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Abstract – Removing noise from health signals is critical in gas path diagnostics of aircraft 

engines. An efficient noise filtering/denoising method should remove noise without using future 

data points, preserve important changes, and promote accurate diagnostics without time delay. 

Machine Learning (ML)-based methods are promising for high fidelity, accuracy, and 

computational efficiency under the motivation of Intelligent Engines. However, previous ML-based 

denoising methods are rarely applied in actual engineering practice because they cannot 

accommodate time series and cannot effectively capture important changes or are limited by the 

time delay problem. This paper proposes a Convolutional Neural Network Denoising Autoencoder 

(CNN-DAE) method to build a denoising autoencoder structure. In this structure, a convolutional 

operation is used to accommodate time series, and causal convolution is introduced to solve the 

problem of using future data points. The proposed denoising method is evaluated against NASA's 

Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) software. It has been proved that 

the proposed method can accommodate time series, remove noise for improved denoising accuracy 

and preserve the important changes for enhanced diagnostic information. NASA's blind test case 

results show that Kappa Coefficient of a common diagnostic method using the processed data is 

0.731 and is at least 0.046 higher than the other diagnostic methods in the open literature. Processing 

health signals using the proposed method would significantly promote accurate diagnostics without 

time delay. The proposed method could support intelligent condition monitoring systems by 

exploiting historical information for improved denoising and diagnostic performance. 

Key Words: Aircraft engine diagnostics; Time-series health signals; Noise filtering; 

Convolutional Neural Network Denoising Autoencoders. 

1. INTRODUCTION 

Gas turbine performance deterioration may be due to gradual degradation and/or abrupt or rapid faults of an engine 

[1]. Gradual performance degradation is normally due to fouling, erosion, corrosion, etc. [2], and it evolves on a slow 

timescale. Faults typically refer to sudden events and failures to the engine, such as Foreign Object Damage (FOD), 

Domestic Object Damage (DOD), bleed leaks & failures, variable geometry anomalies, actuator & instrumentation 

faults, and the like [3]. In general, gas path faults can be classified as component (for example, fan, compressor, and 

turbine) faults and sub-system (for example, sensor and actuator) faults [4]. Based on the evolution rate, faults may 

also be classified as abrupt faults that appear instantaneously but do not grow in magnitude over time and rapid faults 

that initiate and grow in magnitude over a short period [3]. 

Deviations in gas path measurements from an undamaged baseline engine, known as measurement deltas, are 

usually used for gas path diagnostics. Unfortunately, noise contaminates the measurement deltas, thereby reducing the 

signal-to-noise ratio [5]. This can hide key features in the signal. In addition, the key features always change with time 
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and are contained in windows of time-series data. A key objective of gas turbine diagnostics is to determine faults' 

existence and location from the noisy data. An efficient denoising method should remove noise without using future 

data points, preserve important changes in time-series data, and promote accurate diagnostics without time delay. 

In signal processing, filtering methods are used to process the data. Traditionally, filtering methods used by the 

gas turbine industry are moving average (MA) [6,7] and exponential moving average (EMA) [8,9]. MA is a special 

case of the finite impulse response (FIR) filter, and EMA is a special case of the infinite impulse response (IIR) filter. 

Linear filters such as the FIR filters and the IIR filters can distort the sharp changes in the signals and they are also 

weak at outlier removal [10]. Details about both the FIR and IIR filters and their limitations for gas turbine health 

signal denoising are discussed by Ganguli [5]. Substantial research efforts have been conducted to find suitable 

alternatives to linear filters that are robust or resistant to the presence of impulsive noise. Among these works, 

nonlinear filters such as median filters have been proposed for noise removal from gas turbine signals. Median filters, 

such as FIR median hybrid (FMH) filters [11], center weighted idempotent median (CWIM) filters [12], and recursive 

median (RM) filters [10,13,14], can preserve edges while simultaneously reducing noise. A disadvantage is the 

diagnostic time delay, as median filters must use future data points. Details about median filters and their limitations 

for gas turbine health signal denoising are discussed by Uday et al. [10]. 

ML-based methods are promising under the motivation of Intelligent Engines. ML-based denoising methods can 

likewise be classified as nonlinear filters. Auto-Associative Neural Network (AANN), also called autoassociator, 

autoencoder, or Diabolo Network [15], is a special neural network (NN) that can be used for denoising. The name 

Auto-Associative Neural Network is commonly used in gas turbine gas path diagnostics. The concept of using a NN 

with a bottleneck to concentrate information has been firstly discussed in the context of "encoder/decoder" problems 

[16]. They have primarily been used to extract sparse internal representations of any input and reduce its 

dimensionality. Vincent et al. [17] introduced denoising autoencoder as an extension to classic autoencoders that is 

robust to noise. Noise filtering using autoencoders was introduced much earlier. The concept of AANN was introduced 

by Kramer [18] and was used for noise filtering, sensor replacement and gross error detection and identification. 

AANN was introduced to gas turbine diagnostics by Guo et al. [19] for sensor validation. Then, Lu et al. [20] used 

AANN for filtering gas path measurement noise. Other studies have also been conducted on AANN in sensor fault 

diagnostics and noise filtering [21,22]. The name autoencoder is always used in the context of deep network 

framework [17]. Hence, in this research, the name denoising autoencoder is used to describe the autoencoder for noise 

filtering, and the name conventional denoising autoencoder is used instead of AANN. 

In ML-based gas turbine noise filtering, conventional denoising autoencoders are commonly used [5]. The number 

of input and output nodes for a conventional denoising autoencoder equals the number of measurements. Tensors are 

the basic data structure for all current ML systems. As containers for data, tensors are defined with the number of axes 

(rank), shape, and data type. One input sample for a conventional denoising autoencoder is a One-dimensional (1D) 

tensor, which consists of the measurements from selected sensor observations at a discrete-time instant. However, by 

using conventional denoising autoencoders, changes in the signals that evolve with time may not be adequately 

captured, resulting in poor noise filtering performance. 

