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Two methods are presented 

characteristics of bodies 

SUMMARY 

for predicting the aerodynamic 

in inviscid and irrotational flow. 

The first method is limited to incompressible flow and makes 

use of panels of ring sources to approximate the body surface. 

The technique is dedicated to single, axisymmetric body 

configurations in either uniform longitudinal or rectilinear 

motion. The versatility of the method is due to the use of 

sources as singularities placed on the body surface, allowing 

discontinuous body profiles to be analysed. The method has 

been compared for accuracy and efficiency with experimental and 

theoretical results. 

Further investigation showed that at present there existed no 

numerical technique which could predict the aerodynamic 

behaviour of multiple bodies in compressible flow. Hence, a 

fully three-dimensional method was developed which made use of 

the Full Potential Equation (F.P.E.) in conservative form. A 

computational mesh is placed around the body configuration and 

at each mesh node the F.P.E. is satisfied ~n finite difference 

form. The method is able to give a complete description of the 

flow around the bodies at transonic mach numbers. Comparisons 

to test the accuracy and efficiency of the method are limited 

to either, purely subsonic flow for two body configurations or 

zero incidence for transonic flow around a single body. 
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MAIN NOTATION 

x,y,z - Physical Cartesian Coordinates 

y - Total Velocity Vector 

co - Indicates conditions at Infinity 

Q ,y ,~ - Free-stream Velocity Vectors 

\ - Density 

p - Pressure 

~ - Gradient Vector 

t - time 

n t - ' - - Normal and Tangential Vectors 

¢ - Perturbation Potential 

Cp - Pressure Coefficient 

o{ - Angle of Incidence (Fig.1) 

r - Angle of Yaw (Fig.1) 

Notation Specific to Sections.1 to 6 

F 

V 

yabs 

V 

Vrel 

Ps 

R 

Rs 

r(P,q) 

x,y,z 

- Prescribed Normal Velocity 

- Perturbation Velocity Vector 

- Absolute Velocity V~ctor 

- Velocity Vector due to Source Distribution 

- Relative Velocity Vector 

- Static Pressure 

- Angular Velocity 

- Radial arm Vector 

- Radius of Rotation of Surface Point 

- Distance between Points P and q 

- Location of an Arbitrary Point 



_xq,yq,zq - Location of a Point Source 

CY(~) - Source Distribution 

S - Surface 

i ' j 

i,j 

- Double Integral over a Surface S 

Vectors along Axis 

Location of Matrices 

- Summation Sign 

- Velocities induced by the j'th element at the 

i'th control point 

~'-~ ,~'-) ,E)tj - Matrices of Influence Coefficients 

yij - Velocity Vector Matrix 

e>t - Circumferential Angles 

(3 - Element Slope in Section.4 

a - Radius of Source-Ring 

b - Location of Source-Ring 

Vx, Vy,Ve - Velocities in x, y, and 9 directions 

h, r 

Ve 

Vtotal 

b.~ 

'jo 

d 

R,6 
f I I 

-x.,~,2 

Jl "'J..I I J)_lj,, Jl:z I 

\J..n.x. 

Rl 

Cm 

Cn 

- Distance Measurement 

- Velocity due to Source-Ring 

- Total Velocity due to a Cone Frusta 

- Element Length 

- Y-Coordinate of a Control Point 

- Central Section of an Element 

- Coordinates in Section.4 

- Body Coordinate System 

- Rotations about Axes 

- Velocity due to a Rotation 

- Nose Length for Bodies 

- Moment Coefficient 

- Load Coefficient 



Xc.p. - Location of Centre of Pressure 

Notation Specific to Sections.6 to 14 

a 

q 

V 

s 

u,v,w,q, 

x,y,z 

X,Y,Z 

- Damping Term 

- Extra Damping Terms in Presence of Shock 

- Ratio of Specific Heats 

- Speed of Sound 

- Velocity Vector 

- free-stream Mach Number 

- Velocity Potential 

- Volume 

Surface 

- Velocities 

- Physical Space Coordinate System 

- Computational Space Coordinate System 

- Physical Space Grid Widths 

b'A, t:::i.'1, ~2 - Computational Space Grid Widths 

i,j,k - Grid Point Node 

~.7 o ~ - Backward and Forward Difference Operators 

f, g - Functions 

\ - Denoting Evaluation at some Point lj I(. 

Sl .. 5 - Cell Face Areas 

S,Sl - Denote Lengths on Body Surface in Section.8.7 

wx,Wy,Wz - Weights Associated with a Particular Face 

Xl , Xt - Leading and Trailing Edges 

t c - Truncation Error Indicators ,t.., C, 

a,a0,al, 

a3,b,bl, 

b2,c,c0, 



cl,c2,r 

n 

er 

L 

N,Nl,N2 

F 

A,B,C,D,E 
I t I I I 

- Constants Specific to Section.9 

- Radius of Curvature of Leading or Trailing Edge 

- Switching Terms 

- Shifted Density Value 

- Amourit of Density Shift 

- Forward or Backward Difference Operator 

- Correction of Perturbation Potential 

- Number of Sweep 

- Acceleration Parameters 

- Relaxation Parameter 

- Residual Operator 

- Operating Factors 

- Dummy Matrix 

A,B,C,D,E - Dummy Variables used in Section.11.1 

NX,NY,NZ - Grid Intervals 

L,M,N - Grid Intervals 

o!.,A.., o(2l. - Initial Values for Acceleration Parameters 

K - Counter 

X2, Xl - Distance Measurement 

N~ - Iteration Number for Acceleration Parameters 

Notation Specific to Section.14 

-X -y - Body Coordinate System 

hl, h2 - Lengths 

rx,ry,rz - Parameters Specifying a Body Point 

Sl, .• ,ss - Area values i 

A,B,C,D, 

P,Q - Arbitrary Points 



jm,j,jb,jt, 

k,kl,kr - Grid Point Indicators 

Notation Specific to Appendix.Al 

Al,A2,A4, 

R - Geometric variables 

kl,nj,nk - Grid Point Indicators 

Zl,Z2, 

Yl,Y2 - Body Measurements in Physical Space 

Z1T,Z2T, 

Y1T,Y2T - Body Measurements in Computational Space 

NY, NZ - Number of Grid Points in Y- and Z-directions 

W,X,Y,Z, 

G,H,I,J,R, 

Xl,X2,Yl - Arbitrary Points 

a,c,d - Length of Cell Face Sides 

Al, A2 - Areas 

Sl, S2 - Surface Boundaries 
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CHAPTER 1 

INTRODUCTION 

The importance of Aerodynamics has grown during the last 

century, and for many years the prediction methods available 

were confined to simple flow configurations, over body shapes 

such as ellipsoids. To study the behaviour of the flow around 

more complex shapes, such as wing-fuselage configurations, the 

wind tunnel had to be used. Models of the required shapes 

could be tested for accurate pressure distributions and flow 

visualisation techniques used to enhance the understanding of 

the flow behaviour. As the shapes of aircraft became more 

complex, the cost in producing a model which was efficient in 

it's design, increased. This increase was related to the 

length of time required to produce the model and test it 

through a sufficient set of conditions, such as a range of 

incidence. The flow around a model could be affected by the 

tunnel characteristics, such as blockage, turbulence and flow 

distortion, and results for the flow at high subsonic Mach 

numbers were not always readily available. 

Although the development of prediction methods continued, the 

amount of mathematical effort required to produce results, such 

as loads for a particular shape, was considerable. With the 

advent of the computer, prediction methods became less costly 

in terms of human effort and started to be used in parallel to 

wind tunnel testing. This helped to produce a rational design 

of a particular body or shape in less time. 
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Two types of prediction methods developed; analytical methods, 

which require restrictive assumptions and can treat only simple 

configurations, and numerical methods, which entail fewer 

restrictions and can be used to treat more complex 

configurations. Numerical methods can be used to provide 

pressure distributions on the surface and around a body at low 

supersonic Mach numbers. However, a complete description of 

the flow-field can only be obtained from the full Navier-Stokes 

equations and many physical phenomena (for example buffetting 

and separated flow behaviour) cannot be properly modelled until 

methods are developed for the solution of these equations. For 

the present and near future it appears that computer codes 

based on the Navier Stokes equations do not offer the prospect 

of being low cost, routine methods for aerodynamic design 

purposes. 

The desirability of numerical simulations is enhanced when it 

is considered that the cost of running a wind-tunnel is 

continually increpsing, whilst the cost of computer power is 

rapidly decreasing. 

The numerical methods available today allow many different body 

geometries and configurations to be computed, and their 

aerodynamic behaviour analysed. The first numerical techniques 

used singularities, such as sources and vortices, placed on the 

axis. Later they were distributed on surface panels. These 

methods assume the flow to be inviscid and neglect vorticity, 

and use the potential function to satisfy Laplace's equation, 

thus simulating only incompressible flow. The boundary layer 
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is assumed to be thin and so can be neglected, although 

displacement thickness models are sometimes used to simulate 

boundary layer effects. The centre-line singularity methods 

are limited to the amount of bluffness that can be created, 

although imaginary source techniques can handle any degree of 

bluffness. The panel methods distribute singularities on the 

body surface and are able to compute the flow for fully 

three-dimensional flows about bodies which may 

discontinuities in their curvature. These require 

have 

long 

computer codes and heavy use of storage. Bodies of revolution 

may also be approximated by the use of cone frusta, upon which 

source-rings are placed. The initial stage of the research 

investigates the versatility of the panel technique suggested 

by Hess and Smith (Ref.1) for axisymmetric bodies with the aim 

cf introducing computationally 

further, to adapt the method not only for a body in uniform 

flow at incidence and yaw, but also in curvilinear motion." 

As the flow speed increases, compressibility effects cannot be 

ignored, and Laplace's equation can no longer be used. To 

compute flows up to low supersonic speeds, the full potential 

equation can be used in finite difference form. Finite 

difference methods involve the use of a computational grid or 

mesh, at the nodes of which (where the grid lines cross) the 

full potential equation is satisfied. The grid is set up 

either to conform with the body shape or to be rectangular 

everywhere. Stretching functions are used to map the infinite 

physical space, containing the whole flow field, into a simpler 

computational domain in which the calculations are performed. 
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The full potential formulation is valid for subsonic 

irrotational flows and may be used for low supersonic flows 

provided the shock waves that occur are weak. The finite 

volume formulation of Wedan and South (Ref. 2) is used. The 

publication provides only a summary of the method and gives 

results for single two-dimensional and axisymmetric bodies. In 

the present work the method is developed from the basic mass 

flow equation to enable the calculation of transonic flow 

around single and double body configurations. 

Thus the present research investigates two numerical methods to 

compute the flow past axisymmetric and three-dimensional bodies 

throughout the subsonic and transonic flight regime. 
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CHAPTER 2 

INTRODUCTION TO SINGULARITY METHODS 

2.1 Flow Assumptions 

As the flow around bodies under consideration becomes more 

complex, certain simplifications need to be introduced so that 

the resulting flow equations can be theoretically analysed. 

One major assumption commonly used is that the flow equations 

can be linearised, this enables the flow about a body to be 

transformed into a simpler problem. For example, due to the 

linearity of Laplace's equation, the flow problem for incidence 

may be decomposed into the superposition of the axial and 

normal (or lateral) flow cnlnrinnc. If a flow is considered in 

which it is assumed that there is no separation, then viscosity 

can be neglected. Further, if it is assumed that there is no 

vorticity, the complete model can be approximated by the 

potential function, and thereby described by Laplace's equation 

(continuity) and Bernouilli's equation (velocity-pressure 

relation). See Goldstein Ref.3. Such a model may be used to 

determine the aerodynamic behaviour of a body at low incidence. 

To take into account the effects of the boundary layer, a 

displacement thickness model may be· used, determined from the 

initial flow calculation. The calculation is then repeated for 

the modified body, consisting of the original shape plus the 

boundary layer, see Myring and Thompson, Refs.4 and 5. 

For streamlined shapes at zero incidence, viscous effects, 
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other than skin friction will only be significant near the 

trailing edge, where the boundary layer is relatively thick. 

For all regions except near the tail, the boundary layer will 

be relatively thin, and so the potential flow solution outside 

this layer will closely model the real flow. When such a body 

is placed at moderately high incidence, flow separation will 

occur and the simple potential flow model will no longer be 

accurate, thereby limiting the theory to angles of attack where 

it is known that the results will have good accuracy. 

It must be noted that unlike aerofoils, which produce 

circulation and lift, there is no Kutta condition to be 

satisfied at the trailing edge for bodies. Thus potential flow 

around a streamlined body predicts zero lift but not a zero 

However, this is not a in 

practice most bodies are blunt at the base, either by design 

or, due to boundary layer thickening and separating. To allow 

for these effects, a wake closure is added to the body, to 

simulate the surface streamline continuity away from the body 

into the wake. This is usually done by making the aft body 

'closure' similar in shape to the body nose. Although 

recently, Chow (Ref.6) has attempted to model_ a closure shape 

based on the knowledge of the pressure distribution on the body 

surface. 

Due to the inaccurate modelling of the flow about the body 

base, the calculations are usually terminated after 75% of the 

chord or less. 
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2.2 Historical Perspective 

2.2.1 Axial Singularity Methods 

Through the years several potential methods have been 

developed to predict the aerodynamic forces on bodies in a flow 

field. Analytic solutions have been obtained for ellipsoids, 

Lamb (Ref.7}, and Kaplan (Ref.8}, giving exact results for both 

the longitudinal and lateral flows. Although these methods 

have been computed by Smith (Ref.9} and James (Ref.10), the 

amount of computational effort required is considerable. To 

enable complex configurations and different body shapes to be 

analysed, numerical techniques must be considered. 

The first numerical method was developed by Rankine (Ref.11), 

this used the linearity of Laplace's equation to generate 

axisymmetric body shapes in uniform, inviscid and 

incompressible flow. A parallel uniform stream was 

superimposed onto an axial distribution of discrete real 

sources of zero total strength. The strengths of the source 

and sink at the nose and tail are such that, stagnation points 

are established and the stagnation streamlines generate a 

closed axisymmetric body. In 1911 Fuhrmann (Ref.12) extended 

this method to generate both sharp and blunt bodies by using a 

continuous distribution of sources along the axis. The 

afore-mentioned methods are simple to compute but are 

'indirect' in that the body shape is calculated for a given 

distribution of sources. Acknowledging the simplicity of the 

method, Von Karman (Ref.13) applied it to the 'direct' problem 
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of determining the distribution of sources required to generate 

the flow over a prescribed body. The solution of the problem 

involves a Fredholm integral equation of the first kind, which 

can be solved approximately by reducing it to a set of linear 

simultaneous equations. The lateral flow has also been 

modelled by Von Karman using doublet distributions. 

The axial singularity methods have been extended for use in 

interference problems_ such as store-store interaction, see 

Refs.14, 15 and 16. Adams and Sears (Ref.17) used a Fourier 

series to develop the cross-flow potential and included 

displacement effects, thereby generating bodies with 

non-circular cross-sections. The axial singularity methods are 

applicable to axisymmetric bodies and are not necessarily 

restricted to flows which are uniform in the cross-flow plane. 

The main disadvantages of these methods are that they are 

unable to model shapes which have discontinuities in their 

curvature and cannot generate more complex three-dimensional 

shapes. Much more general methods are the so called 'panel' 

methods where the body surface is approximated by panels of 

singularities. 

2.2.2 Panel Methods 

Green's theorem shows that any solution of Laplace's 

equation can be expressed as the integral of the potential 

induced by source and doublet singularities distributed on the 

surface of the body. The singularity strengths are determined 

by the boundary conditions, such as the free-stream conditions 
\ 
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at infinity, and the flow being tangential to the body surface. 

In 1932 Lamb (Ref.7) showed that any continuous acyclic, 

irrotational flow of an incompressible fluid could be regarded 

as being due to a distribution of simple sources over the flow 

boundary. Lotz, Weinstein and Van Tuyl (Refs.18, 19, and 20) 

developed methods employing sources or doublets distributed 

uniformly around a ring or over a disc having a radius equal to 

the body radius, and set normal to the stream direction. In 

this manner, any discontinuities in the body curvature are 

automatically dealt with. Such methods generate flows about 

very bluff axisymmetric bodies in subsonic flow, but involve 

the solution of complete elliptic integrals. Vandrey used a 

source-ring method (Ref.21) and obtained results for bluff 

nosed bodies. For more bluff shapes the vortex-ring method 

(Refs.22, 23 and 24) can be used. Such methods are invaluable 

for predicting the flow around bodies of revolution, but for 

three-dimensional shapes the surface panel method is used. 

2.3 Present Study 

Modern computing power has enabled Lamb's idea to be 

·developed into the now classic methods detailed by Hess and 

Smith (Ref.1), for solving the incompressible flow around 

two-dimensional, axisymmetric and three-dimensional bodies .. 

