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Abstract: This paper proposes a collision avoidance algorithm for the detection and avoidance ca-
pabilities of Unmanned Aerial Vehicles (UAVs). The proposed algorithm aims to ensure minimum
separation between UAVs and geofencing with multiple no-fly zones, considering the sensor un-
certainties. The main idea is to compute the collision probability and to initiate collision avoidance
manoeuvres determined by the differential geometry concept. The proposed algorithm is validated
by both theoretical and numerical analysis. The results indicate that the proposed algorithm ensures
minimum separation, efficiency, and scalability compared with other benchmark algorithms.

Keywords: detection and avoidance; Unmanned Aerial Vehicle (UAV); collision probability; differential
geometry

1. Introduction

There is increasing demand for the development of key technologies for Unmanned
Aircraft Traffic Management (UTM), with its versatile applications such as reconnais-
sance and surveillance, service and support, and logistics in both civilian and military
domains. Key aspects in developing safe and efficient UTM services include detection
and avoidance systems for multiple Unmanned Aerial Vehicles (UAVs), which is different
from the conventional system of Air Traffic Management (ATM) in its scale and diversity
of platforms.

The main aim of the detect and avoidance capability in UTM is to guide each UAV to
ensure minimum separation with respect to the other UAVs, manned aircrafts, and no-fly
zones in the in-flight stage. In contrast to the ATM’s conventional detection and avoidance
system, there are several options available for UAV detection and avoidance: rule-based
approaches [1,2], geometry-based approaches, artificial potential field algorithms [3–5],
numerical optimisation methods [6–9], and learning-based methods [10,11]. Rule-based
approaches are easy to implement but usually require different rules depending on the
platforms and scenarios and often do not consider simultaneous multi-vehicle avoidance
scenarios [12]. Artificial potential field methods are also easy to implement, but these
may suffer from the narrow channel problem [13,14]. This occurs when the obstacles are
densely located, meaning that the minimum separation is not guaranteed near the local
minima. Numerical optimisation methods can guarantee the minimum separation as well
as optimising the energy or time, but the computational load is higher than the rule-based
or artificial potential field methods [15].

One issue of the aforementioned detection and avoidance methods is that most of them
are developed under the assumption that the obstacles have circular or elliptical shapes [16].
This assumption may not be practical or efficient considering that no-fly zones are usually
declared to be large in scale and as 4D polygons. Approximating a large polygonal zone as
a cylindrical shape can lead to unnecessary deviation from the original flight plan, reducing
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the overall efficiency, and potentially risking mission failure. In urban environments, there
could be even no feasible path between the densely located buildings that are approximated
as cylindrical shapes. Hence, the consideration of irregularly shaped obstacles in tactical
de-confliction is a key element of a UTM solution expanding the operational boundary to
challenging environments.

Another issue to be considered is the uncertainties in the UAVs’ relative position to
the moving intruders. There have been several methods proposed to quantify the collision
risk as collision probability considering these sensor uncertainties: the integration of a
multi-variate Gaussian probability density function [17–19], Gaussian mixture [20,21], and
Monte-Carlo simulations [22–24]. The main discussions have been focused on how to
precisely and computationally effectively quantify the collision probability by selecting
appropriate error distribution models and approximating their integration. However,
how the computed collision probability can be effectively used in the collision avoidance
manoeuvre remains largely unknown.

