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In this paper we develop a family of arbitrarily high-order non-oscillatory hybrid
Discontinuous Galerkin(DG)-Finite Volume(FV) schemes for mixed-element unstructured
meshes. Their key ingredient is a switch between a DG method and a FV method based
on the CWENOZ scheme when invalid solutions are detected by a troubled cell indicator
checking the unlimited DG solution. Therefore, the high order of accuracy offered by DG
is preserved in smooth regions of the computational domain, while the robustness of FV
is utilized in regions with strong gradients. The high-order CWENOZ variant used has the
same spatial order of accuracy as the DG variant, while representing one of the most
compact applications on unstructured meshes, therefore simplifying the implementation,
reducing the computational overhead associated with large stencils of the original WENO
reconstruction without sacrificing the desirable non-oscillatory properties of the schemes.
We carefully investigate several parameters associated with the switching between DG and
FV methods including the troubled cell indicators in a priori fashion. For the first time in
the literature, we investigate the definition of the bounds for an admissible solution, the
frequency by which we use the troubled cell indicators, and the evolution of the percentage
of troubled cells for unsteady test problems. The 2D and 3D Euler equations are solved
for well established test problems and compared with computational or experimental
reference solutions. All the methods have been implemented and deployed within the
UCNS3D open-source high-order unstructured Computational Fluid Dynamics (CFD) solver.
The present coupling has the potential to improve the shortcomings of both FV-DG in
a computational efficient manner. The improved accuracy and robustness provided is a
characteristic of paramount importance for industrial-scale CFD applications, and favours
the extension to other systems of governing equations.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Originally introduced for the solution of the linear neutron transport equation by Reed and Hill [1], the Discontinuous 
Galerkin method was later extended to the solution of general non-linear hyperbolic conservation laws by a series of papers 
by Cockburn and Shu [2–4], and it is nowadays a popular and advantageous choice in the context of high-order, parallel 
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and unstructured CFD codes. The main idea of the DG method is to represent the solution through a piecewise polynomial 
expansion over a set of basis functions, avoiding any reconstruction on large stencils. Instead, the time evolution of each 
degree of freedom in each cell involves only the direct neighbouring elements.

The DG method is able to share many features typical of the FV framework, such as the explicit high-order Runge-
Kutta time stepping discretisation (RKDG) and the application of exact or approximate Riemann solvers at cell interfaces. 
Furthermore, assuming the numerical flux to be continuous and monotone, the DG method is stable in L2 norm as the local 
cell entropy inequality is satisfied [5].

However, the DG method still suffers from the classical drawback of high-order accuracy methods in terms of the 
Godunov order-barrier theorem, i.e. it is prone to exhibit oscillations in presence of discontinuities, known as the Gibbs 
phenomenon, which can lead to unbounded and unphysical solutions. Again, a number of techniques developed originally 
for the FV method were successfully adapted to the DG method, see for instance the slope limiter of the minmod type [6], 
carrying total variation bounded (TVB) properties, or the moment based limiters [7,8]. The great disadvantage of such lim-
iters is the potential accuracy degradation of the solution in smooth flow regions, where the limiter is mistakenly activated. 
For this reason, in the FV context, the standard choice to avoid accuracy degradation is to use essentially non-oscillatory 
(ENO) or weighted ENO (WENO) schemes [9–13], able to achieve in most cases both high-order accuracy and non-oscillatory 
properties thanks to a non-linear reconstruction procedure operating on large stencils.

Classical WENO schemes aim to reproduce a high-order interpolating polynomial by means of a convex combination 
of lower-order polynomials having directional stencils, whose width on unstructured meshes depends on the quality of the 
elements, reflecting on the difficulty of choosing an optimal value for the linear weights used for the convex combination, as 
well as increasing the complexity in communications across different CPUs in parallel codes. In addition, it is not guaranteed 
that the reconstruction is able to retrieve non-oscillatory information, as it may happen that none of the stencils lay in a 
adequately smooth flow region.

In order to alleviate these shortcomings, the Compact WENO (CWENO) schemes, introduced by Levy et al. [14] for 
a 3rd order reconstruction in the one-dimensional case, and later extended to arbitrarily high-order accuracy and non-
uniform meshes [15,16], propose to reduce the order of the directional stencils, enhancing efficiency and robustness of the 
scheme. Here the directional stencils are contained in the central stencil, and in smooth regions the central stencil order is 
recovered, whereas in discontinuous regions the chances to have at least one directional stencil with smooth data variation 
are increased. The accuracy of the scheme can be further enhanced by a linear combination of lower order smoothness 
indicators like in WENOZ schemes [17,18]. Thanks to their compact size, the CWENO/CWENOZ schemes are more suitable 
to be used in conjunction with the DG framework. However, in order to preserve the accuracy and compactness properties 
of the original DG method, the limiting procedure should still be applied only where necessary.

For this reason, the limiting strategy usually consists of two steps [19–22]. First, the so-called troubled cells where the 
limiting procedure need to be applied are determined through a troubled cell detector. Then, the higher modes of the 
unlimited DG solution are replaced with the WENO reconstructed degrees of freedom (DOFs), where the cell average of the 
new polynomial must coincide with that of the DG polynomial in order to ensure conservation.

Assuming that the non-linear reconstruction is able to maintain the original order of convergence, the first step is of 
great importance in the sense that the troubled cell detector needs to be sensitive enough to capture all the oscillations 
while only being activated in discontinuous flow regions. A multitude of indicators were proposed in the literature in recent 
years, starting from the TVB derived detector proposed in [3] to the detectors based on the superconvergence properties 
of the DG method like the ones developed in [23,24]. The whole procedure presented above falls into the a priori type of 
limiting procedure, i.e. the solution checking and the reconstruction happens before the flux reconstruction, thus operating 
always on the same time level. Alternatively, the solution checking can be performed after the time advancement, in a 
posteriori fashion [25,26], enabling the choice of simpler checking criteria and also enhancing the robustness of the whole 
procedure. The downside is an increase in computational cost, as when the solution in a cell is discarded, the neighbouring 
elements also need to be recomputed to “repair” any contamination occurred during the fluxes computation.

The solution checking criteria used in such methods, usually referred to as Multi-Dimensional Optimal Order Detection 
(MOOD) and specifically the Physical Admissible Detector (PAD) and Numerical Admissible Detector (NAD) [13,27–29], are 
also attractive indicators in the context of the a priori limiting procedure for hybrid DG-FV schemes. However, it is not fully 
clear from literature if a cell is allowed to be valid at further time stages after it is deemed as troubled at the beginning of 
the time stepping procedure, and how this affects the evolution of the troubled cell population.

In addition, the majority of the above troubled cell indicators use threshold value(s) that often need to be adjusted based 
on the order of the scheme, mesh resolution, and the typology of the test problem itself. The selection of the threshold 
value is driven by the degree of oscillations allowed in the solution without sacrificing accuracy, although that is not the 
only factor to play a key part in such hybridisation of the DG scheme with FV type reconstruction.

An important aspect in the FV reconstruction that transfers to the quality of the DG-FV hybridisation is the bounds 
within which the validity of the solution is checked. The first step in the reconstruction procedure consists of the stencil 
assembly. The number of layers determining the size of the stencil, which in turn depends on arguments like compactness 
and mesh elements quality, not only influences the performance of the reconstruction but also the number of troubled cells 
that the detector marks. This aspect was investigated within the MUSCL framework in [30], where it was demonstrated 
that the limiter can be mistakenly activated, leading to sub-optimal order of accuracy, if the bounds are established only 
2
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within the direct side neighbours. In this paper, we investigate with similar considerations the impact of different bounds 
definitions on the threshold limit of troubled cell detectors, and the situations in which this can be relaxed.

All the schemes are developed in the open source UCNS3D solver [31,32], and we assess their performance in terms of 
robustness, accuracy and computational efficiency for a series of stringent 2D and 3D test problems. The paper is organized 
as follows: in Section 2 we introduce the numerical framework used to describe the high-order Discontinuous Galerkin and 
Finite Volume frameworks for unstructured meshes, the reconstruction process for the CWENOZ scheme, and the numerical 
fluxes and temporal discretisation employed. The numerical results obtained for all the test problems are presented in 
Section 3 and compared against analytical, reference or experimental solutions whenever those are available. Section 4
describes the conclusions drawn from this study.

2. Numerical framework

2.1. Discontinuous Galerkin method

In DG methods, higher orders of accuracy are attained by means of a high-order polynomial representation of the local 
element solution. Similar to FV schemes, as the solution is discontinuous across the domain elements, the treatment of the 
flux may be dealt with numerically by introducing a Riemann solver.

Consider the unsteady non-linear hyperbolic system of conservation laws on a 3D domain �, written in its conservative 
form:

∂U

∂t
+ ∇ · (F(U)) = 0, (1)

where U = U(x, t) is the vector of conserved variables, x = (x, y, z) denotes the coordinates of a point of the domain �, and 
F(U) = (f(U), g(U), h(U)) is the non-linear flux tensor. The physical domain � consists of any combination of conforming 
tetrahedral, hexahedral, prism or pyramids in 3D, and quadrilateral or triangular in 2D. All the elements are indexed by a 
unique mono-index i. The global solution is discretely approximated for each cell i by a set of locally continuous piecewise 
solutions Ui(x). The local approximation of the solution within each cell i, is given by a linear combination of a basis 
functions φk

i (x) as follows:

Ui(x) =
K∑

k=0

Uk
h,iφ

k
i (x). (2)

We take the weak form of the DG formulation, which is obtained multiplying Eq. (1) by a smooth test function ψ(x), 
integrating over each element Vi ∈ � and performing an integration by parts:∫

Vi

ψ(x)
∂Ui

∂t
dV =

∫
Vi

∇ψ(x) · F(Ui)dV −
∮
Si

ψ(x)F(Ui) · ndS. (3)

The vector Uk
h,i(t) denotes the unknown degrees of freedom of the solution that are advanced in time, and Si is the 

boundary of Vi . Adopting a smooth test function from the same space of the basis function, thus ψk
i (x) = φk

i (x), the DG 
formulation for each element i is given by:

K∑
k=0

⎛
⎜⎝∫

Vi

φk
i (x)φ

b
i (x)dV

⎞
⎟⎠ dUk

h,i

dt
=

∫
Vi

∇φb
i (x) · F(Ui(x))dV −

∮
Si

φb
i (x)F(Ui(x)) · ndS. (4)

DG schemes are compact and enable higher-order spatial discretisations by simply increasing the order of the polynomial 
representing the solution, thus avoiding any reconstruction and bringing advantages in applications concerning complex, 
unstructured meshes, as well as in scalability and parallel computing efficiency. However, the increased number of degrees 
of freedom evolved at each time step comes with an increased level of computational effort. The number of DOFs K depends 
upon the degree of the polynomial r and the spatial dimension d. For example, for modal bases on arbitrary shapes, the 
number of DOFs can be calculated from the following expression:

K (r,d) = 1

d!
d∏

l=1

(r + l) . (5)

It can be realised that the number of DOFs increases exponentially as the order is increased, with a considerable growth in 
computational costs, especially for 3-dimensional problems.

Traditionally, the basis can be represented through Lagrange Finite Element or node-based bases. With such a choice 
the DOFs to be solved are the node variables, at the vertices for a linear reconstruction, for example. In this work a modal 
3
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Fig. 1. Drawing illustrating a typical arrangement for a considered cell i and some its direct side neighbours m.

formulation is used, which allows for the same basis to be used for any element shape and avoids the underintegration 
errors often present in nodal implementations. In the modal formulation, the unknowns to be solved are the polynomial 
expansion coefficients, and a popular choice for the polynomial basis functions is the cell centred Taylor series expansion 
[33–36], as follows:

φk
i (x)|Vi = (x− xci )

pk

hpk
i

(y − yci )
qk

hqki

(z − zci )
rk

hrki
− 1

|Vi|
∫
Vi

(x− xci )
pk

hpk
i

(y − yci )
qk

hqki

(z − zci )
rk

hrki
dV , (6)

where 0 ≤ pk + qk + rk ≤ r. The index i ranges over the total number of elements, and xci , yci , zci are the coordinates 
of the cell centre of the considered element i. The basis functions are intentionally designed such that the higher-order 
modes vanish when integrating within the considered cell i, which is convenient when pursuing conservation and seamless 
interaction between DG and FV. Of great importance is the normalization of the basis function with a coefficient h, in this 
work taken as the square root of target cell’s volume, used to improve the mass matrix conditioning, without which in the 
present study we could not achieve higher than 4th of accuracy for the meshes and test problems attempted, a finding that 
might merit further investigation in the future.

We have resorted to these basis functions since we want to be able to handle arbitrary unstructured meshes and element 
shapes, and therefore the integration of the basis functions in physical space requires the decomposition of elements into 
triangles or tetrahedrals. This strategy has been previously documented in other studies [35–38], and the resulting mass 
matrix for each cell is given by:

Mbk =
∫
Vi

φb
i (x)φ

k
i (x)dV , with b = 0,1, .., K and k = 0,1, .., K . (7)

The non-uniquely defined intercell fluxes in Eq. (4) are determined in the same manner as in the FV framework, i.e. with 
an exact or approximate Riemann solver [3]. The semi-discrete system can be written as:

Mbk

dUk
h,i

dt
=

Nv∑
g=1

ωgF(Ui(xi,g)) · ∇φb
i (xi,g)|Vi | −

N f∑
h=1

Nqp∑
α=1

F̃nim
(
Un
im,L(xim,α, t),Un

im,R(xim,α, t)
)
ωα · φb

i |Sim|, (8)

where F̃nim is the numerical flux normal to the interface between cell i and cell m as shown in Fig. 1. N f is the number of 
faces, Nv is the number of the volume Gaussian quadrature points, Nqp is the number of face quadrature points, and |Sim|
is the surface area of the considered face. Un

im,L(xim,α, t) and Un
im,R(xim,α, t) are the discontinuous solutions for cell i and 

cell m at the prescribed face Gaussian quadrature points respectively; while xim,α and ωα , and xi,g and ωg correspond to 
different face and volume Gaussian integration points and weights respectively.