The integral equation for the potential at any point is 

discretised by approximating the body surface by a large number 

of flat quadrilateral panels. On the surface of each panel is 

placed a source distribution of constant strength. Curved 

panels can also be used, see Johnson (Ref.25). The velocity 
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induced at some control point by the source distribution on 

each panel is calculated, giving rise to a total perturbation 

velocity at that control point. By applying the boundary 

condition that there must be no flow normal to the body 

surface, leads to a set of linear equations for the source 

distribution on each panel. Velocities are then calculated at 

the control points knowing the constant source distributions 

and so the pressures obtained. 

For fully three-dimensional bodies, a large number of panels is 

required to sufficiently approximate the body shape. For 

bodies of revolution, the panels that are used need not be 

surface quadrilaterals, but a set of cone frusta. These are 

then assumed to have source-ring distributions placed on their 

surface and their associated strengths calculated as obove. 

It was the aim of the initial research to develop the method 

proposed by Hess and Smith to deal with bluff and pointed 

bodies at incidence in uniform and curvilinear flow, with the 

hope of obtaining computationally more efficient procedures 

capable of giving accurate pressure distributions. 

Source-rings are placed on the surface of the body (Fig.1), 

since arbitrary bodies with discontinuous profiles are to be 

considered, the distribution of the source-rings itself must be 

discontinuous. To simplify the analysis, the body is 

approximated by straight line segments (see later) upon which a 

constant distribution of source-rings is placed. 
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The formulations for axisymmetric bodies are described in 

sections 4.2 and 4.3 of Ref.1, wherein the velocity potential 

and velocity components are expressed in terms of complete 

elliptic integrals K(k) and E(k), of the first and second kind 

respectively, with the argument k, being a geometric parameter. 

The subsequent longitudinal integration is performed 

numerically using the 'three eights' rule, with a special 

procedure for calculating the effect of a source at it's own 

control point. Although the expressions associated with the 

source-ring are exact, it was found to be simpler to perform 

both longitudinal and circumferential integrations by numerical 

means. Further by taking the symmetries of the flow over a 

body of revolution into account when defining the surface 

source distribution, two types of source-ring alone are 

required. These can be combined to give both the flows due to 

rectilinear motion and curved flight for an axisymmetric body. 

The results of this method are compared for accuracy and 

efficiency with numerical programs SPARV (Ref.26), Albone 

(Ref.23) and Jones (Ref.27), and experimental results (Ref.28). 
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CHAPTER 3 

METHOD OF SOLUTION 

3.1 Definition of Potential Flow 

Neglecting viscosity and assuming that density is constant, 

the Navier-Stokes equations generate the momentum equation, 

__ , \7. p 
C -

and the continuity equation becomes 

V(Y) = 0 

3.1.1 

3.1.2 

Eqns.(3.1.1) and (3.1.2) hold for either exterior flow as 

around a body or interior flow as in the case of pipes .. If 

there exists a region of fluid, then a body immersed in this 

fluid will experience pressure forces when put in motion. To 

solve the above equations, certain boundary conditions need to 

be supplied and these generally are that the normal velocity at 

a body surface is zero, 

V n\ == r 
~. - Boe!~ Su.1\0.<e. 3.1.3 
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Where f denotes the presence of other prescribed normal 

velocities at the body boundary. Also that free-stream 

conditions exist at infinity. The velocity field existing on 

the surface of the body is the sum of two components 

V= 3.1.4 

The velocity vector \/a:, is the free-stream velocity and V- is - -
the disturbance of the free-stream due to the presence of the 

body. If it is assumed that the flow is irrotational then \J'" -
may be expressed as the gradient of the perturbation potential 

function ¢ , 

3.1.5 

Since V~ satisfies the equation of continuity then - \T must 

also, 

V.('£)=o 3.1.6 

Combining Eqns.(3.1.5) and (3.1.6) generates Laplace's equation 
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3.1.7 

The boundary conditions mentioned can now be written in terms 

of the potential function as 

3 .1. 8 
s 

and the condition at infinity is 

3.1.9 

By specifying the conditions that exist at the body surface and 

at infinity, Eqn.(3.1.7) has an exact solution. Since there 

are no time-dependant terms in the equation the velocities on 

the body surface are those that would exist instantaneously as 

though the flow was well established and steady. 

3.1.2 Boundary Conditions and Pressure Calculations 

It is normally assumed, in rectilinear motion, that 

the flow over a moving body can be calculated by assuming the 

body to be stationary and moving the fluid. However, in 

curvilinear motion the flow must have a cross-flow static 

pressure gradient to sustain the motion. Vandrey (Ref.21) 

tackles the problem by putting the fluid at rest at infinity 
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and then moving the body itself. At any point the surface 

velocity is V~bs and the velocity due to the presence of 

singularities is Vo, giving a relative velocity 

Vre.l -= Vo - Vo.t,s - - - 3.1.10 

To satisfy the condition that there is no net flow through the 

body surface, i.e. the transpiration velocity is zero, then 

the normal components of the free-stream and the singularity 

velocities normal to the surface must be equal. Vandrey 

calculates the pressure coefficient by considering the full 

steady Bernouilli equation, as 

C t> ~ Ps - Pc,:) = 3.1.11 

½CU) I y(I)( 

If we assume uniform rectilinear flow then Eqn.(3.1.11) 

degenerates into the classic form of Bernouilli's equation 

Cp = .1 -
2 

I ~el\ .... 3.1.12 

\ YC%l \ L 

However, for curved flight the equation for the pressure 

coefficient is 
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3.1.13 

where Jl is the angular velocity, Rs the radius of rotation of 

a surface point, and R the radius of rotation of the reference 

position. The normal load at any point along the axis of the 

body can be found by integrating the pressure distribution 

around'the circumference. 

The method is applicable to ensembles of bodies moving relative 

to each other by specifying separate boundary conditions, but 

is restricted to the direct problem where the body surface is 

defined. The inverse problem of calculating a body shape by 

defining the pressure distribution is more difficult. 

3.2 Reduction of the Problem to an Integral Equation for the 

Source Density Distribution on the Body Surface 

3.2.1 General 

The basis of the method is to discretise a· continuous 

source distribution on some body by approximating the body 

using surface panels. An ~nknown source distribution is placed 

on surface of each panel. The normal velocities induced at the 

control points of the panels·are calculated and by applying a 

boundary condition that there is no component of velocity 

normal to the surface, the actual source distributions for the 

panels are determined. These can be used to calculate the 

tangential velocities at the control points and these in turn 
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used to determine the pressure. 

3.2.2 Setting up the linear equations 

For any body moving in some fluid the problem can be 

defined by Eqs.(3.1.7), (3.1.8) and (3.1.9). Consider, a unit 

point source located at a point q whose Cartesian coordinates 

are Xq,Yq,Zq, and a field point P located at X,Y,Z, see Fig.2, 

then the potential at P due to the source at q is 

~~= _1_ 
,(Pitt) 

f(.P, <t) : [ ( ,c_--Xci) l 4 (~ - ~'l,y 4 ( ,--zci yJ"l 
3.2.2.1 

Such a point source satisfies Egn.(3.1.7) and Eqn.(3.1.9) at 

all points except at q where the source is located. If a 

distribution,O'c.~), of such point sources is placed 
I 

over a 

surface area dS ,._ see Fig. 3, then the potential at field point 

P, due to the distribution on the whole surfaces, is 

3.2.2.2 

As shown in Fig.3. 

The general form of Oc~l is arbitrary satisfying two of the 

three equations for the direct problem of potential flow. It 

must also satisfy Eqn.(3.1.8), which gives a boundary condition 
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for the body surface. If the point under consideration lies on 

the body surface S, then the integration of Eqn.(3.2.2.2) for a 

continuous source density distribution on Swill cause the 

integrand to become singular. This is because the distance 

between C\ and Pis zero, causing the integration to become 

infinite. Though by careful analysis, see Kellog (Ref.29), it 

can be shown that the normal velocity induced at a point P, 

lying on the surface, is determined from the limiting process 

of approaching the surface, 

3.2.2.3 

Where O'(p} is the value of the source density distribution at 

P. The total normal perturbation velocity at P, together with 

the free-stream contribution must be equal to the prescribed 

normal velocity F. 

density 0c..f> becomes 

The integral equation for the source 

3.2.2.4 

The integrand is called the 'kernel' of the equation. 

Eqn.(3.2.2.4) satisfies the third condition as given by 

Eqn.(3.1.8) and is solely dependant on the geometry of the 

problem since the differentiation is carried out with respect 

to the outward normal vector. 
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3.3 Defining the Body Shape 

The body under consideration is prescribed by defining the 

coordinates for a set of points lying on the surface. The 

panels on which the unknown source distribution is to be placed 

are formed by joining the input points by straight-line 

segments, Fig.4. The surface elements formed by joining the 

points with straight-line segments must be of a small dimension 

to accurately approximate the given body shape. This reduces 

the problem of determining the continuous source density 

function CTt~) to that of determining a finite number of values 

(Jl, for each surface element, L To achieve satisfactory 

results, the set of points must form a closed shape, implying 

that the first and last points must lie on the x-axis, 

corresponding to the nose and the tail. For axisymmetric 

bodies the profile curve is input with the x-axis as the line 

of symmetry, so that only the half plane above the axis need be 
l 

defined by the coordinates. The circular panel formed by the 

straight-line segments is a frustum of a cone, Fig.5. A 

control point is chosen at which the normal velocity boundary 

condition is to be satisfied,· and is, for simplicity, the point 

lying midway between two body points. Hence the number of 

control points is one less than the number of points defining 

the body shape. 

It should be noted that the surface elements defining ·the body 

geometry are simply devices for effecting the numerical 

solution of the integral equation. The velocities obtained at 

these points are not the actual velocities that exist at the 
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x-coordinate of the input body. For a particular element the 

normal velocity will only be zero at the control point and 

non-zero at all other points on the element; that is the 

element 'leaks'. The computed flow has significance only at 

the control points themselves and at points off the body 

surface. 

The accuracy of the method is dependant on the 

distribution of the surface panels. Elements 

efficient 

should be 

concentrated in regions on the body where the flow is expected 

to vary rapidly, for example, near body discontinuities or 

where body curvature is high, near leading and trailing edges. 

In regions where the flow is varying smoothly less points are 

required, but most importantly, a small element must not be 

placed next to a large one. This has the effect of causing the 

accuracy of the small element to be that associated with the 

large element, due to the interaction of leakage affects. The 

size of the panels must vary smoothly over the body to obtain 

continuous velocity distributions. 

The unknown source density function on the body surface is 

taken to be a function of source-rings placed over the body. 

This is a natural choice for axisymmetric bodies, since the 

cross section itself is circular, and also the mathematics is 

greatly simplified. The source strength distribution 

associated with each surface element is assumed to be constant. 

The source-ring that is appropriate for use with axisymmetric 

flows gives rise to a potential and a velocity at a control 

point that can either be expressed in terms of complete 
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elliptic integrals or, obtained by numerically integrating 

around the source-ring. The second integration along the 

element length must be done numerically for each method. 

3.4 Matrices of Influence coefficients 

Having approximated the body surface with surface elements, 

these are then assumed to have associated source distributions 

, where denotes the element number. If there are N 

elements, let us consider the second element. The normal 

velocity induced at the control point of the second element is 

the summation of the effects of all source distributions on 

elements 1,3 ••• N, together with effect of second element at 

it's own control point. 

written as 

Using Eqn.(3.2.2.+) this can be 

~ .... 

3.4.1 

Each of the terms involving double integrals represents the 

effect of that particular surface element upon the control 

point of the second element. The terms on the right side of 

Eqn.(3.4.1), are the contributions of-the free-stream component 

normal to the body surface, -~1-'{m , and any other prescribed 

normal velocities that maybe present, F1 
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To solve for the source density distribution ,associated with 

each element, equations similar to Eqn.(3.4.1) can be written 

in matrix form 

-- .... 

3.4.2 

or 

3.4.3 

t=',2, ... N 

Eqn.(3.4.3) satisfies the normal flow boundary condition and 

the matrix Aij is called the matrix of influence coefficients 

for the normal velocity. Diagonal terms of the form Aii are 

usually of greater magnitude than off-diagonal terms since they 

represent the integration of the source distribution on element 
. 

l for the velocity induced at control point l • Eqn.(3.4.2) 

is a set of linear algebraic equations for the values of the 

source density on the surface panels and the desired 

approximation to the integral Eqn.(3.2.2.4). To obtain the 

entries for the terms Aij, the source strengths O:S are set to 

be of unit value. This is because the elements of Aij are only 

dependant on the body geometry, and are independant of the 

source distribution. and onset flow conditions. Matrix 
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inversion techniques can be applied to Eqn.(3.4.3) to determine 

the true values of the source distributions, 0) . To obtain 

the actual normal velocities, the entries of Aij are multiplied 

by the proper values of the source density CJj, as determined 

by the inversion. The velocity at any control point is made up 

of a normal component and a tangential component. The velocity 

vector, yij, due to the source distributions for any panel can 

be decomposed into these two components, 

3.4.4 

assuming CJ1 are the actual source distributions on each 

panel. The matrix Aij has already been defined, matrix Bij is 

similar to Aij but represents the influence coefficients for 

the tangential velocities. 

3.5 Influence Matrix for the Cross Flow 

A body immersed in a uniform stream at incidence can, 

within the assumptions of linear theory, be considered to 

experience the combination of axial flow together with a cross 

flow component in a direction perpendicular to the x-axis. For 

the case of axial flow, influence matrices Aij and Bij can be 

formed. It is reasonable to assume that for the cross flow 
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there must also be such matrices. For an axi-symmetric body in 

an onset flow parallel to the x-axis, the flow along the 

surface af any meridian plane at any angle 9 will be the same 

as in any other meridian plane. Thereby, the source strength 

at the surface will not vary with circumferential angle for any 

x-station. For uniform cross flow, consider a body surface 

source-ring formed in the y-z-plane, subject to a cross-flow 

\}00 • The total velocity due to the cross flow must be killed 

at 8 =180 degrees, pulled in at S =0 degrees, and the normal 

velocity must be unaffected at 9=90 and 270 degrees. To 

achieve this the source-ring density distribution must be 

proportional to the cosine of the circumferential angle, see 

Ref.1. The source density distribution can be written as 

3.5.1 

8 is measured positive as shown in (Fig. 9). Similar 

expressions can be arranged for this case as in the 

axisymmetric flow problem to obtain the tangential and normal 

velocity components. For the cross flow, there also exists a 

circumferential velocity component which does not contribute to 

the normal velocity calculation. The matrix 0q can be 

formed, corresponding to the circumferential velocity component 

at a point obtained by circumferentially rotating a control 

point onto the x-z-plane. For pure cross flow, a total of 

three influence matrices exist, one for the normal velocity, 

one for the tangential velocity, and one for the 
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circumferential velocity. 

The combination of the tangential velocity components for both 

the axial and cross flow cases enables the surface pressure 

coefficients at the control points to be calculated. 