This paper proposes a probabilistic–geometric collision avoidance algorithm that can
consider multiple irregularly shaped no-fly zones and sensor uncertainties of multiple
intruder UAVs. The collision probability is computed by integrating a multi-variate Gaus-
sian probability density function [17] and then is used to compute the desired avoidance
manoeuvre. Here, the avoidance manoeuvre is computed by the differential geometry
concept [25–27] to analytically derive the conditions to guarantee the minimum separation.
A key principle is to identify the conflict on the line-of-sights to the waypoint and compute
the heading angle rate to guarantee avoidance while minimising the control effort. The per-
formance metrics are set as three main aspects—safety, scalability, and efficiency—and the
validity of the proposed algorithm is shown around these metrics in numerical simulations.
The results are compared with two commonly used collision avoidance algorithms: artificial
potential field [5] and particle swarm optimisation [9]. Combining the collision probability
and differential geometry concept, the proposed approach can guarantee the safety and
efficiency comparable to optimisation-based methods, while retaining the scalability similar
to the artificial potential field. Note that the authors’ previous work [28] presented initial
results using the differential geometry concept but did not contain the collision probability
considering the sensor uncertainties and only considered a single moving intruder UAV.
In addition, the parameter analysis with respect to different scenarios is presented in this
work for the rigorous validation of safety and scalability. Hence, the contribution of this
paper can be summarised as follows:

• The proposition of a new collision detection and avoidance algorithm that achieves
the following properties:

– Multiple irregularly shaped obstacles and moving intruders can be considered in
tactical de-confliction;

– Uncertainties in UAVs’ relative position are considered in determining the colli-
sion avoidance manoeuvre by utilising the collision probability;

– Minimum separation for safety can be analytically proven by differential geome-
try concept.

• Validation of performance of the proposed algorithm using analytical and numerical
analysis.

• Demonstration of the safety, scalability, and efficiency of the proposed approach in
comparison with other well-known benchmark algorithms.

The rest of the paper is composed as follows: the problem formulation and some
definitions are given in Section 2. In Section 3, the proposed collision avoidance algorithm
and its theoretic analysis is addressed. The numerical simulations in Section 4 validate and
verify the proposed algorithm. Conclusions are given in Section 5.
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2. Problem Formulation

Consider a 2D scenario with a UAV guided to a waypoint, and there exist multiple
intruder UAVs and polygonal obstacles. There exist position errors especially with respect
to the intruder UAVs, and we assume the following conditions:

• The relative position error with the intruder UAVs satisfies the Gaussian distribution.
This assumption was validated by the empirical studies and used in many related
works [19].

• There exists no correlation between the estimated positions of UAVs. In the scenarios
considered in this paper, it is assumed that the UAV estimates the positions of intruders
and its position using onboard sensors. Under these scenarios, it is reasonable to
assume that the estimated positions of UAVs are uncorrelated. This assumption makes
the covariance matrix of the relative position estimates the summation of individual
UAVs’ covariance matrices [17].

• The ground speeds of the vehicle and intruders are assumed to be constant at V and
Vini , respectively.

Then, the relative geometry of the UAV to the i-th intruder vehicle is shown in
Figure 1a. It is assumed that the position (xini (t), yini (t)), ground speed Vini , and heading
angle φini (t) of the intruder are known within a certain range, either because the intruder
is cooperative or because its position and velocity are measured through sensors. Then,
the relative velocity Vrel(t) and its direction φrel(t) can be computed. The range Rini (t) and
bearing angle ψini (t) of the intruders are computed with respect to the position and relative
velocity of the UAV.

The relative geometry of the UAV to the j-th polygonal obstacle is shown in Figure 1b.
It is assumed that the polygonal obstacles include no-fly zones, buildings, and other
obstacles that are fixed for a given time span, and the position of their k-th feature points,
(xj,k(t), yj,k(t)) for all k, is known. The range Rj,k(t) and bearing ψj,k(t) of the j-th obstacle’s
k-th feature points are computed with respect to the position and velocity of the UAV,
respectively. For instance, Rj,1(t) and Rj,2(t) are plotted in Figure 1b as the range with
respect to (xj,1, yj,1 and (xj,2, yj,2) respectively, and they are defined the same for the other
feature points, (xj,k(t), yj,k(t)) for k ∈ [3, 5]. The range Rj,centre(t) and bearing ψj,centre(t) of
the j-th obstacle’s centre are defined to distinguish the feature points from other obstacles.
The range of the whole j-th obstacle, Rj(t), is defined as the minimum distance of the UAV
to each nodes and edges of the obstacle. For instance, as the closest point of the obstacle j
to the UAV in Figure 1b is the fourth feature point, Rj(t) would be the same as Rj,4(t) in
this case. If a certain edge is the closest to the UAV, Rj(t) is the distance to the nearest point
of the edge.

