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Abstract

An Attempt at development of theory and computer program for the solution of 

potential and viscous flow problems using the Boundary Element Methods is 

introduced in this work. A program for potential flow analysis of cascades is 

developed and properly validated. Theory and programs for boundary element 

analysis of viscous flow using vorticity-velocity formulation and pressure-velocity 

formulation along with the penalty function approach were developed. Many tests 

were carried out on the programs, and case studies of Poiseuille, Couette and 

driven-cavity flows were analysed and results were compared with existing 

solutions. The developed vorticity-velocity algortithms converge well for low 

Reynolds number, but the program based on the penalty function approach has 

limited sucess only for cases without domain integrations.
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Chapter 1

Introduction

1.1- OVERVIEW

The set of differential equations governing the flow of a viscous fluid, the so- 

called Navier-Stokes equations, were first proposed at the beginning of this 

century. These equations along with the principle of conservation of mass, known 

as the Continuity equation, are the basic equations used in fluid flow analysis. 

When, temperature is also a variable, the Energy Transport equation has also to 

be considered. Together, these form a set of partial nonlinear differential 

equations that, unless some additional assumptions are introduced, mean that a 

complete analytical solution is impossible. Some simplifications are usually 

employed in the mathematical modelling of any real flow, and in order to obtain 

an analytical solution further simplifications may be required, which leads to the 

fact that acceptable analytical solution, are only available for very limited 

applications. Prior to the computer era, experimental analysis was much more 

important than theoretical methods and was the main tool adopted to provide 

solutions to engineering problems and the analysis of complex fluid phenomena. 

Only after the introduction of computers, did people start to look back to the 

basic governing equations in the emergence of computational numerical analysis 

techniques.

Today, Computational Fluid Dynamics (CFD) is indispensable for engineering 

and encompasses several methods. In the wake of the increasingly powerful 

computers many numerical techniques for fluid flow analysis have emerged. For 

example, the Method of Characteristics, the Panel Method, Finite Deference



Methods, Finite Element Methods and many others. Most of these are also 

suitable for the analysis of heat transfer phenomena which are dominated by the 

convective process. The ideas behind some of those methods were available 

before the computer era, but only with the advent of computers did they start to 

be exploited and studied more seriously. The important point is that the 

computational solution began to compete with the experimental approach after 

the 60’s, when the most important and powerful techniques adopted nowadays in 

CFD were established. With realistic engineering problems, solutions have 

evolved which are progressively more able to cope with the complexity 

introduced through geometry and nonlinearities due to turbulence, heat transfer, 

shock waves, etc. Favourable to computational analyses, is that computing 

expenditure is now, no longer a problem, since computers have become more 

capable and much lower priced. Conversely, the cost of experimental solutions 

constantly increases. However, although nowadays the numerical simulation is 

a much more important tool to the solution of engineering problems, 

experimental simulation is still very important and has played an important role 

in validating numerical solutions. With more accessible computers, the tendency 

is clearly toward greater reliance on computer based predictions in engineering 

design. This work is interested in the numerical methods adopted in CFD.

Nowadays, there are lots of numerical techniques used in CFD, most of them 

with a particular field of application, such as external or internal flows, subsonic 

or supersonic flows, heat transfer, and so on. Therefore, there are many 

peculiarities in each numerical technique adopted in CFD. An alternative is to 

define an area of interest, like aeronautics, turbomachinery, etc. in order to 

concentrate the research. The aim of this work is to explore the techniques 

adopted in the solution of internal subsonic flow using the Navier-Stokes 

equations. The Finite Difference Method (FDM) and the Finite Element Method



(FEM) are without doubt the most important so far used to solve this class of 

problems. In fact, these methods have a much broader range of applications than 

any other in CFD. In addition, they are also applied in other fields of 

engineering, including structural analysis from which they were originated.

The Finite Difference Method (FDM) is a numerical technique for the solution 

of ordinary and partial differential equations. The domain of the given problem 

is discretized point-wise into a grid of nodes where the unknown parameters of 

the problem are located. Expressing the derivatives of the field function in terms 

of the values of the function at proximate nodes, a differential equation can be 

reduced to an algebraic linear equation. The unknowns in this equation are the 

values of the variable of the problem at the nodes of the mesh and the coefficients 

are geometric parameters involving the distance between the nodes. In the 

beginning, truncated Taylor expansions to represent the derivatives, which results 

in the so-called central, forward and backward differencing schemes, were mainly 

adopted. The conventional FDM approach applied in CFD is discussed in many 

references, mainly in Roache (1982), who analyze the flow in terms of vorticity 

and stream-function as dependent variables. In the early stages, the treatment 

given to flow problems was basically the same as the one used to solve problems 

in other areas. However, in early 70’s new concepts were introduced with the 

so-called Finite Volume Method (FVM) or Control Volume Method, Patankar & 

Spalding (1972), that gave a new impetus to the numerical fluid flow analysis. 

This approach is normally regarded as a hybrid, lying between the classical FDM 

and the FEM. But, no distinction is made between the FVM and the traditional 

FDM throughout this work. The important point is the fact that after this, many 

new algorithms emerged as a consequence of this new approach.

In the solution of the Navier-Stokes equations, having pressure and velocity as



dependent variables, basically only the artificial compressibility method discussed 

in Chorin (1967) and the Marker-and-Cell (MAC) given in Harlow & Welch 

(1965) were available. These approaches are applied to unsteady state analysis, 

however, a number of algorithms were proposed later to couple the pressure to 

the velocity. The most widely adopted Semi-Implicit Method for Pressure-Linked 

Equations (SIMPLE) of Patankar & Spalding (1972) was the first. Others 

followed such as the SNIP (Start with New Integration for Pressure) of Pun & 

Spalding (1977), SIMPLER (SIMPLE Revised) of Patankar (1980), SIMPLEC 

(SIMPLE Consistent) and so on. These different algorithms proposed can be 

regarded as attempts to improve convergence.

Also, it was very soon realized that the stability of the algorithm depended 

largely on the accuracy in the evaluation of the convective and nonlinear terms 

of the Navier-Stokes equations. Central differencing was an alternative to 

representing the convective term at the early stages, but that gives good results 

only for low Reynolds number (Re) flow. For high Re a new way of representing 

the convective term had to be worked out. New ideas were proposed, among the 

most widely adopted is the Upwind interpolation scheme. However, more flexible 

schemes like the Hybrid, Spalding (1972) and Power-Law differencing scheme, 

Patankar (1980), were later proposed. Recently, some new schemes, classified 

as high-order, for example, QUICK (Quadratic Upstream Interpolation for 

Convective Kinematic), Leonard (1979), have been proposed for reducing the 

artificial viscosity problem.

The classical inconvenient of the FDM related with the limitation on discretizing 

complex geometry was eliminated also with the introduction of new techniques 

to generate the mesh. The most important technique is the so-called Body Fitted 

Coordinate, Thompson et al. (1982)



The FDM, or the FVM, is nowadays a very powerful numerical tool to solve 

fluid flow problems and very popular. In fact, there are many commercial codes 

based on this technique, worldwide adopted in engineering design, such as: 

PHOENIX, FUENT and FLOW3.

The Finite Element Method (FEM) is also a numerical technique to solve 

differential equations. The first step is to obtain the corresponding integral 

formulation of the differential equations by using Variational or Weight-Residual 

Methods. Then, the domain of the problem is discretized in a piece-wise way into 

a number of small subdomains, or finite elements, where the governing equations 

for each domain are obtained. If the variation of the field function inside of the 

subdomains is described in terms of an interpolation function and nodal values 

of the field functions, the governing equations are transformed using one of the 

techniques mentioned above into an algebraic equation. Finally, the algebraic 

equations corresponding to each finite element can be assembled together to 

generate a simple system of algebraic equations, whose solution gives the 

distribution of the field function at the nodes in the domain.

Very few fluid dynamics problems can be expressed in a variational form. Thus, 

most finite element applications in fluid flow analysis have adopted the Weighted- 

Residual approach using the Galerkin method to solve the weighted-residual 

expressions.

The first indication that the FEM could be also applied to solve fluid flow 

problems was given by Zienkiewicz & Cheung (1965). After that a great amount 

of research has been carried out using FEM to solve fluid problems. In the 70’s 

many works were published on this subject, for example, Taylor & Hood (1973) 

and Oden & Wellford (1972). That decade was also important because the first



conference on FEM in fluid flow was held, Oden et al. (1974), and the potential 

of the FEM begun to be exploited. The FEM entered the 80’s as a well 

established numerical tool to solve fluid flow problems where books specializing 

on this subject were also published. The application of traditional FEM to fluid 

mechanics is treated more recently by Baker (1983).

In the beginning, the solution using pressure and velocity as dependent variables 

presented problems related with numerical instability, as happened with the 

FDM. In this period, the vorticity-stream function approach was mostly adopted 

to avoid this problem, Baker (1983). Eventually, the problem was overcome with 

the introduction of special interpolation functions to represent the convective term 

including a similar effect to the Upwind scheme.

The Penalty Function approach was also adopted in the solution of incompressible 

flow. In this approach, the term containing the pressure is replaced by another 

one given in terms of the penalty function parameters. It was soon realized that 

in order to improve the convergence this term had to be integrated using the so- 

called Reduced Integration technique. This approach is reviewed in Hughes et al. 

(1979). The advantage of the Penalty Function is that the incompressibility 

condition is satisfied and the pressure is obtained as a post-processing.

The Vorticity-Stream Function formulation approach in fact, was where the FEM 

succeeded initially, for the solution of two-dimensional incompressible flow, for 

example, Taylor & Hood (1973). The main reason was because the algorithms 

are more stable, along with the advantage of having the pressure removed from 

the equations. The main disadvantage is that this formulation is not adequate to 

deal with three-dimensional flow.



Nowadays, there are some variations of the conventional FEM that are making 

relative success. The most important of them seems to be the Spectral Method. 

This method adopts orthogonal functions for interpolating and weighting functions 

used in the Galerkin approach, Fletcher (1984).

These two methods briefly summarized above, are already well-established for 

solutions of CFD problems. They are basically at the same level in terms of the 

complexity of applications and the accuracy of results. Considering the number 

of works published, it seems that the FDM is preferred to FEM. The fact that 

FEM is more complex, from the mathematical point of view, than the FDM can 

be given as one reason. While the FEM is nowadays mathematically well 

understood, the achievements of the FDM, on the other hand, were obtained with 

improvements based on a physical understanding of the phenomena. This 

characteristic may have helped the FDM to become more popular. It seems also 

that due to its simplicity, the FDM is more flexible in terms of algorithms as 

indicated by the great number of alternative schemes and techniques found in the 

literature.

One problem that affects these methods, regarded as domain methods, is the 

problem of the discretization of the potential and boundary layer regions of the 

flow. In most applications, a considerable amount of the domain can be treated 

as potential flow, which is a simplification that reduces the difficulties of the 

solution. With domain methods, these regions are treated using the same 

approach, which means that unnecessary calculations are carried out. The 

problem is even more serious for high Reynolds number flow, since the boundary 

layer region is smaller. Some techniques, such as the multi-grid method used in 

FDM, have been used in order to restrict the use of a fine mesh only to the 

boundary layer region. The potential region is discretized using a coarse mesh,



which means less nodes and a system of algebraic equations with less equations. 

In the case of external flow, a vast region around the body is normally discretized 

in order to allow the imposition of the free-stream condition. Again, unnecessary 

calculations have to be performed. When the potential flow is considered, these 

domain methods are not appropriate because the domain has to be discretized. In 

the case, for example, of potential flow through cascade of blades of 

compressors, fans, etc. other methods are sometimes adopted, like the Panel 

Method. In spite of this drawback, domain methods are still adopted very often. 

As an example see Baskharone & Hamed (1981).

In this work, the Boundary Element Method (BEM) applied to a fluid flow 

solution is investigated. This technique is relatively recent and may overcome the 

problems with domain methods mentioned above. It can be considered as well- 

established in the field of structural analysis, where it was first applied, and has 

now already achieved a certain level of maturity in the field of fluid flow 

solution. The fact that this method has been given recently special attention by 

those working with CFD, is indicated by the growing number of the publications 

in this field. However, although the results presented so far are encouraging, the 

application of this method to solve complex engineering problems should be 

regarded as a matter of academic interest only.

The BEM has been under investigation by the Finite Element Group of the 

School of Mechanical Engineering at Cranfield for about 10 years, with a 

primary interest in the structural analysis and heat conduction areas. This work 

is, therefore, the first investigation of fluid flow using the BEM at Cranfield.



1.2- OBJECTIVES OF AND MOTIVATIONS 

FOR THE PRESENT WORK

The main objective of this work is the development of a theory and computer 

programs to solve potential and viscous flow problems using the Boundary 

Element Method.

The initial aim of this work was the development of a program for viscous flow 

analysis using the BEM. The decision to develop also a program for potential 

flow analysis was taken later. The main motivation for the development of a 

simple program came after it has been realized that there are many situations in 

fluid mechanics where a potential model can be adopted to investigate the 

phenomena. The flow through a cascade of turbomachinery blades is an important 

example of a situation where in most cases the potential analysis can at least give 

a good indication of the behaviour of the flow. Hence, the development of a 

program intended to solve potential flow in cascades formed by turbomachinery 

blades was included in the objectives.

The analysis of viscous flow using the BEM is the main interest of this work. 

Unfortunately, unlike potential analysis, the problem in this case is nonlinear and 

the flow domain needs also to be discretized, along with the boundary. The main 

advantage of the BEM over domain methods is thus lost. However, some 

formulations adopted in connection with the BEM have the characteristic of 

limiting the solution to the viscous region of the flow only. Thus, in this case, 

only the viscous region of the flow needs to be discretized. This seems to be the 

best effective way available in order to reduce the effect of the discretization of 

the domain in this situation. The vorticity-velocity formulation is the most 

important of those included in this category.
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An essential objective of the work, is the development of a program based on the 

vorticity-velocity formulation, where a new set of equations is attempted. The 

program is aimed, in the first case, at the solution of simple cases for the 

validation purpose, because of the difficulties involved in the development of a 

suitable program.

Because of the difficulties faced during the development of the vorticity-velocity 

formulation program, it was decided at a certain stage of this work, to start in 

parallel the development of another program, based on a different formulation. 

The penalty function approach was chosen for the main reason that a program 

could be generated based on a program for stress analysis purposes. This 

seemed to be the best option at that time, considering the short time left to carry 

out this task. Thus, a program based on the penalty function approach for solving 

viscous flow was also included as an objective of this research.

1.3- OUTLINE OF THE THESIS

The idea behind the BEM is discussed in Chapter 2, where a comprehensive 

literature survey of the method applied to fluid flow solution is also presented. 

However, more emphasis was given to the discussion of the literature on the 

vorticity-velocity formulation and on the most important formulations derived 

from the Navier-Stokes equations given in terms of primitive variables (pressure 

and velocity). The penalty function approach is included in this later category

In Chapter 3, the boundary integral equation (BIE) corresponding to Poisson’s 

equation is derived. The BIE relative to Laplace’s equation is given as a 

particular case. Finally, a discussion of the equations to solve potential flow is 

presented.
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The boundary integral equations corresponding to vorticity-velocity formulation 

are derived in Chapter 4. The differential equations based on vorticity and 

velocity are derived initially and it is shown that the analysis can be split into two 

parts: kinematics and kinetics. Afterward, the kinematic equation is transformed 

into BIE to give an origin to an integro-differential approach. Finally, the kinetic 

equation is also given in integral form in order to obtain a fully integral 

approach. The two different ways of representing the integral equations for the 

kinetics are given. In parallel, new integral equations to represent the kinematics 

and kinetics are proposed.

The penalty function approach is discussed in Chapter 5 where the formulation 

in differential form, based on the Navier-Stokes equations, is given first. Then, 

using the analogy with elasticity analysis, the corresponding boundary integral 

equations are derived.

Chapter 6 is entirely dedicated to the discussion of the numerical aspects of the 

application of the BEM to solve the BIEs presented in the previous Chapters. The 

way the equations were discretized are discussed and the discretized equations are 

presented. The approaches adopted to deal with singular integrals are discussed, 

along with the corner treatment adopted. The steps of the algorithms adopted in 

the programs to solve the BIE corresponding to the potential analysis and to solve 

the set of BIEs corresponding to vorticity-velocity and penalty function 

formulations are discussed.

In Chapter 7, typical case studies of internal laminar incompressible flow are 

considered using the programs developed and the results obtained assessed 

against analytical or numerical solutions from published works.
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Finally, conclusions and recommendations for future works are summarized in 

Chapter 8.



Chapter 2 

Literature Review

2.1- INTRODUCTION

Engineering problems has reached a level of great complexity to a point where 

there is no alternative but to solve many of them using numerical methods for the 

determination of an approximate solution. Nowadays, the importance of 

numerical methods in engineering calculations is evident, but their success is 

mainly associated with the emergence of powerful digital computers. Among 

these methods are at least two important techniques widely adopted to solve 

engineering problems namely the Finite Element Method (FEM) and the Finite 

Difference Method (FDM). However, it is true that there is no single technique 

that can solve efficiently every problem. Thus, searching for improvement in 

already well established techniques and even for the introduction of new methods 

is continuous. The Boundary Element Method (BEM) emerged few years ago as 

a result of this process and represents another alternative to engineers and 

scientists. This relatively new technique has become recognized as a powerful 

numerical tool to solve engineering problems. In some classes of problems the 

BEM, presents enormous advantages over traditional domain numerical methods, 

for example, Finite Element and Finite Difference methods. This document is 

turned to the discussion of the BEM applied to fluid mechanics.

2 .2 -BACKGROUND

The boundary element method (BEM), or boundary integral equation method 

(BIEM), is based on the integral representations for the solution of the partial
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differential equations. The derivation of various boundary integral formulations, 

which may be called boundary reduction, has a long history. One can appreciate 

that, for instance, more than a century has passed since the first application of 

integral equation methods. In these early stages, due to the difficulty in finding 

analytical solutions, theoretical investigations were mainly carried out by 

mathematicians. However, the motivation for early boundary reduction was in 

constructing an expression for the solution, especially for problems with an 

infinite or semi-infinite domain, so as to establish the existence of the solution for 

certain boundary value problems but not for the purpose of numerical calculation. 

Even in the classical works of Kellogg, Muskhelishvili, Mikhlin, and Kupradze, 

mentioned in many books on BEM, for example, Brebbia et al. (1984), one finds 

that this method is analytical rather than numerical. The methods developed by 

Trefftz and Prager in 1917 and 1928, respectively, mentioned in Beskos (1987), 

for solving integral equations in potential fluid flow theory might be considered 

the precursors of modern boundary integral techniques, even though such 

methods are really impractical without the use of a computer. Not until the 60’s 

has the method been gradually considered a numerical technique, a period that 

was characterized by the widespread use of computers. This combines the 

theoretical results of classical integral equations and the practical techniques of 

the FEM discretization and is the consequence of extensive use of digital 

computers. The BEM showed a considerable expansion and development during 

the 70’s, in step with the rapid improvements in computers, and approached a 

level of maturity during the first half of the 80’s.

The term "Boundary Element Method" emerged in the 70’s to indicate the 

surface discretization character of the method, and this name has been universally 

acknowledged, in preference to the former term "boundary integral equation 

method". However, the latter term is still being used by some authors. These
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terms are sometimes misleading since they give the idea that the integral 

equations used contain only boundary integrals, and so only the boundary needs 

to be discretized. However, non-linear problems normally include domain 

integrals in the integral equations and the domain has thus to be discretized as 

well. Hence, a new term "Boundary-Domain Integral Method" was introduced 

very recentiy, Zagar et al. (1990), especially for this situation, but it is still 

adopted by a few authors. The term BEM is likely to continue in use for all 

cases.

The BEM has come now to mean both the procedure of reducing the governing 

differential equations into integral equations on the surface of the domain and the 

numerical solution procedures for the integral equations. According to the way 

by which the boundary integral equation is formed and to the meaning of its 

unknowns, boundary element methods can be classified into two groups: the 

direct and the indirect approaches. The direct approach, indicates the fact that 

unknown functions appearing in the integral equation are the actual physical 

variables of the problem. In this case, the integral formulations are obtained with 

the help of certain fundamental integral theorems and connect directly the 

unknowns with the known boundary quantities. Conversely, the indirect approach 

can be used, which means that the unknowns, usually called density functions, 

have no direct physical meaning. In other words, the discretized integral 

equations are first solved for the density of singular solutions over the boundary 

surface. Then the remaining boundary quantities are computed in terms of these 

densities. Even though it has been shown by some authors that the indirect and 

direct BEM are formally equivalent, more emphasis is usually given to the direct 

BEM because they are more appealing to scientists and engineers.

Because of its generality with respect to geometry, its simplicity of the input data
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required, and its numerical accuracy, the boundary element method is applied to 

some extent in engineering and scientific calculations, mainly to solve problems 

with infinite or semi-infinite domains. Nowadays the BEM has a wide 

acceptance. The main advantage of the method is to reduce the domain of 

calculation by one dimension. Once the values of variables in the nodes on the 

boundary, such as the specific densities, potential and flux, displacement and 

traction, have been obtained, one can calculate readily the related physical 

quantities at any point in the domain under consideration. But one of the most 

significant advantages of the BEM is the capacity for transforming a differential 

equation into a full boundary integral equation (all integrals are performed on the 

boundary). Unfortunately, this is only possible for linear and a few classes of 

nonlinear problems. Many problems of engineering interest can not be 

represented by full boundary integral equations. In this case, the BEM loses part 

of its striking advantages over domain methods since domain integrals appear in 

the integral formulation. The numerical solution of the integral equations now 

requires that the domain be discretized as well. Researchers have been trying to 

find means to eliminate those domain integrals or at least to transform them into 

boundary integrals. Until now, however, the only effective way possible is when 

the integrands are constant or linear, which may occur only in very few practical 

situations.

The mathematical difficulty involved with the BEM is a factor that has prevented 

the increase in its popularity among engineers, together with the fact that the 

BEM is less forgivable to approximations made in the elaboration of the program. 

Also, most engineers are more familiar with the FEM and the FDM because 

they are still the methods adopted to solve the majority of engineering problems. 

One can not, therefore, expect that they will change their minds overnight. 

However, the particular mathematical problems, such as domain integrals, that
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appear in the formulation, have been under investigation and became a major 

target for many researchers in this area. It is, therefore, expected that solutions 

for the current difficulties will be proposed within a few years.

One of the most difficult mathematical tasks that one has to carry out when using 

the BEM is the derivation of the fundamental solution of the governing 

differential equation. That is the primary assumption required in the boundary 

reduction. The use of the fundamental equation makes the method rely on linear 

characteristic equations and means less versatility for the problems of variable 

coefficients and non-linearities. Nevertheless, the applicability of the boundary 

element method to non-linear problems, such as elastoplasticity, viscoplasticity, 

large deflection analysis and viscous flow, has been demonstrated in the areas of 

solid mechanics and fluid mechanics.

The first practical application of the BEM in engineering was in the area of solid 

mechanics. Since then, the BEM has been successfully applied to the solution of 

a wide variety of problems in this area. Applications in solid mechanics were 

responsible for most progress made in the use of this technique, as has happened 

to the FEM and FDM. Until recently, the BEM was a technique turned to solve 

problems only in this area. Nowadays, however, one can see that its applications 

have spread to other areas of engineering, such as acoustics, fluid mechanics, 

heat transfer, corrosion, geomechanics, etc. There are some very good textbooks 

on the BEM, such as Banerjee & Butterfield (1981) and Brebbia et al. (1984), 

which contain chapters dedicated to the discussion of the BEM applied to many 

fields of engineering science. However, the BEM literature is recently becoming 

richer and richer in textbooks devoted to specialized subjects. In particular, the 

BEM has recently received much attention by people involved with fluid 

mechanics as indicated by the increasing number of publications in this area.
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Included is the first book entirely dedicated to viscous flow solution, namely, 

Kitagawa (1990). In fact, it has already gained the confidence of some 

researchers in this area since the results are promising. There is, however, a long 

way to go before it reaches the status of conventional methods, such as the FEM 

or FDM, so as to be used on a large scale in solving engineering problems of 

fluid mechanics.

The method developed by Trefftz in 1917 for solving integral equations in 

potential fluid flow theory can be considered as the first fluid mechanics problem 

solved by the BEM (the numerical value of the contraction coefficient of a round 

jet issuing from an infinite tank). Also, it can be considered the first 

axisymmetric problem in which the fundamental solution was expressed by an 

elliptic integral, and the first nonlinear free surface problem. Nevertheless, the 

first important application of the BEM in fluid mechanics area was made in the 

field of aerodynamics through the pioneering work of Hess in the late 50’s and 

early 60’s. In these early stages, the term "boundary elements" was not 

established yet and the integral equation technique proposed by Hess was called 

the Singularity Method or Panel Method. But, using the new nomenclature, his 

method is classified as an indirect boundary elements method. However, many 

people still prefer to adopt the former nomenclature. This method has been 

successfully applied to inviscid flow analysis for more than 20 years and is 

recognized as a powerful numerical technique. Besides, it offers all the 

advantages of the BEM since it is applicable to potential flow (linear) and so the 

integral formulation includes only boundary integrals. In fact, it is still one of 

the most reliable techniques adopted by the aircraft industry in aerodynamic 

calculations.

Nevertheless, most fluid phenomena that appear in nature can not be simplified
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to an inviscid case, the problem having to be solved considering the effects of 

viscosity. This kind of flow is governed by the Navier-Stokes equations. It was 

only recently that applications of the BEM to the solution of viscous problem 

were investigated, because of the difficulty related to dealing with the non- 

linearity of the governing equations. As mentioned before, this is a kind of 

problem where domain integrals appear in the integral formulation and so 

difficulties are encountered. The main advantage of the BEM (no need of domain 

discretization) is lost in this case. Unfortunately, there is, as yet, no effective way 

to transform those domain integrals into boundary integrals. Some proposed 

approaches, however, have the advantage of confining the calculations over the 

domain to the viscous, or vortical, region of the flow. This region is in general 

small and a great amount of computational time can be saved. These approaches 

are in fact more effective for external flows (especially flows around streamlined 

bodies) than for internal flows. In extreme cases of recirculating flow (driven- 

cavity flow, for example) it becomes ineffective. However, nowadays these 

approaches seem to be the only way available in order to reduce the harmful 

effect caused by the appearance of domain integrals in the formulation. In the 

field of viscous flows, several formulations and approaches employing different 

dependent variables have been presented in the literature.

2.3- LITERATURE SURVEY

2.3.1- Vorticity Based Formulations

Searching for a more efficient numerical approach to solve high Reynolds number 

external viscous flows led J. C. Wu and his co-workers at Georgia Institute of 

Technology (U.S.A.) through a series of publications to initiate a research 

programme with the goal of removing some of the difficulties experienced in
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computing such flows. As a result, they have begun to use the BEM, along with 

a formulation involving vorticity (o>) and velocity (v) as dependent variables, to 

solve viscous flow problems, Wu & Thompson (1973). The idea of recasting the 

Navier-Stokes equations in terms of velocity and vorticity as dependent variables 

is not new and was suggested by Lighthill in 1963. In this way, it is possible to 

separate the set of equations into a kinetic part, which deals with the change of 

the vorticity field with time (equation of transport of vorticity), and a kinematic 

part, which relates the velocity field at any instant of time to the vorticity at that 

instant. Regarding the BEM, this formulation is the first and best known in recent 

years, among several types of formulation available. Wu & Thompson (1973) 

developed initially an integro-differential formulation, where the BEM is adopted 

only in connection with the kinematic part of the problem, while the kinetic part 

is solved by FDM. The main advantage of using an integral representation for the 

kinematic part is that it permits the explicit point-by-point computation of the 

velocity. As a result, the calculation can be concentrated to the vortical region of 

the flow, as will be shown later. Also, this formulation allows the flow field to 

be segmented. Each segment can be solved independently from the others, Wu 

et al. (1974). This technique of segmentation can be used to drastically reduce 

the amount of computation required. It also permits, for example, the boundary 

layer region of the flow to be treated separately from the detached viscous 

region, Wu & Gulcat (1981). The ability to treat the boundary layer and the 

detached regions of the Navier-Stokes flows separately is of particular importance 

to the computation of high Reynolds number flows. This is because the problem 

related to length scale of different regions of flow field is removed.

In this interval, Wu & Wahbah (1976) solved steady enclosed flow problems 

using this formulation. The important step, however, given in this work, was that 

they managed to produce an integral representation for the kinetic part of the
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flow as well. Both kinematic and kinetic parts were, therefore, represented by 

integral equations. They indeed took advantage of the fact that the equations for 

the kinematic and kinetic parts are, in the case of steady-state flow, similar 

(elliptic equations) to derive the integral representation for kinetic part. 

Additionally, the kinetic integral equation derived contains a boundary integral 

involving the total head, requiring the calculation of the boundary pressure (p) 

distribution. The important point is that the property of concentrating the 

calculation to the vortical region of flow field was preserved. A brief review of 

Wu’s research programme at that time and some discussion about the future work 

in this subject is presented by Wu (1977).

The previous works deal only with laminar flow. Wu et al. (1977), however, 

managed to extend this formulation to consider turbulent flow as well. It is shown 

that the numerical procedures previously established for steady and unsteady 

laminar flows move in a straightforward manner to turbulent flow. Although this 

work discusses some aspects related to unsteady flow problem, it is mainly 

dedicated to the steady flow case. Later, El-Refaee et al. (1982) proposed a 

formulation to deal with compressible flow.

An integral representation for the time-dependent vorticity transport equation was 

proposed by Wu (1982). An algorithm to solve time-dependent laminar 

incompressible viscous flow problems, using integral representations for both 

kinematic and kinetic aspects of flow, is presented. The derivation of the time- 

dependent kinetic integral representation is more involved than the steady case 

since now the vorticity transport equation is parabolic. In Wu et al. (1984), again 

the solution of time-dependent Navier-Stokes flow is discussed. But this time they 

analyse a hybrid procedure where the integral representation is used only in the 

solution of the flow regions adjacent to the solid boundary. In regions far from
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the solid boundary the FDM is used to solve the flow. Further discussions about 

BEM in fluids using this formulation was presented by Wu (1984 and 1985). 

Recendy, Wu (1987) used the viscous flow problem to describe physical 

perceptions associated with the BEM, where the procedure presented in Wu 

&Wahbah (1976) is discussed in more detail.

In the field of viscous flow, the research programme carried out by J. C. Wu and 

his co-workers seems to be the first important step in order to solve this kind of 

flow using the BEM. Most of their analysis so far has been mainly limited to 

external flow since they are more interested in the solution of problems in the 

field of aerodynamics. However, they pointed out, and gave an example that, this 

formulation can be applied to internal flow, as well. They indeed managed to 

solve problems considering many factors such as time-dependence, turbulence, 

compressibility and three-dimensionality. Although some authors have criticized 

their approach, mainly due to the difficulty of dealing with three-dimensional and 

compressible flows, it is certainly promising. The main advantage of the co-v 

formulation is the fact it allows the calculation of the velocity components to be 

carried out explicitly. As a result, the analysis can be concentrated on the vortical 

region of the flow only.

Bharadvaj et al. (1987) proposed an approach based on vorticity and vector 

potential to analyse incompressible unsteady viscous flow that has some similarity 

with Wu’s approach. In their approach, the phenomenon is studied as a limit of 

a sequence of infinite accelerations followed by intervals when diffusion occurs. 

The equation for velocity is obtained using Helmholtz decomposition and it is 

shown that the correct boundary condition to be imposed in this case is the 

normal component of velocity both for inviscid and viscous flow. At the same 

time, the tangential velocity boundary condition is automatically satisfied. On this
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point they disagreed with Wu’s approach where both normal and tangential 

velocities are specified as boundary conditions in order to create the conditions 

to calculate the vorticity distribution on the boundary using the kinematic 

equation. They also claimed some advantages for their approach in comparison 

with Wu’s approach, namely simplicity when dealing with three-dimensional 

flows and compressible flows. It is worth mentioning that the vorticity transport 

equation was solved by the FDM. Their approach seems interesting, but it is too 

early to assess its applicability since there are just few published paper on this 

subject.

In the mid 80’s, P. Skerget and his co-workers began to employ basically the 

same vorticity-velocity formulation as J. C. Wu, associated with the BEM, with 

the objective of analysing internal viscous flow. Accordingly, new issues were 

introduced by them. In one of their earliest works of a series, Skerget et al. 

(1984) presented solutions of the steady Navier-Stokes equations for some simple 

laminar internal flow cases (Couette, Poiseuille and driven-cavity flows), using 

the o j-v  formulation. Their work is mainly based on Wu’s proposal presented 

above. However, it is valuable to point out that they preferred to adopt a different 

integral representation for the kinetic part, that does not consider the pressure 

distribution on the boundary. Thus, the problem is solved for and v alone, but 

the normal derivative of vorticity is introduced in place of the pressure. The 

pressure in this case is obtained as a post-processing with the solution of a 

Poisson-type equation for pressure.

However, attention was paid also to the formulation involving the pressure in the 

same fashion as Wu’s approach in the works of Skerget et al. (1985a, 1985b, 

1986a, 1986b and 1987) and Skerget, Alujevic, Kuhn and Brebbia (1987). They 

applied this procedure to solve some test cases. For example, flow in an open
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cavity ( used by Wu & Wahbah (1976), as well), flow in a closed cavity with 

rotating cylinder inside, Couette flow and flow over a backward facing step. It 

is pointed out that the inclusion of the pressure in the algorithm provides more 

stable results. However, only in Skerget et al. (1986a) are there results for the 

pressure distribution around the boundary. Pressure distribution inside the domain 

was not obtained.

An important contribution was made by Skerget et al. (1986a) who managed to 

produce an integral representation for the Energy equation of the flow, and so the 

temperature was included as a dependent variable along with vorticity, pressure 

and velocity. The oj-v formulation including the integral representation for the 

Energy equation is used to analyse the mixed-convection flow problems in 

Skerget et al. (1987) and in Skerget et al. (1988), where the thermally driven 

cavity flow is adopted as a test case. Also, the integral representation for the 

Energy equation corresponding to natural convection flow was derived and used 

in connection with the co-v-p and co-v formulations by Skerget, Alujevic, Kuhn 

and Brebbia (1987). Here the thermally driven cavity flow was analysed. Results 

for mixed convection flow in a horizontal concentric annulus with a heated 

rotating inner cylinder were also presented.

The time dependent oj-v-T formulation was used to analyse two-dimensional 

natural convection flow inside a thermally driven cavity and inside a horizontal 

channel (Bernad’s cellular flow) by Skerget, Kuhn, Alujevic and Brebbia (1989). 

The importance of this work, apart the fact that time-dependence was introduced, 

is that it was carefully elaborated and more detail about the formulation is given. 

It can be considered as a good review of the derivations concerned with the 

vorticity-velocity formulation applied to two-dimensional flow. The time 

dependent laminar recirculating flow was analysed by Skerget et al. (1989),
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where the flow inside a channel with a square obstacle at various Reynolds 

number was used as the study case. The results show good agreement with those 

obtained using FEM.

Relevant derivations to the extension of this formulation to time dependent three- 

dimensional flow was presented in Skerget, Brebbia and Kuhn (1988) and an 

application is found in Kuhn et al. (1989), where the external natural convection 

flow around inclined cylinders is analysed. It is of note that due to the difficulty 

of handling three-dimensional flow, the subdomain technique had to be adopted 

in that work in order to reduce the computer time and memory demands. Later 

on, the time-dependent three-dimensional laminar flow, corresponding to the 

combined forced and free convection in the entrance region of an inclined tube, 

was analysed by Zagar et al. (1990). Isotherm contours and velocity fields are 

given for three different positions of the tube, however no quantitative 

comparisons with other methods were presented and the validation relied on a 

qualitative analysis of the results. They mentioned that proper validation could 

not be carried out because of the fact that the coarse mesh used was insufficient 

to describe the flow near the wall. Another case for time dependent three- 

dimensional free convection was analysed by Skerget et al. (1990), where the 

thermally driven flow inside a unit cube is solved. The fluid motion in this case 

is due to heating on the front wall, where the temperature is prescribed, while the 

temperature on the rear wall is kept equal to zero. All other boundaries are 

assumed to be adiabatic.

A review of derivations concerning time dependent three-dimensional laminar 

flow is presented in Zagar, Skerget and Alujevic (1990). The importance of this 

work is in the fact they managed to extent the formulation to include turbulence. 

The final boundary integral equations based on time average differential equation
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is given. However, only the results for two-dimensional laminar flow 

corresponding to free convection around a cylinder and the natural convection 

inside a square cavity with water, due to temperature difference from the left to 

right side, are presented. More recently, Rek et al. (1991) solved a simple case 

for turbulent flow. They analysed the Poiseuille flow using a purely algebraic 

effective viscosity. One conclusion is that a much finer mesh should be adopted 

in order to achieve satisfactory results. At the same time, Alujevic et al. (1991) 

made an important contribution to the analysis of turbulent flow using the BEM. 

The derivations of all equations are discussed and the two-dimensional turbulent 

flow inside a duct analysed using an algebraic model of turbulent viscosity based 

on Prandtl’s mixing length theory. The results obtained using two different 

models to determine the mixing length ( due to Nikuradse and Van Driest) are 

not so different to the results given by the FEM. Results for the case of laminar 

natural convection flow inside a square cavity with water, investigated by Zagar, 

Skerget and Alujevic (1990) were also presented. It is worth mentioning that 

again the subdomain technique was adopted.

The research programme carried out by P. Skerget and his co-workers employed 

basically the same formulation proposed by J. C. Wu, but has been concentrated 

on the analysis of internal flows. The results they have achieved so far are 

promising and, as a contribution, they managed to extent this formulation to 

consider temperature in the analysis. They also extended it to solve three- 

dimensional problems, but it seems this formulation is less attractive in this case.

The investigations carried out by both J. C. Wu and P. Skerget and their co

workers, individually, have been a significant contribution to the development of 

the G)-v formulation. It has, therefore, reached a reasonable level of maturity and, 

in spite of some continuing difficulties, it seems promising.
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A vorticity-stream function integral approach was developed by Onishi et al.

(1984), for the time-dependent Navier-Stokes equations, where the kinetics are 

represented by a vorticity transport equation similar to the one proposed by J. C. 

Wu. A Poisson equation relates the stream function and vorticity. They used this 

formulation to analyse some simple internal flow cases, such as, Poiseuille flow, 

flow over a backward facing enlargement and driven-cavity flow. Their analysis, 

however, was limited to low Reynolds number flow. This formulation was 

extended to consider temperature as a dependent variable in Onishi et al. (1985), 

where some applications are presented that include the analysis of natural 

convection flow in a closed compartment. An integro-differential scheme 

involving stream function, vorticity and temperature was developed by Onishi

(1986) and applied to analyse natural convection flow in a compartment. Tosaka 

& Onishi (1986) employed three different formulations to analyse steady and 

unsteady state natural convection in a closed cavity. The vorticity-stream function 

formulation is included along with a new formulation that considers only the 

stream function and temperature as unknowns.

Camp & Gipson (1987 and 1989) solved the nonlinear biharmonic equation 

describing steady two-dimensional viscous flow of an incompressible fluid at low 

Reynolds number. The governing equations for the flow field is reformulated into 

a set of coupled nonlinear Poisson-type boundary integral equations, in terms of 

vorticity and stream function. In order to achieve this, fundamental solutions for 

the biharmonic and Laplacian operators were derived. An important contribution 

is the way they discretize the domain. Linear isoparametric elements were used 

on the boundary while the domain was divided into a series of triangular areas, 

each formed implicity by a set of three vertices. Two are the end nodes of each 

boundary element and the other the source point under consideration. Each of the 

elemental triangular regions is divided into a series of smaller triangular areas.
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The effect is to concentrate quadrature points in a region close to the source point 

where the fundamental solution is singular, and so to "fan" the region about the 

point in question. Relaxation had to be used in order to get convergence of the 

iterative solution process. Two examples of flow were presented : the circular 

moving-wall problem ( where the flow is completely enclosed and generated by 

the moving wall) and flow through an array of impermeable cylindrical fibres.

