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Public safety and security are critical components in the Concept of Operations (ConOps) for

Urban Air Mobility (UAM). The potential flight conflicts posed to air and ground objects need to

be assessed, especially near critical regions and infrastructures, e.g. vertiports. In this sense, all

targets, whether cooperative or non-cooperative air and ground targets, should be detected and

tracked for conflict and risk assessment. To achieve this goal, ground-based non-cooperative

sensors like cameras and lidar are utilized for situational awareness in this paper. In addition,

a multi-modal dataset that contains both air and ground objects is constructed in different

illumination and foggy weather scenarios. Finally, a lidar-camera fusion framework with multi-

resolution voxelization and depth map learning is proposed for data-driven object detection.

Experiments on the constructed dataset show the failure of existing lidar-based backbones

in learning extremely sparse points, as a comparison, the fusion framework is outstanding

in distinguishing air and ground objects, meanwhile, enabling resilient detection in various

lighting and clearance conditions.

I. Introduction

T
he rapid evolving electric vertical takeoff and landing (eVTOL) technique promotes the demand for air-based cargo

delivery, air metro, and air taxi services. However, one of the constraints for the wide-ranging deployment of UAM

is the public concerns about flight safety and risks posed to people and property on the ground. To achieve safe and

robust operations in urban air mobility (UAM) operation environment (UOE), it requires that Unmanned Aerial Systems

(UAS) must fly safely and avoid any UAS-to-UAS or UAS-to-ground collisions [1]. In addition, current and future

safety risks are supposed to be determined. To estimate the airborne separation conflict, off-nominal trajectory, and

potential third-party risk, real-time detection, tracking, and prediction are critical tasks to be performed.

The aforementioned basic tasks of UAM can be fulfilled by the surveillance technique, which is of great importance

to operation management, collision avoidance and public safety [2], and also a critical measure to respond to any crisis.

In UAM, surveillance is expected to be achieved by distributed systems. The en-route safety is assessed by airborne

cooperative and non-cooperative surveillance. But for low-altitude airspace above ground, the participation of ground

targets, e.g. pedestrians and ground vehicles, pose challenges to flight operation. As the risk assessment should be

performed and safety must be ensured, it is not enough to rely on onboard surveillance alone and is necessary to provide

global situational awareness over populated areas, especially near the aerodrome.

The importance of ground-based surveillance is also emphasized in vertiport functional requirements for monitoring

objects surrounding the vertiports [«][»]. Especially, Vertiport Operations Area (VOA) and Vertiport Volume (VPV) as

well as the vertiport surface are major interested regions. Within VOA, fleet operators coordinate with the Provider of

Service to UAM (PSU), whereas flight operations in VPS must follow instructions from vertiport operators. Necessary

tasks like negotiation, nominal and off-nominal scenarios motoring, etc. within VPV range are supported by a Vertiport

Automation System (VAS), which is also expected to manage vertiport resources, e.g. landing pad availability, hazard

identification, and aircraft conformance, etc. much more efficiently with the sensing capabilities.

In detail, the vicinity of the vertiport is vital to be monitored with effective surveillance techniques, because (1).

take-off and landing stages are recognized as high-risk phases for a flight [5]; besides, (2). the landing pads or vertiports

are mainly located in metropolitan regions for the convenience of passengers’ transit and package delivery. As depicted

in Fig.1, within the boundaries of VOA and VPV, not only cooperative aircraft, non-cooperative aircraft, and ground

targets are possibly involved in the operational environments. Only with the global sensing around the termination, it
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Fig. 1 Operation areas around the vertiport.

becomes promising to cooperate with ground infrastructure such as traffic lights to ensure public safety. The traffic

lights could be set to red when the drone is departing or landing in case anyone crosses the vertiport terminal area.

The application scenarios are reviewed above. As for specific surveillance techniques, cooperative sensors can only

work well with cooperative targets, whereas ground targets and non-cooperative air objects can not have a response. To

achieve high-level safety and security, all air and ground targets near critical areas should be tracked. This function can

be ensured by ground-based non-cooperative surveillance. For instance, non-cooperative sensors such as infrared and

optical sensing, acoustic detection, and radars are good candidates for heterogeneous measurements.