3.6 Computation of the Pressure Coefficient 

Eqn.(3.4.3) allows the determination of the actual source 

density distribution for each surface element. The entries of 

matrii Bij are the tangential velocities induced by the 

elements at other control points. To obtain the actual 

tangential velocities these entries must be multiplied by the 

source densities 0-) as obtained from 

-t 

crj = lA~1l . l-~i :y_oo -\- rj 1 3.6.1 

• I j = , t, ... N 
(: ,, t, . .. tJ 

The tangential velocities are then determined by 

3.6.2 -
. - ' l - , 21 • •• N 

\t is the total velocity in a direction tangential to the 

profile curve and is measured positive in the increasing 

x-direction. Similarly for the uniform cross flow case the 

· tangential velocity is 
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N 

\:t.: = L Bztj (J.i,} -+ t, . Ve,, 
)•d 

3.6.3 

The subscript 2 for Eqn.(3.6.3) denotes the equivalence in the 

method used to determine the required quantities for both axial 

and cross flow. Assuming that the source density varies as the 

cosine of the circumferential angle, the tangential velocity at 

any circumferential location The 

circumferential component of velocity at a control point for 

the cross flow case, is obtained by circumferentially rotating 

a control point 90 degrees into the x-z-plane, 

3.6.4 

. ' N l : .. t., ... 

where J.: 
, 

is the unit vector parallel to the y-axis and VCX> is ---
the onset-flow velocity evaluated at the rotated location of 

the control point. 

other values of e 
Circumferential velocity components at 

are \;LS,r{e) . For the flow due to a 

uniform stream at incidence o( to the x-axis, the velocity 

component tangential to a meridian curve at a circumferential 

angle 9 is 

3.6.5 

and the circumferential velocity component is 
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3.6.6 

If the onset flow is assumed to have a unit magnitude, the 

surface pressure coefficient is 

3.6.7 

These formulae give velocity and pressure at any o{ and G in 

terms of the basic flow solutions. The quantity dC"' / dx.. is 

determined by integrating the pressure distribution around the 

body at a particular x-station, and d(M/d~ by taking the 

moment of aC.1v I d-x.. about the nose. 
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CHAPTER 4 

INTEGRATING THE KERNEL TO OBTAIN THE VELOCITIES 

AT A CONTROL POINT 

4.1 Velocity due to Axial Flow 

Source-rings are placed on the surface of each element, 

Fig.4, and the total velocity induced at a control point is the 

integration of the ring source distribution over the 

line-segment elements that approximate the profile curve of the 

body. Consider a unit source-ring located at x=b and of radius 

~, see Fig.6, then the potential at a control point P due to 

small element of Ieng.th d 'f , is given by 

¢ = r 
.11 

4.1.1 

The control point lies in the x-y-plane on the meridian 

surface, the distance t can be replaced by 

4.1.2 

~here 'f' is the circumferential angle around the source-ring 

measured from the positive y-axis. On differentiating the 

potential with respect to x and y, the corresponding velocity 
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components are 

\Ix -

4 .1. 3 

Elliptic integrals can be used to integrate the above 

expressions in the circumferential direction or, as in present 

method, the integration can be carried out numerically using 

the 'three-eights' rule. The source-ring is subdivided into 

NL points and the integrand determined at each of these 

points. The total velocity induced by a source-ring is the sum 

of the integrated values of Eqn.(4.1.3) 

-rr 
=- 20...J (A-b) .di 

() ' 
where is -ri /(Ne. -I) 

4.1.4 
. iT , J ( >\ : 2a.L [j- o. ~os(y,JJ .d 'f 

The second integral involves 

integrating the source-ring distribution along the length of 

the line-segment element, from xl,yl to x2,y2, Fig.7. The 

length is divided into N1.. points, and at each of these points 

the source-ring is integrated circumferentially. Hence, the 

total velocity at a control point is the sum of the numerical 

integration in the circumferential direction at each of the 

points along the surface element, 1,2 ... N1 , using the 
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'three-eights' rule. The resulting expression for the total 

velocity in the x-direction say, is 

4 .1. 5 

Where hl ~ ~S/(NA.-1) and l:::..S is the element length. For each 

new Ve.· l the 

determined using 

radius and location 

t\_ -::. "J , -+ s . '-> '" (~) 

b = -x , + S . (o ~ ( ~) 

of the source-ring is 

4.1.6 

where (-3 is the slope of the line-segment element, xl,yl are 

the coordinates of the beginning of the element, and 

denotes distance along the element length. The number of 

points, N1 , placed upon the line-segment is determined by the 

minimum of the two distances, see Fig.7, 

4.1.7 

Thus the further the po~nt in question is from the element, the 

fewer sub-elements are required in the calculation. The 

minimum number is three. 
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4.2 The Effect of an Element at it's own Control Point 

To calculate the terms Aii for the coefficient matrix, a 

refined procedure is adopted because Egn.(4.1.3) is singular 

when x=b, and y=a. On integrating along the line-segment L , 

to obtain the velocity at the control point ~i, the following 

method is used. See Hess and Smith (Ref.1, Section.4.2). The 

element is subdivided into three regions, Fig.8. The outer 

ends are treated as normal elements using the procedure 

outlined in Section.4.1, but the central section of length 

1d, has a series expression for the velocity components 

derived from the elliptic integration of Egn.(4.1.3), 

Vx.• == -S,n ¥( .4 J[ \ + J_ (o \~ [\:>4- 6.S,n~ + 6. ln(A, l + • .J 
ju I'll! ~},I 8.~0 J J j 

V ~ "- - 2 ./ ~ \ l S' ~ (?, + ln[d_ \ -_I { i \. h. C.O s 
1 f -2. c;, n" (!. 

\~~J \g~J ~s ,~oJ l 

+ 3J~~J1 + .... 1 
4.2.1 

The value of O is determined by the length of the panel A~ , 

and the distance, ~o, of the control point from the x-axis, 

O·O<o~\)(. ~5/2 
4.2.2 

Such a formulation allows d to be as small as possible to 

reduce the truncation errors in the series, and as large as 
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possible to reduce errors arising from the use of the numerical 

integration near a singularity. Finally, ·the limiting effect 

of approaching the singularity control point, as deduced by 

Kellog (Ref.29), induces a velocity normal to the element of 

magnitude 21f. The components are 

4.2.3 

The total velocity at a control point Pi is the sum of four 

contributions, the velocities given by Eqns.(4.1.3), (4.2.1), 

(4.2.3) and the contribution from the ends of the element on 

which the point under consideration lies. 

4.3 Velocities due to Cross Flow 

A source-density distribution that varies as the cosine of 

the circumferential angle produces a potential with a similar 

variation. Consider a source-ring (Fig.9) with strength 

(os( 'f), by introducing cylindrical coordinates R and 8, the 

potential at point P can be written, 

;r 

¢ = '20- f Cost 'f'J d t 
0 t 

and by a change of variable this becomes 

~ =- 2o... Co':> ( El )J ,r (os( y,) d 'f: 0.1'6 

Jo r 

4.3.1 

1.4. °!). 2 
(c.on ~) 
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'h 

t-., l 0t-\.,) t.-+ R 2 -+ 0: - 20... R <..os ( '/')] 
4.3.2 

(lt:f\~) 

The axial, radial and circumferential velocity components at 

the point (x,R, S) due to the source-ring are 

Vx = 20...(oc;.(g)f}-x.-b). Cos(.v,J/r3] .J Y, 

11' 

\) ~ =- lo... (c.,(e) 1 l (~ -o... Coe;.( 'I' ~.(oc;.('PJ/ r~J.d 'f 

\Je-= t S,n(ef' [ to<:.('l'J/r 1 d 'f 

4. 3. 3 

The terms in the integrand are independant of S . By replacing 

R by y, which becomes in a sense a radial direction, the 

factors cos ( e) and sin( (9) are ignored, but are used when 

considering the flow at a particular circumferential location. 

The velocity components become 

1f 

\Jx ~ 20...1 ( (x.-~)_(o<,(l/'J/r31 ·J'/' 
'ff 

v'J = lo_ t (l~-0-.Cns(ll')),c.c,s("1)/r1].dt 
1T 

Ve = lo.. ( ( LCs('f)/r 1. H 
~ Jo 

4.3.4 

To obtain the velocity for an element at it's own control 

point, similar expressions to Eqn.(4.2.1) and Eqn.(4.2.3) are 

derived and the series become 

... ,. !i.3.5 
( C..CY\ l:) 



The matrices Aij and Bij for axial flow, and the matrices 

4.3.5 

( (c:,n~) 

Aij, 

Bij and ij, for cross flow, can now be determined. The 

normal velocity condition is satisfied for both types of flow 

by assuming the oncoming free-stream to be uniform and of unit 

magnitude. 

4.4 Axisymmetric Bodies in Curvilinear Flow 

Having presented the theory for a body at incidence, this 

section develops the theory to calculate the flow around an 

axisymmetric body moving in curved flight at incidence and yaw, 

see Fig.10. 

From Ref.24, the body movement may be considered to be the 

superposition of the following elementary movements, 

I 

a) Translation in x-direction 

V , ' ' 
'X. : Jl. ~ . Cosol . (osf, 

I 

b) Translation in y-direction 
4.1..t.1.. 

c) Translation in z~direction 
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, 
d) Rotation about the x-axis 

n I 1 

JL ~ :. Jl.. C:_,-,n o( 

I 

e) Rotation about the y-axis 

I I 

Where o{ and f are shown in Fig .10. For the present method it 

is assumed that the body is stationary and the fluid is in 

motion, thus if the flow is at incidence o( and yaw ~ , 

(Fig.1), the flow equations can be written as, 

a) Fluid motion in x-direction 

b) Fluid motion in y-direction 

c) Fluid motion in z-direction 

d) Rotation about the z-axis 

Motion in the x-direction is simply a longitudinal flow 

problem, whilst the components of the flow in they- and 

z-directions can be treated as lateral flows. Hence the 

translations a), b), and c) are calculated using the previous 

analysis. 
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Using the principle that a body moving in a perfect fluid is 

analogous to a stationary body with the fluid moving around it, 

V~~ can- be determined. Taking the origin of the coordinate 

system at the centre of gravity of the body (Fig.11), a control 

point P will experience a velocity 

4.4.3 

This velocity is normal to the radial arm, OP. If the rotating 

arm is at an angle S to the body axis of symmetry, then the 

velocity components in the x- and y-directions are 

4.4.4 

The Eqn.(4.4.4) is applicable only to the left side of the body 

origin, on the right side, 

4.4.5 

The rotation about the z-axis is equivalent to body 

experiencing pure cross flow of magnitude J'l.~. 
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CHAPTER 5 

DISCUSSION AND RESULTS 

5.1 General 

The type of body which can be analysed by the present 

method must be closed and axisymmetric, such as ellipsoids and 

ogive cylinders. The present comparisons are made with 

experimental results (Ref.2_8) and numerical methods, SPARV 

(Ref.26), Albone (Ref.23), and Jones (Ref.27). The point 

distribution must be carefully chosen such that the regions 

which expect to generate the highest flow accelerations have 

the largest number of points. The following equation is used 

for all the cases to distribute points on the body nose, see 

Fig.12, 

5.1.1 

l = \ 2 . . . . no. 0
1 "'oesi.e ~~'"'' s . " r 

where ~ is a constant equal to 1/n. Rl is the length of the 

half body in the case of ellipsoids, and the nose length in the 

case of the nosed-cylinders. For ellipsoids the 

distribution is symmetric about the mid-section. 

point 

For the 

nosed-cylinders, the aft cylinder point distribution is chosen 

by intuition to achieve a gradual increase in panel ·length 

towards the trailing edge. To avoid a large panel being placed 

adjacent to a small panel, the first panel of the aft cylinder 
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is of the same length as the last panel on the nose. The 

closure for such bodies is usually similar to the nose shape or 

is an ellipsoid. 

All the results are obtained either on the VAX 11/750 or the 

VAX 11/782 macines. 

5.2 Axisymmetric Bodies With Varying Nose Shapes in Uniform 

Flow 

For comparison the Integral Equation method developed by 

Albone (Ref.23) is used for the various bodies shown in Fig.13. 

The disadvantage of the Albone technique is that only zero 

incidence cases can be compared, and SPARV has to be used for 

non-zero incidence flow. For the bodies in Fig.13, 80 

longitudinal panels with 18 circumferential integral points are 

used, and the total body length is 1. The results shown in 

Figs.14 to 16 are symmetric about the mid-section of the body 

because the closure is the same shape as the nose. 

5.3 Prolate Ellipsoid at Incidence 

The exact analytic method of Jones (Ref.27), can predict 

the flow around ellipsoids of various bluntness. A comparison 

with this method should show the accuracy of the present method 

for bodies with continuous slope and curvature at all 

incidences. The surface panel distribution for an ellipsoid of 

ratio 1:8 in uniform axial flow is determined by Eqn.(5.1.1), 

this clusters points around the leading edge and the maximum 
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thickness of the body. For such an extreme bluff case, the 

number of points required is large, of the order of 100, and 

requires more circumferential integration points, of the order 

of 30, to obtain accurate flow resolution. A slender ellipsoid 

of ratio 8:1 in uniform cross flow requires less points. The 

results obtained by the present method are compared with those 

obtained by Jones, Figs.17 to 18. 

Due to the linearity of Laplace's equation, the solution for 

various flow problems can be combined, in particular, the flow 

around a body at incidence in uniform flow can be obtained by 

the superposition of the axial flow and cross flow solutions. 

The results for the two cases may be combined to obtain the 

loads experienced by the body at incidence. Fig.19 shows the 

results for a prolate ellipsoid of ratio 100:15 at an angle of 

5 degrees, compared with those predicted by Jones. 

5.4 Effects of Panel Distribution 

To obtain accurate results, panels must be clustered in 

regions where the body curvature changes rapidly, and where 

large flow changes are expected. As in the case pf the 

ellipsoid cylinder (Fig.13), the panel density is increased at 

the leading edge and maximum thickness of the body. 

is not sufficient to 

characteristics, since the 

large panel adjacent 

accurately predict 

error associated with 

to a small panel 

This alone 

the flow 

placing a 

can produce 

inconsistencies in the results. Hence it is advisable to have 

a smooth variation of panel dimension along the whole length of 
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the body. Such a distribution is automatically produced by 

Egn.(5.1.1). If· the panel length is not varied smoothly the 

flow curve can be dramatically effected. This can be shown by 

changing the length of adjacent panels at a nose cylinder 

junction, Fig.20, for an cylinder having an elliptic shaped 

nose of fineness ratio 6:1. 

To investigate this behaviour more closely the hemisphere 

cylinder of Fig.13, is used as test case. The large panel is 

the first panel after the nose-cylinder junction, and the 

smaller panel is the last panel on the nose section. There is 

a gradual increase in panel length over the aft cylinder. The 

large panel is successively reduced in length until the 

pressure coefficient curve becomes smooth. It was concluded 

that the large panel must be no greater than approximately six 

times the small panel length. This observation varies for the 

type of body being considered, since a smoother body, such as a 

tangent-ogive cylinder, induces a less erratic behaviour at the 

nose-cylinder junction. The effect of the error due to the 

abnormal lengths of the two panels is smeared over three to 

four panel lengths. 

5.5 Comparison with SPARV 

SPARV is a widely used method which can be appl.ied to 2-D 

bodies, 3-D bodies, multiple bodies with wing systems, such as 

complete aircraft. The intention is to compare program run 

times, in terms of C.P.U., for the present method against those 

for SPARV, to validate using the source-ring method when 
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considering axisymmetric bodies. A cylinder with an elliptic 

nose of ratio 6:1 at 5 degrees incidence is compared using the 

two methods,Fig.21. 

The Source-Ring used 100 longitudinal panels and 30 integral 

points and SPARV used 80 longitudinally and 14 

circumferentially. These were such that sufficient convergence 

in the results had been achieved. On average the Source-Ring 

method has a saving of almost 45% in C.P.U. time over SPARV, 

and a considerable reduction in storage requirement. 

Although the present method is not as versatile as SPARV, in 

that it is unable to predict fully three-dimensional flow 

characteristics, it offers considerable advantages when 

determining the flow past axisymmetric bodies at incidence and 

yaw. 

5.6 Comparison with Experiment 

The method is compared for general accuracy against 

experimental results (Ref.28) using a tangent ogive cylinder, 

(Fig.13), at various incidences. The results, Figs.22 to 23, 

show that the method is accurate and agrees well with 

experimental observations. The results are not in exact 

agreement due to the development of a boundary layer and 

effects of separation in the real flow. The irregularities in 

the experimental results were due to local disturbances caused 

by surface discontinuities. 
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5.7 Prolate Ellipsoid in Curvilinear Flow 

The original theory presented by Hess and Smith has been 

extended to axisymmetric bodies moving in curvilinear motion at 

incidence and yaw. - The only case for comparison are the 

results obtained by Jones for ellipsoids. The method of 

superposition is used to treat curvilinear motion as the 

combination of flow problems (Section.4.4). The test case is 

an ellipsoid of ratio 4:1 at zero incidence and yaw, the 

theoretical results by Jones are in good agreement with the 

Source-Ring method, see Fig.24. 

To obtain the flow past an axisymmetric body in uniform flow 

and curvilinear flow, at incidence and yaw, the problems can be 

treated separately. The solutions are then 'added'. 

5.8 Effects of Varying Nose Bluffness 

In this section an axisymmetric body with a tangent-ogive 

nose is used as a test case to observe the variation of normal 

loading at incidence as the nose length is progressively 

reduced. 

Most bodies have a flat base, which if accurately modelled, 

would cause infinite flow accelerations around the corner where 

the body surface becomes· discontinuous. To prevent 

instabilities occurring in the program, the wake from the base 

flow is modelled by adding a closure to the body being tested. 

Due to the results being valid only for the initial 75% of the 
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body length, a conical closure is used for simplicity. For the 

examples considered in the present work, all the bodies are 

very slender, with the length of the trailing cylinder being 

almost three times the length of the nose. 

The ratios of body radius to nose length (the fineness ratio) 

used are 5/30, 5/20, 5/10. 5/5 and 5/3, the nose shape varying 

from an ogive to an oblate ellipse. Each body is placed at an 

incidence of 5 degrees, using 100 axial panels and 18 

circumferential integral points. The results are presented on 

Figs.25 to 28. 

As the bluntness is increased, or the nose length decreased, 

the point along the body at which the peak in dCn/dX occurs, 

moves progressively toward the nose, see Fig.25. Also, the 

region of the body which experiences load decreases with the 

trailing cylinder contributing little to the overall lift. It 

would appear that in the limit a flat cylinder, the nose length 

being zero, at incidence would produce a lift of infinite peak 

value acting over an very small region. 

Because dCm/dX varies directly with dCn/dX, the results for 

this quantity along the body length should be similar to 

Fig.26, but of differing magnitude, as shown on Fig.25. 

