectively yields: 
 

0=
dS

dP
i

 
(2a) 

( )
ii

i
P

dS

dM
!sin=

 
(2b) 

 
Where 

i
P  is the force component in the X  - axis direction and 

i
M  is the bending moment. 

 
Constitutive Relations 
The rod cross-section presents a bi-linear bending moment versus curvature relation, see 
figure 2.  This constitutive condition is typical in un-bonded layered structures such as 
umbilical cables and flexible pipes, for instance, where the rod cross-section at a first moment 
exhibits a large bending stiffness before a critical curvature is reached, and from this point the 
bending stiffness is significantly reduced.  This mechanism originates when the bent helical 
layers are initially impeded to displace laterally due to Coulomb friction, as described by Witz 
and Tan (1992b), Féret et al (1995) and Leroy and Estrier (2001).  Note also that a Bernoulli-
Euler pure bending condition is also considered herein.  Hence: 
 

crifEIM !"!!=
111  (3a) 

( ) crcr ifEIEIM !>!"!+!=
222

1 ##  (3b) 
 
Where EI  is the initial bending stiffness, 

cr
!  is the critical curvature and !  is the reduction 

factor for the secondary !"M  curve. 
Therefore, substituting equations (3a) and (3b) into (2b) results: 
 

( ) crif
EI

P

dS

d
!"!=

!

11

11
sin #

 
(4a) 

( ) crif
EI

P

dS

d
!>!=

!

22

22
sin "

#  
(4b) 

 
Full Unloading 
When the load is completely removed a residual and permanent deformation develops if any 
point of the rod exceeds the critical curvature.  The unloading process may follow paths A or 
B (figure 2), depending on the value of the rod initial curvature.  This constitutive behaviour 
has been observed experimentally in bending tests for flexible pipes and umbilical cables.   
Assuming that the unloading follows the initial stiffness, then: 
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crf if !"!=!
11

0  
(5a) 

( )( )
( )

crcrcrif if !>!"!
+

!#!#=!
222

1
1

$

$
$   

(5b) 

( ) ( )
crcrf if !

+
>!!

"
=!

#

#

#

# 11

22
  

(5c) 

 
Equation (5a) indicates that the cross-section returns to its non-deformed state if the critical 
curvature is not exceeded. Equations (5b) and (5c) respectively represent paths A and B, 
which are governed by a transition curvature defined by ( )

crT
!+=! ""1 .  If the cross-

section curvature reaches a value within the critical and transition curvatures the unload path 
A is followed. For any value above the transition curvature path B is observed. 
 
 
Partial Unloading 
The bending moment versus curvature relationship for partial unloading is given by: 
 

cruuu ifEIM !"!!=
111

 (5d) 

( )( )[ ]
( )

cricricruu ifEIM !>!"!
+

!#!#+!=
2222

1
1

$

$
$  

(5e) 

( )[ ]
( )

cricruu ifEIM !
+

>!!""!=
#

#
##

1
1

222
 

(5f) 

 
Where the subscript u  merely indicates an unloading process. 
 
Boundary Conditions 
The boundary conditions for the double-hinged rod and continuity conditions at point A  may 
be specified as: 
 

( ) ( ) ( ) ( ) ( ) 000000
11111

=!="=!== PPYX #$  (6a) 

( ) ( ) ( ) ( ) ( ) ( ) 0
212121

=!=!=!=! "#""#"#### LLLYLYLXLX  (6b) 

( ) ( ) ( ) ( ) 0
2121

=!"=!"=!=!
crcr
KLKLPLPPLP ####  (6c) 

( ) ( ) 022
22

=!= PLPL"  (6d) 
 
Where !  and !  are respectively the angles at points O  and A .  From equation (2a) it is seen 
that the force P  is constant.  The effect of any other boundary conditions on the rod buckling 
and post-buckling response is significant and it may be explored using a numerical 
methodology. 
 