In this work, we consider complementary lidar and camera signals to achieve resilient non-cooperative object

detection in challenging environments since lidar can achieve millimeter-level range accuracy and complement the

degradation of the camera in low illumination conditions. Besides, because of lacking the public dataset for aerial and

ground object detection in UAM, ground, and air targets are simulated within the VPV region of a vertiport to construct

a lidar-camera dataset. After investigating the challenge of employing lidar benchmarks to detect far-distance and small

objects in the limited number of sparse points, an effective lidar-camera fusion framework based on 2D convolutions is

proposed.

The contributions of this paper can be concluded as followsȷ

1) A lidar-camera fusion framework is proposed. Due to the difficulty of detecting small objects in the sparse point

cloud, we voxelize the point cloud to multiple levels and then project it onto the image frame to obtain depth

images. In this way, 2D convolutions can be applied for high-efficiency detection.

2) The spatial encoding based on depth learning enhances the distinction of air and ground objects from the lidar

scanning.

«) The performance evaluation is conducted on a range of airborne and ground non-cooperative targets, e.g. vehicles,

pedestrians, and drones in the vicinity of vertiports, considering various environmental challenges, e.g. low

illumination and high-density fog.

The rest of the paper is organized as followsȷ Section II discusses various benchmarks about multi-sensor fusion for

ground and aerial tasks. The proposed lidar-camera fusion framework is illustrated in Section III. Section IV analyses

the results on the collected dataset. Section V concludes the paper.

II. Related Work
Ground-based non-cooperation surveillance is the basic support for monitoring flight trajectories and potential air-air

and air-ground risks near important areas. For risk assessment, most of the cases focus on general and large areas instead

of specific instances. Even for individual risk assessment, the location of a ground object is required to estimate the

individual collision risk of an air crash [6]. There is an Off-Nominal Trajectory and Impact Point Prediction module [7]

that can estimate the flight trajectory based on the flight dynamics. Little has been investigated for position prediction of

both ground and air objects, even if object detection is the first step for model-free trajectory and interaction prediction.

Some fusion-based object detection methods in autonomous driving and aerospace are then presented.
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A. Lidar-Camera Fusion for Autonomous Driving

Object detection with multi-sensor fusion is widely applied in autonomous driving, especially with lidar-camera

fusion. To locate and classify various ground objects dynamically, point-based fusion methods fuse the point-wise

semantics at the feature level; multi-view-based fusion generates proposals from projected bird-eye-view (BEV) and

utilizes conventional 2D convolution for detection, in addition, voxel-based fusion algorithms combine voxel-wise

features and leverage «D convolution for feature aggregation [8]. VoxelNet [9] and PointPillars [10] are typical

frameworks for lidar-based detection. VoxelNet encodes points in discrete voxels, the issue is that the extracted

information would be limited when points in each voxel are extremely sparse. And PointPillars separates the space

into pillars with the unlimited spatial extent in the height direction, which would mix ground objects and aerial objects

inside the same pillar. Therefore, VoxelNet and PointPillars are not able to distinguish the air and ground vehicles in

challenging sparse point clouds. Other lidar-based detection backbones like CenterNet [11] also rely on the standard

VoxelNet and PointPillars, as the result, those backbones can not avoid corresponding drawbacks.

Multi-modal fusion frameworks are also developed with standard backbones for lidar detection. Several fusion

approaches are concluded in Table 1. Whether point and voxel fusion in MVX-Net [12], or attention mechanism in

TransFusion [1«] and DeepFusion [1»], they are only applicable to ground, near-distance, and large-size objects. The

sensors are mounted on the ego-vehicle to capture close-distance objects for autonomous driving tasks, whereas sensors

for monitoring the surrounding environments of the vertiport are deployed statically and far from the moving targets, to

make current fusion frameworks effective for our task.

Table 1 Comparison of Multi-modal Detection Backbones.

Backbone Modality Pros Cons

VoxelNet [9] Lidar Employ «D convolution Slow speed; sparse point

PointPillars [10] Lidar Employ 2D convolution Pillar with unlimited height

CenterNet [11] Lidar Local peak extraction Rely on standard lidar backbones

MVX-Net [12] Lidar+Camera Point and voxel fusion Rely on standard lidar backbone

TransFusion [1«] Lidar+Camera Transformer with attention mechanism Rely on standard lidar backbone

DeepFusion [1»] Lidar+Camera Cross-attention Rely on standard lidar backbones

B. Multi-Sensor Fusion for Air Objects

For drone detection, the common sensors are camera, infrared camera, radio frequency (RF), radar, etc. Single-

modality measures use optical and infrared images to detect low-altitude small drones effectively in different scenarios

with YOLOv» [15]. And detection using sparse lidar points is challenging as the number of reflected points from

the target is not sufficient to recognize the object [16]. For multi-modality fusion, the fusion of RF data and images

performed by conventional 2D convolutional neural network [17] and spatiotemporal information extraction shows the

feasibility of data-driven based low-contrast target detection [18]. But little work has focused on lidar-camera for air

object detection.