The vorticity-stream function formulation is not generally applicable, since very 

seldom will boundary conditions be known in terms of vorticity, stream function 

and their normal derivatives. Very recently, Rodriguez-Prada et al. (1990) 

proposed the use of a new set of fundamental solutions that provide a complete 

coupling between the stream function and vorticity equations, this avoids a special 

treatment of boundaries in which there are two specifications for the stream 

function ( stream function and its normal derivatives ) and none for the vorticity. 

They applied their procedure to analyse the flow inside a square cavity whose 

upper lid is moving at a constant velocity. Although the results presented are 

good, the algorithm did not converge for Reynolds numbers larger than 300. It 

is worth mentioning that the boundary element equations were solved by the 

regular boundary elements method.

For the sake of completeness concerning this formulation, an alternative integral 

formulation for the solution of the biharmonic equation governing steady two- 

dimensional viscous flow of an incompressible Newtonian fluid ( considering 

Navier-Stokes equations without the inertial terms ) was derived by M. A. 

Kelmanson, using stream function and vorticity as dependent variables. His 

approach is employed in the analysis of several problems, such as, steady flow 

in a rectangular cavity with a sliding wall and in an infinite channel containing 

a symmetrical constriction in the form of a step, Kelmanson (1983a), and free
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surface flow, Kelmanson (1983b). An extension of this method was applied by 

Ingham & Kelmanson (1983) to a problem in lubrication technology.

The success of the vorticity-stream function formulation has been much associated 

with the solution of enclosed flows (cavity flow, for example) and low Reynolds 

flows, which can be represented by harmonic and biharmonic equations. It does 

not, therefore, seem to be a valid choice for high Reynolds number flow inside 

a open channel.

2.3.2- Formulations Using Primtive Variables

Formulations involving pressure and velocity as dependent variables are more 

familiar to us because the Navier-Stokes equations, in their differential 

representation, are normally recast in a form that contains these variables. In 

terms of integral equation representation, this formulation is earlier than any 

other because integral equations governing flow of incompressible viscous fluid 

have been available since the early part of this century, due to the pioneering 

work of Oseen (1927). He developed exact integral representations, along with 

the corresponding infinite space fundamental solutions, for both two- and three- 

dimensional flows. However, unless approximations are introduced, solutions 

can only be obtained for the simplest geometries and boundary conditions, even 

under steady state conditions (see Dargush & Banerjee (1990)). Youngreen & 

Acrivos (1975) applied numerical integration along with the method of collocation 

to these integral equations to examine steady Stokes flow (steady slow 

incompressible viscous flow - creeping flow) past arbitrary shaped objects, 

basically three-dimensional and axisymmetric problems. The advantage of this 

process is that the fundamental solutions for this problem are equivalent to the 

corresponding ones in linear elasticity (the well known Kelvin solutions) with
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Poisson’s ratio equal to 0.5. This initial application of the direct boundary 

element method to viscous flow utilised constant surface elements. The next 

major step was taken by Bush & Tanner (1983), who included nonlinear terms 

in the two-dimensional integral formulation as presented by Oseen, in the solution 

of a number of interesting problems at low Reynolds number. For example, two- 

dimensional flow in a converging channel (Hamel flow), drag experienced by a 

sphere and axisymmetric free jet flow. The formulations proposed were also 

based on the Navier equations of elasticity, using the concept of "pseudo-forces". 

Once again constant boundary elements were used, but now three-node linear 

cells were introduced throughout the domain of interest.

After the initial stage, the formulation involving pressure and velocity as 

dependent variables were focused by some researchers, mainly in Japan, which 

brought a new impetus to this formulation. As a result, a series of interesting 

works paper have been published. Kakuda &Tosaka ( see Tosaka and Onishi

(1985)) published two papers (in Japanese) where they used this formulation 

along with the penalty function approach, usually adopted in FEM, to solve some 

cases of internal flow. This approach was extended to analyse the unsteady state 

convection flow inside a square cavity by Kuroki et al. (1985), where the time 

derivative in the equation of motion is approximated by finite differences 

schemes. Linear elements were used to discretize the boundary, while the domain 

was divided into triangular linear cells. Simple iteration was used to solve the 

nonlinear equations and the size of the time increment was limited by the finite 

difference scheme. They pointed out that computer programs for the 

elastodynamics can be used to solve viscous flow with minimum modifications.

The use of the penalty function concept to solve the Navier-Stokes equations, in 

terms of integral representation, was initiated with the pioneering work discussed
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above. Later, this approach has been investigated by another group of 

researchers. Kitagawa, Brebbia, Wrobel and Tanaka (1986) solved the steady 

Navier-Stokes equations for incompressible fluids using a formulation involving 

a pseudo-body force and employing the penalty function to eliminate the pressure. 

It is shown that since the resulting equation is very similar to the so-called 

Navier equation of elastostatics, the viscous flow problem can be analysed in a 

similar manner. The integral equations for this case are derived straightforwardly 

from the elastostatics, since the same fundamental solutions are applied. 

Conversely, however, viscous flow problems are nonlinear due to the convective 

term (body forces), and so a different procedure is adopted for the numerical 

solution. One objective of their work was to investigate ways to calculate the 

derivatives appearing in the convective terms. These include a finite difference 

scheme ( employing both upwind and central approximations ) and a boundary 

integral equation. In order to evaluate the domain integral that contains the 

convective term, both rectangular constant cells and triangular linear cells were 

employed. They applied this formulation to solve the Hagen-Poiseuille flow and 

driven-cavity flow problems. The general conclusion was that the boundary 

integral formulation of the convective term is more accurate than the finite 

difference schemes.

This proposed approach was also extended to the thermal convection flow 

problem by Kitagawa et al. (1986), where the convective and buoyancy force 

terms in Navier-Stokes equations are considered as body forces. The Energy 

equation is considered as a Poisson type equation, and so the derivation of its 

integral representation follows the normal procedure presented in many 

textbooks. They analysed the natural convection flow inside a rectangular cavity 

and inside an annular cavity. They point out that, in order to achieve 

convergence, an under-relaxation technique has to be used. Kitagawa et al.
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(1987) enhanced this approach with the introduction of a self-adaptive coordinate 

transformation technique to obtain accurate results near the boundary. The 

isothermal step flow and the natural convection flow inside a square cavity were 

analysed.

Considering also the recent achievements, their approach is used to analyse the 

natural convection flow inside a square cavity by Tanaka et al. (1988). Kitagawa 

et al. (1988) briefly reviewed this formulation and made a comparison of the 

results obtained by using the quadrilateral elements and the linear triangular 

elements as internal cells. They use the natural convection flow inside a square 

cavity as a test case and conclude that the use of quadratic quadrilateral elements 

has some advantages, such as the improvement in accuracy and of the 

convergence of the results. They also examine the effect of the penalty function 

parameter and conclude, considering linear triangular elements, that they have 

little effect on the values of results except for a low value of this parameter. A 

range for the value of this parameter is also recommended. In addition, the 

evaluation of the pressure field is discussed and some results are presented. They 

show that the pressure distribution can be calculated easily by post-processing.

Very recently, Kitagawa (1990) published the first book entirely dedicated to 

viscous flow solutions using the BEM. His book is a review of the papers 

referred to above, and the extension of this technique to three-dimensional 

incompressible flow is discussed.

The approach based on the penalty function can be considered as having achieved 

a reasonable level of maturity, due mainly to the expertise borrowed from the 

progresses made in the elastodynamic field. The results achieved are promising, 

however, most of the applications made so far refer to enclosed flows. The
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problem is that their approach produces an implicit solution procedure, which can 

present problems related to the need for having to deal with the whole flow field 

( viscous and inviscid regions ) pointed out in the discussion of Wu’s approach. 

However, the main advantage of this approach is the fact that a program can 

easily be developed based on the one for elasticity analysis.

Tosaka & Onishi (1985) used the Weighted-Residual Method to transform the 

Navier-Stokes equations in two- and three-dimensions, for steady state and 

incompressible flow into integral equations. The fundamental solutions of the 

Stokes approximate equations are used as the weight functions for the velocity 

equation while the fundamental solution of the Laplacian is used as weight 

functions for the pressure equation. Two-dimensional flow in a driven-cavity was 

solved in order to show the workability of that approach. Although they presented 

details of the mathematical derivation of the fundamental solutions, very little is 

said about the numerical procedure. However, the numerical solution procedure 

employed by them and other numerical examples on Couette, Poiseuille and 

channel flows were presented in Tosaka et al. (1985). They adopted an iterative 

solution procedure in which the nonlinear terms were treated as the known 

forcing functions.

Tosaka & Kakuda (1986a) enhanced the implementation by utilising a Newton- 

Raphson algorithm for the iterative solution of the set of nonlinear equations, 

instead of adopting a simple iterative scheme. The efficiency of the method is 

demonstrated by the application to several two-dimensional incompressible 

internal flow problems, such as flow in a driven-cavity, flow through a sudden 

enlargement and flow past a step. It is useful to note that solutions for the flow 

in a driven-cavity are obtained over a broad range of Reynolds numbers.
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In Tosaka & Onishi (1986a), this formulation is extended to unsteady state cases, 

where the first order time derivatives are approximated by a one-step finite 

difference. The mathematical details of the fundamental solution derivation are 

presented, but no results are shown. Tosaka & Kakuda (1986b), presented details 

of the numerical procedure concerning the solution of unsteady state flow. The 

Newton-Raphson method is used to solve the set of equations for each time step. 

In order to show the effectiveness of the method, some results for axisymmetric 

flow through a sudden enlargement and flow past a step are presented. The same 

numerical procedure related to a pressure-velocity formulation is adopted as 

before. New applications of this methodology to solve steady state and unsteady 

state flow were presented in Tosaka & Kakuda (1986c). In order to demonstrate 

the accuracy and versatility of the technique, the flow past a step and flow past 

double steps are solved as test cases. A review of this approach to solve steady- 

and unsteady-state incompressible viscous flow is given in Tosaka (1989).

The Energy equation for the flow was considered in terms of integral 

representation by Tosaka (1986), where the steady and unsteady formulations for 

Navier-Stokes equations are reviewed. He analysed the steady state natural 

convection flow inside a rectangular cavity, and the unsteady state axisymmetric 

flow through a sudden enlargement. In these cases, the uncoupled problem was 

considered, where the Energy equation is solved separately. Tosaka & Onishi 

(1986b) used the methodology proposed in previous papers to show that one can 

derive systematically the integral equations in the same way, corresponding to 

steady and unsteady natural convection flow, based on three different 

formulations: the pressure-velocity-temperature, the stream function-vorticity- 

temperature and the stream function-temperature. They also present some results 

for the analysis of driven-cavity flow. The steady state natural convection flow 

inside cavities of different geometries (rectangular, non-rectangular and circular
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annulus enclosures) is analysed in Tosaka & Fukushima (1986). The unsteady 

state natural convection flow inside rectangular cavities was again analysed by 

Tosaka & Fukushima (1987), using the same numerical procedure presented 

before. Further results are presented in Tosaka & Fukushima (1988). A review 

of their previous analysis of natural convection flow is presented in Tosaka & 

Fukushima (1992).

An important contribution was made by Tosaka & Kakuda (1987), who extended 

the pressure-velocity formulation to consider turbulent flows. The numerical 

procedures are basically the same as for laminar flow cases. Some test cases were 

solved but only the plane channel flow case considers turbulence, the other cases 

refer to laminar flow.

Previous works referring to this formulation consider only two-dimensional flow, 

although some indication is given that extension to three-dimensional flow is not 

a difficult task. Tosaka et al. (1990) effectively extended the analysis to consider 

three-dimensional incompressible flow. The numerical procedure is very similar 

to the previous work, except that a simple iterative process was adopted. The 

flow inside a cubic cavity driven by a lid sliding at a uniform velocity was used 

as a test case and the results are presented for Reynolds numbers of 1, 10 and 20.

The approach that has been under investigation by Tosaka and his co-workers, 

which appeared just a few years ago, can already be considered as an important 

alternative for viscous flow solutions. His group has been publishing a series of 

interesting papers in order to demonstrate the validity of this technique. Included 

in their analysis are factors such as time-dependence, turbulence and three- 

dimensionality. Although the results achieved are good, their approach leads to 

an implicit solution procedure like the Kitagawa’s approach.
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2.3.3- Alternative Formulations

A quite different analysis of unsteady incompressible viscous and inviscid flows 

is presented in Piva et al. (1987), where the formulation is in terms of dynamic 

pressure and has the advantage of limiting the field integral to the vortical region. 

Both viscous and inviscid flows were solved and compared in order to see how 

the presence of viscosity affects the flow. Their proposed algorithm for high 

Reynolds number flow is based on the difference between the viscous and 

potential equations. This they claim, can lead to a reduction of the difficulties 

encountered in solving the original equations directly. Their idea is interesting 

because the calculations can be concentrated on the vortical region of the flow 

field. However, it is too early to assess this technique since just a few papers 

have so far been published.

A different approach proposed by F. K. Hebeker which considers a formulation 

involving pressure and velocity as dependent variables to solve viscous flow, has 

also been under investigation. However this approach is mathematically more 

involved, and is, therefore, less attractive to engineers. Besides, results for very 

few applications are presented. Hebeker (1985) used a point collocation type of 

BEM to solve the three-dimensional viscous flow represented by Stokes 

equations. Borichers & Hebeker (1986) attempted an hybrid approach by 

connecting the BEM with a Spectral Method to analyse unsteady Stokes problem. 

Unsteady Navier-Stokes flow are analysed in Hebeker (1987) where a Lagrangean 

approach is adopted to handle the convective term of the equation. This approach 

was extended to consider compressible Navier-Stokes flow by Hebeker (1988) 

and new issues about it are addressed in Hebeker (1989). Hebeker’s approach 

seems to be in the early stages of development, and only a few results have been 

published.
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Most of the works reviewed until now refer to low subsonic flow. However, for 

additional information only, the BEM applied to transonic and high subsonic flow 

has been systematically under investigation by some researchers including, for 

instance, Zuosheng (1985,1986 and 1987) and Ogana (1989a and 1989b).

In order to solve any boundary integral equation using the BEM the source point 

can be located anywhere, but researchers usually consider only to place source 

point inside the domain and over the boundary. However, there are some 

advantages in placing the source point outside the domain. Mainly, performing 

singular integrals on the boundary is avoided and the corners of the domain can 

be treated easily. This technique is called "Regular Boundary Element Method". 

Despite these advantages, it seems that this technique has not interested 

researchers in many areas. In fluid mechanics, for instance, there are only a few 

published works dealing with this technique. Most are due to a group of 

researchers in UK. In Patterson & Sheikh (1982 and 1983), for example, this 

technique is used to solve two-dimensional, steady state, inviscid, laminar flow 

in channels considering different shapes of obstacle, where a formulation 

involving the stream function is employed. They also investigated the possibility 

of using higher order weighting functions and a better position of the source point 

outside the domain. The regular BEM is a valid alternative to deal with some 

types of problem. However, this is still under investigation since, in some cases, 

it introduces behaviour in the results that are not completely understood. To 

author’s knowledge, this technique has hardly been applied to viscous flows.

2.4- CONCLUSIONS OF THE PREVIOUS WORKS

The works discussed above demonstrate the potentiality of the BEM in the field 

of fluid mechanics with relatively simple examples. However, the BEM is still
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considered a technique in development for the solution of viscous flow problems 

of interest in engineering, because some issues need to be addressed in terms of 

realistic problems, such as accuracy, efficiency, convergence and so on. 

Certainly, the application of the BEM to solve complex problems is nowadays 

under investigation, but just a few results have been published. It is expected that 

as a consequence of those studies improvements will be introduced. Only after 

this stage of refinement can the technique be applied as a reliable technique for 

solving fluid mechanics problems. Nowadays, engineering tasks using the BEM 

for the solution of viscous flow problems, especially those governed by the 

Navier-Stokes equations, must be seen as a matter of academic interest, since the 

applicability of the technique to solve this class of problem is still under 

investigation.

Other conclusions can be drawn from the works reviewed. The Vorticity- 

Velocity, Penalty function and Tosaka’s approach are the most important 

formulations adopted to solve viscous flow using the BEM. The Vorticity- 

Velocity Formulation has the advantage over others with relation to the fact that 

the calculation can be limited to the vortical region of the flow. However, its 

extension to deal with compressible or three-dimensional flow has not yet proved 

to be efficient. The Penalty Function formulation has the advantage of being easy 

with respect of the development of the program, provided that a program to 

elasticity problems is available. This formulation, however, suffers the same 

problem as Tosaka’s approach, due to the fact that they lead to an implicit 

solution. That is, the whole domain has to be solved. Besides, the approach has 

been attached to the analogy between fluid mechanics and elasticity formulations, 

and so some advantages may be lost if extension to other situations, like 

turbulence, is tried. The Tosaka’s approach is more involved from the 

mathematical point of view and may require more skill than the others. However,
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in terms of applications, compared with the alternatives, Tosaka’s approach 

solves the most difficult test cases. The main problem is still the fact that this 

approach leads to an implicit solution scheme.



Chapter 3

Potential Problems

3.1 - INTRODUCTION

In this Chapter the analysis of the potential problems described by the Laplace’s 

or Poisson’s equations is considered. This class of problems are described by 

very simple governing differential equations that at the same time are among the 

most useful of all the partial differential equations occurring in physics and 

engineering.

The significance of the Laplace’s and Poisson’s equations lie in the diversity of 

physical phenomena that they govern. This class of potential problem includes, 

for example, potential fluid flow, heat flow, shaft torsion, and many others.

In the BIE applied to potential problems, the domain integral that appears through 

the non-homogeneous term of Poisson’s equation, creates no problem since, in 

general, it contains no unknown in the integrand. The problem becomes even 

easier when the Laplace’s equation is considered since no domain integral is 

present, and the BIE retains the characteristic of being represented only by 

boundary integrals. In other words, the dimensionality of the problem is reduced. 

In this case one does not need to discretize the domain. These characteristics help 

to reduce the work involved in the elaboration of programs and input files, and 

also to reduce the computer memory required. This is a example of a case where 

the advantages of the BEM is fully exploited. These features are usually 

misunderstood by people not directly involved with the BEM, who assume that 

the BEM is applied only for potential problems or that the discretization of the
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domain can be always avoided.

3.2- DIFFERENTIAL EQUATION

As was mentioned before, many engineering problems are governed by an 

equation of type

V2!! + b = 0 (3 1 )

applied to a simply connected domain 0 bounded by a closed smooth surface V 

and subjected to boundary conditions

u = u onTj (3-2)

q = g  = q o n r2 (3.3)
an

according to Figure 3.1. In the general case, the boundary conditions are of 

mixed or Cauchy type, in that they combine Dirichlet and Neumann type 

boundary conditions given by Eqs. (3.2) and (3.3), respectively. Note that b, 

sometimes regarded as a "body force" term, in Eq. (3.1) represents any known 

function, otherwise the problem would be non-linear and an iterative process 

would be required to solve it. Eq. (3.1) is the Poisson equation upon which the 

following analysis on boundary integral equation will be based. The Laplace 

equation results when the term b vanishes, and so is treated as a special case.

3.3- BOUNDARY INTEGRAL EQUATION (BIE)

The first task related to the application of the BEM is the transformation of the 

differential equation of the problem into a corresponding BIE. At least for
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potential analysis, the derivation of the BIE is shown in every textbook on BEM 

and so only the main steps are given here. Firstly, however, one has to decide 

which approach should be adopted in order to transform the differential equations 

into BIE. In the direct BEM there are two principal but different ways that can 

be adopted. The one normally used is that based on the Weighted-Residual 

Method, which is closely related to the FEM. However, one may prefer to adopt 

the process based on the use of Green’s identities. The former is adopted 

throughout this work because among other advantages, it is more general and has 

been used in connection with other approaches, like FEM.

3.3.1- Weighted-Residual Statement

The Weighted Residual Method is discussed in several textbooks on FEM and 

BEM. Briefly, this technique is based on a theorem that states that if there is a 

solution u to the problem defined by any differential equation D(u)= g(x,y), 

where D is a differential operator and g(x,y) the non-homogeneous term, and if

f  f  u*RQdxdy + f  v*Rr dT = 0
Q r

is satisfied for any arbitrary sets of weighting functions u* and v*, where R0 and 

Rr represent the residuals (or error) due to the use of the solution u in the 

differential equation and boundary conditions, respectively, then

Rq =
Rr = 0

and u represents an exact solution. This theorem is used in connection with many 

numerical techniques, like the point collocation method, that differ from each 

other mainly in the criterion used to select the weighting functions. These
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methods are classified as weighted-residual methods.

Considering the problem described by Eqs. (3.1) to (3.3), if u is approximated 

by another function u, then residuals are formed by use of this approximate 

function in the following manner:

V2*! + b = Rq

u -  u = Rr

q -  q = Rr2

For such cases, a generalized weighted-residual expression may be written as 

follows:

u*V2udxdy + u*bdxdy
Q Q (3.4)

+ v*(u -  u) dT + j> w*(q -  q)dr = 0 
r, r2

where u*,v* and w* are arbitrary weighting functions. This expression is 

sometimes called the weak weighted-residual statement. The terms containing the 

boundary integrals would disappear if the solution u satisfied the given boundary 

conditions. Since it is not always possible to verify this constraint a general 

expression like Eq. (3.4) must be used.

This expression can be manipulated further in order to obtain the so-called 

inverse weighted-residual expression. First, using Green’s identities or 

integration-by-parts theorem given in Appendix B, the first domain integral term
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in Eq.(3.4) can be transformed into:

u*(V2u)dxdy = j> u*qdT -  ^q*udT + (V2u*)udxdy (3.5)

In order to investigate the error introduced by the fact that the solution u in 

general does not satisfy exactly the boundary conditions, let us define u and q 

such that they satisfy exactly the give boundary conditions, that is

u = u on , u = u on T2 or in Q 
q = q on Tj , q = q on T2

and so, it can be shown that

(f q*udT = <f q*udT + (f q*(u -  u)dT

Substituting the above equations into Eq. (3.5) and then introducing the final 

expression into Eq. (3.4), a generalized inverse weighted-residual expression is 

obtained as follows:

Q r r Q

and

<f u*qdr = <f u*qdT + <f n*(q -  q)dT •*r Jr  'f .

/ / ( V 2u*)udxdy + / /  u*bdxdy + /u*qdT

r

where B is given by:



45

B = j>(v* -  q*)(u -  u)dT + j>(w* + u*)(q -  q)dT 
r  r

and represents the boundary conditions weighted error.

Such a weighted residual expression may be simplified if a relationship between 

the weighting functions exists. As discussed by El-Zafrany (1993), an optimum 

choice for the weighting functions is the one which minimizes the boundary 

condition error. This can be achieved by selecting them such that B=0, for any 

prescribed values of u and q. Hence,

jfc jfc jfc jkv = q , w = -u  

and the final inverse weighted-residual expression is given by:

j j (V2u*)udxdy + f f  u*bdxdy + ^u*qdT -  ^q*udT = 0 (3.7) 
q q r r

This same expression is obtained in many textbooks considering directly the 

relationship between the weighting functions above into the weak weighetd- 

residual expression. Note in Eq. (3.7) that the weighting function u* now needs 

to be continuous up to the second derivatives and u needs to have continuity of 

the function itself in the domain.

3.3.2- Fundamental Solution

Note that if there is a weighting function that satisfies a singular Poisson’s 

equation, then the domain integral that containing the unknown can be simplified, 

and so the only remaining unknowns are inside the boundary integrals. This 

problem corresponds to an infinity domain where a concentrated unit potential is
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applied in one point. The solution for this particular problem is the so-called 

fundamental solution. The derivation of the fundamental solution is, in fact, one 

of the most important steps towards obtaining the BIE in the application of the 

BEM. Sometimes, however, the derivation is not simple.

The fundamental solution corresponding to the Laplace’s equation was probably 

the first one to be obtained and also one of the simplest. It is discussed in every 

textbook on BEM. In El-Zafrany (1993), for example, the fundamental solution 

for this case is derived in two ways: mathematically and based on the heat 

conduction approach to provide a physical understanding behind this concept. It 

will not therefore be derived here, only the final expression is given.

With the help of the Dirac delta function to represent the concentrated unit 

potential at any point "i" in the domain, the equation for the particular problem 

described above is given by:

where the fundamental solution is a function of two points, as shown in the 

Figure 3.2: the source point ( x ^ )  at which the singularity of delta function is 

located and also where the concentrated unit potential is applied; and the 

reference point (x,y), also called the field point. The fundamental solution in this 

case is:

where r is the distance between the source and reference points, given by:

V2u* + aCx-Xj.y-yj) = 0 (3.8)

u —  In -  
2 n  ( r j

(3.9)

(3-10)
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3.3.3- Boundary Integral Equation (BIE)

The role of the fundamental solution in the derivation of the BIE is now 

considered. Substituting Eq. (3.8) into the appropriate domain integral of Eq.

(3.7), and also using the property of the Dirac delta function given in Appendix 

B, the domain integral containing the unknown being transformed is given by the 

following:

-  f f  8(x -x i,y-yi)udxdy = -  q u ^ y , )
Q

where the constant Q is defined in Appendix B. Hence, substituting the above 

result into Eq. (3.7) gives the following BIE:

Ciu(x.,y.) + ^uq*dT = ^u*qdT + f f  u*bdxdy (3.11) 
r  r  q

which is the BIE corresponding to the specified point "i" in the domain

considered. This equation can be applied to any internal or boundary points of 

the domain, provided that the appropriate value for the constant Q is adopted.

In some problems, it may be necessary to calculate the derivatives in the x- and 

y- directions of the potential u, inside the domain. In this case expressions 

suitable for the calculation can be obtained deriving Eq. (3.11) with respect to the 

coordinates of any arbitrary source point, Xj and yr This can be carried out

because Eq. (3.11) is regarded as an expression that can give the value of u

continually at any source point inside the domain. Therefore, the following BIE 

for the derivatives of u can be obtained:
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—  L  y) = f u - ^ - d r  -  fq -^ -d T  -  f f b -^ -d x d y  (3.12)ar'CW  |) J Phr J J rhc J

and

dx CXi,yi' i  3x i  3x dx

f  ■ f ’ f *  -  f ‘> f r ' lr  -  / / b^ r <t,;,ly <313)

for derivatives in x- and y-directions, respectively. Note that in order to obtain 

these expressions, the derivatives of the fundamental solution and its normal 

derivative, with respect to xf and yi? were replaced by derivatives with respect to 

x and y using the following relations, given in El-Zafrany (1993):

0f(r) = dffr) di_ m _ df(r) 
ax. dr dx. dx

(3.14)

and

dm = df&)J?r _ afOO
dy{ dr dy. dy

where f(r) is any function of r.

3.4- POTENTIAL FLOW ANALYSIS

In spite of the fact that in all fluid flow phenomena viscosity effects are present, 

a great number of cases can be conveniently treated as inviscid and irrotational, 

i.e. the so-called potential flow. This kind of approximation is particularly 

important to solve aerodynamic problems. The potential approach is employed 

in this case to calculate, for example, the velocity and pressure distributions 

around the body in order to evaluate the lift with good accuracy. However, this 

analysis cannot predict drag accurately, for example, since this a phenomenon
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closely linked to viscous effects. One important application in the field of internal 

flow solutions, is the analysis of the flow through cascades of turbomachinery 

like fans,compressors and pumps, especially axial ones. This simplified model 

is very often adopted in order to evaluated the pressure distribution on the surface 

of cascade blades and the flow angles, parameters very important for the design 

of the turbomachinery. There are a great quantity of works on this subject in the 

literature, where the potential flow in cascades is solved using the domain 

methods, see for example Thompson (1973) and Baskharone & Hamed (1981). 

The problem of these methods is that they require the domain discretization. They 

are thus inefficient if compared with the BEM, which needs, in this case, that 

only the boundary is discretized. The Panel Method, which is regarded as a type 

of BEM, is sometimes adopted for solving this problem. The analysis here, 

however, adopts a type of BEM that uses directly the physical variables of the 

problem, the so-called direct BEM. It seems that the first work in this area 

adopting this type of BEM was the one due to Carte (1992). His work gives a 

good example of the potentiality of the BEM in the turbomachinery area. 

However, he fails to present any comparison of his results to assess the accuracy 

of the method. Also, although qualitatively his results seem convincing there are 

some points in his work that may be opened to criticism, mainly with regard to 

the imposition of the trailing edge condition.

Another advantage of the BEM is that it allows the continuous calculation at 

interior points of the domain, which could be interesting to analyse certain 

regions of the flow in more detail. For example, an extra program was adopted 

by Miller & Serovy (1975), which adopt the FDM in their analysis, to magnify 

the trailing edge region of the flow in order to analyse in detail the flow in this 

region. This is another example where the BEM can replace domain methods 

with advantages.
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The potential flow of an incompressible fluid is governed by Laplace’s equation 

in terms of either the velocity potential,<£, or the stream-function,!/', parameter. 

Both velocity potential and stream-function satisfy the continuity equation 

identically. The adoption of one or another variable depends mainly on the 

problem being considered. For example, in a three-dimensional analysis, the 

velocity potential should be used in place of the stream-function, which in this 

case has many components. On the other hand, the velocity potential is strictly 

valid only for irrotational flow, while stream-function can be used for both 

rotational and irrotational flow. In addition, depending on the geometry of the 

problem, it may be convenient to use one or another variable. In a domain 

formed by the blade-to-blade channel of cascades, for example, the stream- 

function is normally used in order to deal with the periodic boundaries. On the 

other hand, if the domain in this case is one that includes one blade in the 

middle, use of the velocity potential is more appropriate.

If the flow is irrotational, the velocity components, vx and vy, in x- and y- 

directions, respectively, are expressed in terms of the velocity potential as 

follows:

V = M . V 
x dx. ’ y dy

and in the case of incompressible flow from the Continuity equation, Eq.( A .l) 

of Appendix A:

V2̂  = 0

The boundary conditions consist of two parts: on one part of the boundary, the 

value of the velocity potential is prescribed, 4>h, while on the rest of the boundary 

the normal derivative of the velocity potential is prescribed as equal to the normal 

component of the velocity, vn. That is,
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<t> = 4>b on I \
04> „—  = v on T0
a n  ” 2

On the other hand, the velocity components may also be represented in terms of 

the stream-function, as follows:

v = • v = -
x dy ' y ax

and from the condition of irrotationality (vorticity equal to zero), the vorticity 

relationship given in Appendix A, gives:

0V 0V
(O = —Z ----- 5 = 0

0x 0y

and

V2!!/ = 0

Once again the boundary condition is assumed to consist of two parts: on part of 

the boundary, the value of the stream-function \j/b is prescribed, and on the rest 

of the boundary, the tangential component of velocity, vt, is prescribed, such as

t|t = T(fb on I \

0ljj T,—  = - v, onan ‘ 2

Special subroutine has to be introduced in the program to deal with the 

periodicity conditions, since in this case no boundary conditions is prescribed. 

The additional information to solve this case comes out of the relationship 

between the distributions of the normal derivative of potential and the potential
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The potential flow analysis can be carried out by the BEM through Eq. (3.11) 

using either the velocity potential or the stream-function approach. Eqs. (3.12) 

and (3.13) are also important in this analysis in order to evaluated the velocity 

components at internal points of the domain. Note that in this case, the remaining 

domain integral appearing in these equations vanish because the equations are 

homogeneous.

The Navier-Stokes equations, discussed in Appendix A, are reduced in this case 

to the Bernoulli’s equation, given by:

p + — p v2 = K
F 2

where p is the static pressure, p is the density of the fluid and the constant K 

assumes one value for each streamline in rotational flow. There is therefore, one 

equation for each streamline. On the other hand, if the flow is irrotational, as is 

the case for potential flow, K assumes one value which is the same throughout 

the flow, i.e., it has the same value in every streamline. This expression is used 

to obtain the pressure results from the solution for velocity.



Chapter 4

Vorticity-Velocity
Formulation

4.1- INTRODUCTION

Most of the analysis of the fluid flow problems using conventional methods are 

based on the formulation involving the so-called primitive variables, that is 

pressure and velocity. However, sometimes the mathematical statement of flow 

problems may be conveniently formulated using vorticity as a major dependent 

variable, since along with some numerical advantages, the vorticity itself plays 

an important role in fluid mechanics analysis. For example, turbulence 

phenomena and flow separation. Also some flow configurations are most readily 

understood through the vorticity parameter. The main advantage from the 

numerical point of view, is the fact that the pressure is eliminated from the main 

solution procedure, and the incompressibility constraint, that is the Continuity 

equation, is satisfied by definition. This makes the calculation easier. Thus, the 

vorticity-related formulations are an important alternative to the analysis of flow 

problems that has recently been increasing in importance.

Among the existing formulations using vorticity, the vorticity-stream function 

formulation is already well established for the solution of two-dimensional, 

compressible and incompressible, internal and external flows. The main 

advantage of such a formulation is associated with the fact that the number of 

unknowns is less than the formulation in terms of primitive variables. However, 

this kind of formulation is not attractive for solving three-dimensional flow 

because the number of unknown increases, since in this case both vorticity and
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stream function have three components. An alternative in this situation is to adopt 

the velocity potential instead of the stream function. However, a further difficulty 

related to the implementation of the boundary conditions appears, especially for 

internal flows. Even the traditional formulation involving primitive variable 

presents some problems in imposing boundary conditions for the pressure 

equation in this situation. The vorticity-velocity formulation has, therefore, 

become an increasingly attractive alternative because of the easier treatment of 

the boundary conditions, even though the number of equations increases. In other 

words, it seems to be much easier to impose boundary conditions to velocity than 

to variables like velocity potential and stream function. It is for this reason that, 

the formulation involving vorticity and velocity as dependent variables has been 

investigated for the solution of two- and three-dimensional flows using basically 

domain methods like Finite Elements and Finite Differences. However, the 

question of why one would want to use a vorticity-velocity formulation is not 

easy to answer yet, in spite of the popularity which this formulation seems to be 

achieving in engineering circles. This is pointed out by Gunzburger et al. (1990), 

who presents a comprehensive discussion on this formulation. Some justification 

for problems using non-inertial frames of reference is given is Speziale (1987). 

The fact is that this formulation has only recently been investigated if compared 

with others and little comparative data with other solutions exists, and so just a 

little is known about it. Consequently, its potentiality has not sufficiently been 

exploited yet.

Conversely, those formulations involving vorticity suffer from the classical 

problem of imposing the boundary conditions for vorticity and so the accuracy 

of the results of this parameter is not generally good. This is a serious drawback 

even if the one is not interested in the vorticity parameter itself, since any known 

method which recovers the pressure from vorticity and stream function, for
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example, will yield pressure approximations which are never of better accuracy 

than are the vorticity approximations. The same conclusion seems to be true 

when the vorticity-velocity formulation is being considered.

Another problem associated with the use of domain methods is the fact that in 

order to deal with high Reynolds number flows a very fine mesh is required, a 

problem which affects indistinctly all those formulations.

The integral formulation proposed by J. C. Wu mentioned previously, based on 

the Boundary Element method, which adopts the vorticity and velocity as 

dependent variables, presents none of these problems. In fact, the integral 

formulations generated in connection with the BEM has become a focus of 

interest for many aerodynamicists, since they seem promising. As mentioned 

previously, this kind of integral formulation is one of those adopted in this 

research. Since the integral equations are generated from the differential 

formulation, it is convenient first to derive the differential equations 

corresponding to the vorticity-velocity formulation.

4.2 - DIFFERENTIAL FORMULATION

The motion of a viscous fluid is governed by the law of mass conservation and 

Newton’s second law of motion. The mathematical statement of these two laws 

are familiarly expressed in differential form and known as the Continuity and 

Navier-Stokes equations, respectively. These equations are represented for a 

steady-state and incompressible flow by Eqs. (4.1) and (4.2), respectively,
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V . v = 0 (4.1)

and

(4.2)

where v is the velocity; p the static pressure, f are the conservative body forces; 

p the mass density and v the kinematic viscosity of the fluid. Equation (4.2) is 

derived in Appendix A, where only the most important steps are presented and 

the meaning of each term is discussed.

Equations (4.1) and (4.2) are, in principle, sufficient for the determination of v 

and p, known as the primitive variables of the problem, provided that adequate 

boundary conditions for the velocity vector are prescribed. Non-penetrating and 

non-slip boundary conditions at the surface of a body are most frequently 

considered.

The vorticity of a fluid in motion is defined in Appendix A as:

this applies at every point within the fluid domain.

The existence of vorticity generally indicates that viscous effects are important. 

This is because fluid particles can only be set into rotation by an unbalanced 

shear stress. Therefore, vorticity dynamics, roughly speaking, offers a method 

to separate a flow into viscous and inviscid effects. Also, it allows the problem

c5 = VAv (4.3)
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to be split into the kinetic and kinematic aspects. These concepts are discussed 

below.

The stress-strain relation, which differentiates the kinetic behaviour of a solid 

from that of a fluid, is part of Eq. (4.2). Consequently, it is valid only in the 

fluid region. Equation (4.1), however, is a kinematic equation, which is valid for 

both the fluid and solid regions. These remarks are in general not important, but 

they are used here to introduce two terms not usually adopted in the literature on 

fluid flows: the kinetic and the kinematic aspect of the flow. According to these 

concepts, the kinetic term refers to any analysis in which the forces are involved, 

and in this case fluids and solids behaves very differently. Conversely, the 

kinematics refers to any analysis where only the geometry of the motion is 

considered. The forces causing the motion are ignored. This term applies to any 

parameter closely related to the velocity field of the fluid, for example, vorticity. 

The reason for introducing this terminology here is that an integral formulation 

based on vorticity and velocity is normally split into two parts referred to in the 

literature as the kinetic and the kinematic parts, that seems appropriate in order 

to understand the problem and to produce a better solution procedure.

The kinetic aspect of the flow problem is concerned with various processes like 

convection, diffusion, etc. These govern the distribution of field variables such 

as the momentum, energy, vorticity, etc. Kinetic aspects of the problem are 

normally described by a differential equation known as the transport equation. 

For the present analysis, the principal variable of the flow is vorticity, whose 

transport equation can be obtained for incompressible flow by taking the curl of 

each term of the equation (4.2). Thus, for each term we have

(i) V A [(v .  V)v] = -V A [v  A(VAv)]

according to the vector property (B .ll) in Appendix B;



vp; _
because f , as discussed in Appendix A, can be considered conservative 

and in this case, irrotational;

according to (B.l); and

(iv) V A (v V 2v) = v V26>

that can be obtained using the vector property (B.9) twice, along with 

(B.2) and Eq. (4.1).

Hence, the curl of the Eq. (4.2) can be written in terms of v and co as follows:

or using (B.12) and (B.2) the term on the left-hand side of Eq. (4.4) can be 

represented by

V A  (v A 65) = (65 . V) v -  65(V.v) -  ( v . V) 65

If the Continuity equation is also applied, it makes the second term on the right- 

hand side of the previous equation equal to zero, and thus

(iii)

-  VA (v A 65) = v V265 (4.4)

VA(v A 65) = (65 . V) v -  ( v . V) 65 (4.5)

Substituting Eq. (4.5) into (4.4), gives:
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(4.6)
( v . V) 65 -  ( 65 . V) v = v V 65

However, the main interest in this work is the analysis of plane problems. In this 

case the vorticity vector has just one component, perpendicular to the plane of 

the flow. Thus, due to the orthogonality between v and co, the second term on 

the left-hand side of Eq. (4.6) vanishes, and so

V23 = - i ( ? . V ) 3  (4.7)
V

This is the diffusion-convection equation for vorticity.

The first and second terms on the left-hand side of Eq. (4.6) represent, 

respectively, the convection of vorticity with the fluid and the amplification and 

rotation of vorticity by the strain rate. The term on the right-hand side of this 

equation represents the diffusion of vorticity through viscous action. These kinetic 

processes redistribute the vorticity in the fluid flow. One of the most important 

things about the vorticity transport equation is that the pressure does not appear.