(a) (b)
Figure 1. Relative geometries of a UAV. (a) Relative geometry to a moving intruder. (b) Relative
geometry to a polygonal obstacle.
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Based on the relative geometries of the UAV, the recognition and collision is defined
as in [27]:

Definition 1 (Recognition). The UAV is able to recognise

• the intruder i if Rini (t) < RRC,i;
• the polygonal obstacle j if Rj(t) < RRC,j.

where RRC,i and RRC,j are the recognition range of the i-th intruder and the j-th obstacle, respectively.

Definition 2 (Collision). The UAV collides with

• the intruder i if Rini (t) < R0,
• the polygonal obstacle j if Rj(t) < R0;

where R0 is the minimum separation.

3. Collision Avoidance Algorithm
3.1. Collision Probability Computation

The collision probability is defined as the probability that the UAV would collide if
maintaining the current heading angle. This can be calculated by integrating the probability
density function as [17]

P(t) =
∫∫

x2+y2≤R2
0

f (x, y) dx dy, (1)

where f (x, y) is the probability density function of the relative position error of the intruder
UAV. Please note that the relative x–y position of the UAV varies with time t but is denoted
as x and y for simplicity in integration. Assuming the Gaussian distribution with mean
(µx, µy) and standard deviation (σx, σy), it can be defined as

f (x, y) =
1

2πσxσy
exp

[
−1

2

(
(x− µx)2

σ2
x

+
(y− µy)2

σ2
y

)]
. (2)

Converting the Cartesian coordinate to the polar coordinate, i.e., x =
√

σx
σy

r cos θ,

y =
√

σy
σx

r sin θ, µx =
√

σx
σy

ρ cos θρ, and µy =
√

σy
σx

ρ sin θρ, the collision probability is

computed as

P(t) =
1

2πσxσy

∫ R0

0
r exp

(
− r2 + ρ2

2σxσy

) ∫ 2π

0
exp

(
rρ cos(θ − θρ)

σxσy

)
dθ dr, (3)

where µ, ρ, θ, and θρ are also functions of time t but denoted for simplicity as integra-
tion variables.

Here, the mean distance between the UAVs ρ is computed at the closest approach
point as

ρ =

Rini (t)
∣∣sin(ψini (t)− φreli (t))

∣∣, if |ψini (t)− φreli (t)| <
π

2
Rini (t), otherwise.

(4)

3.2. Conflict Detection Method

Any conflicting intruders or obstacles are detected considering the computed colli-
sion probability. For the recognised intruder i, the bearing angle ensuring the minimum
separation is obtained as

ψini ,L(t) = W
(

ψini (t) + sin−1 Rp(t)
Rini (t)

)
,

ψini ,R(t) = W
(

ψini (t)− sin−1 Rp(t)
Rini (t)

)
.

(5)
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where W(·) wraps the angle to [−π, π], and the subscripts L and R stand for the left and
right-hand side with respect to the line-of-sight to the i-th intruder. Here, Rp is introduced
to ensure minimum separation under the existence of uncertainties, using the computed
collision probability as

Rp(t) = R0 + 3
√

σxσyP(t). (6)

The physical meaning behind Rp(t) is that it enlarges the avoidance manoeuvre
approximately up to the 3− σ line when the collision probability is high, whereas if the
probability is low, the minimum separation R0(t) is introduced. This ensures the avoidance
of the moving uncertain intruder i with minimal detour.

