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A B S T R A C T

“Food processing 4.0” concept denotes processing food in the current digital era by harnessing fourth industrial 
revolution (called Industry 4.0) technologies to improve quality and safety of processed food products, reduce 
production costs and time, save energy and resources, as well as diminish food loss and waste. Industry 4.0 
technologies have been gaining great attention in recent years, revolutionizing, and transforming many 
manufacturing industries, including the food processing sector. The aim of this narrative review is to provide an 
updated overview of recent developments of Industry 4.0 technologies in digital transformation and process 
automation of the food processing industry. Our literature review shows the key role of robotics, smart sensors, 
Artificial Intelligence, the Internet of Things, and Big Data as the main enablers of the Food Processing 4.0. 
advantages in terms of quality control (sorting during processing with robotics and Artificial Intelligence, for 
instance), safety (connecting sensors and devices with Internet of Things), and production efficiency (forecasting 
demand with Big Data). However, detailed studies are still necessary to tackle significant challenges and provide 
deep insights into each of Food Processing 4.0 enablers such as the development of specific effectors for robotics; 
miniaturization and portability for sensors; standardization of systems and improve data sharing for Big Data; 
and reduce initial and maintenance costs of these technologies.   
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1. Introduction 

Our planet has been experiencing unprecedented challenges in the 
last few years, especially the drastic and systemic impact of climate 
change, in addition to the recent outbreak of pandemics (particularly 
COVID-19). Meanwhile, the demand for food continues is expected to 
increase by 56% (62% considering climate change) with the growth of 
world population, which is expected to reach 9.7 billion people by 2050 
(United Nations, 2019; van Dijk et al., 2021). Moreover, the evolution of 
food processing sector is expected to happen with foods with enhanced 
nutritional value, consuming fewer resources, preserving biodiversity, 
and causing low environmental impact (reducing water loss, for 
instance) in resilient systems to supply this increased demand with 
complementary programs to prevent food insecurity and hunger 
(Augustin et al., 2016; Sachs et al., 2019). 

Meeting this future demand is considered possible, but important 
changes are necessary, especially in the area of food processing. This 
core pillar of our society is expected to evolve and become more sus-
tainable, flexible, resilient, and adaptive (Boyacι-Gündüz et al., 2021; 
Knorr et al., 2020). Facing these challenges with current food processing 
systems can be seen as an integrative task due to the complexity of each 
one of aforementioned challenges and the necessary knowledge to find 
effective solutions that can be applied in food processing (Augusto, 
2020). 

This scenario has been motivating professionals of the food industry 
and researchers to step up and upgrade current processing operations to 
smarter food processing by incorporating innovative strategies, tech-
nologies, and machinery (Jambrak et al., 2021; Kakani et al., 2020). The 
advances in technology are the necessary breakthrough to strength the 
developments in food processing towards the solution of current and 
future challenges. The high connectivity and automation assisted by 
computing power are key elements that can revolutionize food pro-
cessing systems (Augusto, 2020). 

Essentially, the Fourth Industrial Revolution (or Industry 4.0) aims to 
increase the interconnection (sensors, devices, machinery, and humans, 
for instance) and high-level automation to achieve smart processing 
systems (Hermann et al., 2016; Morella et al., 2021; Oztemel & Gursev, 
2020). One of the fundamental aspects of Industry 4.0 is the interdis-
ciplinary that involve a wide set of knowledge related to physical, dig-
ital, and biological domains (Chapman et al., 2021; Koh et al., 2020). 
This combination of characteristics are necessary to facilitate the pro-
gression towards more efficient production systems, improve food 
quality, and reduce food loss (Ghobakhloo, 2018; Onwude et al., 2020; 
Oztemel & Gursev, 2020; Sadeghi et al., 2022). However, it is important 
to mention that an universal agreement on the Industry 4.0 components 
is still lacking (Arslan, et al., 2021; Ghobakhloo, 2018). 

In recent years, a clear upward trend has been observed regarding 
papers published in the field of Industry 4.0 and food processing (Fig. 1). 
Industry 4.0 encompasses many digital technologies and other advanced 
solutions (such as Artificial Intelligence (AI), Internet of Things (IoT), 
robotics, and smart sensors, for instance) that have the potential to 
accelerate automation and digitalization in industrial sectors, including 
the food industry. 

Recently, a general overview of key Industry 4.0 enablers was given 
by Hassoun, Aït-kaddour et al. (2022a). However, there is still a lack of 
comprehensive research on application of Industry 4.0 technologies in 
food processing. Therefore, the aim of this narrative review is to explore 
the role of Industry 4.0 enablers in digital transformation and process 
automation in the processing stage of food industry. Food Processing 4.0 
concept will be introduced and the main enabling technologies will be 
discussed. The role of emerging processing technologies in this context is 
also discussed. The articles to compose this review were searched on 
databases Scopus and Web of Science using the terms “Artificial Intel-
ligence”, “Big Data”, “biosensors”, “Internet of Things”, “nanosensors”, 
“robotics”, “robots”, “smart sensors”, “emerging processing technolo-
gies”, “non-thermal processing”, and “food industry”. The articles 

published from 2017 to 2022 were selected. Additional relevant studies 
were manually searched from the reference lists of selected studies and 
published reviews related to scope of the review. 

2. Brief overview of current challenges and main enabling 4.0 
industry technologies in food processing 

2.1. Current food processing challenges 

Food processing entails one or more steps of transformation of raw 
materials or fresh and inedible agricultural products into edible semi- 
finished or finished products or food ingredients (Bhargava et al., 
2021a; McClements & Grossmann, 2021; Pérez-Santaescolastica et al., 
2021; Qian et al., 2022; Teng et al., 2021). Food processing enables the 
production of a wide variety of food products that are convenient and 
affordable for consumers, hence the increased demand for processed 
foods in contemporary society (Ndisya et al., 2021; Qian et al., 2022). 
However, food processing has complex challenges that were introduced 
and gradually evolved with the industrial revolutions and emerging 
challenges that are still yet under investigation and at initial phases of 
incorporation into the industry after the mechanization of food pro-
cessing: food safety, competitiveness, plant-based foods, quality control, 
and food security (Augusto, 2020; Silva et al., 2018). 

Food safety is a constant concern about food processing due to the 
food borne outbreaks registered every years across different food cate-
gories. One of the main recurrent causative agents of food borne out-
breaks are contamination with pathogenic microorganisms (such as 
Campylobacter spp. and Salmonella spp.). Consequently, regular updates 
in governmental pages (Centers for Disease Control and Prevention, 
2022) and annual reports (European Food Safety Authority, 2021) 
provide a comprehensive view of latest cases and trends. The contami-
nation with toxic substances from vast sources (sanitizers, mycotoxins, 
pesticides, environmental pollutants) are also routinely observed in food 
recalls (FDA, 2021b). 