Fig.27, shows the variation of peak dCm/dX and total Cm, about 

·the nose point, with nose length. 

fineness ratio, would produce a 

obtained by extrapolating the 

A flat cylinder, of infinite 

finite moment which can be 

Cm/Nose length curve until it 
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intersects the vertical axis, point F. This implies that since 

the moment is non-zero, the flat cylinder is producing lift. 

From the results of en and Cm, the centre of pressure, X.c.p. 

(about the nose, X=O), can be calculated and it's variation 

with nose length observed, Fig.28. If the nose length is zero, 

the x.c.p. position is still positive, verifying the above 

results, -that there must be a moment acting at the nose due to 

the presence of lift produced by the aft cylinder, at 

incidence. 
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APPENDIX A 

DESCRIPTION OF THE SOURCE-RING PROGRAM 

A.1 Input of Flow Behaviour and Body Coordinates 

The body is approximated by a set of x,y coordinates lying 

on the profile.curve of the body. The set of points are input 
' 

in the increasing x-direction. Points should be concentrated 

in regions where large flow fluctuations are expected and 

sparsely in regions where they are not. These regions must be 

linked by a gradual change in point concentration if an 

accurate solution is to be obtained. The body coordinates, the 

body length, the maximum thickness of the body, and the moment 

reference center are input. Finally the flow properties are 

entered by specifying magnitude of the oncoming stream, and if 

there is curvilinear flow, the radius of curvature. The angles 

of attack and yaw are input when the coefficient of pressure 

calculating routine is called. 

A.2 Calculation of the Element Characteristics 

The four main element properties required for uniform axial 

and cross flow are, the coordinates of the ~ontrol point, 

assumed to lie midway along the element length, the angle of 

the element relative to the horizontal axis, the total length 

of the element, and the value d , required in the series 

approximation as the integration along the element length nears 

the element control point. These are calculated after the body 
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has been approximated by a set of points which are joined by 

straight line segments. 

For curvilinear flow, the angle of the radial arm, joining the 

moment reference center and each control point, with the 

horizontal axis is required, (Fig.11). These are used to 

determine the velocity at each element control point due to the 

body rotating about point o. 

The vectors on the right side of the equations in Section.3.6 

are required, these are usually components of the free-stream 

flow resolved into directions normal and tangential to the 

element. For curvilinear flow, the tangential velocity 

component is only due to the body rotation, there is no normal 

component. Hence the constant values of the element properties 

and the vectors required for the solution of the flow problem 

can be obtained. 

A.3 Velocity Induced by an Element at it's Control Point 

As discussed earlier in Section.4, the velocity induced by 

a element at it's own control point comprises three terms, a 

series solution about the control point, integration over a 

sub-element and the value 211" due to the limiting process of 

approaching the surface. The series is usually terminated 

after three terms. The integration over the sub-element is 

done by treating it as a separate element, inducing a velocity 

at the control point. There are two sub-element integrations, 

one for each 'end' of the element. The velocities due to each 
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term are summed and resolved into normal 

components, and stored in locations (i,i) of 

and 

the 

matrices. There exist five such matrices, 

tangential 

coefficient 

normal and 

tangential velocities for uniform 

tangential, and circumferential 

flow. 

axial flow, and normal, 

velocities for uniform cross 

A.4 Velocity Induced at Other Control Points 

The velocity induced at a control point due to a 

distribution of source rings on an element is calculated as 

described in Section.4. The element in question is split into 

a number of integration points which is a function of the 

distance between the control point and the nearest end of the 

element. The induced velocity involves a two phase 

integration, one circumferentially and the other longitudinally 

along the element length. The velocity induced by the j'th 

element at a control point on the i'th element is resolved into 

the normal and tangential components and stored in locations 

(i,j) of the coefficient matrices. 

The coefficient matrices for each flow are now fully calculated 

and the remaining problem of determiriing the source strength 

distribution on each element becomes trivial. 

A.5 Source Strength and Tangential Velocity Calculation 

The source strengths required on each panel are obtained by 

inverting the coefficient matrices containing the normal 
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velocity components, Eqn.(3.6.1), and multiplying by the normal 

vectors due to the free-stream. The inversion is done for each 

of the three flows, uniform axial flow, uniform cross flow and 

curvilinear flow. The NAG routine F04FAF, (Ref.30) 

automatically performs the inversion and multiplication, and 

outputs the source strength values for each element in vector 

form. The total tangential velocities for each flow are 

calculated by multiplying the source strength vectors by the 

coefficient matrices containing the tangential velocity 

components, and adding the free-stream tangential values, 

Eqns.(3.6.2), (3.6.3) and (3.6.4). 

A.6 Pressure and Load Calculations 

The values for the angles of incidence and yaw, together 

with the meridian angle at which the pressure distribution is 

required are input. The pressure and load distributions are 

determined as described in Section.3. The process can be 

repeated for any combination of incidence, yaw and meridian 

plane angle. If only the meridian angle is altered, the load 

distribution remains unchanged 
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CHAPTER 6 

INTRODUCTION TO COMPUTATIONAL FLUID 

DYNAMICS 

Transonic aerodynamics is the focus of strong interest at the 

present time because it is known to encompass one of the most 

efficient regimes of flight. Methods need to be developed to 

calculate such flows over two- and three-dimensional shapes 

thereby eliminating the need to rely on extensive, large scale 

wind-tunnel testing to produce rational designs. 

The mathematical difficulties of the problem are associated 

with the analysis of the mixed hyperbolic and elliptic type of 

equations, and the presence of flow discontinuities. The 

computational method should be capable of predicting the 

location and strength of shock waves, and in three~dimensional 

application, should be efficient and economical in it's use of 

the computer. In meeting these objectives the primary choices 

to be made concern first the most suitable formulation of the 

equations, second the construction of a favourable coordinate 

system and thirdly the development of a finite difference 

scheme which is stable, convergent and also capable of 

accomodating 

concerned with 

the 

the 

proper 

flow at 

discontinuities. Since we 

fairly low supercritical 

are 

mach 

numbers over efficient aerodynamic shapes, we may assume that 

the shock waves are quite weak. A strong shock wave would 

cause boundary layer separation and buffeting, invalidating the 
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analysis. The error in ignoring changes in entropy through 

shock waves, and the resulting vorticity should therefore be 

small, and we can expect to obtain a satisfactory approximation 

by using the transonic full potential equation for irrotational 

flow instead of the full Euler equations. In particular, for 

three-dimensional calculations, the replacement of five 

dependant variables (three velocity, pressure and energy), for 

the Euler equations, by a single velocity potential, in the 

full potential formulation, leads to important savings in 

machine time and memory. 

In the present work the conservative form of the full potential 

will be used in favour of a non-conservative approach, thereby 

ensuring at least one property, namely mass, is always 

conserved, even in the presence of any shocks that occur. In 

the conservation form of the full potential equation the scheme 

is usually made stable in the presence of shocks, by the use of 

artificial viscosity, which is introduced as a damping term. 

The strength of the shock determines the amount of damping that 

must be introduced, but at very high Mach numbers the scheme 

will become unstable. This is due to separation and the 

assumption of constant entropy no longer being valid. Having 

approximated the full potential equation in finite difference 

form, it must be satisfied at a certain number of points. A 

grid or mesh is set up encompassing the flow-field and the 

body. The choice of the type of grid to be used is dictated by 

the complexity of the configuration considered, although 

Cartesian meshes are favoured over conforming grids, the 

ability to satisfy the body boundary condition is more 
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difficult. In computational fluid dynamics the field of grid 

generation is vast and to cover it thoroughly would take a long 

time. It is sufficient to say that the two types of grid, 

conforming and Cartesian, and the advantages in adopting one 

over the other is dictated by the problem under consideration. 

As with panel methods, the position of the grid points 

determines the accuracy of the solution, and the speed of 

convergence ·of the algorithm. Grid points are located in 

regions where the changes in the flow are more pronounced and 

sparsely in regions where the accelerations are small. The 

discrete form of the full potential equation is solved at all 

the grid points, and if there are many such points, the 

iteration procedure can take a long time to arrive at a 

converged solution. To increase the rate of convergence an 

efficient algorithm must be used. Many such algorithms exist; 

at present the most efficient is the multi-grid method though 

close behind are the Approximate Factorisation (AF) schemes. 

The aim of the 

three-dimensional 

present method is 

finite difference 

to develop a full 

program that can predict 

transonic flow around single and multi-body configurations, and 

to compare the method for efficiency and accuracy with e~isting 

programs, such as SPARV (Ref.26) and the ARA transonic program, 

(Ref.31). The method is an extension of the work done by Wedan 

and South (Ref.2), which gave accurate results for 

two-dimensional and axi-symmetric shapes considering that the 

equations were only first-order accurate at the body surface. 

The field of Computational Fluid Dynamics (C.F.D.) covers a 

wide range of topics, the following sections will be introduced 
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by a brief historical review before the approaches adopted by 

the present method are discussed. 
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CHAPTER 7 

OVERVIEW OF THE SOLUTION OF THE FULL POTENTIAL EQUATION 

7.1 Finite Difference Formulation 

The first practical numerical technique for solving 

two-dimensional steady transonic flow was developed by Murman 

and Cole (Ref.32). The method used retarded differences in 

regions of supersonic flow encompassing a hyperbolic system and 

central differences in subsonic flow which mimics an elliptic 

system. To represent this domain dependance the equations were 

written using one sided differences. From this initial work 

two different schools of thought emerged as to the form the 

difference equations must take. They may either be 

conservative which ensures conservation of mass but not 

momentum, such as the present method, or non-conservative. It 

is accepted that the Euler equations provide an adequate model 

of the inviscid flow in which mass, momentum and energy are 

conserved, and it is usual to use the conservation form for 

their solution. The situation with the full potential equation 

is rather different, in this case the flow is required to be 

isentropic; an assumption that is not valid when shocks are 

present. It is then not possible to conserve both mass and 

momentum and the choice of adopting the conservation scheme has 

the appeal of being consistent in the sense that at least one 

property is always conserved. However this is still an 

incomplete model of the inviscid flow. It is therefore 

arguable whether a conservative scheme that conserves mass but 
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not momentum is necessarily better than a scheme that makes no 

attempt to conserve either. For the non-conservative scheme, 

mass continuity, in the vicinity of a shock, is ensured by the 

introduction of extra mass. This is due to the flow conditions 

on either side of the shock being different, resulting in flow 

deceleration. Baker (Ref.33) carried out transonic flow 

calculations using the non-conservative potential equation and 

the results obtained compared well with those of Holst 

(Ref.34), who used a conservative method. 

7.2 Grid Generation 

It has been discussed that there exist various techniques 

for solving the full potential equation, either in conservative 

or non-conservative form. Both types of equation require the 

solution of a discretised form which approximates the exact 

equation. This is then solved at a finite number of grid 

points. To get an accurate solution, the grid points must be 

properly distributed in the region disturbed by the body. This 

section will consider the ways a computational grid can be 

generated to contain the flow-field and the body about which 

the flow is being calculated. During the past decade the area 

of grid generation has received considerable 

good summary of this subject is given 

(Ref.35) and Thompson (Ref.44). 

attention and a 

by Carr and Forsey 

The full potential equation defining the flow field cannot be 

solved in closed form and requires an iterative solution. 

Hence, it is necessary to discretise the problem so that one 
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satisfies a numerical approximation to the partial differential 

equations at a finite number of points. The adequacy of the 

solution of this numerical analogue depends not only on the 

finite difference approximation, but also on the position of 

the points at which the equation is satisfied. This is because 

the solution depends not only on the potential at the specific 

point, but also on the effects of neighbouring points. The 

first and perhaps best known transonic code for solving the 

full potential equation is the aerofoil analysis program of 

Garbedian, Korn and Bauer (Ref.36) using a circle mapping 

method. 

It is usual to map an infinite physical plane around the body 

to a finite rectangular computing space. The advantages of 

this are that firstly the complete flow-field is mapped to a. 

finite space, and secondly the density of grid points can be 

made to vary smoothly. A sparse distribution of points is used 

at large distances from the body where flow accelerations can 

be expected to be small and a finer distribution on the body 

surface, particularly at the leading and trailing edges, where 

the flow changes more rapidly. 

Shearing transformations work well for slender pointed bodies 

(Fig.29), but for blunted bodies the slope at the nose becomes 

infinite and such methods are inapplicable. To overcome this 

difficulty, South and Jameson (Ref.37) used a combination of 

normal and shearing transformations. This produced a grid 

aligned with the body, but with grid lines normal to the body 

surface at the nose (Fig.30). Both the conformal mappings and 
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the shearing transformations can be 

stretched grids for aerofoils (Caughy 

nacelles (Jameson and Caughy (Ref.39)). 

combined to produce 

(Ref.38)) and for 

It has been assumed that the transformations produce grids 

aligned with the body surface, this requirement has been 

relaxed by Carlson (Ref.40) for solving the flow about 

aerofoils, and later by Rehner (Refs.41, 42, 43) for the 

nacelle problem. The grid is allowed to extend into the body 

and stretching functions are used to pack grid points where 

large flow accelerations are expected. Having decreased the 

problem of grid generation, the application of the flow 

tangency condition on the body surface is markedly more 

difficult than with conforming grids. In the non-aligned grid 

approach a grid point does not necessarily lie on the body 

surface and complicated difference formulae, involving several 

of the surrounding points, are used to determine the potential 

at the body boundary. The aligned-mesh methods have been 

extensively used for simple single body shapes and it is only 

for complicated shapes, such as double body configurations, 

that the non-aligned method is useful. 

Another method widely used is that of Thompson (Refs.44, 45) 

using a numerical generation technique. In it's simplest form 

this amounts to a numerical determination of the lines of 

equi-potential and equi-stream function for incompressible 

flow. This method can be applied to arbitrary shapes in both 

two- and three-dimensions. In it's original form this can be 

used for simple configurations such as wing-body problems, but 
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is too complex to use in more extreme cases such as when 

nacelles are included. 

Thompson's method has been extended to three-dimensional 

configurations, see Ref.46 and Ref.47, by separating the 

flow-field into blocks and applying a Thompson mapping for each 

block. This has it's disadvantages in that there is no logical 

way of·dividing the flow region into blocks and there is also 

the problem of treating the block interfaces. It is reasonable 

to expect that the distribution of grid points, in effect the 

coordinate stretching, can change abruptly on passing across 

such interfaces. Also at interface boundaries, the multi-block 

can generate a grid node where five rather than four grid lines 

meet. It is these difficulties that decided the use of the 

rectangular grid in the present work. 

Hence, it seems that the separation of the grid space into 

blocks using a Thompson mapping, together with a finite volume 

analysis, would be the most promising combination of techniques 

for complex three-dimensional geometry (Ref.48). Such mappings 

have allowed complex grids to be placed over whole aeroplane 

shapes with nacelles and pylons, (Ref.49). 

It is worth mentioning a Solution Adaptive Grid technique 

(SAG), developed by Holst and Brown (Ref.SO). Generally the 

SAG method used some aspect of the flow-field solution to 

re-cluster or redistribute grid points, to reduce the solution 

truncation error. Their work was primarily on aerofoils. The 

results showed an accuracy which was equivalent to the use of a 
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standard grid with two or three times as many grid points. The 

shock capture was much sharper, in that there was less 

smearing, because the redistribution of points was determined 

by the position of the shock. 

7.3 Introduction of Artificial Viscosity 

When the boundaries are prescribed, the non-existence of 

smooth transonic solutions of the potential equation requires 

consideration of weak solutions. The appropriate solution 

admits discontinuities across which mass is conserved but 

momentum is not, so that a drag force appears. If however, we 

do not impose a restriction on the type of jump~ to be allowed, 

corresponding to the entropy inequality, weak solutions of the 

potential equation are in general non-unique (Ref.51). The 

equation is invariant under reversal of the flow direction, so 

that a body with fore and aft symmetry, for example, admits 

both a solution with a compression shock, and a corresponding 

reversed flow solution with an expansion shock. To obtain 

uniqueness we must exclude discontinuous expansions. We ought, 

therefore, to restore in the numerical scheme the directional 

property which was removed by the exclusion of the entropy from 

the equation. This indicates the need to ensure that the 

dominant terms of the truncation error represent artificial 

viscosity. 

It was first shown by Murman and Cole (Ref.32), for the case of 

the small disturbance equations, where the flow is almost 

aligned with the x-axis, that the required artificial viscosity 



59 

can be introduced in an effective and simple manner by using 

upwind differences to represent derivatives in_the stream-wise 

direction at all points in the hyperbolic region. Moreover, 

when the dominant truncation error is included, the resulting 

finite difference formula res~mbles the viscous transonic 

equation which can admit solutions with the approximate 

structure of a shock wave. The difference equations exhibit 

similar behaviour and shock waves emerge in the course of the 

calculation as compression layers spread over a few mesh widths 

in which the artificial viscosity becomes the dominant term. 

In the case where the flow is not necessarily aligned with the 

x-axis, in the case of bodies having large diameters, the 

artificial viscosity can have a destabilising effect on the 

numerical scheme as well as imparting an incorrect zone of 

dependance to the finite difference equations. 