The usefulness of vorticity in interpreting fluid flow problems is that it tracks 

only the effect of viscous forces; pressure and gravity forces will not directly 

change it. The physical reason behind this has to do with the fact that vorticity 

is an indicator of solid-body rotation. Pressure forces and gravity forces act 

through the centre of mass of a particle and cannot produce rotation. On the other 

hand, shear stresses act tangentially at the surface of a particle and, if they are 

unbalanced, will generate vorticity. The intimate connection between unbalanced 

shear stresses, or viscous actions, and vorticity is made even clearer by noting 

that the viscous term in Equation (4.2) can be written as
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v V2v = -  v VA c5

using the relation (B.9) of Appendix B. An unbalanced shear stress can only exist 

when the vorticity is non-zero. As a general rule the existence of vorticity means 

that a particle is, or at least in its recent history, was subject to net viscous 

forces.

The kinematic aspect of the problem relates the vorticity distribution at any 

instant of time to the velocity distribution at that instant and vice-versa. The 

equations representing this part of the problem fall into three main categories: (a) 

those that deal directly with the lower order kinematic equation in differential 

form, (b) those that introduce a vector Poisson equation for the velocity, and (c) 

those that utilise an integral formulation of the kinematic equations.

In the first category of kinematic equations are the Continuity and the vorticity 

definition equations, given by (4.1) and (4.3), respectively. With a known 

velocity distribution, the corresponding vorticity distribution is uniquely 

determined by the vorticity definition equation. On the other hand, with a known 

vorticity distribution, the unique determination of the corresponding velocity 

distribution requires the solution of Eqs. (4.1) and (4.3), subject to appropriated 

boundary conditions for velocity. There is an analogy between these two 

equations and the Maxwell’s equations relating the magnetic field and the steady 

field of electricity current. Thus, the well established techniques for 

magnetostatics may be utilized to treat the kinematic aspects of incompressible 

flow problem under consideration, Wu & Thompson (1973). Equations (4.1) and 

(4.3) are valid for incompressible flow, steady- and unsteady-state flows, 

turbulent and laminar flows, and internal and external flows.

The set of equations (4.1), (4.3) and (4.7), with co and v as dependent variables,
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replaces the set (4.1) and (4.2) in which v and p are the dependent variables. 

Gatski et al. (1985) appear to be among the first to solve this set of equations.

Nevertheless, the usual method of evaluating the vorticity employs a Poisson type 

equation, which can be derived by taking first the curl of the vorticity definition 

equation, given by Eq. (4.3),

VA<3 = VA (V A v)

and then, considering the relation (B.9) given in Appendix B, another 

representation for the curl of vorticity can be obtained from the above equation,

VA<5 = V(V.v) -  V2v 

With this equation and using the Continuity equation, Eq. (4.1), it is possible to 

obtain a vector Poisson’s equation for v in the form

V2v = -  VAS (4-8)

which is frequently used to replace the vorticity definition equation. The above 

equation, together with the Continuity equation, is included in the second 

category of kinematic equations. They are adopted in most works, as for 

example, Farouk & Fusegi (1985), Guj & Stella (1988) and very recently 

Guvremont et al. (1990).

However, Wu & Thompson (1973) are among the first that have questioned the 

validity of this formula to properly represent the kinematics of the flow. They 

pointed out that the solution of Eqs. (4.1) and (4.3) for v is unique if either the 

tangential or normal components of v are prescribed over the boundary, but the 

solution of Eq. (4.8) is unique only if both components of the velocity are 

prescribed on the boundary. They meant that while the solutions of Eqs. (4.1) 

and (4.3) with prescribed normal or tangential velocity components satisfy Eq.

(4.8), the solutions of Eq. (4.8) with velocity prescribed on the boundary do not
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necessarily satisfy Eqs. (4.1) and (4.3). In other words, Eq. (4.8) admits 

solutions where neither Eq. (4.1) nor Eq. (4.3) is satisfied. This problem is also 

discussed in Gresho (1991). In his opinion, based on the analysis of previous 

works, if the distribution of vorticity is not special, that is, includes a proper- 

amount of vorticity on the boundary to enforce the non-slip condition, Eqs. (4.1) 

and (4.3) will typically yield a solution satisfying the normal component of 

velocity but not the tangential component: Rather, a vortex sheet will be present, 

which according to him, would not be accounted for by Eq. (4.8) if solved with 

the two velocity components as boundary conditions.

The problem related to the choice of the proper boundary conditions, including 

the boundary condition for vorticity, seems not to have been solved yet, 

especially when the Eq. (4.8) is adopted. However, if on one hand this equation 

presents some problems regarding the boundary conditions, it is the equation 

usually adopted to represent the kinematic aspect of the flow. The fact is that the 

results obtained so far have been good. Some aspects of the formulation, 

however, have not yet been well understood. This could be considered as an 

evidence that the numerical experimentalist managed to sort the problem out first. 

The first steps to understand these formulation were given only recently with 

some interesting studies. Among those, is worth mentioning the work of 

Gunzburger et al. (1990), where the vorticity-velocity formulation is discussed 

in great depth, including the boundary conditions issue.

Finally, the kinematic aspect of the flow can also be represented by an integral 

equation relating v and co. Thus, such an integral equation along with the 

vorticity transport equation forms an integro-differential formulation. This kind 

of approach normally solves the differential equation corresponding to the 

vorticity transport using the domain methods, such as Finite Difference and Finite
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Element, but requires a special technique to solve the integral equation, normally 

the Boundary Element method, depending on the algorithm adopted. Hence, the 

integro-differential formulation will be given special attention in this document 

because its kinematic part will be used later in connection with the derivation of 

the integral formulation, which is the main aim of this work.

4.3 - INTEGRO-DIFFERENTIAL FORMULATION

The use of vorticity to describe the flow phenomena allows the flow field to be 

split into two main regions: the irrotational and the viscous or vortical regions. 

The vortical region of an incompressible flow is the only region where viscous 

effects are important, since vorticity is absent in the potential region. There is 

therefore, no need to compute the vorticity in the inviscid (or potential) region 

of the flow. However, the solution of the vorticity transport equation requires the 

knowledge of the velocity in the flow field, since vorticity and velocity fields are 

related kinematically. The problem is that the solution of kinematic equations 

represented by Eqs. (4.1) and (4.3), or Eq. (4.8), using conventional methods, 

like FDM or FEM, requires that both potential and vortical regions of the flow 

are solved, because such methods normally leads to an implicit algorithm. 

Therefore, if a numerical procedure is found which permits the kinematic 

computation of the velocity field to be confined to the vortical region of the flow, 

then the solution of any viscous problem can be confined to the viscous region, 

where most important phenomena, like boundary layers, flow separation, etc, 

normally exist. The important feature of a procedure like this is therefore, a 

drastic reduction in the region of actual computation and a corresponding 

reduction in computer time and data storage requirement.

There are some representations of the kinematic aspects of the flow in terms of
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an integral equation that allows the calculation of the velocity field, and hence of 

other variables explicitly point-by-point using the information of the boundary 

condition and vorticity field. Hence, this kind of equation possesses the 

distinguishing ability of confining the solution field to the viscous region.

The first integral equation with such a characteristic is the well-known Biot- 

Savart law (sometimes called the velocity induction law). This basically inverts 

the vorticity definition equation, Eq. (4.3), using the Continuity equation, so that 

a velocity can be computed from a given vorticity field. For two-dimensional 

external flow problems, it is represented by the following equation :

HWi)  = -z- f f  dxdy + (4.9)
27t r 2

where r is the position vector between any point where the velocity is to be 

calculated and the points within the region where the vorticity distribution is 

known, and its magnitude, r, is given by

r = ^(x-Xj)2 + (y-y,)2 
and v oo represents the free stream velocity. This relationship between vorticity 

and velocity is very important because it allows the effect of the vorticity 

distribution on the velocity at any point over a determined region of flow to be 

estimated explicitly, provided the vorticity field is known a priori.

Eq. (4.9), or any equation equivalent to that, forms the basis of many numerical 

methods, such as the ones discussed in, for example, Hung & Kinney (1988) and 

Bharadvaj et al. (1986). However, consideration will be given later in this 

document to the integral equation proposed by Wu & Thompson (1973) for three 

main reasons. Firstly, the integral equation they have proposed can be regarded 

as an extension of the Bio-Savart law to internal flows, and is, therefore, 

expected to be more adequate for this work. Secondly, their integral equation can
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be derived using the technique associated with the BEM. Finally, more recently, 

Wu and his co-workers managed to transform the vorticity transport equation into 

integral form. This will be seen later using the BEM. Thus eventually, a fully 

integral formulation based on vorticity and velocity is obtained.

The first integral equation used to represent the kinematic aspects of the flow 

developed by Wu & Thompson (1973) was derived from Equation (4.8). This 

equation is a vector Poisson type equation for the velocity that can easily be 

transformed into an integral equation using the same derivation presented in the 

Chapter 3 for potential problem. Hence, if u is replaced by the velocity 

components and the domain load b by (V A a?) in Eq. (3.11), by analogy the 

following integral equation results:

where u* is the fundamental solution for the Laplacian operator given by Eq.

(3.9), x; and yi are the coordinates of the source point, Q is a coefficient whose 

value depends on the position of the source point and the geometry of the 

boundary as shown in Appendix B, and n is the coordinate component normal 

to the boundary.

Wu & Thompson (1973), pointed out some difficulties related to the boundary 

conditions required by Eq. (4.10), apart the problem previously mentioned 

relating to the boundary conditions of Eq. (4.8), from which Eq. (4.10) was 

derived. The problem is that in order to solve this equation it is necessary to 

specify both Dirichlet’s and Newmann’s boundary conditions for the velocity. 

However, either one or the other, or a linear combination of both, are normally 

prescribed on the entire boundary in order to solve the problem. They also noted

(4.10)

Q
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that this difficulty could be overcome only for certain problems, using, for 

example, Green’s functions, but that these are impractical for all but a few 

problems involving very simple geometry. A better alternative is to try to recover 

the missing information on the boundary, using the same equation, provided that 

the vorticity field is known to allow the solution of the domain integral. 

Unfortunately, in most situations one does not know a priori the distribution of 

such a parameter. Nevertheless, Wu & Thompson (1973) pointed out that in the 

important problem of a flow past a solid body on the surface of which the 

components of the velocity are zero, a specialized expression involving only a 

domain integral containing vorticity in the integrand, similar to Bio-Savart law, 

results from (4.10). In such a case Eq. (4.10) could be adopted without difficulty. 

They suggested, however, that for more general situations, where normally the 

boundary integrals do not disappear (as for example, in internal flows), the 

expression given below is more convenient:

C -v ^ p y .)  + ^ ( v . n) Vu* dT = (v An) A Vu* dT
(4.11)

Q

where the same definitions apply as before. Such an expression is derived in 

Appendix D using both the concept of a fundamental solution and Green’s 

theorem for vectors. Nevertheless, the important point in the derivation is that 

it was obtained working with the vorticity definition equation and a vector 

potential function \j/, rather than Eqs. (4.1) and (4.3) directly. This can be 

postulated because of Eq. (4.1), such that

VAif = v

since the velocity field is solenoidal, and as the latter equation does not 

uniquely define ip, the assumption may be made that it is solenoidal as well. 

Therefore,

V.ip = 0

f f  co A Vu* d x d y
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Equation (4.11) constitutes the entirety of the kinematic aspect of the problem. 

That is, it is completely equivalent to the differential equations (4.1) and (4.3) 

subject to the appropriated boundary conditions to velocity. It expresses the 

velocity field as the sum of three contributions, each of them represented by an 

integral and is a velocity field by itself. The integral on the left-hand side of Eq.

(4.11) represents the contribution of the normal component of the velocity 

boundary conditions to the velocity field. Similarly, the boundary integral on the 

right-hand side of this equation represents the contribution of the tangential 

velocity component. The domain integral represents the contribution of the 

vorticity field to the velocity field. This integral can regarded as a generalized 

statement of the well-known Biot-Savart law.

It is worth mentioning that according to Wu (1987) the contributions of the 

normal and tangential velocity components are equivalent to that of a sheet of 

concentrated source of strength (v .n) and that of a vortex sheet of strength 

(v A n) lying on the boundary, respectively. In other words, the potential flow 

is incorporated into the boundary integrals of Eq. (4.11), while the domain 

integral gives the effect of the vorticity field in the development of the velocity 

field. Thus, the potential flow is represented by a BIE containing only boundary 

integrals.

This equation was first derived by Wu & Thompson (1973) and later in other 

works like Brebbia & Wrobel (1986) and Skerget et al. (1984). The derivation 

presented in Appendix D is a little different from the derivations included in the 

previous works, since the Dirac delta function was employed in the derivation to 

obtain the first term of Eq. (4.11) readily.

Eq. (4.11) is a vectorial representation of the kinematic equations that can be
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applied for both internal and external problems. For two-dimensional internal 

problems, this equation can be represented in terms of its two components in the 

x and y directions, according to the derivations presented in Appendix F:

where vn and vt are the normal and tangential velocities, respectively, and vx and 

vy are the velocity components in x and y directions, respectively. The other 

parameters stand as before. Equations (4.12) and (4.13) could also be represented 

in terms of vx and vy in place of vn and vt. These equations will represent the 

kinematic aspect of the flow discussed throughout this work.

Note that the use of equations (4.12) and (4.13) for the evaluation of the velocity 

requires the knowledge of both the tangential and normal components of the 

velocity over the boundary. This is, in fact, admissible and does not overspecify 

the problem, provided both boundary conditions are compatible with each other. 

In other words, one of them is identical to the value obtained from the solution 

of (4.1) and (4.3) using the other as prescribed by the boundary conditions.

(4.12)

and

(4.13)

Like Eq. (4.10), Eq. (4.11) can also be reduced to Eq. (4.9) for cases of external 

fluid flow problems. In this case the domain tends to infinity and the boundary
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is divided into a part on which the non-slip and non-penetrating conditions applies 

and another at infinity for which the free stream velocity condition applies. Wu 

& Thompson (1973), however, suggested that the use of (4.11) is generally 

correct for more general problems, including for example cases where a part of 

the boundary is inside the fluid domain.

Wu and his co-worker have successfully applied the integro-differential 

formulation using Eq. (4.11) to solve a great variety of problems, mainly external 

flows. They have also managed to produce a new algorithm where both the 

kinematic and kinetic aspect of the problem are represented in terms of integral 

equations. This integral procedure is an extension of the integro-differential 

procedure discussed previously and introduces some additional advantages while 

preserving the advantages of its predecessor. This is the so-called integral 

formulation which is discussed next.

4.4 - INTEGRAL FORMULATION

The ability of the integro-differential formulation to confine the solution field to 

the viscous region of the flow, where the vorticity is non-zero, is present only 

because the kinematic aspect of the problem is treated by an integral method 

whose distinguishing feature is that of permitting the explicit, point-by-point, 

computation of the velocity. On the other hand, any suitable method, not 

necessary an integral one, may be used for the kinetic aspect without destroying 

the ability to confine the solution field to the vortical region of the flow. 

However, only an integral representation, similar to the one used to represent the 

kinematic aspect of the flow, possesses an inherent flexibility in locating nodes 

and in accommodating complex boundary shapes. Wu (1976) was the first to 

suggest that it was possible to utilise the concept of a fundamental solution to



70

obtain an integral representation for the kinetic aspect of the flow. Thus, both the 

kinetic and kinematic aspects of the flow would be represented in terms of 

integral equations. Such an approach was discussed in Wu & Wahbah (1976) for 

steady flow and by Wu (1982) for unsteady flow cases. The latter has also been 

investigated by other authors, principally by P. Skerget and his co-workers. The 

integral approaches presented in these works are now well-known as the BEM.

For steady-state flows, the kinetic and kinematic parts of the problem are both 

described by elliptic differential equations. It is therefore, relatively 

straightforward to extend the integral representation procedures for the kinematics 

of the problem, previously presented, to the kinetic part. On the other hand, for 

unsteady-state flows, the kinetic part of the problem is described by parabolic 

differential equations, and so its integral representation is dissimilar to that for 

the kinematic part. In other words, while the kinematic aspects of both steady and 

unsteady flows are basically represented by almost the same integral 

representation, the integral equations corresponding to the kinetic aspect of steady 

and unsteady flows are different. By virtue of the fact that this work is concerned 

with the analysis of steady flow, only the integral equation corresponding to the 

kinetic aspect of steady flow will be discussed.

In reality, there are two basic integral equations in the literature to represent the 

kinetic part of the flow. The first one, due to Wu (1976), and later discussed by 

Wu & Wahbah (1976) and in many others publications. The second was first 

presented by Skerget et al. (1984). The main difference between them is that the 

latter includes explicitly the pressure distribution on the boundary. Both equations 

are discussed in this document.
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4.4.1- Wu’s Approach

In order to derive the integral equation for the kinetic aspect of the flow due to 

Wu and his co-workers one needs first to substitute some of the terms of Eq.

(4.2) with the corresponding terms of vorticity. Thus, considering the relation 

(B.9) of Appendix B and the fact that the velocity field is solenoidal, the diffusion 

term can be represented by

v V2v = -  v (VA<3) 

and the convective term becomes

(v . V) v = -  vA c5 + — V(v. v)
2

using Equation (B.8) of Appendix B.

Hence, with the concept of vorticity introduced through the expressions above, 

Equation (4.2) can be expressed as

-  vAc3 + -V (v .v )  = — - Vp - v(VAc5)
2 p

Note that the term corresponding to the body force, which can be regarded as 

irrotational, is not considered in this equation. This can be represented by

-  vAco = - v(VA(3) - Vh (4-14)

where h is the total head defined by

h = — + — v2 
P 2

Finally, Eq. (4.14) can be manipulated to produce the following equation :

VAc3 = - ( v A u  -  Vh) (4.15)
V

and since gj is defined as the curl of v , the divergence of gj is identically zero,
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that is

V. co = 0 (4.16)

Equations (4.15) and (4.16) for vorticity are analogous to equations (4.3) and 

(4.1) for velocity, respectively. Therefore, it is possible to obtain an integral 

expression for the kinetic part of the flow simply by replacing v by co and co by

This contains all the terms of a similar expression adopted for three-dimensional 

flow analysis. However, for two-dimensional problems, the vorticity vector has 

only one component, perpendicular to the domain of the problem, and so co . n 

= 0. As a result the boundary integral on the left-hand side of Eq. (4.17) 

vanishes. In addition, one can manipulate further the domain integral, since

from property (B.4) and (B.l) of Appendix B, and from Gauss’ divergence 

theorem,

(v  A co - Vh )/v in the equation (4.11). Thus, the following equation results:

C - c o ^ y . )  + ^  ( 6  . n) Vu* dT = j >  (co An) A Vu* dT
r r (4.17)
J J  (v A co -  Vh) A Vu* dxdy

VA(hVu*) = Vh A Vu*

f f  VA(hVu*)dQ = <^fiA(hVu*)dr
Q r

Introducing these modifications, Eq. (4.17) can be rewritten as

Cj co (x.,y.) -  (co An) A Vu* dT = — h Vu* AndT
r V r (4.18)
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This equation is the vorticity transport equation in integral form, and so should 

take in consideration some of the several process related with the vorticity 

transport phenomenon. The domain integral represents the contribution of the 

convective process to the vorticity field. The form of this integral shows that its 

contribution is similar to the one given by the Biot-Savart law. In other words, 

the effect of the quantity (v A co) on the vorticity field in a steady flow is similar 

to the effect of co on the velocity field in Eq. (4.9). The boundary integral on the 

left-hand side is the contribution of the vorticity boundary conditions to the 

vorticity field. The other boundary integral represents the contribution of total 

head to the vorticity field. Note that the boundary integral containing (co.n), 

which appears to three-dimensional problems, represents also another contribution 

of the vorticity boundary condition to the vorticity field.

Eq. (4.18) is given in terms of components, by:

normal and tangential directions. Note that the arrow above co was dropped out 

to indicate that this is the only component of vorticity vector.

It is worth mentioning that Skerget et al. (1987) manipulated the equation (4.18) 

further to obtain an equation that, at least in vector representation, is slightly 

different. Working with some of the boundary integral terms in the Eq. (4.18), 

the one on left-hand side and the one involving (co.n), which was dropped out 

from Eq. (4.17), and using the property (B.5) twice, they managed to obtain the 

following equation:

(4.19)

where du*/dn and du*/dt are the derivatives of the fundamental solution in the
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C-cSCxpy.) + j> (Vu*. n) o  dT = (j>(Vu* An) A (3 dT
(4.20)

Eq. (4.20) is a general one since its representation is similar to that one applied 

for three-dimensional cases. Again, the mathematical description of the plane 

flow is much simpler, since the vorticity vector has only one component. 

Therefore, the first term on the right-hand side of Eq. (4.20) vanishes, and so

which, if represented in terms of the components, would give Eq. (4.19) exactly.

Wu’s approach includes integral Eqs. (4.12) and (4.13) for the kinematic and Eq.

(4.19) for the kinetic aspect of the flow. These form a set of equations that has 

to be solved iteratively. They are usually called simply the co-v-p formulation, 

which are the dependent variables of the problem. Note, however, that only the 

values of velocity on the boundary and in the viscous region of the flow are 

needed for the calculation of vorticity, and so the solution field may be confined 

to the viscous region of the flow. Equation (4.19) is specially important when one 

needs to calculate the pressure distribution on the boundary. Note also that in 

order to deal with three-dimensional problems, the whole of Eq. (4.17), must be 

used in place of Eq. (4.19).

C.c5(xi,yi) + (Vu*. n) o  dT = — £  h Vu* AndT
(4.21)
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4.4.2- Skerget’s Approach

Skerget et al. (1984) derived a different integral representation for the kinetic 

aspect of the flow that does not include the pressure. Their equation along with 

Eqs. (4.12) and (4.13) for the kinematics of the problem is the so-called co-v 

formulation. This new representation for the kinetic part of the flow is derived 

next for two-dimensional problems only, since for three-dimensional cases, a 

different expression is required whose derivation is much more involved.

The vorticity vector in this case can be regarded as a scalar parameter since it has 

only one component. Thus, one can easily obtain the integral equation for the 

vorticity steady-state diffusion-convection equation by simply considering the 

term on the right-hand side of equation (4.7) and the vorticity to be equivalent 

to the "body force" term, b, and the scalar function u of Eq. (3.11) given in 

Chapter 3, respectively. Hence, by analogy the following results:

this is the vorticity transport equation proposed by Skerget and his co-workers. 

In this equation, the two boundary integrals represent the contribution of the 

vorticity boundary conditions and of the normal derivative of vorticity to the 

velocity field. Conversely, the domain integral represents the contribution of the 

convective term. In terms of the components, this equation is represented by

V . V) (o u* dxdy

(4.22)



However, they found convenient to eliminate the derivatives of vorticity that 

appears in the integrand of the domain integral. This can be done using Gauss’ 

divergence theorem. Thus, first using the relations (B.4), the integrand of the 

integral is transformed into

and finally, using the Gauss’ divergence theorem and considering the velocity 

field as solenoidal, the following equation results:

where the same definitions apply as before, and the arrow upon oj was dropped 

out since the vorticity can be treated as a scalar parameter in plane problems. 

Note that the pressure does not appear explicitly in the above equation. In this 

equation, the domain integral is still related to the convective effects. The 

additional boundary integral gives the vorticity convective flux from the 

boundary, which vanishes on solid boundaries. In terms of its components, Eq.

(4.23) can be represented by:

Equations (4.12), (4.13) and (4.24) constitute the set of equation used in 

Skerget’s approach. These have to be solved iteratively. In their approach, the 

pressure distribution on the boundary is recovered with post-processing using 

equation (4.19) or a Poisson’s equation for the pressure, after the results for

v .V g) u* = V .( g)u *v) -  v.Vu*co -  (V .v )

(4.23)

(4.24)
du*. A  A  + v — )dxdy
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vorticity and velocity fields have first been obtained.

4.4.3- Vorticity-Velocity Formulation’s Proposed Approach

The two fully integral approaches discussed previously have successfully been 

applied to the solution of both internal and external fluid flow problems by the 

two research groups, with different interests. Wu and his co-workers, for 

example, are more interested in external aerodynamic fields. They have however, 

also published some applications to internal flow as well. Skerget and his co

workers, however, have been mainly concerned with the solution of internal 

flows, which is also the aim of this work. Thus, Skerget and his co-workers are 

responsible to a great extend for the development of techniques applied to 

internal flows.

According to the literature, these two approaches give a very stable solution due, 

mainly, to the type of fundamental solution adopted, which is of diffusion type 

since it satisfies the Poisson’s equation. Additionally, the literature shows some 

evidence that the Wu’s approach is more stable than that due to Skerget and his 

co-workers. It seems, however, that results of investigations which compare these 

two approaches have not been brought advanced further. Furthermore, the 

literature is not clear about problems of instability arising from these two 

approaches, nor are some crucial points of a numerical nature, discussed. For 

example, corner treatment and singular integral calculation are not discussed in 

great detail. As a consequence one does not know for certain, how serious the 

difficulties involved in each approach are.

In reality, there is not much difference between those two approaches. The main 

difference is in the kinetic equation. While Wu’s approach includes the boundary
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pressure distribution, Skerget’s approach uses instead the normal derivative of 

vorticity. This is basically the only important novelty introduced in the vorticity 

related formulation after the original proposal by J. C. Wu. The similarity 

between these two approaches produces computational procedures which are quite 

similar. However, considering the fact that this technique is relatively recent, it 

can be assumed that several alternative representations to the equations which 

would produce different algorithms, have not yet been investigated.

In this work, it was decided to analyse internal flow problems adopting a new 

approach based on a formulation derived from the original work developed by 

Skerget and his co-workers. As a result a new algorithm is proposed, which 

introduces some novelty to the subject. The main motive for deciding to base this 

study on the Skerget’s formulation was because it concerns the advancement of 

solution to internal flow problems.

The origin of this new approach was a consequence of the modification 

introduced into Eqs. (4.12) and (4.13), corresponding to the kinematic part of the 

problem, used in both Wu’s and Skerget’s approaches. In both cases, the first 

step in the solution procedure calculates the vorticity distribution on the boundary 

extracting it from the existing domain integral. The boundary vorticity in this 

case has to be calculated implicity by solving the resulting set of algebraic 

equations. Doing this does not seem to introduce much difficulty in the 

algorithm. This seems, however, to present some sort of problem provoked by 

the fact that the kernel in the domain integrals are given by a weak operator, as 

mentioned in, for example, Skerget et al. (1990). In fact, Eqs. (4.12) and (4.13) 

result in two sets of algebraic equations that are linearly dependent. Only one set 

has therefore, to be used to calculate the vorticity distribution on the boundary. 

In order to generate such a set of equations, Skerget and his co-workers, for
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example, preferred to work with a projection of the components of Eq. (4.11), 

in the x- and y- directions, represented by Eqs. (4.12) and (4.13), respectively, 

in either the tangential or normal direction. However, the reasons behind this 

technique to avoid the problem have not been completely explained. That step is 

certainly the key point of the approach, since any inaccuracy in this part of the 

calculation will strongly affect the other parts of the algorithm.

In the proposed approach, it was decided to overcome this point by integrating 

equations (4.12) and (4.13) by parts, using the properties (B.13) and (B.14) of 

Appendix B. This results in a boundary integral which includes the vorticity 

parameter so that the boundary vorticity can be isolated. The resulting equations 

corresponding to the kinematic part of the problem are given as follows, for the 

x- and y- direction components, respectively:

and

civx(xi>yi) + " f vtdn* ^  r da*
dy

dr
r

go u* mdT = f f u * ~~~ dxdyay
(4.25)

0u<
ay Jr 1 dx 

da
(4.26)

where vn and vt are the normal and tangential velocities, respectively, and £ and 

m are the direction cosines. These equations are a new form of equations (4.12) 

and (4.13), respectively. Thus, the vorticity was transferred to a boundary 

integral which was expected to make boundary vorticity calculations easier than
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in the previous procedure. More importantly, the singularity contained in the 

domain integral seems to be easy to deal with. Hence, it was expected to generate 

a set of algebraic equations to obtain the boundary vorticity distribution more 

reliably. Another advantage is in the fact that one then does not need to connect 

the nodes of both boundary and domain meshes. Thus, isoparametric elements to 

discretize the domain as is the case in the other procedures are not necessary. It 

is then possible to adopt constant elements to discretize both boundary and 

domain, even though this type of element is not normally used in flow analysis.

Unfortunately, the domain integrals now contain derivatives of vorticity requiring 

an additional procedure to evaluate them. This is the major drawback of the 

proposed solution procedure. At least three different ways can be used to tackle 

the problem. The derivatives may be computed explicitly by derivation of 

equation (4.22), for example, corresponding to the kinetic part of the problem, 

with respect to the source point coordinates, in a way similar to the one used to 

obtain Eqs. (3.12) and (3.13). These may be solved by finite difference schemes 

and finally, these can be derived in a similar manner as in FEM by means of 

interpolation functions. Here the first alternative was adopted to evaluate the 

derivatives of vorticity on the domain in order to maintain the use only of the 

BEM. Thus, the equations that allow the calculation of the derivatives of vorticity 

are obtained deriving the vorticity transport equation with relation to the source 

point coordinates. In this case, two options arise since both equations (4.22) and

(4.24) can be adopted. On one hand, from Eq. (4.22) the following equations 

result :
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and

dco

v JJ [ x dx

= _ £ i n i “Idr + <f
J rki rhr J

a V  „  (o dr

+ v.
r

do) ) du*
dy ) dx

dxdn

dxdy

in) = - { i n i * l  dr + £
^  {  dn dy

32“ *0)  dr

d 0)
V ------  + V

x dx y

P dy dn 

dco  ̂ du*
dy J dy

dxdy

On the other hand, from Eq. (4.24), the following equations results:

( i n )  = -  i i n i ^ ^ r  +
U ) (j,,yi) J an ax I  dxdn

and

+ I f a v  — d r  -  — f [
v J “ ax y j J

( u v  ) a V
dx"

3V
+ ( t o  V )

y axayj
dxdy

( i n )  = - { i n i n ldr + f<o
V 9 y  Ax^y.) Jr  a n  3 y  J,

l f a y  i2*dr -  I f f
v i. n dv vdy . o 

a^i

(“ Vj

3V  
ay an

a^u

dr

ay:

+ (<->v,)
dxdy

dxdy

(4.27)

(4.28)

(4.29)

(4.30)

Analysis shows that Eqs. (4.27) and (4.28) introduce some advantages over Eqs. 

(4.29) and (4.40) since they contain one term less. In addition, the singularities
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in the domain integral are not so strong. Note, however, that none of these 

equations should be used to calculate the derivatives of vorticity on the boundary 

because they are expected to give very inaccurate results due to singular integral 

related problems. In this work, therefore, a different alternative that calculates

and vorticity itself on the boundary was adopted. This is discussed in Appendix

In conclusion, two similar but alternative approaches were devised in this work. 

The first one is based on Eqs. (4.25), (4.26), (4.22), (4.27) and (4.28). The 

second uses Eqs. (4.25), (4.26), (4.24), (4.29) and (4.40). Therefore, the only 

difference between them is in the kinetic equations. These equations are 

summarised below:

the vorticity derivatives from the distributions of normal derivative of vorticity

K.

Kinematic Equations

(4.25)

(4.26)
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Kinetic and Additional Equations

Option 1 :

CitoCXj.yi) + ^ w -^ -d T  = u*dT

-H/(
0(0 0(0  ̂ , jv —  + v —  u dxdy 

x 0x 7 d y ) J

a n d

06)
0X j

0(0  ̂
0y

\
/  5w 0U*

Axi.yj) {  da 0X

* t / / |Q

8co
v* ax

+ V y

\
- <f a“ 0U*

Awi) J  an 0y

* 7 / / 1Q

ato
v* a x + y y

0 (0  ̂ 0 u^
0 y J 0 x

0̂ 11 
) --------

0x 0n 

dxdy

dT

dT + <f to - ^ - d T  
£ 0 y 0 n

0(0 ^ 011*

0 y  J dy
dxdy

Option 2 :

C i to ( x i ,y i)  + f c o - ^ d r  = f ^ u * d r  

dT  + — J J  to (v.- i f  “ V*'
du* j—  + y v — ) d x d y

dy

(4.22)

(4.27)

(4.28)

(4.24)
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dto'l
a x ]

r  a u  a u ^ d r  +
Z dn dx Z dxdn

dT
(Wi)

I f wv I d T - l f f
v  J  n  fhr  v  adx

t \ ^+ ( to  v j ------
y dxdy

(to V j
dx2
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a V  _o) -— — dTf i “ ) .  _ f  * l d r  + f
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ay2
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J ) V  

ax ay
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(4.29)

(4.30)



Chapter 5 

Penalty Function 
Formulation

5.1 INTRODUCTION

One of the most crucial strategies in solving incompressible Navier-Stokes 

equations is to find a pressure distribution in the flow such that a divergence free 

velocity distribution (or solenoidal field) is ensured. Various numerical methods 

using the primitive variables have been developed to solve this problem. Among 

them there is the widely used penalty function approach, whose concept was first 

introduced in the area of variational calculus by Courant. This approach, 

however, has been mainly adopted in connection with the FEM and it was first 

applied to solve elasticity problems. More recently, it was used in incompressible 

flow analysis, due to the close correspondence between the formulations of those 

two problems. This technique, like vorticity-related formulations, uncouples the 

solution of pressure from the velocity field. In other words the velocity field is 

obtained first and the pressure solution comes normally as a post-processing.

Nowadays, the use of the penalty function concept to solve incompressible 

viscous flow through the FEM is already well-established. However, only very 

recently has this technique been adopted in connection with the BEM. This has 

probably followed the relative success of the BEM in solving elasticity problems, 

and also because of the correspondence between the two formulations, like what 

happened with the Finite Element Method. It seems that the first work using the 

penalty function approach and BEM in fluid flow analysis was due to Kakuda & 

Tosaka (in Japanese) published in 1984. This work is briefly reviewed in Tosaka
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& Onishi (1985). Subsequently, many works appeared in the literature. The real 

credit for the development of this approach should be given to the works of 

Kitagawa and his co-workers. In a series of papers they reproduced early 

incompressible flow solutions and managed to extend the analysis to include 

temperature and time dependence. Recently, Kitagawa (1990) published the first 

book on this subject summarizing the results published in his papers. Even so the 

results presented so far show that there is a lot to be done, mainly with regard 

to the numerical treatment necessary to extend the range of the application of this 

technique. Such problems, of course, have mostly to do with the use of the BEM 

itself. Many people working in the past with the FEM faced numerical problems 

as well in dealing with viscous flow using the penalty function approximation, 

even though the FEM used in solving elasticity problems during that same period 

was very successful.

In this Chapter the integral formulation for steady, incompressible and isothermal 

flow is discussed. The differential formulation is first presented since it forms the 

basis of the integral formulation. The derivations of the BIE for incompressible 

flow analysis, however, based on the penalty function technique will not be more 

time consuming than the previous ones, since all the development experience 

available from elasticity analysis is going to be used here. Besides, the Navier- 

Stokes equations in the common form similar to one given by Eq. (4.2) is used.

5.2 DIFFERENTIAL FORMULATION

The equations governing viscous flow are Continuity and the Navier-Stokes 

equations, given by Eqs. (4.1) and (4.2) and previously described in section 4.1. 

However, for convenience we will consider the Navier-Stokes equations in the 

form given by Eq. (A. 12) of Appendix A, as follows:
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( v . V)v  = - - V p  + v [V2v + V(V.v)] (5.1)
P

where the last term on the right-hand side of this equation is retained. The body 

force term, f , is not considered relevant for reasons already given and articulated 

in Appendix A.

One of the main difficulties in the numerical solution of these equations is due 

to the presence of the incompressibility constraint given by the Continuity 

equation, Eq. (4.1). In this work, the penalty function approach is used to handle 

this problem. This consists of introducing a small pressure perturbation into Eq.

(4.1) as follows:

V .v  + -£■ = 0 (5.2)
k

where X is the so-called penalty parameter. Since the pressure has a finite value, 

this approximation can be justified because the Continuity equation is satisfied 

approximately as X -> oo. One can consider this perturbation as the introduction 

of a slight artificial compressibility since, in the actual numerical calculations, X 

must be large but have a finite value. The X must be assigned a large positive 

value in order to approximate incompressibility closely. Eq. (5.2) is sometimes 

seen as a pseudo-equation of state but it can be better understood as describing 

a field of a distributed mass source and sink, in which the local positive pressure 

is proportional to the rate of mass destruction. Locally, negative pressure is 

proportional to the rate of mass creation. In other words, it is the mass 

conservation equation which is being approximated and then associated errors 

amount to net fluid loss or gain.



88

Replacing Continuity equation by a relation given by Eq. (5.2), and substituting 

into Eq. (5.1), the following equation governing viscous flow is obtained :

v V2vx + + v j v ( V . v x) = (vx .V)vA (5-3)

Equation (5.3) represents the so-called penalty function formulation for fluid 

analysis, where the subscript "X" was introduced to indicate that this is an 

approximate expression, which tends to the exact one when X -> oo. This 

approximation exists because an incompressible problem is being treated by an 

expression that will eventually accommodate a slight compressibility. However, 

in order to avoid the proliferation of indices the symbol "X" will not be used 

throughout this work. A close examination of the term containing the coefficients 

in parentheses in Eq. (5.3) reveals that the additional term included into Eq.

(5.1), which should disappear because of the Continuity equation, seems to have 

very small effect on the final results. This is because the term containing X is 

much greater than the viscosity. In reality, it seems that the only role of this term 

is to keep a total similarity with the corresponding equation used to solve 

elasticity problems.

One advantage of the penalty function formulation is that the additional unknown, 

pressure, p, is eliminated. Also, the satisfaction of the incompressibility condition 

is, from a numerical point of view, a considerable simplification.

5.3- ANALOGY WITH ELASTICITY

The equations for the plane-strain elasticity problem is briefly discussed in 

Appendix G. It can be seen that Eq. (G.9) has the same form as Eq. (5.3)
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discussed above. This establishes the analogy between the elasticity and viscous 

flow problems. In reality, this analogy has been exploited since the penalty 

function was introduced into flow solutions in order to take advantage of success 

achieved in the solution to the elasticity field. The correspondence between the 

variables appearing in these equations is summarised in Table 5.1.

The most important observation is that the body force of the elasticity equation 

is replaced by the convective term of equation (5.3), which is non-linear. This 

fact is responsible for the additional difficulty introduced in the solution of this 

equation leading to the need for an iterative approach.

Table 5.1: Correspondence Between the Variables of the Two Problems.

VISCOUS FLOW ANALYSIS ELASTICITY ANALYSIS

PARAMETER SYMBOL PARAMETER SYMBOL

Velocity V Displacement q

Penalty Function/Density X /p Lame‘s Constant X’

Kinematic Viscosity V Lame‘s Constant P

Convective Term -(v.v)v Body Force F

5.4- INTEGRAL FORMULATION

One important consequence of the analogy between the differential formulation 

for fluid flow and elasticity problems is that the time-consuming task of deriving 

the boundary integral equation for this problem is avoided. Accordingly, the fact 

that the analogy exists, means it is possible to use exactly the same integral
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expressions presented in Appendix G, provided that the correspondence between 

the variables and the parameters of each problem is observed. Hence, Eqs. 

(G.26) and (G.27) can be used to produce the boundary integral equations for the 

velocity components, vx and vy, as follows:

W W i )  + j (Fuv, + F21vy)dT = j (GUTX + G21Ty) dT
r r P*tJ

+ v * ( W i )

and

where:

and

W W i)  + + = f  (G12Tx + GjjTy) dT

+ V (x,,y,)

v *(W i) = -  / /
Q

dv.

dv_ dv_
G “ (v ^  +

dv.
dxdy

(5.5)

(5.6)

v A >yi) = " / /
dv dv

+ + Vv^ ) dxdy

(5.7)

dv.. dv. 
dx y dy

Eqs. (5.6) and (5.7) represent the "domain load" terms. The fundamental solution 

parameters for velocity and traction,Gkl and Fkl, respectively, with k = 1,2 and
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1 = 1 ,2 , appearing in these integrals are given by the following expression, 

obtained from Eqs. (G.21) and (G.24):

Gu = 1

8 t c v (1  -  v )
{(3 -  4 v ) n - i ] -  0 .5 } sH + A  A

J u  & k a*,

and

(5.8)

F = xki
1

4 tt( 1 -  v )r
dr dr dr 
dn dxk dXj

+ (1 -  2 v ) I!,—  -  ^ + 
dx. dx, dn kl

/ J

(5.9)

where:

v =
2(X + v p)

(5.10)

This is the equivalent of Poisson’s ratio relation for elasticity given by Eq. (G.8) 

where X represents the penalty function parameter. Note also that r is the distance 

between the source and field points and and t 2 are the direction cosines I and 

m, respectively. 6kl is the delta of Kronecker.