The competitiveness of food market became a key characteristic after 
the modernization of food industry in the post-World War II period. 
Foods were viewed and perceived by consumers as goods with charac-
teristics beyond their basic function (source of vital nutrients) and the 
presence of many companies sharing the same market favored the ne-
cessity of differentiation in the face of the competition (Silva et al., 
2018). Consequently, two key research fields flourished from this sce-
nario: sensory analysis and consumer science. The expansion of 
knowledge derived from the advances in these two areas generated new 
knowledge and expanded the view, technologies, concepts of food pro-
cessing and open the possibility to have a better alignment of consumers 

Fig. 1. Number of publications and citations per year on application of Industry 
4.0 in the food processing industry over the last decade (search query was 
performed in May 2022). The following keyword search query was used in 
Scopus: TITLE-ABS-KEY (Fourth industrial revolution) OR (Industry 4.0) AND 
(Food processing) OR (Food process). 
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preferences and desires with food processing (Fiorentini et al., 2020). 
One key current example are the advances in the production of plant- 

based foods (intended to compete with animal protein foods such as 
meat, milk, dairy and meat products) due to environmental and health 
concerns associated with their production and consumption (Wickra-
masinghe et al., 2021). Due to the wide consumer interest in the con-
sumption of this new category of processed foods, many products were 
developed and are on the supermarkets (Curtain & Grafenauer, 2019). 
However, advances in this food category are still necessary to obtain 
products with higher acceptance in terms of colour, flavor, and 
mouthfeel, and the appropriate nutritional information (Fiorentini et al., 
2020; Wickramasinghe et al., 2021). 

Quality control during processing is a necessary activity to monitor 
food characteristics and processing conditions and check their compli-
ance with defined criteria (Ali & Hashim, 2021). However, the contin-
uous monitoring of food characteristics and processing in modern 
production lines has important limitations. The fundamental organiza-
tion of activities is comprised by acquiring representative samples, 
sample preparation, formal analysis, and interpretation of results. These 
activities are currently performed using protocols that require labora-
tory infrastructure, equipment, trained and skilled technicians, constant 
expanses with reagents and solvents, and long periods (several hours or 
days) until conclusive results, which support the study and further 
implementation of more sophisticated systems to improve the manage-
ment of quality control (Di Rosa et al., 2017). 

Food adulteration (a core aspect of Food Security) is a serious 
dishonest activity punished by law that is usually performed to generate 
additional profit (estimated to generate a global cost between 10 and 40 
billion dollars/year) and deceive consumers at the expense of food 
quality (low nutritional and not compliant raw materials, for instance) 

and safety (unknown or unverified origin) (FDA, 2021a; Munekata et al., 
2020). Cases of food fraud occur across different food production sys-
tems involving mainly fats and oils; seafood; meat and meat products; 
honey and royal jelly; dietetic foods, food supplements, fortified foods; 
fruits and vegetables; and infant formula (European Commission, 2022; 
FDA, 2021a). Another form of altering food is known as food tampering, 
which consist in the intentional inclusion of compounds or materials to 
cause harm to consumers and promote a food borne outbreak (FDA, 
2018). Although rare, food tampering has also been monitored in recent 
reports (European Commission, 2020). 

Once fraudulent actions are disclosed, one of the effects is the 
reduction of perceived confidence and trust from consumers in the 
involved food product and brand/company. Moreover, this effect seems 
to be extended to corresponding regulatory agencies and the productive 
sector as a whole (Kendall et al., 2019). Efforts to face the complexity of 
food fraud, especially with the imposed restrictions and challenges from 
COVID 19 pandemic, require coordinated actions and implementation of 
solutions (such as digital technologies) to improve the compliance with 
regulatory monitoring and discourage fraudsters to take advantage of 
consumers in circumstances of supply chain gaps (characterized by 
panic-buying and stockpiling) (Onyeaka et al., 2022). In this sense, 
increasing transparence, accessibility, security, and immutability of data 
registered from food production can potentially reduce food fraud 
(Antonucci et al., 2019). 

2.2. Key 4.0 industry technologies and technological adoption in food 
processing 

A historical overview of the industrial revolutions indicate that key 
transformations were progressively changing the food production lines 

Fig. 2. The four industrial revolutions and the main enabling technologies.  
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(Fig. 2). The first industrial revolution (occurred late 18th century) 
enable the use of steam engine to carry out repetitive tasks in food 
production and the developments of steam-based tasks, specifically 
thermal processing (pasteurization and sterilization). In terms of 
mechanization, the milling of grains was upgraded from human-, ani-
mal-, wind-, or water-powered systems to a steam-powered machinery 
during the 18th century (Westworth, 1932). However, one of the key 
development for food processing using steam occurred much later. The 
formalization of pasteurization as technique is attributed to Louis Pas-
teur around years 1860’s (supported by his studies to prove the role of 
microorganisms in food spoilage) and it was only in 1876 when he and 
Charles Chamberland developed the first autoclave (Misra et al., 2017). 

The second industrial revolution (late 19th century) led to the uti-
lization of electricity in food production. Steam-powered food process-
ing equipment were gradually replaced by electric-powered 
counterparts and new equipment were also introduced. An intense 
development of machinery specific to food processing was derived from 
this period such as juice extraction machine by Norman Walker around 
1930 (Omoregie et al., 2018), vacuum packaging systems by Karl Busch 
around 1960 (Patil et al., 2020), and the initial upgrade from batch to 
continuous pasteurizing systems (Rankin et al., 2017). 

One key development from this period was the creation of refriger-
ation systems. Key events for lowering temperature in food production 
include the increasing necessity for cold storage and transportation of 
ice and foods during the 19th century and the eventual use of refriger-
ation for meat processing and preservation at the end of that century 
(Misra et al., 2017). The advances in electric systems and studies with 
gases to cool foods (initiated during the first industrial revolution) 
enable the development of electric-refrigeration systems to replace 
natural ice by mechanically produced ice at the end of 19th century 
(Sandvik, 2017). 

The third industrial revolution (during the 1970s) inserted the 
digitalization of processes with the development of microchips, which 
paved the way for the improved control of food processing lines (Teix-
eira & Shoemaker, 1989). Continuous and more comprehensive pro-
cessing with computers (with programmable and automated 
characteristics) and new equipment became possible (Goff & Griffiths, 
2006). One main technology developed during this period is the 
development of extrusion as one-step process and the development of 
texturized plant protein products (especially texturized soy protein) 
(Riaz, 2000). The initial insertion of robotics in food processing (around 
1990) happened during this revolution (Nayik et al., 2015). Addition-
ally, the third revolution is also marked by the advances leading to the 
development of irradiation (ionizing and microwave systems) systems 
for microbial decontamination of herb and spices (Farkas & Mohácsi--
Farkas, 2011). 

The great technological innovations and rapid developments that 
occurred in recent years have led to the emergence of Industry 4.0, with 
automation and interconnectivity being the main features (Morella 
et al., 2021; Oztemel & Gursev, 2020). Industry 4.0 is an interdisci-
plinary topic, involving a wide set of knowledge related to physical, 
digital, and biological domains (Chapman et al., 2021; Koh et al., 2020). 
Industry 4.0 has been characterized by smart systems and more intelli-
gent manufacturing and production processes due to the development of 
advanced technologies at all stages of the supply chain, increasing ef-
ficiency and food quality and reducing food loss (Ghobakhloo, 2018; 
Onwude et al., 2020; Oztemel & Gursev, 2020; Sadeghi et al., 2022). 
Robotics, smart sensors, AI, IoT, and BD play an important role in the 
food processing (Hassoun, Aït-kaddour, et al., 2022; 2022b). Addition-
ally, Industry 4.0 main enablers include smart sensors and the IoT 
(Javaid et al., 2021; Ullo & Sinha, 2021; Zhang et al., 2022), robotics 
(Bader & Rahimifard, 2020; Dzedzickis et al., 2022; Iqbal et al., 2017), 
AI (Kakani et al., 2020; Ramirez-Asis et al., 2022; Sun et al., 2019), and 
Big Data (BD) (Jin et al., 2020; Tao et al., 2021) have been recently 
reviewed. 