To overcome this limitation, Jameson (Refs.48, 52, 53) extended 

the use of upwind differencing, in the hyperbolic region, to 

the exact potential equation, for the non-conservative rotated 

difference and conservative schemes. The grids used were 

aligned with the aerofoil surface in order to accurately 

represent the surface flow tangency condition. In Jameson's 

work, an artificial viscosity term in the supersonic region is 

added to the governing equations implicitly via upwind 

differencing as in the rotated difference method, or explicitly 

as in the conservation scheme. The second feature is that the 

iterative procedure, based on line relaxation (see next 

section), is constructed such that, in the supersonic region 

the artificial time-dependant equation describing the 
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development of the solution through iteration is essentially 

hyperbolic with the flow direction (Ref.53), with the addition 

of the artificial viscosity, this equation becomes parabolic. 

Based on Von Neumann stability analysis, Jameson concluded that 

no damping term in the artificial time t (namely¢~) is 

allowed in the supersonic region; hence the relaxation factor 

is kept at one in supersonic flow and greater than one (and 

less than two) in the subsonic region. For stability 

augmentation, in particular near the sonic line, extra 

time-dependant terms ( c/isf) are sometimes needed and are added 

to the scheme. 

7.4 Solution Algorithm 

In this section the various schemes available for solving 

the discretised finite difference equation are mentioned. All 

methods first appeared as methods for solving the elliptic 

equations, the first method was called Successive Line Over 

Relaxation (SLOR) and was used by Murman and Cole (Ref.32). 

For many years SLOR has been the standard method for solving 

the non-linear equations in steady transonic flow problems, and 

although it is easy and reliable to use, it's convergence rate 

is slow, mainly because of the slowness with which information 

can be transmitted in the direction opposite to that in which 

the calculation proceeds, the transmission rate being one step 

length per iterative cycle (iteration). Several thousand 

iterations are often needed to obtain a converged solution, 

although there are ways of reducing this to several hundred 

iterations, for example, by adding a vortex flow in lifting 
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problems, to speed up the transmission of information to the 

far-field, or by performing a preliminary calculation on a 

coarse mesh. Each successive vertical grid line is updated 

(relaxed) in a single matrix inversion step requiring less time 

than solving point by point. The grid lines are relaxed by 

sweeping in the downwind direction. 

Other methods have been developed more recently. Rapid 

elliptic solvers were used by Martin and Lomax (Ref.54) to 

calculate subcritical and mildly super-critical flows. After 

linearising the flow equations by using the approximate 

solution obtained from the previous iteration the resulting 

linear equation is solved exactly over the complete flow-field. 

Although the method converges in much fewer iterations than 

SLOR, the computation time for each iteration is greater than 

other methods, and it becomes unstable when a region of 

super-critical flow is present. It is also limited to fairly 

simple computational domains, in particular, coordinate 

stretc~ing can be used in only one of the two directions. 

Horizontal Line Over Relaxation can also be used and was 

attempted by Wedan and South (Ref.2), but was found to be no 

better than SLOR. The Alternate Direction Implicit (ADI) or 

the Approximate Factorisation (AF) schemes were originally 

developed for equations of parabolic and elliptic type. Their 

use was extended to transonic flow problems by Ballhaus and 

Steger (Ref.55) who used these techniques to remove the time 

step limitation in a relaxation solution of the unsteady 

Transonic Small Perturbation equation (TSP). The extension to 
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steady TSP came quickly, and Ballhaus, 

(Ref.56) proposed two factorisations, AFl 

solving the exact potential equation. 

applied a variation of AF2 to the full 

Baker (Ref.SB) also applied both AFl 

Jameson and Albert 

and AF2, aimed at 

Holst (Ref.57) has 

potential equation. 

and AF2 to the full 

potential equation, and using a circle plane mapping, 

introduced a further factorisation, AF3, which was found to be 

faster than the other two, although the reason for this was not 

at the time evident. Other workers have had mixed success with 

AF schemes, sometimes finding particular schemes to be fast in 

particular domains and sometimes finding them disappointing, 

for example on stretched Cartesian meshes, with optimal sets of 

acceleration parameters difficult to determine (Refs.57,59). 

Another fast iterative method which is currently receiving 

great interest, is the multi-grid method originally proposed by 

Federenko (Ref.60), and developed further by Brandt (Ref.61) to 

be applicable to a variety of flow problems. This method has 

been applied to the transonic flow problem by South and Brandt 

(Ref.62) and by Jameson (Ref.63). In this method, a· 

calculation is perfo:med over a range of successively coarser 

grids, then over successively finer grids. It is easy to see 

how information can be spread rapidly over the whole flow-field 

by the use of coarser meshes, whilst the finer meshes are used 

for the local flow details. Put another way, if one imagines 

the error to be made up of Fourier components, see Ref.67, then 

the coarser meshes are used to reduce the low frequency error 

(global discrepancies) while the finer meshes reduce the high 

frequency errors (localised deviations from the converged 
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solution). Transfer of data from coarse to fine mesh is 

achieved by interpolation. After carrying out a small number 

of fine grid iterations, the high frequency modes will be much 

reduced, although the low frequency end of the error spectrum 

will be largely unaffected. If we now go to the coarser grid 

with half the number of grid points the opposite occurs. We 

thus see that on each grid the iterative cycle is used as a 

routine for reducing or smoothing out the error modes at both 

extremes of the frequency band. The sequence of smoothing 

operations aimed at covering the entire spectrum can be 

compared with the cycle of acceleration parameters used in AF 

schemes. The goal is the same but the multi-grid method is 

more efficient due to the coarse grid iteration taking less 

·time than fine grid iteration. The main disadvantage is the 

organisational complexity of the computer code. 

For a more complete review of the C.F.D. to present see Kutler 

(Ref.64). 

7.5 The Non-Conservative Scheme 

Before the method presented by Wedan and South (Ref.2) was 

undertaken, the author attempted to program the 

non-conservative, non-aligned mesh approach adopted by Carlson 

(Ref.40). The method is second-order accurate though much more 

complex than that used in Ref.2. It was found that the method 

forced the iterative scheme to march around the body and not 

through the whole grid. This implied that the mesh above the 

body-axis and that below had to be updated separately. In 
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addition complex difference formulae had to be used to satisfy 

the body boundary condition. Each vertical grid line which 

intersected the body had to be updated twice. Firstly, to get 

an accurate value of ~ for the point inside the body 

boundary, and secondly, using this value to update the same 

vertical grid line for a more accurate solution. The overall 

method proved to be slow and cumbersome due to the above 

complexities ~nd the use of SLOR as an iterative solution 

scheme. The solution required hundreds of iteration steps to 

converge for blunt bodies, such as ellipsoids and an even 

greater number for a sphere. This led the author to favour the 

Finite Volume method discussed in Ref.2. 



65 

CHAPTER 8 

SPATIAL DIFFERENCING OF THE FULL POTENTIAL EQUATION IN 

CONSERVATION FORM 

8.1 Formulation of the Equations 

In the isentropic flow of a perfect gas the equation of 

state 

8.1.1 

is assumed to hold, where f is the pressure, ~ is the 

density and o is the ratio of specific heats. If the density 

is normalized by the value unity at infinity and M00 is the 

Mach number at infinity, the speed of sound 0.. is given by 

8.1.2 

The equation of mass conservation in a steady flow can be 

written in the following divergence form 

8.1.3 
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C\ being the velocity vector. We assume the existence of a -
velocity potential f so that the velocity can be represented 

as 

8.1.4 

Since the flow has been assumed irrotational and isentropic 

(these conditions are necessary for the existence of a 

potential function) we can integrate the momentum equation to 

obtain Bernouilli's equation 

r -
"l 

Q - 8.1.5 

z }'-1 

After normalising the velocities and speed of sound by the 

free-stream velocity, the governing Eqn.(8.1.3), may be 

expressed in non-dimensional form 

8.1.6 

Since the flow is isentropic, the non-dimensional density ~ 

can be written uniquely in terms of the velocity 



and the speed of sound becomes 

¥-' 
2. 
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8 .1. 7 

8.1.8 

The pressure coefficient at any point in the flow field is 

given by 

= 1 8.1.9 

In a Cartesian coordinate system the 'full potential equation' 

for two-dimensional flow becomes 

8.1.10 

Applying the divergence theorem to the integral form of the 

governing Eqn.(8.1.6), and integrating over an arbitrary volume 

V, gives 

8.1.11 
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where Sis the surface enclosing V and Eis the unit outward 

normal on s. Eqn.(8.1.11) thus gives the continuity equation 

expressed in surface flux form; The numerical solution of this 

equation is discussed in the following sections. 

\ 

8.2 Differencing Operators 

With the assumption of irrotationality, a non-dimensional 

perturbation potential ¢ may be introduced, and the 

velocities expressed as discrete derivatives of this function. 

Consider a uniform grid with increment ~X between grid lines 

in the x-direction and~~ in they-direction. The continuous 

function <l(-x.,'J) can be approximated at a number of grid points 

i,j in such a 

approximate the 

way that 

continuous 

the discrete solution 

potential r/Jex,'J) as the 

will 

grid 

increments ~~ and ~'--j tend to zero. The continuous potential 

at a point i can be expanded as a Taylor series 

~l+r = t:,.-/ -· 
rl '' y.; i.. + .... 

2. 
,, 

+ ~-x.1. c}i 
~ 

Assuming the velocity can be expressed as 

\T x.. =· {)¢ 
+ Uco 

a-x- I 

\Jj - <J~ + VCJ:l -a~ 

8.2.1 

8.2.2 
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then a second order backward difference formula for the 

velocity in the x-direction is 

with similar expressions for the 

Similarly a forward difference becomes 

y- and 

In practice a stretching function, discussed 

8.2.3 

z-directions. 

8.2.4 

later, is 

introduced to map the infinite physical domain, see Figs.31a 

and 32a, into a finite computational interval (-1,1), (Figs.3lb 

and 32b). Equal intervals /lx and /JY are then taken in the 

computation space to define a grid that is non-uniform in the 

physical space. 

formulae become 

Under this transformation the difference 

x~~60. X~: U/ dx. 

u-?(.. ~ XJl\,, , ~L- ii.-1 + lltt:i 
,- '1... AX 

\.T "- - )("l.. L:+•~. ~i.-+I -¢.: + Utt:i 
~x. 

I 

This notation will be used in 

conservation equation. 

approximating 

8.2.5 

the mass 
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8.3 Finite Difference Formulation 

To discretise the mass conservation equation, Eqn.(8.1.11), 

for numerical solution, the computational domain is sub-divided 

with constant rectangular 'cells' with faces Sl,S2,S3,S4,S5, 

and S6 as shown in Fig.33. At each point i,j,k lying inside 

the computational cell the mass flow Egn.(8.1.11), is 

satisfied. Since the cell sides are parallel to the x-, y- and 

z-axis, Eqn.(8.1.11) may be rewritten as 

j(pu)dS2 - j(pU)dS, + j(puJ)dS4-jpw)JS3 
Sz s, S4 s~ 

+ j(p\J)dSb - j(pv) dS5 =0 
S~ Sc; 

8.3.1 

where velocities u,v and w are non-dimensionalised by the 

free-stream velocity. Eqn.(8.3.1) simply states that the mass 

flow into the cell is balanced by the mass flow out, ensuring 

mass conservation. If average values of the flux quantites at 

the cell faces are taken, then Eqn.(8.3.1) is simply 

(pus)
2 
-(pus), + (pvs\, - cpv-~5 8.3.2 

-r · (puJ5)
4 

- (pws\ o 

The mass flowing into a cell in any of the three directions, 

x, y or z, is measured by the mass flowing across a face, lying 
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normal to that direction. The values of eu., e\.i, and eus are 

now the averaged values lying on the cell sides and not the 

cell centre. The finite difference equations for the velocity 

components, Eqn.(8.2.5), can be rewritten as 

where 

u...-:.. x"'. r/J-:,._ + 

u- ~ Y'.1.¢'~ 4 

w :. 7..z.fP, + 

, y'J = J 'I 
c\~ 

t~sc,(. Co~ ~ 

c;,no{ 
8.3.3a 

(oso{ . S,n f-, 

8.3.3b 

introducing free-stream incidence o( and yaw (3 ( Fig .1), in 

the computational coordinate system. Eqn.(8.3.2) then becomes 

l ~-('I.,.._. ~Y.-+ (oso( .tos r). sl -[ c.(x.,__4 'I..+ (c~o<. (o\ ~). s] , 

t le- ( y'J. {,by + s,Y\o<). SL -t e-(Y~.1/y-t C-,,\no('). ~],. 8. 3. 4 

The densities at the cell sides are computed by averaging the 

cell-centred values. If Eqn.(8.3.4) is written U$ing 

difference operators, then it becomes 
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This is again second-order accurate for constant cell side. 

The density at the cell center is computed from the potential 

using the isentropic 

cell-centered velocity is 

relation, Eqn . ( 8 • 1. 7 ) , where 

with 

2. 
U. .. 

'J\<. 

l. 
-\- U-l .. 

}l< 

U.(i\<. =. X-•\· o-s -[ b; + ~ 1-'Pij\{ + Coso<.(eis \3 

\JA \<! -==- Y~ \j • 0 ·5 • [ b 'f + ~ ]. <,6 q,,. + S\n o<'. 

W'"(j1< :,. 22.L. o-s:[~ -l- fi 1-fP<jK t ( .. Mel.. s,n~ 

the 

8.3.6 

8.3.7 

The flow equation has been formulated for all grid points in 

the flow, and as yet no body has been placed in the 

computational space. 

8.4 Far Field Boundary Conditions 

The grid stretching routine maps boundaries at infinity to 

a finite distance in the computational space. This domain 

extends from -1 to +1 in all directions and is rectangular. At 

infinity the perturbation potential is zero and free-stream 
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conditions exist, i.e. a Dirichlet boundary. The computation 

proceeds from 2 to L, 2 to M, and 2 to Nin the x-, y-, and 

z-directions, where L, M and N denote the number of grid 

intervals in each direction, see Fig.34. All points 

(1,j, \{),( l~l,),k) 

( ( 1, I<), (i. I ~ 4 \, k) 

(i, j I 1) , ( l, j , N + i) 

J. ~, 2 ... M4\ ~=-' l ... N41 
I ,I I I .I 

t": 'I t, ... L ~ ' , ~ ~ ', 2, .... N +, 
t"~',,t., ... L-\-\ 1 j ~ ,, 2,._ .• M+l 

lying on the dummy boundaries have a perturbation potential 

value of zero. 

velocity is zero. 

This implies that the total perturbation 

8.5 Body Specification 

Most methods for solving the full potential equation use 

body conforming grids and satisfying the body boundary 

condition is fairly simple, due to grid points lying on the 

body surface, (Fig.35). Methods that use non-aligned grids 

experience difficulty at the body surface. To obtain an 

accurate solution for such methods, all grid points are updated 

by sweeping around the body and grid points lying inside the 

body are neglected. This introduces more computational 

complexity, furthermore, the potential at point P, lying just 

inside the body, (Fig.35b), is required to enable all other 

points on the same vertical grid line to be updated, see 

Carlson (Ref.40). This point is usually updated by satisfying 

the condition that the flow must be tangential to the body 

surface and complex difference formulae are introduced, using a 

collection of surrounding points lying outside the body. This 
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implies that the four quadrants of a circle, say, require four 

difference formulae for update of the internal points. The 

present method overcomes this difficulty by a simple treatment 

of the surface boundary, and is in an integral sense exact. 

Consider a cell cut by the body surface as shown in Fig.36, at 

which the boundary condition of no flow normal to to the 

surface, 9,. n :.0, is to be applied. Since this requires that 
'" " 

there be no flow through surface S5, The corresponding mass 

flow Eqn.(8.3.2), can be written 

8.5.1 

Eqn.(8.5.1) is equivalent to Eqn.(8.3.2) if 

8.5.2 

Hence, the body boundary condition is easily implemented by 

redefining the face areas of the computational cell. For all 

cells lying completely outside the body boundary, the cell side 

areas are of unit value, those lying completely inside have a 

value of zero, and those cut by the surface are recalculated. 

In three-dimensions, this area calculation is achieved by 

approximating the body surface by straight lines, (Fig.36). 

The type of cell face and the calculation of it's area is 

discussed in Appendix.Al. 
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There is an added advantage in using this formulation for the 

body boundary condition. For cells lying inside and outside, 

the intermediate cell cut by the body surface effectively 

decouples the mass flow equation predicting the potentials on 

either side of the boundary. For a closed body this leads to 

regions interior and exterior to the body which are decoupled 

through existence of zero-flux surfaces. As a result the 

finite difference Eqn.(8.3.5) requires no further structuring 

and the solution algorithm can effectively sweep through the 

whole grid in complete neglect of the presence of the body. 

The solution of the internal region gives zero flux everywhere, 

except for a point lying inside the body boundary, since there 

is no flux into or out of this region. 