The Eq. (8) can be written as:

Mi
dUi

dt
+ Ri(Ui) = 0, (9)

where Ui is the approximate solution, Mi is the mass matrix and Ri(Ui) is the residual vector.
4
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2.2. Finite volume method

Consider the same unsteady non-linear hyperbolic system of conservation laws of Eq. (1) in the same physical domain 
consisting of the same element types. Integrating Eq. (1) over a considered cell element i using a high-order explicit finite-
volume formulation the following equation is obtained:

dUi

dt
= − 1

|Vi |
N f∑
j=1

Nqp∑
α=1

F̃nij
(
Un
i j,L(xi j,α, t),Un

i j,R(xi j,α, t)
)
ωα |Sij|, (10)

where Ui are the volume averaged conserved variables

Ui = 1

|Vi |
∫
Vi

U(x)dV , (11)

and Fnij is the numerical flux normal to the cell interface between cell i and one of its neighbouring cells j, N f being 
the number of faces of the considered cell, Nqp is the number of quadrature points at the considered face, and |Sij | is the 
surface area of the corresponding face. Un

i j,L(xi j,α, t) and Un
i j,R(xi j,α, t) are high-order approximations of the solutions for 

cell i and cell j respectively; while α corresponds to different Gaussian integration points xα and weights ωα over each 
face, coincident with the ones defined for the surface integral in the DG formulation.

2.2.1. Reconstruction
In the present FV implementation, high-order accuracy is achieved through a reconstruction process, where for each cell 

i we build an order r polynomial pi(x) that can provide r + 1 order of accuracy. One of the key requirements is that the 
reconstruction polynomial, when integrated within the considered cell, should have the same value as the volume average 
of a general quantity Ui :

Ui = 1

|Vi |
∫
Vi

pi(x)dV . (12)

The present polynomial reconstruction is primarily based on the approaches of [37–41], that have been applied to a wide-
range of flow problems including laminar, transitional and turbulent flows at a wide spectrum of Mach numbers [28,30–
32,37,38,40–58] and only the key ingredients will be detailed in this work. What is different from the previous approaches 
[37–41] is that we no longer employ any transformation from physical space to reference space to reduce scaling effects, 
but we solve the reconstruction problem in the physical space. A stencil is built to perform the reconstruction by adding M
neighbouring cells to our considered element i. We use the stencil based compact algorithm (SBC) as defined in [55] where 
M = 2K for ensuring that we have an overdetermined least square system which was found to be robust for arbitrary 
unstructured meshes [26,27,39,55,59–61]. The central stencil S1 is given by:

Sc
i =

Mc⋃
m=0

Vm, (13)

where the index m refers to the local numbering of the elements in the stencil. Index 0 corresponding to the considered 
element i, and index c refers to the stencil number (c = 1 for the central stencil). The rth order reconstruction polynomial 
is an expansion over the previously introduced Taylor basis φk(x) for the DG method in Eq. (6), and is given by:

p(x) =
K∑

k=0

akφk(x) = U0 +
K∑

k=1

akφk(x), (14)

where U0 refers to the conserved variables vector of cell i, and ak are the degrees of freedom of the polynomial. The degrees 
of freedom ak for each cell m satisfy the condition that the volume average of the reconstruction polynomial p(x) is equal 
to the cell average of the solution Um:∫

Vm

p(x)dx = |Vm|U0 +
K∑

k=1

∫
Vm

akφk dx = |Vm|Um, m = 1, . . . ,M. (15)

This condition is satisfied also due to the Taylor basis functions selected. Defining the following quantities:

Amk ≡
∫

φk dxdydz, bm ≡ |Vm|(Um −U0), (16)
Vm

5
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Eq. (15) can be rearranged in a matrix form as:

K∑
k=1

Amkak = bm, m = 1,2, . . .M. (17)

The overdetermined least-squares system is solved by a QR decomposition [62] and for speeding up the computation we 
pre-store the Moore-Penrose pseudo-inverse of Amk as documented in [55].

2.2.2. CWENOZ scheme
For the CWENOZ scheme, we combine an optimal (high-order) polynomial popt that relies on the central stencil with 

linear polynomials using the compact directional stencils. In regions where the variation of the solution is smooth, the 
desired order of accuracy can be achieved, while the reconstruction is mostly influenced by the lower-order polynomials 
with the smoothest variation of the solution when the solution is discontinuous. For the directional stencils, we use the 
definition noted as Type3 as introduced in [55]. The definition of the optimal polynomial is given by:

popt(x) =
st∑

s=1

λs ps(x), (18)

where s is the stencil index, with s = 1 being assigned to the central stencil and st being the total number of stencils, and 
λs being the linear coefficients for each stencil that are required to have a sum of 1. The p1 polynomial is obtained by 
subtracting the lower-order polynomials from the optimum polynomial as follows:

p1(x) = 1

λ1

(
popt(x) −

st∑
s=2

λs ps(x)

)
. (19)

The CWENOZ reconstruction polynomial is obtained by combining all the polynomials non-linearly as follows:

p(x)cwenoz =
st∑

s=1

ωs ps(x), (20)

with ωs being the non-linear weights for each polynomial. The final reconstructed polynomial is given by the following 
expression:

p(x)cwenoz = U0 +
K∑

k=1

ãkφk(x), (21)

where ãk are the CWENOZ reconstructed degrees of freedom. When the solution is smooth ωs ≈ λs the optimum polyno-
mial is recovered. The non-linear weight ωs is defined as:

ωs = ω̃s
st∑

s=1
ω̃s

where ω̃s = λs

(
1+ τ

ε + SIs

)
, (22)

with τ being the universal oscillation indicator and taken as the absolute difference between the smoothness indicators as 
follows:

τ =

⎛
⎜⎜⎜⎝

st∑
s=2

|SIs − SI1|
st − 1

⎞
⎟⎟⎟⎠

b

. (23)

For this study we use ε = 10−14 and b = 4. Firstly we assign a large value for the non-normalised linear weight for the 
central stencil λ′

1, and then normalising it as:

λ1 = 1− 1

λ′
1
, (24)

while all the linear weights of the lower-order polynomials have the same value and are calculated by

λs = 1− λ1
. (25)
st − 1

6
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We use the following smoothness indicator SI s which is given by:

SIs =
∑

1≤|β|≤r

∫
V0

(
Dβ ps(x, y, z)

)2
(dx,dy,dz), (26)

where D is the derivative operator, β is a multi-index and r is the polynomial’s order. Since the smoothness indicator is a 
quadratic function of the degrees of freedom (ask) it can be rewritten as:

SIs =
K∑

k=1

ask

⎛
⎝ K∑

q=1

OIkqa
s
q

⎞
⎠ , (27)

having defined the oscillation indication matrix OIkq as:

OIkq =
∑

1≤|β|≤r

∫
V0

(
Dβφk(x, y, z)

) (
Dβφq(x, y, z)

)
(dx,dy,dz), (28)

which is precomputed and stored at the beginning of the simulation. It needs to be stressed that for the CWENOZ variant 
employed in this study a large value is assigned to the non-normalised linear weight corresponding to the central stencil 
λ′
1 > 103. Previous sensitivity studies on this variant have concluded that a high-value is required to achieve the desired 

order of accuracy and the reader is referred to the work of Tsoutsanis and Dumbser [40] for additional information.

2.3. Fluxes & time advancement

The flux approximation and temporal discretisation techniques are shared between the FV and DG methods. For the invis-
cid fluxes, the approximate HLLC (Harten-Lax-van Leer-Contact) Riemann solver of Toro [63] is employed, unless otherwise 
stated. The solution is advanced in time by a third-order TVD Runge-Kutta method:

U(n+1/3)
i = Un

i + �tM−1Ri(U), (29)

Un+2/3
i = 3

4
Un
i + 1

4
U(n+1/3)
i + 1

4
�tM−1Ri(U

(n+1/3), (30)

Un+1
i = 1

3
Un
i + 2

3
U(n+2/3)
i + 2

3
�tM−1Ri(U

(n+2/3), (31)

and the time step �t is selected according to:

�t = CFL
1

2r + 1
min

i
(
hi
Si

), (32)

where Si is an estimate of the maximum in absolute value of the propagation speed in the cell V i , hi is a characteristic 
length of the element Vi and CFL refers to the Courant-Friedrichs-Lewy condition.

All the volume/surface/line integrals are approximated by Gaussian quadrature rule suitable for the order of polynomial 
employed [64]. All the schemes developed are implemented in the UCNS3D CFD code [32] which is written in object-
oriented Fortran 2003, employing MPI message passing interface (MPI), and the Open Multi-Processing (OpenMP) application 
programming interface (API), and the reader is referred to [51,65] for more details on implementation and performance 
benchmarks. The computational times reported in each case are obtained for the same hardware (and compilation settings) 
and normalised with respect to a reference setup for the same hardware so that the performance of various algorithms 
under identical hardware can be appreciated.

2.4. Hybrid DG-FV

The operations performed by the modified version of the UCNS3D code, and used for the present study, are summarized 
in the flow chart in Fig. 2. As already mentioned, the UCNS3D code is originally a pure FV code. Hence, the implementation 
of a modal DG scheme allows the hybridisation of the two frameworks, where the unlimited DG solution is checked at every 
RK stage of each time step, and the underlying FV type reconstruction is enabled in the cells that are deemed troubled by 
the solution checking criteria. For the troubled cells only, the reconstructed polynomial is substituted into the DG solution 
as follows:

Ui(x, t) = U0 +
K∑

Uk
h,i(t)φ

k
i (x) = U0 +

K∑
ãkφk(x), (33)
k=1 k=1

7



V. Maltsev, D. Yuan, K.W. Jenkins et al. Journal of Computational Physics 473 (2023) 111755
where the first degree of freedom assigned with index j, k = 0 ensures conservation, since the higher-order terms 
j, k = 1, 2, .., K cancel out when integrated within the considered cell due to the employed basis. Since the same basis 
is used for both DG and FV we simply set U j

h,i = ãk , where ãk are the CWENOZ reconstructed polynomial coefficients as 
defined in Sec. 2.2.2. It has to be remarked that the strategy adopted in this work, where the solution in the troubled cells 
is provided by a CWENOZ reconstruction, is designed following efficiency and robustness arguments. The CWENOZ recon-
struction, presented in the UCNS3D environment in [40], demonstrated a consistent improvement in terms of computational 
efficiency over the classic WENO scheme, as well as insensitivity to the magnitude of the linear weight of the central stencil 
with respect to the CWENO scheme. However, merely applying any type of WENO reconstruction on the troubled cells will 
cause loss of information provided by the DG solution at the subcell level, since the reconstruction operates on the cell 
averages of the neighbouring cells. For this reason, limiters operating on the subcell level were designed in [66–68]. The 
idea is to use either a first order FV scheme or a FV type reconstruction on the subgrid obtained from the decomposition of 
the troubled cells. The number of subcells is calculated based on the desired accuracy while maximizing the allowed CFL 
number. This method is clearly able to preserve more accurately the features provided by the DG scheme and is attractive 
and fairly affordable on uniform meshes. However, the procedure is not as straightforward when applied to unstructured 
meshes and seems problematic for meshes composed of arbitrary elements and for those meshes with transition layers 
and/or bad quality elements. If the subcell subdivision can not be performed optimally, it can also have an adverse impact 
on the already restrictive time step size of the DG method. Recent developments [36,69] have demonstrated that it can be 
applied to Voronoi type of meshes therefore encouraging further work to expand it to meshes including low-quality of cells.

The readily available reconstruction stencil provided by the underlying FV scheme of the UCNS3D solver, allows for 
different configurations of the bounds definition of the troubled cell detection to be tested. As will be shown later, extension 
of the bounds to the whole stencil reduces the number of troubled cells, especially in smooth flow regions.

The troubled cell indicators will also be tested with two different flagging procedures. In case1, the solution is checked at 
every RK stage, thus troubled cells are allowed to change their condition within the same time step at different RK stages, 
while in case2, cells that are deemed invalid at the first stage cannot change their status until the next time step.

Because WENO type reconstructions are still prone to some oscillations, increasingly so for higher orders, additional 
solution checks are performed on the reconstructed solution. In particular, we check that the pressure and density remains 
positive through the reconstruction, while also employing the condition of Harten et al. [11], where the FV reconstructed 
values of density and pressure for each Gaussian quadrature points (α) at all cell interfaces l must satisfy the following:

|ρil,α − ρi | < 0.8ρi and |pil,α − pi| < 0.8pi . (34)

If this condition (34) is not satisfied for any Gaussian quadrature point, we switch to a 2nd-order MUSCL scheme or a 
1st-order upwind Godunov scheme, something that can have a detrimental impact on the accuracy of the framework for 
that cell but might be required for robustness as usually deployed in MOOD framework [28,29]. The activation of this switch 
has not been encountered for the problems attempted herein but the reader is referred to the work of Tsoutsanis et al. [29]
where the switch is activated for test problems such as shock-induced collapse of bubbles in multicomponent applications 
and is needed since otherwise the simulation would have blown-up.

2.5. Troubled cell indicators

The switch for each element from a DG solution to the CWENOZ one is governed by a troubled cell indicator, the design 
of which is nontrivial and for a comparison of the most popular indicators we refer to [70]. Assuming that the reconstruc-
tion procedure activated in the troubled region does not deteriorate the original order of convergence, the importance of 
an efficient detector is more aimed at reducing computational costs, avoiding unnecessary reconstruction in smooth flow 
regions. In this work, we will test a shock detector type and a class of MOOD type detectors, with limited and extend 
bounds as described in Appendix A, in order to assess the impact of the FV type reconstruction on the computational time 
and general accuracy. The adopted indicators are now briefly introduced:

Shock Detector type indicator: Our implementation of the shock detector is similar to the KXRCF indicator [23], which 
was built upon the convergence properties of the DG method at outflow boundaries, thus evaluating the solution jump 
across neighbouring elements, that is greater in the presence of discontinuities, normalising with respect to the average 
convergence rate and scaling with respect to a characteristic cell length.

As pointed out in [24], due to the presence of a small scaling parameter, this detector is often too sensitive and in [24], 
a modification using the jumps in cell-averaged solutions between the target cell and all its neighbours as a measure of the 
discontinuity, was proposed. In our work we use a detector similar to the one introduced in [24], where the solution of the 
neighbouring cells is cell-averaged over the respective cell and not over the target cell. This results in the following:∑N

n=1 | 1
V0

∫
V0

U0(x)dV − 1
Vn

∫
Vn

Un(x))dV |
maxn∈{0...N}{ 1

Vn
| ∫Vn

Un(x)dV |} > Ck, (35)

where the threshold value Ck is usually taken to be unity unless otherwise specified.
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Fig. 2. Flow chart for the implementation of the DG method in the UCNS3D code, modified from the pure FV implementation as presented in [51]. The light 
yellow label refers to the pre-stored operations, performed only once at the beginning of the simulation. The troubled cell detection steps are coloured in 
grey and the orange label refers to FV type non-linear reconstruction. Flux calculation and time stages are labelled in light blue. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

MOOD type indicator: In this work we adopt two criteria, often used within the MOOD paradigm [26,27,66,67], namely 
the Physical Admissible Detector (PAD) and Numerical Admissible Detector (NAD) [27]. The PAD checks for negative or 
NaN solutions for the density and pressure variables, which are unphysical, while the NAD checks that the solution is 
monotonic and that new extrema are not created according to the discrete maximum principle (DMP). The main difference 
to the original implementation within the MOOD framework, i.e. using the PAD and NAD in a priori fashion, is that the 
neighbouring solutions are compared with the target cell solution at the same time level.