In a similar manner for each recognised polygonal obstacle j, two nodes that are most
at risk of collision can be identified from

kL = arg max
k

W

(
ψj,k(t) + sin−1 R0

Rj,k(t)
− ψj,centre(t)

)
,

kR = arg min
k

W

(
ψj,k(t)− sin−1 R0

Rj,k(t)
− ψj,centre(t)

)
,

(7)

where the subscripts L and R stand forthe left and right-hand side with respect to the
line-of-sight to the obstacle’s centre.

The bearing angle of the two nodes to ensure the minimum separation is

ψj,L(t) = W

(
ψj,kL(t) + sin−1 R0

Rj,kL(t)

)
,

ψj,R(t) = W

(
ψj,kR(t)− sin−1 R0

Rj,kR(t)

)
.

(8)

Then, the union of the conflicting intervals can be obtained as

I =

(⋃
i
[ψini ,R(t), ψini ,L(t)]

)
∪

⋃
j
[ψj,R(t), ψj,L(t)]

. (9)

This set of intervals shows which line-of-sight leads to potential collision, as shown in
Figure 2. Since the desired line-of-sight heads to the waypoint, the conflict is detected if

ψway(t) ∈ I . (10)

Figure 2. Conflict detection and resolution intervals.

3.3. Conflict Resolution Method

If the conflict is detected, let us define the largest interval [ψR(t), ψL(t)] ⊂ I which
contains ψway(t). The conflict can be resolved by steering the UAV’s heading angle either
by ψR(t) or ψL(t).
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Note that this interval proposed in this work is different from the union of the intervals
that contain ψway(t), i.e.,

I ′ =
(⋃

i

{[
ψini ,R(t), ψini ,L(t)

]∣∣ψway(t) ∈
[
ψini ,R(t), ψini ,L(t)

]})

∪

⋃
j

{[
ψj,R(t), ψj,L(t)

]∣∣ψway(t) ∈
[
ψj,R(t), ψj,L(t)

]} (11)

which has been commonly used in previous works on differential geometry based colli-
sion avoidance [25,27]. The physical meaning of computing I and deriving the interval
[ψR(t), ψL(t)] is to include the obstacle/intruder that does not directly intersect the UAV’s
line-of-sight to the waypoint but overlaps with another in direct conflict. This reduces
the UAV’s detour from the waypoint by foreseeing the potential conflicts and resolves the
chattering problem mentioned in the previous works. For instance, the set of intervals I is
visualised as a grey area in Figure 2. Two intervals against the fixed obstacles 1 and 2 are
plotted with respect to their line-of-sight, and one interval against the moving intruder i is
plotted considering its relative velocity. The largest interval in I containing the waypoint is
[ψ2,L(t), ψ1,R(t)], whereas the interval obtained from I ′ is [ψ1,L(t), ψ1,R(t)]. Steering of the
UAV towards ψ1,L(t) may result in an unnecessary detour or chattering issue.

Once the interval [ψR(t), ψL(t)] is obtained from I , the desired heading angle change
is determined to minimise the detour from the waypoint as

ψd(t) =

{
ψR(t), if |ψR(t)− ψway(t)| < |ψL(t)− ψway(t)|;
ψL(t), otherwise.

(12)

This choice of the heading angle change is made to minimise the time to reach the
waypoint. Otherwise, to reduce control efforts, one may consider choosing the heading
angle as

ψd(t) =

{
ψR(t), if |ψR(t)| < |ψL(t)|;
ψL(t), otherwise.

(13)

The heading angle control to achieve the desired change ψd is then suggested as

φ̇(t) =
Vd(t)√

R2
d(t)− R2

0

sgnψd(t) + Kψd(t), (14)

where Vd(t) and Rd(t) are the relative velocity and range of the intruder and obstacle at the
line-of-sight of ψd(t), respectively, and K > 0 is the control gain of the heading angle.