It should further be noted that since the traction components, Tx and Ty, were 

included into Eqs. (5.4) and (5.5) the boundary conditions in this case are in 

terms the velocity and traction components, while the boundary conditions for 

Eq. (5.3) involve only the velocity components.

Some elasticity problems can be represented by a boundary integral equation 

where the variables of the problem appear only in the integrand of the contour 

integrals. This situation occurs when dealing with linear elasticity or when the
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loading state given by the body force is known. It can be seen from Table 5.1 

that in viscous flow analysis the correspondence of the body force is the 

convective term of the Eq. (5.3). The integral representation for this term is 

given above by Eqs. (5.6) and (5.7). Hence, in this case, the integral 

representation also includes the domain integral with the variable of the problem 

appearing in the integrand. This fact introduces additional difficulties for the 

numerical solution of the fluid problem. Firstly, the domain Q has also to be 

discretized. In this case one of the most important advantages of the BEM is lost, 

that is, the need of discretizing only the boundary. Another important point is 

that since the boundary integral equation is non-linear, it has to be solved 

iteratively. Accordingly, some difficulties related with divergence of the results 

may appear particularly for high Reynolds number flows. It is recognized that in 

these cases, the convective term has to be evaluated accurately, otherwise the 

results may diverge. Finally, the convective term included in the domain 

integrals contains derivatives of velocity. An additional approach has, therefore, 

to be devised in order to evaluate these parameters so that very accurate results 

are achieved for the calculation of the convective term represented by Eqs. (5.6) 

and (5.7).

According to the discussion already presented in Chapters 3 and 4, there are 

alternative approaches that could be adopted to evaluate the derivatives of any 

variable of the problem. In that discussion, it was concluded that the use of an 

approach based on the boundary integral equation retained an analysis based on 

the BEM. In this analysis, the same approach will be adopted. This means that 

the equations to calculate derivatives of velocity will be obtained by derivation 

of Eqs. (5.4) and (5.5) with respect to the source point coordinates, x} and y^ 

This is undertaken in Appendix G and given by Eq. (G.31) in tensorial form. 

Using this same equation for the present problem and replacing appropriately
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variables and parameters according to their correspondence in the two analogous 

problems given in Table 5.1, results in the following equations:

dv, r dF., r dGL dV,
—  (x , ,y {) + <fvt — d r  = f T k — S d T  + — iC x -.y ,)

‘ 1 r ka*B % k i K  ‘

where:

and

^ 1  / x f f j *— (x^y,) ■ = -  [I v,—  —  dxdy

9G,Id 1

dxm 8 itv ( l  -  v)r
dr dr dr 

dxk dx1 dxm
+ (3 -  4v)-x dr

dxm
kl

A
dx. dx, mk

dF,ki -1

dxm 4n:(l -  v)r2
0 dr /yl dr -dr . dr  ̂ /.1 dr ^2 — 14—------  —  + (1 -  2 v )—-o M

dn dx. dx, dx dxK i m  m

*  - ~ 6  J

+ 2 { (1  -  2 v) ({.

dx

dr dr 
dx, dxi d

-  I

dxt

dr ar 
13xm 9xk dxk dxt

-  (1 -  2v)(«k6ta -  * ,5 ^  + ^ 8 ^ )]

(5.11)

(5.12)

(5.13)

(5.14)

where the tensorial indices k, 1, m and j can assume the values 1 or 2 , and the 

other parameters apply as before. One can see from these equations the difficulty
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in evaluating the integrals in Eq. (5.11), mainly because their integrand contains 

singularities. Note, for example, that some kernels appearing in the boundary 

integrals of the Eq. (5.11) contain a strong singularity caused by the term 1/r2. 

Thus, it was avoided locating the source point on the boundary nodes in this 

case. Special relations were used to evaluate the derivatives of velocity on the 

boundary. That problem is mentioned in Appendix G but the technique adopted 

is only discussed in Appendix K.



Chapter 6

Numerical Solution 
Procedures

6.1- INTRODUCTION

The BEM is the numerical technique adopted to solve the governing differential 

equations for the fluid flow problems discussed throughout this work. As a first 

step towards the application of the BEM, the partial differential equations were 

transformed into BIEs according to the discussions presented in the previous three 

Chapters for problems governed by potential flow and viscous flow equations. In 

this Chapter the next step concerning the application of the BEM is discussed. 

This refers basically to the discretization technique applied in order to make the 

solution of the BIEs possible, since they themselves, like their differential 

counterpart, are not solvable analytically. The objective of this discretization 

process is to transform each BIE into a set of algebraic linear equations, similar 

to most numerical techniques for solving engineering problems, whose solution 

gives the distribution of the sought parameter at the nodes of the discretized 

boundary, as well as over the domain nodes for problems that include unknowns 

in the integrand of a domain integral. The solution procedures and the 

corresponding computer programs are also briefly discussed, along with the most 

important numerical features included in the programs.

The basic steps in order to solve numerically a given BIE are:

1- discretization of the boundary T into small boundary elements, each one 

containing a number of nodes;
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2 - representation of each variable of the problem inside of the boundary 

elements in terms of interpolation functions, using for example the ones 

adopted in the FEM, sometimes called shape functions, and nodal values 

of the variables;

3- transformation of the BIE into an algebraic linear equation using the 

representation of variables in terms of interpolation functions and nodal 

unknowns. The coefficients of this equation are given in terms of 

geometrical parameters. In fact, they are boundary integrals having the 

fundamental solution or its derivatives as the kernel and that also contain 

the interpolation functions as part of the integrand;

4- evaluation of these integrals using normally Gaussian quadrature to 

perform the regular integrals and a suitable technique to deal with 

singular ones, since it is not always possible to perform them analytically;

Steps 1-4 transform a BIE into a algebraic linear equation that is valid for 

one specific source point position and has as many unknowns as the 

number of nodes of the mesh times the number of unknown parameters in 

the problem. Therefore, a system of algebraic equations has to be 

generated with as many equations as the number of unknowns. This can 

most conveniently be done if the source points are located at the boundary 

nodes created with the discretization process, although theoretically they 

can placed anywhere.

5- application of steps 3 and 4 to obtain algebraic equations corresponding to 

source points located at boundary nodes, thus generating a set of algebraic 

equations;
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6 - imposing the boundary conditions and rearrangement of the terms so as to 

obtain a solvable set of equations;

7- solution of this set of algebraic equations in order to obtain the distribution

of the variables at the nodes of the mesh; and finally

8 - using discretized BIE to find the values of the unknowns at any internal

point inside the domain.

This is basically the procedure adopted for solving potential problems where the 

domain integral that may appear contains no unknowns. The solution can be 

obtained in this case in just one go. Unfortunately, non-linear problems require 

an iterative procedure in order to obtain the solution. Besides, most of them, such 

as viscous flow phenomenon, contains domain integrals with unknowns in the 

integrand. The presence of domain integrals not only destroys the most important 

advantage of the BEM over domain methods, the discretization only of the 

boundary, since it also brings a great deal of difficulty that sometimes has the 

effect of preventing the iterative procedure from working properly. As a result, 

divergence of results may occur. Apart from the problems of domain integral and 

divergence of results, there are in general three difficulties associated with the 

application of the BEM that affect indistinctively both linear and non-linear 

formulations, they are:

•  Solution of singular integrals;

•  Corner problems; and

•  Ill-conditioning of the system of algebraic equations.
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Other problems may appear, such as inaccurate results when the source points get 

close to the boundary. This is normally caused by the fact the boundary integrals 

may become quasi-singular. All these difficulties are of numerical origin and 

make the application of BEM a very difficult task. This kind of problems and the 

fact that the derivations of BIE are mathematically more involved than most 

conventional techniques have in part been responsible for preventing the 

widespread use of the BEM among engineering circles.

6.2- DISCRETIZATION

Having derived the formulations represented in terms of integral equations in the 

previous Chapter, it is possible now to apply the piecewise-discretization concept 

similar to the one used in FEM, in order to discretize both the boundary and 

domain and generate the discretized equations corresponding to the BIEs. In 

order to do that, the boundary T has to be divided in Ne boundary elements while 

the domain Q, if necessary, is divided in Nc cells connected to each other, as 

shown in the Figure 6.1, where

Ne
r  -  U r e

e=l

N.
Q = U Qc

C=1

Accordingly, each integral appearing in a BIE can be represented by the 

summation of independent integrals performed on each boundary element, for 

boundary-type integrals, and on each domain cell, for domain-type integrals. That 

is, provided that 6 is a continuous function of x and y, defined over T and 0 , 

then it can be shown that
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Ne
^ e a r  = X) / 6 a r
r e=1 rc

and

Nc
0 dxdy =

Applying this discretization technique to typical integrals appearing in a BIE 

results in:

for the boundary and domain integral, respectively, where S^x-x^y-yi) represents 

the kernel of these integrals which contains fundamental solution parameters with 

respect to the source point (x ^ ) . This approximation is not sufficient to solve 

the integrals because the function 6 is normally unknown. One way of solving 

them approximately is to define some nodes on each boundary element and 

domain cell, and approximate the function 6 by means of interpolating 

expressions in terms of its value at those nodes, similar to FEM. Replacing the 

new representation for 0 into the integrals, it is possible to see that the only 

unknowns are those nodal values of 0, which can be removed from the integrand. 

In this way, the integrals will be in terms of known functions and can be 

evaluated.

f s * ( x - Xi,y -y .)0d r  = £  JS^x-Xj.y-y^eCT^dr (6.1)

and

/ /  S*(x-Xi,y-y,)edxdy = £  / /  S ’(x-Xj.y-y^eCfl,.) dxdy (6.2)
G C=1 G
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The expressions that represent the variation of 6 on the boundary elements and 

cells using suitable interpolation functions and nodal values of 6 assume different 

forms depending on the type of the boundary element and cell adopted in the 

discretization of the boundary and domain, respectively. Thus, the interpolation 

functions are dependent on the geometry and number of the nodes of the elements 

used to discretize the boundary and domain. In general, these interpolation 

functions are conveniently built using the so-called intrinsic coordinates of the 

element, instead of using the global coordinates that describe both boundary and 

domain with relation to the x- and y-axis, which are the independent variables of 

the problem. Hence, if each boundary element Te contains ne nodes and the 

domain cell Qc contains nc nodes, the variable 6, for example, can be represented

on a boundary element and over a domain cell, respectively, where Nj(£) and 

Nj(£,)?) are interpolation functions, and (J) and (£,77) are intrinsic coordinates for 

the boundary elements and domain cells, respectively. The coordinates £ and rj 

are local coordinates of the transformed boundary element and cell, which in this 

work their values vary from 0 to 1. Substituting Eqs. (6.3) and (6.4) into Eqs.

(6 .1) and (6 .2 ), respectively, results in:

by

(6.3)

and

(6.4)

(6.5)
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and

Nc
J J  S * ( x - X i ,y - y i ) e d x d y  = £

Q C=1

where:

1

5 jw(*i.yi) - /NJ(5)S,(x-*1,y-y1)J«)d5
0

and

" / / N j(5,r1)S*(x-x1>y -y 1)J(?>ii)d5dii 
5-i|

and J(£) and J(£,17) are the Jacobians corresponding to the change of variable in 

the integrals, such as

dT = J(5)d?

dxdy = dSdri 

for boundary and domain integrals, respectively.

Employing the discretization technique presented above, discretized equations 

corresponding to BIEs can easily be generated. However, before doing so it may 

be interesting to represent the boundary integral expression in a more compact 

form. This may be convenient for programming. In this case, the coefficients 

corresponding to the same nodal value of 6 are added, which is the case for 

nodes connecting every two boundary elements. As a result, Eq. (6.5) for 

example, can be recast into another expression that contains only the summation 

of the product of nodal values of 6 and their coefficients. Thus, if TA (e,j) is a 

topological array to represent the global number J of the jth local node on the eth

E
j-i

(6.6)



102

boundary element, then Eq. (6.5) can be rewritten as

r (6.7)f  s*(xi)yi)edr = £  sue,
r J=1

where mr is the total number of nodes on the boundary T, I refers to the source 

point in question and SIsJ is given by:

s„ - i  Sj<e,(x1)yi)
e

where the summation is only carried out on all elements (one or two) which 

contain the node J.

A similar procedure can be applied to the domain integral given by Eq. (6 .6 ). 

Thus, defining a topologic array CTA(c,j) to represents the J global node 

corresponding to the jth local node on the cth domain cell, it results in:

f f s  ♦(*„*) edxdy = £  SyWe, (6.8)
0 J-i

where mn is the total number of nodes over the domain Q including the boundary 

nodes, I refers to the source point and Sy is given for an expression similar to 

the one given above.

6.2.1- Type of Elements

There are several types of boundary elements and cells, depending on the position 

and number of nodes and geometry of the element. In this analysis, the 

isoparametric-type elements with only a few nodes are the only ones considered 

to represent both boundary elements and cells. For the simple reason that if on
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the one hand constant elements (containing only one node in the middle of 

element) are hardly adopted in fluid problems, on the other hand highly 

elaborated elements seeing in FEM analysis, which are described by several 

nodes, seem to be unnecessary in BEM analysis. Eventually, one has to comprise 

between the accuracy of results and size of the system of equations to be solved, 

which are dependent on the number of nodes of the mesh. In this work only 

linear and quadratic elements are adopted to discretize the boundary, while the 

domain is discretized using either the three-node triangular elements, with nodes 

placed at the vertices of the triangle, or the eight-node rectangular element, with 

one node at each corner and one at the midpoint of each side of the element. The 

decision towards these types of elements was made taking into consideration the 

advices available in the literature, where the combination of the triangular 

element on the domain with linear element on the boundary is used very often. 

Note, also, that the nodes of the two meshes, the one on the boundary and the 

other on the domain, are normally related. Thus, according to the type of 

elements adopted, two options to combine the meshes were used in this work: a 

linear element on the boundary with triangular element on the domain, and a 

quadratic element on the boundary with quadrangular element on the domain. 

However, the later was adopted in most cases because it gives more accurate 

results. Appendix H presents all the information with regard to these types of 

elements, such as, Jacobians, interpolation functions, and so on.

The mesh generation does not represent a major concern in BEM as it does, for 

example, in FVM (also regarded as FDM) analysis since it is a relatively easy 

task to generate a mesh on the boundary. The mesh over the domain, when 

necessary, can be generated using the techniques largely available for FEM, that 

is, the same mesh generator may be used in connection with BEM. Meshes 

similar to the ones used in FEM seem to be adequate for BEM analysis,
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according to the results presented in the literature. However, there are also in the 

literature some suggestions of meshes built especially to suit the special feature 

of BEM which may introduce some benefits. One of the most important of these 

is the technique suggested by Camp & Gipson (1987 and 1989). Although the 

domain is divided into cells their technique, in fact, does not use a fixed mesh, 

since a different subdivision of domain is carried out for each source point. This 

mesh has the main advantage of being of variable size, where the finest part of 

the mesh is placed around the source point and the coarsest away from the source 

point. They claim that in this way the accuracy of the domain integrations is 

enhanced without an exaggerated increase in the number of nodes of the mesh. 

An ordinary mesh, similar to the one used in FEM analysis, but with the 

capability of refinement in the region of the corner is adopted in this work.

6.2.2- Discretized Equations

Before presenting the discretized equations for the formulations discussed in the 

previous three Chapters, it is interesting to discuss some important points related 

to the way the boundary and domain integrals appearing in the equations were 

discretized in this work. The main question is whether the integrals in the 

discretized equations should be represented in the way given by Eqs. (6.7) and

(6.8), where the value of the variable in a globally numbered node is made 

explicit, or whether they should be represented in the general form given by Eqs.

(6.5) and (6.6), where the nodal value of the variable is made explicit locally 

within each element.

All the formulations previously discussed, that include domain integrals, are 

solved iteratively. In this case the domain integrals corresponding to each source 

point is solved using the distribution of the variable appearing in the integrand
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obtained in the previous iteration or assumed as an initial guess. Considering all 

source points chosen, this would produce an array with the value of the domain 

integral calculation for each source point. This is possible because the distribution 

on the domain of the variables appearing in the integrand of the domain integrals, 

is obtained explicitly node-by-node using specific equations, instead of the 

implicity solution of the BIEs using the variable in the integrand as unknowns. 

This means that it is not necessary to arrange the domain integral discretization 

in the same way given by the Eq. (6.8), where nodal values of the variable on 

the domain are made explicit and the coefficients corresponding to each node are 

added. In this way, the array with the result of the domain integral calculation 

is the result of the product of a matrix, containing the coefficient of influence 

involving the integrals of the type given in Eq. (6.6), and the vector with the 

nodal values of the variable on the domain. This form of representation of 

domain integrals is especially advantageous since this matrix needs to be 

calculated just once and stored to be used in the next iteration, since the elements 

of this matrix normally contains only geometrical information of the domain. This 

would reduce the CPU time but may create a problem of space in computer 

memory, especially for small computers.

A similar situation appears in the discretization of the boundary integrals. When 

the source point is located inside the domain, in order to calculate the distribution 

of any variable on the domain, the way the boundary integrals are discretized 

does not matter, since both ways can be used. However, when the distribution 

of the variable on the boundary is sought, the boundary integrals must be 

discretized like the compact form given by Eq. (6.7).

In this work, the equations were discretized like the form given by Eqs. (6.5) and

(6.6) whenever possible for the sake of the computer memory space, since in this
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case it is not necessary to store the matrices with the coefficients of influence. In 

the programs, only in the subroutines that calculate the distribution of the 

variables on the boundary the way of discretizing the boundary integral given by 

Eq. (6.7) was used, and so the coefficients of influence were stored.

The BIEs presented in the previous chapters were discretized in this work based 

on the way give by Eqs. (6.5) and (6.6), as follows:

a) Potential Flow Formulation

The equation used to calculate the distribution of either the stream-function or the 

potential of velocity, Eq. (3.11), is given in discretized form by:

Since the derivatives of parameter u are normally required in order to calculate 

the distribution of velocity inside the domain, Eqs. (3.12) and (3.13) are also 

important. Their discretized form are, respectively, given by:

N,
(6.9)

(6 . 10)

and

(6 . 11)



b) Vorticity-Velocity Formulation

The discretized form of the kinematic equations are given by:

and

N.

W i  + E
e=l L H

gm fW iX w Jj)

E

C =1
£  )

(6.12)

N.

Ci (Vy)i + E
e=l

E  (l«j<e,(Xi,yi)(vt)j + hyfW iKvJj
D-i

N,

- gfW iX W kll
C =1

(6.13)

With regard the kinetic equations, including the equations for the derivatives of 

vorticity, two options were investigated. The equations for the first option include 

Eqs. (4.22), (4.27) and (4.28), which in discretized form are given by:



The equations for the second option, Eqs. (4.24), (4.29) and (4.30), 

discretized form given by, respectively:

N„

c i " i + E
c= l

^  EjeW i ) ( Wvn)jl

N_

= -  EV c_,
E (hiCjC)(x1,y.) (vx «)j + hycf)(xi>yi)(vyto)j) 
Jml

E  -  hxnj<e)(xi,yi)«j

- ihxj<')(xi)yi)(<ovn)jj
Nc

r E
c=l

E &lxxcj C>(xi>yi) (M vx)j + hxycf̂ yiXcJvPj) 
L H

are in

(6.17)

(6.18)
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N.

-  S  = £\9yA  e=i
£  hyf(x1(yi)|-|r| -hynĵ x̂ Wj
j-1 \  '  0,1

(0),

ih y j(e)(Xi>yi)(o)vn)j
/ J

(6.19)

t £
c=l

£  (hxycj<0)(Xi,yi)(w v x)j + h y y c fY x ^ X c o v ^ )  
Li-i

C) Penalty Function Formulation

In order to calculate the velocity components Eqs. (5.4) and (5.5) are used, 

which are given in discretized form by, respectively:

Ne
Ci(vx). + £

e=l
£  W M W ,  + f y x j(e,( x i,y 1) ( v y)
j= l ' J J

g x x J(e)(X i,y1) C r x) j -  g y x j<e)(x .,y .)  (T y) J

(6.20)
*».
£
C=1

£
j=i

'  (0 ,_  . J . .  to*  . .. ^
g x x c j (Xi,y i) K —  + v y ■

+ g y x c / c)(x 1>y i)
3 v  3 v  ' '  

v  —1 + v —i
y ay ,j7J

and
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N.
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(6 .21)

The derivatives of the velocity components are evaluated at any internal node by 

the Eq. (5.2), that in expanded and discretized form are given by:

\ Ne^  = -  T  
l a x J i "  U

( fxxX j<e)(X j,y j) ( v x) . + fy x x J<l!)(x .,y iX v y)
j= l '  J J

g x x x J(e)( x . ,y .) ( T x) .  -  g y x x J(e)( x . ,y .) ( T y).J

(6.22)
X
£
C =1
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(6.24)

and
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(6.25)

The coefficients appearing in the discretized equations, Eqs. (6.9) to (6.25), are 

presented in Appendix C.

The algebraic equations given by Eqs. (6.9) to (6.25) are valid for a generic 

source point (x ^ ) . After the introduction of the boundary conditions, these 

equations will contain as many unknowns on the boundary as mr times the 

number of unknown parameters of the problem. Hence, in order to solve the 

problem, a set of algebraic equations with as many equations as the number of 

unknowns has to be generated. This can be done by choosing a suitable number 

source points, normally placed conveniently at every boundary nodes. Thus, 

equations corresponding to each source point are obtained. Note, however, that 

this set can only be solved if the existing domain integrals are evaluated first. In 

general, when the unknowns in question are located on the boundary nodes of the 

domain, the problem is solved implicitly since a system of equations has to be 

solved. That is the case of Eq. (6.9), for instance. On the other hand, results for 

internal nodes (sometimes including the boundary nodes as well) can be obtained 

explicitly node-by-node using the equations in the form given previously, which 

may be advantageous for the computer memory point of view. That is the case
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of Eqs. (6.10), (6.11), (6.15), (6.16), (6.18), (6.19) and (6.22) to (6.25). Some 

equations are used twice to obtain the solutions on the boundary and domain as 

well. Eqs. (6.14) and (6.17), for example, are used to generate a system of 

equations to be solved implicity in order to obtain the distribution of normal 

derivative of vorticity on the boundary and afterwards they are used to obtain 

explicitly the distribution of vorticity at internal nodes of domain. Thus, from 

those equations above matrices with the coefficients of influence may have to be 

assembled or not, depending on the situation.

Before discussing the solution procedures to solve the equations corresponding 

to the three formulations, presented previously in discretized form, it is 

convenient to discuss the following two topics which are extremely important for 

the success of the numerical solution of the discretized equations namely, 

integration procedures and corner treatment.

6.3- INTEGRATION PROCEDURES

To obtain the coefficients appearing in the discretized equations given in the 

previous section requires the solution of integrals on the boundary and the 

domain. It is recognized that most of computational effort of a BEM program is 

spent performing integrations in order to calculate these influence coefficients. 

Apart this fact, this task would not require considerable attention if most of these 

integrals were not singular. Unfortunately, the problem is that the kernel of most 

integrals appearing in the BIE has a singularity at the source point, and so the 

integration on the boundary elements or cells where the source point is placed 

must be performed through special techniques. To make matters worse, the 

coefficients arising from singular integrals lie on the leading diagonals of the 

BEM matrices. They therefore, have a strong effect on the solution. It is
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therefore, very important to adopt a technique which allows the calculation of 

singular integrals with good accuracy.

This subject has received the attention it deserves from the many researchers in 

this area, as is indicated by the large number of publications addressing the 

problem. As a result, there are now several ways to deal with singular integrals. 

It seems, however, that a technique that can be used to deal efficiently with 

different singular integrals normally appearing in the use of BEM has not yet 

been published. Thus, different approaches have to be considered in a program 

to deal with different types of singularity appearing in the integrand. Sometimes 

one may not find an approach in the literature to deal with a special singularity 

and so an adaptation has to be introduced in the original approach, which can 

affect the accuracy of the results.

The singular integral can be performed analytically but only in a limited number 

of cases. For the isoparametric-type of boundary element and cell used in this 

work, the interpolation functions deliver an integrand which is very difficult to 

integrate analytically. Approximate techniques have, therefore, to be used. These 

techniques are in general based on transformations, Taylor series expansions and 

special integration formulae. Sometimes, the singularity involved in the boundary 

integrals are so difficult to remove, that the technique of locating the source point 

outside the domain has to be considered. This technique is referred to as a 

regular Boundary Element Method. Also, when an interior solution is to be 

obtained, including also the boundary, it is very common to avoid locating the 

source point on the boundary nodes, if any boundary integral exists whose kernel 

contains a strong singularity. In this case, the results on the boundary nodes are 

obtained using different techniques. In general, the distribution of the parameter 

on the boundary is already known from the previous steps of the algorithm and
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so there is no need to calculate it again.

The fact is that dealing with singular integrals demands a lot of skill. In 

consequence, with the success of the BEM and its increasingly expanding range 

of applications, the need for techniques that allow a rapid, accurate and consistent 

evaluation of integrals became very crucial for the continued development of the 

BEM. This was so important that the solution of singular integrals became a 

major topic of research itself.

In this work, no attempt was made to investigate the performance of the many 

different techniques for evaluation of the integrals before deciding on one nor 

is a new technique proposed. It was decided, instead, to use an approach 

suggested in the literature that seems to give good accuracy for the purpose of 

this work.

The regular integrals are relatively easy to perform, and the usual Gaussian 

quadrature is normally adopted. In this work the modified Gaussian quadrature, 

which uses an interval of integration from 0 to 1, as described in El-Zafrany 

(1993), was adopted to calculate the regular boundary and domain integrals. With 

regard the singular integrals, different approaches were adopted depending on the 

type of the kernel appearing in the integral. Thus, starting from boundary 

integrals, the integrals given previously are discussed.

Fortunately, most singularity occurring in the boundary integrals could be 

avoided, such as

9u^ 1 (x-*i)
dx 2n r2
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and du* 1i (y-yi)
dy 2n

These are represented by a rational function and no special technique is 

necessary, in this case, to perform the integrals. In fact, the singularity exists but 

was ignored since it will be corrected by means of jump functions or rigid 

translation techniques, that will be discussed later in connection with corner 

treatment. Other kernels derived from these will be dealt in a similar way, like

There are also other kernels appearing in the previous integrals which are 

represented by rational functions. These require no special technique to deal with 

the singularity. They are:

1 2 — — — 
47t(l-v)r[ dndxdy dx dy)
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47c(l-v)r
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dn dx dy \ dy dx,

and

F =22
1 dr
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where:

=  tx ~xJ
dx r

dy r

and

dr . dr dr — = 4— + m— 
dn dx dy

On the other hand, kernels given below possess a strong singularity which are 

very difficult to deal with due the presence of 1/r2:

dV
dydn 2nrJ

m  -  2 — —  
v dy dn,

and

aV = _ _J_( t _ 2 at at "j
dxdn 2nr2 \ dx dnj



These appear in the Eqs.(6.15), (6.16), (6.18) and (6.19) which are used to 

calculate the derivatives of vorticity inside the domain, including the boundary. 

In this work, it was decided to avoid placing the source point on the boundary, 

in this case, to prevent problems in dealing with the boundary integrals 

containing these kernels. Instead, an expression was derived to calculate the 

derivatives of vorticity on the boundary analytically, taking into consideration the 

information of the distribution of the normal derivative of vorticity. The 

technique of using an auxiliary expression to calculate the distribution of the 

parameter on the boundary instead of using the BIE is normally adopted in such 

a situation to avoid the singularity. An additional advantage of doing so is that 

the algorithm becomes faster. A similar approach had to be used in order to solve 

Eqs. (6.22) to (6.25) since the kernels given by the derivatives of the 

fundamental solutions components Fn, F12, F21 and F22, defined by Eq. (5.14), 

contain a strong singularity due a term 1/r2. The derivatives of the fundamental 

solution components Gn, G12, G21 and G22, defined by Eq. (5.13), appearing also 

in the integrals given in these equations, are represented by terms containing only 

rational functions. These represented no problem also since the singular 

integrations on the boundary were avoided.

The boundary integrals whose kernel contains In r were in fact the only ones 

where a special technique had to be adopted in order to perform them. The 

kernels included in this category are:
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Gn =
1

8n:v(l-v)
(3-4v) *0) * (1)1

and

The approach presented in the section 1.1 of Appendix I was adopted, in order 

to overcome the problem. This approach comprises basically the introduction of 

a change of variable in order to split the integrand into two parts: one singular 

and the other regular. They can then be calculated using the usual quadrature 

formulae available in the literature since the singular part can, in this case, be 

evaluated in this way.

With regard to the domain integrals, the situation is a little bit more complicated 

because all domain integrals given in Appendix C require a special approach to 

deal with the singularity. In addition, most domain integrals are closely related 

to the convective term of the transport equations governing the motion of fluids. 

According to the literature a good accuracy in the evaluation of these domain 

integrals has to be obtained otherwise divergence of the results my occur, 

Kitagawa et al. (1986).

The technique presented in the section 1.2 of Appendix I was adopted, with some 

minor adaptations from one case to another to overcome most of the singularities 

appearing in the domain integrals. This technique consists of enforcing that the 

domain integral with the singular kernel tends to zero at the source point. The 

only remaining term at the source point is a boundary integral which can be
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solved using the approaches discussed previously. The technique obeys the 

general expression given by Eq. (1.8) of Appendix I, where if F is a function of 

the field variable, then the domain integral can conveniently be transformed into:

where P* is the kernel which includes the fundamental solution, F; is the value 

of F at source point and n0 is the unit vector pointing in any specific direction. 

Note, however, that in order to adopt this technique, the domain integrals in the 

BIEs have to be replaced by the above equation and, as a consequence, another 

discretization form for the domain integrals emerges, which should replace the 

one given in the discretized Eqs. (6.12) to (6.25).

The main disadvantage of this approach is that, in this way, more integrals have 

to be solved, since an additional domain integral and a boundary integral were 

introduced. In consequence, this is likely to be more time consuming than other 

techniques. However, if the speed of calculation is of paramount importance, the 

matricial way of organizing a discretized equation corresponding to that given by 

Eq. (6.8) may be adopted. Thus, the array with the results of the domain integral 

at different source points may be represented in terms of the product between 

a matrix containing the coefficients of influence and an array with the nodal 

values of the function F. As was mentioned earlier the elements of this matrix 

contain only geometric parameter and so they need to be calculated only once. 

As a result, a great amount of CPU time can be saved. Considering that many 

source points were chosen, the discretized expression for the integral in matricial 

form is given by:
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where the matrix [K] on the right-hand side of the above equation represents the 

coefficients given by the solutions of the following integral:

K/CW i )  = / /N /5 ,T ) ) J ( S ,T ) ) - g j - d i ;d T i
5-n 0

Note, however, that the values of the elements of [K] may need to be obtained 

with a summation of the coefficients given by this integral corresponding to the 

cells that share a particular node. The elements of the diagonal matrix [K] are 

obtained from the solution of the following integral:

Q

and the elements of the diagonal matrix [Z] are given by the solution of the 

following boundary integral:
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za = (̂fl0.H)P*dr
r

Note that this representation shows clearly the contribution of the additional 

integrals to the leading diagonal elements of the matrix [K], where the 

coefficients of singular integrals are placed. It is expected roughly that as the 

source point is approached, the element in the leading diagonal of the matrix [K] 

corresponding to that particular source point cancels out with the element of the 

diagonal matrix [K]. Its final value is thus given by the corresponding element 

at the leading diagonal of the matrix [Z].

On the other hand, the main advantage of the formula given by Eq. (6.26) is that 

it is independent of the type of the domain cell adopted to discretize the domain, 

which can be important if the effect of different types of cells are to be 

investigated. The technique that uses polar coordinates to deal with the singular 

domain integral, normally given by a kernel of type 1/r, is an example of an 

approach that has also the advantage of allowing the matrix type representation 

but that has the serious disadvantage of being normally applied to triangular cells 

with three nodes, only.

As was mentioned previously, the matrix type representation will be avoided in 

this work for the sake of computer memory. The discretized expression more 

appropriate for this option will be given for each case, corresponding to a 

particular source point.

When the kernel of the domain integral is given by the derivative of the 

fundamental solution u*, the domain integral is calculated by the following 

discretized expression:
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for derivatives in x- and y-directions, respectively, where the coefficients 

gl(e)(Xi,yi), gm (e)(Xi,yi), hxc(c)(X},yi) and hyc(c)(Xi,yi) are integrals similar to those 

given in Appendix C; the only difference being that the interpolation functions 

do not appear. The other two coefficients are exactly the integrals defined in 

Appendix C . Kernels represented by the second derivatives of the fundamental 

solution u* are given by:

and
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/ /  F l " l b dxdy = H  l«yCj(c)(xi,yi)Fj + Fj £  (hylc^Xpy,) + hxm(e)(x.,y,))/2

-  Y  hxyc^Cx^y;)
C=1

where an average was introduced in the boundary integral representation of the 

latter expression in order to avoid any inaccuracy due to the change in the order 

of derivations. The coefficients hxxCj(c)(Xj,yj), hyycj(c)(xi,yi) and hxyc/^x^yj) are 

defined in Appendix C and the coefficients hxxc^x^yj), hyyc(c)(Xj,yj) and 

hxyc(c)(xi?yi) are similar to those used previously where the only difference is that 

they do not contain the interpolation function in the integrand. The remaining 

coefficients are boundary integrals defined as follows:

o

and

o
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On the other hand, integrals whose kernel contains the fundamental solution u * 

itself, can be solved using such a technique, however, an additional derivation is 

necessary as shown in the section 1.2.1 of Appendix I. The final expression for 

this case is:

N, N.

J f  Fu 'dxdy = Y Y  + F,
Q  C =1 j = l

Ne Nc
Y  ht (e)(xi»yi) - Y  gc‘c)(xi.yi)
e = l  c = l

where the coefficient gCj^x^y) is defined in Appendix C and the coefficient 

gc(c)(Xj,y) is similar to the previous one with the only difference that the 

interpolation function does not appear in the integrand. The coefficient ht(e)(Xi,y) 

is given by the following boundary integral:

1
ht<e>(x1(yi) = / J(?)^-(21nr -  l ) | l d ?

O

Note that the integrand of the above integral contains two singular terms. 

Fortunately, one of them is of a rational type function and is treated as mentioned 

previously. The other one, which involves the logarithmic function, can be 

overcome using the approach discussed previously to deal with this type of 

singular kernel.

The same method can be used to solve singular domain integrals whose kernel 

includes the fundamental solution Gkl, given by Eq. (5.8), and its derivatives. 

However, instead of using the fundamental solution equation in the form given 

in Chapter 5, it is convenient to use the representation given by Eq. (G.20) for 

simplicity, as shown in Appendix I. A summary of domain integrals already 

discretized for this case is given as follows. For a kernel involving Gn, G12, G2i
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and G22, the domain integrals are given by:

N, n„

f  f  FGn dxdy = £  £  gxxcf^x^F j + F; 
a «-» J-i

N. Nc
£  gxlc^Xi^i) -  £  gxxc^Cx^yj)
e=l c=l

/ /  FGI2dxdy = £  £  gxycf’Cx^Fj + F( 
0 C-l j=l

n 6 n c

g y i ^ X w )  -  Y ,  gxyc^xpyj)
e=l c=l

f  f  FG21dxdy = £  £  S y ^ C W i)^  + F i 
a «-i j-i

N« Nc
£  gxmc(e)(x.,y,) -  £  gyxc(c)(X|,y,)
e=l c=l

and

/ /  FGndxdy = £  £  gyycfW iJFj + F,
a  c - i  j - i

n 6 n c

£  gymc(e)(x.,y.) -  £  gyyc^CX;,^)
e=l c=l

where the coefficients gxxc/^Xj,^), gxyc/^x^yj), gyxc/^feyj) and gyyc/^x^yi) 

are defined in Appendix C and gxxc(c)(Xj,yj), gxyc^x^y;), gyxc(c)(xi?yj) and 

gyyc(c)(Xi,yj) are similar to the previous coefficients with the difference that the 

interpolation function is not included in the integrand of the integrals defining 

these coefficients. The remaining coefficients are defined as follows:
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gxlc(e)(xi(y;) = j  J(£) 9g _ Sg
an 2(1 - v) dx. d?

gylc^ x^ ) = f J(?)| - 1 _ | j g
2(1 - v) 9y

d?

gxmc^x-.y,) = f J(£)( - ------
o I 2(1 ■

dg_-m— 
- v) dx

d£

and

gymc(e)(xi(y[) = J  J(?) -  —  1
k3n 2(1 - v) 3y

d«

where g comes from Eq. (G.19) and is given by:

after assuming that C2= -1 and C2= 0 in that equation.

Note that the kernel of these integrals contains a singularity due to the presence 

of a logarithmic function, but that problem can be overcome using the technique 

described in the Section 1.1 of Appendix I.

Usually, in interior solutions, when the source point is placed near to the
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boundary the accuracy of the results decrease. This setback of the BEM can 

appear in any kind of problem and is, in general, provoked by the so-called 

quasi-singular integrals. The problem occurs because when the source point 

approaches the boundary, the integrand of any singular integral on the nearby 

boundary element behaves badly. Since these integrals are not formally singular, 

special numerical integration is not normally used and ordinary quadrature is 

inaccurate. This problem is more likely to come up in the calculation of 

derivatives in which the order of the singularity is high. It was, in fact, noticed 

in the calculation of derivatives of vorticity and derivatives of velocity in the 

formulations based on vorticity and penalty function, respectively. Although the 

inaccuracy introduced in this case did not seem to create serious consequences 

for the final result as a whole, an attempt to overcome this problem was made 

by avoiding putting the source point inside a region near to the boundary. The 

derivatives of the parameter inside that region were calculated using a numerical 

approach for calculation of the derivatives. Another technique used was to 

consider the boundary integral as singular every time the source point laid within 

a certain distance from the boundary. Thus, the subroutine in the program used 

to perform a singular integral was activated. However, most of the tests were 

carried out using BIE to calculate the derivatives in every node on the domain 

without any special treatment, just like the conventional solution of the BIE.

6.4- CORNER TREATMENT

A special treatment is normally required to deal with corners appearing in the 

domain of problems investigated, which are in general introduced as a result of 

the discretization process of the boundary. Using corners in the BEM appears in 

the analysis of most engineering problems and their correct treatment is especially 

important for the success of a BEM code, since they are closely related to the
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accuracy of the results. This is, without doubt, another important subject related 

to the application of the BEM. Fortunately this has received the attention it 

deserves in the literature, as is indicated by the reasonable number of published 

papers discussing the matter.