The NAD criteria used in this work refer to the DMP-relaxed margins proposed in [28]:

min
y∈Vi

(Un(y)) − δ ≤ U (x) ≤ max
y∈Vi

(Un(y)) + δ, (36)

and the margin δ is defined as:

δ = max(10−4,α · [max
y∈Vi

(Un(y)) − min
y∈Vi

(Un(y))]). (37)

The choice of the parameter α is ruled by the degree of oscillations admitted in the solution. In this work the values of 
α = 10−3 as suggested in [71] and α = 10−1 as used in the relaxed version of [40] are employed. When using the former 
value, the detector will be labelled as MOODO , and MOODR when using the latter value.

We remark that, when Euler equations are considered, the quantities checked by both the shock detector and MOOD 
type indicators presented above, are density and energy only.
9
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Fig. 3. Unstructured mesh samples with 32 edges per side.

3. Applications

A large number of test cases of increasing complexity have been selected to assess the performance of the numerical 
frameworks, starting from a comparison of the convergence order and computational cost of the FV, DG, and hybrid meth-
ods for smooth profiles, the non-oscillatory properties in the advection of discontinuous profiles, and concluding with an 
assessment of the hybrid DG-FV schemes with various troubled cell indicators for the solution of the Euler equations for 
compressible, inviscid flow. The list of test cases is as follows:

• 2D Vortex Evolution. This test problem provides an assessment of the accuracy and computational footprint of the 
methods applied on the Euler equations.

• 2D Solid Body Rotation. This test problem is ideal for assessing simultaneously the accuracy and non-oscillatory be-
haviour of the schemes. We use this problem to show the effects of different set up for the MOOD type troubled cell 
indicator at different polynomial orders.

• Shu-Osher Problem. This test problem provides an assessment of the non-oscillatory properties of the methods in 
combination with smooth flow features and is used to evaluate different typologies of detectors.

• Double Mach reflection. This test problem provides an assessment of the non-oscillatory properties of the hybrid scheme 
with different detectors in presence of strong and secondary shock waves.

• Schardin’s Problem. This test problem is used to assess the performance of the scheme in a flow problem characterised 
by the presence of strong gradients and regions interacting with vortices.

• 3D inviscid subsonic Taylor-Green Vortex. A well-established test problem for assessing the performance of the schemes 
in an under-resolved flow setting.

• 3D inviscid supersonic Taylor-Green Vortex. A new variation of the Taylor-Green vortex to simultaneously examine the 
non-oscillatory properties of the schemes.

• 3D sonic boom prediction of the Lockheed Martin 1021-01. A well-established test problem for predicting the acoustic 
footprint of a supersonic aircraft.

Additional test cases are provided in Appendix B and Appendix C, where the hybrid scheme is calibrated and tested on 
different mesh types for the scalar advection of smooth and discontinuous profiles respectively.

3.1. 2D vortex evolution

A popular test case for testing the accuracy of the schemes in the context of unsteady inviscid Euler equations is the 
one introduced by Balsara and Shu [72], and involves the propagation of an isentropic vortex at a supersonic Mach num-
ber across a 2D domain at a 45◦ direction. The computational domain is given by [0, 10] × [0, 10] with periodic boundary 
conditions applied on all sides. We have performed the calculations on the triangular and hybrid unstructured grids il-
lustrated in Fig. 3, and on uniform mesh, with four different resolutions corresponding to 16, 32, 64 and 128 edges per 
side for P2 and P3, and 8, 16, 32 and 64 edges for P4 discretisation. The domain is initially unperturbed with condition 
(ρ,u, v, p) = (1,1,1,1), while the vortex perturbations, of radius r, are given by:
10
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Table 1
Values for eL∞ and eL2 error norms and convergence rates for pure FV and DG framework, and hybrid DG-FV with the MOODO for the 2D Vortex evolution 
test case. For the hybrid schemes the average percentage of troubled cells is averaged on the total number of time steps and the additional costs for the 
reconstruction in the troubled cells is quantified though the CPU coefficient normalised with the pure DG computational time on the same mesh and 
polynomial order.
Order/Number of Edges FV DG DG/MOOD

Quadrilateral Mesh eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2 % troub. cells CPU

P2/16 3.08E-01 - 4.55E-02 - 6.20E-03 - 1.27E-03 - 2.60E-01 - 3.73E-02 - 42.1 1.41
P2/32 1.54E-01 1.00 1.90E-02 1.26 4.43E-04 3.81 8.61E-05 3.88 3.72E-02 2.80 4.60E-03 3.02 15.9 1.27
P2/64 2.86E-02 2.43 3.89E-03 2.29 2.19E-05 4.34 3.60E-06 4.58 3.09E-03 3.59 3.97E-04 3.54 0.71 1.03
P2/128 4.31E-03 2.73 6.48E-04 2.58 8.89E-07 4.62 1.21E-07 4.89 2.23E-04 3.79 2.10E-05 4.24 0.16 1.06

P3/16 2.18E-01 - 2.97E-02 - 5.13E-04 - 1.09E-04 - 1.68E-01 - 2.35E-02 - 42.4 1.26
P3/32 3.89E-02 2.48 5.16E-03 2.52 1.67E-05 4.94 2.29E-06 5.57 2.88E-02 2.55 2.17E-03 3.44 7.35 1.08
P3/64 8.63E-03 2.17 8.50E-04 2.60 2.84E-07 5.88 3.15E-08 6.18 1.22E-03 4.56 7.49E-05 4.86 0.70 1.05
P3/128 5.54E-04 3.96 5.83E-05 3.87 1.03E-08 4.79 8.64E-10 5.19 6.03E-05 4.34 1.48E-06 5.66 0.16 1.02

P4/8 5.77E-01 - 7.64E-02 - 9.83E-04 - 2.97E-04 - 6.83E-01 - 7.83E-02 - 45.7 1.29
P4/16 2.30E-01 1.33 3.13E-02 1.29 6.99E-05 3.81 1.12E-05 4.73 2.18E-01 1.65 3.00E-02 1.38 34.3 1.21
P4/32 3.83E-02 2.58 5.15E-03 2.60 5.63E-07 6.69 8.78E-08 7.00 3.04E-02 2.85 2.62E-03 3.52 7.36 1.07
P4/64 8.11E-03 2.24 7.20E-04 2.84 7.54E-09 6.22 1.14E-09 6.27 1.69E-03 4.17 1.25E-04 4.39 0.72 1.05

Triangular Mesh eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2 % troub. cells CPU

P2/16 1.83E-01 - 2.26E-02 - 1.99E-03 - 2.73E-04 - 1.03E-01 - 1.27E-02 - 29.1 1.54
P2/32 3.48E-02 2.40 5.06E-03 2.16 1.23E-04 4.02 1.68E-05 4.02 7.91E-03 3.71 9.54E-04 3.74 2.73 1.21
P2/64 6.09E-03 2.51 9.27E-04 2.45 1.83E-05 2.75 1.16E-06 3.86 6.87E-04 3.52 6.79E-05 3.81 0.37 1.12
P2/128 7.86E-04 2.95 1.26E-04 2.88 2.60E-06 2.81 1.57E-07 2.88 5.61E-05 3.62 4.07E-06 4.06 0.08 1.01

P3/16 3.56E-02 - 5.36E-03 - 1.09E-04 - 1.64E-05 - 2.81E-02 - 3.86E-03 - 22.6 1.56
P3/32 9.40E-03 1.92 8.55E-04 2.65 3.70E-06 4.88 6.43E-07 4.67 6.19E-03 2.18 3.77E-04 3.36 2.81 1.09
P3/64 3.94E-04 4.58 4.83E-05 4.15 4.14E-07 3.16 3.34E-08 4.27 2.81E-04 4.46 2.19E-05 4.11 0.34 1.04
P3/128 2.74E-05 3.85 3.04E-06 3.99 5.47E-08 2.92 2.48E-09 3.75 2.74E-05 3.36 8.24E-07 4.73 0.08 1.01

P4/8 2.67E-01 - 3.68E-02 - 2.96E-04 - 6.59E-05 - 2.72E-01 - 3.77E-02 - 36.3 1.41
P4/16 5.13E-02 2.38 6.73E-03 2.45 9.12E-06 5.02 1.49E-06 5.47 3.63E-02 2.91 4.46E-03 3.08 15.6 1.48
P4/32 1.56E-02 1.72 1.29E-03 2.38 2.69E-07 5.08 4.49E-08 5.05 4.31E-03 3.08 3.16E-04 3.82 1.44 1.06
P4/64 4.22E-04 5.20 6.88E-05 4.23 1.23E-08 4.45 1.10E-09 5.35 1.19E-04 5.18 7.54E-06 5.39 0.35 1.04

Hybrid Mesh eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2 % troub. cells CPU

P2/16 2.82E-01 - 3.62E-02 - 6.07E-03 - 8.51E-04 - 2.24E-01 - 2.77E-02 - 26.3 1.46
P2/32 7.66E-02 1.88 1.01E-02 1.84 4.30E-04 3.82 5.77E-05 3.88 2.00E-02 3.49 2.22E-03 3.64 5.10 1.20
P2/64 1.27E-02 2.60 1.88E-03 2.42 4.71E-05 3.19 5.25E-06 3.46 1.37E-03 3.87 1.73E-04 3.69 0.41 1.13
P2/128 1.89E-03 2.74 2.77E-04 2.76 4.96E-06 3.25 6.82E-07 2.94 1.17E-04 3.54 9.54E-06 4.18 0.09 1.03

P3/16 1.04E-01 - 1.36E-02 - 5.93E-04 - 7.69E-05 - 8.34E-02 - 1.03E-02 - 27.4 1.29
P3/32 2.93E-02 1.82 2.45E-03 2.48 2.03E-05 4.87 3.32E-06 4.53 1.38E-02 2.60 9.51E-04 3.44 5.15 1.10
P3/64 9.21E-04 4.99 1.49E-04 4.04 2.46E-06 3.05 1.86E-07 4.16 3.29E-04 5.39 3.83E-05 4.63 0.42 1.09
P3/128 6.48E-05 3.83 7.44E-06 4.32 1.72E-07 3.84 1.24E-08 3.91 5.86E-05 2.49 1.58E-06 4.60 0.10 1.02

P4/8 3.59E-01 - 4.50E-02 - 2.13E-03 - 3.30E-04 - 3.67E-01 - 4.62E-02 - 36.3 1.35
P4/16 1.35E-01 1.41 1.63E-02 1.46 1.23E-04 4.11 1.55E-05 4.41 1.00E-01 1.88 1.19E-02 1.96 24.0 1.39
P4/32 2.99E-02 2.17 2.70E-03 2.59 2.03E-06 5.93 2.75E-07 5.82 1.54E-02 2.70 9.67E-04 3.62 2.97 1.16
P4/64 1.01E-03 4.89 1.60E-04 4.08 6.30E-08 5.01 7.12E-09 5.27 3.70E-04 5.38 2.19E-05 5.47 0.42 1.05

δT = − (γ − 1) ε2

8γπ2
e
(
1−r2

)
, (δu, δv) = ε

2π
e0.5

(
1−r2

)
(− (y − 5) , (x− 5)) . (38)

Temperature and density are defined as T = p/ρ , and S = p/ργ . The vortex strength ε = 5 and adiabatic gas constant 
γ = 1.4. The simulation is performed for 10 periods and the eL2 and eL∞ error are computed as follows, respectively:

eL2 =

√√√√∑
i

∫
�i

(
Ue

(
x, t f

) − Uc
(
x, t f

))2
dV∑

i |�i | , (39)

eL∞ = Max
∣∣(Ue

(
x, t f

) −Uc
(
x, t f

)∣∣ , (40)

where Uc
(
x, t f

)
and Ue

(
x, t f

)
are the computed solution at final time t = 10, and the exact solutions given by the initial 

condition itself, respectively.
We adopted a value of CFL= 0.5 for the time step calculation, and a value of λ1 = 107 for the CWENOZ reconstruction 

central stencil for this and the subsequent test cases, unless otherwise specified (we refer to [40] for a sensitivity analysis to 
the λ1 value, it demonstrates the insensitivity to this parameter in the CWENOZ implementation). The results for this test 
case are presented in Table (1) and can be observed how the convergence order of the DG scheme is close to the theoretical 
one, whereas the FV scheme for the same polynomial order is able to achieve such convergence only for finer meshes, and 
would probably require a smaller CFL number, although this is out of scope for the present study. It is interesting to observe, 
however, how the sub-optimal order of convergence of the FV part affects the hybrid scheme, where the troubled cells are 
here determined by the MOOD type indicator. Similarly to the scalar advection test case, the indicator erroneously detects 
troubled cells in correspondence of the vortex core (see Fig. 4), and is of great impact for the coarser meshes. As the mesh 
11
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Fig. 4. Density contours (left) and troubled cell location (right) at initial time for the 2D vortex evolution test case for hybrid mesh with 64 edges per side. 
It can be noticed that the troubled cells are located in correspondence with the vortex core.

is refined, the average percentage of troubled cells is greatly reduced and the global accuracy is closer to the one obtained 
with a pure DG scheme. Similarly to the smooth scalar advection test case, we noticed an increase by 1.4-1.5 times in the 
computational time for situation with larger portions of troubled cells, and by 1.05 for finer meshes with less troubled cells.