III. Sensor Fusion Framework
The lidar-camera fusion framework is proposed to detect ground and aerial targets in challenging visibility and

illumination conditions. The preliminaries about point cloud voxelization and depth map generation are illustrated first,

then the detailed architecture is described.

A. Preliminaries

1. Point Cloud Voxelization

As the point cloud is very sparse, especially for far-distance air objects, we voxelize the point cloud to increase its

density. Instead of dividing the «D space into equal grids as in VoxelNet, only valid points are expanded to voxels with a

specific size in this work. 𝑝𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖] is one point in the lidar frame, and the reflective points from one object can

be grouped by a set of points 𝑂𝑘 = {𝑝1, 𝑝2, · · · , 𝑝𝑛}. When applying the voxelization, 𝑛 points belonging to the object
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(a) Original points. (b) Voxelized grids (𝑠 = 0.5 𝑚). (c) Voxelized grids (𝑠 = 1.0 𝑚).

Fig. 2 Voxelization process.

(a) Original point cloud. (b) Voxelization (𝑠 = 0.5 𝑚). (c) Voxelization (𝑠 = 1.0 𝑚).

Fig. 3 Voxelization of the point cloud.

will be represented by the voxel set 𝑉 = {𝑣1, · · · , 𝑣𝑚} with a uniform size 𝑠 [19]. This process can be explained with a

simple example shown in Fig. 2 [20]. When the voxel size is set to 𝑠 = 0.5 𝑚, 8 points can be approximated by 5 voxels,

and similarly represented by 2 larger voxels if 𝑠 = 1.0 𝑚. Even if the number of voxels degrades with the voxel size, it is

obvious that valid points become visible and easier to be encoded with rich spatial attributes. The voxelization results

with multiple levels are depicted in Fig. «, we can observe more explicit information with the rising of voxel size from

𝑠 = 0.5 𝑚 to 1.0 𝑚. One point to note is that the voxel size also has its upper limit since one voxel can not exceed the

actual size of the object. In this work, we restrict the maximum size to 1.0 𝑚.

2. Depth Map Generation

To project the point 𝑝𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖] in a lidar frame onto an image frame, the transformation relationship to get

target pixel [𝑢𝑖 , 𝑣𝑖] can be written as followsȷ

𝑑𝑖


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(1)

where 𝑑𝑖 is the point depth distance in the camera frame, T4×4 is the relative location and rotation from the lidar to

the camera. And the intrinsic parameters of the realistic camera, e.g. focal length 𝑓 , pixel size (𝑑𝑥, 𝑑𝑦) as well as the

image center (𝑢0, 𝑣0), are usually obtained from the manufacturer or calibration. But for the simulated pinhole camera,

the intrinsic matrix K3×4 can be denoted by Eq. (2) and Eq. («)ȷ

K3×4 =



𝑓 0 𝐼𝑤/2 0

0 𝑓 𝐼ℎ/2.0 0

0 0 1 0



(2)

𝑓 =
𝐼𝑤

2 · 𝑡𝑎𝑛( 𝑓 𝑜𝑣/2)
(«)
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where 𝐼𝑤 and 𝐼ℎ are the width and height of the image, and 𝑓 𝑜𝑣 is the field of view angle of the simulated camera.