To accommodate time-series data, denoising autoencoders in a deep network setting that use windows of 

multivariate measurements (2D tensors) are investigated in this paper. The two fundamental deep-learning algorithms 

for sequence or time series modelling are Recurrent Neural Networks (RNNs) [23] and Convolutional Neural 

Networks (CNNs) [24]. RNNs are dedicated sequence models that maintain a vector of hidden activations propagated 

through time. This family of algorithms has gained tremendous popularity due to prominent applications in language 

modelling and machine translation [25]. Basic RNN algorithms are notoriously difficult to train, and more elaborate 

algorithms are commonly used instead, such as the Long Short-Term Memory Networks (LSTMs) [26] and the Gated 

Recurrent Units (GRUs) [27]. In this research, sequence modelling algorithms are integrated into the encoder and 

decoder of the denoising autoencoder to build a deep denoising autoencoder used for gas turbine gas path measurement 

noise filtering. By comparison, the denoising autoencoder structure based on CNN is selected to develop the efficient 

denoising method for gas turbine diagnostics. 

The study's contribution is the novel Convolutional Neural Network Denoising Autoencoder (CNN-DAE) method 

that can remove noise without using future data points, preserve important changes in time-series data, and promote 

accurate diagnostics without time delay. Specifically, 

 The denoising autoencoder structure can effectively remove the noise in health signals by reconstructing the 

denoised data from the noisy data. 

 The CNN-DAE method can accommodate historical time-series data. The convolution operation can 

adequately capture changes in the signals that evolve with time. 

 The causal convolution is introduced, where no future data points are needed. Accordingly, the diagnostic 

time delay problem can be solved. 
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 The proposed CNN-DAE denoising method can preserve the important changes in health signals for 

enhanced diagnostic information, which significantly improves diagnostic accuracy. 

It is noticed that the scope of the paper is denoising. However, a complete diagnostic solution shall include 

processing and diagnostic algorithms. To validate the effect of the proposed CNN-DAE denoising method on 

diagnostic performance, in addition to the necessary case studies on denoising performance, case studies on diagnostic 

performance are also included. A common ML diagnostic method is introduced in the application section to compare 

the diagnostic performance with and without CNN-DAE denoising.  

The remainder of this paper is organized as follows. Section 2 introduces the methodology to develop the CNN-

DAE method. Section 3 describes the case studies using the ProDiMES software from NASA. The results and 

discussions are provided accordingly in Section 4. Section 5 draws the conclusions. 

2. METHODOLOGY 

2.1. Set Up Denoising Autoencoders 

A denoising autoencoder is a NN that receives a corrupted data point as input and is trained to predict the original, 

uncorrupted data point as its output. A denoising autoencoder includes three hidden layers: the mapping layer, the 

bottleneck layer and the demapping layer, as shown in Fig. 1. The mapping phase where the input 𝑥 is transformed 

into the hidden representation 𝑠 is termed an encoder. A decoder is the part of an autoencoder where the input is 

reconstructed back to 𝑦 from its hidden representation 𝑠. In Fig. 1, the encoding and decoding functions are denoted 

by 𝑓𝜃(·) and  𝑔𝜃′(·) , respectively, and these mappings are correspondingly parametrized by vectors 𝜃 and 𝜃′ . 

Typically, the mapping functions comprise of affine mapping followed by certain nonlinearity. 𝜃 = {𝑊, 𝑏} and 𝜃′ ={𝑊′, 𝑏′} are parameter sets with 𝑊 and 𝑊′denoting the weight matrices and 𝑏 and 𝑏′representing the bias vectors. 

 Input 

Layer

 Mapping 

Layer

Demapping 

Layer

Input  Code 

Bottleneck 

Layer
Output 

Layer

OutputEncoding function Decoding function 

 

Fig. 1. The architecture of a denoising autoencoder with three hidden layers. 

The goal of the autoencoder presented in Fig. 1 is to predict an uncorrupted output with the minimum 

reconstruction loss. The autoencoder presented in Fig. 1 has three hidden layers. However, more hidden layers can be 

used for autoencoders of higher complexity. Accordingly, the encoder and decoder will comprise a series of mappings 

in each. 

2.2. Set Up CNN-DAEs 
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CNN-DAEs are denoising autoencoders that use convolution in place of general matrix multiplication in at least 

one of the hidden layers. The name "Convolutional Neural Network (CNN)" indicates that the network employs a 

mathematical operation called convolution. In this research, to accommodate 2D data of shape (timesteps, 

measurements), which can be viewed as a 1D grid taking samples of shape (measurements, ) at a regular time interval, 

One-dimensional Convolutional Neural Networks (1DCNNs) [28,29] are used.  

A CNN hidden layer contains a few functions from the convolution, pooling, and nonlinear activation [30]. The 

pooling function provides an approach to down sample, which produces invariance to local translation. Pooling will 

not be used in the proposed CNN-DAE because it is not useful when priority is on temporal order and the feature 

location. Meanwhile, pooling can complicate the autoencoder architectures that use top-down information. 

2.2.1. Convolution Operation for Signal Processing 

Convolution operates on two functions of a real-valued argument in its most general form. In the research context, 

suppose a sensor provides a single output 𝑥(𝑡) at time 𝑡 and the sensor is somewhat noisy. From the point of signal 

processing, a weighting operation that is similar to the weighting coefficients in an FIR filter [5] is used to filter the 

measurements. If a weighted operation 𝑤(𝑎) is applied at every moment, a new function 𝑦 providing a smoothed 

estimate is obtained: 

 𝑦(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎 (1) 

This operation is termed convolution. The convolution operation is typically denoted with an asterisk: 

 𝑦(𝑡) = (𝑥 ∗ 𝑤)(𝑡) (2) 

The first argument (in this case, the function 𝑥) is generally referred to as the input. The second argument (in this 

case, the function 𝑤) is commonly referred to as the kernel. The output is usually referred to as the feature map. 

Input (1D tensor with shape(10, 1)) Kernel (width=4, stride=1)

Output 

 

Fig. 2. An example of convolution operation [28]. 

