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Abstract— This work studies binary classification problem 

for small airborne targets (drones vs other) by means of their 

trajectory analysis. For this purpose a set of the kinematic 

features extracted from drone trajectories using radar 

detections with a classification scheme that utilises Random 

Forests is proposed. The development is based on experimental 

data acquired from the Holographic radar from Aveillant Ltd. 

An approach for real-time classification is proposed, where an 

adaptive sliding window procedure is employed to make 

predictions over time from trajectories. Several models utilising 

different kinematic features (angle, slope, velocity, and their 

combination) are studied. The best model achieves an accuracy 

of more than 95%. In addition, fundamental issues with 

imbalanced datasets in the context of this topic are raised and 

illustrated using the collected data.  

Keywords—Drone, classification, trajectory, motion, machine 

learning 

I. INTRODUCTION

In recent years, the number of unmanned aerial vehicles 
(UAVs or drones) available commercially has increased 
dramatically due to the constant development of new 
technologies and declining costs of these devices. Drones 
offer numerous possibilities: from the inclusion of cameras for 
filming sports, building works, maintenance, assisting state 
security forces such as police or fire and rescue teams, to 
helping in the agriculture sector by planting seeds or analysing 
the soil nutrients with camera sensors. While the increased 
availability of UAVs brings many positive impacts to society, 
it also increases access for malicious applications. The number 
of crimes and illegal acts involving the use of drones is 
growing and may become a concern. The most common 
problem is the intrusion of drones into protected airspaces and 
restricted areas around key facilities. These breaches can 
cause irreparable damage to infrastructure, interfere with Air 
Traffic Control (ATC) and in extreme cases, can result in fatal 
consequences for civilians. In the case of airports, the use of 
drones in airspace around is highly restricted, as they can 
cause terrible damage if they are sucked into the aircraft 
engines during taking off or landing. In addition, there are 
other possible cases such as espionage, carrying weapons and 
other malicious activities. Therefore, early and reliable 
detection and classification of drones is found to be an 
important task in preventing crimes, as well as ensuring safety 
and security of people, important assets and critical 
infrastructure. 

The aim of this work is inspired by this need and is related 
to the development of a binary classifier for drone recognition. 
The proposed system receives trajectories and outputs a binary 
prediction: “drone” or “other” (i.e. not a drone). In this work, 
an emphasis is put on using exclusively trajectory-based 
features so that the classification can operate reliably in 
conditions without micro-Doppler signatures. In addition, it is 

important that the classification approach is explainable for 
customers in safety-critical scenarios.  

II. RELATED WORKS

The problem of the drone classification from a sensory 
data has attracted significant attention in the literature. 
Various approaches have been explored, where signatures 
related to the type of drone could be extracted from the micro-
Doppler features in radar data ( [1] [2] [3] [4] [5] [6]), acoustic 
signatures and image-based features ( [7] [8] [9]). While being 
useful and effective (especially for micro-Doppler based 
classification) there is an additional source of the information 
that can be providing more drone classification information – 
kinematic features. Several studies have explored such 
features in combination with AI techniques.  Work [10] 
utilised Artificial Neural Network (ANN) with 30 neurons for 
drone classification using trajectory-related features. A total 
of 15 features and 5 more radar cross section (RCS) related 
features were explored. The classification performance was 
above 99% with all features, but somewhat reduced to 98.7% 
when 14 features were down selected. 

Study [11] proposed two-stage classification between non 
drone and drone (divided in turn into rotary and fixed wing) 
classes. The method from [10] is used, studying the effect of 
the number of plots per segment. 20 kinematic-based and 30 
signature-based features are used for each segment. The tracks 
were generated using specific real data. In the paper a Support 
Vector Machine (SVM) with radial basis kernel is trained. An 
accuracy of 95% was achieved, but the importance of each 
feature wasn’t determined. So, the performance of trajectory 
features remains unknown. 

In work [12] the authors trained a K-Nearest Neighbour 
(KNN) classifier to differentiate between drones and aircrafts. 
They used x, y coordinates extracted from videos of 
installations at an airport. In this KNN, k=5. 60-point 
trajectories were selected based on the ratio between length 
and accuracy, which has reached 90%.  