To project one voxel onto the image frame, we need to project the eight corners {(𝑥1, 𝑦1, 𝑧1), · · · , (𝑥8, 𝑦8, 𝑧8)} of

this cube with Eq. (1) simultaneously and obtain pixels {(𝑢1, 𝑣1, 𝑑1), · · · , (𝑢8, 𝑣8, 𝑑8)}. The four corners of the 2D

rectangle transformed from the «D voxel can be represented by Eq. (»)ȷ

𝑅𝑒𝑐𝑡 =

(
[𝑚𝑎𝑥({𝑢𝑖}), 𝑚𝑎𝑥({𝑣𝑖})] , [𝑚𝑖𝑛({𝑢𝑖}), 𝑚𝑎𝑥({𝑣𝑖})]

[𝑚𝑖𝑛({𝑢𝑖}), 𝑚𝑖𝑛({𝑣𝑖})] , [𝑚𝑎𝑥({𝑢𝑖}), 𝑚𝑖𝑛({𝑣𝑖})]

)

, 𝑖 ∈ {1, ..., 8} (»)

The depth value of this rectangle in the image frame is calculated from the average depth 𝑑𝑎𝑣𝑔 =

(∑8
𝑖=1 𝑑𝑖

)
/8.

Following this procedure, we can transform all voxels into an image to construct the required depth image.

B. Fusion Architecture

It is challenging to detect all non-cooperative targets in the surveillance system with sparse point clouds and various

illumination conditions. However, the lidar information can complement the missing feature in images when the

illumination and weather become relatively worse. As a result, we introduce a lidar-camera fusion framework for both

air and ground object detection, and the general workflow is drawn in Fig. ».

Fig. 4 Lidar-Camera fusion architecture.

For the optical image input, we utilize the image detection backbone to extract visual features. And for the point

cloud input, we voxelize the original points with various resolutions. Each voxelized point cloud is projected onto the

image frame to get a depth map. The voxel resolution difference will lead to the various density of the depth map.

We set the voxel size to be 𝑠 = 0.5 𝑚 and 𝑠 = 1.0 𝑚, separately. The standard backbones with 2D convolutions are

then applied to multi-resolution depth maps to learn spatial information about altitude and distance, etc. To fuse the

features from the optical input and multi-resolution point clouds, another feature network is appended. We select middle

components from the standard image detection backbones to be the feature network. Therefore, benefiting from the

standard backbone, this fusion architecture can only rely on fast 2D convolutions.

IV. Experiments and Results
In this section, we evaluate the proposed fusion framework on a constructed multi-modal dataset that involves

non-cooperative objects, e.g. ground vehicles, pedestrians, and drones with kinds of environmental settings.

A. Dataset

Public datasets, e.g. KITTI [21], Nuscenes [22], and Waymo [2«] in Table 2 are only for autonomy research of

ground objects such as cars, pedestrians, cyclists, etc. There is no similar open dataset that both contain drone, vehicle,

and pedestrian with camera and lidar modalities. To enable non-cooperative surveillance in the urban environment, we
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import drone models into Carla Simulator [2»] and simulate flights in addition to movements of ground objects. The

camera and lidar are deployed near a vertiport. To achieve resilient surveillance in various conditions, the illumination

and fog density is set to different values. In particular, the illumination is represented by the solar altitude angle in

degrees. An angle value of less than 0 means a dark night, and the brightness increases with the value. In addition, the

fog density denotes the fog thickness in meters, and the visibility degrades with the rising value. Finally, we have »8

combinations for generating scenarios, each of which contains 800-frame lidar-camera pairs. We can observe some

samples of collected data from Fig. 5 (a) - (j), in kinds of lighting and foggy environments.

Table 2 Comparison of datasets.

Dataset Frames Scenarios Modality Classes Night Foggy

KITTI [21] 15k multiple Lidar+Camera car, pedestrian, cyclist ✗ ✗

NuScenes [22] »0k multiple Lidar+Camera+Radar bicycle, pedestrian, bus, etc. ✓ ✗

Waymo [2«] 198k multiple Lidar+Camera car, pedestrian, cyclist ✓ ✗

Carla-UAM «8.»k urban Lidar+Camera drone, pedestrian, ground vehicle ✓ ✓

Fig. 5 Samples of Carla-UAM dataset.

Challenging issues in this dataset includeȷ

1) To cover a wide-range view, sensors are mounted on a high-altitude position over the ground, as a result, ground

targets are observed relatively small in comparison with capturing from the ego view of ground vehicles. As

in Fig. 6(a), the points returned from ground vehicles only start from the 20-meter distance for the simulated

6»-beam lidar.

2) Because of the reflective characteristics and remote distance, the average number of points hit on pedestrians is

less than 6 as in Fig. 6(b), which makes it challenging to regress accurate bounding boxes.

«) Compared with ground vehicles, drones, of which the average size is 1.5 meters, have a smaller number of lidar

points as displayed in Fig. 6(c). In addition, the number of points decreases with the distance increasing. It

means that the point cloud is extremely sparse for faraway walkers and drones.
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Fig. 6 Number of points belonging to an object (vehicle, pedestrian, drone).