The Governing Equations 
It is obviously convenient to reduce the set of differential equations (1a), (1b), (1c), (2a), (4a) 
or (4b) to a non-dimensional form using the following change of variables: LSs = , 
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LXx = , LYy = , EIPLp
2

=  and L!=" , where 10 !! s .  Hence the governing 
equations may be rewritten as: 
 

( )
i

i

ds

dx
!cos=

 
(7a) 

( )i
i

ds

dy
!sin=

 
(7b) 

i

i

ds

d
!

"
=

 
(7c) 

0=
ds

dpi

 
(7d) 

( )
11

1
sin !

"
p

ds

d
=

 
(7e) 

or  

( )
2

22
sin !

"

# p

ds

d
=

 
(7f) 

 
Where the non-dimensional variables ),(

ii
yx  constitute the deflected rod Cartesian 

coordinates, s  the arc-length, 
i

!  the curvature, 
i

!  the angle formed by the curve tangent and 
the longitudinal x-axis, 

i
p  the longitudinal load and !  the bending stiffness reduction factor. 

 
Furthermore the boundary conditions given by equations (6a-d) may be also made non-
dimensional: 
 

( ) ( ) ( ) ( ) ( ) 000000
11111

=!==!== ppyx "#$  (8a) 

( ) ( ) ( ) ( ) ( ) ( ) 0
212121

=!=!=!=! "#""#"#### yyxx  (8b) 

( ) ( ) ( ) ( ) 0
2121

=!=!=!=!
crcr

pppp "#""#"##  (8c) 

( ) ( ) 02121
22

=!= pp"  (8d) 
 
Hence the influence of the critical curvature 

cr
!  (

crcr
L !=" ) and the bending stiffness 

reduction factor !  on the rod post-buckled deflected configuration may be analytically 
calculated. 
 
3. POST-BUCKLING SOLUTIONS 
3.1 Analytical Solution for Monotonic Loading 
 
For a given 

cr
!  it is possible to calculate, employing elliptical integrals, the critical values for 

the end angle, load, maximum deflection and support longitudinal displacement, respectively 
cr

! , 
cr
p , 

max
y  and 

cr
! .  From this point part of the rod will progressively “yield”. 
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Substituting equation (7c) in (7e) and (7f) respectively gives: 
 

( ) !"
"

##= sifp
ds

d
0sin

12

1

2

 
(9a) 

( ) !"
#

"
>$= sif

p

ds

d

2

1
sin

22

2

2

 
(9b) 

 
Integrating equation (9a) and applying appropriate boundary conditions yields: 
 

( ) ( )[ ] !"#
#

$$%±= sifp
ds

d
0coscos2

1

1

 
(10) 

 
The sign choice in equation (10) is arbitrary as it only changes the quadrant for the deflected 
rod.  Furthermore the curvature in point A is 

cr
!  and the angle is ! , hence: 

 

( ) ( )[ ]!"# coscos2 $±= p
cr  (11) 

 
Substituting ( )2sin !=c  and ( ) ( )

11
sin2sin !" c=  in equation (10) and integrating it after 

some algebraic manipulation gives: 
 

( ) ( )[ ]
( )

!
"

"
"=

#

$ #

#
%

&'
(

2 1

22

1

sin1

coscos2

c

d

cr  
(12) 

 
Where: 

( )
( )!"

#
$
%

&
=

'

2sin

2sin
sin

1

(
)

*  

 
This change of variable is necessary to avoid singularity.  Now, integrating equation (9b) and 
applying adequate boundary conditions gives: 
 

( ) ( )[ ] !"##
$

#
>%+&±= sif

p

ds

d
cr

2

1
coscos

2 2

2

2  (13) 

 
Integrating equation (13) after trigonometric manipulation yields: 
 

( ) ( )[ ]
( ) ( ) ( ) ( )

!
"""

"
"="

0

2

2

coscos1cos

coscos

2

1

# $%#%#

#
&

$#%
'

d

cr  
(14) 

 
Adding equations (12) and (14) results in: 
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( ) ( )
( ) ( ) ( ) ( ) ( )!