Robotics and automation are among the main Industry 4.0 

enablers that provide many opportunities to perform multiple opera-
tions in various industrial sectors, including the food processing in-
dustry. While the first developed autonomous robots were intended to 
perform simple repetitive jobs (as important invention from the third 
industrial revolution), recent technological advances have enabled the 
design of more advanced robots that are able to perform high-level tasks 
and difficult operations, leading to increased productivity and decreased 
labour and manufacturing time and cost (Bader & Rahimifard, 2020; 
Chen & Yu, 2022; Iqbal et al., 2017; Jagtap, Bader, et al., 2021). The use 
of robots has become more popular in recent years, especially during the 
COVID-19 pandemic to meet the growing demand for automation and 
robotic systems in the food sector, which is reflected by the increased 
number of studies published during the last two years (Fig. 3a). Robots 
are often combined with sensors and other Industry 4.0 elements. 

Smart sensors are an important Industry 4.0 technology that plays a 
significant role in data acquisition and process automation. The devel-
opment of sensors, initially, as mechanical systems with limited capacity 
to sense and return information (Moncrieff, 1961) evolved to portable 
and computer-controlled instruments (Qian et al., 2021). Sensors are 
being increasingly developed and implemented in various stages of 
processing lines to improve the control in food processing. Conse-
quently, the management of quality control can be improved to reduce 
the loss of food quality and production cost (Franceschelli et al., 2021; 
Jambrak et al., 2021; Javaid et al., 2021). In recent years, the number of 
publications reporting advances with the application of smart sensors 
(or nanosensors/biosensors) in the food industry has increased signifi-
cantly (Fig. 3b), especially with the recent advances in nanotechnology 
and biotechnology that have accelerated the development of miniatur-
ized sensors (Chen & Yu, 2022; Fernandez et al., 2022; McVey et al., 
2021; Ren et al., 2022). 

AI is one of the emerging digital technologies that has received great 
attention in recent years, being a creative tool that simulates the human 
reasoning ability and intelligence using computers, robots, and digital 
equipment (Ben Ayed & Hanana, 2021; Misra et al., 2020). AI has pro-
gressed from its key concepts of machine intelligence (Turing Test), 
computer development, and the creation of information theory to the 
development of modern learning/training strategies for complex 
computing systems (Haenlein & Kaplan, 2019). The role of AI in the food 
industry is becoming increasingly important, due to its ability to work 
and react like humans to perform many tasks quickly and in real-time (e. 
g., cleaning and ensuring hygiene standards, preparing food and drink, 
detecting potential risks during food production, and sorting food ac-
cording to its quality), supporting the implementation of smart factory 
(Bai et al., 2020; Di Vaio et al., 2020; Jambrak et al., 2021; Ramirez-Asis 
et al., 2022). Therefore, the research on potential application of AI in the 
food industry has witnessed an increasing interest in recent years 
(Fig. 3c). 

Another key 4.0 technology is IoT that can be defined as a network of 
“things” that can be located, identified, and operated upon, and which 
are connected through sensors (Ng & Wakenshaw, 2017). This tech-
nology has the potential to turn ordinary sensors into intelligent sensors 
and promote remote sensing (Javaid et al., 2021; Ullo & Sinha, 2021). 
The history of IoT is recent due to its first definition in 1999 and char-
acterized by the intensification in the communication between “things” 
and developments aligned with mobile internet (Tzafestas, 2018). The 
benefits of application of IoT in food processing are numerous, including 
the improved food safety, increased efficiency, enhanced production 
and transparency, and optimized food production systems (Astill et al., 
2019; Jagtap, Duong, et al., 2021). There has been an increasing interest 
in using IoT technologies in the food industry, which has been intensi-
fied after the year 2016, as can be noticed from Fig. 3d. 

In modern food industry sectors, large and heterogeneous data, 
referred to as Big Data (BD), are produced from various operations 
during food processing. The advances in BD have been characterized by 
the combination of key elements (5Vs) to deal with current data gen-
eration: volume, variety, velocity, veracity, and value. The progression 
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from times when management of information and data were considered 
painstaking, complex, and time consuming tasks (population census 
prior to World War I, for instance) to modern management of data 
assisted by computers that quickly and accurately process digital data 
streams in any form (structure, semi-structured, and non-structured) 
demonstrates the importance of this technology (Barnes, 2013; Batistič 
& van der Laken, 2019; Johnson et al., 2017). As for the other Industry 
4.0 technologies, the research interest in BD has been increasing in the 
last decade (Fig. 3e) due to its many advantages offered (Astill et al., 
2019; Tzounis et al., 2017). BD can be used to align food processing with 
strategies to reduce food loss and food waste (Mishra et al., 2017), 
enhance demand forecasting (Alicke et al., 2016), increase process 
optimization and improve new product development (Jagtap & Duong, 

2019; Tzounis et al., 2017), and address concerns of food safety (Jin 
et al., 2020). 

3. Food processing 4.0 concept 

Industry 4.0 technologies, such as AI, IoT, BD, robotics, smart sen-
sors, blockchain, and augmented reality, among others, have been 
widely investigated in many research and industrial application areas in 
recent years. In the food industry, the application of these technologies 
(termed Food Industry 4.0, or simply Food 4.0) has offered many ad-
vantages to food quality, safety, traceability, and sustainability. In the 
current work, we introduce the concept of Food Processing 4.0 to 
explore how exploiting these technologies in the best possible way will 

Fig. 3. Number of publications and citations reporting on the application of robotics (a), smart sensors (b), Artificial Intelligence (c), The Internet of Things (d), Big 
Data (e), and emerging technologies (f) in the food industry during the last decade (search query was performed in May 2022). The following keywords search query 
were used in Scopus: (a) TITLE-ABS-KEY (Robotics) OR (Robots) AND (Food industry), (b) TITLE-ABS-KEY (Smart sensors) OR (Nanosensors), OR (Biosensors) AND 
(Food industry), (c) TITLE-ABS-KEY (Artificial Intelligence) AND (Food industry), (d) TITLE-ABS-KEY (Internet of Things) OR (IoT) AND (Food industry), (e) TITLE- 
ABS-KEY (Big Data) AND (Food industry), and (f) TITLE-ABS-KEY (Emerging processing technologies) OR (Nonthermal processing) AND (Food industry) (f). 
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benefit the food processing sector. Food Processing 4.0 concept refers to 
processing food in the current modern digital era by harnessing Industry 
4.0 technologies to improve food quality and safety of food products 
along with reducing food processing costs and time, saving energy and 
resources, and reducing food loss and food waste. In this work, robotics, 
smart sensors, AI, IoT, BD are considered among the main enablers in the 
food processing sector (Fig. 4), although other Industry 4.0 technologies 
(such as blockchain, 3D printing, cloud technologies, and cyber-physical 
systems) can be also applied but to a lesser extent (Hassoun, Aït-kad-
dour, et al., 2022; 2022b). 

4. Industry 4.0 in food processing 

4.1. Use of robotics in food processing 

The need for more automation and robotics has been dramatically 
established over the last two years with the outbreak of the COVID-19 
pandemic, due to labour shortages and movement restrictions of 
workers needed in food processing worksites and the other unprece-
dented disruptions caused by this pandemic, e.g., high degree of sani-
tation and reduced human contact. These circumstances have opened 
new opportunities for robots to take over since many studies have re-
ported that robotics can contribute to addressing many challenges posed 
by the COVID-19 (Aday & Aday, 2020; Dzedzickis et al., 2022; Wang 
et al., 2022). 