B. Evaluation on Carla-UAM Dataset

We select the YOLOv5 [25] as the backbone of our fusion architecture. All parameters are set to the default

YOLOv5-M configurations. The detection results are presented in Table «. Compared with several approaches, it is

evident that our proposed fusion measure surpasses other single-modality and multi-modality methods.

Table 3 mAP(IOU=0.5) comparison for evaluation.

Methods Input Modality Vehicle Pedestrian Drone All

YOLOv5 [25] Camera 0.76» 0.15 0.967 0.627

PointPillars [10] Lidar 0.10 0.0 0.178 0.021

MVX-Net [12] Lidar+Camera 0.15 0.02 0.10 0.11

Voxel-0.5 (This study) Lidar 0.709 0.0«1 0.6«5 0.»58

Voxel-1.0 (This study) Lidar 0.662 0.006 0.511 0.«9«

Fusion (This study) Lidar+Camera 0.782 0.080 0.972 0.759

Typical lidar and camera fusion methods like MVX-Net [12], usually utilize a well-trained detection model to extract

features. However, this kind of pipeline can be improvable as this process only works well for close-distance targets

with a large number of points. For faraway targets which have a little number of points, the learning process becomes

catastrophic, we emphasize this failure according to the training curve in Fig. 7. The training loss contains frequent

singularities instead of decreasing steadily. As the consequence, this typical camera-lidar fusion pipeline is not suitable

for the surveillance of air and ground objects.

To figure out whether the inside issue is located in the image learning branch or the point learning branch,

single-modality methods like camera-based YOLOv5 and lidar-based PointPillars [10] are analyzed. From Fig. 8,

although we can observe a reasonably decent learning curve, the actual mean average precision (mAP) of 0.021 reveals

the unexpected bad outcome for bounding box regression when IOU(Intersection over Union)=0.5. As a comparison,

the average 0.627 precision for image learning with YOLOv5 shows good performance on the Carla-UAM dataset. But

it remains an opportunity to improve image-based detection in poor lighting situations. As the consequence, we can

conclude that the failed learning in MVX-Net is caused by point cloud learning, which attempts to learn features from

raw points.

To tackle issues of point cloud representation and lidar-camera fusion, our deep feature fusion pipeline is evaluated

for detecting airborne and ground objects. The point cloud feature learning is refined with the involvement of multi-

resolution voxelization, as it is hard to encode features directly from raw sparse points. To figure out the improvement

of voxelization, lidar-only data is also trained and evaluated, where Voxel-0.5 means the voxel size is 𝑠 = 0.5 𝑚 and

Voxel-1.0 is 𝑠 = 1.0 𝑚. When we just train the projected depth maps with the YOLOv5 backbone, the outcome is

significant. For all lidar-only approaches, Voxel-0.5 and Voxel-1.0 outperform the PointPillars incredibly, which proves

that the learning on projected depth images is better than «D encoding. One critical issue to mention is that the detection

performance for pedestrians is always terrible because of the little number of points belonging to this class. For different

voxel sizes, we can know that depth training with voxel size 𝑠 = 0.5 𝑚 works better than with 𝑠 = 1.0 𝑚. Ultimately, it

shows the effectiveness of learning spatial information when employing the voxelization and depth-generation process

for distinguishing ground and air objects.
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Fig. 8 Failed training of PointPillars.

To analyze the improvement of the fusion framework in specific challenging environmental conditions, we assess the

performance when the fog thickness changes at first. As listed in Table », the solar altitude angle keeps «0 degrees. There

are 800 samples in each test scenario. When applying various approaches, we can find that our fusion measure always

outperforms the lidar-only Voxel-0.5 and Voxel-1.0. The performance of the fusion keeps stable with the increasing fog

density. We then switch to night, we can also observe similar results as in Table 5.

Table 4 Comparison in Various Fog Density (Day).

