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Abstract: This paper describes a methodology for developing a digital twin (DT) based on a rich semantic
model and principles of system engineering. The aim is to provide a general model of digital twins (DT)
that can improve decision making based on semantic reasoning on real-time system monitoring. The
methodology has been tested on a laboratory pilot plant that acts as a material handling system. The key
contribution of this research is to propose a generic information model for DT using foundational ontology
and principles of systems engineering. The efficacy of the proposed methodology is demonstrated by the 
automatic detection of a component level failure using semantic reasoning.
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1. INTRODUCTION

Digital Twin (DT) is one of the technologies used to improve 
asset management, and the interest in this technology has 
gradually increased in the last years both in industry and 
academia (Jones et al., 2020). There are several definitions of 
DT and hence a lot of confusion around this terminology. The 
first time DT concept has been introduced by Michael Grieves 
(Grieves, 2015). In 2021, an ISO standard provided a standard 
definition of DT for manufacturing (ISO 23247-1:2021), 
which is a “fit for purpose digital representation of an 
observable manufacturing element with synchronization 
between the element and its digital representation. 

Companies around the world (NASA, GE, Chevron, Siemens, 
Oracle, etc.) already use DTs to detect asset failures and 
improve efficiency (Tao & Qi, 2019). However, the rapid 
growth of DT is leading to a proliferation of stand-alone DT 
solutions. Without a standardized recipe for DT 
implementation, it often becomes challenging for the 
industries to deploy DT solutions quickly and flexibly. 
Moreover, a methodology to model unified DT is needed (Tao 
et al., 2019) so that the information model for various types of 
physical systems may be customized from generic templates 
by decreasing the development time. Antonova et al. pointed 
out the need for having common semantics for the data 
modelling and exchange for the DT to be able to integrate data 
from different sources (Petrova-Antonova & Ilieva, 2021). 
One of the solutions to address these needs is the use of a 
shared language approach (Erkoyuncu et al., 2020). 
Ontologies have been recently considered as one of the 
methodologies to ensure the shared language or the common 
semantics in the DT scenario (D’Amico et al., 2021) 

The association between DT and ontology to break down the 
current siloed approach is gaining increasing attention. Among 
others, recent examples can be found in literature such as the 
concept of universal DT (Akroyd et al., 2021), and the concept 
of cognitive twin (CT) (Lu et al., 2020). Both of them use 

knowledge graphs and ontologies to ensure cross-domain 
interoperability (Lu et al., 2020).  

Despite CT being a promising solution towards the 
achievement of a unified model (Tao & Qi, 2019) of DT, 
generality needs to be addressed not only by a set of common 
semantics but also by adopting common principles of systems 
engineering. While the former addresses data interoperability, 
the latter leverages the well-founded system theory to make 
the DT suitable for applying common system analysis (such as 
functional decomposition, function flow, material flow, 
energy flow, state-based activity analysis, and causal analysis). 
Furthermore, the need for physical demonstrators to show the 
efficacy and benefits of this unified method (Akroyd et al., 
2021) is critical in ensuring increased uptake of the approach. 

To address the abovementioned gaps, this paper adopts rich 
semantics (Poli et al., 2010), based on foundational terms 
borrowed from well-founded top-level ontologies with 
philosophical underpinning, for achieving utmost generality in 
the data modelling. At the same time, adopting the axiomatic 
design theory (Suh, 1998) for modelling the structure of the 
system based on functional decomposition and linking it to 
state-based activity modelling. This study grounds itself on 
principles of systems engineering. 

To show the benefits and applicability of this unified approach, 
a physical demonstrator has been developed. The CT concept 
has been adopted in a use case to detect a component level 
failure in a laboratory pilot material handling system. The 
laboratory pilot system is the Festo sorting station module, 
which is part of a Festo modular production system (MPS) see 
Figure 1-top left. The purpose of this machine is to replicate in 
a lab the sorting feature of a material handling system. 
Moreover, the system has been modelled and validated using 
the principles of the aforementioned axiomatic design theory. 

2. METHODOLOGY 

The development of the CT starts with the characterisation of 
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the system and the boundaries of the domain. Classification of 
the components, qualitative formalisation of parthood and 
connection relations between components (mereotopology), 
and relations between functions and capabilities of each 
component have been studied and reverse engineered. Each 
component has been classified as seen in Figure 1. 