In reality, a sensor can not produce measurements at every instant in time. Generally, when dealing with data on a 

computer, time is discretized, and one sensor will produce data at regular intervals. In this case, a more realistic 

assumption could be that one sensor produces a measurement, for example, once per second. Then, the time index 𝑡 

will only be able to take on integer values. If it is assumed that 𝑥 and 𝑤 are defined only on integer 𝑡, the discrete 

convolution can be described as: 

 𝑦(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑎  (3) 

Since the convolution operation is commutative, the discrete convolution can be equivalently written as: 

 𝑦(𝑡) = (𝑤 ∗ 𝑥)(𝑡) = ∑ 𝑥(𝑡 − 𝑎)𝑤(𝑎)𝑎  (4) 
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Generally, many NN libraries implement the cross-correlation function but call it convolution. In this research, the 

convention of calling both operations convolution is followed. An example of convolution (without kernel flipping) 

is shown in Fig. 2. The input is a 1D tensor of shape (10, ). The kernel size is four. The other factor that can influence 

convolution is the notion of strides. The description of convolution so far has assumed that the center tiles of the 

convolution windows are all contiguous. But the distance between two successive windows is a parameter of the 

convolution, called its stride. The length of the 1D convolution window is four, and the stride length of the convolution 

is one. Discrete convolution can be viewed as multiplication by a matrix. 

2.2.2. Causal Convolution 

In a CNN-DAE, some constraints and modifications may be required. An important constraint is that the model 

cannot violate the ordering in which the data is modelled: the prediction 𝑝(𝑥𝑡+1|𝑥1, . . . , 𝑥𝑡) emitted by the model at 

timestep 𝑡 cannot depend on any of the future timesteps 𝑥𝑡+1, 𝑥𝑡+2, . . . , 𝑥𝑇. Fig. 3 shows an example of modelling a 

1D tensor with two conventional convolutional hidden layers. The input and output shapes are both (5, 1). For the 

convolution operation, the kernel size is three, and the stride is one. To ensure the input and output are of the same 

shape, zero-padding is applied evenly to the left and right of the input. Zero-padding means adding zeros to the edge 

of the input matrix [30]. The output from conventional convolution depends on some of the future timesteps. 

 Input Layer

 Hidden Layer 1

 Hidden Layer 2

 Output Layer

tt-1t-2t-3t-4  

Fig. 3. An example of conventional convolutional hidden layers. 

Input Layer

 Hidden Layer 1

 Hidden Layer 2

 Output Layer

tt-1t-2t-3t-4  

Fig. 4. An example of causal convolutional hidden layers. 

To address the time delay issues, the 1D causal convolution adapted from WaveNet [31] is used in this research. 

In the causal convolution, output at timestep t is convolved only with elements from time 𝑡 and earlier, without 

depending on input at next timestep 𝑡 + 1. This is implemented by shifting the output of a normal convolution by a 

few timesteps for the 1D tensor. Fig. 4 shows an example of modelling the same input using a two hidden layer causal 

CNN. The kernel size for the convolution operation is three and the stride is one. Zero-padding is applied to the left 

of the input. 
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2.3. Training of CNN-DAEs 

A single input of a training sample is a 2D tensor with shape (timesteps, features), which is a window of 

multivariate health signals with noise. A single output of a training sample has the same shape as the input, and it is a 

window of multivariate health signals without noise. 

1

  

Neuron k

Layer l

1

i

Layer l-1

1

j

Layer l+1  

Fig. 5. A typical hidden layer consists of convolution and activation functions. 

As shown in Fig. 5, a hidden layer of a CNN-DAE consists of convolution operation and nonlinear activation 

function in turn. The final output of the 𝑘𝑡ℎ neuron at layer 𝑙 is 𝑦𝑘𝑙 . In each layer, one-dimensional forward propagation 

(1D-FP) is expressed as follows: 

𝑦𝑘𝑙 = 𝑓(𝑥𝑘𝑙 )   𝑤ℎ𝑒𝑟𝑒   𝑥𝑘𝑙 = 𝑏𝑘𝑙 + ∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘𝑙−1, 𝑦𝑖𝑙−1)𝑁𝑙−1
𝑖=1  (5) 

Where conv1D (.,.) is a 1D causal convolution with zero-padding on the boundaries, 𝑥𝑘𝑙  is the input, 𝑏𝑘𝑙  is the bias 

of the 𝑘𝑡ℎ neuron at layer 𝑙, and 𝑦𝑖𝑙−1 is the output of the 𝑖𝑡ℎ neuron at layer 𝑙 − 1. 𝑤𝑖𝑘𝑙−1 is the kernel (weight) from 

the ith neuron at layer 𝑙– 1 to the 𝑘𝑡ℎ neuron at layer 𝑙. 
Let 𝑙 = 1 and 𝑙 = 𝐿 be the input and output layers, respectively. For an input vector 𝑝, and its corresponding 

output vector, [𝑦1𝐿 , … , 𝑦𝑁𝐿𝐿 ], let [𝑡1, … , 𝑡𝑁𝐿] be the target class vector. The mean absolute error (MAE) in the output 

layer can then be expressed as 

 E = E(𝑦1𝐿 , … , 𝑦𝑁𝐿𝐿 ) = ∑ |𝑦𝑖𝐿 − 𝑡𝑖|𝑁𝐿𝑖=1 𝑁𝐿  (6) 

Two more elements are stored for each neuron: the delta error 𝛥𝑘𝑙 = 𝜕𝐸𝜕𝑥𝑘𝑙  and the derivative of the intermediate 

output 𝑓′(𝑥𝑘𝑙 ), to accomplish Back Propagation (BP) training. 