A drone vs bird classifier was developed in [13] using 
multiple features extracted from the trajectory information 
acquired from videos. Four trajectory features were extracted 
and used for training: rotation angle, curvature, velocity, and 
acceleration. The average value of each feature was used for 
each track. 1192 tracks were used (804 bird and 388 drone). 
The authors applied Principal Component Analysis (PCA) to 
reduce from 4 to 2-dimensional feature space. The final 
classifier was a SVM with a non-linear Gaussian kernel. A 
rather sparse dataset was used. This and the low number of 
features may be the reason for poor accuracy, compared to 
others found in the literature. According to the authors, the 
accuracy was just above 80%.  
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This paper [14] continue the work  [13]  with the modified 
dataset, where 110 kite tracks were added. An average of 85% 
accuracy was obtained this time.  

In work [15] the authors analysed use of recurrent neural 
networks (RNN) for drone identification based on trajectory 
information. 5000 simulated flight tracks of birds and drones 
were generated for this purpose using different models. Each 
trajectory had a size of 60 points. The x, y, z components of 
the instantaneous velocity and acceleration, and the 
instantaneous turn rate were extracted. Three feature 
combinations were considered: using raw position as input (3 
features), using velocity, acceleration and turn rate (7 
features), and 3 Convolutional Neural Networks (CNN) layers 
before the RNN. The accuracy was, respectively: 66.3%, 
80.4% and 99.3%. These last results must be taken with 
caution as the data were simulated and not extracted from real 
data.  

The authors of work [16] developed a neural network 
(NN)-based system for detecting and classifying drones and 
birds by using trajectory information. The trajectories are 
divided into segments of n=16 points, and 15 kinematic 
features and 4 shape features are extracted from the real time 
video. The authors claim that the NN can extract more features 
from the data directly, and it is showed by the high 
performance of the model. The accuracy of the classification 
was over 99.5%. It was found however, that 4 shape features 
used may interfere with the trajectory classification. 

The authors of the study [17] developed a real-time multi-
class classifier based on trajectories and geographical 
information obtained from radar data. The features used 
included area, path, radar intensity, speed, normal 
acceleration, and temporal dynamics. Two classification 
algorithms (RGMM and DeltaGMM) were utilised, which are 
based on Gaussian mixture models and Naive Bayesian 
approach. A large dataset of 107722 tracks for all classes was 
used for training with variable class balance. The accuracy of 
RGMM and DeltaGMM was, respectively, 78% and 86%.  

In the work [18], the authors employed a Random Forest 
(RF) technique coupled with an alpha beta filter to classify 
stationary and moving targets of 7 classes captured by radar 
by using their trajectory information. Simulated data is 
generated to test the model. Track data is extracted from 
Automatic Identification System (AIS), Automatic Dependent 
Surveillance-Broadcast (ADS-B), GPS logs and real-world 
radar data. The same features as in the previous work are 
extracted from tracks and fed into the model. The overall 
performance with real world data is 79.7%.  

In work [19] the authors utilised a Gradient Boosting 
classifier that classified 7 classes of ships based on trajectory 
data. 7 kinematic features were extracted from an AIS receiver 
from which statistical indicators were obtained. The main 
hypothesis was that every ship had its own characteristics and 
those would be reflected in the statistical features, like 
maximum or mean. Authors claim that local variations of 
speed are captured in the acceleration. The approach 
demonstrated an average F1-score of 86%.  

In study [20], the authors proposed an approach to 
classification of cargo ships and fishing boats using trajectory 
data. Trajectories are split into 3 categories: anchored-off, 
straight-sailing and turning. Then, 3 sets of features are 
extracted from segments: global features, straight-sailing 
features and turning features. Feature selection is performed 

observing the probability distribution functions. Logistic 
regression has been chosen for classification purpose due to 
its hight accuracy and good interpretability. The Area Under 
the Curve (AUC) value of the final model was 0.963.  