The Festo sorting station operates as follows: 

1. When the workpiece enters the sensing unit, the system 
sends the data to the knowledge graph (KG). The KG 
associates a workpiece ID and the spatial region s_in to the 
timestamp received. 

2. The sensing unit measures the colour of the workpiece and 
once measured, sends the order to the gate actuator to let 
the workpiece go. 

3. When the gate actuator opens, the system sends the results 
of the sensing process to the KG, together with the related 
timestamp. The KG associates the workpiece ID, the 
spatial region s_out, and the colour to the timestamp 
received. 

4. If the workpiece is red, the first actuator is activated sorting 
the part to the first collection point, whereas if it is metal 
the second actuator is activated sorting the part to the 
second collection point. No actuator is activated if the 
workpiece is black. A physical obstacle conveys the black 
workpiece through the conveyor system to the third 
collection point. In this case, data points for spatial regions 
n1 and n2 are associated with the relative workpiece ID. 

5. When every workpiece is detected by the retro-reflective 
sensor, the system sends the data point to the KG. The KG 

associates the timestamp and spatial region w with the 
relative workpiece ID. 

2.1 Ontology design of the CT 

A set of Competency Questions (CQ) (Grüninger & Fox, 
1995) have been created to formalise the pieces of information 
that the CT will be able to manage. 

The CQs created for this use case are the following: 

1. What are the components of the sorting station? 

2. How long does the conveyor take to carry the workpiece 
X? 

3. What is the time-point that the workpiece X entered the 
sensing unit? 

4. What is the colour of workpiece X sensed after the sensing 
unit? 

5. How many workpieces are at collection point X at time T? 

6. Is workpiece X sensed by the sensing unit in the time 
interval T? 

The predicates used to build the ontology model of the Festo 
sorting system extend Common Core Ontology (CCO) 
(https://www.cubrc.org) and the IOF-core (Karray et al., 
2021). As those ontologies refer to a foundational ontology, or 
top-level ontology (TLO), called Basic Formal Ontology 
(BFO) (Smith et al., 2007), which is also an ISO standard (ISO 
21838-2:2021), the application ontology becomes generic and 
interoperable. 

In the following sections, definitions of the concepts and 
relationships of the ontology model of the CT, including the 
related axioms using the foundational terms from BFO, CCO, 
and IOF-core, have been provided. For instance, bears, 
realizes, participatesIn, OccurrentPartOf, occursOn, 
hasFirstInstance, hasLastInstance, etc. have been taken from 
BFO. hasOutput, ActOfLocationChange, ActOfMeasurement, 
etc. have been taken from CCO. System from IOF-core. 

2.2 Structure design 

To capture the process flow in the Festo system, the structural 
parthood of the system needs to be constructed based on the 
corresponding functional decomposition. Axiomatic Design 
(AD) theory (Suh, 1998) is adopted to delineate the parts of 
the system in such a way that, for every level of 
decomposition, if the functions of each component are realised 
by some suitable processes, then the function of the parent 
component is also realised (Sarkar et al., 2020). 

Figure 2 (left) presents structural mereology along with the 
corresponding functional decomposition for the Festo sorting 
station. The independence axiom of AD theory is reformulated 
by Sarkar et al. based on how the functions at some levels of 
decomposition are supported by the capabilities of the 
corresponding components. Two types of valid configurations: 
summation junction, and control junction (types of modulo-
junction), may be derived from the relationships between 
functions and capabilities of components of a system, 
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1.1 Diffuse sensor Part confirmation 
1.2 Diffuse colour sensor Part identification – colour 
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1.4 Gate actuator Part block and release 
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1.8 Retro reflective sensor End of cycle confirmation 

Figure 1 - Festo sorting station, part of Festo MPS. 
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the system and the boundaries of the domain. Classification of 
the components, qualitative formalisation of parthood and 
connection relations between components (mereotopology), 
and relations between functions and capabilities of each 
component have been studied and reverse engineered. Each 
component has been classified as seen in Figure 1. 
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(BFO) (Smith et al., 2007), which is also an ISO standard (ISO 
21838-2:2021), the application ontology becomes generic and 
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etc. have been taken from CCO. System from IOF-core. 
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parthood of the system needs to be constructed based on the 
corresponding functional decomposition. Axiomatic Design 
(AD) theory (Suh, 1998) is adopted to delineate the parts of 
the system in such a way that, for every level of 
decomposition, if the functions of each component are realised 
by some suitable processes, then the function of the parent 
component is also realised (Sarkar et al., 2020). 
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corresponding functional decomposition for the Festo sorting 
station. The independence axiom of AD theory is reformulated 
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following the diagonal and triangular design matrices 
(proposed in AD theory) respectively. 