The main problem with a corner is that it introduces a discontinuity in the 

direction of the normal to the boundary that leads the normal derivative or flux 

of the potential to be double-valued at the corner node. The potential itself, on 

the other hand, is single-valued at that node. However, the problem may not 

appear depending on the boundary conditions of the problem or on the 

discretization adopted at the boundary. When constant elements are used to 

discretize the whole boundary, or at least the region near to the corner, the 

problem does not exist even if the geometric corner does. The reason is that, in 

that case, there is no discontinuity in the normal derivative of potential at the 

nodes. When the isoparametric type of element is used, which happens in most 

cases, the problem may appear. In the last instance, it is the kind of boundary 

conditions adopted on both sides of the corner that determine whether the corner 

should be treated using a special technique or not. Roughly speaking, when the 

normal derivative of a potential is prescribed in at least one of the sides that 

constitute a corner, no special treatment is necessary, since there will be as 

many unknowns as the number of equations to be solved. In this case, no 

additional unknown is introduced at the corner node. On the other hand, when 

the normal derivatives on both sides of a corner are to be calculated, the problem 

of a double-valued normal derivative at the corner node becomes evident. That 

is, one additional unknown is introduced. In the end, a system of equations has 

to be solved with more unknowns than equations, since one more unknown per 

corner is introduced. This problem of the corner is well explained in, for 

example, Walker&Fenner (1989).
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There are several proposals in the literature put forward to deal with this 

problem. In this work it was decided to use the one that adopts an auxiliary node 

at the corner to cope with the extra unknown for the normal derivative of the 

potential. Therefore, now there are two nodes at a corner, each one placed at the 

element on each side of the corner, and an additional equation is thereby created. 

The two nodes, however, are separated by a small gap to avoid having the two 

equations with the same coefficients. That is, the two nodes do not occupy the 

same position at the geometric corner. They are, in fact, moved a slight distance 

along either direction of the two adjacent boundary elements at the corner. Based 

on this idea, many variations were tried in order to improve the results. The 

discussion presented next refers mainly to the corner problem faced in the 

development of the program based on the vorticity-velocity formulation.

Most of the approaches suggested in the literature are evaluated taking as 

reference the accuracy of the results for a sort of potential analysis, for the sake 

of simplicity. In this work, however, the most serious corner problems appeared 

with the solution of viscous flow. The analysis of this kind of problem involves 

the solution of many BIEs iteratively and that contain domain integrals. The 

accuracy is still a parameter to be used to quantify the success of the approach 

in this case, since the convergence of results depends largely on it. However, the 

experience based on a potential solution may not be appropriate to the present 

analysis since the corner treatment may affect the calculation of the domain 

integral, whose accuracy, in its calculation, is very important for the convergence 

of the results. In other words, the analysis of viscous flow is much more complex 

than the potential case, since now the domain integral has to be considered and 

the isolated effects of corner treatment and domain integral calculation to the 

convergence of results become less evident. Divergence of results was the main 

problem faced in this analysis, caused partially by inaccuracies in the treatment
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of corners and the evaluation of domain integrals. In this work, serious problems 

were encountered with the corner. One of the most difficult appeared in the 

solution of the equation of transport of vorticity, of the vorticity-velocity 

formulation, used to obtain the distribution of the normal derivative of vorticity 

on the boundary.

The kind of approach that relies on an extra node have some disadvantages 

caused by the additional node. This is because, in this case, more integrations 

have to be performed to generate the equation corresponding to that extra node 

and also since it increases the order of the matrix of coefficients to be inverted. 

In addition, another point that should be noted is the fact that the boundary is not 

continuous any more, since a gap was introduced at the corner. This introduces 

a small error in the discretized equations to be added on top of the usual and 

inevitable inaccuracy introduced due to the discretization process itself and other 

approximations. This error can be overlooked if the gap is very small. This is 

not, however, the situation for most cases and a correction has to be introduced. 

This correction is in general introduced through the constant Q. So far in this 

document, it was mentioned that the values of C; are given in Appendix B 

regardless of the treatment given to the corner nodes. However, for accuracy’s 

sake, the value of Q should be correctly evaluated each time the double-node 

approach is adopted. In spite of these drawbacks, the double-node approach was 

adopted in this work because it can give good results and also because of its 

simplicity of implementation.

The value of the gap between the two corner nodes was the first parameter to be 

investigated in this work. However, there is not much freedom to play with the 

value of that parameter since it has to be kept within a narrow range given by 

two limits. As was mentioned before, if the gap is increased, the accuracy of the
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results reduces. On the other hand, if the gap is too small, ill-conditioning 

problem of the system of equations may appear. The value of the gap has 

therefore to be optimized. An attempt to eliminate one of those nodes and its 

corresponding equation in the system of equations was made. The result obtained 

for the normal derivative of the potential at the remaining corner node was also 

transferred to the missing node. The objective behind this technique was to 

simulate a situation where the values of the normal derivatives of potential at both 

sides of the corner are assumed equal. This measure never worked properly with 

the formulation based on vorticity and velocity, where it was tested. Besides, a 

new variable was introduced, since in this case, a decision had to be made about 

which of the node equations upon which the calculations should be based.

At this stage, it was decided to leave the two nodes with a small gap between 

them and steps were taken to improve in the calculation of Q. At first, it was 

evaluated at corners using the suggestion given in Appendix B, based on the 

angle of the geometric corner. The same value was then assumed for both corner 

nodes. Following this, the idea based on the application of a constant potential 

around the boundary and inside the domain was adopted. This way of assessing 

the value of the constant in terms of physical concepts is discussed in many 

textbooks , for example, in El-Zaffany (1993). The result is that the constant Q 

for a finite domain problem is given by the following expression:

C r - E E  l i f V i )  (6.23)
e=l j=l

where all parameters have their usual meaning. Normally in the literature, either 

temperature or displacement are used in the analysis to derive the expression, 

assuming a constant temperature field over both the boundary and the domain 

or by applying a rigid translation over the whole domain, respectively. Doing in
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this way, the results were improved but convergence of results was not achieved.

A significant breakthrough in the improvement of the results was brought about 

by the use of the procedure discussed in Appendix J to calculate the coefficient 

Cj. This procedure attempts to compensate for the error introduced with the gap 

between the corner nodes, in a way similar to that suggested by Ricardella 

(1979), using here the so-called jump functions. This can be regarded as an 

extension of the procedure represented by the expression above to problems 

where the dependent variable has two components, as in the vorticity-velocity and 

penalty function formulations. Thus, the terms containing the coefficients Q of 

the BIEs related to these formulations were modified to take into consideration 

this new procedure in the way described in Appendix J.

One relatively simple technique that gave surprisingly good results was that 

suggested by Mitra and Ingber (1987). This consists in placing the source point 

corresponding to one of the corner nodes outside the domain. Thus the 

coefficients of the equations corresponding to the corner nodes are different and 

the gap can therefore be eliminated without creating problems related to ill- 

conditioning of system of equations. As indicated in this reference, a random 

choice of the source point should be avoided and the best approach is to place it 

near the corner. The main disadvantage of this technique is that the position of 

source point outside the domain may have to be optimized. Although in the first 

test, just one of the source points relative to the corner nodes was located outside 

the boundary, eventually it was found convenient in this work to locate both 

source points outside the domain. This avoids any possible problem related with 

the choice of nodes. The source points were placed on a straight line normal to 

each side elements that form the corner, at each node.
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It is worth noting that mesh refinement in the corner region was introduced along 

with the early measures, but the improvement achieved was not enough to 

provoke convergence of results. The latest techniques, which were responsible 

indeed for the improvement in the results, were used without mesh refinement. 

Eventually, the techniques that introduce a correction in the calculation of the 

coefficient Q and the one that locates the source point, corresponding to the 

corner nodes, outside the domain, were adopted throughout this work. The latter 

was used more in connection with the vorticity-velocity formulation.

6 .5 - SOLUTION ALGORITHMS

The algorithms adopted in this work to solve fluid flow problems, using the 

formulations discussed previously, are presented here. However, a detailed 

discussion of all steps introduced in the programs and the listing of the programs 

themselves are beyond the scope of this document. The previous discussion, 

however, related to the numerical implementation gives a good idea about the 

numerical procedures used in the programs.

Although the algorithms are different from one formulation to another, many 

subroutines, such as those used to perform integrations, are shared by the 

programs. The programs also share the subroutines that calculate all the 

parameters related to the discretization process, such as, Jacobians, interpolation 

functions, direction cosines, and so on. The subroutines that read the input data 

of all programs are basically the same. These subroutines create the topologic 

arrays TA and CTA defined in Eqs. (6.7) and (6.8), respectively, and facilitate 

the description of the boundary elements and cells. Thus, the programs developed 

shared many points in common.

A program for each formulation investigated in this work was developed. Only
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the main version is discussed here.

6.5.1- Potential Formulation

The solution steps to solve potential problems described in the introduction of this 

Chapter can be used to solve potential flow, and so is not discussed again. 

Depending on the type of the problem to be solved, however, additional steps 

have to be introduced. For example, the calculation of the derivatives of velocity 

potential or stream function variables inside the domain are normally required in 

order to evaluate the velocity components on the domain. An additional step may, 

therefore, be required after the results for the basic algorithm have been 

achieved. Eqs. (6.10) and (6.11) are, in this case, adopted to calculate the 

derivatives of the parameter at internal nodes. However, they are not adequate 

to carry out the calculations at boundary nodes, because of the singularities of the 

boundary integrals. The best option, in this case, is to use the technique used in 

the vorticity-velocity formulation described in Appendix K. In this work, 

however, this option was not implemented in the program since, in the cases 

analysed, the results on the boundary given by the Eq. (6.9) were more 

important.

One important feature introduced in the program was a subroutine to deal with 

boundary conditions involving periodicity. This condition appears in general 

when the solution of the flow through a cascade of turbomachinery blades is 

required. The periodicity conditions exist when, in a domain, the values of the 

flux of a variable and the variable itself at the nodes on one boundary are related 

to the values of these parameters at the nodes on the opposite boundary. In other 

words, since in this situation, no explicit boundary conditions are given, 

additional equations have to be introduced to allow the solution of the problem.
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These conditions are given by an expression relating the value of the flux of the 

variable and the variable itself, at opposite nodes. In the case of cascades, the 

values of the variable at opposite nodes are the same but the flux of the variable 

has opposite sign.

A program for solving Poisson’s equations using the BEM available was modified 

to a program with these characteristic, aimed at solution of potential flow 

through cascade. The main modifications introduced in the original program were 

the subroutines to deal with the periodicity conditions and to allow interior 

calculations of the variable of the problem and of its derivatives.

6.5.2- Vorticity-Velocity Formulation

In this formulation two different possibilities concerning the kinetic part of the 

formulation were investigated. The most recent versions of the program 

corresponding to these two options are basically the same and so only the 

procedure steps of the first option, given by Eqs. (4.22), (4.25), (4.26), (4.27) 

and (4.28), are discussed. However, special features and other alternative 

solutions attempted in both options will be presented at the end.

The solution of this kind of problem, different to the potential analysis, has to 

be obtained iteratively. The iterative process is based on the derivatives of 

vorticity since they are the parameters appearing in the integrand of all domain 

integrals. However, the convergence criterion is placed to verily the convergence 

of vorticity only. In this way, after the convergence has been achieved, it is 

expected to obtain a low residual for the other parameters like velocity 

components also. Many more iterations are requested in order to obtain the 

derivatives of vorticity with a low residual. The solution is divided into two parts 

corresponding to the solution of the kinematic part, first, and the kinetics
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second. The main steps are:

(a) Assume an initial distribution for the derivatives of vorticity on the whole 

domain. Note that the distribution of these parameters can be assumed 

equal to zero everywhere. However, as in many simple problems, this 

value represents the correct answer for these parameters. It is 

recommended in this case, to assume a value other than zero. Otherwise, 

there will be no iterative process since in the first iteration, the program 

would give the correct answer for all parameters;

(b) Introduce the boundary conditions given by the velocities vn and vt, which 

are related to velocity components vx and vy, along with the conditions 

given in the previous step in the equations of kinematic part, Eqs. (4.25) 

and (4.26). The resulting system of equations are then solved to obtain 

the distribution of vorticity on the boundary nodes.

At this stage, the distribution of all variables are known on the boundary. 

However, only the boundary conditions are corrected since the vorticity 

on the boundary was obtained based on an initial guess for the derivatives 

of vorticity over the whole domain, or on the results of the previous 

iteration. The objective of the next steps is to update the distribution of 

those parameters given initially and the others taking into consideration the 

information now available on the boundary.

(c) Use the kinematic equations again, Eqs. (4.25) and (4.26), but with the 

source points located inside the domain to obtain explicitly the distribution 

of the velocity components, vx and vy, over domain nodes. The velocity 

components on the boundary nodes are obtained using the following
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equations, along with the given boundary conditions in terms of tangential 

and normal velocity components:

v* = «vn -  mv,

and

vy = mvn + «vt 

where t  and m are the direction cosines.

This concludes the calculations involving the kinematic equations. The 

next steps deal with the kinetic equations to obtain the distribution of 

vorticity and the derivatives of vorticity.

(d) Calculate the distribution of the normal derivative of the vorticity over the 

boundary nodes using Eq. (4.22) for the kinetics together with the 

previous results. The source points are located in this case on the 

boundary nodes and the distribution of the normal derivative of vorticity 

is obtained implicity with the solution of the resulting system of equations;

(e) Obtain the distribution of the vorticity over internal nodes of the domain 

using the kinetic equation, Eq. (4.22). The source points are located at 

internal nodes which allows the explicit calculation of the vorticity node- 

by-node. Note that here, the boundary nodes were avoided since the 

vorticity distribution on the boundary nodes was obtained in step (b);

(1) Calculate the derivatives of vorticity at the internal nodes by solving 

explicitly Eqs. (4.27) and (4.28) node-by-node. Note that the boundary
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node calculations are avoided since these equations contain boundary 

integrals with strong singularities;

(g) Calculate the derivatives of vorticity at the boundary nodes using the 

following equations, Eqs. (K.6) and (K.7), derived in Appendix K:

0(0 . 0(0 0(0 .—  = (—  -  m — / J(5) 
0x 0n 05 1

and

/J(5) +
0y 0? 0n

(h) Evaluate the residual of the results of vorticity using the following 

criterion:

E  (“j - “jloi/
IR = ±2------------------- (6.24)

n c

E “/
j=i

(i) If the residual obtained is smaller than a certain tolerance e, very small, 

the results are considered converged. Otherwise the calculations should 

continue, using for the next iteration a new distribution of derivatives of 

vorticity, or sometimes a new distribution of vorticity also, obtained 

through the expressions:
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'new

and

'j = (da)U J 'new syJow

where w is an under-relaxation factor;

(j) The results obtained so far are introduced in step (b) for a new iteration 

until convergence of the results is achieved.

The solution algorithm for option 2, given by Eqs. (4.25), (4.26), (4.24), (4.29) 

and (4.30), is very similar to the one presented above. The main difference is 

that, in this case, the vorticity appears along with the normal derivative of 

vorticity in the integrand of the domain integrals of the kinetic part of the 

problem. In this case, the vorticity has also to be under-relaxed in the iterative 

process and an initial distribution for it has to be guessed.

6.5.3- Penalty Function Formulation

The program developed for this formulation is based on a slightly different 

algorithm to the one presented by Kitagawa et al. (1986). The main difference 

is in the way the velocity components and derivatives of velocities are updated 

from one iteration to another. In their case, these parameters are obtained for the 

new value of the body force term solving the corresponding equations given 

previously in discretized form. Here, only part of these equations are employed 

to obtain the distribution of the incremental value of these parameters
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corresponding to an incremental variation in the body force term. This, algorithm 

will be explained in this document.

Initially, the body force terms are assumed equal to zero and all the equations are 

solved. The results obtained in this way do not, therefore, consider the effects of 

the body force terms, that is, domain integrals. These initial results represent the 

bulk of the solution, where incremental values of the velocity components and 

derivatives of velocity are added or subtracted in the forthcoming iterations, 

depending on the values of the body force terms. The incremental values of these 

parameters take into consideration the effects of the change in the value of the 

body force terms. The body force terms are initially equal to zero but later are 

evaluated using the results of the parameters obtained in the previous iteration. 

Convergence of the results is obtained when the incremental values of the 

velocity components becomes very small. Roughly speaking, the present 

algorithm can be divided into two main parts: the one that obtains the results 

without body forces and the other where the iterative process takes place. The 

main steps of the algorithm adopted are given as follows:

(a) Assume initially, that all body force terms are equal to zero. Define an 

array with the velocity components at the boundary nodes and do the same 

with the derivatives of velocities and the traction components;

(b) Assemble a system of algebraic equations formed alternately by Eqs. 

(6.20) and (6.21), by locating the source points at the boundary nodes. 

After the introduction of the boundary conditions, a system of equations 

results with (2xmr) equations and (2xmr) unknowns:

[A] {ul = {f}
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where [A] represents the matrix of influence and {f} is the array 

containing the results due to the known parameters, {u} is the array of 

unknowns including velocity and traction components;

(c) Solve the previous system of equations. The velocity and traction 

components are thus known at every boundary node;

(d) Calculate the velocity components and the derivatives of velocities at 

internal nodes of the domain, explicitly node-by-node, using Eqs. (6.20) 

and (6.21) and Eqs. (6.22) to (6.25), respectively;

(e) Obtain the distribution of the derivatives of velocities on the boundary 

using the special approach discussed in Section K.2 of Appendix K;

At this stage, the distribution of all parameters has been obtained without 

taking into consideration the body force effect. These results are 

transferred to another variable, say UT, which can represent any variable 

of the problem and where the updated results from each iteration are 

stored. Next, the effect of the body force terms will be introduced in the 

previous results.

(f) Evaluate the domain integrals of the Eqs. (6.20) and (6.21) for the source 

points located at boundary nodes, using the results obtained previously and 

stored in UT. Then, solve the following system of equations:

[A] {du} = (df}

where {df} is the array with the information on the body force term, given 

by the difference between the results of this term obtained in the previous 

and the current iterations. [A] is the same matrix as used in the step (b). 

The array with the incremental results on the boundary for velocity and



traction components, {du}, represents the value to be added to the 

corresponding solution UT obtained previously;

Repeat steps (d) and (e) using the results {du} on the boundary nodes, 

obtained in the previous step, but taking into consideration the effect of the 

body force terms in step (d) evaluated using the distribution of the updated 

variables, UT, newly obtained;

Update the velocity and traction components and the derivatives of 

velocities with the incremental results obtained in the steps (f) and (g). The 

velocity and traction components are updated using the following 

expression:

UTnew = UTold + (du) W

where UTnew is the updated, or the total, value of these variable for the 

current iteration, UTold is the result for the previous iteration and w is a 

relaxation factor;

If the residual based only on the results for the velocity components on the 

boundary, obtained using the following expression:

m  = — -----------

£  (UTnew) / 
j-i

is smaller than a small tolerance e , convergence has been achieved. 

Otherwise the calculation should continue;

Go to the step (f) and repeat the calculations using the new results.
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Following this, it is possible to see the main difference between this algorithm 

and that adopted by Kitagawa. There, although in the first step, the body force 

terms are assumed equal to zero, the calculations in the following iterations are 

based on the use of the whole equations. In other words, their algorithm works 

always with the updated value of the variables which includes the body force 

effect.

6.5.4- Programming

The programs were coded in FORTRAN 77 to be used in a VAX 8650 main 

frame computer, but with a version using a workstation. The program for 

potential analysis has about 800 lines and the others have between 2500 and 3000 

lines, without considering the mesh generation subroutine.

The program based on vorticity-velocity formulation was developed first. This 

program was initially based on a simple program available at Cranfield for 

potential analysis using Poisson’s equation. This was, therefore, modified to carry 

out the calculations of steps (d) and (e) in the algorithm using the vorticity- 

velocity formulation. One of the main modifications introduced was due to the 

fact the domain integrals in the viscous flow include variable in the integrand, 

which requires an iterative solution. Other subroutines were developed to carry 

out the calculations related to the kinematic equations and derivatives of vorticity.

The same simple program to potential analysis gave origin, with slight 

alterations, to the program to potential flow analysis. The main modifications 

introduced in the program were the ones related to the subroutines to deal with 

periodicity conditions and to allow calculations of the derivative of the variables 

at internal nodes of the domain.
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The program for viscous flow analysis based on the penalty function approach, 

was developed from a program for elasto-plastic stress analysis developed by the 

Finite Element group of Cranfield Institute of Technology. A great part of this 

program was deleted since for the fluid analysis only displacements, traction and 

derivatives of displacement need to be calculated. This task was very time 

consuming since it was necessary first to understand the structure of the program. 

The main modifications inserted in the program were the ones related with the 

introduction of the convective term of Navier-Stokes equations in place of the 

body force term of the original program. Subroutines to evaluate the domain 

integral due of the convective term had to be developed.

The solvers of the system of algebraic equations used in these programs are based 

on Gauss elimination with pivoting and are basically the same. Some subroutines 

used in the vorticity-velocity formulation program to carry out integrations on the 

boundary are used in the program for potential analysis, since the fundamental 

solution is the same. Similar subroutines are used in the program based on the 

penalty function formulation. The fundamental solutions are in this case however, 

different from the previous ones. With regard to the subroutines related to the 

discretization of the equations, basically the same set of subroutines is used in all 

programs. Roughly speaking, apart from the main algorithm with the solution 

procedure the subroutines included in the programs are basically the same. One 

difference between the programs based on vorticity-velocity and penalty functions 

formulations is, for example, in the subroutines which calculate the derivatives 

of the parameters on the boundary nodes, since they are based on different 

techniques.



Chapter 7

Discussion of Results 
and Conclusions

7.1-INTRODUCTION

In this Chapter, the results obtained by the programs developed in this work are 

discussed for some selected test cases. The problems of numerical nature 

presented by the programs are also discussed and justifications given.

Two practical case studies, whose numerical or analytical solutions are available, 

were adopted to validate the program for potential analysis, since this program 

was expected to give satisfactory results without much problem. On the other 

hand, it was necessary to rely on simple test cases to analyse the problems that 

appeared in the development phase of the programs for viscous flow solution.

The Poiseuille flow was adopted during the pre-validation phase of the program 

to solve viscous flow based on the vorticity-velocity formulation. The Couette 

and driven-cavity flows were later also attempted at the validation stage. 

However, only results for low Reynolds number were achieved due to divergence 

problems. This problem was more serious in the program based on the penalty 

function approach and it seems that this program still needs more improvements 

in order to obtain convergence of the results.

All the programs computations considered in this Chapter were performed in 

double precision on a VAX 8650 computer.
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7.2- POTENTIAL FORMULATION

7.2.1- Introduction

An existing program for potential analysis available was modified to consider 

periodicity conditions, internal calculations and so on to deal with potential flow 

analysis of cascades. For this case a pre-validation phase was not necessary since 

this program does not have non-linear problems or iterative procedure. However, 

corner problems was expected to appear in some situations and in this case the 

techniques, mentioned in Chapter 6, adopted in the development of the vorticity- 

velocity program had to be considered. Two case studies, whose solutions are 

available in the literature, were considered. These are the potential flow in an L- 

shaped channel and through a cascade of vertical cylinders. The objective of the 

first test is to assess the accuracy of internal results in the region of corners and 

the aim of the second case analysed is to validate the program when periodicity 

conditions is involved and also to assess the accuracy of the solution on curved 

boundaries.

7.2.2- L-shaped Channel

This problem is described in Figure 7.1 and represents the flow between two 

plates, changing direction in a 90° angle. The flow is assumed to enter the 

channel with a constant x-direction velocity component and leave with a constant 

y-direction velocity component of equal value to that of the inlet flow. This 

problem was solved in Brebbia & Ferrante (1983) using both the FEM and the 

BEM, considering constant flow velocities with unit values and the dimensions 

given in Figure 7.1. In this analysis the stream-function parameter is considered 

as the variable of the problem. The boundary conditions in this case are: on the
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boundary ABC the stream-function assumes a prescribed zero value; on the 

boundary DEF it assumes the constant value 4; and a linear variation of stream- 

function from zero to 4 is assumed at the boundaries AF and CD. The objective 

of this analysis is to obtain the values of the stream-function parameters at some 

internal points located on the diagonal BE shown in Figure 7.1. First, however, 

the boundary results have to be obtained. Note that in this case, since the 

distribution of the stream-function parameter is prescribed around the whole 

boundary, the boundary unknowns are the values of normal derivative of the 

stream-function. In this case, special corner treatment is required.

In this work, the problem was discretized using 16 quadratic boundary elements 

with 32 nodes and 6 additional nodes at the corners. This mesh is presented in 

Figure 7.2.

The results for this problem are given in Figure 7.3 together with the results due 

to Brebbia & Ferrante (1983). It can be seen clearly that the results of this work 

agree very well with the results using the BEM obtained in that reference. Their 

results using the BEM were obtained with 24 constant boundary elements of 

different sizes. In their case the inaccuracy caused by corners was not a problem. 

The BEM solutions produce slight higher values at the region of the corner B 

compared with FEM results. As mentioned in Brebbia & Ferrante (1983) this is 

because the BEM has the characteristic of representing better rapid variations of 

the parameter in this region, which can be considered an advantage of the BEM. 

With regard to the FEM solution, their results were obtained using a mesh with 

66 triangular linear elements with 46 nodes.

It is worth mentioning that the curves of Figure 7.3 were plotted based on the 

output of the programs given in that reference. The result at the point (1.75,1.75)
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on the diagonal BE, obtained in their BEM solution, was omitted in a similar 

figure shown in Brebbia & Ferrante (1983). This was probably because it 

provokes a deformation in the interpolated curve, since it lays below the FEM 

results. However, it was decided to include this result here since it was also 

obtained in this work. This may be a problem linked to the BEM itself or even 

a physical explanation may exist. The FEM solution did not give the value of the 

stream-function at this point to compare the results. To avoid problem with the 

adjusted curves it was decided just to join the points using straight lines.

The results obtained in this work were affected by the treatment given to the 

corners. Mainly the results on the diagonal BE, at the points near of the corner 

B. A gap between each 2 corner nodes was introduced to avoid singularity in the 

equations matrix, as discussed in Chapter 6. The accuracy of the results for some 

values for the gap, mainly 0.1, 0.01 and 0.001, were investigated. The results 

were assessed in terms of the symmetry of the results for the normal derivative 

of stream-function in relation to the diagonal BE. The rigid translation technique 

to evaluate the value of Q with a gap between the corner nodes of 0.1 gave the 

best results. In this case, the distribution on the boundaries AB and FE were 

nearly symmetric in relation to the results on the boundaries BC and ED, 

respectively. The distribution of the stream-function parameter obtained in this 

work on the diagonal BE lies, in the region near to the corner B, in between the 

results using the BEM and the FEM obtained by Brebbia & Ferrante (1983). 

However, these results are closer to the BEM solution given by them. The 

technique of locating the source points corresponding to the corner nodes outside 

of the domain was also adopted. This test case showed, however, that results 

around the boundary are not so good, although the distribution of the stream- 

function on the BE diagonal is reasonable. The results obtained on this diagonal 

using that technique are in general higher than the results given in Figure 7.3.
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This test showed also that at internal corners, like corner B, there is not much 

space to locate the source points outside the domain. The situation could become 

worse when the internal angle of the corner is reduced. Here only one of the 

source points corresponding to the corner nodes was located outside of the 

domain, on the prolongation line of the diagonal BE.

7.2.3- Cascade of Cylinders

This problem is of a potential flow around a cascade of cylinders, as illustrated 

in Figure 7.4. There a channel is formed between the two cylinders separated by 

distance t where the flow go through. The free-stream flow velocity is given by 

U and in this case there is no lift. This problem was solved by Thompson (1973) 

using the FEM and the results compared with the exact solution, which he 

obtained using the technique due to Merchant & Collar (1941) for the solution 

of potential flow around cascades of bodies without lift. Thompson (1973), in 

fact, selected a set of parameters to obtain the analytical solution, using that 

technique, for potential flow around a cascade of ovals which are very nearly 

circles. A table with this solution is presented in this reference for the distribution 

of tangential velocity on the surface of one quadrant of cylinder.

The solution domain defined by Thompson (1973) to obtain the FEM solution for 

this problem is a rectangle with a cylinder in the middle. This can be done since 

a symmetry related to the middle line of the channel exists. He discretized this 

domain using 195 triangular linear elements with 123 nodes. It is worth 

mentioning that he adopted a finer mesh around the surface of the cylinder and 

a coarse mesh far away from the cylinder. He solved this problem based on 

either stream-function or velocity potential parameters.
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In this work, in order to test the subroutine to deal with periodicity conditions, 

the solution domain was selected that includes the whole channel, bounded by 

half cylinders, and is extended by a unit distance in both downstream and 

upstream directions. In this case, the stream-function was used as the variable of 

the problem. Since U was assumed to be unity, the stream-function was assumed 

to be zero at the boundary BC and with a prescribed value t on GF, where the 

parameter t was given the value 3.15. A linear variation of the stream-function 

from zero to t was assumed at the boundaries DE and AH. In the remaining 

boundaries the periodicity conditions were assumed. The boundaries HG and FE 

were considered to have a stream-function distribution t greater than the values 

on the boundaries AB and CD, respectively. The normal derivative of the stream 

function was assumed to have the same absolute value on these upper and lower 

boundaries, but with opposite signs.

The discretized boundary of this domain is shown in Figure 7.5, where 24 

quadratic elements were adopted with 48 nodes and 8 additional nodes in the 

corners. The smallest boundary elements were located on the surface of the 

cylinders and the biggest ones were located at the inlet and outlet flow 

boundaries.

The results for this problem are shown in Figure 7.6 for one quadrant of a 

cylinder, which is from the middle point on the surface of the lower cylinder to 

the point C. It is possible to see that the results agree very well with the 

analytical solution due to Thompson (1973). It was also clear from the output 

of the program, that the results obtained on the boundary were nearly symmetric 

in relation to the line crossing the centre of the cylinders. The accuracy of the 

results very near to the corner C, for example, was not so good, but changing the 

value of the gap between the corner nodes the results in this region improved. In
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this case, the coefficients Q were obtained using the technique of rigid 

translation, with the source points located on the boundary. The results obtained 

by Thompson (1973) using the FEM, on the other hand, agree also with 

analytical solution. However, they did not plot any point in the region very near 

to the corner.

7.2.4- Additional Comments

Following the comparisons made above between BEM and FEM solutions it can 

be concluded that the BEM is more adequate to solve this class of problem than 

domain methods. However, the BEM in general requires the use of special 

treatment for the corners in order to improve the accuracy of the results in 

regions near to them. In these cases, the technique based on the rigid translation 

approach to obtain Q ,along with the optimisation of the gap between the corner 

nodes, gave better results. The technique based on the location of the source 

points corresponding to the corner nodes outside the boundary did not gave good 

results in the first case investigated, where it was attempted. These cases, mainly 

the first one, showed that the corner treatment affects the results. Hence, 

depending on the proximity of the corners to the region of interest in the solution 

domain, the corner treatment becomes another major issue inherent to the 

application of the BEM.

7.3- VORTICITY-VELOCITY FORMULATION

7.3.1- Introduction

The development of the vorticity-velocity formulation program represented the 

most difficult part of this research since novelties were been considered and
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many problems appeared. The main problem was that the solution of this 

formulation comes out after an iterative procedure arising through the 

nonlinearity introduced by the convective term of the kinetic equations. This term 

is represented by domain integrals of these equations. Also, the value of the 

domain integrals appearing in the kinematic equations have to be guessed 

initially, or evaluated using the results of the previous iteration. This iterative 

procedure normally requires special measures to force convergence, apart from 

the fact that the convective term has to be evaluated with good accuracy. To 

make matters worse, a new set of boundary integral equations to represent the 

problem was investigated, with little support from the literature in terms of 

numerical measures to be adopted.

The main program based on this formulation was developed using initially a 

program to solve the BIE corresponding to Poisson’s equation. This program was 

used as subroutine, or block of subprograms, with the objective of calculating 

the distribution of normal derivative of vorticity on the boundary and the 

distribution of vorticity at internal nodes, using the kinetic equation. The main 

difference between the BIE for Poisson’s equation and the kinetic equation is that, 

in this case, the unknowns appear in the integrand of the domain integral. These 

unknowns are the velocity components and the derivatives of vorticity. In order 

to obtain the velocity components using the kinematic equations, the derivatives 

of vorticity have to be known and vice-versa. Hence, due to this nonlinearity, the 

solution has to be obtained iteratively. Conversely, the kinematics needed a 

different algorithm for the solution and new subroutines were, accordingly, 

developed. It is not difficult to see that the program for the solution of viscous 

flow using the vorticity-velocity formulation has a modular characteristic, where 

parts of the program were elaborated to achieve the purpose explained in the 

algorithm given in Section 6.4 of Chapter 6.
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The vorticity-velocity program was initially based on the equations involving the 

kinetic equations of option 2, described in Chapter 4. It was decided to start 

using these equations for the kinetics because they preserve some similarity with 

Skerget’s approach. Doing it this way helps to avoid starting with a completely 

new set of equations and enables some support from the literature. The first test 

with the program was carried out with the whole program already assembled, in 

spite of its modular characteristic, since the main concern was at first with the 

behaviour of the iterative process itself. The program did not work at that stage, 

mainly because of divergence of results and mistakes in the development of the 

program. Later however, a simple test case had to be adopted to check the results 

of each block of the program in order to help in the debugging process, and also, 

to give an idea of the effect of the modifications introduced in the program. A 

considerable time was spent trying to make the results of the program converge.

Many tests were carried out on the program and several versions were created. 

The effects of some parameter changes were investigated, for instance, the corner 

gap, the number of integration points, the type of element and the number of 

nodes of the mesh and so on. Basically, two problems were detected with the 

analysis of the results of the simple case tested: bad behaviour in the distribution 

of vorticity on the boundary, observed with the iterative solution, and inaccurate 

results for the normal derivative of vorticity on the boundary. The main 

modification introduced in the original algorithm at that stage was the attempt at 

solving the coupled kinematic and kinetic equations. Thus, the distributions of 

vorticity and the normal derivative of vorticity on the boundary would be 

obtained with the implicit solution of a system of equations involving the 

kinematic and kinetic equations. This measure was intended to improve the 

results of these two parameters and consequently improve the convergence. 

However, it did not solve the problem. A version of the program for the kinetic
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equations corresponding to option 1 was also investigated in parallel at the same 

time.

The kinematic equations are linearly dependent, and so only a number of 

equations corresponding to one set of algebraic equations, from the two sets 

resulting from the discretization of Eqs. (4.25) and (4.26), should be used in the 

calculation of the distribution of vorticity on the boundary. The way in which 

these equations are combined to form this system of algebraic equations affects 

the results considerably. It was found, observing the behaviour of the results, that 

the best way of assembling this system of equations is to chose the algebraic 

equations of the two sets which deliver the biggest absolute value for the leading 

diagonal of the matrix of coefficients. Skerget and his group had a similar 

problem. In order to overcome this problem they suggested a special measure to 

generate this system of algebraic equations. In their case, the problem seems 

more serious because the matrix of coefficients corresponding to each kinematic 

equation is singular, see for example Skerget et al. (1990) and Alujevic et al. 

(1991). One of the reasons for adopting in this work, a different form for the 

kinematic equations from those adopted by Skerget was so as to avoid similar 

problems. However it seems this measure did not give much improvement.

The divergence of the results was caused by many factors. One of these was the 

inaccuracy in the evaluation of the normal derivative of vorticity on the 

boundary. The main reasons for this are the corner problem and the inaccuracy 

in the calculation of the domain integral of the kinetic equation. The corner 

problem and the treatment given to it in the program are discussed in Chapter 6. 

Some of the techniques attempted in this work to solve these problems were 

assessed using the results of a simple test case. The accuracy of the integrals was 

also assessed indirectly using this simple test case.
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In conclusion, the program based on the kinetic equation, option 1, converged for 

the case studies tested, however only for low values of Reynolds Number. The 

program based on option 2 also converged but with a little more difficulty. It 

seems that further experimentation will be necessary in order to extend the 

convergence of results to higher values of Reynolds number for the program 

based on both options.

After the initial tests were carried out for the purpose of validating the program, 

three test cases normally adopted in the literature were solved: Couette, Poiseuille 

and driven-cavity flows. The first two cases are very simple but important since 

all results can be obtained analytically. Therefore, they were extensively used in 

the development stage of the program to allow the assessment of all the results 

in every part of the domain. The driven-cavity flow is considered a bench mark 

test case that is often used to validate programs for viscous flows. This case has 

no analytical solution and the numerical results available in the literature do not 

allow results for all variables involved at every position to be obtained. The 

driven-cavity flow is strongly nonlinear for high Reynolds number flow and all 

domain integrals are important. Here, however, the Reynolds number adopted in 

the test are very low, almost zero in most cases, in order to afford to achieve the 

convergence of results. The results given by the program for these cases are 

presented next.

7.3.2- Pre-Validation Analysis

These preliminary tests include all those carried out during the development of 

the program with the two main objectives of helping in the debugging process 

and to assess the accuracy of the results delivered by the program. The principal 

test carried out was based on the analysis of each module of the program
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elaborated for a specific purpose. Thus, the modules that calculate the distribution 

of vorticity on the boundary, evaluate the normal derivative of vorticity etc, were 

assessed individually. In order to do so, the correct input obtained from any 

solution available in the literature was introduced in the module analysed and the 

output compared with the correct answer. Note, however, that no iteration existed 

in this case. This process was very important in order to help find mistakes made 

in the early stages of the development of the program. More recently, it was very 

useful in the investigation of corner problems and helpful in assessing indirectly 

the accuracy of the integrations. Some conclusions are now discussed. It is worth 

mentioning that these tests were carried out in parallel with attempts to improve 

the convergence of results, where any new idea was afterwards tested in the 

program to see the effects on convergence.

Poiseuille flow was adopted as the test case for this analysis because of its 

simplicity, which allows any result to be obtained analytically, and because for 

some cases, the domain integrals do not vanish. This is especially interesting 

when the effect of domain integrals need to be investigated. Figure 7.7 presents 

the geometry of the problem analysed along with the boundary conditions, in 

terms of velocity, and the correct distribution of vorticity and its normal 

derivative on the boundary. Note, that in this case, in the derivatives of vorticity 

in x- and y-directions are respectively 0.0 and 8.0 everywhere in the domain.

The domain was discretized using four 8-node quadrangular cells. The boundary 

was discretized using eight quadratic boundary elements. Thus, there were 20 

nodes on the boundary and 5 internal nodes. An additional node was included at 

each corner. The picture of the mesh adopted is shown in Figure 7.8.

The first objective met by these tests was the identification and correction of any
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mistake in the programs. Subsequently, the main objective was to analyse the 

effects of the techniques to treat corners, mainly, before using them in the main 

program. It was a relatively easy task to discover the mistakes in the program. 

However, the identification of the cause of inaccuracy of some results and the 

investigation of the measures to correct it was a very time consuming task 

indeed. The ultimate test was the verification to see how these measures affect 

the convergence of the results, which is the main problem.

It has already been mentioned in the introduction of this Section, that the way the 

system of equations used to calculate the distribution of vorticity on the boundary 

is assembled, affects the results. The problem is that the kinematic equations, 

given by Eqs. (4.25) and (4.26), deliver a system of equations with (2xmr) 

equations and mr unknowns. A system of mr equations, however, should result 

from the fact they are linearly dependent. Note that a system of equations fully 

based on one of the kinematic BIEs cannot be adopted since, depending on the 

geometry of the problem, the direction cosines may vanish on certain parts of the 

boundary along with the term containing the boundary integral with vorticity in 

the integrand. The solution, therefore, is to combine Eqs. (4.25) and (4.26) to 

generate a system of algebraic equations. Some combinations were attempted in 

this work. Initially, the system of equations was generated by adding the 

corresponding coefficients of these two equations. However, it was discovered 

later that the behaviour of the distribution of vorticity obtained initially hardly 

changed through the iterations. In other words, the results changed quantitatively 

but the behaviour of the distribution of vorticity was maintained almost the same. 

The problem is that bad results at some nodes persisted and eventually divergence 

of the results occurred. The same problem appeared when the equations were 

subtracted, instead. However, bad results appeared then on opposite positions 

around nodes located on the middle of the boundary, compared with the previous
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results. A mean average of the results obtained by adding and subtracting the 

kinematic equations was also tried. The behaviour of the distribution of vorticity 

was improved substantially. However, even though convergence of results was 

achieved for some simple cases, the algorithm was still very unstable. The simple 

test was not able to identify the best way to do it, since the results given in the 

test, without iterations, for different possible ways of assembling the system of 

equations were roughly of the same level of accuracy. Only tests using the main 

program, in an iterative calculation, could show the best way of assembling the 

system of equations. The results of each iteration had to be followed step-by-step 

to see, mainly, the behaviour of the vorticity distribution on the boundary. 