3.4. Minimum Separation Analysis

The summary of the proposed algorithm is shown in Algorithm 1. This algorithm
enables the consideration of multiple irregularly shaped obstacles and moving intruders
by measuring their current relative positions and velocities only. Lines 3–5 enable the
consideration of sensor uncertainties in the avoidance manoeuvre, and Line 18 is critical in
analytically proving the minimum separation. It is shown that the computations are mainly
divided into iterative loops for each moving intruder and fixed polygonal obstacle, which
implies that the computational complexity of the proposed algorithm is linearly increasing.
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Algorithm 1 Collision Avoidance Algorithm
Input: ψway(t),ψini (t),ψj,k(t),ψj,centre(t),φ(t),φini (t),Rini (t),Rj(t).
Output: φ̇(t).

1: for each moving intruder UAV i do
2: if Rini (t) < RRC,i then
3: ρ(t)←Equation (4);
4: P(t)←Equation (3);
5: Rp(t)←Equation (6);
6: [ψini ,R(t), ψini ,L(t)]←Equation (5);
7: end if
8: end for
9: for each fixed obstacle j do

10: if Rj(t) < RRC,j then
11: [kR, kL]←Equation (7);

12: [ψj,R, ψj,L]← Equation (8);
13: end if
14: end for
15: I←Equation (10);
16: if ψway(t) ∈ I then
17: ψd(t)←Equation (12);
18: φ̇(t)←Equation (14);
19: else
20: φ̇(t)← K(ψway(t)− φ(t))
21: end if
22: return φ̇(t)

If the desired heading angle change ψd(t) is properly computed, it has been proven that
the minimum separation is guaranteed through the suggested heading angle control [25,27].
Its characteristics and proof are briefly addressed in the following theorems:

Theorem 1. If the ground speed of the main UAV is greater than or equal to that of the intruder
UAV, i.e., V ≥ Vini , the proposed collision avoidance guarantees the minimum separation.

Proof. The guarantee of the minimum separation is identical to the convergence of the
desired heading angle change to zero. If there exists a non-zero interval [ψR(t), ψL(t)], it
means that the UAV is still in conflict, and thus the desired heading angle change, ψd(t), is
also non-zero. Hence, this proves that the minimum separation guarantee can be converted
to showing a Lyapunov stability of ψd(t), with the Lyapunov function as

V(ψd(t)) =
1
2

ψ2
d(t). (15)

As it is clear that V(0) = 0, and there exists a positive value a satisfying V(ψd(t)) ≥
a||ψd(t)||, the suggested function is a valid Lyapunov function [29]. Substituting Equation (14)
into ψ̇d(t) = φ̇rel(t)− φ̇(t) for the obstacle/intruder in conflict, the time derivative of the
Lyapunov function is computed as

V̇(ψd(t)) = ψd(t)

φ̇rel(t)−

 Vd(t)√
R2

d(t)− R2
0

sgnψd(t) + Kψd(t)


= −Kψ2

d(t)−

 Vd(t)√
R2

d(t)− R2
0

sgnψd(t)− φ̇rel(t)

ψd(t).

(16)

Considering that the obstacles are assumed to be fixed and that intruder isnon-
manoeuvring, sgnφ̇rel(t) = sgnψd(t). In addition, the assumption on V ≥ Vini gives

|φ̇rel(t)| ≤ Vd(t)/
√

R2
d(t)− R2

0 for all fixed obstacles and moving intruders. Hence, from
Equation (16), the Lyapunov function satisfies

V̇(ψd(t)) ≤ −Kψ2
d(t) < 0, ∀ψd(t) 6= 0. (17)

This proves that the desired heading angle change asymptotically converges to 0,
guiding the UAV on the line-of-sight to avoid the collision.
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Theorem 2. For the ground speed of the main UAV less than that of the intruder UAV, i.e.,
V < Vini , the proposed collision avoidance guarantees the minimum separation if

|φini (t)− φ(t)− ψd(t)| ≤ sin−1 V
Vini

(18)

Proof. From the geometric relationship in Figure 3, the collision avoidance trajectory of
the UAV with respect to a moving intruder satisfies

s(t)
tc

= Vini cos(φini (t)− φ(t)− ψd(t))−
√

V2 −V2
ini

sin2(φini (t)− φ(t)− ψd(t)), (19)

where s(t) is the length of the tangent line to avoid the collision, and tc is the time for
the UAV to reach the point of tangency. If V2 −V2

ini
sin2(φini (t)− φ(t)− ψd(t)) ≥ 0, there

exists a feasible trajectory s(t), and hence the UAV is able to avoid the intruder. For the
details of the proof, refer to [25].