Fog Illumination Method
Class Precision mAP(IOU=0.5)

Vehicle Pedestrian Drone All Vehicle Pedestrian Drone All

5 «0

Voxel-0.5 0.927 - 0.9»5 0.9«6 0.687 - 0.86» 0.767

Voxel-1.0 0.909 - 0.781 0.8»5 0.681 - 0.6«2 0.656

Fusion 0.947 - 0.993 0.970 0.774 - 0.985 0.879

20 «0

Voxel-0.5 0.7»2 - 0.8«« 0.787 0.589 - 0.»7 0.529

Voxel-1.0 0.68 - 0.66» 0.672 0.»8» - 0.«6« 0.»2«

Fusion 0.751 0.967 0.859 0.635 - 0.972 0.803

»0 «0

Voxel-0.5 0.886 - 0.796 0.8»1 0.7»8 - 0.»98 0.62«

Voxel-1.0 0.696 - 0.557 0.627 0.67» - 0.«2» 0.»99

Fusion 0.960 - 0.999 0.980 0.756 - 0.975 0.865

Table 5 Comparison in Various Fog Density (Night).

Fog Illumination Method
Class Precision mAP(IOU=0.5)

Vehicle Pedestrian Drone All Vehicle Pedestrian Drone All

5 -5

Voxel-0.5 0.962 1.0 0.7»9 0.90» 0.687 0.0 0.7»« 0.»77

Voxel-1.0 0.8»6 1.0 0.651 0.8«2 0.678 0.0 0.62» 0.»«»

Fusion 0.962 1.0 0.853 0.971 0.880 0.04 0.767 0.563

»0 -5

Voxel-0.5 0.858 0.689 0.828 0.792 0.869 0.065 0.609 0.51»

Voxel-1.0 0.862 0.«»1 0.8«6 0.679 0.8«8 0.020 0.65» 0.50»

Fusion 0.960 0.952 0.751 0.888 0.921 0.201 0.694 0.605

We then consider changing the illumination condition while keeping a fixed fog density value. With the rising
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darkness, we can observe the decreasing performance of fused modalities. For lidar-only comparisons, the detection

results are reasonable for various-size targets, which indicates that fusion precision degrades because of the lower light

intensity and the lidar-camera system works better under good lighting conditions.

Table 6 Comparison in Various Lighting Settings.

Fog Illumination Method
Class Precision mAP(IOU=0.5)

Vehicle Pedestrian Drone All Vehicle Pedestrian Drone All

»0 «0

Voxel-0.5 0.886 - 0.796 0.8»1 0.7»8 - 0.»98 0.62«

Voxel-1.0 0.696 - 0.557 0.627 0.67» - 0.«2» 0.»99

Fusion 0.960 - 0.999 0.980 0.756 - 0.975 0.865

»0 2

Voxel-0.5 0.802 1.0 0.901 0.901 0.797 0.0 0.57« 0.»56

Voxel-1.0 0.825 1.0 0.87 0.898 0.76 0.0 0.»8« 0.»1»

Fusion 0.935 1.0 0.990 0.975 0.854 0.0 0.995 0.616

»0 -5

Voxel-0.5 0.858 0.689 0.828 0.792 0.869 0.065 0.609 0.51»

Voxel-1.0 0.862 0.«»1 0.8«6 0.679 0.8«8 0.020 0.65» 0.50»

Fusion 0.901 1.0 0.987 0.963 0.8«7 0.0 0.987 0.608

To sum up, the designed architecture fuses the contextual features from the camera and spatial attributes from the

lidar, to achieve better object detection performance in kinds of visibility conditions. Especially, the advantages of

camera and lidar are combined to overcome several issues, e.g. weak lighting and sparse point cloud, etc.

V. Conclusion
In this work, the lidar-camera fusion architecture with multi-resolution voxelization is proposed for ground-based

non-cooperative surveillance, to achieve robust non-cooperative object detection. In the meanwhile, a multi-modal

dataset is constructed for the detection task. Compared with YOLOv5, PoinPillars, and MVX-Net, the kernel issue for

small object detection with lidar-based backbones has been analyzed, and it reveals the effectiveness of the voxelization

and depth map generation procedure. After evaluating various environmental conditions, our framework shows its

feasibility to achieve resilient object detection performance near the vertiport, moreover, the overall 0.759 mAP of which

outperforms 0.627 mAP of camera-only detection and other lidar-involved approaches.

This work employs the standard image-based backbones for feature learning. Even though the training is simple and

more effective than lidar-based backbones, one limitation is that the prediction is only in the 2D image frame because it

is hard to rebuild the «D shape of small objects in sparse point clouds. Future work includes recovering the accurate «D

position with pairwise cameras which have overlapping observation areas.
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