The predicate SummationJunction and ControlJunction hold 
between a component and two of its sub-components. For 
ControlJunction, the component in the second place controls 
the component in the third place. As presented in Figure 2 
(right), the sorting station is a SummationJunction of the 
‘Black sorting station, ‘Red sorting station, and ‘Metal sorting 
station. Looking closer, the first two units are 
SummationJunction of a section of the ‘Conveyor belt’ and a 
‘Transferring unit’, whereas the ‘transferring unit’ is a 
ControlJunction, in which ‘Actuators’ are controlled by the 
‘Sensing unit’. Note that there is no actuator for the last slope. 
The underlying relationships among the capabilities of the 
components and their functions are not included in this paper 
for brevity. 

2.3 Processes design 

In every occurrence of a type of process, specific types of 
entities are engaged with different roles. We use two types of 
thematic roles (LIRICS - Linguistic InfRastructure for 
Interoperable ResourCes and Systems), i.e., instrument (that is 
the immediate cause) and patient (that is affected) to 
distinguish between the system and the material that the 
system handles. The latter material is the workpiece that the 
Festo sorting station sorts according to its colour. Three 
primary types of processes are carried out by different 
components of the Festo sorting station. For all of them, the 
workpiece acts as the patient but differs in how it is affected 
by the processes. For example, the first one of the following 
axioms dictates that for the sensors to realise the function of 
sensing colour by some process of ActOfMeasuringColor, 
colour information (the colour of the workpiece) becomes 
available at the end of every occurrence. Both ActOfCarrying 
and ActOfActuating aim at changing the location of the 
workpiece. The former changes the spatial location of the 
workpiece while the workpiece is seated at the same location 
(a Site) on the conveyor belt as it moves. The latter changes 
the location of the workpiece from one site of the conveyor to 
another site of the collection point (acting as final storage for 
the workpiece). 

∀𝑝𝑝, 𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑓𝑓) ↔
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝) ∧ ∃𝐴𝐴 (𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴, 𝑝𝑝)) ∧ ∃𝑤𝑤(𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝)) ∧ ∀𝐴𝐴(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝐴𝐴) →
∃𝐴𝐴, 𝐴𝐴𝐴𝐴 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴𝐴𝐴) ∧ ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴𝐴𝐴(𝑝𝑝, 𝐴𝐴𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴𝐴𝐴, 𝐴𝐴) ∧ ∃𝐴𝐴𝑒𝑒(ℎ𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, 𝐴𝐴𝑒𝑒) ∧
𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴(𝐴𝐴, 𝑤𝑤, 𝐴𝐴𝑒𝑒))     (1) 

∀𝑝𝑝, 𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑓𝑓) ↔
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝) ∧ ∃𝐴𝐴 (𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴, 𝑝𝑝)) ∧ ∃𝑤𝑤(𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝)) ∧ ∀𝐴𝐴 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝐴𝐴) →
∃𝐴𝐴, 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴𝑏𝑏, 𝐴𝐴𝑒𝑒 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑖𝑖𝐴𝐴(𝑤𝑤, 𝐴𝐴, 𝐴𝐴) ∧ 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴, 𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, 𝐴𝐴1, 𝐴𝐴𝑏𝑏) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, 𝐴𝐴2, 𝐴𝐴𝑒𝑒) ∧
ℎ𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, 𝐴𝐴𝑏𝑏) ∧ ℎ𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, 𝐴𝐴𝑒𝑒) ∧ (𝐴𝐴1 ≠
𝐴𝐴2))       (2) 

∀𝑝𝑝, 𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑓𝑓) ↔
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝) ∧ ∃𝐴𝐴 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴, 𝑝𝑝)) ∧ ∃𝑤𝑤(𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝)) ∧ ∀𝐴𝐴 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝐴𝐴) →
∃𝐴𝐴, 𝐴𝐴′, 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴𝑏𝑏, 𝐴𝐴𝑒𝑒, 𝐴𝐴, 𝐴𝐴 (𝑆𝑆𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴(𝐴𝐴) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′, 𝐴𝐴) ∧ 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴, 𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, 𝐴𝐴1, 𝐴𝐴𝑏𝑏) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′, 𝐴𝐴2, 𝐴𝐴𝑒𝑒) ∧
ℎ𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, 𝐴𝐴𝑏𝑏) ∧ ℎ𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, 𝐴𝐴𝑒𝑒))) (3)  