Consequently, the iterative flow of the BP in the training set can be stated as follows: 

a) Initialize weights and biases of the network. 

b) For each BP iteration, do as follows: 

i. FP: Forward propagate from the input layer to the output layer to find outputs of each neuron at each 

layer, 𝑦𝑖𝑙∀𝑖 ∈ [1, 𝑁𝑙], and ∀𝑙 ∈ [1, 𝐿]. 
ii. BP: Compute delta error at the output layer and back-propagate it to the first hidden layer to compute 

the delta errors, ∆𝑘𝑙  ∀𝑘 ∈ [1, 𝑁𝑙], and ∀𝑙 ∈ [1, 𝐿]. 
iii. PP: Post-process to compute the weight and bias sensitivities. 

iv. Update the weights and biases with the (accumulation of) sensitivities. 
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When the training process is complete, the well-trained CNN-DAE is ready for noise filtering. 

3. APPLICATION 

3.1. Case Study Description 

The investigated case study is based on the ProDiMES software, which provides a standard benchmark problem 

enabling users to develop, evaluate, and compare diagnostic methods. An introduction to ProDiMES is in reference 

[4], and detailed instructions on its application can be found in reference [8]. 

Two types of case studies are conducted in this section to evaluate the performance of the proposed CNN-DAE 

denoising method on noising filtering and diagnostics. To evaluate the effect of the proposed CNN-DAE denoising 

method on diagnostic performance. A single flat MLP classifier is developed for fault diagnostics and details are 

described in Section 4.2. 

3.2. Data Generation and Processing 

3.2.1. Data Generation 

An Engine Fleet Simulator (EFS) in ProDiMES based on a steady-state version of the NASA Commercial Modular 

Aero-Propulsion System Simulation (C-MAPSS) high-bypass two-spool turbofan engine simulation is used to 

generate the data for this study. The EFS produces simulated "snapshot" engine measurements, with relevant 

measurement noise, as if collected from a fleet of engines over multiple flights. Within ProDiMES, engine operating 

conditions, deterioration profiles, fault magnitudes, and sensor noise are randomly generated to emulate realistic 

behaviour. 

Four sets of data were used in this study. The first data set is the training data to develop denoising autoencoders 

for noise filtering. It includes noisy and noise-free measurements from a fleet of 18963 engines conducting 50 flights 

each. The second data set includes a fleet of 1896 engines, conducting 50 flights each to train and validate the 

diagnostic algorithms. The description of the second data is shown in Table 1. It is worth noting that the training data 

size could be modified during the training optimization. The third data set is the test data that includes a fleet of 9993 

engines conducting 50 flights each. The fourth data set includes the blind test case data (i.e., a data set where the true 

fault state of the engines contained in the data set is unknown to the end-users) from NASA. It is noted that only 

takeoff data is used in the case studies. 

Table 1 Description of the initial training data from the second data set. 

Name Value 

Number of engine health conditions 

Number of engines per health condition 

Number of engines that do not converge 

Number of flights per engine 

Fault initiation 

Minimum initiation flight 

Fault evolution 

Rapid fault evolution rate (minimum) 

Rapid fault evolution rate (maximum) 

Sensor noise 

19 

100 

4 

50 

Random 

11 

Random 

9 

9 

On 

3.2.2. Data Processing 

Data processing consists of parameter correction, gradual deterioration elimination, data standardization, and noise 

filtering. 

The parameter correction and deterioration elimination methods in this case study are identical to the methods 

given in ProDiMES User's Guide [4]. As an initial step of data processing, all engine measurement data are corrected 

to standard ISA condition at sea level to eliminate ambient conditions' impact on the measurement data variations. 

Then, a gradual deterioration trend monitoring approach is applied to capture the gradual performance changes in the 

form of residuals, or measurement deltas, relative to a fleet average engine model or 50 percent deteriorated engine. 

For each individual engine, corrected data collected during each flight are then referenced against the fleet average 

engine model to calculate measurement deltas, 𝛥𝑢𝛼,𝛽, as: 
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 𝛥𝑢𝛼,𝛽(𝛾) = 𝑢𝛼,𝛽(𝛾) − 𝑢𝛼_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝛾) (7) 

Where 𝑢𝛼,𝛽(𝛾) is the corrected value of the 𝛼𝑡ℎ measurement collected on 𝛽𝑡ℎ engine during the 𝛾𝑡ℎ flight, and 𝑢𝛼_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝛾) is the fleet average engine value for the 𝛼𝑡ℎ measurement at the corresponding pressure altitude, Mach 

number, and corrected fan speed values of the 𝛾𝑡ℎ flight. 

Standardization is the process to transform the data to center it by removing the mean value of each feature, then 

scaling it by dividing non-constant features by their standard deviation: 

 𝛥𝑣𝛼,𝛽(𝛾) = (𝛥𝑢𝛼,𝛽(𝛾) − 𝜇𝛼)/𝜎𝛼 (8) 

Where 𝛥𝑣𝛼,𝛽(𝛾) is the standardscaled value of the 𝛼𝑡ℎ measurement collected on 𝛽𝑡ℎ engine during the 𝛾𝑡ℎ flight. 𝜇𝛼 is the mean of the 𝛼𝑡ℎ measurement in the training samples and 𝜎𝛼 =  √ 1𝑀 ∑ ∑ ((𝛥𝑢𝛼,𝛽(𝛾) − 𝜇𝛼)𝛾=1 2𝛽=1  is the 

standard deviation of 𝛼𝑡ℎ measurement in the training samples. M is the number of 𝛼𝑡ℎ measurement in the training 

samples. Approximate standard normally distributed data are obtained with data standardization. 

3.3. Noise Filtering with Denoising Autoencoders 

The training data set for the denoising autoencoders (the first set of data) has 18963 training samples (inputs), and 

each sample is a 2D tensor with shape (50, 7). The training data set for the denoising autoencoders also has 18963 

training outputs, and each output is a 2D tensor with shape (50, 7). The shape of the 2D tensor means each engine 

conducts 50 flights and seven sensors are used for each flight. Fig. 6 shows an example of a takeoff training sample 

with an abrupt T24 sensor fault emerging at flight cycle 27 and the corresponding noise-free output. The data shown 

has been processed with parameter correction, deterioration elimination, data standardization. 