The authors of work [21] proposed to use RNN-based 
classifier with Gated Recurrent Units (GRU) for vessel 
classification based on the trajectory data extracted from 
coordinates, timestamp, and distance to shore. The feature 
vector included velocity, tangential and normal acceleration, 
displacement angle and distance to shore. The model obtained 
an average accuracy of 78.3%. The authors also trained a RF 
which has achieved 76.4%. Although the RNN model was 
1.9% higher than RF, this does not indicate that the use of 
RNN is the most appropriate for this type of classification. 

III. FEATURE ANALYSIS AND EXTRACTION 

A. Dataset 

The data used for this work was collected by Aveillant's 
Gamekeeper 16U radars (Fig 1), which are deployed 
worldwide at many different sites. The Gamekeeper radar is a 
L-band Holographic radar specifically designed for detecting, 
tracking, and classifying drones to ranges of 7.5km, its unique 
design facilitates hi-fidelity measurement of micro-Doppler 
signals and tracking of all targets within its surveillance 
volume at high track update rates (approximately 0.28s). 

The dataset consists of 76 subsets containing the 
trajectories of flying objects captured by the radar. Each 
datapoint consists of 56 features among which are: the x, y, z 

positions of the object at a given instant, the time at which this 
object and position have been captured, instantaneous 
velocities and their decompositions in the x, y, z axes, 
instantaneous accelerations, instantaneous jolt, among others. 
The datapoints are acquired with a constant sample time of 
0.279 seconds.  

The complete dataset consists of 117294 trajectories, of 
which 392 belong to drones and 116902 to other flying 
objects. The percentage of trajectories corresponding to the 
positive class (drones) represents approximately 0.3% of the 
total trajectories. This makes the dataset very imbalanced and 
makes it necessary to use techniques such as under sampling 
or oversampling in the training of the classification models. 

Due to the versatile nature of the targets of interest (mostly 
birds), the track lengths of the trajectories can be quite short. 
32% of the trajectories contain 10 or less datapoints and only 
2.4% contain more than 200 datapoints. As an initial 
hypothesis, all trajectories with less than 30 datapoints in 
length were removed as they do not contain enough data to 
extract reliable statistical information for classification. After 

Fig 1. Aveillant Gamekeeper 16U holographic radar 



pruning the tracks, the dataset used in this work consists of the 
following: 38069 trajectories, ranging between 30 datapoints 
and more than 2000. 274 trajectories are from "drone" and 
37795 are from the negative class, “other”.   

B. Data Preview 

Trajectories extracted from the dataset are defined as 
follows: 

 = , , , … ,  , ,  1 

where  indicates the trajectory number and ,  and  
represent the coordinates in 3-D space at the instant  (or 
datapoint) within the trajectory. 

In the dataset used in this work, of the 274 trajectories 
associated with drones, a large part of the long trajectories 
(>1000 datapoints) draws on the x, y plane specific patterns 
such as flowers, and “Pac-mans”, among others. The 
unnatural pattern of these waypoints is noted as a potential 
source of overfitting and so this must be considered when 
designing trajectory features. 

In this work it has been hypothesised also that information 
on how objects fly can be gathered through statistical values 
of speed, yaw angle and slope without the need to characterise 
specific shape of flight patterns. This work focuses more on 
how objects fly (statistically) rather than on what trajectory 
patterns are performed in the flight. 

C. Features 

Flight trajectories are characterised by an arbitrary number 
of points ordered in time in the three-dimensional space. From 
these points and their time, 3 properties that characterise the 
shape of the trajectory have been chosen: velocity, angle of 
rotation and slope angle. The angle of rotation characterises 
the trajectory in the horizontal plane, the slope characterises 
the changes in the Z-axis and the velocity characterises the 
size or distances between the sample points of the trajectory 
(assuming a homogeneous sample rate along the dataset). 

1) Velocity 
Speed is one of the main characteristics of a trajectory. The 

physical characteristics of drones and other flying objects such 
as birds are different. Therefore, the velocity of these objects 
can reflect differences between them.  

Given the x, y, z components of an object's positions in 
space over time, the approximate instantaneous velocity 
module is calculated as the Euclidean distance of two 
consecutive points divided by the time travelled between the 
two points. 

 = Δ , Δ , Δ
Δ  2 

where  indicates the instant or single datapoint in time; ,   and   indicate the difference between the x, y, and 
z components of two consecutive datapoints, and  is the 
sampling time (0.279 seconds). 