Following the functional structure of the Festo Sorting Station 
given in Figure 2 (left), there are three sub-types of 
ActOfMeasuringColor, i.e., ActOfMeasuringBlack, 
ActOfMeasuringRed, and ActOfMeasuringMetal, based on the 
sub-types of colours they detect and the types of functions they 
realise, e.g., realizes(ActOfMeasuringRed, 
FunctionOfMeasuringRed). Similarly, there are three types of 
ActOfCarrying depending on the end locations (e.g., the red 
workpiece is carried up to the ‘Actuator 1’) of the workpiece. 
For the black workpiece being carried to the ‘collection point 
3’ by the conveyor belt directly, no actuation process is 
required for the black workpiece and only two sub-types of 
ActOfActuating are declared, i.e., ActOfActuatingRed, and 
ActOfActuatingMetal. 

  
Figure 2 - Mereology of the system, and functions/capabilities of each component. (left) Modulo junction diagram (right). 
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For reasoning, the malfunctioned component, and the 
compositions of these processes are also needed. These 
processes are performed by the upper-level components and 
must have some occurrences of these processes as part. For 
instance, RedTransferringUnit is the instrument of some 
ActOfTransferringRed, for which the some 
ActOfMeasuringRed and ActOfActuatingRed are occurrent 
parts. 

2.4 Detecting malfunction analysis 

A component malfunctions if the process, in which the 
component plays the role of the instrument, fails to realise its 
corresponding function. The effect of a component 
malfunctioning can be manifested not only at the component 
level but also at the system level. For instance, Actuator 1 not 
triggering may cause the red workpiece to be transferred to 
collection point 3 or the malfunction in the sensing unit may 
cause a Metal workpiece to be pushed into collection point 1. 
An error at the system level can be narrowed down to a 
component by applying several rules following the modulo-
junction structure of the system given in Figure 2 (right). We 
define a predicate malfunctionedFor holding between a 
component, an occurrence of a process, in which the failure 
occurs, and a workpiece, which the component failed to 
handle. In other words, a process, in which that workpiece was 
a patient and the component an instrument, did not realise the 
function of the component. Below we provide a set of four 
rules for detecting an error in sorting red workpieces as an 
example. Other types of errors may have their own set of rules.  

𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴, 𝑝𝑝, 𝑤𝑤) ∧ 𝑜𝑜𝐴𝐴𝑙𝑙𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝) ∧ 𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′, 𝑝𝑝′) ∧
¬𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴(𝑝𝑝′, ′𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙′) →
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴′, 𝑝𝑝′, 𝑤𝑤)    (4) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴, 𝑝𝑝, 𝑤𝑤) ∧ 𝑜𝑜𝐴𝐴𝑙𝑙𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝) ∧ 𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧
𝑜𝑜𝐴𝐴𝑙𝑙𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′, 𝑝𝑝′) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′′) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′′, 𝑝𝑝′′) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴(𝑝𝑝′, ′𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙′) →
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴′, 𝑝𝑝′, 𝑤𝑤)    (5)  
 
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴, 𝑝𝑝, 𝑤𝑤) ∧
𝑜𝑜𝐴𝐴𝑙𝑙𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝) ∧ 𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧
𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′, 𝑝𝑝′) ∧
¬𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴(𝑝𝑝′,′ 𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙′) →
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴′, 𝑝𝑝′, 𝑤𝑤)    (6) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴, 𝑝𝑝, 𝑤𝑤) ∧
𝑜𝑜𝐴𝐴𝑙𝑙𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝) ∧ 𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′, 𝑝𝑝′)  ∧

¬𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴(𝑝𝑝′,′ 𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑖𝑖𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙′)  ∧
𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′′) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′′, 𝑝𝑝′′) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴(𝑝𝑝′′, ′𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙′) →
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴′, 𝑝𝑝′, 𝑤𝑤)   (7) 