Figure 3. Collision avoidance geometry of a UAV to an intruder.

Theorem 3. For V ≥ Vini and the maximum heading angle rate limited by rmax, the minimum
separation is guaranteed if

Rd(t) ≥ Vd(t)
ψd(t)
rmax

+ R0, (20)

where Vd(t) and Rd(t) are the relative velocity and range of the obstacle/intruder at the line-of-sight
of ψd(t), respectively.

Proof. The minimum time required to complete the avoiding turn is

tc ≥
ψd(t)
rmax

. (21)

In order to complete the turn before colliding, the distance of the UAV and obsta-
cle/intruder should satisfy

Rd(t)− R0 ≥ Vd(t)tc ≥ Vd(t)
ψd(t)
rmax

. (22)
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4. Numerical Simulations
4.1. Simulation Setup

Numerical simulations are conducted to validate the performance of the proposed
collision avoidance algorithm. Three fixed obstacles are modelled from the no-fly zones
and buildings near the test site, Messolonghi Airport in Greece as shown in Figure 4a, but
the distances between the obstacles are set denser than the actual environment, creating a
more challenging environment for rigorous validation. The simulation environment and
sample trajectories around the obstacles are shown in Figure 4b. The velocity of the UAVs,
V and Vini ’s are set as 14 m/s, and the desired minimum separation R0 is 50 m. Sensor
noise is added to the intruder vehicles only, with σx = σy = σ = 50 m. A simple first-order
low-pass filter is implemented with a time constant τ = 0.01. For rigorous validation,
100 different trajectories of an intruder UAV are set uniformly around the scenario, with the
starting and end points opposite to each other in a circle with the radius of 693 m, which is
defined in consideration of obstacles. In order to create the intruder UAV’s trajectories as
not colliding with the fixed obstacles, the proposed differential geometry concept is used
for the fixed obstacles only.

(a) (b)
Figure 4. Simulation scenario. (a) Test site, Messolonghi Airport in Greece. (b) Simulation environment.

The performance of the proposed collision avoidance algorithm is evaluated in three
main metrics: minimum separation distance, total flight time, and computation time. These
metrics are selected to verify the safety, efficiency, and scalability of the algorithm, re-
spectively. In addition, these metrics of the proposed method—noted as the differential
geometry concept (DGC)—are compared with two benchmark algorithms: artificial poten-
tial field (APF) and particle swarm optimisation (PSO). APF was set using repulsive fields
against the intruders and fixed obstacles and an attractive field to reach the waypoint as

φ̇(t) = kwayψway(t)
(

e−
Rway(t)

R0 + 1
)
−∑

i
kinψini (t)e

−
Rini

(t)

R0 −∑
j

kobsψj,centre(t)e
−

Rj,centre(t)−rj
R0 , (23)

where the gains kway, kin, and kobs are design parameters to adjust the repulsive and
attractive forces, and rj is the radius of the j-th obstacle. Note that conventional APF
can consider only circular/ellipsoidal obstacles. PSO is set to minimise the following
cost function:

min J(x, y) = t f + λ f (x, y) + λ ∑
i

gi(x, y), (24)

where f (x, y) = −min
(

1− Rway(t f )

10 , 0
)

, and gi(x, y) =
∫ t f

0 max
(

1− Rj(t)
R0

, 0
)

dt. The pa-
rameter λ is introduced to impose the constraint. The design parameter settings for DGC,
APF, and PSO are summarised in Table 1. Note that h(·) is a step function to impose the
gains for certain ranges only.
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Table 1. Simulation parameters.