!
"

#

$
$
%

&

'''
+

'
'= ( (

2

0

22
coscos1cos

2

sin1

22
coscos

)

*

+

,-+-.

.-

.

.
,+/

d

c

d

cr

 

(15) 

 
For a known 

cr
!  and !  the angle in the transition point A , ! , is calculated from equation 

(15) for each angle ! .  As a direct solution is difficult an interpolation procedure was 
developed with Matlab (2002) by varying the angle !  until the critical curvature was found.  
Then the load, p , and position of the transition point A , ! , may be readily obtained from 
equations (11) and (12), respectively.  It must be pointed out that this solution is correct as 
long as no material point experiences reduction in curvature. 
 
The Cartesian coordinates 
The coordinates of the deflected rod may be obtained from integrating equations (7a-b): 
 
The x  - coordinates 
 

( )
( )

( )
!

"

"
"=

1

2

22

22

1

sin1

sin211
#

$

%
%

%
d

c

c

p
sx

 

(16a) 

 
Where: 

( )

( )!"

#
$
%

&
=

'

2sin

2sin
sin

11

1 (
)

*  

!!" ##
1

 

!!
"

##
1

2
 

 
Then ( )!

1
x  can be easily calculated when !! =

1
 in equation (16a), and the coordinates ( )sx

2
 

are then: 
 

( ) ( )
( ) ( )[ ] ( )

( ) ( ) ( ) ( )
!

"""

"
"=

2

coscos1cos

coscoscos

2

#

# $%#%&

&&
'

$#%
(

d
xsx

cr  
(16b) 

 
Where 0

2
!! ""  

 
The y  - coordinates 
 

( ) ( )
11

cos
2

!
p

c
sy m=

 
(16c) 

 
Then ( )!

1
y  can be easily calculated for !! =

1
 in equation (16c).  The coordinates ( )sy

2
 are 

then: 
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( ) ( )
( ) ( )[ ] ( )

( ) ( ) ( ) ( )
!

"""

"
=

2

coscos1cos

sincoscos

2

#

# $%#%&

&&
'

$#%
(

d
ysy

cr

m

 
(16d) 

 

Note also that ( )!"
1
yp

cr
#=  and 

( )

!

"!
"

max

max

1 yp
cr
##

= . 

 
3.2 Numerical Solutions for Unloading 
Full Unloading Analysis 
 
In this section a methodology is sought to describe the rod final residual configuration when 
load is fully removed.  For the unloading schemes presented in Figure 2 the rod final 
curvature f1!  and f2!  are respectively: 
 

crif kkif !=
11

0"  (17a) 

( )( )
( )

cricrcrif kkkif
!

!
""!"

+
#<$$=
1

1
222

 (17b) 

( ) ( )
cricrf kkif

!

!
"

!

!
"

+
>

#
=

11

22
 (17c) 

 
Where 

i2
!  indicates the curvature distribution after a monotonic increasing load is applied.  

Then the final angle distribution may be numerically calculated integrating equation (7c) and 
considering that ( ) 021

2
=f! : 

 

( ) ( )
2

1
21

22
!<= " sdsss

s

ff #$%
 

(18a) 

 
The angle in the first rod segment is constant and given by:  
 

( ) ( ) !!"" ##= ss ff 0
21  

(18b) 
 
The Cartesian coordinates may now be calculated from equations (7a) and (7b): 
 

( ) ( )[ ] !" ##= ssssx ff 0cos
11

 (19a) 

( ) ( )[ ] !" ##= ssssy ff 0sin
11

 (19b) 

( ) ( ) ( )[ ]
2

1
cos

21

212
!<+= " sdssxsx

s

fff #$#
 

(19c) 
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( ) ( ) ( )[ ]
2

1
sin

21

212
!<+= " sdssysy

s

ff #$#
 

(19d) 

 
Equations (19c-d) may be numerically calculated. 
 
Partial Unloading Analysis 
Making equations (5d-f) non-dimensional and differentiating them with respect to the arc-
length respectively yields: 
 

( ) cruuu
u ifp

ds

dk
!!" #=

11

1
sin  (20a) 

( ) ( )
( )

cricruuii
u ifpp

ds

d
!!!