As defined by the International Standards Organization (ISO), robots 
are autonomously controlled, reconfigurable, and reprogrammable 
machines that offer multiple degrees of freedom. Robots can be either 
stationary or mobile and are designed for use in several applications, 
which typically aim to replace manual labour. Robots are programmed 
to mimic humans and their actions, making them dexterous, and thus 
more flexible than regular automated machinery. These robots comprise 
of the robot itself, an arm, the wrist, and an end-effector (such as a hand) 
that performs the tasks (Dzedzickis et al., 2022; Sandey et al., 2017). 

In food processing, they are mostly used for pick and place opera-
tions, to complete tasks such as sorting, packing, and packaging (Bader 
& Rahimifard, 2018; Jagtap, Bader, et al., 2021; Wang et al., 2022). 
Robotic automation is most efficient when implemented to resolve or 
improve certain manufacturing and processing scenarios. These include 
production line bottlenecks, hazardous or unfavourable manufacturing 
environments, simple and repetitive processes, which can be tedious for 
human labour, and facilities with a highly variable product line, which 

requires frequent changeovers (Bader & Rahimifard, 2018; Dzedzickis 
et al., 2022; Sandey et al., 2017). 

Robotic automation offers food and beverages manufacturing many 
benefits, the main and most vital one being flexibility. Essentially, ro-
botics provides reconfigurability and quick adaptation into new work 
environments and new processes. All while ensuring products are high 
in quality and uniformity, as robotics follow set planned actions 
repeatedly in a precise manner. Moreover, there is less workforce injury 
due to repetitive movement, thus improving overall working environ-
ment. Increased efficiency ensured production cost and time is reduced, 
and that waste material is kept at a minimum. All of these benefits 
ensure the company maintains a competitive advantage against others 
(Bader & Rahimifard, 2018, 2020; Chen & Yu, 2022; Schwarz & Wydra, 
2021). 

Despite the onset of Industry 4.0 and the technological advance-
ments of robotics for food processing applications, their implementation 
rates is currently low due to specific challenges to be tackled for its wide 
use in the food industry (Bader & Rahimifard, 2020; Duong et al., 2020). 
The first and most challenging aspect is related to the essence of food-
stuffs, which are naturally soft, fragile and can often have slippery 
surfaces. Moreover, many foods are non-rigid, thus making them more 
prone to damage under pressure. Specially designed end effectors are 
being needed and developed to overcome this challenge. Seven types of 
end effectors are currently available for use with food applications. 
These gripper mechanisms include pinching, enclosing, pinning, pneu-
matic, freezing, levitating, and scooping mechanisms (Bader & Rahi-
mifard, 2020). Other challenges encompass strict hygiene requirements 
demanded by the food industry to ensure the food is safe for consump-
tion, as well as the economic barriers related to the current high costs 
associated with purchasing and maintaining robotics (Wang et al., 
2022). 

4.2. Use of smart sensors in food processing 

Various types of sensors have been developed and used to make real- 
time monitoring and measurements along the food processing lines 
(Hassoun, Aït-kaddour, et al., 2022; Jambrak et al., 2021). Nowadays, a 
wide range of sensors are available to monitor the quality and safety of 
food through the measurement of humidity, temperature, variations in 
gas concentrations (such as oxygen and carbon dioxide), and changes in 
pH (Amin et al., 2022). Smart sensors can be classified as physical 
sensors, chemical sensors, and biological sensors. Smart sensors can be 
also divided into several groups according to the measured analytes; 
biological and chemical contaminants, allergens, nutritional in-
gredients, and food additives (Cheng et al., 2022; Oveissi et al., 2022; 
Zhang et al., 2022). 

For example, a light scattering sensor was developed to detect three 
major foodborne pathogens, S. enterica, STEC including E. coli O157:H7, 
and L. monocytogenes in food (Abdelhaseib et al., 2019). This 
non-invasive sensor achieved high classification accuracies (ranging 
between 84 and 100%), which could lead to a significant saving in terms 
of time and cost compared to traditional methods. In another study, a 
biosensor was synthesized for the detection of milk protein allergens in 
food processing environments, achieving detection limits superior to 
existent traditional methods (Ashley et al., 2018). 

Smart sensors based on spectroscopy are being developed and 
employed in various food sectors, including monitoring food processing 
operations and determining food quality (McVey et al., 2021). Especially 
the use of optical sensors based on hyperspectral imaging (HSI) has 
become popular in recent years due to the many desirable features of 
this technology. For example HSI technique operating in the spectral 
range 400–1700 nm was used to assess quality changes in 
purple-speckled cocoyam slices during hot-air drying processes (Ndisya 
et al., 2021). Prediction models were successfully built using few 
wavelengths, enabling to predict several quality parameters with 
excellent performance. Fig. 4. Food Processing 4.0 elements.  

A. Hassoun et al.                                                                                                                                                                                                                                



Food Control 145 (2023) 109507

7

One of the emerging trends in sensors is their use in active and 
intelligent food packaging. Integration of sensors into packaging has the 
potential to improve food quality and safety and extend the shelf life in 
addition to communicating information to users about the changes in 
the product and environment, product history, and authenticity (Cheng 
et al., 2022; Gökşen et al., 2022; Firouz et al., 2021; Yousefi et al., 2019). 
For example the application of red cabbage anthocyanins in smart 
bio-based food packaging and biosensors was recently discussed in de-
tails by (Abedi-Firoozjah et al., 2022). 

Electronic sensors, such as electronic nose (E-nose) and tongue (E- 
tongue) are being developed and used in different food-related appli-
cations, including food processing. E-nose simulates the human nose to 
detect and identify volatile organic compounds, distinguishing complex 
odours with an array of sensors. E-nose has also been effectively 
implemented in food spoilage detection, meat and fish freshness eval-
uation, shelf-life prediction, classification and discrimination, as well as 
adulteration (Chitrakar et al., 2021; Mohd Ali et al., 2020; Shi et al., 
2018). Recently, E-nose combined with artificial neural network (ANN) 
was used to explore the relationship between different brewing pro-
cesses and quality of vinegar (Li et al., 2022). The types of vinegar in 
different brewing processes were better distinguished, with correct 
classification rates of 98.6% and 96.7% for training and prediction, 
respectively, based on ANN modelling compared to physicochemical 
traditional parameters. Another important smart sensor is E-tongue that 
simulates the human tongue to perceive the five basic tastes (i.e., 
sweetness, acidity, bitterness, salinity, and umami), based on electro-
chemical reactions, such as voltammetry, potentiometry, and con-
ductometry (Chitrakar et al., 2021; Tan & Xu, 2020; Zhang et al., 2022). 
The application of E-tongues in different food processing lines, such as 
fruits and vegetables, milk and milk products, fermented beverages, 
juices, among others, was reviewed by Wadehra & Patil (2016). 

In recent years, miniaturization and portability have become 
important trends due to rapid technological advances in many scientific 
fields, particularly in biotechnology and nanotechnology (Chen & Yu, 
2022; Rodriguez-Saona et al., 2020). For example, the development of 
user-friendly smartphone-based biosensors has been accelerated due to 
the increasing advances in smartphone technology (Amani et al., 2022; 
Roda et al., 2016; Yousefi et al., 2019). 

4.3. Applications of AI in food processing 

The use of AI in food processing industry is expected to have a 
compound annual growth rate (CAGR) of 45% between 2021 and 2026 
(Mordor Intelligence, 2022). The main applications of AI in food pro-
cessing include food sorting, quality control and safety compliance, 
maintenance, and optimizing production (Nayak et al., 2020). AI offers 
many possibilities to optimize and automate processes, cut costs, and 
reduce human error. 