3.2. 2D solid body rotation

The solid body rotation test of Leveque [73] is here considered to investigate the correct and accurate revolution of a 
slotted cylinder, smooth hump and sharp cone shapes, as a measure of the low-dissipativity and non-oscillatory properties 
of the hybrid scheme with CWENOZ reconstruction. The computational domain is again a [0, 10] × [0, 10] square with 
periodic boundaries at all sides as previously defined, and the following continuity equation is adopted:

∂U

∂t
+ ∇ · (vU ) = 0. (41)

The velocity v describing the revolution of the profile around the centre of the domain (0.5, 0.5) is given by:

v(x, y) = (0.5− y, x− 0.5). (42)

The smooth hump is centred at (x0 = 0.25, y0 = 0.5), the sharp cone at (x0 = 0.5, y0 = 0.25) and the slotted cylinder is 
centred at (x0 = 0.5, y0 = 0.75), and are described by the following functions respectively:

f(x, y) = 1+ cos(πr(x, y))

4
, (43)

f(x, y) = 1− r(x, y), (44)

and

f(x, y) =
{
1, if |x− x0| ≥ 0.025 or y ≥ 0.85

0, if otherwise.
(45)

The normalised distance from the centres (x0, y0) is given by:

r(x, y) = (1/r0)
√

(x− x0)2 + (y − y0)2, (46)

with r0 = 0.15 everywhere else in the domain, the solution is initialised with zero. The exact solution coincides with the 
initial solution, and the final solution is found after one full revolution t f = 2π . The hybrid unstructured mesh composed 
of mixed quadrilateral and triangular elements is used, with 64 edges per side of the computational domain as shown 
in Fig. 3(b). The pure FV with CWENOZ reconstruction, and the hybrid DG-FV scheme with the MOOD type indicator with 
different threshold values and bounds definition, ranging from 3rd- to 5th-order of spatial accuracy are employed. Assuming 
a value of CFL= 0.5 for the calculation of the time step and of λ1 = 107 for the linear weight of central stencil for CWENOZ 
reconstruction, the computations are performed for one full revolution t f = 2π , and the final results are illustrated in Fig. 5. 
From Fig. 5 it can be noticed that all schemes captured the correct shapes with the pure FV scheme being, as expected, 
more dissipative. Some oscillations at the base of and at the edge of the slotted cylinder are found for all the accuracy 
order, as already reported in [40]. A higher accuracy is achieved with the hybrid scheme, and the oscillations are completely 
12
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Fig. 5. Computed results for the solid body rotation on hybrid mesh with 64 edges per side with 3rd , 4th and 5th order polynomials.

eliminated with the more sensitive settings, i.e. with the MOODO
X and MOODR

L troubled cell indicators. The history of 
total percentage of troubled cells in the domain is reported in Fig. 6 and it is interesting to observe how the amount 
of troubled cells decreases with increasing accuracy orders, which is not causing an increased oscillatory behaviour. This 
counter-intuitive behaviour (one would have expected to have more troubled cells for higher orders), is due to the subcell 
capabilities of the DG scheme, as also reported in [66]. Hence, the final profile provided by the MOODR

X indicator seems to 
be the less diffused, since the FV reconstruction is rarely activated. The effects of extended bounds on the troubled cells 
population can also be observed in Fig. 7, depicting the troubled cells at t = 0.2s for four different configurations. When 
the bounds are only allowed to target a cell’s direct side neighbours, an excess of cells is flagged as troubled, which causes 
overly diffused final shapes. On the other hand, the configuration with extended bounds marks as troubled only the cells 
at shape edges, and again coupled with a more conservative threshold value seems a good compromise to achieve good 
accuracy and limit the oscillations. The effect of allowing a troubled cell to change its condition within the RK stages of the 
same time steps is also represented (option referred as criterion1 in Fig. 2), and compared with the configurations where 
the cell condition is not allowed to change for a given time step (option referred as criterion2 in Fig. 2). The difference 
between these two settings seems negligible.

3.3. 2D Shu-Osher problem

The well established test case proposed by Shu-Osher [10] involves the interaction of a smooth entropy wave with a 
shock wave and is a popular benchmark for testing high-order accuracy methods. The computational domain is defined 
by [−4.5, 4.5] × [0, 1], with periodic boundary conditions applied along the y-axis, and supersonic inflow and outflow 
13



V. Maltsev, D. Yuan, K.W. Jenkins et al. Journal of Computational Physics 473 (2023) 111755
Fig. 6. Troubled cell history for different orders with 1=extended and 2=limited bounds.

Fig. 7. Computed results for the solid body rotation on hybrid mesh with 64 edges per side with 3rd order polynomial. With RK unlocked and locked we 
refer to criterion1 and criterion2 of Fig. 2 respectively.

applied on the left and right side of the domain respectively. The initial profile consists of a shock wave (ρ,u, v, p) =
(3.857143,2.629369,0,10.333333) on the left when x < −4, and travelling over an entropy wave defined in the rest of 
the domain as (ρ,u, v, p) = (1+ 0.2sin(5x),0,0,1). A relatively coarse 2D triangular mesh is utilised with a resolution of 
each edge being h = 0.070 with approximately 13, 000 elements. The reference solution is computed with a solver of the 
one-dimensional Euler equations using 10, 000 grid points and employing a 5th order WENO scheme. The calculation is run 
until t = 1.8.
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The results are presented in terms of density distribution plots in Fig. 8 for 3rd , 4th and 5th order hybrid DG-FV(CWENOZ) 
scheme. The indicators tested are the MOODR with both extended and limited bounds and the SD with a value of 1.5 for 
the threshold parameter.

The results are in good agreement with the reference distribution and as expected the accuracy is improved when 
the discretisation order is increased. It has to be noted that for the lower order, the hybrid scheme shows a substantial 
improvement compared to the results provided by the pure FV scheme since a smaller portion of troubled cells is marked 
as troubled. However, when the polynomial order is increased, the pure FV scheme has a clear benefit in terms of agreement 
with reference, whereas this is not as noticeable for the hybrid scheme, especially when more sensitive indicators are used, 
as the solver resorts to the FV reconstruction more frequently. The troubled cells regions at final time are represented in 
Fig. 9, and is a good example of how the different troubled cell indicators work. The NAD detector of the MOOD type 
indicator checks whether the solution is monotonic, while the SD measures the total jump in the solution between the 
target and its neighbouring cells. This explains the more erratic behaviour of the former, while the SD consistently marks 
the cells crossed by the shock wave only. The adoption of limited bounds with MOODR indicator causes a larger portion of 
troubled cells aligned along the domain centreline and thus to a overly diffused profile correspondingly.

3.4. Double Mach reflection

The popular double Mach reflection test case of Woodward and Colella [74] is employed for assessing the accuracy and 
non-oscillatory properties of the hybrid scheme in presence of strong shocks. The problem consists of a shock wave moving 
diagonally with Mach number M = 10 and hitting a ramp inclined by α = 60◦ , gradually generating secondary shock waves 
and triple points. The shock wave is initially located at x = 1/6, with reflecting boundary conditions applied at the bottom 
of the domain. At the top boundary the exact solution of an isolated moving oblique shock wave with M = 10 is prescribed. 
Ahead of the shock, the fluid is at rest with uniform density and pressure ρ = 1.4 and p = 1.0, and post shock conditions 
are assumed behind the shock front. At the left and right side of the domain, supersonic inflow and supersonic outflow 
boundary conditions are respectively applied.

For additional details regarding the setup of the problem the reader is referred to the original work of Woodward and 
Colella [74]. The computational domain is given by [0, 4] × [0, 1] and is discretised by an unstructured mesh of approxi-
mately 150, 000 triangular cells, that corresponds to an equivalent resolution of h = 1/125. A hybrid DG-P3-FV(CWENOZ4) 
scheme is employed with MOODR , MOODO and SD troubled cell detectors, all adopted with the extended bounds option. 
The calculations are performed until time t = 0.2, using a CFL= 0.5 and λ1 = 107. The results are presented in Fig. 10 for 
density contours and troubled cells.

Regardless of the troubled cell indicator being used, the hybrid scheme correctly captures the flow pattern with the 
incident, reflected, and Mach stem shock waves meeting in the first triple point. Again, the troubled cell plot highlights 
the different behaviours of MOOD and SD troubled cells indicators, with the latter being activated more consistently in 
correspondence of discontinuous features, while the former is activated in a wider range of situations, including steep 
gradients, pressure waves, and eventually by the grid topology itself. Looking closer at the triple point and wave interaction 
zone density contours in Fig. 11, some key differences can be observed on how the slipstream and the Mach stem are 
resolved. The only configuration that reproduces the onset of instabilities along the slipstream is with the less sensitive 
MOODR indicator, as both SD and MOODO leads to larger regions of troubled cells and thus to a more diffused solution 
correspondingly, failing to resolve the rolling of shear waves. Regarding the Mach stem, a curved profile was observed with 
all the troubled cell indicators. A curved Mach stem can be associated with the carbuncle sensitivity of the scheme, the 
misalignment of the shock wave with respect to the grid orientation itself, and other effects as documented in [75,76]. A 
workaround to limit the carbuncle effect is to perform the reconstruction using primitive variables instead of conserved 
variables. In Fig. 11, for comparison, the results are presented with reconstruction on conserved variables for MOOD type 
indicators, and on primitive variables for SD indicator, for which the carbuncle effect is less evident also considering the 
less propagated jet, and in agreement with results of Woodward and Colella [74].

3.5. Schardin’s problem

The 2D test problem introduced by Schardin [77] is employed, where several flow structures are present that are ideal 
for assessing the non-oscillatory properties of the hybrid DG-FV framework. This problem involves a triangular wedge that 
is hit by a moving normal shock of Mach number Ms = 1.34. As the normal shock travels past the wedge, several flow 
structures emerge including contact waves, reflected shocks, vortices, and Mach stems. The computational domain has been 
defined to have the same dimensions as the experiment as described in [77], and we have applied reflective boundary 
conditions at the triangular wedge, top and bottom, while non-reflecting boundary conditions are applied at the right and 
left boundary, with the shock moving from left to right. A mixed-element unstructured mesh consisting of approximately 
340, 000 cells consisting of quadrilaterals and triangles is used, with a refined region around the wedge corresponding to an 
average edge size of h = 0.01 mm as shown in Fig. 12. The initial conditions are given in Table (2), where R = 287 J/kg·K, 
the ratio of specific heats γ = 1.4, and the Euler equations are solved.

For this test problem we use the following methods, one pure FV variant employing the CWENOZ5 scheme, a hybrid 
DG-FV referred to as P3CWENOZ4 and a P4CWENOZ5 since it uses the same CWENOZ5 FV component. The relaxed MOOD 
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Fig. 8. Density profiles for the Shu-Osher test case at time t = 1.8 obtained with hybrid DG-FV(CWENOZ) scheme with different troubled cells indicators 
and compared with FV and reference solutions.

Table 2
Initial Conditions for Schardin’s test problem.

Parameter Post-Shock Pre-Shock

P (Pa) 195557.25 101325
T (K) 350.5 288.15
u (m/s) (168.62,0,0) (0,0,0)

type troubled cell indicator is used for the hybrid DG-FV variant. The solution is advanced in time with the 3rd-order SSP-
Runge-Kutta with C F L = 0.3. The simulation is run for t = 200 ms from the time the normal shock contacts the wedge, 
which occurs at the start time of the simulation. From the obtained results with the hybrid DG-FV framework as shown in 
Fig. 13 it can be noticed that the obtained results agree well with the experiments of Chang and Chang [78], in terms of the 
flow structures that include the tip vortices, the bow shock, and the contact surfaces between the vortices and shock triple 
point. Comparing the solutions obtained from the three methods as shown in Fig. 14, it is evident that the hybrid DG-FV 
V. Maltsev, D. Yuan, K.W. Jenkins et al. Journal of Computational Physics 473 (2023) 111755
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Fig. 9. Profiles of Shu-Osher test case where troubled cells regions are highlighted in red, and resulting from MOOD and Shock Detector indicators with 
different threshold values.

Fig. 10. Density contours (left), and troubled cells (right), for the double Mach reflection test case at final time t = 0.2 with DG(P3)-FV(CWENOZ4) scheme 
and different troubled cell indicators.
17



Fig. 11. Zoom on the density contours of wave interaction regions. The onset of instabilities along the slipstream is more pronounced when a less sensitive 
troubled cell indicator, such the MOODR , is used. A curved Mach stem is noticed with all indicators, partially resolved when the reconstruction is performed 
using primitive variables instead of conserved variables, as presented for the SD indicator.

Fig. 12. Close-up of the mixed-element unstructured mesh used for the Schardin’s test problem.

variants are able to resolve more structures and acoustic waves from the shock-vortexlet interactions, compared to the pure 
FV-CWENOZ5, but the CWENOZ component is of paramount importance to ensure the non-oscillatory properties without a 
severe reduction on the spatial accuracy at regions where it is activated.

Looking at the predicted Mach number distribution along the symmetry line of the triangular wedge of Fig. 15 at t =
200 ms, it can be seen that the results between the three schemes agree well with each other, and the percentage of the 
troubled cells that resort to the FV-CWENOZ scheme are less than 0.4% and 0.2% throughout the duration of the simulation 
for the P3CWENOZ4 and P4CWENOZ5 schemes respectively.

3.6. Subsonic inviscid Taylor-Green vortex

The 3D inviscid subsonic Taylor-Green vortex test problem is used in order to understand the behaviour of the hybrid 
DG-FV framework in a setting where the flow is always “under-resolved” due to the lack of physical viscosity. This test 
problem reveals several characteristics (dissipation, dispersion etc.) of the numerical schemes which could be valuable when 
considering the extension of the schemes towards a large eddy simulation (LES). [41,52,79–89]. A coarse hexahedral mesh 
643 is used to discretise the computational domain � = [0, 2π ]3 with periodic boundaries and the initial condition which 
corresponds to a Mach number of M ≈ 0.08 is given by the following profile of primitive variables:

u(x,0) = sin(kx) cos(ky) cos(kz), (47)

v(x,0) = − cos(kx) sin(ky) cos(kz), (48)

w(x,0) = 0, (49)

ρ(x,0) = 1, (50)

p(x,0) = 100+ ρ [cos(2z) + 2] · [cos(2x) + cos(2y)]. (51)
V. Maltsev, D. Yuan, K.W. Jenkins et al. Journal of Computational Physics 473 (2023) 111755
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Fig. 13. Schlieren plot from experiment (left) [77] and density gradient (right) for DG(P4)-FV(CWENOZ5) for Schardin’s problem.

Fig. 14. Density gradient at t=200 ms for Schardin’s test problem obtained with the FV(CWENOZ5) DG(P3)-FV(CWENOZ4) and DG(P4)-FV(CWENOZ5) scheme.
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Fig. 15. Mach number distribution from the FV(CWENOZ4), the DG(P3)-FV(CWENOZ4) and the DG(P4)-FV(CWENOZ5) schemes (left) and troubled cells 
history for the DG(P3)-FV(CWENOZ4) scheme and DG(P4)-FV(CWENOZ5) schemes (right) for Schardin’s test problem.

Four numerical schemes are used, two pure FV methods using a 3rd-order and 4th-order spatial CWENOZ schemes, 
and two hybrid DG-FV of 3rd-order and 4th-order of accuracy. For detecting the troubled cells the shock detector troubled 
cell indicator is used with the threshold value Ck = 0.4. The solution is advance in time with the 3rd-order SSP Runge-
Kutta scheme with C F L = 0.3 until non dimensional time t∗ = 14, and the DNS results of Brachet et al. [90] are used for 
comparison. We can notice the typical behaviour of the transition of large symmetrical structures into smaller turbulent 
ones as shown in Fig. 16.