By going through the trajectory, an array of instantaneous 
velocities is obtained along the trajectory, given by: 

 = , … , ,  3 

where  indicates the index of a trajectory, and  is the total 
number of datapoints within that trajectory. 

The hypothesis is that the mean and variations in this array 
can provide differentiating information for the classification 
of drones and other targets, as the behaviour patterns of the 
objects are different. Once the velocity array is obtained, the 
mean, standard deviation, maximum and minimum values are 
calculated. The distribution of the velocity information is 
shown in Fig 2. 

2) Rotation Angle 
The angle of rotation is one of the main properties 

characterising the trajectory of a target. Given 3 points of a 
trajectory in the two-dimensional space formed by the 
coordinates X, Y, the angle of rotation is defined as the angle 
formed by the two vectors joining the first point with the 
second and the second with the third, respectively. Both 
negative and positive turning angles could be obtained, i.e. left 
and right turns, but the absolute value is used to not make a 
distinction. The angle of rotation lies between the limits of 0 
and . The rotation angle is defined by the formula: 

 = arccos  Δ , Δ · Δ, Δ 
‖Δ , Δ‖ · ‖Δ, Δ‖ 4 

where  indicates the instant or single datapoint in time and Δ  and Δ indicate the difference between the  and  
components of two consecutive datapoints.  

The array of rotation angles of a trajectory is given by: 

 = , … , ,  5 

where  indicates the number of an entire trajectory, and  
is the datapoint within that trajectory. 

Once the array of rotation angles has been obtained, a 
histogram of 6 bins is made and displayed in Fig 3. The 
histogram is then used to encapsulate the distribution of 
rotation angles within the trajectory. The distribution in the 
histogram reflects the behaviour of the flying object's motion.  

3) Slope Angle 
The third feature is based on the height fluctuation of the 

target. The slope angle is defined as the angle formed by the 
vector joining two points with respect to the horizontal plane 

Fig 2. Example of the velocity distribution. 

Fig 3. Example of the rotation angle 



(ground). The values of the slope angle are in the range 

- 
 , 

. The slope angle is defined by the formula: 

 =    ‖ , ‖ 6 

where  indicates the instant or single datapoint in time and ,   and   indicate the difference between the ,  and  components of two consecutive datapoints. The array 
obtained is given by: 

 = , … , ,  7 

where  indicates the trajectory index, and  is the 
datapoint within that trajectory. Once the array of slope values 
has been obtained, 6 bins a histogram is made and showed in 
Fig 4, following the same steps as in the rotation angle.  

IV. PROPOSED METHODS FOR CLASSIFICATION 

Two trajectory classification methods are proposed in this 
paper: 

1. Full trajectory classification. The features of the full 
trajectory will be extracted, and the full trajectory 
classification will be performed. 

2. Sliding window classification. A sliding window will 
extract features every few steps and make predictions using 
small windows of the track. A final classification of the 
complete trajectory is made from the window predictions 
made along the trajectory. 

This section will describe the methodology behind 
designing each of these classification algorithms and the 
preparation required for training. 

A. Imbalance Parameter 

One of the main issues of this work is the fact that the 
dataset is very imbalanced. In fact, in a real case where the aim 
is to detect and classify drone trajectories, the data obtained 
would be even more unbalanced. The number of drones that a 
radar can detect is minimal compared to the number of birds 
on the same period. The effect of this imbalance on both 
training sets and testing sets has been analysed. 

For this purpose, an imbalance parameter has been defined 
as the ratio between the number of trajectories of the negative 
class ("other") and the number of trajectories of the positive 
class ("drone"). The higher the imbalance parameter, the 
higher the proportion of "other" trajectories. This parameter is 
used to indicate the relationship of the classes in the different 
training and testing sets that are created for the evaluation of 
the models and their performance. 

B. Trajectories Segmentation 

Due to the low number of "drone" trajectories, in this work 
the trajectories are split to generate sets containing more 
trajectories. If each "drone" trajectory is split in two, twice as 

many samples of that class are obtained. This allows for more 
data, more variety and possibly better training and final 
performance of the models. 