Table 2 Hyperparameter optimization results. 

Hyperparameters Searching ranges Optimal result 

Convolutional layer number (1, 6, 1) 3 

Kernel number (50, 200, 10) 150/ 70/ 150 

Kernel size (2, 10, 1) 7/ 5/ 7 

Optimizer (rmsprop, sgd, adam) adam 

Learning rate of the optimizer default default 

Activations (relu, sigmoid, tanh) relu 

Last-layer activation linear linear 

Loss function (mse, mae) mae 

Epochs 1000 1000 

Batch size (1, 2000, 1) 72 

Early stopping (yes, no) yes 

Evaluation protocols 

(hold-out validation, K-fold cross-

validation, iterated K-fold 

validation) 

K-fold cross-validation 

An initial CNN-DAE with three 1D convolution layers is developed. Then, an optimization process is conducted 

to decide the model size and hyperparameters. Bayesian Optimization [32] is used to optimize the denoising 

autoencoders. In the Bayesian Optimization method, firstly, a domain of hyperparameters is decided. In this case, the 

searching ranges for hyperparameters are defined in the second column of Table 2 to form a searching space. Secondly, 

an objective function takes in hyperparameters and outputs a score that indicates how well a set of hyperparameters 

performs on the validation set. In this case, MAE is chosen as the objective function. Thirdly, the next set of 

hyperparameters is selected based on a model of the objective function called a surrogate. Finally, each time the 

algorithm proposes a new set of candidate hyperparameters, it evaluates them with the actual objective function and 

records the result in a pair (score, hyperparameters). The best hyperparameters can be selected from the history now. 

The optimization results are shown in Table 2. Once training and optimization processes have been completed, the 

well-trained denoising autoencoder is ready to be used for testing. 
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(a) Noisy Standardscaled Residual Data (b) Noise-free Standardscaled Residual Data 

Fig. 6. A takeoff training sample and the output with a -1.47σ abrupt T24 sensor fault at flight 27. 

4. RESULTS AND DISCUSSION 

This section consists of two subsections. Section 4.1 states the test case results on the denoising performance of 

the proposed CNN-DAE denoising method. Section 4.2 states the blind test case results that evaluate the effect of the 

proposed CNN-DAE denoising method on diagnostic performance. 

4.1. Test Case Results 

The second data set described in Section 3.2 includes a fleet of 1896 engines, conducting 50 flights each to test 

the denoising methods. In this case study, noisy and noise-free takeoff data are used as the input and corresponding 

output. 

Two types of error criteria are used to obtain a quantitative idea of noise reduction. The MAE measures the 

difference between the filtered and the noise-free data. In the MAE criterion, the error is defined as: 

 𝑀𝐴𝐸 = ∑ |𝑦𝑚 − 𝑥𝑚|𝑀𝑚=1 𝑀  (9) 

Where 𝑀 is the number of measurements in the data set. 𝑦𝑚 is the filtered measurement and 𝑥𝑚 is the noise-free 

measurement. 

A parameter called noise reduction rate, which is used for the efficiency measurement of these filters in terms of 

noise reduction is also used. The noise reduction rate is defined as: 
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 𝜌 = 𝑀𝐴𝐸(𝑛𝑜𝑖𝑠𝑦) − 𝑀𝐴𝐸(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)𝑀𝐴𝐸(𝑛𝑜𝑖𝑠𝑦) × 100(%) (10) 

4.1.1. Comparison with Conventional Denoising Autoencoders 

Conventional denoising autoencoder is the most widely used ML method in gas turbine gas path measurement 

noise filtering. Multilayer Perceptrons (MLPs), also often called feedforward neural networks or deep feedforward 

networks [30], are the quintessential learning models for conventional denoising autoencoders. An MLP-based 

denoising autoencoder (MLP-DAE) is developed and compared with the CNN-DAE. A typical MLP hidden layer is 

shown in Fig. 7. Feedforward propagation is expressed as follows: 

 𝑦𝑘𝑙 = 𝑓(𝑥𝑘𝑙 )   𝑤ℎ𝑒𝑟𝑒   𝑥𝑘𝑙 = 𝑏𝑘𝑙 + ∑ 𝑤𝑖𝑘𝑙−1𝑦𝑖𝑙−1𝑁𝑙−1
𝑖=1  (11) 

The training samples of an MLP can only be 2D tensors (matrices) of shape (samples, features). A single input 

sample is a 1D tensor (vector), which means there can only be one 0D tensor (scalar) for an input layer neuron. The 

number of input layer neurons of a typical MLP-DAE equals the number of the measurements. There should be seven 

neurons for the typical MLP-DAE input layer in the case study corresponding to the seven sensor measurement 

features. After training and optimization, a well-trained MLP-DAE with the shape of 7-32-6-32-7 is obtained and is 

named MLP1-DAE. 

MLP1-DAE cannot consider temporal order; hence, the 3D tensors of shape (samples, timesteps, features) must 

be "flattened" as 2D tensors of shape (samples, timesteps*features). Details of the flatten process can be found in 

reference [28]. There should be 350 neurons for the flattened MLP-DAE input layer in the case study. After training 

and optimization, a well-trained MLP-DAE with the shape of 350-100-10-100-350 was obtained and was named 

MLP2-DAE. However, MLP2-DAE would induce a time delay because of using future data points. It is noted that the 

data was processed with the parameter correction and data standardization processes before the noise filtering process. 

1

  

Neuron k

Layer l

1

i

Layer l-1

1

j

Layer l+1

1

Layer 1 

(input layer)

1

Layer L 

(output layer)  

Fig. 7. Typical MLP hidden layers. 

Fig. 8 and Fig. 9 visually represent the effects of MLP1-DAE and CNN-DAE on two samples in the test data set, 

respectively. It illustrates that MLP1-DAE has poorer denoising performance when faults emerge, especially when 

the fault magnitudes are comparable with the noise magnitudes. MLP1-DAE has good performance in learning the 

information from discrete snapshots. However, continuous 2D data representing the initiation and growth in magnitude 

of a fault event is needed. Using the conventional denoising autoencoders, changes in the signals that evolve with time 

may not be adequately captured, eventually resulting in bad denoising performance. 