Eventually, it was discovered that the system of equations assembled by 

choosing the equation that gives the biggest absolute value for the leading 

diagonal of the matrix of coefficients gives the best results.

At the initial stage of development of the programs, with problems in the 

calculation of the vorticity and normal derivative of vorticity distribution, 

attempts were made also to solve the problem using Eqs. (4.25), (4.26) and 

(4.24) of option 2 coupled. That is, a system of algebraic equations involving 

these equations was assembled in order to obtain the distributions of vorticity and 

normal derivative of vorticity on the boundary nodes. This measure did not bring 

much improvement to the result and was later abandoned since, in this case, it 

is much more difficult to analyse the particular problem for each equation.

The most important difficulty regarding the corner problem appeared in the 

calculation of the normal derivative of vorticity on the boundary, for the reasons 

already explained in Chapter 6. In the kinematics, the calculation of the vorticity 

distribution on the boundary presented a slight problem of inaccuracy. This was 

due to the presence of gaps on the boundary, introduced with the double-node
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technique, in order to avoid the problem mentioned previously related to the 

calculation of the distribution of normal derivative of vorticity on the boundary. 

In the beginning, when the system of equations to calculate the distribution of this 

parameter was assembled using the equations given by the sum of the two 

kinematic equations, an additional problem caused by matrix ill-conditioning 

appeared when the corner nodes were getting closer. In this case, at the corners, 

two equations with nearly the same coefficients were generated. This problem 

disappeared with the use of a system of equations based on the equation which 

gives the biggest leading diagonal coefficient. Thus, different equations are used 

to represent each corner node and in this case the gap can be made as small as 

zero without causing a problem. However, the gap had to be left at the corners 

because of the calculation of the normal derivative of vorticity. In order to reduce 

the deterioration of the accuracy of results for the vorticity distribution on the 

boundary caused by the presence of the gaps, the jump function technique was 

adopted to correct the coefficient Q. Since the value of vorticity at a corner is 

unique, the technique of removing one of the two nodes of the corner and its 

corresponding equation from the system of equations, already attempted in the 

system of equations that calculates the normal derivative of vorticity, could be 

used. However, priority was not given to this task at that stage of the 

development of the program.

Preliminary tests showed that the jump function approach to treat corner gaps 

affecting the calculation of the distribution of vorticity on the boundary had 

improved the results. Altering the value of the gap without any additional 

measure tried before the introduction of jump function technique did not work. 

The corrections introduced by the jump function were also used to obtain the 

velocity components distribution at internal nodes using the kinematic equations. 

In order to observe the effect of the gap, the results for three different values for
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the gaps: l.lxlO '2, 10'3 and 108 were analysed. It was observed that the accuracy 

of the results for all variables improved with the reduction of the gap, except for 

the results for the normal derivative of vorticity. This conclusion was already 

expected since the problem with matrix ill-conditioning normally appears when 

the corner nodes get closer. The results for the value of the gap l.lxlO '3 are 

summarized in Tables 7.1 and 7.2, corresponding to options 1 and 2 for the 

kinetics, respectively. Note, for example, that the results for the normal 

derivatives of vorticity are not satisfactory, in both cases, and that there is a 

problem in the internal results of the derivative of vorticity in x-direction 

appearing only in the equations of the option 2.

On the other hand, the implicit calculation of the distribution of the normal 

derivative of vorticity using the kinetic equation was also affected to a great 

extent by the corners. The technique of calculating the coefficient Ci? based on 

the so-called rigid translation technique, was also adopted in this part of the 

program, but did not solve the problem. These approaches were used in most 

tests carried out. More recently, the technique of locating the source points 

corresponding to the corner nodes outside the domain was adopted, with 

advantages over the previous technique, to improve the accuracy of the 

distribution of the normal derivative of vorticity, as shown in Tables 7.3 and 7.4, 

for option 1 and 2 for the kinetics, respectively, obtained using the same 

conditions used to obtain the results given in Tables 7.1 and 7.2, except that the 

corner gap was l.lxlO '8. It can be seen that the results for the normal derivative 

of vorticity have been improved notably. Another advantage, in this case, is that 

now the corner gap can be eliminated since the problem of matrix ill-conditioning 

disappears, increasing the accuracy of all the results of the program because, 

among other reasons, more accurate results can be obtained for the vorticity on 

the boundary. The problem with this technique is that the position of the source
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point outside the domain (regular corner technique) may have to be optimised. 

In simple tests, using the mesh shown in Fig. 7.8, three distances from the 

boundary relative to the length of the boundary element were analysed: 0.25, 0.5 

and 1.0. It was observed that the accuracy of results for the normal derivative of 

vorticity was improved with the increase of the distance, but not very much. 

Therefore, it was decided to adopt a distance from the boundary of 0.25 

throughout this study. It is worth mentioning that the regular BEM was 

attempted, however, the results were not acceptable.

Another measure attempted in order to try to improve the results was the 

refinement of the mesh. Most of the tests using 4 internal cells in the domain 

were repeated using a mesh with 16 internal cells and 16 boundary elements of 

the same type as before. Thus, 36 boundary and 33 internal nodes were used. 

This measure improved the results slightly, however all the problems mentioned 

before continued. For example, the distribution of the normal derivative of 

vorticity on the fluid boundary preserved the same tendency of the results to 

deteriorate in the direction of the corners. Hence, it was decided to continue 

using the coarse mesh for the purpose of the simple analysis. In order to try to 

tackle the corner problem also, a localized mesh refinement in corner regions was 

introduced. Again this measure did not solve the problem. With regard to the 

convergence, the refinement of the mesh did not bring any noticeable 

improvement to the iterative process. In addition, triangular cells on the domain 

combined with linear boundary elements, were also tried in the discretization. It 

was observed that, in general, the accuracy of the results obtained with this kind 

of mesh was not as good as the results obtained using a quadrangular mesh 

similar to the one given in Fig. 7.8.

Looking at the kinetic equations, it is easy to conclude that the convective term
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has its effect magnified since it is divided by the kinematic viscosity which is, in 

general, very small. For example, for air at the temperature of 15 °C it assumes 

a value of about 1.45 x 10'5 m2/s. Thus, considering that for a certain geometry 

and specified velocity, when the value of Reynolds number increases (viscosity 

decreases), the effect of the convective term becomes very important and so 

requires to be evaluated with good accuracy. The reason is that any error is also 

magnified by the effect of the viscosity as well. The problem with representation 

and evaluation of the convective term created serious problems for people 

working with FDM and FEM in the past and is nowadays a problem in the use 

of the BEM also. The consequence of any inaccuracy is that the algorithm 

becomes unstable and divergence of results may occur. In the simple tests carried 

out here, without involving iterations, the value of viscosity was assumed unity 

in order to remove any possibility of masking the results of the convective term, 

since the accuracy of the integrals involved themselves was also being 

investigated. However, the early divergence in the results of the programs 

developed in this work was caused by many factors including the corner problem. 

More recently, the program based on the equations using option 1 for the 

kinematic equation converged adequately for some test cases analysed, but only 

at low values of Reynolds number. The remaining problem is now thought to be 

caused by the problem associated with the evaluation of the convective term of 

the kinetic equations. The simple test carried out with this set of equations using 

the regular treatment for the corners, without iteration, showed that the accuracy 

of the results is excellent, see Table 7.3. The same test showed, however, that 

the accuracy of the results using the set of equations of option 2 are not so good, 

as shown in Table 7.4. Note also that the results for the vorticity on the boundary 

can be slightly improved using the regular corner treatment in the kinematic 

equations, as shown in Table 7.5 for option 1. One could explain that the good 

results of option 1 are due to the fact that, in that case, the domain integrals for
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the kinetic equations vanish and conclude that the problem is caused by the 

convective terms. In other words, it is a problem due the evaluation of the 

domain integrals of the kinetic equations of option 2. This could in fact be true. 

The conclusions so far are: the algorithm based on option 1 is more stable than 

the program of option 2 and it is likely that the accuracy of the technique adopted 

to evaluate some domain integrals are not adequate for viscous flow analysis. 

This could explain the fact that the convergence so far was achieved only for low 

values of Reynolds number.

The simple test was also adopted to assess the accuracy of the integration 

schemes and to optimize the number of quadrature points to be used. In this case, 

the accuracy of the results of the program were assessed, instead of trying to 

check each integral individually. It was decided to adopt an even number of 

points to integrate on the boundary in order to avoid any point coinciding with 

the node at the middle of the quadratic element. This measure was intended to 

prevent problems when the source point was located at that node. It was decided 

to use 8 quadrature points to integrate on the boundary for accuracy’s sake, 

although results with 6 points are not bad at all. Special attention was paid to the 

integration on the domain. In this case, the test showed that 4 points to integrate 

in quadrangular element mesh is adequate. When a fine mesh was used, less than 

4 points were tried in order to avoid any influence due the proximity of the 

integration points to the source point.

Initially, it was thought that the algorithm based on the kinetic equations given 

by option 1 was not suitable for this analysis. Because, in this case, with the use 

of the correct information for the Poiseuille flow, the domain integrals 

corresponding to the convective term vanish in the Eqs.(4.22), (4.27) and (4.28), 

since the derivatives of vorticity in x-direction is zero and the velocity component
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in y-direction is also zero. However, these equations were useful to assess 

indirectly the accuracy of the boundary integrals that appear in the kinetic 

equations of both options, since the domain integrals are not present in this case. 

In the option 2, the domain integrals do not disappear, thus their accuracy can 

also be evaluated indirecdy. From the results corresponding to option 1, given 

in Table 7.3, it was possible to conclude that the results delivered are in general 

accurate. This means that, unless any error is being cancelled out, the method 

adopted to perform the boundary integrals is adequate. The corner gap was 

considered practically zero in this case, where the jump function approach was 

also considered in the kinematic part and the regular corner approach was 

adopted in the evaluation of the normal derivative of vorticity. These same 

boundary integrals appear in the equations of option 2 where the results obtained 

are not so good as can be seen in Table 7.4. The other boundary integral 

appearing in these equations has the same kernel of one of the two boundary 

integrals previously investigated. Therefore, since the same approach is adopted 

to perform these integrals, it is possible to conclude that the accuracy of the 

results of the boundary integral is satisfactory. After this observation, it may be 

concluded also that the inaccuracy of the results may be caused by the domain 

integrals, as was suggested previously. It seems that every analysis so far led to 

the conclusion that there is a problem in the evaluation of domain integrals of the 

kinetic part. However, there are some facts that are not well understood. For 

example, in the results for option 2, given in Table 7.4, the results for the 

derivative of vorticity in x-direction at internal nodes at the position (0.5,0.25) 

and (0.5,0.75), which are more close to the solid boundary, are not so accurate 

as are the results for the derivative of vorticity in y-direction, in spite of the fact 

that the same subroutine is used to evaluate the domain integral in both cases. 

The equations that calculate that two parameters are very similar. These nodes 

are not so close to the boundary to blame any problem due to the effect of quasi
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singular boundary integrals for this. The final conclusion is that this problem 

needs further investigation, meanwhile in this work more attention will be paid 

to the program based on equations of option 1, since it seems more promising. 

The fact that the kinetic equations of options 1 and 2 are only slightly different, 

but mathematically equivalent, led to the expectation initially, that their solutions 

would present similar behaviour and problems. The different problems presented 

by each one can give an indication of the diversity of numerical problems that 

formulations so different as that of Skerget and the one based on approach 1 

could present.

After the partial success of the programs, some measures were attempted with the 

objective of extending the convergence of results to higher value of Reynolds 

number, at least to 100 which is the value adopted in most test cases presented 

in the literature. Changing the value of the relaxation factor did not solve the 

problem at all. Apart from this, the most important measure attempted was to 

increase the Reynolds number step by step, as suggested in many works using 

FEM and BEM. In other words, the converged results for Re=0, for example, 

was used as an initial guess for calculations with Re=10 for example. These 

results were in turn used as an initial guess in the calculation for Re=20 and so 

on. This process is continued until the target value for the Reynolds number be 

achieved. This technique was tried many times in different situations using the 

driven-cavity flow as a test case. Divergence of results, however, always occurs 

for Reynolds number greater than 50.

Changing the value of the relaxation factor, it was felt that the algorithm is very 

unstable and requires a very small relaxation factor to converge. In other words, 

unless the parameters updated at every iteration, mainly the derivatives of 

vorticity, are severely under-relaxed the convergence becomes difficult to be
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achieve. One problem is that, in this case, the converged results are obtained 

after an exaggerated number of iterations, along with the fact that the calculations 

becomes very computer time consuming. In the case of the program using the 

equations of option 1, for example, the derivatives of vorticity are under-relaxed 

using a typical relaxation factor of around 0.03. The objective of this is to reduce 

drastically the effect of the domain integrals. This under-relaxation affects 

indistinctly the kinematic and kinetic domain integrals, but the major problem 

seems to be the domain integrals of the kinematic part since they are divided by 

the kinematic viscosity. One measure that is currently under investigation is to 

multiply the domain integrals by a sort of scale factor, instead of using the under 

relaxation of the parameter in the integral. Thus, the domain integrals of the 

kinematics can be damped down with different strengths of the kinetics domain 

integrals, by using different factors. This could help to accelerate convergence. 

A final conclusion will be only emerge after a series of tests have been carried 

out.

7.3.3- Test Cases 

7.3.3.1 Couette Flow

The Couette flow is represented by the flow between two flat parallel plates 

where the upper plate is moving at constant velocity. The solution of this flow 

is known to be given, in the case where gradients of pressure do not exist, by a 

linear variation of the axial velocity with the vertical distance, where on the 

lower plate the velocity is zero and at the position of the upper plate the flow 

assume the velocity of this plate. The transversal velocity is zero since the 

problem is one-dimensional. This simple model is adopted, in general, in 

tribology to describe the flow of lubricant in journal bearings. The case analysed
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here is described in Figure 7.9, where the upper plate is moving at unit velocity. 

The dimensions of the sides of the domain are assumed to have a unit value as 

well. In this situation the Reynolds number is given by the inverse of the 

kinematic viscosity.

The domain of the problem was discretized using a mesh with 16 domain cells 

and 16 boundary elements, as shown in Figure 7.10. Considering in this case the

8-node quadrangular type of cells on the domain and quadratic boundary 

elements, this gives 36 boundary and 33 internal nodes. The solution for this case 

given by the program, in the middle of the channel in the x-direction, is 

presented in Figure 7.11. It is possible to see that the results given by the 

program, based on a two-dimensional analysis, agree with the analytical solution. 

These results were achieved for Re = 10 after 108 iterations and a residual, 

calculated according Eq. (6.24), of 3 x 10'5. In this case, both vorticity and 

derivative of vorticity were under-relaxed using the factors 0.3 and 0.03, 

respectively, although the program can converge with no need of relaxating the 

vorticity parameter. The initial distributions of the derivatives of vorticity were 

assumed to have a unit constant value which may be responsible for the large 

number of iterations required to achieve these results with this residual level.

7.3.3.2- Poiseuille Flow

This was another simple but important case considered. It represents the 

developed flow between two parallel plates, where the axial velocity profile is 

described by a parabolic equation in terms of the vertical distance of the channel. 

This is given in Figure 7.7 for a case where the velocity in middle of channel is 

unity. The dimension of the sides of the domain is also unity and again the 

Reynolds number for this case is given by the inverse of the kinematic viscosity.
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The same mesh as given in Figure 7.10 was adopted to obtain the results 

presented in Figure 7.12, for axial velocity profile, and in Figure 7.13 for 

vorticity distribution, at the nodes located at the vertical line in the middle of the 

channel in the x-direction. It can be seen that the results agree with the analytical 

solution with good accuracy. The most noticeable discrepancy is observed in the 

results for the axial velocity in the middle of the channel, where there is an error 

of 2.5 %. These results were obtained for Re = 10 after 131 iterations with a 

residual of 10'5. In this case only the derivatives of vorticity parameters were 

under-relaxed by a factor of 0.03.

7.3.3.3- Driven-Cavity Flow

This is one of the most adopted case studies in the literature. Different from the 

other cases, where a two-dimensional analysis was adopted to deal with one

dimensional problems, this is in fact a two-dimensional problem. It is described 

by a flow inside a rectangular cavity, as shown in Figure 7.14, where the upper 

lid is moving at constant velocity. The flow movement is, in this case therefore, 

induced by the upper surface of the cavity. Since the dimensions of the sides of 

the cavity were assumed to be unity, the Reynolds number is defined as before. 

Here, the results for Re = 0 and 10 were obtained and the comparisons with the 

literature presented. Explanations for the difference observed between these 

results are also discussed.

The works of Kelmanson (1983b), Karageorghis et al. (1989) and Rodriguez- 

Prada et al. (1990) for Re=0 were adopted as a reference to assess the results 

of this work. This problem, normally called Stoke’s flow, is described in these 

works by a biharmonic equation in terms of the vorticity and stream function. 

The important point is that in their formulation the domain integrals does not
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appear. In this case, only the boundary needs to be discretized. The indirect 

BEM was adopted to obtain iteratively the results in the second work, where as 

many as 136 nodes were used to discretized the solution domain. In this case, 

due to the symmetry of the problem in question only half of the cavity was 

adopted as the solution domain. On the other hand, Kelmanson (1983b) and 

Rodriguez-Prada et al. (1990) adopted the regular BEM to solve the same 

problem. In the first work the problem was solved iteratively using different 

approaches. The best result was obtained with the approach that adopts an 

analytical solution of the results at the upper corners, where a boundary mesh 

with 200 constant elements was employed. In Rodriguez-Prada et al. (1990) this 

problem was solved directly without iterations. They typically adopted a 

boundary mesh with linear elements and 64 nodes in the analysis. It should be 

pointed out that these works, although use the BEM, they applied different 

formulations from the one adopted in this work.

In this work, the results were obtained using the same mesh given in Figure 7.10, 

which has, therefore, less nodes on the boundary than those works mentioned 

above. The results for Re=0 were obtained for many values of residual where 

a relaxation factors of 0.3 and 0.033 were adopted for vorticity and the 

derivatives of vorticity, respectively. A high value for the kinematic viscosity 

(105) was imposed to simulate the situation of zero Reynolds number flow. For 

this value of viscosity the convective terms in the kinetic equations have their 

effect reduced. However, instead of avoiding these terms it was decided to 

calculate them normally. The results for Re=10 were also obtained using the 

same parameters for several values of residual.

The reason behind the use of different values of residual is to discuss a problem 

observed in the results, which indicates that they begin to deteriorate after a
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certain number of iterations, compared with the results of the literature.

In Figure 7.15 the distribution of the x- component velocity along the vertical 

line in the middle of the cavity is presented for Re =0. The numerical solution 

obtained by Karageorghis et al. (1989) is used to assess the results of this work 

obtained for different numbers of iterations (values of residual), namely 65 (3.74 

10-5), 70 (2.99 lO'5), 80 (2.0 10‘5), 90 (1.41 10'5), 102 (9.9 10'6), 110 (8.077 

lO6), 120 (6.42 10 6), 140 (4.332 10'6) and 151(3.575 10'6). It is possible to see 

that discrepancies exist between the results of the program compared to those 

from the literature, as shown in Figure 7.15, where some select cases are 

presented. The results of the program corresponding to 80 iterations seem to be 

very close to those of the literature. The difference increases with the number of 

iterations. In other words, for the lowest values of the residual the results 

deteriorate and fail to give a better solution. The most noticeable discrepancies 

are observed in the region corresponding to the inferior part of the cavity 

relative to the stagnation point. This means that the way of assessing the results 

based on the position of the stagnation point may be misleading. Karageorghis et 

al. (1989) and Rodriguez-Prada et al. (1990) found that the stagnation point was 

located on the middle line, at the distance of 0.76 and 0.75 from the bottom of 

the cavity, respectively. Kelmanson obtained also the value of 0.76. These are 

very near to the value 0.73 found in this work with 80 iterations and almost agree 

with the value 0.766 obtained with 120 iterations. Kelmanson (1983b) found that 

the vorticity at the stagnation point is -3.2021 which is a little bit lower than 

the value -3.4 obtained in this work for 80 iterations. With 120 iterations the 

program gave the value -4.06. Rodriguez-Prada et al. (1990) obtained the value - 

4.8 which they claimed that it agrees with the result given by another author.

The results corresponding to the distribution of vorticity on the upper lid,
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corresponding to 80 iterations, is compared in Figure 7.16 with the results of 

Rodriguez-Prada et al. (1990). The results of our work presented a smooth 

distribution, compared to theirs. This is mainly due to the fact that quadratic 

boundary elements were adopted here. At least in the middle of the lid a 

reasonable agreement between the results can be observed. The difference 

increases considerably to the extremities of the lid. The main reason for that, is 

that, at the extremities of the lid, the corners formed by the moving lid and 

stationary boundaries are considered singular points of the flow at which the 

vorticity and its normal derivative become unbounded, see Kelmanson (1983b). 

Different approaches may lead to different results at the corners. The difficulty 

of obtaining a solution in the regions of these corners were also mentioned by 

Rodriguez-Prada (1990) as one reason for the difference observed in their results 

at corners. As was pointed out in Kelmanson (1983b), since the formulations 

based on the FDM in general do not include the normal derivative of vorticity 

this major source of error is not inherent in the solution based on that method. 

Therefore, the works based on the FDM are normally adopted as reference to 

assess the accuracy of the results. It was observed here that the results on the lid 

did not vary significantly with the number of iterations.

The way the boundary conditions are imposed at the corners is another problem. 

In the FDM, for example, the velocity at these corners can assume either the 

value of the velocity of the lid or zero value at the stationary boundaries. It is 

recognized however that the inaccuracy thus introduced remains within a small 

region near to the corners. The situation seems to be different with regard the 

BEM. Kelmanson (1983b) solved the driven-cavity flow using the conventional 

BEM and came to a conclusion that this gives very poor convergence and the 

results are inaccurate in comparison with the literature. He blames the singular 

corner problem for that, which he says that errors are propagated to other
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variables. He improved the accuracy of the results and convergence introducing 

an analytical solution in the region of the corner in question. Rodriguez-Prada 

(1990) did not mention how they dealt with these corners. Here, since a double 

node technique was adopted to represent the corners, it was decided to assume 

that both corner nodes in this case belong to the lid, that is, they were imposed 

the conditions relative to the moving lid. The results considering one of the nodes 

of these corners as belonging to the stationary boundaries gave bad results. The 

conclusion is that the way the boundary conditions is imposed at these corners 

has great influence on the results. It may even be necessary to consider a special 

treatment to solve this problem as suggested in Kelmanson (1983b).

The problem related to these special corners and the fact that a coarse mesh 

relative to those works mentioned above has been used in this analysis can be 

considered as the main reasons for the behaviour of the results given by the 

program. Also, the accumulation of round off errors could be another possible 

cause for such performance.

The results shown in Figure 7.17 for Re=10 are compared with the result 

obtained by Graham & Oden (1986). Their results were obtained using the FEM 

and the penalty function approach. They adopted a fine mesh that allowed to 

obtain the values of the x-direction velocity in 16 nodes along the vertical line in 

the middle of the element. It can be seen that the behaviour observed in Figure 

7.15 for Re=0 is also repeated in this case, where a solution closer to the results 

given by Graham & Oden (1986) can be found if a suitable number of iterations 

is selected. Again, a discrepancy between the results occurs mainly at the region 

of the flow corresponding to the inferior part of the cavity.

A plot of the iso-vorticity lines gave a better view of the results in the whole
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cavity. Figures 7.18 to 7.22 show the lines of constant vorticity inside of the 

cavity for Re=0 for several values of the number of iterations. These Figures 

allow a qualitative assessment of the results and enables one to see how the 

deformation of iso-vorticity lines progresses, due to the problem already 

mentioned above. In Figure 7.19, corresponding to 80 iterations for example, it 

can be seen that the lines are almost symmetric in relation to the vertical line in 

the middle of the cavity, as they should be. In fact, there is a slight asymmetry 

that may have been caused by the way the corner gap was located in this case. 

Travelling in the anti-clockwise direction on the boundary, the gap was located 

at the first corner node met. The other corner node was located right at the 

corner. Although the gap introduced was so small this may explain this behaviour 

of the lines of constant vorticity. The contour plot of Figure 7.19 shows many 

points of similarity to those presented in the literature, see for example, 

Karageorghis et al. (1989) and Rodriguez-Prada et al. (1990), mainly at the 

upper region of the cavity. However, it is possible to notice that the iso-vorticity 

lines are dislocated a little bit in direction to the bottom of the cavity compared 

with results given in the literature. The most important difference is that the iso- 

vorticity lines corresponding to values of vorticity -5, -4, -3, and so on do not 

start at the corners in question. This is another indication that the treatment to 

those corners given here, in terms of boundary conditions, may not be adequate. 

In Figure 7.16, for example, it is possible to see that Rodriguez-Prada et al. 

(1990) seems to have imposed a condition to enforce zero vorticity at these 

corners. Here, the structure of the program would have to be modified in order 

to impose such conditions. However, in Skerget et al. (1984) the driven-cavity 

flow is solved for Re=100 where the results in terms of velocity only were 

presented. These show good agreement with the other references, but they did 

not mention any special measure at these corners.
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The variation of the residual with the number of iterations is illustrated in Figure 

7.23 for the case with Re=0.

7.3.3.4- Additional Comments

The program was mainly validated using the first two test cases since some 

problems appeared with driven-cavity flow case, which seems to have been 

provoked by the singular corners of the moving lid. In order to solve this case 

properly more investigation is required, mainly in terms of special measures to 

treat these corners. Other simple cases need to be solved in the future to carry 

on with the improvement of the program. Also, it is very much desirable that a 

finer mesh is adopted as an attempt to improve the accuracy of the results, 

mainly with the use of refinement of the mesh in the regions of the corners. 

However, considering the excessive amount of CPU time required to achieve 

good convergence using the mesh adopted currently (typically, about 9 hours to 

undertake 140 iterations), which has prohibited the use of finer meshes properly, 

it will be necessary first to change the structure of the program to store the 

coefficients of influence. Thus, the integrations would be carried out just once. 

This measure will also reduce the problem related with the accumulation of round 

off errors since much less calculations will be performed.

Convergence for high values of Reynolds number seems to be now the next 

challenge in order to extend the applicability of the program. This certainly will 

require special measures in order to accelerate the convergence and to deal with 

high Reynolds number flow.

The convergence of the results was assessed in terms only of the vorticity 

parameter. In the two first tests, Couette and Poiseuille flows, it was possible to
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observe that when convergence is achieved the accuracy of the results in terms 

of velocity components is also adequate. However, the results for the derivatives 

of vorticity are not converged yet. This shows that more iterations is necessary 

in order to achieve the convergence for these parameters also. The results in the 

literature are, in general, presented in terms of velocity and vorticity parameters 

only and no information is given concerning the accuracy achieved with other 

parameters, as for example, the normal derivative of vorticity.

Information about number of the iterations, CPU time, relaxation factor adopted, 

etc. hardly appear in the literature. This would be very useful to assess the 

performance of the program in terms of these aspects. The program developed 

here encompasses the great majority of the steps necessary to develop a program 

based on the Skerget’s formulations. The only important modification necessary 

to do that is in the way the distribution of vorticity on the boundary is evaluated. 

This would allow comparisons between the two formulations to be carried out. 

Most importantly, this would allow to investigate if any instability problem also 

appears in a program based on Skerget’s approach using the techniques adopted 

here to evaluate integrals, treat corners and so on.

7.4- PENALTY FUNCTION FORMULATION

7.4.1- Introduction

The program based on the penalty function approach was developed based on a 

program for elasto-plastic stress analysis. This work began to be carried out only 

recently and so there was little time left to deal with iteration problems. Here the 

attempts to validate this program are discussed but no results for practical cases 

are presented since the program failed to converge conveniently for such cases.
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7.4.2- Pre-validation analysis

In spite of the fact that many papers have pointed out that a program as such 

could be easily generated in that way, this was not confirmed here. The program 

itself was in fact modified to deal with viscous flow analysis without much 

difficulty. The problem, however, is that some parameters and constants change 

in value, compared with stress parameters, drastically, which may require some 

adjustment in the program to take into consideration these new values. For 

example, the kinematic viscosity replaces the Lame’s constant /*’, whose value 

is very high, around 1010 Pa, while the viscosity has normally a very low value. 

The other Lame’s constant, whose value is also high, is replaced by the penalty 

parameter which is in general much higher. All these changes in the order of 

magnitude of those parameters are expected to change the pattern of the 

convergence behaviour and even may require some corrections in the program. 

For example, the parameter given by Eq. (5.10), which is equivalent to Poisson’s 

ratio, assume here a value very near to 0.5 since the penalty parameter is always 

very high. This makes the constants dn , d12, d21 and d22 appearing as coefficients 

of the equations used to evaluate the derivatives of velocities on the boundary, 

discussed in Section K.2 of Appendix K, tend to have very high values. This 

seems to have not affected the results obtained so far, but that may create 

problems in some other cases.

The more serious modification introduced in the original program was related 

with the convective term. That term is defined by the domain integrals given by 

Eqs. (5.6) and (5.7), whose nonlinearity requires an iterative solution to 

Equations (5.4) and (5.5). The divergence of the results seems to be caused by 

a problem in the part of the program involved with the evaluation of this term. 

Unfortunately, the simple test cases, like Couette and Poiseuille flows, lead the
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domain integral to vanish and, therefore, the accuracy of this term could not be 

assessed using simple tests in the same fashion as was done in the vorticity- 

velocity formulation program. The program "converged" for these simple cases 

but what happened in fact was that the results came from a pseudo iterative 

process. Since in these cases the domain integrals vanish, in the first iteration, 

therefore, when the program naturally assumes that these domain integrals are 

zero, the results obtained should already be correct. Thus, after 2 or 3 iterations 

the program gives the results for these cases.These are illustrated in Figures 7.24 

and 7.25 for Couette and Poiseuille flow, respectively, where the coarse mesh 

given in Figure 7.8 was used. These tests were at least useful to make sure that 

the part of the calculations involving the boundary integrals was working 

satisfactorily. The accuracy obtained are in general good, but varies slightly 

depending on the type of boundary conditions imposed, mainly due to corner 

problems. In this case, the corners were treated using the jump function technique 

discussed previously.

The Hagen-Poiseuille flow problem has been adopted as a test case where the 

domain integrals do not disappear. In this problem a constant velocity distribution 

is prescribed at the inlet of a channel formed by two parallel plates, whose length 

is enough to make the flow become fully developed. However, the results 

diverged so far. The problem has probably been caused by the treatment of the 

convective term, but it has been observed that relaxation of the results plays an 

important role. This problem in fact needs more investigation.



Review and Recommendations 
for Further Work

The main objective of this research was the investigation of the BEM applied to 

solution of fluid flow problems. This was achieved satisfactorily in some cases 

and corresponding programs were developed and validations were carried out.

In particular, the program developed to deal with potential flows in cascades 

completely fulfilled the requirements. It is expected, therefore, that it can be 

applied directly to the solution of the blade-to-blade flow in a cascade of blades 

of axial turbomachinery with an additional boundary condition related to the 

physics of the problem.

The programs for viscous flow solution based on the vorticity-velocity 

formulation were developed using new sets of equations, which produced a 

different algorithm from those previously adopted in the literature. Validations 

of these programs were carried out using simple test cases. Convergence was 

achieved for most cases at low values of Reynolds number. However, the 

programs failed to converge at high values of Reynolds number.

Another program to solve viscous flows, based on the penalty function approach, 

was also developed. However, only a pre-validation analysis was carried out, 

which showed that this program does not converge when the convective term is 

included.
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The original contributions of this work included the following:

(i) The development of a program with isoparametric boundary elements to

deal with potential flow. This includes the periodicity boundary conditions 

normally considered in cascade flow analysis; (ii) The development of a program 

originally employed for elasto-plastic analysis to solve viscous flows using the 

penalty function approach, with some modifications in the solution algorithm 

when compared with existing publications; (iii) The main contribution is the 

proposal and derivation of a new set of integral equations using the vorticity- 

velocity formulation and the development of a corresponding computer program.

Suggestions for future work are as follows:

(i) The extension of the solution of potential flow in cascades for axial 

turbomachinery blades. This solution could be matched with the boundary layer 

solution, obtained using conventional methods such as FDM allowing also a 

simulation of viscous flow in cascades.

(ii) Continuation of the validation of the program based on the penalty function 

approach to obtain successful convergence. Schemes based on the FDM, for 

example, could be adopted to test the effects on the convergence and comparisons 

made against the results obtained using the BIE.

Note:

It is unlikely that the BEM alone, using the vorticity-velocity formulation could 

be applied to high Reynolds number flows. For example, the application of the 

method to real flows in cascades of turbomachinery at Reynolds numbers, 

typically, between 105 and 106 is not recommended. In this case, a combination 

of BEM with FEM and FDM to the solution of the entire flow field will be 

necessary.
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Appendix A 

Navier-Stokes Equations

The main points concerning the derivation of Navier-Stokes equations are 

presented in order to introduce the concepts discussed in the main text. The 

rigorous and complete derivation of all equations can be found in many textbooks 

on fluid dynamics.

The Navier-Stokes equations are the result of the application of Newton’s second 

law of motion to fluids. This states that the rate of change of momentum of a 

fluid particle is equal to the net force acting on it.

The rate of change of momentum per unit of volume is obtained by applying the 

operator D( )/Dt, known as the substantive derivative, given by

3 0  + * . v ( )
Dt a

on p v, which is the momentum per unit of volume. Thus:

Dv dv -  „  / A  np —  = p —  + pv . Vv (A*1!
Dt at

this represents the two contributions for the rate of change in p v : the rate of 

change of momentum at a fixed point and the change of momentum that occurs 

when the fluid particle travels to a region where the velocity is different.

From the above, the left-hand side of the dynamic equation, representing 

Newton’s second law of motion, is p DV/Dt. The right-hand side is the sum 

of the forces per unit volume acting on the fluid particle.
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There are basically two kinds of forces acting on the fluid particle : the external 

and the internal forces. The external force, represented by f , acts on the bulk of 

the fluid domain. The internal forces are due to both pressure and viscous action 

acting on the surface of the element of fluid. Both the pressure and viscous action 

generate stresses across any arbitrary surface within the fluid which are related 

to the velocity field. In consequence, they are intrinsic parts of the equations of 

motion. Therefore, the force on a particle of fluid is the net result of the effect 

of the stresses over its surface plus the external force.

The stress tensor, a, and rate of strain tensor, e, are briefly considered, and then 

the consequences of a linear relationship between them is determined.

The total stress acting in a fluid has contributions from both pressure and viscous 

effects. These can be represented through the following expression:

o  = - p i  + T

where p is the pressure and I and r  are the identity tensor and the viscous stress 

tensor, respectively. Note that 7  contains both normal and tangential viscous 

components which add or subtract from the pressure.

However, the net force on a fluid particle is given by the difference in the 

stresses acting across opposite faces. Consequently, the total force per unit 

volume is given by

V. o = -V. (pi) + V. x

but from the property of tensors the first term on the right-hand side of the above 

equation can transformed into
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V.(pl) = Vp

and so

V. o = - Vp + V. t (A.2)

Conversely, rates of strain are related to the velocity gradient tensor, f, given by

C = Vv

There are, however, some velocity gradient fields that involve no changes in the 

length of any material line. No distortion or viscous effects appear therefore. It 

is, in fact, the symmetrical combination of velocity gradients that give rise to 

rates of strain which produce deformation, a motion consisting of extension and 

shearing strains. Hence, the rate of strain tensor is the symmetric part of f,

e = — (Vv + (Vv)c) (A.3)
2

where (Vv)c represents the conjugated of the velocity gradient tensor. 

Additionally, it can be shown that the anti-symmetric part corresponding to a 

tensor causing a solid-body-like rotation motion, is given by

11 = 2

and its three independent entries may be expressed in the form of the vorticity 

vector o), defined by:

c3 = VAv

Thus, vorticity is another local property of the flow field in the same way as
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momentum, kinetic energy, etc, i. e. parameters that are somehow related to the 

velocity field through any kinematic relation.

For a Newtonian fluid, r  is linearly related to e, through a constitutive relation 

which can be written:

t = X(V.v)I + ($ + x)e

where X is the so-called second coefficient of viscosity and the two arbitrary 

constants, f and x, are related to the first coefficient of viscosity, /x, applying the 

following relation :

£ + X  = 2 p

The presence of X in the previous equation introduces some difficulties. This 

parameter in general should assume the value (-3/2 (x ) according to the Stoke’s 

assumption. The latter considers that there is no difference between the 

thermodynamics and mechanical pressures if the fluid is undergoing an expansion 

or compression. The following expression for the viscous stress tensor results:

3
t = — p (V .v )I  + 2pe 

2

However, since the second term of this equation is eliminated in incompressible 

flow, the second viscosity parameter can play no role in such flows. Hence, for 

incompressible flow:

t  = 2 p e  (A.4)

Replacing Eqs. (A.4) and (A.3) into Eq.(A.2):
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V .o  = -Vp + pV. (Vv + (Vv)c) (A.5)

if /x is taken to be constant. This equation can further be manipulated to 

give:

V .o  = -V p + n(V2? + V(V. v)) (A-5)

since

V. Vv = V2v

and

V • (Vv) = V(V.v)

Note that the last term of above equation disappears for incompressible flow, and 

so

V. o = -Vp + pV2v (A-6)

Hence, Newton’s second law for fluids can be represented by

p 2 f = ?  + V .o  (A.7)
Dt

and finally, substituting (A.l) and (A.6) into (A.7), Navier-Stokes equations for 

unsteady flow analysis of an incompressible Newtonian fluid with constant 

properties, is given by:

—  + v.Vv = — — -  Vp + pV2̂  (A.8)at p p

The second term on the right-hand side of Eq. (A.8) represents the force due to
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pressure and the third term represents the diffusion process of velocity. On the 

left-hand side, the first term represents the transport convective of velocity and 

the second term represents the variation of velocity with time.

The first term on the right-hand side of this equation represent the contribution 

of those forces, such as gravity, that have to be included in the specification of 

the problem. However, in most situations the action of these forces can be 

considered negligible. In this case, the cause of motion is either imposed by 

pressure differences or relative movement, that is, no body forces are applied. 

Although, almost every flow takes place in a gravity field, the gravitational body 

force acts significantly only on density differences. The natural convection flow 

is an example where the effects of this term must be considered, otherwise it can 

be eliminated. Besides, when the body forces is due to the gravity field, which 

is conservative, this can be introduced into the pressure term. The body force 

term will be maintained in the derivation of the equations for the sake of 

generality only.
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Formulae

Some useful vectorial properties, theorems and Dirac delta function properties are 

presented to support the derivations discussed in the main text.

B .l- VECTOR OPERATOR IDENTITIES

The variables A, B and C denote vector fields and f denotes a scalar field. Thus,

VA(Vf) = 0  (B-1)

V.(VAA) = 0 (B-2)

v.(fA) = f (v .A)  + A . v f  (b .3)

VA(fA) = f(VAA) + Vf AA 

AA(§AC) = B(A.C) -  (A.B)C (B-5)

V.(AAB) = i . (V A A )  -  A.(VAB) (B-6)
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VA(AAB) = (B.V)A -  B(V.A) -  (A .V )§ + A(V.B) C®-7)

V(A.B) = (§ .V )A  + (A. V)B + b A(v AA) + AA(VAg)

vA(vAA) = v(v.A)  -  v 2A

AA(vAA) = J-V(A.A) -  (A.V)A (B.lO)
2

VA[AA(VAA)] = -VA [(A .V )A ] (B-11)

VA[AA(VAA)] = [(VAA).V]A  
-  (VAA)(V. A) -  (A.V)(VAA)

B.2- THEOREMS AND IDENTITIES 

B .2.1-Integration by Parts Theorems

Let h(x,y) and g(x,y) be continuous functions with defined continuous partial 

derivatives, up to the requested order, within a close domain 0 bounded by T. 