"

"
##

"

"!
>$

+
+

%
=

222

2
1

sinsin
1  (20b) 

( )
( )

criu
uu if
p

ds

d
!

"

"
!#

"

! +
>=
1

sin
22

2  (20c) 

 
The first term on the right-hand-side of equation (20b) indicates that equilibrium depends on 
the rod configuration when unloading starts.  This initial condition was curve fitted with a 
fourth order polynomial as a function of the rod arc-length.  Equations (20a-c) together with 
the geometrical and compatibility equations (7a-d), which are still applicable, constitute a 
complex boundary value problem (BVP).  The boundary conditions are: 
 

( ) ( ) ( ) ( ) ( ) 0210000 ===!==
uuuuuu

yx "#$"  (20c) 
 
An angle controlled solution is developed using a shooting method available in the software 
Mathcad (2001) through a technique to transform the BVP into an initial value problem.  The 
initial missing value (

u
p ) is guessed and the boundary value endpoints, set of differential 

equations and load function returning the initial condition are defined.  Next a score function 
is employed to measure the distance between terminal and desired ( ( ) 021 =

u
! ) conditions 

and the equivalent initial condition is obtained.  From this point, a Runge-Kutta high order 
algorithm may be applied to directly integrate the set of non-linear ordinary differential 
equations. 
 
 
4. ANALYSIS OF RESULTS 
 
A numerical procedure was developed using the software Matlab (2002) for the loading 
condition.  The analyses were carried out for two non-dimensional critical curvatures, 

6545.1;5487.0=
cr

! , which respectively correspond to end angles 00
30;10=! .  For both 

cases four reductions in bending stiffness were considered, 01.0;1.0;5.0;1=! .  For 1=!  or 
when 0=

cr
!  the solution reverts to a full simple elastica since the !"M  relationship is 

linear.  On the other hand when the value of !  is reduced higher deviations from the simple 
elastica solution are expected. 
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The results for each case listed above are presented in four graphs for free end displacement 
versus load ( p!" ), position of transition point A  versus load ( p!" ), end angle versus load 
( p!" ) and rod maximum deflection versus load ( py !

max
), respectively depicted in Figures 

3a-d and 4a-d for 6545.1;5487.0=
cr

! .  In addition, the simple elastica for 
01.0;1.0;5.0;1=!  are also plotted in Figure 3a and 4a.  The angles !  in those figures refer 

to the post-buckled configurations plotted in Figures 5a-b.  The general behaviour for all 
graphs and both critical curvatures are similar with an expected non-linear response delay 
(shift) for the higher value of 

cr
! .  Consequently note that for the lower value of 

cr
!  the 

discrepancies are rather more accentuated.  For both cases when the critical curvature is 
reached the rod becomes more flexible so an immediate initial reduction in load may be 
observed.  This means that if the process is load controlled (see vertical line) a jump 
phenomenon occurs.  For 00

30;10=!  the rod becomes initially stable, i.e., no jump occurs, 
roughly for 733.0;976.0!" , respectively.  The stable window for 6545.1=

cr
!  is somewhat 

wider since the rod is stiffer, i.e., the inclination of the displacement - load relationship is 
lower.  When unloading, a discontinuous jump may also occur if a bi-linear elastic model is 
being considered.  Note that that the jump is larger for lower values of !  in monotonic 
loading or in elastic reversible processes.  Observe that for each combination of 

cr
!  and !  

there is a minimum value of !  which denotes that part of the rod is subjected to reduction in 
curvature.  Roughly this situation occurred for an end angle approximately equal to 130o for 
the range of parameters investigated here.  Solution beyond this point was not developed in 
this paper. 
 
Figures 3a and 4a show that if process is displacement controlled the load reduces to a 
minimum value and then it grows again.  The lower the !  the larger is the reduction in load.  
For the same end angle !  the difference in load and end displacement are higher for lower 
values of ! .  Furthermore note the uniqueness of the p!"  relation. 
 