From the obtained results as shown in Fig. 17, it can be seen from the kinetic energy evolution with time that the 
hybrid DG-FV is outperforming the pure FV methods at the same grid resolution, as expected, while at the same time 
from the kinetic energy dissipation rate plot the DG-FV produces results closer to the DNS results. On a first read this 
is a desirable behaviour since the reduced numerical dissipation of the DG variant is producing results closer to the DNS 
results even at coarse grid resolution. However on a second read we notice that our implementation is not free from 
aliasing errors, something that is very well documented in the literature [91–95]. Another encouraging observation is that 
the simulation does not crash or diverge with the modal DG implementation currently employed, which does not use 
overintegration (also known as consistent integration), modal filtering, or split-form flux as reported by [93]. Examining the 
kinetic energy spectra at time t = 10.0, the hybrid DG-FV variant has a closer agreement with the theoretical Kolmogorov 
energy cascade for a wider-range of scales, which is indicative of the low-dissipation properties of the present framework, 
which can lead to significant improvements in the context of implicit or explicit LES simulations. The advantage of the very 
low dissipation of DG schemes is at the same time a bottleneck from the perspective that aliasing errors emerge, which 
can lead to stability issues, something that the high-order FV methods do not suffer from since they have significantly 
larger amount of dissipation. The situation is becoming more complicated by the fact that for a successful application 
of high-order methods for under-resolved turbulent flow simulations the “just right” amount of numerical dissipation is 
needed to ensure stability and physically meaningful results. In this front there are several elegant techniques that have 
been developed towards this goal such as overintegration [91], explicit filtering of high-order modes that are responsible 
for aliasing errors [94,96], and split-form flux approximation [91]. All of these techniques still have room for improvements 
such as the overintegration, which is computationally expensive, without a guarantee that aliasing errors will not appear 
at severe under-resolved situations, or the explicit filtering for the higher-order modes that is quite ad-hoc in nature and 
striking the perfect balance between accuracy and stability is far from obvious. We plan to further investigate the suitability 
of several mechanisms in the future for reducing the aliasing errors of the present modal-DG component of our hybrid 
DG-FV framework.

3.7. Supersonic inviscid Taylor-Green vortex

An interesting variation of the Taylor-Green vortex flow problem involves the supersonic variant which is mostly targeted 
towards assessing the non-oscillatory properties of the developed framework. It was recently introduced by Lusher and 
Sandham [97] and is better suited for numerical methods intended for compressible flow problems. The computational 
domain and the velocity field remain the same as the subsonic variant previously described and the parameters that change 
are the pressure field:
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Fig. 16. Solution of the Taylor-Green vortex flow computed with the DG(P3)-FV(CWENOZ4) on a hexahedral mesh of 643. The isosurfaces of the Q-criterion 
Q=2.5, coloured by the kinetic energy are plotted at times t = 2, 4, 5, 6, 8 and 10 from top left to bottom right respectively.

Fig. 17. Kinetic energy evolution with time (left), kinetic energy dissipation rate (middle) and kinetic energy spectra at t = 10.0 for the subsonic inviscid 
Taylor-Green Vortex obtained with various schemes on a 643 hexahedral mesh, and comparison with the DNS results of Brachet et al. [90]. DG-FV is 
superior at the same resolution for kinetic energy spectra where a closer agreement with the Kolmogorov’s slope is obtained, but the aliasing errors 
present at the kinetic energy dissipation rate point to improvements required such as split-form flux, overintergration or filtering.

p(x, y, z,0) = 1

γ M2
ref

+ 1

16
[cos(2z) + 2] · [cos(2x) + cos(2y)], (52)

and the density which is computed from the equation of state.
We only examine the variant with a Mach number Mref = 1.25 and the simulations were carried out on a hexahedral 

mesh of 643 with several orders of the DG-FV framework, as well as on a hexahedral mesh of 1283 with a fourth-order 
DG-FV scheme. All of the methods were augmented by the shock-detector type indicator with a threshold value Ck = 0.2. A 
CFL number of 0.3 is used for the explicit Runge-Kutta 3rd-order scheme, up to t = 20 for obtaining the required statistics. 
The results of Lusher and Sandham [97] are used for comparison against the computed solutions.
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Fig. 18. Evolution of the percentage of the troubled cells (left) and kinetic energy (right) for the supersonic Taylor-Green vortex flow computed with the 
several schemes of the present framework and comparison with the reference results of Lusher and Sandham [97] obtained at a resolution of 5123 with a 
5th-order accurate WENO scheme.

Fig. 19. Contour plots of the density gradient for the supersonic Taylor-Green vortex flow computed with the DG(P4)-FV(CWENOZ5) on a hexahedral mesh 
of 1283 at the Y = π (top) and Z = π (bottom). The contour plots at times t = 2, 4, 6, 8, 10 and 12 from left to right.

From the obtained results as shown in Fig. 18 it can be noticed that the percentage of the troubled cells suddenly in-
creases between t = 5 − 12 for all the schemes, and as the resolution of the mesh is increased the percentage of troubled 
cells is also reduced. Examining the kinetic energy evolution as a function of time it can be seen that a close agreement is 
obtained with the reference results of Lusher and Sandham [97] at a resolution of 5123 with a 5th-order accurate WENO 
scheme. It has to be stressed however that our setup is inviscid and therefore a converged solution at the absence of vis-
cosity can not be obtained. Nonetheless, this problem is ideal for assessing the non-oscillatory properties of the framework 
where it is robust enough to not be put at risk of diverging from the strong-gradients present, or the aliasing errors identi-
fied previously. Additionally, we plot the density gradient magnitude at the middle of the Z-axis (XY plane) and Y-axis (XZ 
plane) on the finest hexahedral mesh of 1283 obtained with DG(P4)-FV(CWENOZ5) in Fig. 19, where the similar patterns as 
Lusher and Sandham [97] are noticed up to t∗ = 10, since due to absence of viscosity the setup is significantly different at 
late times.

Finally, in Fig. 20 we have also plotted the troubled cells in the domain for the DG(P4)-FV(CWENOZ5) on the finest 
hexahedral mesh at different instants where it can be noticed that the number of cells reduce at later times, and these are 
the regions where the high-order CWENOZ5 component is activated.

3.8. Sonic boom prediction of LM1021

The final test problem involves the prediction of the near-field pressure signature of the supersonic Lockheed Martin 
1021-01 model from the first sonic boom prediction workshop [98]. The key aim of this workshop was to utilise CFD 
methods to better understand the acoustic footprint predicted from different models. This in turn could lead to solutions 
for minimising the sonic boom from supersonic aircraft and therefore making their use more environmentally friendly. A 
perspective of the model can be seen in Fig. 21, and the primary goal for employing this test is to assess the robustness and 
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Fig. 20. Troubled cells coloured by the x-velocity for the supersonic Taylor-Green vortex flow computed with the DG(P4)-FV(CWENOZ5) on a hexahedral 
mesh of 1283 at times t = 5, 6, 7, 8, 9 and 10 from top left to bottom right respectively.

Fig. 21. Sonic boom prediction mesh.

accuracy of the hybrid DG-FV framework on an aeronautical configuration that includes flow regions of strong gradients, 
while utilising the coarsest hybrid unstructured mesh provided in the first sonic boom prediction workshop [98] that consist 
of approximately 5,3 million cells. The mesh used is significantly coarser from most of the meshes used in the workshop 
where the mesh sizes ranged from 13-57 million for the Euler equations simulations. The flow conditions include a free 
stream Mach number M∞ = 1.6 and angle of attack of 2.3 degrees, and due to the fact that the provided grid is oriented 
at this incidence we run the simulation at 0 degrees angle of attack. We solve the 3D Euler equations using two schemes, 
the high-order FV CWENOZ3 and the hybrid DG-FV (P2CWENOZ3) with the shock detector indicator with the threshold 
value Ck = 0.2 and a local-time stepping is used with a C F L = 0.3 for accelerating the simulation to reach a steady state. 
The simulation is deemed converged when the integrated forces do not change more than ±0.001. The mesh consists of 
tetrahedral cells close to the LM1021 model, and away from the model hexahedral elements are used, with the interface 
between them being accommodated by pyramidal elements as shown in Fig. 21. Supersonic inflow and outflow boundary 
conditions are applied at the entire computational domain, except at surface of the LM1021 model where wall boundaries 
are defined, and the symmetry boundary conditions at the symmetry plane since half of the model is used.

The parameter that we are focusing on in terms of the results is the pressure signature �P/P∞ similarly to the workshop 
[98]. From the obtained results as shown in Fig. 22, it can be noticed that the pressure signature predictions from both 
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Fig. 22. Contour plots of pressure signature (top) for the hybrid DG-FV (P2CWENOZ3) scheme (left) and the FV (CWENOZ3) scheme, and the pressure 
signature (bottom) at 31.8 inches below the model obtained with both schemes and comparison with the experimental results from the sonic boom 
prediction workshop [98]. It can be noticed that the hybrid DG-FV provides the closest agreement with the experimental results.

variants FV and hybrid DG-FV are similar at least in the contour plots at the centreline (φ = 0) of the domain. When 
extracting the same signature at the centreline (φ = 0) of the domain but at 31.8 inches away from the model and compare 
the results against the experimental results at the same location some distinct differences between the schemes can be 
noticed. The hybrid DG-FV variant is able to obtain a closer agreement with the experimental results primarily due the 
largest peaks obtained compared to the pure FV variant, and it is remarkable that his result is achieved at such coarse grid 
resolution where only 45 cells are used for the entire model at 31.8 inches away from the model.

Finally we can notice the pressure coefficient distribution on the surface of the LM1021 obtained with the hybrid DG-FV 
scheme, where the location of the shocks is evident and in agreement with the computational and experimental results 
from the sonic boom prediction workshop [98]. Additionally we plot the cells that are deemed as troubled and are solved 
by the FV-CWENOZ3 method (Fig. 23).

4. Conclusions

This paper details a family of high-order, non-oscillatory, hybrid DG-FV schemes for mixed-element unstructured meshes 
up to 5th-order spatial accuracy. The schemes are able to achieve the accuracy characteristic of DG schemes in smooth flow 
regions, maintaining robustness and avoiding unphysical oscillations in the presence of discontinuous flow features. This is 
accomplished without a significant increase in computational effort by switching to a high-order FV(CWENOZ) method when 
troubled cells are detected. A variety of configurations for the a priori troubled cell detection were tested, including but not 
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Fig. 23. Contour plots of the pressure coefficient on the surface of the LM1021, and troubled cells coloured by the Mach number obtained with the hybrid 
DG-FV (P2CWENOZ3) scheme.

limited to MOODO , MOODR and shock detector. Additionally we investigated the influence of the bounds definition, and 
frequency of checking for troubled cells. It was found that reducing the number of troubled cells detected, as expected, pro-
vides higher accuracy and better resolution of flow features. Using extended bounds MOOD with a more restrictive threshold 
provided the best balance of accuracy and lack of oscillations for simple test cases, but a relaxed threshold was required 
to resolve the shear vortices in the double Mach reflection problem. However, the shock detector was found to be more 
consistent in marking the zones with physical discontinuities only. Application to the Taylor-Green vortex demonstrates that 
the hybrid DG-FV scheme is able to better match the dissipation rate of the reference DNS values, as well as the theoretical 
Kolmogorov kinetic energy spectra. However, the solution is still affected by instabilities in the high-energy modes from the 
DG component, for which we will investigate several mechanisms available to reduce them in the future, since the choices 
are far from obvious or unique. The present hybrid DG-FV provided significant benefits in resolving the pressure signature 
of a model supersonic airliner using a coarse hybrid unstructured mesh where several shock waves are present. The hybridi-
sation of high-order DG and high-order FV methods has demonstrated, that it has the potential to improve further their 
robustness and accuracy. The very fine tuning of the criteria for switching from DG to FV is not a necessity since a high-
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order CWENOZ variant of same order of accuracy is used, on the other hand when there is a mismatch in spatial order of 
accuracy (e.g. when using a 2nd-order FV method) fine tuning is mandatory. All the methods have been implemented and 
have been made available to the research community in the open-source UCNS3D CFD solver to accelerating the adoption 
of the methods. Other future work will include the search for an effective, parameter-free troubled cell indicator, subcell 
limiting that handles efficiently poor quality elements, and extension to viscous flows and multiphysics applications.
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Appendix A. Bounds definition

The troubled cell indicators were original designed following the principle of TVB type limiters, hence using information 
from the neighbouring cells to determine if certain condition, with respect to the target cell, were violated and then enabling 
a limiting function in order to cancel out possible numerical artifacts. When applied to unstructured meshes, these limiters 
can experience different behaviours based on the number of neighbouring cell layers, which in turn depends on arguments 
like mesh quality, reconstruction robustness and computational budget. An investigation on stencil selection algorithms 
was conducted in [55], and in [30] the impact of different bounds definitions on the accuracy of MUSCL type scheme 
demonstrated that using a stencil composed by direct side neighbouring cells only, is often the reason for reduced order of 
accuracy. This is due to the activation of the limiter in smooth flow regions, which can occur because although the unlimited 
reconstruction can provide a non-oscillatory solution, the bounds imposed by the direct side neighbours (coloured in yellow 
in Fig. A.24) provides an extremely narrow range of admissible solutions. In addition, things can worsen in presence of bad 
quality cell elements, as the limiter itself can be activated by the condition number of the resulting reconstruction system. 
In order to achieve higher orders of accuracy, the bounds should be extended to the entire stencil (composed by the set of 
grey, yellow and red cells in Fig. A.24). The numerical results in [30] demonstrate that this redefinition of the bounds allows 
to reach up to 4th order of convergence with a MUSCL scheme with the Michalak and Ollivier-Gooch limiter [99].

This raises the question of how the redefinition of the bounds can impact the detection of the troubled cells in the case 
of an unlimited DG solution. Theoretically, and as we will be able to verify in numerical experiments, the extension of the 
bounds to the entire stencil has a beneficial impact on the detection of the troubled cells, especially in smooth flow regions. 
Hence, the troubled cell indicators discussed in Section 2.5 are tested with both limited and extended bounds definition, 
where the minimum and maximum values to be used in the indicators, are defined respectively by:

UminL
i = min(Un : n = 1, ...,N) and UmaxL

i = max(Un : n = 1, ...,N), (A.1)

UminE
i = min(Um :m = 1, ...,M) and UmaxE

i = max(Um :m = 1, ...,M). (A.2)

In the above, the index n ranges from the target element to the last neighbouring element N for the limited bounds 
stencil, labelled with the superscript L, while the index m ranges from the target cell to the last neighbouring element M of 
the entire stencil for the extended bounds case, labelled with superscript E.
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Fig. A.24. Example of stencil for 4th order reconstruction on unstructured mesh. The limited bounds, as defined in text, refers to the stencil formed by the 
target cell, coloured in red, and its direct side neighbours, coloured in yellow. The extended bounds are defined by the entire set of red, yellow and grey 
cells of the total stencil.