DGC APF PSO

K 1

Ri,RC 250 m

Rj,RC 3rj

kway 1

kin h(Rin,j(t)− 55)

kobs h(Ri,centre(t)− 75)

λ 100

No. of particles 30

No. of iterations 20

4.2. Simulation Results for a Single Scenario

Simulation results are presented for a single scenario to intuitively show how the se-
lected algorithms perform. For a single scenario, the trajectories of the selected algorithms
are shown in Figure 5a. The intruder vehicle goes through the obstacles to reach the way-
point with its sensor uncertainties, and the trajectory of the main UAV without considering
the intruder, shown with a dashed line, also goes through the obstacles, resulting in the in-
evitable collision with the intruder. The UAV with DGC, APF, and PSO instead detours the
obstacles to avoid the collision with the intruder. The inefficient behaviour of APF is caused
by the fact that the obstacles are considered as circular shapes, and their repulsive forces
are summed in a dense environment. DGC shows a right turn at the initial phase, while
PSO shows a left turn. Their efficiency is clearly compared in Figure 5b, where the heading
angles of the trajectories are shown with respect to the simulation time. Comparing the end
time of the simulation, PSO shows the shortest simulation time, and DGC is the second
efficient algorithm. The efficiency of PSO is caused by its nature knowing the trajectory of
the intruder in advance. Considering that DGC can be applied for uncooperative intruders
where their future flight plans are not shared, this implies that the proposed algorithm
can efficiently reach the target point with a reasonable flight time, while maintaining the
safety to guarantee the minimum separation. The distance between the UAV with DGC
and other obstacles is shown in Figure 5c. Each solid line shows the distance from the UAV
to the obstacles during the simulation, and the dashed line is the minimum safety distance
of 50 m. This shows that the minimum separation is always guaranteed to all obstacles
despite the uncertainties in the intruder’s measurements.

(a)

(b) (c)
Figure 5. Single scenario comparison. (a) Trajectory. (b) Flight angle. (c) Distance to obstacles and intruder.
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4.3. Simulation Results for Monte-Carlo Simulations

For rigorous validation, Monte-Carlo simulations are conducted with 100 different
scenarios. For each algorithm, the minimum separation distance and total flight time are
shown in Figure 6. In Figure 6a, it is shown that DGC strictly guarantees the minimum
separation, 50 m, in almost all scenarios, whereas the minimum distance of PSO shows
large variance and is sometimes not guaranteed, and the variance is much larger with
APF. Note that the negative distance means that the UAV is inside the polygonal obstacle.
This shows that APF suffers from a widely known issue—a narrow channel problem—in
challenging environments. In Figure 6b, DGC shows the shortest total flight time, which is
directly linked to its efficiency. PSO has better efficiency for some cases, but both its mean
and variance of the total flight time are longer than DGC. Note that PSO used in this paper
is computed with the future trajectory of the intruder UAV, which contributes to improving
the efficiency. Although the proposed DGC is computed with the current position and
velocity of the intruder UAV, it achieves better efficiency than PSO in an average sense.
The flight time of APF is much longer than the other algorithms for a larger detour, as
inferred from Figure 6a. Another important performance metric to be compared is the
computational cost, and the average computational time for each scenario was 0.2 s, 0.1 s,
and 4.6 s for DGC, APF, and PSO, respectively for MATLAB operating with a 2.8 GHz
Intel i5.

The simulation results are summarised in Table 2. The ranged values represent lower
and upper adjacent values, respectively. Comparing the three performance metrics—
minimum distance, flight time, and computational cost—the proposed algorithm DGC
guarantees safety with much higher efficiency than APF and is much more scalable than
PSO by fully utilising its computation of collision probability and analytical guarantee of
differential geometry concept.
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(b)
Figure 6. Monte-Carlo simulation comparison. (a) Minimum distance. (b) Total flight time.