8.6 Effects of Decoupling 

Decoupling allows the iteration procedure to proceed, 

unaltered through the body. Although this greatly simplifies 

the algorithm, the values of the velocity obtained by the 

differencing of the potentials on either side of the zero cell 

area may be erroneous due to the decoupling effect. To prevent 

this, the velocity is written in terms of switching functions 

which guarantee that at a point i,j,k, the velocity will be 

calculated as either a completely backward or completely 

forward difference in the presence of zero cell face areas. 

When a cell has one or more zero cell face areas, an inaccurate 

cell-centered density may be computed since the density is 

obtained from the average of the velocities at the cell faces. 
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To correct this, a weighting function, in addition to the 

switching function, is introduced which shifts the evaluation 

of the cell-centered velocity components towards the values at 

the non-zero areas. Consider the x-direction 

( w~ L~''i. + w J( L:-•~) 11x. 
+ C.oc;o(. (a~ f-, 

\JJ~ is the weight. 

8.6.1 

If either of the weights are zero then the velocity calculation 

shifts towards the non-zero value. If both the weights are 

zero, the cell effectively lies within the body and the 

velocity becomes zero. This eliminates the possibility of the 

density in a supersonic body cell being biased toward an 

unrelated value across a zero cell face area. 

8.7 Pressure Distribution Calculation 

Computational methods solving the full potential equation 

solve a discretised form at a finite number of grid points. At 

these points the potential value, ¢ , is known and stored. 

This enables all flow quantities of interest, such as velocity 

components, pressure, and Mach number to be calculated. The 

quantity of most interest is the pressure distribution upon the 

surface of the body, from which the load acting on the body can 

be determined. The pressure distribution can be calculated 

wherever grid lines intersect the body surface. The potential 
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at the body surface is obtained by extrapolating the values 

along the vertical grid lines onto the surface. The NAG 

routine EOlAAF is used, (Ref.30). 

Consider points I-1, I, I+l where the vertical grid lines meet 

the body surface, (Fig.37). The points are separated by body 

distances S1 and S2, then the tangential component of velocity 

at the point I, is given as the derivative of the potential 

where Vt~ is the free-stream tangential component. 

the potential in finite difference form, then 

¢ i.+ I -:: ~ i. "\- ~ 2. cp / -t S, : . rp :• + . . . 
2 

qi<- I : 'P' - c; I 4: -t ~ . <p l'./ 
z 

8.7.1 

Expressing 

8.7.2 

Using the above equations, the tangential velocity becomes 

1 
8.7.3 

This form is second order accurate. Eqn.(8.7.3) has to be 

modified when the I'th point is the first or the last point on 

the body surface. Referring to (Fig.37), to calculate the 

velocity at points T1' and l.l, the potential at points A and 

Bis required. These points do not lie on vertical grid lines 
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and so the horizontal line J is used. Field potential values 

on this line are extrapolated onto the nose and tail to be used 

in Egn.(8.7.3). We still need to obtain the free-stream 

component of the tangential velocity V~!.• If the free-stream 

velocity vector of magnitude, '\, , is at an angle o( to the 

horizontal, and the body slope at point I is 

tangential free-stream component is 

= 

then the 

8.7.4 

This involves knowing the body slope, explicitly, at all body 

points. Hence the total tangential velocity is 

+ 8.7.5 

Since, by definition the normal component of velocity at the 

surface is zero then only the tangential component is 

considered and the pressure coefficient at these points can be 

determined from Egn(8.1.9). 
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CHAPTER 9 

GRID GENERATION AND COORDINATE STRETCHING 

9.0 General 

All methods available for solving the full potential 

equation 

a grid. 

in discretised form require the generation and use of 

Two types of grid are normally used, those that 

conform to the body shape, and those that are rectangular and 

non-conforming, each have their disadvantages and advantages. 

Both require some form of mapping to translate the stretched 

physical grid to a uniform computational grid with constant 

spacing between grid lines in each of the X-, Y-, and 

Z-directions. For the present method, a rectangular grid is 

used which generates grid points in regions where the flow 

behaviour is changing rapidly, this is done by the use of 

stretching algorithms. The body is placed in the physical grid 

with the required concentration of grid lines in the relevant 

flow regions. Under the stretching transformations the whole 

grid space including the body is stretched such that the 

distance between grid lines, in the computational space, is 

constant. For simple body shapes, such as ellipsoids and 

regular missile bodies, this type of rectangular grid is 

sufficient and there has been no need implement complex 

algorithms to generate grids which follow the shape of the 

body. 

The rectangular grids can easily be extended to three 
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dimensions and the stretching functions do not have to be 

drastically altered in the presence of more complex 

configurations, such as two bodies. If conforming grids had 

been used, routines for generating the grid would have to be 

changed for each different configuration of body or bodies. On 

the other hand, the calculation of the cell face areas required 

for the solution of the finite volume method would be greatly 

simplified, since the cells would be of two types, those that 

lie completely inside the body boundary and those that lie 

completeiy outside. The body boundary condition is easy to 

satisfy for each method without the need to use complicated 

difference formulae to update points lying on either side of 

the body boundary. Although conforming grids produce more 

accurate results, in the present research it is found to be 

less complicated in terms of compter code, to generate a 

rectangular non-conforming grid. The present stretching 

algorithms are used from.Ref.66. 

9.1 Stretching Algorithm 

In the present work a Cartesian mesh is used, if no 

stretching function is present the results can prove to be in 

error and the speed of convergence of the solution can be very 

slow. This is due to the slow rate at which the flow 

information can be transmitted throughout the whole grid. 

Stretching functions are used to place points in the mesh and 

on the body such that these disadvantages are reduced. The 

functions are required to map the infinite physical domain to a 

finite computational space. One of the most useful stretching 
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functions is the tangent function, this can be made to produce 

an infinite value for -:C. when ~ =90 degrees say, 

9 .1.1 

If ~ is replaced by 1T. i/2. , the physical plane coordinates 

X, are mapped to computational plane coordinates X, 

9.1.2 

The above equation implies that when)(_:±, then A= CO , or 

'X.=-CO, this stretching can be further adapted to cluster points 

in particular regions of the flow, for example near leading and 

trailing edges. Consider the function 

This has the following advantages 

a) it tends to a constant value as 'X. -> ~c:o, 

b) for large abs(X.), it forces ~ to behave 

manner to ¢ , so that r/>x.. is well behaved near 

9.1.3 

in a similar 

, 

c) it allows easy control of the nature of the stretching; 

~: b is the position at which the stretching is centred, the 

product O...t controls it's strength, and the quotient 

controls it's extent of influence (the speed at which it tends 

to a constant). 
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The form used in the single body case for the x-direction is 

taken from Ref.66, 

X = (1. l 0..1>. bu~'\. Co t")l--x-i)1 + Cl1. lo.~' l c., (?c.--x.~ )] 

4 O..i. \ ~-x.&.). lo.~
1 l c..(-x.-~ l~ - (,<.--X.1:). ~~~ l C..(?l-X~~ 

+ J_ i."' l \-+ l ~ (-x- X.\-)t 111 
l(_ \ •t(. L. (2'..-'X.J.f J 

where 

9 .1. 4 

9 .1. 5 

~k is the leading edge and A.l: is the trailing edge. The 

first two arctangents in Eqn.(9.1~4) are centred near the 

leading and trailing edges of the shape; 

'Xl: -0•5 
9.1.6 

The leading edge is chosen to be near to X=0-5 , but such 

that it lies midway (in the computational plane) between two 

grid points. It should be noted that the solution is not 

sensitive to the precise positioning of the leading edge, but 

numerical stability (and hence speed of convergence) in the 

vicinity of the leading edge may occasionally be enhanced 

through control of it's position. The remaining three terms 

control the density of grid lines between the leading and 
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trailing edges. Without these terms there would be a high 

concentration of grid lines at either location ( ( 0 or C, 

large) and very little between. To alleviate this more 

arctangents could be used to pull grid lines away from the 

leading and trailing edges requiring high C.. values. Again 

this would lead to regions around the point at which they were 

placed c~ntaining a high concentration and more arctangent 

terms would be required to alleviate this. The solution is to 

have a constant distribution of arctangents at all points 

between 'Xi and X~, with equal strength, ~ , and equal but 

vanishingly small weight 0..; this process yields a fairly 

linear behaviour of the stretching function t(-x.) between 

~-= Xl and ~: 'X..~ • Values for some parameters in Eqn. ( 9 .1. 4), 

which have given good grid-line distributions in all the cases 

attempted are, see Figs.31a, and 31b, 

9.1.7 

It now remains to determine values for the parameters ¼ and 

(, in the first two arctangents. The areas in which high 

concentrations of grid lines are needed are leading and· 

trailing edges where the surface curvature can be high, causing 

the flow to change direction abruptly. It therefore seems 

logical that the spacing in these regions be made proportional 

to the radius of curvature of the leading and trailing edges. 

The parameters Co and C., are chosen such that 

9.1.8 
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where 

9 .1. 9 

and eL is the radius of curvature of the body at the leading 

and trailing edges. This results in three regions which have 

differing grid line concentrations, Fig.38, and the density of 

grid lines varies smoothly between each region. In this case 

the stretching is symmetrical about :X.=0. Regions II have a 

high concentration of grid lines whilst I and III are more 

sparse. For a missile shaped body such as an ogive nosed 

cylinder, the stretching produces six different regions 

(Fig.39). Again the result is a high concentration of grid 

lines around the nose and tail. Such a stretching is achieved 

in two steps. Firstly, the stretching for the nose is produced 

by using a body having an aft section which is a mirror image 

of the nose. This results in regions I, II and III. Secondly, 

the stretching for the aft section of the missile is produced 

by using a body having a nose which is the mirror image of the 

original missile tail section. This results in regions IV, V 

and VI. 

The stretching for they- and z-direction are both the same for 

single body configurations. The function used in the present 

method is again taken from Ref.66, 

.... Q.\.\O 
((09'~) 



where 

2 

and 

9.1.10 
( C.t1"'~) 

9.1.11 

9.1.12 

Here, one arctangent, usually the strongest, is centred at 

Z::~ , with the other two at z~-r and z~ r where r is the 

maximum radius of the body. The values chosen are 

9.1.13 

Parameters (h and 0.\ are chosen such that °'z. ➔ Cl\ = I and 

Z: O when '%,;0 ; (o is chosen such that 

9.1.14 

These choices are for similar reasons as the x-stretching. For 

a double body configuration, Fig.40, the only stretching that 

has been changed is they-direction. The assumption that the 

bodies are of a high fineness ratio dictated that a simple 
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stretching of the arctangent form should be used. For the 

region bounded by Band+ oO, and the region bounded by A and 

- oO , the function used is 

The parameter 

the axis of 

9.1.15 

0. controls the concentration of grid lines near 

symmetry of each body. For the region lying 

between the lines A and B, a simple stretching of the following 

form is used 

9.1.16 

the parameter h is a user defined constant usually close to 

1. For a high flow resolution a large number of grid lines are 

required in this region when the bodies are close together. As 

the distance AB is increased, the parameter n should be made 

larger, thereby placing more points near the axis of the body 

and less in the region between the two body surfaces, see 

Figs.32a and 32b. 

For a two-body configuration with stagger, the stretching for 

all directions is unaltered. 
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CHAPTER 10 

INTRODUCTION OF ARTIFICIAL COMPRESSIBILITY IN TRANSONIC 

REGIONS 

10.0 General 

In transonic flows the introduction of some form of 

artificial viscosity (either implicitly or explicitly) is 

necessary in order to stabilise a shock-capturing numerical 

method. In the present work the scheme is made stable by the 

explicit introduction of an artificial viscosity. In subsonic 

regions there is no need for the introduction of artificial 

viscosity and an elliptic system of equations applies. In the 

supersonic regions, where a hyperbolic system of equations 

applies, upwind differences must be taken in order to correctly 

model the physics of the flow. Since no disturbance can 

propagate in a direction opposite to the flow, the solution at 

a particular station depends only on up-stream (or upwind) 

conditions, (Fig.41). Hence, a switching term is be used which 

introduces artificial viscosity in the supersonic regions. By 

using a particular solution algorithm the whole grid can be 

updated using central difference formulae. In the present 

work, the artificial viscosity is introduced by modifying the 

density. On expanding the factors in the AF2 scheme (see 

Chapter.11), a term of the form </> x.~ is automatically 

generated. This extra term is dependant on time, and as the 

solution converges it tends to zero, so that at convergence, 
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the original flow equation is satisfied as closely as posible. 

10.1 Evolution of Supersonic Regions 

Eqn.(8.3.4), is a suitable· finite difference scheme for 

subsonic flow. However, for supersonic regions a properly 

chosen artificial damping term must be added to prevent 

physically unrealistic expansions occurring. For Cartesian 

coordinate systems, to ensure that the shocks that occur are of 

the correct form, Jameson (Ref.53), adds the following 

artificial viscosity term explicitly to the non-conservative 

form of the full potential equation, 

where 

This is analogous to the switching 

mixed-difference procedure (Ref.65), 

retarding the density by an amount 

where 

used 

and is 

in 

10.1.1 

10.1.2 

the Murman 

equivalent to 

10.1.3 
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~ = MA'A l O' ( \ l¼J) 1 10.1.4 

For flows containing strong shocks, oscillations in the 

solution can appear ahead of the shock. These arise because of 

insufficient artificial viscosity and can quickly lead to 

numerical instability. To damp down the pre-shock 

oscillations, the amount of artificial viscosity can be 

increased by using a different definition of the switching 

function. Holst, Ref.34, uses the following 

10.1.5 

where 1"\ and t are user defined constants. n is usually 

set to 2 and C is usually set between 1.5 and 2.0~ The use 

of Eqn.(10.1.5) instead of the standard definition for ~ 

increases the amount of upwinding. The present method employs 

Holst's fully conservative scheme involv~ng an upwind density 

shift of 

10.1.6 

o, 
C (' - ;L~;:J 

where 

10.1.7 



90 

and 

10.1.Sa 

10.1.Sb 

.... 
'b)( and 

~ 

~)l are forward and backward differencing operators 

with similar expressions for the Y- and Z-directions. 

Eqn.(10.1.8) ensures the correct differencing to be used 

dependant on the sign of the velocity components u, V or w. 

One major advantage of this form for the artificial viscosity 

is that the extension to three dimensions is simple. The 

scheme is centrally differenced and second order accurate in 

subsonic regions. In supersonic regions the differencing is a 

combination of the second order accurate central differencing 

used in subsonic flow and first order accurate upwind 

differencing resulting from the addition of artificial 

viscosity. As the flow becomes increasingly supersonic, the 

increase of .the factor C.. , makes the scheme increasingly 

retarded in the upwind direction. The present approach.allows 

a complex elliptic-hyperbolic problem to be solved by a purely 

elliptic relaxation scheme. 
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CHAPTER 11 

AF2 FACTORISATION AND SOLUTION ALGORITHM 

11.0 General 

At the present time two main solution algorithms for the 

full potential equation are in use, the AF2 scheme and the 

multi-grid method. The latter makes successive use of coarse 

and fine meshes to reduce the errors associated with the low 

and high frequencies of the error spectrum. Similarly the· AF2 

scheme uses acceleration parameters in a cyclic fashion. It 

must be noted that the multi-grid method must use some form of 

relaxation scheme, SLOR or AF2, to update grid points during 

each grid sweep. This suggests that the effective complexity 

of the computer code is doubled if a multi-grid strategy is 

used as compared to the use of an AF2 scheme alone. 

The primary reason for not using the multi-grid method is that, 

for points lying inside the body there is no definable way to 

transfer information from the coarse mesh to the fine mesh. 

Another reason for adopting the AF2 scheme is that in the 

multi-grid method the implication of switching from coarse to 

fine meshes is to require extra computer storage. This is 

because of the nature of the present method. All the cell face 

areas for the grid points have to be stored. Hence, if two 

grids are continually in use then, two sets of cell face areas 

must be stored. This is not viable due to the limited store 

available. In addition, it may not allow for the presence of 
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more than one body in the flow field. Such unnecessary 

complications do not arise when the AF2 scheme is used. 

11.1 Solution Algorithm 

The collection of finite difference equations which result 

from the mass flow equation, applied to all cells in the 

computational domain, are solved by an AF2 factorisation 

scheme. The disturbance potential is updated by solving, 

simultaneously, for the correction in pseudo-time 

11.1.1 

where the index l"\ indicates the number of the sweep or 

equivalently a unit time step. Several guidelines for the 

construction of AF schemes can be formulated by considering the 

following general form for a two-level iteration procedure: 

11.1.2 

where /). is given by Eqn.(11.1.1), l~Y\J is the residual, 

which is a measure of how well the finite difference equation 
"'-

is satisfied by the (\ level, o(, and olz. are acceleration 

parameters, and CJ is the relaxation parameter. The operator 

[N] determmines the type of iterative procedure and, therefore, 
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determines the rate at which the solution procedure converges. 