Food sorting: The most significant use of AI in food processing is in 
the sorting of food and products. Historically, the sorting processes have 
required considerable human labour that was monotonous and repeti-
tive. AI connected to imaging technology uses algorithms to analyse 
various aspects of food and identify deficiencies. Sensors may examine 
colour, biological characteristics, and shape (length, width, and diam-
eter, for instance). An example is the food sorters and peelers developed 
by TOMRA that demonstrated not only generous processing capacity, 
but increased food quality and safety (Kumar et al., 2021). Similarly, 
Kewpie Corporation in Japan has created an AI-based TensorFlow ma-
chine that can identify anomalies in food coming from farms (Kumar 
et al., 2021). 

Food safety and quality: Establishing traceability systems for the 
safety and quality of processed foods is a challenge due to the variety of 
raw materials, batch mixing and resource transformation. As such, sta-
tistical models are an important part of food processing (Qian et al., 
2022). Traceability during food processing may be improved with AI 
employed for processing flow analysis, batch mixing simulations, and 

batch optimization modelling. 
Artificial biomimetic technology (E-noses, E-tongue, and computer 

vision) are intelligent methods based on changes in smell, taste and 
appearance. Chemical sensors can accurately distinguish various food 
odours supported by an AI algorithm with access to a database of 
potentially dangerous odours. In a food-processing environment, E- 
noses could assist with the detection of contaminants. For instance, an E- 
nose coupled with chemometric techniques may be a reliable instrument 
for monitoring food drying processes (Sun et al., 2019). 

Computer vision can also reveal nutritional information of food 
(Kakani et al., 2020). One application is the detection of pesticide res-
idue in berries to measure the measure the effectiveness of washing step 
during their processing (Wang et al., 2021). Imaging and sensing devices 
can also be used to identify food residue on equipment that has the 
potential to contaminate an entire product line. 
Self-Optimizing-Clean-In-Place (SOCIP) uses ultrasonic sensing and op-
tical fluorescence imaging to detect the presence of food residues and 
microorganisms inside food processing equipment (Simeone et al., 
2016). AI can also ensure employees have appropriate personal pro-
tective equipment, do temperature checks, and grade food cleanliness. 
Surveillance systems can detect and track people as well as their 
movements and attire. Face- and object-recognition can identify if masks 
or hair coverings are being worn (Kumar et al., 2021). 

Maintenance: AI can optimize technical parameters for higher 
output and greater reliability and technical availability of equipment 
using predictive maintenance, e.g., in wheat grain processing (Massaro 
et al., 2020). The ability to accurately determine time-to-repair and 
cost-to-repair is possible with AI via data categorization and the delivery 
of predictive alerts. Condition monitoring can determine the real-time 
state of equipment for improved effectiveness. Fixed maintenance in-
tervals can be partially replaced with data-based predictions obtained 
from sensors. Predictive algorithms can identify issues in advance of 
serious complications requiring production to cease. Different types of 
maintenance that AI may play a role in are shown in Table 1. 

Optimizing production: AI may be connected with other technol-
ogies such as IoT, remote sensing, BD analytics, machine learning, and 

Table 1 
Optimizing maintenance systems and processes supported by AI (adapted from 
Uptake, (2018)).   

Total Productive 
Maintenance (TPM) 

Planned Preventive 
Maintenance 
(PPM) or Planned 
Maintenance (PM) 

Predictive 
Maintenance 

Description A holistic system 
resulting in fewer 
breakdowns, less 
downtime, increased 
production and 
improved safety 

A part of TPM that 
is scheduled by 
time or events 
necessitating 
repairs 

Uses high-frequency 
raw data readings, 
machine learning, 
historical 
performance data 
and contextual data 
to draw attention to 
condition-based 
maintenance needs 

Data Used Historical 
maintenance data for 
lower repair budgets 

Historical 
maintenance data 
for lower repair 
budgets 

Historical 
maintenance data, 
sensor data and 
contextual 
information like 
weather and 
geographic data for 
real-time, condition- 
based alerts 

The role of 
AI 

Enables Autonomous 
Maintenance: 
equipment 
maintenance is 
carried out by the 
machine operators 

Helps businesses 
aggregate and 
interpret data 
faster 

Interprets large 
amounts of data into 
meaningful 
intelligence and 
actionable insights 
possibly using edge 
computing  
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blockchain to develop synergistic approaches to optimize advanced 
thermal and non-thermal processing technologies (Jambrak et al., 
2021). AI can enable real-time monitoring instead of waiting for the end 
of a production cycle to identify issues. Optimizing resource consump-
tion (e.g., energy and water) can immediately reduce production costs 
(Funes et al., 2015). Significant performance improvements can be 
achieved while reducing overall total cost and the need for continuous 
operator oversight (Lockey & Bhartia, 2019). 

Examples of process optimization include a cheese manufacturer that 
used correlation models trained on historical data of 29 different pro-
cessing variables to classify impacts on the final product moisture con-
tent. The result was a reliable increase of average moisture content 
within regulatory compliance limits, resulting in significant savings 
(Ziynet Boz, 2021). Likewise, an AI approach using unstructured and 
correlated data for the analysis and management of processes has also 
been employed with bacterial spoilage indicator data from 23 dairy 
processing facilities to identify post-pasteurization contamination fac-
tors (Murphy et al., 2021). 

4.4. Applications of IoT in food processing 

There is a wide range of industrial applications of IoT, and as such 
IoT is developing rapidly and receiving increasing attention. Indeed, the 
IoT market is expected to reach $1.1 trillion in revenue by 2024 
(GlobalData, 2021). The main advantages that IoT provides are related 
to monitoring processes and products. The large amounts of data 
collected by IoT systems can support decision making in industry. 

IoT architecture is generally formed of 3–5 layers, depending on the 
classification used (see examples in Fig. 5). These layers may include, for 
instance, sensing, networking, service and interface layers (Xu et al., 
2014). Under this classification, the sensing layer contains the hard-
ware, the networking layer permits data transfer, the service layer cre-
ates and manages services, and the interface layer allows interaction by 
users and other applications. 

IoT has a lot of potential to improve operational performance in food 
supply chains. With this aim, Jagtap, Garcia-Garcia, and Rahimifard 
(2021) developed a framework to improve the resource efficiency of 
food manufacturing through the design and implementation of 
IoT-based tools. Such framework supports decision making for reduction 
of food waste generation and energy and water consumption. However, 
other food operations can also improve their transparency, traceability, 

monitoring, security, control, and overall sustainability performance via 
IoT, such as agricultural activities, resource management, trans-
portation, processing, quality and safety monitoring, and waste gener-
ation (Bigliardi et al., 2022; Jagtap, Duong, et al., 2021). An overview of 
how IoT can support several food operations is presented below. 

Efficient food production: The amount of data that IoT systems can 
collect and the speed to share such data allows the optimization of food 
operations, saving resources, and reducing waste generation. IoT, along 
with other Industry 4.0 technologies, show several advantages for non- 
thermal food processing, including energy savings, better environmental 
performance, lower manufacturing cost, higher level of health and 
safety during food processing, and better conditions for workers (Jam-
brak et al., 2021). Retrofitting existing industrial equipment to incor-
porate IoT technologies is a way to improve food operations and reduce 
inefficiencies (Panda et al., 2019). This may reduce the cost of installing 
new machineries that have sensors already incorporated. At the agri-
cultural stage, IoT can be used for chemical (e.g. pesticides and fertil-
isers) control, crop monitoring, disease prevention, irrigation control, 
and soil management, among other uses (Navarro et al., 2020). 