Then,
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h — dxdy = ^hgfldT - gdxdy (B.13)dx.

J J  h— dxdy = ^hgm dT -  J J  — g dxdy
Q r Q

where t  and m are the direction cosines. 

B.2.2- Green’s Theorem for Vectors

Consider that D and E are two continuous vector functions single-valued, finite 

and have continuous second derivatives within a domain Q bounded by a close 

boundary T, or a close outer boundary and one or more closed inner boundaries, 

the latter enclosed by the former. Then, Green’s theorem for vectors can be 

conveniently represented in following form convenient for the derivations 

presented in this work :

ff [D .(V A V A E) -  E .(V A V A D )]dxdy
Q ,  (B.16)

= ^ [E A (V A D ) -  D A (V A E)].fidT  
r

where n is the unit vector normal to the boundary.
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B.2.3-Gauss’ Divergence Theorem

Suppose that a region Q in a vector field G(x,y) is bounded by a closed boundary 

T and that the vector function G(x,y) is uniform continuous on T and within the 

region Q. It can then be shown that

J J v .G d x d y  = ^ G .n d T  (B.17)
q r

where n is the unit vector normal to the boundary.

B.3- PROPERTIES OF DIRAC DELTA FUNCTION

Some useful properties of Dirac Delta function used throughout this work, 

compiled from El-Zafrany (1993), are presented. These properties are :

8 (x -X j.y -y ,)  = 0, for (x ,y )  # (Xj.y,) (B.18)

SCx-Xj.y-y,) = for (x,y) = (x^y,) (B.19)

/ /  f(*>y) 8 (x-Xj.y-yj) dxdy = C ^x^y ,) (B.20)

/ / f(x,y) S (X' Ii,y"yi) 6X67 = " Ci '(W  ^ -21>
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f f f ( x , y ) ^ ( x - x i>y- yi)dxdy  = _ q  (B.22)

/ / f(X’y )| ^ (X_Xi’y' yi)dXdy = '<*•*> V ' 2 3 *

where f(x,y) is any scalar continuous field function defined inside the domain Q 

and Cj is a constant whose value depends on the position of the source point 

(xi?yi), as follows:

Cj = 1 if (Xi,yi) is inside the domain 0;

Cj = 0 if (Xi,yi) is outside the domain Q;

Q = / 2 7r if (Xi,yi) is on the boundary Q, where a, is the corner

angle at this point, as shown in Figure B .l. Note that 

if the boundary is smooth = tt and so Q = 0.5.



Appendix C 

Coefficients of Influence

The coefficients of the discretized equations, Eqs. (6.9) to (6.25), are given below: 

Boundary Integrals:

1

V ^ W i)  -  / N j ( 0 J « ) ^ d 5

1
ta,w0w> = / N / ? ) J « ) ^ d 5

0

1

1 dL *



1
hvyjw(W P -  /N /O K O v .^ d ?

1
g m /'W i)  = /Nj(5)J(5)mu*d$

0

1
gxxf = /  NjCOKOOjjd?



1
gyyf = /  N/OJCOĜ d?

0

1
fx x f = /  N/O J(S)FU d$

0

1
fyx/'> = /N^KOFjjd?

0

1
feyf = /N/OKOFjjd?

0

1
fyy/e) = /  N/«)J(5)Fads

0



g p y V  = /  N ,(e)J(5)-^ids 
o 9y

dx

gxyy/'> = /  N /O JC O -^ d ^
o 3y

1 6Ggyyy/c) = /  n^ jco—pd$
o
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feyy/e) =
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Domain Integrals:

Z - r \
dy
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gCj(c)(Xj.yj) = / / iy?,n)J({,n)n, d? dn
5~D

gxxc/c> = / /  N/«,n)J«,fl)Ou d?dn
5-n

5-n

gxycf = //N /? ,u )J « ,n )0 B d{di|
5-n

gyycf = //N ^.nlia .u lG ^dSdr,
5-n

0Q
gxxxcf = //Nj(C,ti)J(?,ri)—JldSdil

, dx5-ti

5G
gxxyc/o = ffnfi,n)j(£,n)— lidtdn

5-ii ^
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gyxxc^4

gy*yc/c)

gxyxc/0'

gxyyc,(c>

gyyxc®

=  / /  N / ^ n i K S . n )

5-n

dG21

ay
d^dti

= //N jC ? ,n )j« ,i,)^ * d 6 d ii
5-n ^

/ /  Nj(5.’l)J(5.’l ) - ^  d^dr]nX
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dGgyyyc/'' = / /  Nj(?,ij)J(5,»i)—̂ dljdri
. dy

where u*, Fn, F12, F21, F22, Gn G12, G21 and G22 are the fundamental solutions defined 

in the main text.



Appendix D

BIE for Vorticity-Velocity 
Formulation : Part I

For incompressible fluid flow the Continuity equation (V . v =0 ) states that the 

velocity field is solenoidal. Therefore, there is a vector potential function, say 

related to the velocity field, such that

VAip = v C0 -1)

which satisfies that statement. However, since the curl of a gradient of any scalar 

function is zero, it can be seen that ''F is indeterminade in the field of gradient of 

a function, and so Eq. (D.l) does not uniquely define Another assumption has 

now to be made. The assumption normally adopted is that is also solenoidal, 

and so

V . ip = 0 C0 *2)

Taking the curl of both sides of Eq. (D.l) the following differential equation 

results,

VA(VAip) = a  (D-3)

The corresponding weighted-residual expression for Eq. (D.3), with a weight 

residual function V* and including a solution satisfying the given boundary 

conditions, can be represented as follows:

f t  . [VA(VAtp)] dxdy -  f t ijr*. <3 dxdy = 0 (D.4)
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Let D = and E = ^  in the Green’s theorem for vectors in the form given by 

Eq. (B.16) of Appendix B. The results is:

(D.5)

(D.6)

/ / { $ * •  [VA(VAip)] -  ip . [VA(VAip*)]}dxdy =
Q

f  [ipA(VAf) - ip*A(VAip)].fidT
r

and substituting Eq. (D.5) into (D.4) it gives

f f  • [VA (VA $*)] dxdy - JJ $ *. (3 dxdy
Q Q
+ j  [ipA(VAip*) - ip*A(VAip)].fidr = 0

r

this is the so-called inverted weighted-residual expression of Eq. (D.4).

Let now be represented in terms of one scalar function u* and an arbitrary 

constant vector e as follows

ip* = Vu*Ae (D -7)

or, using the relations (B.4) and (B.2) of the Appendix B,

ip* = V A (u*e) ( ° - 8)

It can be shown that this satisfies the assumption given by Eq. (D.2), using the 

relation (B.2).

In order to work with the integrand of the first domain integral in the Eq. (D.6), 

it is convenient to take first the curl of the Equation (D.7),
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VAf* = V(e.Vu') -  (V V )e  (°-9)

from the relations (B.7) and (B.8) of Appendix B. Also, it can be shown from 

the previous equation, Eq. (D.9), that

VA(VAi|S*) = (5A V)V2u* O5-10)

obtained using the relations (B.l) and (B.4).

Suppose now that u* is the solution corresponding to the following equation

V2u* = -dCx-x^y-yj) (D-11)

where 5(x-Xj , y-yi) is Dirac delta function and (x,y) and (x^yj) are the 

coordinates of field and source points, respectively. This equation is well known 

from the literature on the BEM whose solution is given in Chapter 3. It is 

normally called of fundamental solution and is given as follows :

u * = — I n f —)
2n \ t )

for two-dimensional problems, where r stands as defined in Chapter 3.

Hence, substituting Eq. (D .ll) into (D.10), the following expression results

V A (V A $ * )  = - ( e A V ^ x - X p y - y j )  ( ° - 12)

Introducing the above equation into Eq. (D.6) gives

ip.(eAV)6(x-xi,y-yi)dxdy + | |  ip*. (3 dxdy 
Q 0 (D.13)

- § lip A(VAip*) - $*A(VAi|f)].adr = 0
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Finally, substituting Eq. (D.7) or (D.8) into the above equation and working with 

each term, an integral expression in terms of velocity, vorticity and the 

fundamental solution, only results. This derivation is presented in Appendix E 

and the final boundary integral equation is

CiV(Xi,yi) + | ( v  .n) Vu* dT =
r (D.14)

|  (v An) A Vu* dT + | |  c5AVu*dxdy 
r q



Appendix E

BIE for Vorticity-Velocity 
Formulation : Part II

In this Appendix each term of the boundary integral Equation (D.13) of 

Appendix D will be manipulated in order to isolate the arbitrary vector e . Thus, 

from the first integral on the left-hand side of Eq. (D.13) :

(0 Ij = f f  ip . [ (e  A V) 8 (x -X j.y -y j)] dxdy
Q

Note that to manipulate this integral attention must be paid to the derivatives of 

8 (x-Xj,y-y{) appearing in the integrand. It can be shown that the integral above 

results in

i, = - q ^ . c s A v ) ] ^

using the properties of the Dirac delta function given in the Appendix B, where 

Q also stands according to the definition presented in that Appendix. Now 

manipulating this expression in order to isolate e, gives:

I, = - q K V A f ) . * ] ^  - Cj[v ,5 ] |(Ii>yi)
= -  Cj\>(x.,y.).S

using Eq. (D.l), the property of the triple scalar product, and also the fact that 

e is considered constant everywhere.
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(ii) 1̂  = J J  ijr*. co dxdy
Q

Introducing Eq. (D.7) into this integral, gives:

*2 ~ / / (Vu*Ae).codxdy = J j (c3 A Vu*). edxdy
fi Q

from the property of the triple scalar product.

(iii) I3 = ^[ijr A(VAip*)] .fidT
r

Introducing eq. (D.9) into the integrand of this integral, gives

^{ipA[V(e.Vu*) - (W )e ]} .f id T  
r

This new integral can be split into two terms, I3a and I3b. Term I3a is represented 

by

I3a = ^{$A[V(e.Vu*)]}.fidT 
r

However,

V(e.Vu*)Aijr = VA[(e.Vu*)ijr] -  (e.Vu*)(VAi|r) 

from the relation (B.4). Hence, substituting this expression into integral I3a gives

I3a = f i ( e .Vu*) (VAi f )  -  VA[(e. Vu*) ip]}.ndr 
r

or
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I3, = / [(e.Vu*)?].fidT - {̂VA[(5.Vii*)ip]}.fidr
r r

from eq. (D.l), and manipulating the integrand of the first integral, gives:

Ij. = f [(v.a)Vta*].edT - {̂VA[(S.Vii*)ip ]} .Sdr (E.l)
r  r

The last integral can be manipulated further using Gauss’ Divergence theorem 

given in Appendix B, Eq. (B.17). Thus,

j  {VA[(e.Vu*)f]}.fidT = / /  V. [VA(S. W*) ip] dxdy (E.2)
r q

However, using the vector property (B.4) it can be shown that the integrand of

this domain integral can be represented by

V.[VA(e. Vu*)$] = V .{(e.W )(V A ip) + [V(e. Vu*)] A if)

and employing the vector properties (B.3) and (B.6 ),

= (S. Vu*) V. (VAip) + (VAiJr). V(e. Vu*)
+ $.[VAV(e.Vu*)] - V(e.Vu*).(VAip)

Finally, according to the vector properties (B.2) and (B.l) the first and third 

terms, respectively, of the previous expression vanish. Additionally, the second 

and last terms cancel each other. Therefore, the domain integral in question is 

zero as is the last term on the right-hand side of expression (E.l). This 

conclusion can readily be obtained through the use of the vector property (B.2) 

in the domain integral of eq. (E.2). Thus, term I3a becomes

is, = / [ (? .s )V u * ] .s d r
r

(E.3)
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Term i3b is given by

Is, = /[<pA(Ws)].adr
r

and again using Gauss’ divergence theorem, gives

la, = f  [ i p A ( W S ) ] . f i d T  = J 7 v . [ i p A ( V V g ) ] d x d y  
r o

and using the vector property (B.6),

= / / [(V2u * e ) . (VAip) -  ip. (VA(V2u*e))]dxdy
Q

Manipulating the first term and using the property of the triple scalar product in 

the second term, it can be shown that:

= f j ( e . [ ( V 2u*(VAip)]  -  [ ( ipAV)V2u * ] .5}dxdy
Q

However, since

V2u* = -  SCx-Xj.y-yj) 

and the previous integral can be represented by

= ~ / / * [ ( V A ip ) 6 ( x - X j ,y - y , ) ] . e  -  [ ( ip A V ) 8 ( x - x i,y -y i)] .e}d!cdy
Q

Using the Dirac delta function properties (B.20) and (B.21), given in Appendix 

B, in the first and second terms of the previous integral, respectively, gives
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= -  q t C V A ^ . e ] ^  -  q K t f  A V ) . e ] | (Wi)

It is now simple to conclude that these two terms cancel out. Therefore, I3b = 0.

In conclusion,

h =13. = f[(?.fi)Vu‘].sdr
r

(iv) I4 = f  [ip*A(VAiIr)].fldr
r

Introducing Eqs. (D.l) and (D.7) into I4, it results

I4 = ^[(Vu* Ae) Av] .ndT
r

and using the property of the triple scalar product,

I4 = / ( v A n ) . (Vu’ A e jdr
r

Applying again the same property, gives

I4 = f  e - t ( v A  n) A V u * ] d r
r

Finally, introducing the integrals Il912,13 and I4 into the corresponding terms in 

Eq. (D.13), the following expression results:
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-CjvCxpy.). e + A  Vu*) . edxdy
a

-  j> [(v .n) Vu*] .edT + Afi) A Vii*]. edT = 0
r r

and since e is arbitrary, the following integral expression results:

CiVCx^yj) + f  [(v . f i )  Vu*] dT = j> [(vAfi) A Vu*] dT 
r r

+ f f ( &  A Vu*) dxdy
Q

( E .4 )



Appendix F

Futher Manipulation of the BIE 
for Vorticity-Velocity Formulation

Considering a two-dimensional internal flow problem, the vorticity vector has only one 

component, perpendicular to the domain Q ( which can conveniently be treated as a 

scalar), the unit normal vector points outside and the unit tangential vector points in 

the anti-clockwise direction on the boundary T.

In this case, the unit normal vector is represented by:

fi = Hi + m] 

and the tangential vector is given by

where t  and m represent the direction cosines.

The velocity vector is represented in term of components as follows:

where vx and vy are the velocity components in x and y directions, respectively. Thus, 

the normal component of the velocity is represented by

t = -m i + (F.2)

(F.4)

while the tangential component is
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vt = -m v x + 4vy (F-5)

In what follows, each term of Eq. (4.11) will be represented in terms of components. 

Therefore, referring to the integrand of the contour integral on the left-hand side of 

that integral, we have

v .n  = vn

and

_  * c- du* *Vu* =  1 + ------1
dx dy

and so,

(?.H)Vu* = v (——l + —  j) (F-6)
1 dx ay

Now, the integrand of the contour integral on the right-hand side of Eq. (4.11) will 

be represented in terms of components, but considering first that

v An =

A A A

i j k
v v 0x y

1 m 0

vAn = (mv -  4vv)£ * y

and so

v An = - vtk

from Eq. (F.5). Hence,
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A A

( v A i i ) A V u *  =
du* du* 
dx dy

-v.

0

which produces

( ? A f i ) A V u *  = v t ( - ^ 4  -  £ } )  dy dx
(F.7)

The integrand of the domain integral of Eq. (4.11) is represented in terms of 

components by:

to A Vu* =

A A A

i J k
0 0 <■>

du* du
dx dy

0

or

_ a ,  du* t  du*CD A V u = -  0) ( - - - - - 1 + ---- 1)
dy  dx

(F.8)

Finally, substituting Eqs. (F.6), (F.7) and (F.8) into Eq. (4.11), gives the following 

equation:

q ( v  ♦ vy]> + f  v. ( — i +

* l i  -  5ul1 )d rr+ay axJ dy dx
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from which it can be deduced that the two components of Eq. (4.11), in x and y 

directions, are respectively:

Civx (W i) + f Vn ^ ' dr

= f v‘ ‘̂ - d r  _ / / “ ■ ^ r d x d yJ dy JJ dy
da*

(F.9)

and

C i V y ( x i>yi)  + f v ^ d r
dy

du* rr du*
dx

= - f v * _ _ d r  + / / CO dxdy
(F.10)

Considering now Eq. (4.18), each term of this equation will be represented in terms 

of components. The integrand of the boundary integral on the left-hand side of Eq. 

(4.18) can be represented in terms of components, but as a first step the vectorial 

product of the term in parentheses is manipulated first. Then,

co A n  =

A A A

i j k 
0 0 w 
e m 0

this results in

co A n  = <o ( - m i  + fij) -  <o t

Eq. (F.2) is now used to show that
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(co An) A Vu* =

A A A

i j k
-com cod 0

da* da
dx dy

0

or

(co An) A Vu* = - co ({——— + m -^ -)k  = -  co-^-E
dx dy da

(F.ll)

The integrand of the second contour integral on the right-hand side of Eq. (4.18) 

represented in terms of components is

Vii*An =

A A

da* da* 0
dx dy 
1 m 0

or

Vu* A a = ( ^ m  -  ^ l ) f c  = (F-12)
dx dy dt

Regarding the integrand of the domain integral of Eq. (4.18), as a first step we have

vA CO =

A A A

i j k
v v 0x y 

0  0  CO
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v A cd = cd ( v xi  -  v yj )

and so

(v A c5) A Vu* =

0

to vT -  co vv 0* y
CD

( V A c d ) A V u *  = cd ( v x ^ — + Vv — ) £  
'  x dy y dx

Substituting Eqs. (F .ll), (F.12) and (F. 13) into Eq. (4.18), gives

< > ( W i ) + = -  7 / h ^ r dr

+

r 9n v J flt
1 t t  , flu* 9u*\j a -  / /  m(vx—  + vy ^ - ) dxdy v fly y dx

(F.13)

(F.14)



Appendix G

BIE for Elasticity Analysis

The equations for plane-strain elasticity analysis in terms of displacement for an 

isotropic homogeneous material are briefly discussed. Both differential and 

integral formulations are presented which are based on the derivations given in 

reference El-Zafrany (1993).

G .l- DIFFERENTIAL FORMULATION

The basic governing differential equations are summarized below : 

Strain-displacement relationships

dy
dy (G.l)

dv t du 
dx dy

Stress-strain relationships

u x “  u l l 0 x 12 y

° y  = ^21 Cx + ^22 8 y 

Txy = ^ 3 3 ^x y

(G.2)

where
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du  = = 2 1 /(1  -  v ') /( l  -  2 v ')

dI2 = d21 = 2n/v'/d - 2vO
<*33 = I1'

(G .3)

Equations of equilibrium

do% 0T.
+ — +fx =0dx dy 
+

(G.4)

0x dy

with the following equations, at any point on the boundary :

where ex,ey and are the strain tensor components, u and v are the displacement 

components, ax, ay and are the stress tensor components, fx and fy are the 

body force components (force per unit of volume), Tx and Ty are the traction 

components on the boundary, i  and m are the cosine directions and fx9 and v9 are 

the shear modulus and Poisson’s ratio, respectively, which are related by

2(1 + v7)

where E is Young’s modulus.

Substituting Eqs. (G.l) into (G.2), the stress components may be expressed in 

terms of displacement components. Substituting the resulting equations into the 

equations of equilibrium, Eq. (G.4), the system of governing equations is recast
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in the following elliptic partial differential equations in terms of displacement 

components u and v, only:

rr2 1 6 f du dV\ * , /  nV2u + --------------(— + — ) + f / i r  = 0
(l-2 v 7) dx dx dy

V2v +   (— + — ) + fy/(i' = 0
(l-2 v ') dy dx. dy 7

(G.6)

or putting them in vectorial form,

V23 + ---- -----V(V.g) + P/p' = 0 (G.7)
(1 -2v')

where <} = ui + vj and F = f 1 + f ] , which are the displacement vectorx y

and the vector due to the body forces, respectively. Finally, Eq. (G.7) can be 

written in a form containing only Lame’s constants X’ and fi’ as coefficients, 

which are related to the Poisson’s ratio, v \  through the following expression:

v' = ----- —-----  (G.8)
2(X' + ^

and so Eq. (G.7) can be represented in the following form, which is more 

appropriate for the present purpose:

n'V25 + (X' + n')V(V.g) + F = 0 (°-9)

The boundary conditions for this elliptic partial differential equation are either the 

displacement or the traction components on the boundary. The most usual 

boundary conditions are when the traction component in one direction has a 

prescribed value and so the boundary point is free to move in such a direction. 

On the other hand, when the displacement component in one direction is specified 

as zero, the boundary point is restrained in that direction.
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G.2- INTEGRAL FORMULATION

The boundary integral equation corresponding to the plane-strain problem in 

terms of displacement is derived. This equation is normally obtained using the 

inverse weighted-residual expression corresponding to the differential equations 

based on approximate solutions which satisfy exactly any given boundary 

condition. In order to obtain the initial weighted-residual expression, consider 

a two-dimensional problem defined on a domain 0, which has a single or 

multiple-connected boundary T. Consider also that u and v are the displacement 

components that satisfy the given boundary conditions exactly. Hence, a 

weighted-residual statement may be expressed in terms of two arbitrary weighting 

functions, u* and v*, as follows :

where the equations of equilibrium are adopted instead of Eqs. (G.6). In this way 

the derivations are much simpler. Using integration-by-parts theorems and the 

basic equations given by Eqs. (G.l) to (G.5), and manipulating the terms, the 

inverse weighted-residual expression corresponding to Eq. (G. 10) can be reduced 

to the following integral equation :

(G.10)

(Tx*u + T/v)dT + / / ( f x*u + fy‘v)dxdy

= $  (Txu* + Tyv*)dT + J J  (fxli* + fyv‘)dxdy
r Q

r

Provided that, for convenience the weighting functions, u* and v*, are the 

solutions of a similar problem, with the same domain but under different loading 

conditions. Thus, the weighting functions must satisfy the following governing



differential equations:

do d x *
dx dy 

d x *  do
(G. 12)

dx
+ f * = 0 

dy y

In order to obtain the weighting functions, consider a two-dimensional elasticity 

problem in an infinite domain with a state of loading defined by a concentrated 

force acting at a point ( Xj , y{) , with a uniform distribution in the z-direction. 

Then, from the definition of the two-dimensional Dirac delta function, a domain 

distribution of the load intensity equivalent to the applied force, may be expressed 

as follows:

f * ' = e ^ C x - X j .y - y ; )  (G 1 3 )

V  " ey6(x-xi)y-yi)

where ex and ey are the x- and y-components of the applied force per unit of 

thickness.

Eqs. (G.6) can be used to solve this special problem defined above, whose 

solution is known as the fundamental solution. Representing the displacement 

components for this problem, u’and v*, in terms of the components, Gx and Gy, 

of the so-called Galerkin’s vector, G, by definition:

u* = V2Gx* - 1
2(1 - v') dx

( CVJ_ OKJ,

v* = V2G * --------- 1------ -
y 2(1 -  \ ' )  dy

f dGJ

dy )

dG * y

(G.14)

dx dy J

and substituting these into Eqs. (G.6) applied to this problem, along with Eqs. 

(G.13), a biharmonic differential equation in terms of Galerkin’s vector can be
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obtained:

v4(V  + ®x5(x-xi»y-yi)/^ = 0
(G. 15)

V4Gy* + ey 6 (x-x-^-yj)/|x7 = 0

Such equations can be solved more easily with the introduction of some adequate 

changes of a variable in order to have a Poisson-type equation, whose solution 

is already known from the literature. Thus, first define the components of 

Galerkin’s vector in terms of a function g* through the following equations:

< V = S 'e* (G.16)
Gy* =g*ey

then Eqs. (G.15) can be reduced to the following single equation:

V4g* + b(x-xi,y-yi)/[i/ = 0 (G-17)

Additionally, defining u* such that:

V2g* = u7 p ; (G.18)

then Eq. (G.17) can be rewritten in terms of the following Poisson’s partial 

differential equation:

V2u* + 6(x-x., y-yj) = 0 

which has the following solution:

u . .  ^ [ l n ( l / r )  + q ]

Substituting this result into the Eq. (G.18), and using Gauss4 Divergence 

theorem, it can be shown that:
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g* = _ j l - [ ln ( l / r )  + C, + 1] + C2 (G.19)
871 (I

where Q  and C2 are arbitrary integration constants.

Alternatively, Eqs. (G.14) can be rewritten in terms of the function g using the 

Eqs. (G.16). The final expression can then be shown as:

uk*(x-Xi,y-yi) = Gkl(x-xi,y-yi)ex + Gk2(x-xi,y-yi)ey

where the tensorial notation is being considered and so s (u*,v*) •

The fundamental solution parameter Gkl is expressed as follows :

G id U -W -y i)  = V2g* -
2(1  -

( G .2 0 )

Finally, Eq. (G.19) is substituted into the above equation and, after some 

manipulation and appropriated values being assigned for the constants Ct and C2, 

-1 and 0, respectively, it is possible to obtain the following expression for the 

displacement fundamental solution parameter:

GM = ( G .2 1 )

where Gkl and r are functions of (x-Xj , y-yi) and the indices k and 1 can assume 

the values 1 or 2 to represent the x- or y-directions, respectively, so that (x1?x2) 

means (x,y). Hence, the fundamental solution for displacement can be shown to 

be explicitly:

u * = G u e x + G 12e y ( G .2 2 )

v * = G 2 i e x + G 2 2 e y



where u* and v* are also function of (x-x; , y-yj). Fundamental solutions for all 

other variables related to stress analysis, like strain, stress and traction, can be 

readily obtained by substituting Eqs. (G.22) into the basic equations relating all 

those parameters to the displacement, presented at the beginning of this 

Appendix. Other fundamental solutions are derived in El-Zafrany (1993). Only 

the final expression for the fundamental solution corresponding to traction is 

given here, since along with the displacement variable, they are the main 

variables of interest for the purpose of the analysis presented in the main text. 

Hence, the traction fundamental solution is given by :

where Fn, F12, F21 and F22 are obtained from the following expression :

In this expression f j and t 2 refer to the directon cosines i  and m, respectively, 

and all other observations apply as before for Eq. (G.21).

Finally, the governing boundary integral equation for plane-strain problem is 

obtained considering that the weighting functions of inverse weighted-residual 

expression, Eq. (G .ll), to be the fundamental solutions presented above. First, 

as a result of this assumption, the fundamental loading parameters defined by Eq. 

(G.13) are substituted into Eq. (G .ll), where the Dirac delta function properties 

given in Appendix B can be used to produce the following expression:

 1 ^ dr dr dt
4 i i ( l  -  v ') r  d n ^ d x j (G.24)
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r Q

The constant C; can assume the values discussed in Appendix B. Now, 

substituting the fundamental displacements, Eqs. (G.22), and the fundamental 

traction, Eqs. (G.23), into the above equation, and also taking in consideration 

that the fact that the values ex and ey are arbitrary, the following boundary 

integral equations result, which are defined with respect to the source point

CIu(xi,yi) + (Fu u + F21y)dT = j  (G11TI + G21Ty) dT
r r (G.26)+ U(x.,yj)

and

where:

(G.28)
Q

and

(G.29)
Q

which represent domain load terms. All fundamental solution parameters, Gw and 

Fy, in these integrals are functions of (x-Xj , y-yj). Eqs. (G.26) and (G.27) can
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be rewritten in a compact form using tensorial representation, as follows:

^ ( W i ) + /<ikFkid r  = / TkGB d r  + Qi(xt>yi) (g .30)

where the subscript "i" refers to the source point while the other indices refer to 

the tensorial notation and so k,l = 1,2. Also, refers to the displacement 

components and refers to the body force terms, so that ( q^qb) =  (u,v) and

(Qi,Q2) =  (U,V).

The derivatives of displacement components are necessary, for example, for the 

calculation of strain and for stress analysis purposes. Boundary integral equations 

to calculate these parameters can easily be obtained by derivation of Eq. (G.30) 

with respect to the source point coordinates x; and yi? in the same way adopted 

in Chapter 3. These equations, however, are appropriate to obtain the derivatives 

of displacement only at internal points of the domain, since for points on the 

boundary they are expected to deliver inaccurate results due to the presence of 

boundary integrals with strong a singularity. On the boundary, a different 

approach has to be adopted normally using the interpolating functions of the 

discretization process. This will not be presented in this Appendix. The final 

boundary integral equations for derivatives of displacement, useful only for 

internal points calculations, are :

dq. r dR. r dGH dQ,(Xj.y,) + /qk— dr = f  Tk—— dT + —  (Xj.yj) (G.31)
r r m

where:
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aQi
dx„ (W i)  = / /  fk -g— dxdy

Q m

8GId

fern 8tT M-'Cl “v0 r
2 J L ±  J L  + (3 -  4v /) —  Stl

dxk 0Xj 3xm dx.
(G.32)

dr ~ dr *
" dxk M ~ dx, **

and

dEId -1
/ \ - .23xm 47t (1 -  v')r

2 * { 4i L  JL  J L  + (1 -  2V ')— 8
an 8xk dx{ dxm

dr ^ dr ~ ,
°lm “TT kma x k dx{

dx. Id
m

+ 2{(1 -  2 v ')(« k—  —  -  J r>
9*1 ^  ^ k  9*1

-  (1 -  2v ')(«k8ta -  ^  + ^ S H)]

(G.33)

Note that the coefficient Q is not included in Eq. (G.31) since for internal nodes 

it assumes a value 1.0. See the information presented in Appendix B.

Eqs. (G.32) and (G.33) were obtained using the expression given by Eq. (4.63) 

of El-Zafrany (1993). Also, in these equations, the derivatives of any functions 

with respect to the source point coordinates, Xj and yb are replaced by the 

derivative with respect to the field point coordinate, using the expressions given 

by Eqs. (3.14) and (3.15) in Chapter 3.



Appendix H 

Isoparametric Elements

H.1- BOUNDARY ELEMENTS

The boundary T of problem is divided in many pieces Te according to the 

discretization process discussed in the main text. Each piece of boundary element 

is defined in terms of ne nodes, which in the case of the so-called isoparametric 

element adopted in this work, are both the geometrical points and the field- 

function nodes of the boundary element. The use of the global coordinates (x,y) 

to describe the boundary element is not convenient for the sake of generality of 

the interpolation functions. Therefore, an intrinsic parameter £ is defined, such 

that at the jth local node, with the nodes at equal distanced, the coordinate gives:

where this expression is applied to a domain for the intrinsic coordinates defined 

within [0,1]. Note that although in the literature the domain [-1,1] is normally 

adopted, the domain [0,1] is adopted throughout this work following the 

suggestion of El-Zafrany (1993).

The use of this intrinsic coordinate makes the analysis much simple, since the 

same representation for the interpolation functions can be adopted in every 

boundary element, independent of the nodal cartesian coordinate.



The field point (x,y), which is any point moving on Te, may be expressed in 

terms of £ by means of the following Lagrangian interpolation equations:

x ( S )  = Xj Nj (£)  ( H . l )
j=i

and

y  ( ? )  = £ )  Y j  N j  ( ^ )  ( H . 2 )
j=l

where :

= n (n»~i)e_~(t"i)
r = i  j  -1*

and is the Lagrangian interpolation function adopted in this work.

From the definition of an isoparametric element, any field functions parameter, 

say 0, can be approximated in terms of its nodal values at the same nodes used 

to define geometrically the boundary element. Therefore,

e - E  W « >
j=i

as given in the main text.

The infinitesimal length dT of the boundary element may be expressed as follows:
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dT = j(5) d$

where J(0  is the Jacobian of this transformations given by:

J ( 5 )  =
I dx\2 I dy\2U ? /  U ? J

and from Eqs. (H.l) and (H.2) it can be shown that:

dx , n  _  . .  dNj
d? (?) = E

j=i d? (?)

and

dy
d? ( ? )  = E  V:

j=l d?

where:

(?) = £
(ne-l) g- (s-1) 

j-s

Finally, the direction cosines t  and m can be evaluated at any point over the 

boundary element by the following expressions:

p _ dy _ dy d£ _ dy/dg 
dT d$ dT J(5)

and
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 d x  dx d £ ___ dx/d?
d r d$ d r  j ({ )

In this work, only two-node linear elements and three-node quadratic elements

are used in the discretization of the boundary, as discussed in the main text. For

linear elements the interpolation functions are given by:

Nx = l - l

and

n2 = 5

For the quradratic element, the interpolation functions are given by:

Nx = (1-$) (1-2?)

N2 = 4 ?  ( 1 - ? )

and

N3 = ? (2?-l)

H.2- DOMAIN ELEMENTS

The domain is also divided into many small elements or cells , each one 

defined in terms of nc geometrical points. A similar technique is used to define 

the domain elements or cells in terms of a local system of coordinates, instead
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of using the global system of coordinates (x,y). Using this local system of 

reference, the interpolation function can be defined in terms of £ and y] 

coordinates, called the intrinsic coordinates of this system. In this work, such 

coordinates are defined in the domain [0,1]. Thus, a point given in terms of 

global coordinates (x,y) are defined as:

n c

X  =  £  X j N j  ( S , t i )  
j=l

and

y = E  y jN jts .ii)
j=i

where Nj(£,i7) are the interpolation function. If an isoparametric cell is adopted, 

any field function of the problem can be represented by a similar expression 

given above using the same interpolation functions.

An infinitesimal area element (dx dy) for the cell may be expressed as follows:

dxdy = d£dti

where is the Jacobian of this transformation, given by:

dx dx  
dtl dri 
dy dy
a t  ari

where:
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as = E  xj
j=i f t

^  = V 1 y. -fSl (£,«)
as #  3 a? ^

^  = E  *j 4 ^ < M )
j=l0T| ati

and

= Z )  y j "3^dx\ j=i ati

In this work, three-node triangular and eight-node quadrangular cells were 

adopted in the discretization of the domain. The interpolation functions for the 

triangular cell are given by:

Nx = l-S -tl

and

n 3 =

For the eight-node quadrangular cell, also called the Serendipty element, the 

interpolation functions are given by:
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Ni = ( i - 5 ) d - n )  (1-25-211) 

n 2 = 4 5 (1 - 5 ) (1-11) 

n 3 = 5 (1-11) (-1+25-211) 

n 4 = 45n d - n )  

n5 = 5 n (-3+25+211) 

n 6 = 45n (1 - 5 ) 

n7 = (1-5)11 (-1-25+211)

n 8 = 4 ( i - 5 ) n ( i - n )



Appendix I

Singular Integrations

The techniques used to overcome the singular kernels of the domain and 

boundary integrals appearing in the formulations discussed in the main text are 

presented here. These basically follow the suggestions given in El-Zafrany(1993).

L I- BOUNDARY INTEGRALS

The only singular kernel appearing in the boundary integral that requires special 

treatment is the one that contains the logarithmic function, as given by the 

following general expression:

where F2 is a function that includes the other parameters appearing in the 

integrand, such as, Jacobian, interpolation function and the variable of the 

problem. The parameter r is the distance of the source point to the field point 

given as:

i
( i . l )

r  = yj ( x - x ±) 2 + ( y - Y i ) 2
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The integral above represents the integration over a boundary element, where £ 

is the intrinsic variable with reference to that element. The singularity occurs 

when the boundary element contains the source point, and so, when the source 

point is approached, r tends to zero and the integral becomes singular.

Let us suppose that the source point, and thus the singularity, is placed at the jth 

node (local numbering) of a boundary element, shown in Figure 1.1. That node 

splits the boundary element into two parts, where the integral will be performed. 

Hence, considering that the limits of integration vary from the left to the right of 

that element, the integral given above is integrated from £ = 0 to £ = £j on part 

I and from £ = £j to £ = 1 on part II. Now, in order to remove the singularity, 

a suitable change of variable will be introduced in each of these parts. Thus, on 

part I, if

results in

Thus, the integration on part I contains two terms as follows:
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K m ( |) d 5  =

Let a new variable be introduced in the first term on the right-hand side of the 

integral above, defined by:

. - k . z l  
4,1

where the new limits of integration corresponding to this variable are introduced. 

The integration in terms of this new variable is performed from 0 to 1, in place 

of limits 0 to fj? respectively, of the former variable of integration. Note also 

that

d * i = -  f

Hence,

|  Fl l n j i )  d? - /  F, ln(A )  d*, + f  F, ln(A j d£ (1 .2)

where:

n -  *JE -  =
^  -  I T T

A similar procedure is introduced in the integral corresponding to the part II.
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i  -  f 1 -g .i
r  " U

t  - g j(1 - 5,) r

and as a result

( Filn(r)dC = |[Flln(? - ?]) + Flln( (1^- 5̂ ) r d5

A new variable defined by

4>2 =.  g - g i
_ i  -

is introduced in the first term on the right-hand side of the previous integral, 

where new limits of integration have to be introduced, ie. from 0 to 1, to replace 

the previous ones, to 1, respectively. Note also, that

d<l>2 = d£ 
(1 -

Hence, the new integral is given as follows:

(1 - Sj) d<|>2 + |,F1ln —  d $  ( 1 . 3 )
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where:

P2 =
( 1  -  t j )  r  _ r

♦2

Substituting Eqs. (1.2) and (1.3) into Eq. (LI) results:

where:

I  = l 0 + i i  + I .

and

- H i , ( l  - t , )  d*2

At this point, it is possible to see that the integrals Ij and I2 can be evaluated 

using the singular quadrature available in the literature, which applies to integrals 

of type:
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1 Ns

| F  (<I>) d(|) = F (<j)s) ws
Q '  ■ ' S  = 1

where Ns is the number of quadrature points and <£s and ws are the coordinates 

of the quadrature points and the corresponding weight, respectively. Note, that 

is this work, the modified quadrature for this case, given in El-Zafrany ( 1993), 

was adopted.

When the source point is located at the extreme nodes of the boundary element 

either I2 or I2 is calculated. For j = 1, l t = 0 and only the integration on part II 

is necessary. On the other hand, for j= n , (last node), I2= 0, only the integration 

on part I is necessary.

With regard to the remaining integral, Iq, it is more convenient to write its 

expression in a more compact form, as follows:

l 0

where p assumes the following values depending on the position of the points of 

integrations with relation to the source point:

P = 

P =

- e
( 1  -  Pj > r  

£ -  £<

fo r

fo r  $)5h

The integral I0 can be performed using the usual Guassian quadrature, since the
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singularity is avoided. However, it is valuable to note the fact that it is 

recommended to avoid any integration point lying at the source point. In the 

quadratic type of boundary element, for example, a number even of integration 

points is suggested to avoid such problem.

1.2- DOMAIN INTEGRAL

The tecnhiques adopted in this work to overcome the singularity of the domain 

integrals are based on an idea that can be applied to a variety of singular kernels. 

To explain how it works, let us consider the following general integral, whose 

kernel contains the derivative of the fundamental solution, say P*, and represents 

most of the cases analysed in this work:

where F =  f(x,y) and represents the field variable. The kernel of this integral is 

supposed to be singular at the source point, whilst F is regular throughtout the 

domain Q. The technique adopted to deal with this singularity is based on a very

integral above with the aim of making the domain integral regular. This is 

represented by the following expression:

( 1 . 5 )

simple idea. It consists of the inclusion of two terms with opposite signs in the

where Ft is a constant which is equal to the value of the function F at the source 

point. In this way, when the source point is approached, while the kernel goes 

to infinity the term ( F - F j) tends to zero and the integral becomes finite. This
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measure, roughly, allows the domain integral in question to be treated as regular, 

where the usual quadrature formulae can be used to evaluate it. This technique 

appears in many books on numerical analysis. It is worth mentioning that the 

singularity is not removed, in fact, it is weakened since the second derivative of 

the kernel in this case is still singular. It can however, be re-applied again and 

again in order to reduce the strengh of the singularity involved, although this is 

not undertaken here.