Comparisons between Figures 3b and 4b show that for small values of 

cr
!  or !  a longer rod 

segment is affected.  Now note the uniqueness of the p!"  relation. 
 
In figures 3c and 4c it is clear that the lower value of 

cr
!  potentially enhances the influence of 

! .  It also indicates the extremity final angle when the rod is post-buckled with load or 
displacement control.  The p!"  relation is unique. 
 
Figures 3d and 4d indicate that 

max
y  grows with decreasing !  for both values of 

cr
! .  The 

point of maximum displacement !  tends 0
90  when !  tends to zero, and interesting the load 

also conveys to a minimum.  The function py !
max

 presents a non-uniqueness feature. 
 
Figures 5a and 5b display the rod configuration after being monotonically loaded, 
respectively for 6545.1;5487.0=

cr
! .  Only the half space is plotted since the problem is 

symmetric.  The geometric configurations are presented for 000000
120;90;60;30;20;10=! .  

If the critical curvature is not exceeded, a solution is obviously given by the linear elastica.  It 
can be seen that the value of the bending stiffness reduction factor significantly influences the 
rod post-buckled configuration.  Observe from Figures 3a-d and 4a-d that these equilibrium 
configurations are reached with very different parameters 

max
yp !!! "# .  Another 
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interesting feature is that the lower the value of !  the longer is the “nearly straight” segment, 
however the rod experiences higher localized curvatures.  On the other hand the rod bows 
“more uniformly” at high values of ! . 
 
Figures 6a-c and 7a-c show the geometrical configuration for 6545.1;5487.0=

cr
! , 

respectively, and each value of ! , when the rod is monotonically loaded until 
000000

120;90;60;30;20;10=!  and then the load is completely removed.  The final 
configuration of the first segment, as expected, is a straight line.  A reduction in curvature is 
noticed, but a similar shape pattern is kept.  Significant hysteresis is observed for lower values 
of ! , with permanent deflection and little elastic restoration.  This characteristic is more 
pronounced for 5487.0=

cr
! . 

 
Figure 8 presents the geometrical configurations for an unloading process when 5487.0=

cr
! ,  

5.0=!  and initial end angles are 000
120;90;30=! .  It is seen that as the load is removed 

the curvature reduces but a permanent deformation remains.  The parameters governing this 
unloading process are seen in Figures 9a and 9b, respectively for the curves p!"  and p!" .  
Due to its uniqueness characteristic the unloading can be load or displacement controlled.  
The less the rod is deflected the higher is the elastic restoring force and the rod tends to return 
to its original straight configuration.  
 
Table 1 shows the transition curvatures for 

cr
!  and !  values employed in this paper. The 

critical and transition curvatures establish the boundaries for the type of unloading path 
experienced by a cross-section.  

 
Table 1 -  Transition Curvatures 

!"  0.01 0.1 0.5 1.0 
!

cr
"  !

T
"  

0.5487 55.4187 6.0357 1.6461 1.0974 
1.6545 167.1045 18.1995 4.9635 3.3090 

 
Tables 2a and 2b give the type of unloading path for the cases simulated in this paper, 
respectively for

cr
!  = 0.5487 and 1.6545. 

 
 
 

Table 2a - Unloading Mechanism for 
cr

!  = 0.5487 
!"  0.01 0.1 0.5 

( )!deg"  cr
!  = 0.5487 

10 Elastic unloading Elastic unloading Elastic unloading 
20 Path A Path A Path A 
30 Path A Path A Path B 
60 Path A Path A Path B 
90 Path A Path B Path B 

120 Path A Path B Path B 
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Table 2b -  Unloading Mechanism for 
cr

!  = 1.6545  
!"  0.01 0.1 0.5 

( )!deg"  cr
!  = 1.6545 

10 Elastic unloading Elastic unloading Elastic unloading 
20 Elastic unloading Elastic unloading Elastic unloading 
30 Elastic unloading Elastic unloading Elastic unloading 
60 Path A Path A Path A 
90 Path A Path A Path B 