In rule 1 (4), the cause of failure for RedSortingUnit (initial 
fact representing an error in sorting red workpieces) is 
transferred to the Conveyor if the related occurrence of 
ActOfCarryingRed fails (note that the negation of realizes 
implies that the state description stated in the right part of (2) 
is false, i.e., the required output state is not achieved). If rule 1 
(4) doesn’t trigger, that the Conveyor is not malfunctioning, 
rule 2 (5) will transfer the cause to the RedTransferringUnit. 
If RedTransferringUnit malfunctions, then rule 3 (6) and rule 
4 (7) check if the malfunctioning is in SensingUnit or 
RedTransferringUnit respectively. As the SensingUnit 
controls the RedTransferringUnit, it is not required to check 
whether the Actuator also fails in rule 3 (6). On the contrary, 
the root cause of failure can only be attributed to the Actuator, 
if only the ActOfActuatingRed fails (doesn’t realize the 
Actuator’s function) but the preceding ActOfMeasuringRed 
succeeds (does realise the SensingUnit’s function). 

3. COGNITIVE DIGITAL TWIN CONSTRUCTION 

3.1 Ontology model development 

The ontology is exported from the Protégé tool in the .owl file 
format. The ontology file created will then be imported into 
the data management tool together with all the other ontologies 
used (BFO, CCO, and IOF-Core). The ontology of the Festo 
sorting station has been created with the Protégé tool 
(https://protegewiki.stanford.edu/wiki/Main_Page). The data 
is collected and managed within the same data management 
tool, GraphDB (https://graphdb.ontotext.com/). 

SPARQL (https://www.w3.org/TR/sparql11-overview) 
queries have been used to add information about the structure 
and functions of the system and its components, the related 
processes as well as the reasoning for the malfunctions. The 
following section describes how these queries transform the 
real-time monitoring data into state descriptions of the 
workpiece. Separate SPARQL queries have been used to infer 
the occurrences and their process types from the state 
descriptions as required. For example, if the analysis is 
conducted for a particular workpiece, all the occurrences in 
which the workpiece participated as a patient may be inferred 
from the related state descriptions using suitable SPARQL. 
The rules given from (4) to (7) are Horn rules and SPARQL 
Construct queries have been used to encode them. The ternary 
predicate malfunctionedFor is reified as a separate class (not 
modelled under any upper-level ontology) linking the 
instances of component, process, and the workpiece. 

3.2 CT development 

Figure 3 shows the architecture of the CT and how it works. 
Data points from the Festo sorting system have been sent to 
GraphDB, which is the tool selected for data management. 
GraphDB is a free tool that allows the creation of knowledge 
graphs (KG). The KG represents the network of all the entities 
that constitute the system (objects, events, data, etc.) and 
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For reasoning, the malfunctioned component, and the 
compositions of these processes are also needed. These 
processes are performed by the upper-level components and 
must have some occurrences of these processes as part. For 
instance, RedTransferringUnit is the instrument of some 
ActOfTransferringRed, for which the some 
ActOfMeasuringRed and ActOfActuatingRed are occurrent 
parts. 

2.4 Detecting malfunction analysis 

A component malfunctions if the process, in which the 
component plays the role of the instrument, fails to realise its 
corresponding function. The effect of a component 
malfunctioning can be manifested not only at the component 
level but also at the system level. For instance, Actuator 1 not 
triggering may cause the red workpiece to be transferred to 
collection point 3 or the malfunction in the sensing unit may 
cause a Metal workpiece to be pushed into collection point 1. 
An error at the system level can be narrowed down to a 
component by applying several rules following the modulo-
junction structure of the system given in Figure 2 (right). We 
define a predicate malfunctionedFor holding between a 
component, an occurrence of a process, in which the failure 
occurs, and a workpiece, which the component failed to 
handle. In other words, a process, in which that workpiece was 
a patient and the component an instrument, did not realise the 
function of the component. Below we provide a set of four 
rules for detecting an error in sorting red workpieces as an 
example. Other types of errors may have their own set of rules.  

𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴, 𝑝𝑝, 𝑤𝑤) ∧ 𝑜𝑜𝐴𝐴𝑙𝑙𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝) ∧ 𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′, 𝑝𝑝′) ∧
¬𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴(𝑝𝑝′, ′𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙′) →
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴′, 𝑝𝑝′, 𝑤𝑤)    (4) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴, 𝑝𝑝, 𝑤𝑤) ∧ 𝑜𝑜𝐴𝐴𝑙𝑙𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝) ∧ 𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧
𝑜𝑜𝐴𝐴𝑙𝑙𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′, 𝑝𝑝′) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′′) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′′, 𝑝𝑝′′) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴(𝑝𝑝′, ′𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙′) →
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴′, 𝑝𝑝′, 𝑤𝑤)    (5)  
 
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴, 𝑝𝑝, 𝑤𝑤) ∧
𝑜𝑜𝐴𝐴𝑙𝑙𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝) ∧ 𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧
𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′, 𝑝𝑝′) ∧
¬𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴(𝑝𝑝′,′ 𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙′) →
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴′, 𝑝𝑝′, 𝑤𝑤)    (6) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴, 𝑝𝑝, 𝑤𝑤) ∧
𝑜𝑜𝐴𝐴𝑙𝑙𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝) ∧ 𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′, 𝑝𝑝′)  ∧

¬𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴(𝑝𝑝′,′ 𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑖𝑖𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙′)  ∧
𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴′′) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙(𝑝𝑝′′) ∧
𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑝𝑝′′) ∧ 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓(𝐴𝐴′′, 𝑝𝑝′′) ∧
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴(𝑝𝑝′′, ′𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝑙𝑙′) →
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑎𝑎𝐴𝐴𝐴𝐴(𝐴𝐴′, 𝑝𝑝′, 𝑤𝑤)   (7) 

In rule 1 (4), the cause of failure for RedSortingUnit (initial 
fact representing an error in sorting red workpieces) is 
transferred to the Conveyor if the related occurrence of 
ActOfCarryingRed fails (note that the negation of realizes 
implies that the state description stated in the right part of (2) 
is false, i.e., the required output state is not achieved). If rule 1 
(4) doesn’t trigger, that the Conveyor is not malfunctioning, 
rule 2 (5) will transfer the cause to the RedTransferringUnit. 
If RedTransferringUnit malfunctions, then rule 3 (6) and rule 
4 (7) check if the malfunctioning is in SensingUnit or 
RedTransferringUnit respectively. As the SensingUnit 
controls the RedTransferringUnit, it is not required to check 
whether the Actuator also fails in rule 3 (6). On the contrary, 
the root cause of failure can only be attributed to the Actuator, 
if only the ActOfActuatingRed fails (doesn’t realize the 
Actuator’s function) but the preceding ActOfMeasuringRed 
succeeds (does realise the SensingUnit’s function). 

3. COGNITIVE DIGITAL TWIN CONSTRUCTION 

3.1 Ontology model development 

The ontology is exported from the Protégé tool in the .owl file 
format. The ontology file created will then be imported into 
the data management tool together with all the other ontologies 
used (BFO, CCO, and IOF-Core). The ontology of the Festo 
sorting station has been created with the Protégé tool 
(https://protegewiki.stanford.edu/wiki/Main_Page). The data 
is collected and managed within the same data management 
tool, GraphDB (https://graphdb.ontotext.com/). 

SPARQL (https://www.w3.org/TR/sparql11-overview) 
queries have been used to add information about the structure 
and functions of the system and its components, the related 
processes as well as the reasoning for the malfunctions. The 
following section describes how these queries transform the 
real-time monitoring data into state descriptions of the 
workpiece. Separate SPARQL queries have been used to infer 
the occurrences and their process types from the state 
descriptions as required. For example, if the analysis is 
conducted for a particular workpiece, all the occurrences in 
which the workpiece participated as a patient may be inferred 
from the related state descriptions using suitable SPARQL. 
The rules given from (4) to (7) are Horn rules and SPARQL 
Construct queries have been used to encode them. The ternary 
predicate malfunctionedFor is reified as a separate class (not 
modelled under any upper-level ontology) linking the 
instances of component, process, and the workpiece. 

3.2 CT development 

Figure 3 shows the architecture of the CT and how it works. 
Data points from the Festo sorting system have been sent to 
GraphDB, which is the tool selected for data management. 
GraphDB is a free tool that allows the creation of knowledge 
graphs (KG). The KG represents the network of all the entities 
that constitute the system (objects, events, data, etc.) and 

illustrates the relationships between them. It is the graph 
database that stores the data points received from the physical 
system and where it is possible to query the competency 
questions created before. It is a key element of the CT. 