Table 2. Simulation Results.

Safety Efficiency Scalability
(Minimum Distance (m)) (Total Flight Time (s)) (Computational Time (s))

DGC 49.29–51.34 99.9–119.6 0.2
APF 8.21–104.83 114.1–154 0.1
PSO 42.77–66.98 91–159.6 4.6

5. Parameter Analysis
5.1. Effect of Sensor Noise Variance

For rigorous validation, the numerical simulations are repeated for different variances
of sensor noise. The scenario is set in the same way as in Figure 5a, but different sensor
noises with a standard deviation of σ ∈ [0, 100] m are applied. The time constant of the
low-pass filter should vary, and it is designed according to the following equation:

τ =
1

∆t
max(0.01, 0.002σ), (25)
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where ∆t is the sample time, which is set as 0.1 s.
The mean and variance of resultant minimum distance and the flight time are shown

in Figure 7, where the simulations are repeated 100 times for each case. It is shown from the
blue line that the minimum distance of 50 m is well-guaranteed with a standard deviation
less than 80 m, which is sufficient considering the scenario scale. In addition, although the
sensor noise increases, the red line shows that the detour of the UAV remains minimal.
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Figure 7. Effect of sensor noise variance on the minimum distance and total flight time.

5.2. Effect of the Number of Intruders

The effect of the number of intruders on the detection and avoidance performance
is analysed to investigate the scalability of the proposed algorithm. For instance, the
trajectories of 9 UAVs successfully avoiding the collision with all the other UAVs and no-fly
zones are shown in Figure 8a. Here, the UAVs are trying to reach the opposite point of the
circle around the fixed obstacles, starting at the same time. The distance plot in Figure 8b
shows 36 distances between the 9 UAVs along the flight time. Note that each solid line
represents the distance between two UAVs, and as there are 36 pairs of distance for 9 UAVs,
the legends are omitted. However, it is shown that all the solid lines are above the dashed
line, which is the minimum separation. Hence, it is always guaranteed to be above the
minimum separation.

By increasing the number of UAVs from 1 to 9, the separation distance is guaranteed
above the threshold, as shown in Figure 9. Note that it is clear that the proposed algo-
rithm cannot always guarantee the minimum separation if the simulation environment is
challenging, i.e., when there is no feasible solution. While guaranteeing the safety, the com-
putational complexity increases linearly with respect to the number of UAVs, as expected
from the analysis. Considering that some cooperative collision avoidance or multi-UAV
trajectory optimisations show NP-hardness [30], this implies the scalability of the proposed
algorithm as long as feasible solutions exist.

(a) (b)
Figure 8. Collision avoidance with 9 UAVs. (a) Trajectories. (b) Distance to each intruder.
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Figure 9. Effect of the number of intruders on the minimum distance and computation time.

6. Conclusions

A new probabilistic–geometric approach has been proposed for detection and avoid-
ance systems for future UTM. The proposed algorithm can enable UAVs to avoid multiple
moving intruders and large irregularly shaped no-fly zones, considering the detection
uncertainties in sensors. The main ideas are to compute collision probability with uncer-
tainties and to utilise it to detect a conflict and adjust the avoidance manoeuvres. This
fills the gaps in research where most of the UAV collision avoidance algorithms are based
on circular-shaped obstacle avoidance, and the effect of sensor uncertainties on the col-
lision avoidance performance is largely unknown. The proposed algorithm is validated
by both theoretical and numerical analysis, compared with benchmark algorithms. The
result suggests that the proposed approach can provide safety, efficiency, and scalability to
the future UTM solution. A future direction of this research is suggested as an extension
to fully utilise cooperative UAVs’ flight plans. While the current approach is applicable
to uncooperative UAVs with their position and velocity measured from the sensors, the
efficiency could be improved by further utilising the flight plan and manoeuvre strategy in
the case of cooperative UAVs. The research objective will be to provide an analytical safety
guarantee compared with other learning-based methods [31].
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