11 

 

 

 

Fig. 8. Effect of MLP1-DAE on noisy takeoff data (1.57% HPT component abrupt fault at flight cycle 22). 
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Fig. 9. Effect of MLP1-DAE on noisy takeoff data (1.34% VSV actuator rapid fault at flight cycle 12). 

Table 3 shows a comparison of the denoising performance of the CNN-DAE against the other methods considered 

in this study. As is shown in Table 3, with the flattened data, MLP2-DAE offers better denoising performance than 

MLP1-DAE. However, the denoising performance of the flattened methods will be worse with the increase of the 

sample length because the model and computation complexity are increased for the MLPs. 
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Table 3 Denoising performance of different methods. 

Method 𝑀𝐴𝐸 𝜌 [%] 
CNN-DAE 

MLP1-DAE 

MLP2-DAE 

EMA 

WRM 

LSTM-DAE 

WaveNet-DAE 

0.084 

0.186 

0.099 

0.187 

0.155 

0.268 

0.221 

73.91 

42.24 

69.25 

41.92 

51.86 

16.77 

31.37 

4.1.2. Comparison with other Optional Signal Processing Methods 

EMA filter is the state-of-the-art linear filter, and median filter is the state-of-the-art nonlinear filter. An EMA 

filter and a weighted recursive median (WRM) filter are developed for comparison purposes in this case study.  

The EMA filter is given as: 

 𝛥𝑦𝛼,𝛽(𝛾) = 𝜏 ∙ 𝛥𝑦𝛼,𝛽(𝛾 − 1) + (1 − 𝜏) ∙ 𝛥𝑥𝛼,𝛽(𝛾) (12) 

Where 𝛥𝑦𝛼,𝛽(𝛾) is the EMA of 𝛼𝑡ℎ measurement collected on 𝛽𝑡ℎ engine during the 𝛾𝑡ℎ flight. The weighting 

between previous and current data is established by the constant 𝜏 (0 < 𝜏 < 1). In the example solution, 𝜏 was chosen 

to be 0.65. 

An O-point WRM filter [10] is given as: 

 𝛥𝑦𝛼,𝛽(𝛾) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑤𝛾−𝑜 ∗ 𝛥𝑦𝛼,𝛽(𝛾 − 𝑜), 𝑤𝛾−𝑜+1 ∗ 𝛥𝑦𝛼,𝛽(𝛾 − 𝑜 + 1), … , 𝑤𝛾∗ 𝛥𝑥𝛼,𝛽(𝛾), … , 𝑤𝛾+𝑜−1 ∗ 𝛥𝑥𝛼,𝛽(𝛾 + 𝑜 − 1), 𝑤𝛾+𝑜 ∗ 𝛥𝑥𝛼,𝛽(𝛾 + 𝑜)) 
(13) 

Where 𝑂 = 2𝑜 + 1 is the window length of the filter. 𝛥𝑦𝛼,𝛽(𝛾) is the output of the median filter. 𝑚𝑒𝑑𝑖𝑎𝑛() is a 

function that takes 𝑜 points surrounding the central point and gives their median as the output. A disadvantage of the 

median filters is that they induce a time delay of 𝑜 time steps. In the present case, a value of 𝑜 = 11 is selected as it 

offers the best noise reduction performance. 

 

Fig. 10. Effect of EMA and WRM filters (8.16σ Wf sensor abrupt fault at flight 30). 
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Fig. 11. Effect of EMA and WRM filters (8.91σ P24 sensor rapid fault at flight 19). 

The fourth and fifth rows of Table 3 show the denoising performance of the EMA filter and WRM filter for the 

whole test data set. Fig. 10 and Fig. 11 visually represent the EMA filter and WRM filter effects on two samples of 

takeoff data in the test data set, respectively. The EMA filter provides a noise reduction of 41.92%, and the MAE of 

the method is 0.187. EMA filters are often used in gas turbine fault diagnostics to smooth data. But, as is typical in 

linear filters, they can also smooth out important signal features. The WRM filter can provide a noise reduction of 

51.86%, and the MAE of the method is 0.155. The WRM filter performs better than the EMA filter on noise filtering. 

The WRM filter has better denoising performance by removing the noise while preserving important features such as 

the changes in the measurements caused by abrupt or rapid faults. Nevertheless, the CNN-DAE provides much better 

denoising performance than these two signal processing methods. 

4.1.3. Comparison with Other Deep Denoising Autoencoders 

In this study, sequence modelling algorithms, including LSTM [30] and a special deep NN called WaveNet [31], 

are used to construct deep denoising autoencoders for comparison. After setting the models and optimization, trained 

LSTM-based denoising autoencoders (LSTM-DAEs) and WaveNet-based denoising autoencoders (WaveNet-DAEs) 

were obtained and used in the test case for comparison purposes. 

The sixth and seventh rows of Table 3 show the denoising performance of LSTM-DAE and WaveNet-DAE for 

the whole test data set. Fig. 12 and Fig. 13 visually represent the effects of LSTM-DAE and WaveNet-DAE on two 

samples of takeoff data in the test data set, respectively. It is observed that LSTM-DAE provides a noise reduction of 

16.77% and the MAE of the method is 0.268. The WaveNet-DAE can provide a noise reduction of 31.37%, and the 

MAE of the method is 0.221. While LSTM and WaveNet are good sequence modelling algorithms, denoising methods 

based on them show much worse denoising performance than the CNN-DAE. 
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Fig. 12. Effect of LSTM-DAE and WaveNet-DAE (-1.47σ T24 abrupt fault at flight 27). 

 

Fig. 13. Effect of LSTM-DAE and WaveNet-DAE (2.40σ T48 rapid fault at flight 17). 
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4.1.4. Discussion 

An overall comparison for all the denoising methods described above is conducted, and the results are shown in 

Fig. 14 and Fig. 15. Specifically, 

 

Fig. 14. MAE of different filters for the test data set. 