The system sends data points to the KG in 5 points: i) the 
diffuse sensor, called s_in (entering the sensing unit); the gate 
actuator, called s_out (leaving the sensing unit); the first 
actuator, called n1 (pushed to the first collection section); the 
second actuator, called n2 (pushed to the second collection 
section); and the retroreflective sensor, called w (workpiece 
stored in the slope). From each point, we get the timestamp 
and just at the end of the sensing process, we also get the colour 
from the combination of the sensors’ output. Table 1 shows the 
combination of each colour based on the sensors’ output. At 
each of the five points mentioned, the KG receives the data 
points. A simulated system has been created in the AnyLogic 
tool (https://www.anylogic.com/). The system sends the 
workpiece ID to the simulation model, which simulates the 
operations of the actual system for that workpiece providing 
the expected result. This simulated result is compared with the 
real-time status of the Festo sorting station for validation of its 
performance. In case of discrepancy, a suitable corrective 
measure may be applied to the physical system. 

4. EXPERIMENTAL RESULTS 

The CT described in the previous section, has been tested in a 
workstation with a CPU Intel Core i7-8750H and 16GB of 

RAM. Figure 4 shows a snapshot of the KG. As can be seen, 
BFO, CCO, and the IOF-core properties are imported together 
with the system ontology. Following the results from the CQs 
asked the KG: 

1. What are the components of the sorting station? 

 

2. How long did the conveyor take to carry the workpiece X? 

 

3. What is the time-point that the workpiece X entered at the 
sensing unit? 

 

4. What is the colour of workpiece X sensed after the sensing 
unit? 

 

5. How many workpieces are at the collection points X at time 
T? 

 

6. Is workpiece X sensed by the sensing unit in the time 
interval T? 

  
4.1 Detection of malfunction 

A test scenario has been given below to demonstrate the 
reasoning to detect the malfunctioned component for a system 
error. 

The machine monitoring status in GraphDB is compared with 
the simulation result. It can be seen that several workpieces are 
missing from collection point 1 as the number of workpieces 
in collection point 1 (CQ 5) is less than the number of 
workpieces simulated for the same collection point. Therefore, 

 
Figure 3 – Architecture of the CT 

 
Figure 4 - Snapshot of the KG containing data related to workpiece 

ID001 in space s_in 

Table 1 - Sensors' output combination. (DS = Diffuse sensor, DCS 
= Diffuse colour sensor, IPS = Inductive proximity sensor). 

 DS DCS IPS 
Black 1 0 0 
Red 1 1 0 

Metal 1 1 1 
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the system-level error is marked by the comparison script as 
shown in Figure 5, where the workpiece with ID 004 is one of 
the missing workpieces from collection point 1. 

 
Figure 5 - malfunctioning of Red Sorting Unit 

When the rules given from (4) to (7) are run on the KG, rule 
(5) is triggered because the ActOfCarryingRed realises the 
function of the Conveyor as given by the state description in 
Figure 6 (Workpiece 004 carried from s_out to w). Rule (5) 
will assert that the RedTransferringUnit has malfunctioned. 
Next, this assertion triggered only rule (6) as it is found that 
the output measurement is ‘black’ instead of ‘red’ and that 
violates the (3) as specialized for ActOfActuatingRed, resulting 
in the function of SensingUnit not being realized. Rule (6) will 
assert the SensingUnit as the malfunctioned unit as shown in 
Figure 7. 

 
Figure 6 - State description of workpiece 004 

 
Figure 7 - Malfunctioning of sensing unit 

5. CONCLUSION 

The work presented in this paper is part of an ongoing project 
and all the components of the CT are frequently updated. It 
aims to demonstrate the basic workflow of applying the CT to 
support the management and the health monitoring of an asset, 
specifically for a material handling system. Several pending 
issues need to be addressed before fully realising the expected 
target. 

The paper shows how the CT approach helps to better define 
the knowledge about the system, using the foundational 
ontology and performing reasoning to support the decision-
making process. The ontology model of the CT is built using 
systems engineering paradigms, such as functional 
decomposition, function flow, material flow, energy flow, 
state-based activity analysis, and causal analysis. 

Future works include completing the development of the CT, 
testing it, and validating it for different kinds of malfunctions 
and operating conditions. Another future opportunity would be 
applying the same methodology to another kind of asset, in a 
different domain and validating both the CT performance as 
well as the semantic interoperability that the TLO approach 
claim. 
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