Food safety: Ensuring the safety of food products is paramount in 
the food sector. Improved monitoring, by interconnected sensors, helps 
detecting safety issues in food processing, and therefore reacting to them 
before the contamination spreads. IoT can therefore detect safety issues 
more rapidly than traditional methods, and share the corresponding 
information instantaneously to act without delay. This, in addition to 
reducing safety risks to a minimum, ensures production is minimally 
disrupted, saving the use of resources for a batch that would have to be 
discarded and wasted. For instance, Zhang et al. (2022) and Griesche 
and Baeumner (2020) explored the use of IoT in combination with 
biosensors to detect food contamination and release warnings that 
immediately block supply routes. 

The food-safety parameters that researchers have monitored the 
most with IoT technologies are temperature, humidity, location, and gas 
presence (Bouzembrak et al., 2019; Dias et al., 2021). These authors also 
claimed that the most widely used communication technologies in this 
context are ZigBee, Wi-Fi, radio-frequency identification, and Bluetooth 
low energy. However, the use of IoT systems in the field of food safety is 
still rare (Dias et al., 2021). This is mostly due to costs and know how 
required to set up and manage these systems. 

Food quality: As with food safety, IoT can more quickly and pre-
cisely find issues related to food quality than with traditional methods. 
Sensors can identify processing errors or food products with defects and 
rapidly alert the factory staff to react before more defective products are 
produced. This is particularly important with the current high-quality 
standards for food products to meet stringent regulations. Bhatia and 
Manocha (2021) developed a framework for food quality assessment 
that acquires real-time data through IoT devices, communicates the 
collected data to fog nodes backed by the cloud platform, and analyses 
the data to determine the food quality. 

There are several examples of IoT systems that support assessments 
of food quality. Popa et al. (2019) developed an IoT system to monitor 
gas, temperature and humidity of packed food products, being able to 
provide more useful quality information than with traditional quality 
control systems that focus on weight, volume, and colour and aspect 
inspection. Sarmah and Aruna (2020) used heterogeneous IoT devices, 
cloud services, and an Android application, along with a MQ4 gas sensor 
to detect methane gas, to determine the freshness of food. 

4.5. Applications of BD in food processing 

BD is defined as large volumes of structured, unstructured or semi- 
structured data generated from various sources such as sensors, de-
vices, video/audio, networks, log files, transactional applications, web, 
social media, etc. Nowadays, several manufacturers are analysing large 
sets of BD and using it to enhance their supply chain performance, and 
even the food sector is not an exception to this change (Jagtap & Duong, Fig. 5. Four layers of an IoT architecture.  
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2019). BD in the food sector is still at initial stage but has attracted 
attention from both academic and industrial practitioners. 

For instance, Jagtap and Duong (2019) demonstrated a case study 
within a food beverage company where these authors used BD to reduce 
costs and time for new food product development without affecting taste 
of the product at the same level of quality than competitor’s products. 
BD is currently being deployed in the food sector for improving trans-
parency and traceability, thereby contributing to sustainable develop-
ment (Hader et al., 2022; Jagtap, Bader, et al., 2021). Some researchers 
applied BD within food manufacturing to obtain demand and yield 
forecast (Magnin, 2016). Another study explored the application of BD 
in order to reduce food waste (Annosi et al., 2021), while others studied 
its application in food logistics (Jagtap, Bader, et al., 2021). Fig. 6 shows 
the application of BD in the food sector. 

Food safety: BD technologies are being implemented in the food 
production that analyse the data generated from smartphones, social 
media, IoT, and multimedia. Moreover, BD can be used to provide 
transparency, traceability, and predictive insights of various activities. It 
helps in making real-time decisions as well as developing the monitoring 
and sampling strategies for safety evaluation (Jin et al., 2020). BD an-
alytics technology can provide greater predictability to food production 
operations for the occurrence of foodborne diseases and thwart a po-
tential outbreak in its early stages. Furthermore, this data allows the 
identification and verification of certain practices or actions that are 
robust in preventing outbreaks. Similarly, accurate prediction of food 
products shelf life would be easier as it could be used to determine exact 
spoilage of product (Astill et al., 2019). 

Demand forecasting: BD can support food production operations 
with new abilities such as demand forecasting. For instance, IBM sup-
ported bakeries by using BD to analyse weather data to estimate the 
demand of certain products based on amount of sunshine, temperature, 
and consumer preference (Alicke et al., 2016). This also leads to opti-
mized food operations, less food wastage, better planning, and improved 
resource utilization. 

Food waste: Data captured from social media such as Instagram, 
Twitter, Facebook, etc. can be analysed using BD to formulate policies, 
which will ultimately reduce food waste. BD can be utilised to uncover 
previously unknown and valuable insights to reduce waste. For instance, 
retailers are capitalising BD for waste minimisation using customer 
complaints made in retail stores (Mishra et al., 2017). 

Efficient production: Tzounis et al. (2017) proposed that applica-
tion of BD can automate processes, predict situations, and improve food 
production activities in real-time. It can act as a decision-making tool to 
provide suggestions, early warnings, and control situations. It can help 
in maintaining and preserving product quality. For instance, the taste of 
a product may vary depending on various factors; however, BD analytics 
can clarify these changes and suggest improvement measures. BD can 
delve into historical production parameters and identify the optimal 
settings for a production line. Also, it can reduce the time and cost of 
launching a new product with minimum impact on product facilities or 
logistics (Jagtap & Duong, 2019). 

5. Novel food processing technologies 

The existing conventional food technologies used to ensure micro-
biological safety of foods and inactivate enzymes, such as sterilization, 
pasteurization, cooking and drying, result often in degradation of 
bioactive thermolabile vitamins and polyphenols, as well as oxidation of 
polyunsaturated fatty acids. At the same time, the growing consumer 
and market demand for healthier and more nutritious foods that are 
lightly processed, of high quality and ‘fresh-like’ characteristics has 
resulted in the emergence and further development of non-thermal 
technologies, such as High hydrostatic pressure (HPP), Pulsed electric 
field (PEF), Ultrasound (US), and Cold plasma (CP). Most of these 
techniques exert minimal or no effect on essential nutrients and sensory 
characteristics of food products. These technologies have a potential to 
partially, or completely, replace the well-known and largely used con-
ventional food processing and preservation technologies (Denoya et al., 
2021; Echegary et al., 2022; Hassoun et al., 2020; Jadhav et al., 2021; 
Sruthi et al., 2022). 

In recent years, new non-thermal food processing technologies have 
emerged (Fig. 3f). These processing technologies are widely studied due 
to the potential to provide high-quality and safe foods with enhanced 
nutritional and health-promoting properties. In addition, these green 
techniques enable sustainable food production with reduced energy 
costs and environmental impact (Chakka et al., 2021; 
Pérez-Santaescolastica et al., 2021; Priyadarshini et al., 2019). 

HHP is a non-thermal, cold pasteurization technique involving the 
use of a liquid (normally water) as a medium to transmit the desired 
pressure (in the range of 300–600 MPa) to a product in a temperature 
range from 0 ◦C to 90 ◦C. The procedure involves sealing a food product 
in its final packaging followed by submerging in cold or room temper-
ature water within an enclosed vessel (Chakka et al., 2021; Hernán-
dez-Hernández et al., 2019; Pérez-Lamela et al., 2021). HHP can 
successfully inactivate microorganisms by interrupting their cellular 
function leading to enhanced safety and extended shelf life of foods. 
Therefore, this technology is mostly used for inactivation of enzymes 
and pathogenic and spoilage microorganisms including yeasts, moulds, 
and Gram-positive and Gram-negative bacteria in a wide range of food 
products, including fresh, processed and canned fruits and vegetables, 
juices, dairy, meat and seafood (Nie et al., 2022; Pérez-Lamela et al., 
2021; Režek Jambrak et al., 2018). 