 

Fig. 15. Noise reduction rate 𝝆(%) of different filters for the test data set. 

 The EMA filter can reduce noise but also distort the edges in the signal due to the MA process, which results 

in import feature loss for diagnostics. 

 The WRM filter can remove the noise while preserving important features in health signals. A primary 

disadvantage of the WRM filter is that it induces a time delay, which will result in high Detection Latency. 

 While all the other noise filtering methods studied here use 2D tensors, MLP1-DAE is the only method that 

uses 1D tensors. It tends to smooth out the changes, especially when the change magnitudes are comparable 

with the noise magnitudes in time-series signals. 

 MLP2-DAE can remove noise in the data and perform better at preserving important changes in health signals 

than the other methods except CNN-DAE. However, like the WRM filter, a disadvantage of MLP2-DAE is 

the time delay due to using future data points, which results in increased Detection Latency. 
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 Noise filtering methods based on sequence modelling algorithms, i.e., LSTM-DAE and WaveNet-DAE, are 

not suitable for this research's noise filtering problem. 

 The proposed CNN-DAE method performs best among all these methods in removing noise and preserving 

important features for diagnostics. It can address the time delay problem by introducing causal convolution. 

4.2. Blind Test Case Results 

A case study using the blind test case data from NASA was conducted to evaluate the influence of the noise 

filtering process on the overall diagnostic performance. A single flat MLP classifier is developed for fault classification 

that includes detection and isolation. The initial training data set described in Section 3.2 is used for training and 

validating the MLP classifier. The initial training data set and the blind test case data from NASA are processed with 

the proposed data processing method. Blind test case diagnostic assessments of the MLP classifiers with the proposed 

CNN-DAE method were submitted to NASA for evaluation. The evaluation results of the proposed CNN-DAE 

method are shown in Fig. 16 of Appendix A and explained in the following subsections. 

4.2.1. Detection Performance Metrics 

Table 4 presents the True Positive Rate (TPR), False Positive Rate (FPR), False Alarm Rate (FAR), and Detection 

Latency metrics concerning all fault types, fault evolution rates, and fault magnitudes. 

Table 4 Detection performance. 

Diagnostic method FPR [%] FAR TPR [%] Detection Latency 

MLP with MLP1-DAE 

MLP with MLP2-DAE 

0.08110 

0.08601 

1232 

1162 

36.4 

62.8 

3.42 

19.50 

MLP with EMA 

MLP with WRM 

0.03935 

0.09600 

2541 

1440 

45.9 

54.2 

3.90 

8.39 

MLP with LSTM-DAE 

MLP with WaveNet-DAE 

0.06272 

0.05104 

1594 

1959 

48.6 

46.1 

3.37 

3.88 

MLP with CNN-DAE 0.07303 1369 65.7 2.69 

FAR is the inverse of FPR and is presented in the third column of Table 4. It reflects the average number of flights 

required to generate a false alarm. A target FAR of 1000 flights or greater is specified in reference [8] to maintain 

uniformity in the diagnostic methods. All these methods satisfy the FAR target. With the same MLP classifier for fault 

diagnostics, the MLP with the CNN-DAE method provides the highest TPR of 65.7%, which is a 2.9% improvement 

over the method with the second-highest TPR score (the MLP with MLP2-DAE method). In most cases, some latency 

is associated with the correct detection of a fault resulting in missed detections within the first few flights after the 

fault occurs. As shown in the fifth column of Table 4, the Detection Latency of the proposed diagnostic method is 

2.69, which exhibits superior diagnostic latency compared to the other methods. In conclusion, the proposed MLP 

with the CNN-DAE method performs best on fault detection among all the compared methods by detecting fault 

events more accurately with the shortest Detection Latency. 

4.2.2. Kappa Coefficient 

Table 5 presents the average Kappa Coefficient results concerning all fault types, fault evolution rates, and fault 

magnitudes. Kappa Coefficient reflects the overall fault classification performance. With the same MLP classifier for 

fault diagnostics, MLP with the CNN-DAE method produces an overall Kappa Coefficient of 0.731. The Kappa 

Coefficient for abrupt faults is 0.824, and the Kappa Coefficient for rapid faults is 0.704. MLP with CNN-DAE method 

produces the highest Kappa Coefficient. 

Table 5 Kappa Coefficient. 

Diagnostic method Overall Kappa Kappa for abrupt fault Kappa for rapid fault 

MLP with MLP1-DAE 

MLP with MLP2-DAE 

0.460 

0.677 

0.573 

0.705 

0.420 

0.647 

MLP with EMA 

MLP with WRM 

0.561 

0.626 

0.674 

0.713 

0.518 

0.594 

MLP with LSTM-DAE 

MLP with WaveNet-DAE 

0.481 

0.548 

0.482 

0.665 

0.457 

0.502 

MLP with CNN-DAE 0.731 0.824 0.704 
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4.2.3. Discussion 

Table 6 summarises the blind test case study results, which provides the ranking of the diagnostic methods for 

each evaluation metric. With the same MLP classifier for fault diagnostics, the MLP with the CNN-DAE method 

proposed in this paper ranks first in TPR, Detection Latency, and Kappa Coefficient evaluation metrics. As a reflection 

of fault classification performance, the average Kappa Coefficient is enhanced to 0.731, and the Kappa Coefficient 

for abrupt faults is above 0.80. It clearly illustrates the importance of the noise filtering process on the gas path 

diagnostic performance. Detection Latency for the MLP with MLP2-DAE method and MLP with WRM method are 

19.50 and 8.39, which are much higher than the other noise filtering methods. The reason for the high Detection 

Latency is time delay due to the use of future data points. MLP1-DAE provides a noise reduction rate of 42.24% and 

ranks fourth among the studied methods; however, the average Kappa Coefficient evaluation for MLP with MLP1-

DAE method ranks seventh. The MLP with MLP1-DAE method has the worst diagnostic performance, which proves 

the worse performance of MLP1-DAE on preserving critical features in the signal compared to the other studied noise 

filtering methods. 