In the approximate factorisation approach, [N] is chosen as a 

product of two or more factors indicated by 

[N]=Nl.N2 11.1.3 

The factors Nl and N2 are chosen so that: (1) their product is 

an approximation to Land resembles Las closely as possible; 

(2) only simple matrix operations are required; (3) the overall 

scheme is stable. In the present case the operator Lis given 

by Eqn.(8.3.5). Rewriting Eqn.(11.1.2) as 

implies that the iteration procedure is achieved in two steps, 

firstly 

and secondly 

The matrices formed for F 

can easily be inverted. 

11.1.5 

11.1.6 

and t::.. are tri-diagonal and hence 

Because the factors Nl and N2 can be 

chosen to ensure that sweeping occurs in alternate directions 

for each inversion step, information is quickly transmitted in 
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all directions. The whole grid is updated twice during one 

complete time-step, hence the method is potentially fast. It 

does, however, require careful choice of factors. In the 

present method, based on the scheme of Catherall (Ref.67), the 

three-dimensional factors are 

[ 
ol.. \. J '-· :z~ \., . e i j\< - ol2.. . Xi\,. w; l+• jv. -~ . e ,-•u.. - '{~I;.( sY. e Cj-'l "w y~jl< • ~ Jl != i j I< 

~2 A~ AY ~ 
= c!,.c/2...<:r. L(~Ljl/. 

11.1.7 

Inherent in the scheme is the direction of sweeping of the 

grid. On expansion of the two factors, the right side of the 

equation does not match the left side. This apparent anomaly 

is not a handicap since at convergence the difference tends to 

zero and the factors multiplying A become irrelevant. The 

parameters ~ and o/2. are called 'acceleration parameters', 

and as the name suggests they must be carefully chosen so as to 

achieve the fastest convergence rate. The stability of this 

type of factorisation in two-dimensions is discussed in Ref.68. 

The first factor demands that the grid be swept in the upstream 

direction since the factor can be expanded as 
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Where A, B, C, D and E are functions of quantities evaluated at 

the previous iteration level. The terms f"c:.,5+,,k , Fc:.,j,){ , and 

r · · ,i a re the unknowns. rl~j-1 1 K Their solution is dependant upon the 

right side of Eqn.(11.1.8) which contains r\-\t,.j,k. The dummy 

plane at I=NX+l where NX+l is the number of points in the 

X-direction is set as 

F(NX+l,J,K)=0 for J=l,NY+l, K=l,NZ+l 

Fig.42 shows the direction of sweep for the first step. On 

each Y-Z-plane the vertical grid lines are updated line by 

line. The grid is swept by constant X-planes. 

factor when expanded becomes 

The second 

11.1.9 

I I I I I 
Where A, B, C, D and E are evaluated from the previous 

iteration level. The term on the right side implies that the 

sweep be performed in the downstream direction on constant 

X-planes. The combination of both sweeps is equivalent to one 

time step or one complete iteration. Catherall (Ref.67) 

~t!,:'~:nends that the acceleration parameters, ol., and ol.1. be 

chosen for each iteration from the series 

11.1.10 
\L-1 

( 

11l JN,1...-,, ol,_ ~ ol.1\,.. O< 

o/2.\... 

\( ::: \ , 1, . . . No<. 1 
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and theory gives 

ex'," : o/2.." = ~ 
ol - . -

\ l ~ o<, · /j 7.. , o/2 l. = o/ 1 . D, '/ 
11.1.11 

and experiment suggests 

1 
11.1.12 

For difficult cases such as thick bodies and double body 

configurations the above values are changed, usually el,~ and 

o/.zA are increased, and er decreased. 

It can be seen from Fig.43 how the effective residual varies 

with number of iterations. 

magnitude faster than SLOR. 

The AF2 scheme is usually of a 

The overall speed and hence 

iteration requirement is dependant on the flow geometry, such 

as the free-stream Mach number and angle of incidence. The 

rate of convergence is dependant on the number of bodies 

present and their configuration. 
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CHAPTER 12 

DISCUSSION AND RESULTS 

12.1 General 

From the basic mass flow equation a computer code was 

developed to reproduce the results for bodies described by 

Wedan and South. New and efficient algorithms were developed 

for calculating cell-surface areas, weighting functions, and a 

new AF2 scheme developed for three-dimensional geometry. The 

method was then further developed to compute transonic flow 

over double store configurations at incidence, and stagger. 

Comparisons for subsonic flow are made with SPARV (Ref.26) and 

with the ARA transonic, zero incidence program for single 

bodies at higher Mach numbers, (Ref.31). The method is also 

compared for accuracy with subsonic single body experimental 

tests carried out in the 8' by 6' wind-tunnel at Cranfield, 

(Ref.28). 

The present method allows the flow about any body to be 

calculated, but only two types are considered. The ellipsoid, 

because the body surface has continuous slope and can be 

defined in all three dimensions, and the ogive-nose cylinder, 

because experimental results are readily available. 

The ARA program can only be used for single axisymmetric bodies 

at zero angle of attack, and SPARV for subsonic single and 

multiple bodies in three-dimensional or axisymmetric form. 
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For subsonic flows around ellipsoids, the method is compared 

with SPARV. The results for the tagent ogive cylinder, with a 

nose length to maximum radius ratio of 4:1, are compared with 

SPARV and experimental results. 

numbers, the ARA program is used. 

For the high subsonic Mach 

The double body case is compared with SPARV and finally, 

results for the double body case at transonic speeds at various 

angles of attack are presented. The latter are not compared 

with either experimental or theoretical results because none 

are available to the author. 

All results are allowed to converge so that the residual is 

reduced by four orders of magnitude, and the acceleration and 

relaxation parameters altered such that the solution is stable. 

12.2 Transonic Comparisons 

When comparing the results obtained for axisymmetric 

bodies, by the ARA transonic program, a number of factors must 

be taken into consideration. The ARA method is based on 

Jameson's rotated difference scheme in non-conservative form, 

using an aligned mesh (Ref.52), whilst the present method is 

conservative and uses a non-aligned Cartesian grid. Although 

the ARA method is more complex, the use of rotated coordinates 

ensures that the calculation of rp is always based on the 

correct difference whether in subsonic regions or supersonic 

regions. The use of an aligned mesh ensures that grid points 

lie on the body surface and the flow tangency condition at the 
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surface is easily satisfied. In the present approach, a grid 

point does not necessarily lie on the body boundary and all 

quantities that are required at the body surface are obtained 

by extrapolation. In the presence of shock waves, this will 

automatically introduce errors into the calculation. Referring 

to Fig.44, the potential at A is obtained from 

12.2.1 

¢A at A to be in the 

c/, . This is seriously 

outside the shock wave 

Such a formula predicts the potential, 

same domain as the potentials i1 and 

in error because c/z and cJ I lie 

influence, whilst ¢A lies inside. For the present method 

there is no apparent way to overcome this difficulty. 

Similary, the potential at Bis again incorrect but to a lesser 

extent, the potential at C is correctly predicted by 

Eqn.(12.2.1) To ensure accurate pressure calculations at the 

body surface, the number of grid points used in they-direction 

would have to be increased. This is not a viable solution, 

since the storage requirements for the present 

three-dimensional program would exceed the allocation. 

It is hoped that although the pressure distribution, obtained 

from the present method, will not agree exactly with the ARA 

results, the location of the shock wave will be the same. 
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12.3 Ellipsoid of Ratio 1:1 

For a finite difference method using a non-aligned mesh and 

SLOR as the solution algorithm (Ref.40), the sphere proves to 

be a difficult case because information cannot readily be 

transmitted in the upstream direction. Although AF2 schemes 

alleviate this problem, the flow tangency condition is 

difficult to satisfy, and special finite difference formulae 

have to be used to obtain the potential value for a point lying 

just inside the body boundary. 

For the present method, although the number of iterations 

required to produce a converged result is large, of the order 

of 60, there is no difficulty in satisfying the flow tangency 

condition. In general, for bodies having a high radius of 

curvature at the leading and trailing edges, the method 

requires more iterations to converge than for more slender 

bodies, such as ellipsoids of ratio 8:1. For the sphere, the 

values of the acceleration parameters, (XiA. and ol1.,.. I and the 

value for the relaxation parameter, er, had to be varied until 

the solution became stable and converged. In addition, the 

position of the grid lines produced by the stretching functions 

had to be carefully monitored to reduce the risk of 

instability, although this latter effect is more prominent in 

the presence of shock waves. The results for the subsonic 

case, Fig.45, uses a mesh with 64 grid points in the 

x-direction and 40 in each of they- and z-directions. There 

is good agreement with SPARV which used 64 longitudinal points 

and 32 circumferential points. 
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12.4 Ellipsoid of,Ratio 8:1 at 5 Degree Incidence 

The present study is being undertaken to analyse the flow 

around missile shaped bodies. To generate a body having a 

fineness ratio more typical of a guided weapon, the major axis 

to minor axis of the ellipsoid is increased to 8:1 and placed 

at an incidence of 5 degrees to the horizontal axis. Due to 

the body being slender, the solution converged much more 

rapidly and produced results which agreed very well with those 

obtained by SPARV, see Fig.46, using 60 longitudinal panels and 

14 semi-circumferential panels. 

It must be mentioned that the C.P.U. requirement for the 

present method is of a magnitude greater than that required by 

SPARV. This is due to SPARV utilising the symmetry of the 

problem whilst the present method computes the flow around the 

ellipsoid in a fully three-dimensional sense. Also, the 

present method calculates quantities in the whole flow-field, 

whereas SPARV only calculates quantities on the· body surface. 

To achieve a better comparison of C.P.U. time it would be more 

realistic to input the body shape in terms of x-, y-, and 

z-coordinates, for the SPARV results. 

12.5 Tangent Ogive Cylinder Results 

It can be concluded from the previous 

present method is in good agreement as 

numerical method, SPARV. The present method 

results that the 

compared with the 

is 

accuracy against experimental results for 

cylinder, having nose fineness ratio of 4:1, at 

for various incidences. 

compared 

tangent 

subsonic 

for 

ogive 

flow 
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The experimental results carried out by Davies (Ref.28) for the 

0.14 and 4.14 degrees incidence -are compared in Figs.47 and 48. 

The closure used for the numerical calculation is an oblate 

ellipsoid. There are discrepancies between the numerical and 

the experimental results due to the exclusion of viscous 

effects in the numerical scheme. 

12.6 Tangent Ogive Cylinders in Transonic Flow 

The present method compares well with results produced by 

SPARV for the single body at low subsonic mach numbers. It was 

decided to test the method for transonic flow at zero incidence 

and compare the results with the ARA program. Figs.49 to 51, 

show the results for various mach numbers at zero incidence. 

All the results other than M=0.9 show good agreement. The 

M=0.9 case is not as accurate due to insufficient grid points 

in the shock region. It is apparent that the ARA program, 

although more accurate than the present method, cannot be used 

to observe the pressure distribution over the aft section of 

the missile. Such data is useful to have when comparing the 

effects of using differing closures. Also, there is no ability 

to place the body at incidence throughout the subsonic to low 

transonic flow region. 

The angle of incidence is increased for various Mach numbers 

and the variation in position and value of the main suction 

peak observed. The Mach number is varied from 0.5 to 0.9 and 

the incidence kept at zero. From the results on Figs.49 to 51, 

it can be seen that as the mach number is increased, the 
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suction peak becomes larger. The position of the shock does 

not seem to move, though there is a small move towards the 

nose-cylinder junction, and the shock becomes more defined. If 

the mach number is fixed and the angle of incidence is 

increased, there is a little variation in position and 

magnitude of the suction peak, Figs.52 to 55. For the upper 

surface there is movement of the location towards the nose. 

There are differences in the pressure distributions between 

Fig.52a and Fig.52b, the former used a grid of 100~30~30 and 

the latter a grid of 60~44~44. The distribution in Fig.52b is 

much smoother. It seems that the solution is dependant on the 

number of grid points placed in they- and z-directions. 

During the evaluation of the above results, the author was 

confined to using a fairly coarse mesh, also the effects of 

increasing the mach number resulted in the program needing to 

use a smaller value of relaxation parameter. This resulted in 

an increase in C.P.U requirement and increase in the number of 

iterations needed for the result to converge. Such 

observations apply only to the higher mach number and incidenc€ 

cases. The results for the incidence cases have 'peaks' in the 

pressure distributions, the causes of which are discussed 

later. 

The next section deals primarily with the double body case, 

with varying distances between the two bodies. SPARV is used 

to verify the subsonic results for both the ellipsoids and the 

tangent ogive bodies. For all the double body cases presented 

the number of grid points used in- the x-di rection was 60, the 
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number in they-, and z-direction was 44. There are 15 points 

in they-direction below the lower body and above the upper 

body, with 17 points between the centre-lines of the two 

bodies. The bodies are located above each other in the 

y-direction. The spacing refers to the distance between the 

line mid-way between the body centre-lines and the nearest body 

surface. This has been non-dimensionalised with respect to the 

body length. 

12.7 Double Ellipsoids of Fineness Ratio 4:1 

Having presented the results for a single body, the initial 

two body comparison is for ellipsoids. The subsonic comparison 

uses a spacing of 0.025 and zero incidence. 

The subsonic zero incidence case was compared with SPARV, 

Fig.56. The results agree well showing the suction peak 

occurring at the point of maximum thickness. Varying the mach 

number and angle of incidence causes an increase in the suction 

peak value and little change in it's position, see Figs.57 and 

58. 

12.8 Double Ogive-Cylinder Configurations 

Figs.59 to 63 depict the behaviour of the pressure 

distribution on double ogive-cylinder bodies for separations of 

0.05 and 0.025. The subsonic results agree well with SPARV up 

to the closure region. Aft of the junction between the 

cylinder and the closure, the results disagree due to the 
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present method using far fewer grid points than SPARV. Such 

discrepancies cannot be overcome due to limited computer 

storage available to the user. Nevertheless, it can be 

concluded that the two methods would be in better agreement if 

the present method could deploy more grid points on the aft 

section of the body. 

The remaining results, shown in Figs.64 to 70, are presented to 

observe the effects of increasing the free-stream mach number 

until the flow becomes critical. 

If the incidence is fixed and the free-stream mach number 

varied, the location of the main suction peak moves towards the 

nose and the magnitude increases. If the bodies are brought 
~ 

closer the absolute value of the peak increases. The top body 

produces less lift than the bottom body due to the upper 

surface of the bottom body experiencing accelerated flow 

between the two bodies. The flow accelerating between the two 

bodies causes the suction peak on the lower surface of the top 

body to be greater than the suction peak on the lower surface 

of the bottom body. Fig.71, shows the variation of the suction 

peak value with mach number for 5 degrees incidence. The upper 

surface of the bottom body and the upper surface of the top 

body have almost the same values of peak pressure, whilst the 

other two surfaces vary significantly. The general shape of 

the curves are similar for all surfaces. At zero incidence the 

top surface of the top body has the same pressure distribution 

as the bottom surface of the bottom body. Similarily, the 

bottom and top surfaces of the top and bottom bodies 

respectively, have the same distribution. 
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If the mach number is fixed and the angle of incidence of the 

configuration is increased, then the location of the suction 

peaks for both bodies, move towards the nose. Also the top 

surfaces generate increasing lift and the bottom surfaces 

generate decreasing lift. 

12.9 Double Ogive-Cylinders with Stagger 

The remaining results concentrate on the effects of 

staggering the bodies by moving the top body forward. The 

subsonic cases for O and 5 degrees incidence are compared with 

SPARV. The free-stream mach number is then increased to 0.5 

for O and 5 degrees incidence. 

seen that the results agree 

From Figs.72 to 75, it can be 

fairly well with SPARV for the 

initial 75% of the body. The aft closure is in error, this is 

due to insufficient number of points available for accurate 

flow resolution. 

The pressure distributions for the surfaces of the bottom body 

are different as compared to those of the top body. The flow 

accelerating over the trailing edge of the top body causes the 

pressure distribution on the top surface of the bottom body to 

become more negative. Away from the the trailing edge of the 

top body, the flow decelerates and there is some pressure 

recovery, until the flow accelerates over the trailing edge of 

the bottom body. The bottom surface of the top body 

experiences the effects of the flow accelerating over the nose 

of the bottom body, causing the peak suction pressure to be 

less pronounced. The top surface of the top body has the 

expected pressure distribution. 
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From Figs.76 to 791 increasing the free-stream roach number to 

0.5, and varying the incidence between O and 5 degrees, does 

not effect the form of the pressure distribution. The values 

of the peak suction pressure are increased and there is a 

movement of the location of the peak towards the nose. 

There are irregularities in the pressure distributions for the 

double ogive-cylinder configurations due to a lack of points 

that can be placed on each body. Effectively, if there are a 

total of 44 points in they-direction, then each half of the 

computational space containing the bodies has 22 points. This 

is not sufficient for accurate flow resolution. It has been 

shown in Figs.52a and 52b, for a single body, that the pressure 

distribution becomes smoother by increasing the number of 

points in they-direction. Due to limited computer s~orage, an 

increase in points in they- and z-directions meant reducing 

the number in the x-direction. This caused a reduction in the 

flow resolution and accuracy of the pressure distributions. 