Alternatively, the remaining domain integral is singular and a special treatment 

is required. The way devised in this work to deal with this case is to transform 

the domain integral into a boundary integral, using some identities in which the 

singularity can be suitably treated. Thus, first expanding the kernel of the domain 

integral in question,

pi / / ! i ; dstdy = F l( / ( {° l r  + m° i § : ) dxdy

and using the basic theorem for the reduction of the double integral given in 

Appendix B, the integral above can be transformed into:

F±ff "§n~" dxdy = F i ^ ^ P ’dT + F±m0^K[F* dT

or
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Fi // dxdy = Fi ^ ( toe + m0m)P*dT
Q °

and finally,

F i f f l l z ~ 6Xdy = Fi f ( H° • H) P*d r  ( I -? )Q O

Note that the domain integrals resulting from the use of integration-by-parts 

theorem to obtain the Eq. (1.7) above, vanish since the derivatives of Fj are 

zero.

Hence, placing Eq. (1.7) into Eq. (1.6), the following expression results and is 

used in place of Eq. (1.5),

1 = // (F - |^dxdy + F^n,, . n)P*dT (1.8)

where the domain integral can be treated as regular and the boundary integral, 

if singular, can be evaluated, in most cases, using available techniques.

Some kernels appearing in the formulations investigated in this work which can 

be treated by the formula represented by Eq. (1.8), are given:

//F i i x d xd y  = I f ( F " Fi) isr + Fi/^u+dr

and
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/ /  F "ilv~ ^ ^ y  = / /  ^F _ F±) 4 ^  dxdy  + Fi f mu*
q °y q °y r

for kernels given by the derivatives of the fundamental solution in the x- and y- 

directions. Kernels containing the second derivatives of the fundamental solution 

produce the following expressions:

//fi¥  ****= / / (F' Fi) ^ + Fif ^

and

f f F i P : d x d y  = I I ( F -  I t  + F4 m % r  ^0 y : dy

du*
dy

+ m 8u*
dx

dT

where u* is the fundamental solution as defined by Eq. (3.9) in the main text. 

Note, that in the last expression, an average of the integrand of the boundary 

integral was adopted to reduce any inaccuracy due to the change of the order of 

derivation of the fundamental solution.

1.2.1- Special Cases

Kernels that do not include the derivative of the fundamental solution cannot be 

dealt with using Eq. (1.8). The problem is that the boundary integral cannot be 

obtained in the way given above, and so an alternative approach has to be used.
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The integral given below is included in this category:

i = // F u *Q

and as before

j*Fu*dxdy = j J  (F - F±) u*dxdy + Fiy*Ju*dxdy

The technique used by El-Zafrany (1993) to reduce the domain integral, like the 

second one on the right-hand side of the above equation, to the boundary integral 

has been adopted in this work. This technique, in brief, consists of defining an 

auxiliary function f*(r) such that

V 2f *  = u *

where u* is the fundamental solution given by Eq. (3.9) presented in the main 

text. The function f  can be found by solving the above equation and is given by:

f*(r) = - J i i  (lnr - 1) (1.9)8n

Introducing Eq. (1.9) into the domain integral in question and, after integration 

by parts, gives:

j J F±u* dxdy = f f  F± V2 f * dxdy = dT
q q r

since is a constant, which forces the other terms to vanish, and where



The final expression for this case is, therefore:

I = f f  (F - Fi) u*dxdy - i r (2lnr - 1) dT

Note that the integrand of the boundary integral contains singularities. 

Fortunately, the only case that demands the use of a special technique is the one 

which contains the logarithmic function. This can however, be overcome using 

the technique discussed in Section 1.1 presented previously.

Domain integrals similar to the previous case, where the kernel is given by the 

fundamental solution itself, appear in the formulation based on the penalty 

function as discussed in Chapter 5. In this case, however, due to the more 

complicated form of the fundamental solution Gkl, another technique to reduce the 

domain integral into a boundary integral has to be devised. This problem can be 

easy to handle using the integration by parts theorem if the fundamental solution 

is represented by Eq. (G.20), instead of Eq. (5.8). Thus,

// f Qki dxdy = // (F - FiJGu dxdy
Q Q (I.10)

Q

where the fundamental solution Gkl (k, 1 =1,2) is represented by eq. (G.20), 

given by:
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Gkl ”
1 yg*

2 (1  - v ) dx.i,dx1

and

r  ^* = -  lnr8rcv

obtained from Eq. (G.19) after assuming that Cj = -1 and C2 = 0.

Now, introducing this into the second domain integral on the right-hand side of 

the expression given by Eq. (1.10) and using the integration by parts theorem, 

gives:

jy FGkl dxdy = f  J (F - F±) Gkldxdy
Q

+ F i fr an 2 (1  -  v)
 I i s .*-  dx1

dT

where fk represent the direction cosines. Note that the other terms resulting from 

the transformation vanish because Fj is a constant. The terms in the boundary 

integral above can be expanded further as follows:

dg* _ _ r (21nr + 1) dr 
dn 8ttv dn

and

dg* =
axx

r (2lnr + 1) dr
8nv

The final expression for each combination of the indeces k and 1 are given by:
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f f  FGn dxdy = f f  (F - Fjl ) GX1 dxdy

§ sl -  1 f>d$*
dn 2 (1 - v ) dx

dT

f f  FG12 dxdy = f f  (F - F±) G12 dxdy Fi fr 2(1 - v )

f / FG2i dxdy = f f  (F - F±) G21 dxdy + F±̂ 2(1 - v)

and

/ f  F G 22 ^ d y  = ( F -  F±) G22 dxdy

+ F i s !  . ------ 1—
dn 2 (1 - v) dy

dT

dy

OX

Note that due to the presence of the logarithmic function in the integrand of the 

above boundary integrals, these are singular. However, the problem can be 

overcome using the technique discussed in Section 1.1.



Appendix J

Calculation of Q Coefficients

J .l -  INTRODUCTION

When the double-node approach is adopted to treat corners, a geometrical 

discontinuity is introduced on the boundary, since a finite gap exists separating 

the two nodes. For the sake of accuracy, a correction should be introduced in the 

BIE of the problem to compensate for the error provoked by the gap.This 

correction is normally introduced in the evaluation of the coefficient Q. When 

the variable in the BIE is considered a scalar, the approach given by Eq. (6.23) 

may be adopted. However, a special treatment is required when the variable of 

the problem contains two or more components.

One possibility is to obtain the coefficient using an approach that considers a 

smooth element connecting the two corner nodes in order to close the gap. 

Boundary integrals corresponding to the integration from one node to another on 

this boundary element is introduced in the BIE. The correction is obtained by 

calculating the limit of the integral when the gap tends to zero. All additional 

terms introduced in the original BIE as a result of the integration on the element 

at the corner are considered to be the new coefficient Q. This should be used in 

place of the suggestion given in Appendix B. When the source point is away 

from the corner, these integrations vanish. They only participate when the source 

point is located at the corner.
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J.2- ELASTICITY PROBLEM

In this work, it was decided to adopt an approach that can be considered as an 

extension to the concept of a rigid translation for problems whose dependent 

variables have two components. This approach is discussed by El-Zafrany 

(1989b) applied to the BIE of elasticity. Here, the main steps considering the 

application of the approach will be presented as applied also to the equations of 

elasticity discussed in Appendix G.

Consider the BIEs given by Eqs. (G.26) and (G.27) of Appendix G. If the 

structure analyzed is moved in rigid translations a  and /?, in the x-direction and 

in the y-direction, respectively, then there is no loading and no stress. In other 

words, the following conditions are applied in the equations:

Substituting these conditions into Eqs. (G.26) and (G.27), these can be rewritten 

as follows:

T = 0
Ty = 0

=  0
V(xi/yi) = 0

u = au =
V = P

r r
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and

C±p + a & F12 dT + p^F22dT = 0 
r r

For the special case of a  = ut and /5 = v{ the above equations are rewritten as 

follows:

CiUi + f F n U i d T  + f F 2iV id T  = 0 ( j . i )
r r

and

c iV i  + j F12UidT + ^ F ^ V i d T  = 0 ( j . 2 )

Subtracting Eq. (J.I) from Eq. (G.26) and Eq. (J.2) from Eq. (G.27), the 

boundary integral equations can be rewritten as follows:

/  Fn  (u " ui ) dT + j> F2i (v  -  V i) dT 
r r
= f s 1±Tx dT + /G21TydT + U(x1/yi)

and

j F 12 ( u  -  U i ) d T  + ^ F 22 ( v  -  v t ) d T  
r r
= f  G12 Tx d T  + /G22TydT + V(xi/yi)

The above equations should be applied to a problem with a continuous boundary 

T. However, when the double-node technique is used to treat corners, in order 

to correct the error introduced by the gap between the two corner nodes, the
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above equations should contain a correction, as follows, valid for one corner with 

two nodes "a" and "b":

and

(f F1± (u - u±) dT + lim <f FX1 (u - u±) dT 
J  a>-*b Jr '  a

b
+ £ f 21 (v - Vi) dT + limf F21 (v - vA) dT

J  a>->b Jr '  a
= f G 1±Tx dT + /G21TydT + U(xi#yi)

(J.3)

j> F12 (u - Ui) dT + lim^F12 (u - Ui) dT
r '  a '" * > a

b
+ f  F 2 2 (v “ vî  dT + lim<fF22 (v - v±) dTJ  a H a  Jr '  a

= j  G12TxdT + f  G22 Ty dT + V(x1#yi)

(J.4)

where the corrections on the traction terms were not introduced because it can 

shown that:

b
lim^GklTkdT = 0
a « b  J  a

and the boundary T is the sum of T to the gap separating the corner nodes "a" 

and "b".

Considering a corner node (x^y,.), it can be also shown that:
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b
lim<£Fkl (u - u±) dT = (uc - u±) Fkl(Xi,yi)
a « b  J  a

and

b
lim^Fkl (v - v±) dT = (vc - v±) Fkl(Xi,yi)
a>-»b J

where:

b
Fu  = i j m f  Fki ^a*-*b J  a

are the so-called "jump functions" due to the fact that they are non-zero only 

when the source point is at the corner, otherwise they are zero. In other words, 

they are effective only at corner nodes. Thus,

Fkitei'Yi) = 0 for (Xi'Yi) * (xc,y c)

and

Fki (Xi,y±) * 0 for (x^y^ s (xc/yc)

However, when (x ^ )  = (xc,yc), the additional conditions are introduced

( u c -  U i )  = 0 ;

( v c -  V i ) = 0

Hence, for any source point (x ^ ) , it can be deduced that:
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lim<fFkl (u - Ui) dT = 0
a«b J  

a

and

b

lim<f Fkl (v -  v±) dT = 0
a>-»b J 

a

and so, Eqs. (J.3) and (J.4) can be rewritten as follows:

^  Fn  (u -  ^ ) dT + ^  F21 (v -  Vi) dT 
jy r7
= + f c 21Ty d r + u (x i /y i )

and

^ F 12 (u -  Ui) dT + ^ F 22 (v -  Vj) dT
p/ r/
= j  G12Txd r  + f a 22Ty dr  + v (X i,y i )

r7 r7

which are free from corner effects. In other words, the corner can be left as a 

finite gap in the boundary element mesh. Note, that this analysis is still valid for 

cases where the gap length tends to zero.

Finally, defining the following factors at the source point:

CkitXi'Yi) = -  j Fki(x -X i ,y -y i ) dT 
r7
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then it can be deduced that:

Gn(xi-yi)ui + Gi2(xi/yi) vi + j> F u U d r  + j  F21vdT
r' r'

= f  Qii'T* dr + j  G21Ty dT + U (xi(yj)

and

C ^ O x ^ y i )  U i  +  ^ ( X i . y ^ V i  +  ^ F 1 2 u d T  +  j F 2 2 v d T
r' r7

= ^G12Txdr + f a 22Ty d r  + v (Xi, y i )

where the coefficients Cw are calculated using the coefficients of the discretized 

equations, as follows:

c kl (Xi,yi) = - f  f  f kl(e) (Xi.Yi)
e=i 3 = 1

and

fki<e) (Xi/Yi) = ̂ Fkl (x-xi(y-yi) J (?) d(|

where the nomenclature used here is as defined in the discussion of the 

discretization in the main text.

In order to calculated the value of U; and Vj at any generic source point, the 

following procedure has to be adopted. Let us first define the two expressions:
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and

Hence,

and

4 > i  = /  F^udT + ̂ F21vdT 
r' r'

+ f G ^ d T + /G21TydT + U(xliyi) 
r7 r'

T i = f Fi2 udr + j> f22v d r  
r' r'

+ j  GizTxdT + /GzaTydT + V tx^Y i)

Cii (X i,y i)ui + C12 (x^y*) v £ =

These two equations form a system of equations that can be solved by means of 

Cramer’s rule to produce:

u  _ C22(f)i  ^12^1
^11^22 ~ -̂12̂ 21

and
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Vi =_ Cl l ^ i  2̂1
C  C  -  C  C  11 22 12 21

Although this approach has been derived for elasticity equations, it can be applied 

also in the penalty function formulation to fluid flow analysis, according to the 

analogy between these two cases given in Chapter 5.

J.3- VORTTCITY-VELOCITY FORMULATION

This approach can also be employed in the kinematic equations of the vorticity- 

velocity formulation. In this case, although the physical view of the conditions 

suggested is less evident, it can be assumed that the fluid flows with constant 

velocities a  and 0 in the x- and y- directions, respectively. Thus, the flow is 

irrotational since in this case gj = 0. Hence, the terms in the kinematic equations 

containing the vorticity parameter disappear and the final equations are given by:

For the special case of a  = v* and /? = vyi the equations above can be 

transformed into the following equations:
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ClV^ + f ^ V ^ d T - f ^ v ^ d T - O  (J.5)

and

c ^ i  + f - ^ !v ”i d r  + / - ^ v ' i d r  = 0 ( J - 6)dy

where:

Vn ■ = Vx J  + Vv. mni xi yi

and

v+ = -  v„.m + Vy±t

Subtracting Eqs. (J.5) and (J.6) from Eqs. (4.25) and (4.26), respectively, gives 

the following boundary integral equations:

f t s t  (Vn" v" i) ^ " / i f ( Vc ' Vt^  ^r r
+ ^a)u*mdT = f f u * ^  dxdy

and
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/ ■ ^ ( v n -vni) dT + f ^ ( v t -v t.)dr 
r J r

-  f  (ou*(dT = -  f f  u *37  dxdy
Q

Following the same procedure described above for elasticity equations, the final 

representation for the BIEs for this problem can be obtained:

,/ f t

dT
r

+ f  G)u*m dT = f f  dxdy
Q f t

and

f ^ ( v „ - v n i ) d r  + f ^ ( v t - v t i ) 
r' v'

- f  (du*tdT = -  f f  u*-|^-dxdy

The final expression can be obtained directly from the equations above, in terms 

of the tangential and normal velocities.

du’

+ £ o»u*mdT = f f  u*-^dxdy
( J . 7 )

dy

and
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cyvni + cxvt l + f ^ v ndr + f | L v t dr
r' .i" (J.8)

- f  (Ou*tdT = - //u* dxdy
r'

where:

: =x J. dx d r

and

However, it is convenient for the analysis, using these equations, that they give 

explicitly the components of the velocity in the x- and y- directions. Therefore, 

Eqs. (J.7) and (J.8) were manipulated further to produce the following:

cnvX i - c t vVi + f ^ v nd r - f ^ v t d r  
r' t'

+ G>u*mdT = / / u * d x d y
p/ Q

and

c tvXi ♦ cnvyi .+ j ^ v ndr + j ^ v t dr
jy r/

- § (ou’tdT = “ //u*||dxdy 
r' Q
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where:

c* - f % dr
T '

and

T '

corresponding to the derivatives of the fundamental solution in the normal and 

tangential directions, respectively. These can be evaluated using the coefficients 

resulting from the discretized equations, similar to the method used in the 

discussion of the elasticity equations.

Finally, in order to calculate explicitly the velocity components vxi and vyi, the 

following expressions are used:

v = 4>Cn +Yct
xi  p  2 ■ p  2

v-'n v- t

and

_ T C n -  » C t
y i  p  2 . p  2S i  v- t

where:
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4> = - <£(ou*mdT 
r' / / u * - ^ dxdy

and

T = £ o)u*£dT - f f  u* dxdy



Appendix K

Derivatives on 
the Boundary

K.1- VORTICITY-VELOCITY FORMULATION

Suppose that the distribution of vorticity, oj, and its normal derivative are known 

on the boundary nodes. In this case, it is possible to obtain expressions to 

calculate the derivatives of vorticity with respect to the coordinates x and y.

Consider one n-node boundary element. It is possible to define on this element:

«(*)  = £  CDjNjU) (K. i )
j=i

f f « >  ~ t  “ j ^ (S) ( K * 2 )

and

| K ■ 3 ,

where Nj(£) is the interpolation function and f is the intrinsic coordinate over the 

boundary element. Thus, the parameters above can be represented in terms of the
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coordinate £.

The parameter in Eq. (K.2) can be also given in the following expression:

do) _ do) dx do) dy
dZ dx dz dy dZ

However, for this kind of elements the direction cosines f and m are defined by:

9 = d y  dZ = d y /d Z  
dZ dT  J  (?)

and

„ _ _ dx dC _ _ dx/dZ 
dZ dT  J <{)

and so

dZ J  (?)
= m 0CO

5x + a d (J 
dy

( K . 4 )

where J(£) is the Jacobian given by

J  (Z) =\
I dx\2
[ a t  I

dy\2
a t

On the other hand, the normal derivative of vorticity, given by Eq. (3), in terms 

of nodal values and the interpolation function, is also defined by:



Solving the system of equations given by Eqs. (K.4) and (K.5), gives:

do) _ . dtp
dx dn d£ J(?)

1 ( K. 6 )

and

do) _  ̂j9o>  l
dy dZ j (5)

(K.7)

this allows the calculation of the derivatives of vorticity over the boundary 

explicitly.

K.2- PENALTY FUNCTION FORMULATION

The expression to be found in this case needs calculate the derivatives of the 

velocity components comprising four parameters and, therefore, four equations 

will be necessary. The first two equations come from the definition of traction 

given by Eqs. (G.5). Introducing the definition of stresses given by Eqs. (G.2) 

into Eqs. (G.5), it can be shown that:



where the parameters dn, d12, d21, d22 and d33 stand as define in Appendix G.

The other two equations come from the application of Eq. (K.4) twice to the 

velocity components to obtain:

dvx i dvx dvx
x  =  m  — -  +  n x

35 J (E) 3x 3y

and

3v,
dl J(E) = m

dx
+ a dVy

3y

These two equations along with the system of equations for traction components 

form a set of four equations that allow the derivatives of the velocity components 

on the boundary to be obtained.



TABLES
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Table 7.1: Results Using Option 1 with Corner
Gap l.lxlO'3 and Jump Functions.

Boundary Results:

I X Y WP DWN

1 0.2500E+00 0.0000E+00 - 0 .3969E+01 - 0 .8054E+01
2 0.5000E+00 0.0000E+00 -0.4020E+01 -0.7793E+01
3 0.7500E+00 0.0000E+00 -0 .3969E+01 - 0 .8054E+01
4 0 .9989E+00 0 .0000E+00 -0.4164E+01 - 0 .6517E+01

5 0 .1000E+01 0 .2500E+00 -0.1999E+01 0 .1135E+00
6 0 .1000E+01 0 .5000E+00 -0.2555E-15 0.2778E-14
7 0 .1000E+01 0.7500E+00 0 .1999E+01 -0.1135E+00
8 0 .1000E+01 0 .9989E+00 0.4034E+01 0 .1770E+01

9 0.7500E+00 0 .1000E+01 0.3969E+01 0 .8054E+01
10 0.5000E+00 0 .1000E+01 0.4020E+01 0.7793E+01
11 0 .2500E+00 0 .1000E+01 0 .3969E+01 0 .8054E+01
12 0 .1100E-02 0 .1000E+01 0.4164E+01 0.6517E+01

13 0 .0000E+00 0.7500E+00 0 .1999E+01 -0 .1135E+00
14 0 .0000E+00 0 .5000E+00 -0.2015E-15 0 .8882E-15
15 0 .0000E+00 0.2500E+00 -0 .1999E+01 0 .1135E+00
16 0 .0000E+00 0 .1100E-02 -0 .4034E+01 - 0 .1770E+01

17 0.1100E-02 0 .0000E+00 -0 .4164E+01 - 0 .6517E+01
18 0 .1000E+01 0 .1100E-02 -0 .4034E+01 - 0 .1770E+01
19 0 .9989E+00 0 .1000E+01 0.4164E+01 0.6517E+01
20 0 .0000E+00 0 .9989E+00 0 .4034E+01 0 .1770E+01

Domain Results:

i X y VX VY W WX wy
l 0.2500E+00 0.OOOOE+OO 0.0000E+00 0.0000E+00 -0.4000E+01 0.OOOOE+OO 0.8000E+01
2 0.5000E+00 0.OOOOE+OO 0.0000E+00 0.0000E+00 -0.4000E+01 0.OOOOE+OO 0.8000E+01
3 0.7500E+00 0.0000E+00 0.0000E+00 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
4 0.1000E+01 0.0000E+00 0.0000E+00 0.0000E+00 -0.3996E+01 0.OOOOE+OO 0.8000E+01
5 0.1000E+01 0.2500E+00 0.7500E+00 0.0000E+00 -0.2000E+01 0.OOOOE+OO 0.8000E+01
6 0.1000E+01 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO 0.8000E+01
7 0.1000E+01 0.7500E+00 0.7500E+00 0.0000E+00 0.2000E+01 0.OOOOE+OO 0.8000E+01
8 0.1000E+01 0.1000E+01 0.0000E+00 0.0000E+00 0.3996E+01 0.OOOOE+OO 0.8000E+01
9 0.7500E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01

10 0.5000E+00 0.1000E+01 0.0000E+00 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
11 0.2500E+00 0.1000E+01 0.0000E+00 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
12 0.0000E+00 0.1000E+01 0.0000E+00 0.OOOOE+OO 0.3996E+01 0.OOOOE+OO 0.8000E+01
13 0.0000E+00 0.7500E+00 0.7500E+00 0.OOOOE+OO 0.2000E+01 0.OOOOE+OO 0.8000E+01
14 0.0000E+00 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO 0.8000E+01
15 0.0000E+00 0.2500E+00 0.7500E+00 0.OOOOE+OO -0.2000E+01 0.OOOOE+OO 0.8000E+01
16 0.0000E+00 0.0000E+00 0.0000E+00 0.OOOOE+OO -0.3996E+01 0.OOOOE+OO 0.8000E+01
17 0.2500E+00 0.5000E+00 0.9999E+00 -0.4668E-17 -0.6635E-16 -0.7286E-16 0.7987E+01
18 0.5000E+00 0.2500E+00 0.7495E+00 -0.5233E-17 -0.1997E+01 -0.1284E-15 0.7992E+01
19 0.5000E+00 0.5000E+00 0.9997E+00 -0.3581E-17 -0.7633E-16 -0.2559E-16 0.7989E+01
2 0 0.5000E+00 0.7500E+00 0.7495E+00 0.5690E-17 0.1997E+01 0.4163E-16 0.7992E+01
21 0.7500E+00 0.5000E+00 0.9999E+00 0.5809E-17 -0.5898E-16 0.1084E-16 0.7987E+01
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Table 7.2: Results Using Option 2 with Corner
Gap l.lxlO'3 and Jump Functions.

Boundary Results:

I X Y WP DWN

1 0.2500E+00 0 .0000E+00 -0 .3969E+01 - 0 .8050E+01
2 0 .5000E+00 0 .0000E+00 -0.4020E+01 -0.7793E+01
3 0.7500E+00 0 .0000E+00 -0.3969E+01 -0 .8057E+01
4 0 .9989E+00 0 .0000E+00 -0 .4164E+01 - 0 .6417E+01
5 0 .1000E+01 0.2500E+00 - 0 .1999E+01 0 .8030E-01
6 0.1000E+01 0 .5000E+00 -0 .2555E-15 0.2573E-14
7 0 .1000E+01 0.7500E+00 0 .1999E+01 - 0 .8030E-01
8 0 .1000E+01 0 .9989E+00 0.4034E+01 0 .1586E+01

9 0.7500E+00 0 .1000E+01 0.3969E+01 0 .8057E+01
10 0 .5000E+00 0 .1000E+01 0.4020E+01 0.7793E+01
11 0.2500E+00 0 .1000E+01 0.3969E+01 0 .8050E+01
12 0 .1100E-02 0 .1000E+01 0.4164E+01 0 .6617E+01

13 0 .0000E+00 0.7500E+00 0 .1999E+01 - 0 .1467E+00
14 0 .0000E+00 0 .5000E+00 -0 .2015E-15 0 .8882E-15
15 0 .0000E+00 0.2500E+00 “0 .1999E+01 0 .1467E+00
16 0 .0000E+00 0 .1100E-02 -0 .4034E+01 -0 .1955E+01
17 0 .1100E-02 0 .0000E+00 -0.4164E+01 - 0 .6617E+01
18 0 .1000E+01 0.1100E-02 -0.4034E+01 - 0 .1586E+01
19 0 .9989E+00 0 .1000E+01 0.4164E+01 0 .6417E+01
20 0 .0000E+00 0 .9989E+00 0.4034E+01 0 .1955E+01

Domain Results:
i X Y VX VY W WX WY
l 0.2500E+00 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
2 0.5000E+00 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
3 0.7500E+00 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
4 0.1000E+01 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO -0.3996E+01 0.OOOOE+OO 0.8000E+01
5 0.1000E+01 0.2500E+00 0.7500E+00 0.OOOOE+OO -0.2000E+01 0.OOOOE+OO 0.8000E+01
6 0.1000E+01 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO 0.8000E+01
7 0.1000E+01 0.7500E+00 0.7500E+00 0.OOOOE+OO 0.2000E+01 0.OOOOE+OO 0.8000E+01
8 0.1000E+01 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.3996E+01 0.OOOOE+OO 0.8000E+01
9 0.7500E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01

10 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
11 0.2500E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
12 0.OOOOE+OO 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.3996E+01 0.OOOOE+OO 0.8000E+01
13 0.OOOOE+OO 0.7500E+00 0.7500E+00 0.OOOOE+OO 0.2000E+01 0.OOOOE+OO 0.8000E+01
14 0.0000E+00 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO 0.8000E+01
15 0.0000E+00 0.2500E+00 0.7500E+00 0.OOOOE+OO -0.2000E+01 0.OOOOE+OO 0.8000E+01
16 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO -0.3996E+01 0.OOOOE+OO 0.8000E+01
17 0.2500E+00 0.5000E+00 0.9999E+00 -0.4668E-17 -0.7142E-16 -0.5791E-16 0.7985E+01
18 0.5000E+00 0.2500E+00 0.7495E+00 -0.5233E-17 -0.1997E+01 0.1432E-01 0.7992E+01
19 0.5000B+00 0.5000E+00 0.9997E+00 -0.3581E-17 -0.7699E-16 0.4786E-17 0.7989E+01
20 0.5000E+00 0.7500E+00 0.7495E+00 0.5690E-17 0.1997E+01 -0.1432E-01 0.7992E+01
21 0.7500E+00 0.5000E+00 0.9999E+00 0.5809E-17 -0.6265E-16 0.2591E-16 0.7988E+01
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Table 7.3: Results Using Option 1 with Corner Gap
l.lxlO"8 and Regular Corner Model.

Boundary Results:

I X Y WP DWN

1 0.2500E+00 0 .0000E+00 -0.3998E+01 - 0 .8000E+01
2 0. 5000E+00 0 .0000E+00 -0.4002E+01 - 0 .8000E+01
3 0 .7500E+00 0 .0000E+00 -0.3998E+01 - 0 .8000E+01
4 0 .1000E+01 0 .0000E+00 -0.4010E+01 - 0 .8000E+01
5 0 .1000E+01 0.2500E+00 -0.2000E+01 -0.1356E-05
6 0 .1000E+01 0 .5000E+00 -0.2782E-15 0.1082E-14
7 0 .1000E+01 0.7500E+00 0.2000E+01 0.1356E-05
8 0 .1000E+01 0 .1000E+01 0.4000E+01 -0.1292E-04
9 0.7500E+00 0 .1000E+01 0.3998E+01 0 .8000E+01

10 0 .5000E+00 0 .1000E+01 0.4002E+01 0.8000E+01
11 0 .2500E+00 0 .1000E+01 0.3998E+01 0 .8000E+01
12 0 .1100E-07 0 .1000E+01 0.4010E+01 0 .8000E+01
13 0 .0000E+00 0 .7500E+00 0 .2000E+01 0 .1356E-05
14 0 .0000E+00 0 .5000E+00 0 .6662E-15 0.4441E-15
15 0 .0000E+00 0.2500E+00 -0.2000E+01 - 0 .1356E-05
16 0 .0000E+00 0 .1100E-07 -0 .4000E+01 0 .1292E-04

17 0 .1100E-07 0 .0000E+00 -0.4010E+01 - 0 .8000E+01
18 0 .1000E+01 0 .1100E-07 -0.4000E+01 0 .1292E-04
19 0 .1000E+01 0 .1000E+01 0.4010E+01 0 .8000E+01
20 0 .0000E+00 0 .1000E+01 0.4000E+01 -0 .1292E-04

Domain Results:
i X Y VX V Y W WX WY

l 0.2500E+00 0.0000E+00 0.0000B+00 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
2 0.5000E+00 0.0000E+00 0.0000E+00 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
3 0.7500E+00 0.0000E+00 0.0000E+00 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
4 0.1000E+01 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
5 0.1000E+01 0.2500E+00 0.7500E+00 0.OOOOE+OO -0.2000E+01 0.OOOOE+OO 0.8000E+01
6 0.1000E+01 0.5000E+00 0.1000E+01 0.OOOOB+OO 0.OOOOE+OO 0.OOOOE+OO 0.8000E+01
7 0.1000E+01 0.7500E+00 0.7500E+00 0.OOOOE+OO 0.2000E+01 0.OOOOE+OO 0.8000E+01
8 0.1000E+01 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
9 0.7500E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+0110 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
11 0.2500E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+0112 0.0000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
13 0.0000E+00 0.7500E+00 0.7500E+00 0.OOOOE+OO 0.2000E+01 0.OOOOE+OO 0.8000E+01
14 0.0000E+00 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO 0.8000E+0115 0.0000E+00 0.2500E+00 0.7500E+00 0.OOOOE+OO -0.2000E+01 0.OOOOE+OO 0.8000E+0116 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO -0.4000B+01 0.OOOOE+OO 0.8000E+01
17 0.2500E+00 0.5000E+00 0.1000E+01 -0.1128E-16 -0.3253E-16 -0.1110E-15 0.8000E+0118 0.5000E+00 0.2500E+00 0.7500E+00 -0.5258E-17 -0.2000E+01 -0.1284E-15 0.8000E+0119 0.5000E+00 0.5000E+00 0.1000E+01 0.4337E-18 -0.3556B-16 -0.2819E-16 0.8000E+0120 0.5000E+00 0.7500E+00 0.7500E+00 0.3835E-17 0.2000E+01 0.8847E-16 0.8000E+01
21 0.7500E+00 0.5000E+00 0.1000E+01 0.1117E-16 -0.4163E-16 0.6288E-16 0.8000E+01
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Table 7.4: Results Using Option 2 with Corner Gap
l.lxlO-8 and Regular Corner Model.

Boundary results:

I X Y WP DWN

1 0.2500E+00 0 .0000E+00 -0.3998E+01 - 0 .8005E+01
2 0 .5000E+00 0 .0000E+00 -0 .4002E+01 -0 .8000E+01
3 0.7500E+00 0 .0000E+00 -0.3998E+01 -0.7995E+01
4 0 .1000E+01 0 .0000E+00 -0.4010E+01 - 0 .8070E+01
5 0 .1000E+01 0.2500E+00 -0.2000E+01 - 0 .3565E-01
6 0 .1000E+01 0 .5000E+00 -0.2782E-15 0 .6661E-15
7 0 .1000E+01 0 .7500E+00 0.2000E+01 0.3565E-01
8 0 .1000E+01 0 .1000E+01 0.4000E+01 -0.3326E+00
9 0.7500E+00 0 .1000E+01 0.3998E+01 0.7995E+01

10 0 .5000E+00 0 .1000E+01 0.4002E+01 0.8000E+01
11 0.2500E+00 0 .1000E+01 0 .3998E+01 0 .8005E+01
12 0 .1100E-07 0 .1000E+01 0.4010E+01 0.7930E+01

13 0 .0000E+00 0.7500E+00 0.2000E+01 -0.3565E-01
14 0 .0000E+00 0 .5000E+00 0.6662E-15 0 .0000E+00
15 0 .0000E+00 0.2500E+00 -0.2000E+01 0 .3565E-01
16 0 .0000E+00 0 .1100E-07 -0.4000E+01 -0.3326E+00

17 0 .1100E-07 0 .0000E+00 -0.4010E+01 -0.7930E+01
18 0.1000E+01 0 .1100E-07 -0.4000E+01 0 .3326E+00
19 0 .1000E+01 0 .1000E+01 0.4010E+01 0.8070E+01
20 0 .0000E+00 0 .1000E+01 0.4000E+01 0 .3326E+00

Domain Results:
i X Y VX VY W WX WY
l 0.2500E+00 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
2 0.5000E+00 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
3 0.7500E+00 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
4 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
5 0.1000E+01 0.2500E+00 0.7500E+00 0.OOOOE+OO -0.2000E+01 0.OOOOE+OO 0.8000E+01
6 0.1000E+01 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO 0.8000E+01
7 0.1000E+01 0.7500E+00 0.7500E+00 0.OOOOE+OO 0.2000E+01 0.OOOOE+OO 0.8000E+01
8 0.1000E+01 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
9 0.7500E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
10 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
11 0.2500E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
12 0.OOOOE+OO 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
13 0.OOOOE+OO 0.7500E+00 0.7500E+00 0.OOOOE+OO 0.2000E+01 0.OOOOE+OO 0.8000E+01
14 0.OOOOE+OO 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO 0.8000E+01
15 0.0000E+00 0.2500E+00 0.7500E+00 0.OOOOE+OO -0.2000E+01 0.OOOOE+OO 0.8000E+01
16 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
17 0.2500E+00 0.5000E+00 0.1000E+01 -0.1128E-16 -0.8676E-17 -0.2882E-17 0.8000E+01
18 0.5000E+00 0.2500E+00 0.7500E+00 -0.5258E-17 -0.2000E+01 0.4048E-03 0.8000E+01
19 0.5000E+00 0.5000E+00 0.1000E+01 0.4337E-18 -0.1061E-16 -0.8712E-18 0.8000E+01
20 0.5000E+00 0.7500E+00 0.7500E+00 0.3835E-17 0.2000E+01 -0.4048E-03 0.8000E+01
21 0.7500E+00 0.5000E+00 0.1000E+01 0.1117E-16 -0.1411E-16 0.1558E-17 0.8000E+01
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Table 7.5: Results Using Option 1 with Corner Gap 
l.lxlO'8 and Regular Corner Model 

for Kinetics and Kinematics.

Boundary results:

I X y WP DWN

1 0.2500E+00 0 .0000E+00 -0.4000E+01 - 0 .8000E+01
2 0 .5000E+00 0 .0000E+00 -0.4000E+01 - 0 .8000E+01
3 0 .7500E+00 0 .0000E+00 -0 .4000E+01 - 0 .8000E+01
4 0 .1000E+01 0 .0000E+00 -0.4000E+01 - 0 .8000E+01

5 0 .1000E+01 0.2500E+00 -0 .2000E+01 -0.1356E-05
6 0 .1000E+01 0 .5000E+00 -0.3282E-15 0 .1082E-14
7 0.1000E+01 0.7500E+00 0.2000E+01 0 .1356E-05
8 0 .1000E+01 0 .1000E+01 0.4000E+01 -0.1292E-04

9 0.7500E+00 0 .1000E+01 0.4000E+01 0 .8000E+01
10 0 .5000E+00 0 .1000E+01 0.4000E+01 0 .8000E+01
11 0.2500E+00 0 .1000E+01 0.4000E+01 0 .8000E+01
12 0.1100E-07 0 .1000E+01 0.4000E+01 0 .8000E+01

13 0 .0000E+00 0.7500E+00 0.2000E+01 0 .1356E-05
14 0 .0000E+00 0 .5000E+00 0.7117E-15 0.4441E-15
15 0 .0000E+00 0.2500E+00 -0.2000E+01 -0.1356E-05
16 0 .0000E+00 0.1100E-07 -0 .4000E+01 0 .1292E-04

17 0 .1100E-07 0 .0000E+00 -0.4000E+01 - 0 .8000E+01
18 0.1000E+01 0 .1100E-07 -0.4000E+01 0 .1292E-04
19 0 .1000E+01 0 .1000E+01 0.4000E+01 0 .8000E+01
20 0 .0000E+00 0 .1000E+01 0.4000E+01 -0.1292E-04

Domain results:
i X Y VX VY W WX WY
l 0.2500E+00 0.0000E+00 0.0000E+00 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
2 0.5000E+00 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
3 0.7500E+00 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
4 0.1000E+01 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
5 0.1000E+01 0.2500E+00 0.7500E+00 0.OOOOE+OO -0.2000E+01 0.OOOOE+OO 0.8000E+01
6 0.1000E+01 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO 0.8000E+01
7 0.1000E+01 0.7500E+00 0.7500E+00 0.OOOOE+OO 0.2000E+01 0.OOOOE+OO 0.8000E+01
8 0.1000E+01 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
9 0.7500E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000B+01 0.OOOOE+OO 0.8000E+01
10 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
11 0.2500E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
12 0.0000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.4000E+01 0.OOOOE+OO 0.8000E+01
13 0.0000E+00 0.7500E+00 0.7500E+00 0.OOOOE+OO 0.2000E+01 0.OOOOE+OO 0.8000E+01
14 0.0000E+00 0.5000E+00 0.1000E+01 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO 0.8000E+01
15 0.0000E+00 0.2500E+00 0.7500E+00 0.OOOOE+OO -0.2000E+01 0.OOOOE+OO 0.8000E+01
16 0.0000E+00 0.OOOOE+OO 0.OOOOE+OO 0.OOOOE+OO -0.4000E+01 0.OOOOE+OO 0.8000E+01
17 0.2500E+00 0.5000E+00 0.1000E+01 -0.1128E-16 -0.3253E-16 -0.1110E-15 0.8000E+01
18 0.5000E+00 0.2500E+00 0.7500E+00 -0.5258E-17 -0.2000E+01 -0.1284E-15 0.8000E+01
19 0.5000E+00 0.5000E+00 0.1000E+01 0.4337E-18 -0.3556E-16 -0.2819E-16 0.8000E+01
20 0.5000E+00 0.7500E+00 0.7500E+00 0.3835E-17 0.2000E+01 0.8847E-16 0.8000E+01
21 0.7500E+00 0.5000E+00 0.1000E+01 0.1117E-16 -0.4163E-16 0.6288E-16 0.8000E+01
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y

Figure 3.1: Nomenclature for a Two-Dimensional Poisson’s Type Problem.

r  =

Figure 3.2: Definition of the Position Vector r Related to 
Source Point (xj , y^.
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re

Figure 6.1: Discretization of the Boundary and the Domain.
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v.-l

n r r n

Figure 7.1: L-Shaped Channel Flow.

ABES Package

L

F I gure 7.2 Boundary Element Mesh for the L-Shaped 
Channel Test Case.
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H
—*©-

v = U

>*©-

y =0

B ^ l r  c D

t/3

Figure 7.4 : Flow in a Cascade of Cylinders.

ABES P a c k a g e

L

Figure 7.5 : Boundary Element Msh for the Cascade 
of Cylinders Test <fcse.
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V vn = v = 0n t

o) = - 4.0, 0o) / = - 8.0
Figure 7.7: PoiseuiUe How.

ABES P a c k a g e

Meshes Together.
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v = 0
n

Figure 7.9 : Couette Flow.

ABES Package 

V

L .

Figure 7.10: Boundary and 16-0omin Cell 
Meshes together.
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v  = 0 v  = 1

v  = v  = 0n t

Figure 7.14: Driven-Cavity Flow.
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\

Figure B. 1: Definition of Comer Angle oc{.

Node j 

 t —

Part I Part H

Figure LI: A Boundary Element with its j111 Node as Source Point.
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