Table 6 Diagnostic method ranking for each metric. 

Diagnostic method TPR Detect latency Overall Kappa 

MLP with MLP1-DAE 

MLP with MLP2-DAE 

7th 

2nd 

3rd 

7th 

7th 

2nd 

MLP with EMA 

MLP with WRM 

6th 

3rd 

5th 

6th 

4th 

3rd 

MLP with LSTM-DAE 

MLP with WaveNet-DAE 

4th 

5th 

2nd 

4th 

6th 

5th 

MLP with CNN-DAE 1st 1st 1st 

Table 7 summarises the blind-test-case metric results from other known diagnostic methods using the ProDiMES 

software for evaluation. Regularized Extreme Learning Machines-Sparse Representation Classification (RELM-SRC) 

method [33] has the best diagnostic performance, which provides a kappa coefficient of 0.685. The kappa coefficient 

of the proposed method in this paper is 0.731, which is 0.046, larger than the kappa coefficient provided by the RELM-

SRC method. 

Table 7 Blind test case results from other known diagnostic methods. 

Diagnostic method 
TPR 

[%] 

Detect 

latency 

Overall 

Kappa 

Weighted Least Squares[8] 

Probabilistic Neural Network (PNN)[8] 

Extended Kalman Filter[8] 

Generalized Observer[8] 

44.7 

44.7 

50.9 

51.9 

4.86 

4.86 

4.02 

4.24 

0.588 

0.590 

0.627 

0.617 

PNNs[9] 

k-Nearest Neighbour[9] 

PNN and Adaptive Engine Model Fusion[9] 

48.5 

48.5 

48.5 

4.70 

4.70 

4.70 

0.595 

0.605 

0.595 

Support Vector Machine (SVM)[34] 52.5 3.30 0.660 

Upper and Lower Singleton Type‑2 Fuzzy Logic System (ULST2-

FLS)[35] 
52.2 4.45 0.647 

Regularized Extreme Learning Machines- Sparse Representation 

Classification (RELM-SRC)[33] 
55.7 3.30 0.685 

5. CONCLUSIONS 

In the context of Intelligent Engines, this study proposes a novel CNN-DAE method for aircraft engine gas path 

health signal denoising. The proposed method is evaluated with NASA's ProDiMES software. 

The conclusions drawn from this study are as follows: 

• The proposed denoising method can effectively remove the noise in health signals by reconstructing the 

denoised data from the noisy data. The proposed denoising method is superior in denoising performance to 

other optional denoising methods in the open literature. 
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• The proposed method can accommodate time-series data. The convolution operation can adequately capture 

changes in the signals that evolve with time. The causal convolution can solve the problem of using future data 

points. 

• The MLP with CNN-DAE diagnostic method presents the best performance compared to other known 

diagnostic methods. Kappa Coefficient of the proposed diagnostic method is 0.731 and is at least 0.046 higher 

than the other diagnostic methods. It is proved that the proposed CNN-DAE denoising method can preserve 

the important changes in health signals for enhanced diagnostic information, which significantly improves 

diagnostic accuracy. 

Overall, the proposed method can accommodate time series without using future data points, remove noise for 

improved denoising accuracy and preserve the important changes in health signals for enhanced diagnostic 

information. The proposed method can potentially contribute to intelligent condition monitoring systems by 

effectively exploiting historical information for improved denoising and diagnostic performance, which will enhance 

the availability, reliability, and efficiency of Intelligent Engines. 

As an ML method, the proposed method has limitations in terms of the need for a large amount of labelled training 

data, case-dependency and offline training for the applications in aircraft engine diagnostics. Fortunately, emerging 

technologies such as Digital Twin, Intelligent Engine, and Incremental Online Learning provide potential 

opportunities for ML applications. As for future work, more studies to address these application limitations will be 

worth developing. 

NOMENCLATURE 

AANN = Auto-Associative Neural Network 

BP = Back Propagation 

C-MAPSS = Commercial Modular Aero-Propulsion System Simulation 

CNN = Convolutional Neural Network 

CNN-DAE = Convolutional Neural Network Denoising Autoencoder 

CWIM = Center Weighted Idempotent Median 

D = Dimension (Axis or Rank) for Tensor 

DOD = Domestic Object Damage 

EFS = Engine Fleet Simulator 

EMA = Exponential Moving Average 

FIR = Finite Impulse Response 

FMH = FIR Median Hybrid 

FOD = Foreign Object Damage 

FP = Forward Propagation 

FPR = False Positive Rate 

HPC/LPC = High/Low Pressure Compressor 

HPT/LPT = High/Low Pressure Turbine 

IIR = Infinite Impulse Response 

LSTM = Long Short-Term Memory Network 

LSTM-DAE = Long Short-Term Memory Network Denoising Autoencoder 

MA = Moving Average 

MAE = Mean Absolute Error 

MCR = Misclassification Rate 

ML = Machine Learning 

MLP = Multilayer Perceptron 

NN = Neural Network 

1DCNN = One-Dimensional Convolutional Neural Network 

1D-FP = One-Dimensional Forward Propagation 

PNN = Probabilistic Neural Network 

ProDiMES = Propulsion Diagnostic Method Evaluation Strategy 

RELM-SRC = Regularized Extreme Learning Machines-Sparse Representation Classification 

ReLU = Rectified Linear Activation Function 

RNN = Recurrent Neural Network 

RM = Recursive Median 

Seq2Seq = Sequence-to-Sequence Learning 
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SVM = Support Vector Machine 

TPR = True Positive Rate 

ULST2-FLS = Upper and Lower Singleton Type‑2 Fuzzy Logic System 

VBV = Variable Bleed Valve 

VSV = Variable Stator Vane 

WaveNet-DAE = WaveNet Denoising Autoencoder 

WRM = Weighted Recursive Median 
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Fig. 16. Evaluation metrics for the MLP classifier with the proposed CNN-DAE method. 
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