For example, the application of HPP treatment of 200 and 300 MPa 
was found to be efficient in reducing microbial growth in lean (haddock) 
and fatty (mackerel) fishes (Cropotova et al., 2020). In another study, it 
was reported that HPP has the potential to restrict the degradation of 
phenolic acids and flavonoids and maintain aroma substances of Man-
darin (Citrus unshiu) juice better than thermal pasteurization (Cheng 
et al., 2020). Besides the cold pasteurization effect, the use of HHP de-
lays the loss of essential nutrients and undesirable changes of sensory 
parameters, such as texture, appearance, colour, flavour, and aroma of 
foods associated with microbial or enzymatic decay (Fernandez et al., 
2019). The application of HHP could be also used as a method to 
enhance the extraction of valuable compounds such as vitamins, poly-
phenols, proteins, lipids, carbohydrates, and minerals from raw material 
(Ali et al., 2021a). Fig. 6. Application of Big Data (BD) in the food processing.  
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PEF is another emerging non-thermal technology, which has gained 
an increasing interest from the food professionals due to its speed 
(operates in milliseconds) and wide range of applications. A typical PEF 
treatment involves the application of short-time electric pulses (1–100 
μs) in different ranges of electric field intensities to a food product 
placed between two electrodes, for a very short duration of time, 
resulting in reversible and irreversible permeabilization of cell mem-
branes (Arshad et al., 2020; Denoya et al., 2021; Jadhav et al., 2021). 
Permeabilization of plant cells is normally reversible and occurs under 
low PEF intensities, resulting in release of intracellular compounds due 
to electroporation of the cell membrane. This procedure is currently 
applied to enhance the extractability of valuable compounds from 
different agri-food and animal-based raw materials. Moderate intensities 
lead to irreversible permeabilization of both plant and animal cells, 
while high intensities cause irreversible permeabilization of microbial 
cells (Ali et al., 2021a; Arshad et al., 2020; Chakka et al., 2021; 
Hernández-Hernández et al., 2019). 

Therefore, the application of high PEF intensities helps to inactivate 
or inhibit proteolytic and degradative enzymes, spoilage bacteria and 
other microorganisms in food products, providing safety and main-
taining freshness and high quality of food. PEF technology is considered 
a reliable emerging technology able to ensure a significant microbial 
inactivation in liquid and semi-liquid foods such as juices, purees, bev-
erages and smoothies with a minor impact on nutritional value, physi-
cochemical quality parameters and number of health-beneficial 
compounds due to low treatment temperature (Arshad et al., 2020; 
Cropotova et al., 2021; Režek Jambrak et al., 2018). Similarly to HHP, 
PEF can also be used for continuous extraction to enhance the recovery 
of valuable and bioactive compounds from biological tissue (Ali et al., 
2021b; Zhao et al., 2019). 

However, the antimicrobial effect of PEF depends on both extrinsic 
factors, such as intensity of electric field, pulse width, duration of 
treatment, electrical conductivity and pH, and intrinsic factors of mi-
croorganisms, such as microbial load, size, type, and growth stage and 
rate (Zhao et al., 2019). This technology needs some refinement by 
conducting more economic and engineering studies before it is ready for 
large scale industrial applications (Chakka et al., 2021; Hernández--
Hernández et al., 2019). 

US is also a promising non-thermal technology referring to sound 
waves that exceeds the audible frequency range, i.e. greater than 20 
kHz. The main principle of ultrasound is reflection and scattering of 
acoustic waves originated from molecular movements oscillating in a 
propagation medium and generating compressions and decompressions, 
which further result in an increase in mass transfer, turbulence, and 
production of energy (Bhargava et al., 2021b; Gallo et al., 2018). 

Based on the frequency and intensity, ultrasound waves can be 
divided into two categories: low-energy ultrasound characterized by 
high frequency (5–10 MHz) and low intensity (<1 W/cm2) and high- 
energy ultrasound, having low frequency (20–100 kHz) and high in-
tensity (>1 W/cm2). High intensity (from 10 to 1000 W/cm2) and low- 
frequency (from 20 to 100 kHz) ultrasound is considered disruptive due 
to detrimental influence on the physical (including structure and me-
chanical properties), physicochemical and biochemical characteristics 
of biological materials, in contrast to low-energy ultrasonic waves 
(Bhargava et al., 2021b; Gallo et al., 2018; Zhao et al., 2019). 

Because the cavitation produced by high-intensity US, the technol-
ogy is being applied in the food industry to inactivate degradative en-
zymes, eliminate spoilage microorganisms and improve the recovery of 
valuable compounds from a vast variety of foodstuffs. US can also be 
used to improve many processing operations, such as emulsification and 
foaming, freezing and thawing, concentration, drying, tenderization, as 
well as control and modification of microstructure and textural prop-
erties of fatty and protein-rich foods (Ali et al., 2021a; Bhargava et al., 
2021a; Gallo et al., 2018; Zhao et al., 2019). 

CP has gained popularity in recent years as an alternative food 
processing technique that can affect the quality attributes of food during 

treatment and storage, as well as extend food shelf life based on mi-
crobial and enzyme inactivation (Pankaj et al., 2018; Sruthi et al., 2022). 
Plasma may be generated by any kind of energy able to ionize the gases, 
such as thermal, electrical, light energy, radioactive, and X-ray elec-
tromagnetic radiation (Denoya et al., 2021; Pankaj et al., 2018). The 
mechanism of action of CP on microorganisms can be explained by the 
impact of reactive species on the microbial cell and damage caused by 
UV on cellular components and DNA strand break (Hernández--
Hernández et al., 2019; Jadhav et al., 2021). The use of CP for microbial 
decontamination has been extensively researched. For example, CP 
treatment was found to be effective for postharvest sterilization and 
preservation of blueberry (Ji et al., 2020). In another study, the appli-
cation of CP under various processing conditions was investigated on 
carrot discs, and the results showed a decreased microbial growth in the 
samples treated at 100 kV for 5 min (Mahnot et al., 2020). 

However, there were found many negative effects during treatment 
of foods due to direct contact between the food and the CP. For example, 
the ionization produced by CP generates UV irradiation, which increases 
the content of reactive oxygen species (ROS). Therefore, despite the 
proven benefits of the application of CP for microbial inactivation in 
food products, the negative aspects related to the generation of ROS 
hinder its regulatory approval in the food industry. Other challenges 
include costs, complexity of equipment and processing parameters, 
safety of the gases used, and plasma-matrix interactions (Denoya et al., 
2021; Hernández-Hernández et al., 2019; Sruthi et al., 2022). 

Despite the aforementioned advantages of non-thermal processing, 
there are still some issues related to consumer acceptance, safety, 
limited packaging options, and expensive equipment (Chakka et al., 
2021; Zhao et al., 2019). At the present time, most of these technologies 
are applied either on a lab-scale or pilot scale, while a few industrial 
applications have been seen. 

Some relevant examples from studies supporting the reduced envi-
ronmental impact of emerging technologies are the pasteurization of 
orange juice with HPP (Cacace et al., 2020), high-pressure homogeni-
zation of milk (Valsasina et al., 2017), ultrasound-assisted freeze-drying 
of apple, carrot, and eggplant (Merone et al., 2020), and PEF 
pre-treatment for the maceration stage in olive oil and winemaking in 
relation to conventional processes (Ferreira et al., 2019). However, in 
terms of processing cost, the use of ultrasound as pre-treatment on 
freeze-dried apple, carrot, and eggplant was associated with a reduction 
of 70% in energy consumption in relation to non-sonicated freeze-dried 
samples (Merone et al., 2020). However, contrasting outcomes in the 
literature about the economic feasibility among different non-thermal 
technologies is dependent of food and technology (Aganovic et al., 
2017; Cacace et al., 2020), which indicates the necessity of development 
in the emerging technologies per se. 