120 Path A Path A Path B 
 
 
6. CONCLUSIONS 
 
The mathematical formulation for the post-buckling analysis of double-hinged slender rods 
subjected to compressive axial load and with cross-section bending moment – curvature 
relationship bi-linear was presented in this paper.  This constitutive flexural model may arise 
from physical or geometrical non-linear characteristics, such as plastic or hyper elastic strains 
or internal friction mechanisms.  Analytical and numerical solutions are respectively 
developed for monotonic loading and unloading, the former via elliptical integrals whereas 
the latter one employing transformation of the one point boundary value to an initial value 
problem through a shooting method.  Consequently the hysteresis originating from a complex 
loading history may be calculated.  The variables are made non-dimensional so it is seen that 
two parameters govern the solutions: the critical curvature 

cr
!  which establishes the transition 

in the cross-section flexibility and the reduction factor for the bending stiffness ! .  As the 
rod post-buckling residual strength is already low, i.e., it can develop large deflections with 
small increase in load after buckling, it is seen that a reduction in bending stiffness is 
detrimental to the system stability.  For a given critical curvature the range of bending 
stiffness reduction factor where solution is stable is very narrow.  Outside this region the rod 
is initially unstable so it may jump to another equilibrium configuration if load is 
progressively applied.  When the critical curvature is exceeded and the rod is unloaded the 
process is not conservative and irreversible yielding permanent deformations.  Larger elastic 
restorations are experienced for larger bending stiffness reduction factors and larger critical 
curvatures. 
 
The next phase of the work presented here will be to apply the post-buckling methodology to 
the global in-place analysis of a submerged structure that exhibits bi-linear bending 
characteristics.    The work will follow two lines of enquiry – the first will examine how bi-
linear behaviour influences the occurrences of looping and twisting instabilities in structures 
that have, hitherto, been analysed using linear bending moment relationships.  A second line 
of enquiry will examine the same problem for structures in very deep water where high 
hydrostatic pressure induces an ‘effective compression’ on such structures. 
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Figure 1a - Schematic of a Post-Buckled Rod. 
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Figure 1b – Infinitesimal Element of Rod. 

 

 

 

Figure 2 – Cross-Sectional Bi-Linear Bending Moment Versus Curvature.
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Figure 3 -  Post-Buckled Data for 5487.0=
cr

!  
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Figure 4 -  Post-Buckled Data for 6545.1=
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Figure 5a -  Rod Post-Buckled Configuration for 5487.0=
cr

!  

(Monotonic Loading) 
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Figure 5b -  Rod Post-Buckled Configuration for 6545.1=
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(Monotonic Loading) 
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Critical curvature = 0.5487
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Figure 6a -  Rod Post-Buckled Unloaded Configuration for 5487.0=

cr
!  and 5.0=!  
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Figure 6b -  Rod Post-Buckled Unloaded Configuration for 5487.0=

cr
!  and 1.0=!  
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Figure 6c -  Rod Post-Buckled Unloaded Configuration for 5487.0=

cr
!  and 01.0=!
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Critical curvature = 1.6545
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Figure 7a -  Rod Post-Buckled Unloaded Configuration for 6545.1=

cr
!  and 5.0=!  
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Figure 7b -  Rod Post-Buckled Unloaded Configuration for 6545.1=

cr
!  and 1.0=!  

Critical curvature = 1.6545

! = 30

! = 60

! = 90
! = 120

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
x

0.0

0.1

0.2

0.3

0.4

0.5

y

Unloaded Configuration
Loaded Configuration

" = 0.01

 
Figure 7c -  Rod Post-Buckled Unloaded Configuration for 6545.1=

cr
!  and 01.0=!  
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Figure 8 -  Rod Post-Buckled Partial Unloading Configurations for 5487.0=
cr

! , 5.0=!  and 

Initial Angles deg120,90,30=!  
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Figure 9 -  Unloading Post-Buckled Data for 5487.0=
cr

! , 5.0=!  and  

Initial Angles deg120,90,30=!  