Appendix B. Linear advection of smooth profile

The performance of pure FV, DG, and hybrid FV/DG schemes is first tested and compared for the 2D linear advection 
of a smooth function U (x, y, 0) = sin(2πx) · sin(2π y) on a computational domain defined by [0, 10] × [0, 10] with periodic 
boundary conditions applied on all sides. Three types of meshes are used, including a uniform quadrilateral, a triangular, and 
a hybrid unstructured mesh composed of mixed elements, as shown in Fig. 3, with four different resolutions corresponding 
to 16, 32, 64, and 128 edges per side for P2 and P3; and 8, 16, 32, and 64 for P4. The computations are run for one period 
and the eL2 error is computed at the final time according to Eq. (39). The computations are performed using CFL= 0.5 and 
a value λ1 = 107 for the central stencil for the CWENOZ reconstruction in the troubled cells.

The purpose of this test is to assess the accuracy of the solution obtained with the FV scheme with CWENOZ reconstruc-
tion and the DG scheme, which then are used as a benchmark for the performance of the hybrid DG-FV scheme.

The results are presented in Table (B.3) and they have to be carefully interpreted. Ideally, for smooth problems, the 
troubled indicator should not detect any troubled cells and the reconstruction should not be activated at all. However, it is 
typical of the majority of the troubled indicators to detect erroneously invalid cells around smooth extrema. Indeed, this is 
the case with both the indicators investigated in this test case, i.e. the PAD/NAD detectors defined in the MOOD paradigm 
and here simply labelled as the MOOD detector as in Eq. (36), and the shock detector defined as in Eq. (35), where the 
checking criteria are applied to the scalar variable. Assuming that both the pure FV and DG schemes are able to achieve the 
theoretical order of convergence, it is expected that the hybrid scheme will retain, at least, the same order of convergence. 
The pure FV and DG schemes are close to the theoretical order of convergence, although a smaller time step size would 
be beneficial to get closer to target order with the FV scheme, whereas for the DG scheme, the obtained convergence is 
impacted by round-off errors. On the other hand, it is practically difficult to determine the order of convergence of the 
hybrid scheme in a consistent way. One way to test the effectiveness of the FV and DG blending is to render artificially all 
the cells as troubled, and therefore enable the CWENOZ reconstruction for the higher DOFs everywhere in the domain. The 
results for this test are presented in Table (B.4) for the quadrilateral mesh, and demonstrate that the procedure is able to 
preserve the expected order of convergence even with all the cells considered troubled, although the resulting accuracy is 
generally more comparable to the pure FV scheme.

For more realistic situations, where troubled cells are actually determined by the activation of the detectors, a mesh 
refinement will inherently bring a decrease in the percentage of troubled cells in the domain (see Table (B.3)), undermining 
the consistency of the convergence study. In other words, since for coarser meshes the accuracy is heavily impacted by the 
higher number of cells where the reconstruction is enabled, it is difficult to compare it with refined meshes where the 
majority of the cells is using a pure DG scheme. Although this explains the higher rate of convergence observed for the 
hybrid DG-FV in Table (B.3) with both detectors, it is nevertheless interesting to observe how the decrease in percentage of 
troubled cell due to mesh refinement, affects the accuracy and the computational time with different detectors. Whereas 
the amount of troubled cells detected with the MOOD indicator is generally very small and located near the position 
of the peaks of the advected function, the shock detector, which is not really intended for this kind of scalar problems, 
clearly erroneously detects a majority of troubled cells. As expected, a larger population of troubled cells causes an accuracy 
degradation and an increase in computational time. In order to quantify the latter, we express it through a coefficient, 
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Table B.3
Values for eL2 error and convergence rates for pure FV and DG framework, and hybrid DG-FV with the MOODO and SD troubled cell indicators, for smooth 
profile advection test. For the hybrid schemes the average percentage of troubled cells are averaged on the total number of time steps and the additional 
costs for the reconstruction in the troubled cells is quantified though the CPU coefficient normalised with the pure DG computational time on the same 
mesh and polynomial order.
Order/Number of Edges FV DG DG/MOODO DG/SD

Quadrilateral Mesh eL2 OL2 eL2 OL2 eL2 OL2 % troub. cells CPU eL2 OL2 % troub. cells CPU

P2/16 9.14E-02 - 8.80E-05 - 1.92E-03 - 4.53 1.06 2.64E-02 - 27.9 1.25
P2/32 1.30E-02 2.81 3.05E-06 4.85 7.77E-05 4.63 1.09 1.05 2.35E-03 3.49 13.7 1.06
P2/64 1.66E-03 2.97 1.23E-07 4.63 2.99E-06 4.70 0.27 1.08 2.48E-04 3.24 6.73 1.10
P2/128 2.08E-04 2.99 7.33E-09 4.07 1.08E-07 4.79 0.07 1.04 2.82E-05 3.14 3.24 1.05

P3/16 7.28E-03 - 2.83E-07 - 7.37E-04 - 4.87 1.05 6.82E-03 - 97.8 1.70
P3/32 3.70E-04 4.30 5.36E-09 5.72 3.88E-05 4.25 1.21 1.01 3.10E-04 4.46 65.7 1.67
P3/64 3.45E-05 3.43 2.87E-10 4.22 1.47E-06 4.72 0.30 1.02 2.13E-05 3.86 36.3 1.51
P3/128 2.77E-06 3.64 2.27E-11 3.66 4.90E-08 4.91 0.07 1.01 9.85E-07 4.44 18.2 1.08

P4/8 1.66E-01 - 7.80E-07 - 1.60E-02 - 20.1 1.09 2.57E-01 - 100 1.58
P4/16 7.61E-03 4.45 8.67E-09 6.49 2.03E-04 6.29 4.70 1.05 1.50E-02 4.10 100 1.73
P4/32 2.75E-04 4.79 2.32E-10 5.22 1.95E-06 6.70 1.17 1.03 5.20E-04 4.85 99.3 1.71
P4/64 1.17E-05 4.55 1.04E-11 4.48 1.88E-08 6.68 0.30 1.02 2.06E-05 4.66 80.6 1.64

Triangular Mesh eL2 OL2 eL2 OL2 eL2 OL2 % troub. cells CPU eL2 OL2 % troub. cells CPU

P2/16 2.14E-02 - 3.38E-05 - 5.96E-04 - 2.61 1.12 9.01E-03 - 20.6 1.19
P2/32 2.92E-03 2.86 2.57E-06 3.72 2.65E-05 4.49 0.70 1.10 1.18E-03 2.94 11.8 1.13
P2/64 3.77E-04 2.95 2.27E-07 3.51 1.09E-06 4.59 0.16 1.08 1.40E-04 3.07 6.48 1.11
P2/128 4.72E-05 2.99 2.83E-08 3.00 1.61E-07 2.77 0.03 1.03 1.55E-05 3.17 3.41 1.07

P3/16 1.39E-03 - 2.26E-06 - 3.50E-04 - 2.66 1.03 1.21E-03 - 74.9 1.29
P3/32 9.60E-05 3.85 8.92E-08 4.67 1.53E-05 4.51 0.70 1.02 6.17E-05 4.30 44.6 1.15
P3/64 6.71E-06 3.84 5.71E-09 3.96 5.44E-07 4.81 0.16 1.03 3.21E-06 4.26 24.0 1.11
P3/128 5.15E-07 3.70 2.92E-10 4.29 1.78E-08 4.93 0.02 1.01 2.73E-07 3.56 12.4 1.09

P4/8 2.85E-02 - 9.78E-07 - 2.49E-03 - 10.6 - 3.84E-02 - 100 1.46
P4/16 1.27E-03 4.49 2.20E-08 5.47 2.86E-05 6.45 2.66 1.04 1.67E-03 4.52 100 1.58
P4/32 4.59E-05 4.79 4.20E-10 5.71 2.79E-07 6.68 0.70 1.03 6.62E-05 4.66 87.8 1.39
P4/64 1.64E-06 4.81 1.74E-11 4.60 2.36E-09 6.89 0.17 1.02 2.97E-06 4.48 65.0 1.26

Hybrid Mesh eL2 OL2 eL2 OL2 eL2 OL2 % troub. cells CPU eL2 OL2 % troub. cells CPU

P2/16 4.52E-02 - 1.58E-04 - 4.18E-03 - 3.31 1.13 1.56E-02 - 22.7 1.20
P2/32 6.08E-03 2.88 2.25E-05 2.81 8.69E-04 2.27 0.87 1.10 1.90E-03 3.04 12.6 1.13
P2/64 7.61E-04 3.01 2.67E-06 3.07 5.03E-05 4.11 0.22 1.02 2.29E-04 3.05 7.06 1.04
P2/128 9.55E-05 2.99 4.30E-07 2.63 1.75E-06 4.85 0.06 1.01 2.64E-05 3.12 3.74 1.03

P3/16 3.49E-03 - 4.22E-06 - 5.15E-04 - 3.42 1.04 3.55E-03 - 85.4 1.27
P3/32 1.62E-04 4.43 4.36E-07 3.28 5.22E-05 3.30 0.85 1.03 1.63E-04 4.45 52.3 1.16
P3/64 1.04E-05 3.96 2.97E-08 3.87 5.06E-07 6.69 0.20 1.07 8.89E-06 4.20 28.4 1.15
P3/128 7.50E-07 3.80 2.04E-09 3.86 3.21E-08 3.98 0.04 1.00 5.90E-07 3.91 14.7 1.05

P4/8 6.39E-02 - 5.13E-06 - 6.66E-03 - 13.9 1.03 9.01E-02 - 100 1.47
P4/16 3.13E-03 4.35 1.61E-07 4.99 1.04E-04 6.00 3.47 1.04 4.76E-03 4.24 100 1.56
P4/32 1.07E-04 4.88 6.06E-09 4.73 1.16E-06 6.49 0.86 1.02 1.69E-04 4.82 91.9 1.36
P4/64 3.37E-06 4.98 2.80E-10 4.44 2.53E-08 5.52 0.20 1.02 6.81E-06 4.63 70.6 1.28

Table B.4
Values for eL∞ and eL2 error and convergence rates for smooth profile advection test with hybrid DG-FV scheme when all the cells are artificially rendered 
as troubled.
DG/CWENOZ all cells troubled P2 P3 P4

Number of Edges eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2

16 2.12E-01 - 1.07E-01 - 1.61E-02 - 8.40E-03 - 3.00E-02 - 1.51E-02 -
32 3.12E-02 2.77 1.56E-02 2.78 7.85E-04 4.36 4.28E-04 4.30 1.04E-03 4.85 5.21E-04 4.86
64 4.02E-03 2.96 2.02E-03 2.95 4.21E-05 4.22 2.48E-05 4.11 3.34E-05 4.97 1.66E-05 4.97
128 5.02E-04 3.00 2.51E-04 3.01 2.48E-06 4.08 1.51E-06 4.04 1.05E-06 4.99 5.25E-07 4.99

referred as CPU, which is normalized by the time taken by the pure DG scheme with the same polynomial order and mesh 
resolution.

We noted that on unstructured meshes, the increase in computational time is negligible as long as the percentage of 
troubled cells is contained within the 20%.
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Fig. C.25. Computed results for the advection of step profile on different meshes with. The performance of the pure 3rd order FV and DG schemes are 
compared with the hybrid 3rd order DG/FV (DG(P2)-FV(CWENOZ3)) schemes using different troubled cell indicators.

Appendix C. Advection of discontinuous profile

The non-oscillatory performance of the hybrid scheme is now assessed against the advection of a discontinuous pro-
file. A square profile in two dimensions is advected for one period t = 1 and is defined by the following initial condi-
tions:

f(x, y) =
{
1, if (x, y) ∈ [0.2,0.8],
0, if otherwise.

(C.1)

The computational domain is again given by [0, 10] × [0, 10] with periodic boundary conditions applied on all sides, 
and the computations are performed on the uniform and unstructured meshes with a resolution corresponding to 64 edges 
per side. The results obtained with the pure FV, DG, and with the hybrid DG-FV scheme with the MOOD type indica-
tors with two different threshold values, for a 3rd order scheme, are presented in Fig. C.25. It can be observed that the 
pure DG better preserves the initial profile after one period, compared to the pure FV which has a more diffused pro-
file.

On the other hand the pure DG scheme produces overshoots at the base and at the edges of the profile, especially on 
the hybrid mesh. In order to dampen the oscillations, the hybrid scheme is tested with two threshold values, i.e. taking a 
value for α = 10−3 from the MOOD implementation of [27] and the relaxed value α = 10−1 of the implementation of [28], 
and the indicators will be referred as MOODO and MOODR respectively. In addition, the two bounds definitions discussed in 
Appendix A will be used with said indicators, and therefore MOODO

X and MOODR
X will refer to the extended bound setting, 

while MOODO
L and MOODR

L refer to the version with bounds limited to target cell’s direct side neighbours.
The time history of the total percentage of troubled cells is plotted in Fig. C.26. The configuration with bounds limited 

to the neighbouring cells results in a higher number of cells marked as troubled, regardless of the selected threshold value. 
As expected, extending the bounds to the entire stencil or setting a smaller value for the threshold value, such as for the 
MOODR

X , results in fewer invalid cells detected, which is beneficial for the final accuracy but is not sufficient to avoid some 
oscillations at the edges of the profile. On the other hand, the MOODO

X seems to be in this case the best compromise to 
preserve the original accuracy provided by the DG scheme, without producing any oscillation. Importantly, we note the 
similarity of the final results provided by the MOODO

X and MOODR
L , thus allowing the choice between a more conservative 

threshold value and the extended bound setting, or a more permissive value with a limited bound range.
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Fig. C.25. (continued)
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Fig. C.26. Troubled cell trends on different meshes comparing different troubled cell indicators.

References

[1] W.H. Reed, T.R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Tech. Rep., Los Alamos Scientific Laboratory, 1973.
[2] B. Cockburn, C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (3) (2001) 173–261.
[3] B. Cockburn, C.-W. Shu, TVB Runge-Kutta projection discontinous Galerkin finite element methods II, 1989.
[4] B. Cockburn, S.Y. Lin, C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-

dimensional systems, J. Comput. Phys. 84 (1) (1989) 90–113, https://doi .org /10 .1016 /0021 -9991(89 )90183 -6.
[5] G. Jiang, C.-W. Shu, On a cell entropy inequality for discontinuous Galerkin methods, Math. Comput. 62 (206) (1994) 531, https://doi .org /10 .2307 /

2153521.
[6] B. Cockburn, C.W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V, J. Comput. Phys. 141 (2) (1998) 199–224.
[7] R. Biswas, K.D. Devine Parallel, Adaptive finite element methods for conservation laws, Appl. Numer. Math. 9274 (93) (1994).
[8] A. Burbeau, P. Sagaut, C.H. Bruneau, A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys. 