Similarly, the double-body configurations are also affected. 

It seems likely that a total increase in points in all 

directions will result in smoother and more accurate pressure 

distributions. 
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CHAPTER 13 

CONCLUSIONS 

concerned with developing The research program has 

existing numerical methods 

been 

and producing programs which are 

economical in the use of the computer, whilst being as accurate 

as possible. The applicability of the methods has been 

extended to a variety of flow problems ranging from a single 

axisymmetric body moving in curvilinear motion to the effects 

of transonic flow on a staggered double body configuration. 

The initial research programme dealt with approximating an 

axisymmetric body using surface source panels. Satisfying 

Laplace's equation resulted in integral equations which could 

be solved for the required source distribution on each panel. 

The method proved to be computationally more efficient than 

existing methods and required less compter storage. Although 

the method is applicable to both blunt and pointed body shapes, 

the placement of the surface panels requires careful 

consideration. To avoid discrepancies in the surface pressure 

distribution, and hence the normal loads, the longitudinal 

dimension of the panels must vary smoothly over the length of 

the body. Applying the method to curvilinear motion was not 

difficult and gave good results for an ellipsoid of ratio 4:1. 

The latter part of the research was aimed towards developing a 

transonic flow method which could predict the aerodynamic 

characteristics of fully_three-dimensional bodies. The method 

made. use of the full potential equation in conservative form 
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enclosing 

approximated 

the body 
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using finite differences. The space 

configuration is divided into rectangular 

cells for which mass continuity is satisfied. Transformation 

or stretching functions are used to map the infinite physical 

space to a bounded computational domain. The algorithm 

involves updating the solution, by marching in both upstream 

and downstream directions, to ensure rapid transfer of data 

throughout the whole flow-field. In the present approach, the 

artificial viscosity required, to ensure stability in 

supersonic regions, is introduced by retarding the density. 

This simplifies the method and allows an elliptic solution 

procedure to be used on a mixed elliptic-hyperbolic problem. 

The resulting algorithm requires only simple tri-diagonal 

matrix operations. Pressure coefficient distributions show 

good agreement with other methods. It can be concluded that it 

is not necessary to match the computational grid to the body 

surface, and first order cell face area and potential 

extrapolation on to the body surface are sufficient. 

The relative stability and speed of convergence is dependant on 

the acceleration and relaxation parameters. In many single and 

double body configurations, at high subsonic Mach numbers, 

these parameters are altered to stabilise the solution. 

Varying the input value of the radius of curvature, at the body 

nose and tail, affects the grid-line spacing at the leading the 

trailing edges. This is turn affects the accuracy of results. 

Other parameters, such as those which determine the amount of 

artificial viscosity used for the high subsonic Mach numbers 

are not fully tested, but kept fixed to maximise the amount of 
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damping used. For both single and double body configurations 

the accuracy of the method was much reduced due to the 

limitation on the amount of computer storage available. 

Comparisons for high subsonic flow at zero incidence can be 

improved by re-clustering the grid points around the location 

of the shock. The accuracy of the results, at the trailing 

edge, for the two body cases could be enhanced by using a 

greater number of grid points in that region. 

The present full potential method is able to produce a complete 

description of the whole flow field containing the body. The 

total velocity at the cell centres can be used to gain an 

understanding of the flow patterns around the body or bodies 

under consideration. It is however, limited to flows having no 

or weak shocks, the Mach number being 0.95 or less for single 

bodies and less than 0.9 for double body configurations. These 

limits vary with the amount of incidence input to the body. 

The present method can be effectively used to observe body-body 

interference effects at roach numbers close to one for various 

values of incidence and yaw. 
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CHAPTER 14 

RECOMMENDATIONS FOR FURTHER WORK 

14.1 General 

From the previous results and discussions it is apparent 

that the present method provides a useful tool for predicting 

the aerodynamic characteristics of single and multiple bodies 

in subsonic and transonic flow. The present work has been 

applied to various body shapes, the method can be made more 

versatile with the following extensions and modifications. 

14.2 Axisymmetric Two Body Configuration 

The present work has dealt with the two body case in a 

limited sense, concentrating on bodies which have their axis 

parallel to the x-axis. Here, the whole configuration can be 

put at incidence, yaw, and one body staggered with respect to 

the other. The asymmetric case would involve one or both of 

the bodies at incidence to the horizontal axis, and maybe, 

experiencing a flow also at incidence, see Fig.BO. This type 

of asymmetric configuration is computed by defining the rotated 

body surface in terms of the normal Cartesian coordinate 

system. Consider a body at incidence, o(t , to the horizontal 

axis, Fig.Bl. Then, the coordinates of the body can be 

expressed in terms of the x,y coordinate system, as 



112 

~ = Ccc;ol 1 . ~ ~ c;·,n~2. - ~ 

'1 :. ~~o<.2.. 9 - c:;\~o(~. -i: 
14.2.1 

Assuming that the top and bottom surfaces of the body are 

described by a continuous function, the equation for the top 

surface is 

14.2.2 

The body is placed in a pre-determined grid and a x-grid line 

passes through it's nose. To enable the cell face areas to be 

determined, we need to calculate the distances of the top and 

bottom surfaces from the horizontal axis. Assume an initial 

guess ~o, which yields a value ~o, where 

14.2.3 

Then another value ~• , yielding ~•, is used to supply another 

approximation to the actual value ~ , (Fig.Bl). A better 

approximation is then 

This implies that the value of 

iteratively by 

~ t. can be 

14.2.4 

determined 
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·(~I'\-\ -\j0 ) 

~n--\ - ~u 

14.2.5 

This will yield the upper and lower values for the body 

surfaces at all the x values which lie between the nose and 

tail of the body. To obtain the cell face areas, a similar 

procedure as outlined in Appendix.Al can be used. The values 

obtained for the areas will only be approximate due to the 

above approximation together with the use of straight line 

segments as discussed in Appendix.Al. 

If it is assumed that the angles of attack are small, the 

stretching functions used in the double body case can be 

applied. 

To input an asymmetric yaw configuration, in addition to 

incidence, the above procedure can be repeated to calculate the 

x-, y-, and z-coordinates of the body. For the yaw case the 

stretching function in the x-direction is unaltered, but the 

z-direction stretching has to be redefined to achieve the 

required clustering of grid-lines. 

14.3 Multiple Body Configurations 

Although a maximum of two bodies was tested in the present 

work, the method is able to handle other configurations, such 

as three bodies lying either symmetrically or asymmetrically, 

see Fig.82. Each body is treated separately and the new 

surfaces obtained (section.4.2). There will be interaction 
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between the bodies, especially in the region enclosed by ABCD. 

The stretching must be altered to pack points in this region, 

and can be done by using a stretching similar to that used for 

the two body case, in both the y-, and z-directions. The 

x-direction stretching remains unaltered. 

14.4 Arbitrary Body Specification 

In the present work, the body surfaces could be defined 

using algebraic expressions, allowing 

calculation of the cell face areas. This 

comparatively easy 

condition can be 

relaxed and an arbitrary body shape input. For a simple 

tangent-ogive body, the three parameters rx, ry, and rz must be 

specified, see Fig.83, to enable the stretchings to be produced 

and the physical mesh set up. For non-analytically defined 

bodies, the program can be designed to proceed in the following 

way, refer to Fig.84 in the proceeding analysis: 

Fig.84 shows the cross section of a body at a particular 

location, xl, along it's length. The face showing lies in the 

y-z-plane. It is assumed that the body coordinate axis are 

centered at the point o. The cross section surface .can be 

defined by stating the coordinates of all points I=Il .... In. 

The body surface points can be joined using straight-line 

segments _and the cell face areas for each cell calculated as 

described in Appendix.Al. These coordinates are then input for 

all x-sections. The whole body has now been described. 
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14.5 The Use of Surface Splines 

The calculation of the cell face areas and the pressure 

distribution on the surface of the body makes use of straight 

line segments to approximate the body shape. Consider the 

calculation of a cell face area, then if the body shape changes 

rapidly, the situation shown in Fig.BS, requires the need for a 

better body approximation. The area under the straight 

line-segment joining points BC (Fig.BS) is S2, and the area of 

the cell lying outside the body given by 

14.5.1 

By the use of splines the body surface can be approximated much 

more accurately and the area lying outside becomes 

14.5.2 

where S2+S3 is the new area under the points BC which are 

joined by some curve. The accuracy in the use of straight line 

segments is increased by increasing the number of points in the 

grid. This results in a decrease in the speed of convergence 

and it becomes necessary to allocate more computer storage, 

making the method less efficient. 

14.6 Normal Force Calculation 

All results presented depict the variation of pressure 

along the x-axis of the meridian profile curve of the body. 

Velocity components and density at all grid points in the field 

is known enabling the pressure at all points to be determined. 

The pressure at the points formed by the intersection of the 

body surface and any grid line can be calculated. For example, 
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consider a body cross-section at some x-station, Fig.86. The 

pressure at point Pis determined by a horizontal extrapolation 

along line J. Similarly, the pressure at point Q is determined 

by a vertical extrapolation along line K. This is done for all 

such intersecting grid lines. The results can then be 

integrated around the circumference of the body at that 

x-station to obtain the normal force. This involves the 

calculation of the distance along the surface between each 

surface point, 51,52 etc. 

14.7 Accurate Shock Capture 

Comparisons with the ARA program show that the present 

method smears the shock over a few grid widths (Fig.87) due to 

insufficient number of points around the x-station at which the 

shock occurs. To provide the method with a higher 

concentration of vertical grid lines, the stretching algorithm 

must be altered such that the required x-station becomes a 

parameter which controls the overall distribution of points in 

the x-direction. Once the position of the shock becomes known 

the stretching can be altered to cluster more grid lines around 

this point. This is similar to the SAG method used by Holst 

and Brown, (Ref.SO). 
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APPENDIX Al 

DESCRIPTION OF THE FINITE VOLUME PROGRAM 

Al.1 General 

The present program has been primarly designed for 

axisymmetric bodies although it has the capability to predict 

the flow about three-dimensional S?apes, such as ellipsoids and 

missile shaped bodies with non-circular cross-sections. The 

program is able to give results for the flow about single or 

double body configurations at incidence and yaw. The two 

bodies tested in the present research are the ellipsoid and the 

ogive-nosed circular cylinder, with an elliptic closure, 

(Fig.88) 

Al.2 Initial Data Input 

The program requests the number of bodies to be used in 

the calculation, either one or two, and enters the appropriate 

routine depending on the number chosen. The type of body is 

then selected, ellipsoid or missile. For either case the body 

dimensions are required, and input as follows. 

Al.2.1 Ellipsoid 

The only dimensions required are the fineness ratio 

of the ellipsoid and this is input by specifying the lengths of 

the major and minor axis, (Fig.88). The lengths input are 
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scaled such that the overall length of the major axis becomes 

unity. 

Al.2.2 Missile 

The type of missile that is most commonly used is 

shown in Fig.88, the values of the variables shown are input. 

In the present research, the nose is an ogive, a circular arc, 

and becomes tangent to the aft body at a distance Al from the 

nose. The closure is added, usually elliptic, of fineness 

ratio A3:Rl. 

After obtaining the body parameters, the flow characteristics 

are input, such as the angles of attack and yaw and the 

free-stream Mach number. If a two body case is being tested, 

the program requires the amount of stagger and the distance 

between the centre line of the configuration and the nearest 

surface of either body. Lastly, the number of points required 

in the x-, y- and z-directions of the grid are input. In the 

two body configuration the number of points in they-direction 

is calculated as the sum of the number of points between the 

centre-lines of the two bodies, the number lying below the 

bottom body, and the number above the top body, see Fig.89. 

They must all have odd values. 

Al.3 Calculation of a Cell Face Area 

The proceeding section describes the method used to obtain 

the areas of the cell faces, which lie perpendicular to the x-, 
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y-, and z-directions. The procedure can also be used for the 

double body case. 

Consider a body cross-section at some point Xl, see Fig.90, in 

the computing plane. The area associated with point J,K is 

ABCD. The distance between the full and broken grid lines is 

~2/2. in the Z-direction and ~'l/2. in the Y-direction. It can 

be seen from Fig.9O that a cell face can lie completely outside 

the body, as for point Ji kl, lie completely inside the body as , 

for point "'J",, \< t , or lie on the body boundary as for point J,K. 
f , I I 

All faces lying completely outside the body, such as ABCD, have 

an area ~7...~~/~, all faces lying inside the body have zero 

area, and the remaining type have to determined as follows. 

Consider the same section as in Fig.91a, the origin of the body 

axis system is assumed to lie at a point o, and the broken grid 

lines lie midway between the full grid lines. Each grid point, 

formed by the intersection of either set of lines, has 

associated horizontal and vertical distances. Consider point 

J,K, then the vertical distance for this point is Cl. and the 

horizontal distance is b Both distances for point 

J+l,K-1/2 are zero, whilst the vertical distance for 

J-1/2,K-1/2 is c.. and the horizontal distance is c.\ • For 

point J+7/2,K the vertical distance is zero and the horizontal 

distance is h. 

The lengths Zr and Zl are known for all horizontal grid lines, 

if the horizontal grid line does not cross the body boundary 

the two lengths are zero. Hence, for the point J,K, the 
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horizontal distance would be 

Al.3.1 

This is true only if Q-t2--,). ~2 is greater than ZA. • If 

it is less than 2J... the grid point lies within the body, and 

the associated horizontal distance is zero. If it is greater 

than "'Zt.-+ t::,2../2. then the horizontal distance is Az/i . For 

the right half of the section, the horizontal distance for 

point J+7/2,K is given by 

Al. 3. 2 

With similar conditions as the left half of the section. 

The vertical distance associated with each grid point is 

determined in a similar fashion, as follows. Consider a new 

point J,K-5/2, Fig.91b. The lengths Yb and Yt are known for 

all vertical grid lines, if the grid line does not cross the 

body boundary, the two lengths are zero. Hence for the point 

J,K-5/2 the vertical distance would be 

Al.3.3 

This is true only if [(\.l-\)-(\-'-~h~tii is greater than Yb. If 

it is less than Yb, then the grid point lies within the body 

and the associated horizontal distance is zero. If it is 

greater than 'l'o+~'f/-i then the horizontal distance is 

/j,'//l . The vertical distances for points lying above the 
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horizontal axis can be calculated in a similar fashion, for 

example, the vertical distance for point J,K is 

Al.3.4 

Hence, the vertical and horizontal distances for all points, 

lying either on the full or broken grid lines, are known. 

Referring to Fig.92, the cell face area for the point J,K 

consists of four contributions, as shown by the shaded areas. 

This is true for all grid points formed by the intersection of 

the full grid li~es, representing the actual computing grid. 

The four areas shown in Fig.92 can be easily determined since 

all the required lengths are known, from the preceeding 

discussion. As an example, consider the point J-1/2,K-1/2, as 

in Fig.93. If the surface is S1, the area required is enclosed 

by the points W,X,Y, and z. If the body surface is S2, then 

the area is enclosed by points W, Xl, X2, Yl, and z. For both 

cases the points X and Y, and X2 and Yl, are joined by straight 

line segments. ,The areas are given by, (see Fig.94), 

(°'-+c.) . 6 

~'/.bl 
i., 

Al.3.5 

All the shaded areas in Fig.92, can be calculated in a similar 

fashion. Hence the total cell face area for the grid point 

J,K, shown in Fig.92, can be determined by adding the four 

values of the shaded areas. 
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The cell face areas formed by Y-plane and Z-plane body cuts can 

similarly be obtained. Hence for. a particular cell point, 

I,J,K, all the cell face areas are known, see Fig.95. All the 

cell faces lie midway between computational grid points, for 

example, the face S1 lies midway between points I-1,J,K and 

I,J,K and S4 lies midway between points I,J,K and I,J+l,k. The 

number of possible ways the surface of a body can intersect a 

cell is discussed in the next section. 

Al.4 Three-Dimensional Cell Investigation 

There are sixteen possible ways a body surface can cut a 

particular call face, Fig.96. To define and differentiate the 

possibilities, each of the grid points in the mesh is assigned 

a value of 1 or O depending on whether or not the grid point 

lies ipside the body boundary. Analysing the face ABCD, the 

area lying outside the body boundary is calculated by 

connecting the points A and C by a straight-line segment. The 

area l db . 1 1 d . 1 1 d enc ose y points A, A, C, C, an D, is ca cu ate as 

described in the previous section. If rotational similarity is 

used, then only four different equations need to be developed 

to calculate the areas for the sixteen possibilities. 
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Fig-~2 Gridlines between three bodies 



Fig.83 Missile shaped body with non-circular 
cross-section 
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Fig.~2. Accurate determination of cell face area 
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Fig.93 Body surface cutting a cell face 
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Fig.96 Ways a body surface can cut a cell face 
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