The progression of processing technologies aligned with these factors 
is a process that has emerged in recent decades (Chemat et al., 2020). 
This progressing towards global levels as companies producing the 
equipment for industrial applications: Hiperbaric based in Spain pro-
ducing HPP equipment (Hiperbaric, 2021), ELEA producing PEF systems 
in Germany (ELEA, 2022), Ultratecno producing US systems in Spain 
(Ultratecno, 2019), and Adtec producing CP equipment in Japan (Adtec 
Plasma Technology, 2020). 

Consequently, the advances in food science generated a parallel 
development of food processing technologies to the technologies that 
characterize Industry 4.0 per se (HPP vs. IoT, for instance). Since each 
one of emerging food processing technologies and 4.0 Industry tech-
nologies has its own characteristics and applications (indicated in pre-
vious sections), seems reasonable to consider that the development of a 
common area of application between them is necessary to find a 
harmonious and concurrent evolution. The mutual benefits for food 
processing from this combination are expected to improve food quality, 
safety, alignment with consumer preferences and tendencies. 
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6. Conclusions and future perspectives 

There is a high demand for digitalization and automation of various 
processing operations in the food industry. Especially in the context of 
the COVID-19 pandemic, it is evident that the time has come to enhance 
digitalization and automation in the food sector, including food pro-
cessing, using recent advances and innovations of the fourth industrial 
revolution (Industry 4.0). In this work, we explored “Food Processing 
4.0” concept, utility and effectiveness referring to processing food 
products in the modern digital era using robotics, smart sensors, AI, IoT, 
and BD, among other Industry 4.0 technologies. The main advantages of 
applying the concept of Food processing 4.0 are increased food quality 
and safety and reduced food waste and impact on the environment, 
contributing to the green shift in the food processing sector. 

Various types of robots are increasingly being deployed in the food 
industry. The need for automation and robotics has increased in the last 
two years with the outbreak of COVID-19 pandemic. Many challenges 
(such as variability in size and shape of foods) stand in the way of 
automated applications in food processing, preventing widespread 
adoption of robots. However, recent technological advances in this field, 
including the design of advanced grippers, have enabled to handle 
delicate or irregularly shaped food products. Different smart sensors (e. 
g., spectroscopic-based sensors and electronic sensors) have been 
developed to be used in various applications. For example, in the food 
packaging, the use of smart sensors has the potential to improve food 
quality and safety and communicate useful information to consumers. 
Recent trends of miniaturization and portability, as well as scientific 
advances in certain fields, such as nanobiotechnology have led to the 
development of efficient and cheap smartphone-based sensors. 

AI is one of the most powerful tools that can be used to solve complex 
problems and perform various tasks (such as food sorting, quality and 
safety check, and process optimization) in the food processing, accel-
erating the move toward an intelligent food processing. Although AI has 
already transformed some areas of manufacturing and food processing 
environments, it is expected that more AI-based applications will be 
introduced in many more areas in the near future. 

Slowly, but surely, the food processing industry is getting acquainted 
with IoT and other related technologies. Food quality, safety and lo-
gistics can be enhanced and food waste and food production cost can be 
reduced by the implementation of IoT-based technologies. Based on this 
literature review, it was possible to observe a growth trend in the 
number of publications related to IoT in food processing. IoT provides 
opportunities to improve food processing through strengthening supply 
chain transparency by real-time monitoring and tracking production, 
distribution, and storage of food products. IoT technology could be a 
game-changer for future food processing and other food industry sectors 
once technical, operational, financial, and other related challenges are 
met. 

Another Food Processing 4.0 enabler that was discussed in this re-
view is BD that is paving its way to revolutionize the food industry. 
Implementing data analytics tools in the food industry offers many 
benefits, including among others, food safety, demand forecasting, real- 
time decision making, and food waste management. However, some 
barriers, related to lack of system standards, limited shared data, data 
security, and legal issues, are still hampering the full exploitation of BD 
in the food production. 

Innovative food processing technologies (e.g., HPP, PEF, etc.) are 
increasingly adopted in the food industry given their desirable features 
(such as energy efficiency, and time and resource saving) that are fully 
aligned with Industry 4.0 principles. These emerging technologies are of 
paramount importance to meet consumer’s demands for minimally- 
processed food with high nutritional and sensory quality. However, 
many factors (including among others, consumer acceptance, benefits 
and risk, high initial investments, and regulatory frameworks) that are 
impacting the adoption of these novel technologies by food processing 
industry, need to be considered and thoroughly analysed. 

In short, more research focusing on a wider utilization of Industry 4.0 
innovations and aligned with emerging food processing technologies is 
expected in the near future, allowing to overcome current shortcomings, 
thus supporting the transition to a smarter and more sustainable food 
processing. Although Food Processing 4.0 enablers bring great oppor-
tunities and significant improvements to the food industry, they also 
create challenges that need to be tackled. 
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Bono, G. (2022b). Seafood processing, preservation, and analytical techniques in the 
age of industry 4.0. Applied Sciences, 12(3), 1703. https://doi.org/10.3390/ 
app12031703 

Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios. 
In Proceedings of the annual Hawaii international conference on system sciences, 2016- 
march (pp. 3928–3937). https://doi.org/10.1109/HICSS.2016.488 

Hernández-Hernández, H. M., Moreno-Vilet, L., & Villanueva-Rodríguez, S. J. (2019). 
Current status of emerging food processing technologies in Latin America: Novel 
non-thermal processing. Innovative Food Science & Emerging Technologies, 58 
(September), Article 102233. https://doi.org/10.1016/j.ifset.2019.102233 

Hiperbaric. (2021). Hiperbaric. Retrieved September 2, 2022, from https://www.hiperba 
ric.com/en/about-us/who-we-are/. 

Iqbal, J., Khan, Z. H., & Khalid, A. (2017). Prospects of robotics in food industry. Food 
Science and Technology, 37(2), 159–165. https://doi.org/10.1590/1678-457X.14616 

Jadhav, H. B., Annapure, U. S., & Deshmukh, R. R. (2021). Non-thermal technologies for 
food processing. Frontiers in Nutrition, 248. https://doi.org/10.3389/ 
FNUT.2021.657090, 0. 

Jagtap, S., Bader, F., Garcia-Garcia, G., Trollman, H., Fadiji, T., & Salonitis, K. (2021). 
Food logistics 4.0: Opportunities and challenges. Logistics, 5(1), 2. https://doi.org/ 
10.3390/LOGISTICS5010002 

Jagtap, S., & Duong, L. N. K. (2019). Improving the new product development using big 
data: A case study of a food company. British Food Journal, 121(11), 2835–2848. 
https://doi.org/10.1108/BFJ-02-2019-0097 

Jagtap, S., Duong, L., Trollman, H., Bader, F., Garcia-garcia, G., Skouteris, G., … 
Rahimifard, S. (2021). IoT technologies in the food supply chain. In C. M. Galanakis 
(Ed.), Food technology disruptions (pp. 175–211). London, Uk: Academic Press.  

Jagtap, S., Garcia-Garcia, G., & Rahimifard, S. (2021). Optimisation of the resource 
efficiency of food manufacturing via the Internet of Things. Computers in Industry, 
127, Article 103397. https://doi.org/10.1016/J.COMPIND.2021.103397 
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