169 (1) (2001) 111–150, https://doi .org /10 .1006 /jcph .2001.6718.
[9] V. Titarev, E. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, J. Comput. Phys. 201 (1) (2004) 238–260.

[10] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys. 83 (1) (1989) 32–78.
[11] A. Harten, B. Enquist, S. Osher, S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys. 71 (2) (1987) 

231–303.
[12] G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1) (1996) 202–228.
[13] J. Fernandez-Fidalgo, L. Ramirez, P. Tsoutsanis, I. Colominas, X. Nogueira, A reduced-dissipation WENO scheme with automatic dissipation adjustment, 

J. Comput. Phys. 425 (2021), https://doi .org /10 .1016 /j .jcp .2020 .109749.
[14] D. Levy, G. Puppo, G. Russo, O.F.C. Laws, Central WENO Schemes for Hyperbolic Systems of Conservation Laws, Mathematical Modelling and Numerical 

Analysis, 1999.
[15] D. Levy, G. Puppo, G. Russo, Compact central WENO schemes for multidimensional conservation laws, SIAM J. Sci. Comput. 22 (2000) 656–672.
[16] D. Levy, S. Nayak, C.-W. Shu, Y.-T. Zhang, Central WENO schemes for Hamilton-Jacobi equations on triangular meshes, SIAM J. Sci. Comput. 28 (6) 

(2006) 2229–2247.
[17] R. Borges, M. Carmona, B. Costa, W. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys. 

227 (2008) 3191–3211.
[18] M. Castro, B. Costa, W. Don, High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws, J. Comput. Phys. 230 

(2011) 1766–1792.
[19] J. Qiu, C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput. 26 (2005) 907–929, https://doi .org /10 .1137 /

S1064827503425298.
[20] J. Zhu, C.-W. Shu, J. Qiu, High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular 

meshes, Appl. Numer. Math. 153 (2020) 519–539, https://doi .org /10 .1016 /j .apnum .2020 .03 .013.
[21] H. Zhu, J. Qiu, J. Zhu, A simple, high-order and compact WENO limiter for RKDG method, Comput. Math. Appl. 79 (2) (2020) 317–336, https://

doi .org /10 .1016 /j .camwa .2019 .06 .034.
[22] J. Zhu, J. Qiu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method, III: unstructured meshes, J. 

Sci. Comput. 39 (2) (2009) 293–321.
[23] L. Krivodonova, J. Xin, J.F. Remacle, N. Chevaugeon, J.E. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic 

conservation laws, Appl. Numer. Math. 48 (3–4) (2004) 323–338, https://doi .org /10 .1016 /j .apnum .2003 .11.002.
[24] G. Fu, C.W. Shu, A new troubled-cell indicator for discontinuous Galerkin methods for hyperbolic conservation laws, J. Comput. Phys. 347 (2017) 

305–327, https://doi .org /10 .1016 /j .jcp .2017.06 .046.
[25] S. Diot, R. Loubère, S. Clain, The multidimensional optimal order detection method in the three-dimensional case: very high-order finite volume method 

for hyperbolic systems, Int. J. Numer. Methods Fluids 73 (4) (2013) 362–392, https://doi .org /10 .1002 /fld .3804.
[26] S. Clain, S. Diot, R. Loubére, A high-order finite volume method for systems of conservation laws-multi-dimensional optimal order detection (MOOD), 

J. Comput. Phys. 230 (10) (2011) 4028–4050, https://doi .org /10 .1016 /j .jcp .2011.02 .026.
[27] S. Diot, S. Clain, R. Loubére, Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very 

high-order polynomials, Comput. Fluids 64 (2012) 43–63, https://doi .org /10 .1016 /j .compfluid .2012 .05 .004.
[28] P. Farmakis, P. Tsoutsanis, X. Nogueira, WENO schemes on unstructured meshes using a relaxed a posteriori MOOD limiting approach, Comput. Methods 

Appl. Mech. Eng. 363 (2020), https://doi .org /10 .1016 /j .cma .2020 .112921.
[29] P. Tsoutsanis, M.S.S. Pavan Kumar, P.S. Farmakis, A relaxed a posteriori mood algorithm for multicomponent compressible flows using high-order 

finite-volume methods on unstructured meshes, Appl. Math. Comput. 437 (2023) 127544, https://doi .org /10 .1016 /j .amc .2022 .127544.
[30] P. Tsoutsanis, Extended bounds limiter for high-order finite-volume schemes on unstructured meshes, J. Comput. Phys. 362 (2018) 69–94.
[31] UCNS3D CFD code, http://www.ucns3d .com. (Accessed 5 May 2022).
[32] A.F. Antoniadis, D. Drikakis, P.S. Farmakis, L. Fu, I. Kokkinakis, X. Nogueira, P.A. Silva, M. Skote, V. Titarev, P. Tsoutsanis, UCNS3D: an open-source 

high-order finite-volume unstructured cfd solver, Comput. Phys. Commun. 279 (2022) 108453, https://doi .org /10 .1016 /j .cpc .2022 .108453.
31

http://refhub.elsevier.com/S0021-9991(22)00818-X/bib375B8EEBE6C860B8AF0139503F7DC67As1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib4B4790199D024BDDE686B161B43205A5s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib6E728FC0FB76241526363955006200E3s1
https://doi.org/10.1016/0021-9991(89)90183-6
https://doi.org/10.2307/2153521
https://doi.org/10.2307/2153521
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibC477D351FD0BB90CC979823979FD7C83s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibF96BF41DAF5F3C83EBAB7FC8CE6D2C06s1
https://doi.org/10.1006/jcph.2001.6718
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib7B1CE1BAE94C007693B42FD6F390CBA9s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib69555548B143E37599C411F4B1CC10BDs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib2041C7656602A6F6AB302D9C1194841Bs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib2041C7656602A6F6AB302D9C1194841Bs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib3FAB08F59F0BA342B82C5E385C1148E0s1
https://doi.org/10.1016/j.jcp.2020.109749
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibB47AE3536EF9B027773B7DD17761200Ds1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibB47AE3536EF9B027773B7DD17761200Ds1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib7668B16D4ADF959867FDB24FB9ECE9C4s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib2CDEBB310B63AFE8BDC49F535E7E2282s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib2CDEBB310B63AFE8BDC49F535E7E2282s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib5AEE7CCCCEA4F56C878157B101F3C6C9s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib5AEE7CCCCEA4F56C878157B101F3C6C9s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib3CDB52D8D20A31324750AC6974259376s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib3CDB52D8D20A31324750AC6974259376s1
https://doi.org/10.1137/S1064827503425298
https://doi.org/10.1137/S1064827503425298
https://doi.org/10.1016/j.apnum.2020.03.013
https://doi.org/10.1016/j.camwa.2019.06.034
https://doi.org/10.1016/j.camwa.2019.06.034
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib5B1AB9D68C3D7905AF1AC28EC0C8DC93s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib5B1AB9D68C3D7905AF1AC28EC0C8DC93s1
https://doi.org/10.1016/j.apnum.2003.11.002
https://doi.org/10.1016/j.jcp.2017.06.046
https://doi.org/10.1002/fld.3804
https://doi.org/10.1016/j.jcp.2011.02.026
https://doi.org/10.1016/j.compfluid.2012.05.004
https://doi.org/10.1016/j.cma.2020.112921
https://doi.org/10.1016/j.amc.2022.127544
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibF84C8AA7EDBBEBA2C7C77432747B114Es1
http://www.ucns3d.com
https://doi.org/10.1016/j.cpc.2022.108453


V. Maltsev, D. Yuan, K.W. Jenkins et al. Journal of Computational Physics 473 (2023) 111755
[33] H. Luo, J.D. Baum, R. Löhner, A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, J. Comput. Phys. 
227 (20) (2008) 8875–8893, https://doi .org /10 .1016 /j .jcp .2008 .06 .035.

[34] H. Luo, L. Luo, R. Nourgaliev, V.A. Mousseau, N. Dinh, A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on 
arbitrary grids, J. Comput. Phys. 229 (19) (2010) 6961–6978, https://doi .org /10 .1016 /j .jcp .2010 .05 .033.

[35] W. Boscheri, G. Dimarco, High order modal discontinuous Galerkin implicit-explicit Runge Kutta and linear multistep schemes for the Boltzmann model 
on general polygonal meshes, Comput. Fluids 233 (2022) 105224.

[36] E. Gaburro, W. Boscheri, S. Chiocchetti, C. Klingenberg, V. Springel, M. Dumbser, High order direct arbitrary-Lagrangian-Eulerian schemes on moving 
Voronoi meshes with topology changes, J. Comput. Phys. 407 (2020) 109167.

[37] P. Tsoutsanis, V. Titarev, D. Drikakis, WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions, J. Comput. Phys. 
230 (4) (2011) 1585–1601.

[38] V. Titarev, P. Tsoutsanis, D. Drikakis, WENO schemes for mixed-element unstructured meshes, Commun. Comput. Phys. 8 (3) (2010) 585–609.
[39] M. Dumbser, M. Kaser, V. Titarev, E. Toro, Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic 

systems, J. Comput. Phys. 226 (1) (2007) 204–243.
[40] P. Tsoutsanis, M. Dumbser, Arbitrary high order central non-oscillatory schemes on mixed-element unstructured meshes, Comput. Fluids 225 (2021), 

https://doi .org /10 .1016 /j .compfluid .2021.104961.
[41] P. Tsoutsanis, A. Antoniadis, D. Drikakis, WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows, J. Comput. 

Phys. 256 (2014) 254–276.
[42] P. Tsoutsanis, D. Drikakis, A high-order finite-volume method for atmospheric flows on unstructured grids, J. Coupled Syst. Multiscale Dyn. 4 (2016) 

170–186, https://doi .org /10 .1166 /jcsmd .2016 .1104.
[43] A. Antoniadis, P. Tsoutsanis, D. Drikakis, Numerical accuracy in RANS computations of high-lift multi-element airfoil and aircraft configurations, in: 

53rd AIAA Aerospace Sciences Meeting, vol. 0317, 2015.
[44] A. Antoniadis, P. Tsoutsanis, D. Drikakis, High-order schemes on mixed-element unstructured grids for aerodynamic flows, in: 42nd AIAA Fluid Dynam-

ics Conference and Exhibit, vol. 2833, 2012.
[45] A. Antoniadis, P. Tsoutsanis, I. Kokkinakis, Z. Rana, D. Drikakis Azure, An advanced CFD software suite based on high-resolution and high-order methods, 

in: 53rd AIAA Aerospace Sciences Meeting, vol. 0813, 2015.
[46] A. Antoniadis, D. Drikakis, I.W. Kokkinakis, P. Tsoutsanis, Z. Rana, High-order methods for hypersonic shock wave turbulent boundary layer interaction 

flow, in: 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, vol. 3524, 2015.
[47] P. Tsoutsanis, I. Kokkinakis, L. Konozsy, D. Drikakis, R. Williams, D. Youngs, Comparison of structured- and unstructured-grid, compressible and incom-

pressible methods using the vortex pairing problem, Comput. Methods Appl. Mech. Eng. 293 (2015) 207–231, https://doi .org /10 .1016 /j .cma .2015 .04 .010.
[48] P. Tsoutsanis, H. Srinivasan, Adaptive mesh refinement techniques for high-order finite-volume WENO schemes, in: ECCOMAS Congress 2016, Crete, 

Greece, 2016.
[49] P. Tsoutsanis, N. Simmonds, A. Gaylard, Implementation of a low-Mach number modification for high-order finite-volume schemes for arbitrary hybrid 

unstructured meshes, in: ECCOMAS Congress 2016, Crete, Greece, 2016.
[50] P. Tsoutsanis, D. Drikakis, Addressing the challenges of implementation of high-order finite-volume schemes for atmospheric dynamics on unstructured 

meshes, in: ECCOMAS Congress 2016, Crete, Greece, 2016.
[51] P. Tsoutsanis, A. Antoniadis, K. Jenkins, Improvement of the computational performance of a parallel unstructured WENO finite volume CFD code for 

implicit large Eddy simulation, Comput. Fluids 173 (2018) 157–170, https://doi .org /10 .1016 /j .compfluid .2018 .03 .012.
[52] N. Simmonds, P. Tsoutsanis, A. Antoniadis, K. Jenkins, A. Gaylard, Low-Mach number treatment for finite-volume schemes on unstructured meshes, 

Appl. Math. Comput. 336 (2018) 368–393.
[53] F. Ricci, P. Silva, P. Tsoutsanis, A. Antoniadis, Hovering rotor solutions by high-order methods on unstructured grids, Aerosp. Sci. Technol. 97 (2020), 

https://doi .org /10 .1016 /j .ast .2019 .105648.
[54] P. Silva, P. Tsoutsanis, A. Antoniadis, Simple multiple reference frame for high-order solution of hovering rotors with and without ground effect, Aerosp. 

Sci. Technol. 111 (2021), https://doi .org /10 .1016 /j .ast .2021.106518.
[55] P. Tsoutsanis, Stencil selection algorithms for WENO schemes on unstructured meshes, J. Comput. Phys.: X 4 (2019), https://doi .org /10 .1016 /j .jcpx .2019 .

100037.
[56] P. Tsoutsanis, E.M. Adebayo, A. Carriba Merino, A. Perez Arjona, M. Skote, CWENO finite-volume interface capturing schemes for multicomponent flows 

using unstructured meshes, J. Sci. Comput. 89 (2021), https://doi .org /10 .1007 /s10915 -021 -01673 -y.
[57] A.F. Antoniadis, P. Tsoutsanis, D. Drikakis, Assessment of high-order finite volume methods on unstructured meshes for rans solutions of aeronautical 

configurations, Comput. Fluids 146 (2017) 86–104, https://doi .org /10 .1016 /j .compfluid .2017.01.002.
[58] P. Silva, P. Tsoutsanis, A. Antoniadis, Numerical investigation of full helicopter with and without the ground effect, Aerosp. Sci. Technol. 122 (2022), 

https://doi .org /10 .1016 /j .ast .2022 .107401.
[59] A. Jalali, C. Ollivier-Gooch, Higher-order finite volume solution reconstruction on highly anisotropic meshes, in: 21st AIAA Computational Fluid Dy-

namics Conference, 2013.
[60] M. Dumbser, M. Castro, C. Pares, E. Toro, ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical 

flows, Comput. Fluids 38 (9) (2009) 1731–1748.
[61] X. Nogueira, L. Cueto-Felgueroso, I. Colominas, F. Navarrina, M. Casteleiro, A new shock-capturing technique based on moving least squares for higher-

order numerical schemes on unstructured grids, Comput. Methods Appl. Mech. Eng. 199 (37–40) (2010) 2544–2558.
[62] G.W. Stewart, Matrix Algorithms, Volume 1: Basic Decompositions, Society for Industrial and Applied Mathematics SIAM, 1998.
[63] E. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves 4 (1) (1994) 25–34.
[64] A. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1971.
[65] P. Tsoutsanis, Knl performance comparison UCNS3D, ARCHER performance report, 2017, 157–170, www.archer.ac .uk /community /benchmarks /archer-

knl /KNLperfUCNS3D .pdf.
[66] M. Dumbser, O. Zanotti, R. Loubère, S. Diot, A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conserva-

tion laws, J. Comput. Phys. 278 (2014) 47–75, https://doi .org /10 .1016 /j .jcp .2014 .08 .009, arXiv:1406 .7416.
[67] F. Vilar, A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction, J. 

Comput. Phys. 387 (2019) 245–279, https://doi .org /10 .1016 /j .jcp .2018 .10 .050.
[68] A. Huerta, E. Casoni, J. Peraire, A simple shock-capturing technique for high-order discontinuous Galerkin methods, Int. J. Numer. Methods Fluids 

69 (10) (2012) 1614–1632, https://doi .org /10 .1002 /fld .2654.
[69] S. Busto, S. Chiocchetti, M. Dumbser, E. Gaburro, I. Peshkov, High order ADER schemes for continuum mechanics, Front. Phys. 8 (2020) 32, https://

doi .org /10 .3389 /fphy.2020 .00032.
[70] J. Qiu, C. Shu, A comparison of troubled cell indicators for Runge-Kutta discontinuous Galerkin methods using WENO limiters, SIAM J. Sci. Comput. 27 

(2005) 995–1013.
[71] J. Fernández-Fidalgo, X. Nogueira, L. Ramírez, I. Colominas, An a posteriori, efficient, high-spectral resolution hybrid finite-difference method for com-

pressible flows, Comput. Methods Appl. Mech. Eng. 335 (2018) 91–127, https://doi .org /10 .1016 /j .cma .2018 .02 .013.
32

https://doi.org/10.1016/j.jcp.2008.06.035
https://doi.org/10.1016/j.jcp.2010.05.033
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibDB9066AEDD19987A78AD20ACA66AE48Es1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibDB9066AEDD19987A78AD20ACA66AE48Es1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib2B53A73C07E4DB0D931B9C18E8A353ACs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib2B53A73C07E4DB0D931B9C18E8A353ACs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib122C6285596679019F36D3ABD33E445Ds1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib122C6285596679019F36D3ABD33E445Ds1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib6D86D953C0365F2BD5A727AC4BD42AC5s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib7656768C48FEAC223236D155721E41D6s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib7656768C48FEAC223236D155721E41D6s1
https://doi.org/10.1016/j.compfluid.2021.104961
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibA6430518CFED14156682974670A2001As1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibA6430518CFED14156682974670A2001As1
https://doi.org/10.1166/jcsmd.2016.1104
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib1512F39FDC19A99E16A578C4C9417181s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib1512F39FDC19A99E16A578C4C9417181s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibE90163CA4B96353C57EDD0B19BF17F96s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibE90163CA4B96353C57EDD0B19BF17F96s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib7B35C6811175788BD93344726BBE8970s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib7B35C6811175788BD93344726BBE8970s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibD2FBEBC8766B875F4F75C30A12C3B984s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibD2FBEBC8766B875F4F75C30A12C3B984s1
https://doi.org/10.1016/j.cma.2015.04.010
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibB9C620D9EA98DCF516CECFD2DCDEB703s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibB9C620D9EA98DCF516CECFD2DCDEB703s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibB8D2C8A52BCB90D35ABDA54A4ADB6014s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibB8D2C8A52BCB90D35ABDA54A4ADB6014s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib05BDC1709285C05566CA6EFEE99DD3CAs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib05BDC1709285C05566CA6EFEE99DD3CAs1
https://doi.org/10.1016/j.compfluid.2018.03.012
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibCEDD5ED496F3519954278ED8F0414DC4s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibCEDD5ED496F3519954278ED8F0414DC4s1
https://doi.org/10.1016/j.ast.2019.105648
https://doi.org/10.1016/j.ast.2021.106518
https://doi.org/10.1016/j.jcpx.2019.100037
https://doi.org/10.1016/j.jcpx.2019.100037
https://doi.org/10.1007/s10915-021-01673-y
https://doi.org/10.1016/j.compfluid.2017.01.002
https://doi.org/10.1016/j.ast.2022.107401
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibDE8F5CAAE705E5C5CE0009AA4247D000s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibDE8F5CAAE705E5C5CE0009AA4247D000s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibE69A8F8C1F124C919D00104472E064C9s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibE69A8F8C1F124C919D00104472E064C9s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib55270DD18C98418F3BE1D1D6DA1649D0s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib55270DD18C98418F3BE1D1D6DA1649D0s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib66C35CD8077F7E1DB5FAEFBC048A646As1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib02564D34DF465F7FC38B11B70EAB704Fs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibC48FC183AFF6804CA56AB90FDC6F1B93s1
http://www.archer.ac.uk/community/benchmarks/archer-knl/KNLperfUCNS3D.pdf
http://www.archer.ac.uk/community/benchmarks/archer-knl/KNLperfUCNS3D.pdf
https://doi.org/10.1016/j.jcp.2014.08.009
https://doi.org/10.1016/j.jcp.2018.10.050
https://doi.org/10.1002/fld.2654
https://doi.org/10.3389/fphy.2020.00032
https://doi.org/10.3389/fphy.2020.00032
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib68A28A40482C3662E7FDC129C281861Cs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib68A28A40482C3662E7FDC129C281861Cs1
https://doi.org/10.1016/j.cma.2018.02.013


V. Maltsev, D. Yuan, K.W. Jenkins et al. Journal of Computational Physics 473 (2023) 111755
[72] D. Balsara, C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys. 
160 (2) (2000) 405–452.

[73] R. Leveque, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal. 33 (2) (1996) 627–665, https://doi .org /
10 .1137 /0733033.

[74] P. Woodward, P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54 (1) (1984) 115–173.
[75] H. Li, G. Ben-Dor, Analysis of double-Mach-reflection wave configurations with convexly curved Mach stems, Shock Waves 9 (1999) 319–326.
[76] A.N. Semenov, M.K. Berezkina, I.V. Krassovskaya, Classification of pseudo-steady shock wave reflection types, Shock Waves 22 (2012) 307–316.
[77] H. Schardin, High frequency cinematography in the shock tube, J. Photogr. Sci. 2 (1957) 17–19.
[78] S.-M. Chang, K.-S. Chang, On the shock vortex-interaction in Schardin’s problem, Shock Waves 10 (2000) 333–343.
[79] D. Drikakis, C. Fureby, F. Grinstein, D. Youngs, Simulation of transition and turbulence decay in the Taylor-Green vortex, J. Turbul. 8 (2007) 1–12.
[80] J. Bull, A. Jameson, Simulation of the Taylor-Green vortex using high-order flux reconstruction schemes, AIAA J. 53 (9) (2015) 2750–2761.
[81] M. Dumbser, I. Peshkov, E. Romenski, O. Zanotti, High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: 

viscous heat-conducting fluids and elastic solids, J. Comput. Phys. 314 (2016) 824–862.
[82] J.-B. Chapelier, M. de la Llave Plata, E. Lamballais, Development of a multiscale LES model in the context of a modal discontinuous Galerkin method, 

Comput. Methods Appl. Mech. Eng. 307 (2016) 275–299.
[83] A. Sifounakis, S. Lee, D. You, A conservative finite volume method for incompressible Navier-Stokes equations on locally refined nested Cartesian grids, 

J. Comput. Phys. 326 (2016) 845–861.
[84] C.-W. Shu, W.-S. Don, D. Gottlieb, O. Schilling, L. Jameson, Numerical convergence study of nearly incompressible, inviscid Taylor-Green vortex flow, J. 

Sci. Comput. 24 (1) (2005) 569–595.
[85] B. Vermeire, F. Witherden, P. Vincent, On the utility of GPU accelerated high-order methods for unsteady flow simulations: a comparison with industry-

standard tools, J. Comput. Phys. 334 (2017) 497–521.
[86] F. Fambri, M. Dumbser, Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on 

staggered Cartesian grids, Appl. Numer. Math. 110 (2016) 41–74.
[87] F. Fambri, M. Dumbser, Semi-implicit discontinuous Galerkin methods for the incompressible Navier-Stokes equations on adaptive staggered Cartesian 

grids, Comput. Methods Appl. Mech. Eng. 324 (2017) 170–203.
[88] M. Tavelli, M. Dumbser, A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on 

unstructured tetrahedral meshes, J. Comput. Phys. 319 (2016) 294–323.
[89] M. Tavelli, M. Dumbser, A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution 

of the compressible Navier-Stokes equations at all Mach numbers, J. Comput. Phys. 341 (2017) 341–376.
[90] M. Brachet, D. Meiron, B. Nickel, R. Morf, U. Frisch, S. Orszag, Small-scale structure of the Taylor-Green vortex, J. Fluid Mech. 130 (1983) 411–452, 

https://doi .org /10 .1017 /S0022112083001159.
[91] A. Winters, R. Moura, G. Mengaldo, G. Gassner, S. Walch, J. Peiro, S. Sherwin, A comparative study on polynomial dealiasing and split form discontinuous 

Galerkin schemes for under-resolved turbulence computations, J. Comput. Phys. 372 (2018) 1–21, https://doi .org /10 .1016 /j .jcp .2018 .06 .016.
[92] R. Moura, G. Mengaldo, J. Peiro, S. Sherwin, On the Eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit les / under-

resolved dns of Euler turbulence, J. Comput. Phys. 330 (2017) 615–623, https://doi .org /10 .1016 /j .jcp .2016 .10 .056.
[93] J.-B. Chapelier, M. De La Llave Plata, F. Renac, Inviscid and viscous simulations of the Taylor-Green vortex flow using a modal discontinuous Galerkin 

approach, https://doi .org /10 .2514 /6 .2012 -3073, 2012.
[94] G. Gassner, D. Kopriva, A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element 

methods, SIAM J. Sci. Comput. 33 (5) (2011) 2560–2579, https://doi .org /10 .1137 /100807211.
[95] D. Flad, A. Beck, C.-D. Munz, Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral 

element method, J. Comput. Phys. 313 (2016) 1–12, https://doi .org /10 .1016 /j .jcp .2015 .11.064.
[96] G. Gassner, A. Winters, A novel robust strategy for discontinuous Galerkin methods in computational fluid mechanics: why? when? what? where?, 

Front. Phys. 8 (2021), https://doi .org /10 .3389 /fphy.2020 .500690.
[97] D. Lusher, N. Sandham, Assessment of low-dissipative shock-capturing schemes for the compressible Taylor-Green vortex, AIAA J. 59 (2) (2021) 

533–545, https://doi .org /10 .2514 /1.J059672.
[98] M. Park, J. Morgenstern, Summary and statistical analysis of the first AIAA sonic boom prediction workshop, J. Aircr. 53 (2) (2016) 578–598, https://

doi .org /10 .2514 /1.C033449.
[99] K. Michalak, C. Ollivier-Gooch, Limiters for unstructured higher-order accurate solutions of the Euler equations, in: 46th AIAA Aerospace Sciences 

Meeting and Exhibit, 2008.
33

http://refhub.elsevier.com/S0021-9991(22)00818-X/bibADE905F299673ED8CADD4C30A923D513s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibADE905F299673ED8CADD4C30A923D513s1
https://doi.org/10.1137/0733033
https://doi.org/10.1137/0733033
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib54C68B2E002BF9E8F34E224F680B4101s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibAAD78EE3D4928C857435B4E44B665F1Bs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib7CBA4585056FBBCF4EA3443DE8AB6A17s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibBEEA31A43FD7CC8B7A4C0ECC6C001041s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib665C0634A5907253694D1E6EF9BA2A2Es1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibD27E7EB4836855B2C35AB609D1284661s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib81BEB6DDD8BDC0916DE2FCF4A14FA8E9s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibF7B71AC39BA914447D7EAFDEF8AA05E8s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibF7B71AC39BA914447D7EAFDEF8AA05E8s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib1087B609A9B207FCE01E23848BBB360As1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib1087B609A9B207FCE01E23848BBB360As1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib3712107954F0AD0CDE4D7E04F7AADE75s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib3712107954F0AD0CDE4D7E04F7AADE75s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib36478EA829AAA82B141BBE0EA0FA126Bs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib36478EA829AAA82B141BBE0EA0FA126Bs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib2F31C6A50AD793BA4817CC602F3942D1s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib2F31C6A50AD793BA4817CC602F3942D1s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib45DB0BC64DCE1664A5811B236F91DA27s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib45DB0BC64DCE1664A5811B236F91DA27s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibEC41ED96519E84BFFFCE68E81E5CF509s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibEC41ED96519E84BFFFCE68E81E5CF509s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib3CCC466E0EB7299BA8A2FBB69F704351s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib3CCC466E0EB7299BA8A2FBB69F704351s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib2B2B93C9C4111324B2744CFE82DAFAA0s1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bib2B2B93C9C4111324B2744CFE82DAFAA0s1
https://doi.org/10.1017/S0022112083001159
https://doi.org/10.1016/j.jcp.2018.06.016
https://doi.org/10.1016/j.jcp.2016.10.056
https://doi.org/10.2514/6.2012-3073
https://doi.org/10.1137/100807211
https://doi.org/10.1016/j.jcp.2015.11.064
https://doi.org/10.3389/fphy.2020.500690
https://doi.org/10.2514/1.J059672
https://doi.org/10.2514/1.C033449
https://doi.org/10.2514/1.C033449
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibF8F2B05968EFAAB7BE04B03BEE5DB91Bs1
http://refhub.elsevier.com/S0021-9991(22)00818-X/bibF8F2B05968EFAAB7BE04B03BEE5DB91Bs1


Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2022-11-11

Hybrid discontinuous Galerkin-finite

volume techniques for compressible

flows on unstructured meshes

Maltsev, Vadim

Elsevier

Maltsev V, Yuan D, Jenkins KW, et al., (2023) Hybrid discontinuous Galerkin-finite volume

techniques for compressible flows on unstructured meshes. Journal of Computational Physics,

Volume 473, January 2023, Article number 111755

https://doi.org/10.1016/j.jcp.2022.111755

Downloaded from Cranfield Library Services E-Repository