The segmentation in the sliding window classification 
section is carried out in the following way: 

1. Sliding window size. A suitable segment size is chosen 
for the classification based on experimental results. 

2. Segmentation step. Each trajectory is divided into 
segments of the chosen size. Segments of the chosen size are 
extracted for each step, and there may be overlapping 
datapoints in the segments. For example: fora window size of 
50 and a segmentation step of 1, each new segment will share 
49 datapoints with the previous and next segment.  

3. Dataset update. A new dataset is created from the 
segments extracted from the original paths. The new dataset 
contains trajectories of a single size, making the statistical 
features. 

C. Classification Method: Smart Sliding Window Approach 

The following method of trajectory classification using a 
sliding window is proposed: 

1. A segmentation step is chosen that allows its use in real 
time. In this case, a segmentation step of 1 is used to maintain 
a “real-time” classification update rate. 

2. For each segmentation step a prediction of the window 
size datapoints is made and the predictions value is added to 
an array. This prediction is not a binary value but a probability. 
The RF technique of the Scikit-learn library allows a non-
discrete prediction that ranges between 0 and 1. Some of the 
functions in this library (and other common libraries) use the 
“predict_proba” class to perform this type of prediction. 
Although its name indicates "probability", there are some 
studies that show that these probabilities are not well 
calibrated [33], [34]. This issue is out of the scope of this 
work, so the non-binary prediction will be used as the 
probability that a trajectory is of one class or another. 

3. At the end of the trajectory, the average of the 
predictions is taken and, if it exceeds a threshold (empirically 
selected), it is classified as a "drone". If it does not exceed the 
threshold, it is classified as "other". 

It should be noted that this method is only used in the Test 
section, to simulate what could be its use in real time. 

D. Models and Techniques 

The classification technique adopted in this work is 
Random Forest. It belongs to a class of ensemble learning 
techniques and combines multiple (hundreds) of base 
classifiers (Decision Trees) to perform a regression or 
classification task by predicting an output with every Decision 
Tree (DT) and providing a final value of the prediction based 
on those previous predictions. The model selected is based on 
the fact that explainability is a requirement for this work. DTs 
are among the most explainable models, as their decisions can 
be visualised and understood by analysing them after training 
with data. 

Other explainable models such as Logistic Regression, 
SVM and KNN were considered for this study, but the high 
dimensionality of the chosen features makes them less 
explainable. Also, logistic regression, while being a very 
explainable model, performs much worse than RF. SVMs use 

Fig 4. Example of slope angle distribution 



the hyperplane to divide the features into classes, so the 
explainability is much lower. RF, being an ensemble model, 
should outperform simpler explainable models. 

PCA and t-Distributed Stochastic Neighbour Embedding 

(t-SNE) are the techniques used in this work for data 

visualization only. PCA is used for dimensionality reduction, 

and t-SNE is used for visualisation. The results obtained in 

this study have been based on the workstation with Intel® 

Core™ i7-6700HQ CPU running at 2.60GHz with 8GB RAM 

and Nvidia GTX960M GPU. 

V. RESULTS 

A. Full Trajectory Classification 

1) Data Visualisation 

a) Velocity Features 

Fig 5 shows the velocity features distributions. The 
average velocity of the "drone" was found to be slightly lower 
than that of other flying objects and, in addition, the 
distribution is slightly more skewed. The standard deviation 
and the maximum speed appear similar, but both show in the 
negative class ("other") a heavy tail. This may be due to the 
lack of more drone trajectories and not to statistical issues.  

In the minimum velocity the difference between the two 
classes is shown. This last feature can be very useful, as 
multicopter drones can hover without having to move in any 
direction, which is not the case for birds, which must flap or 
glide to stay in flight (although there are special cases where 
a bird can take advantage of a wind current to hover or elevate 
its position almost without moving in the X, Y directions). 

b) Rotation Angle Features 

From the data are extracted distributions to observe some 
behaviours of the aerial objects. The distributions are 
separated in 30° angles, for example, feature “angle_0_30_s0” 
represents the angles between 0° and 30°. And from these 
distributions the following observations are made. 

The distribution of the feature "angle_0_30_s0" indicates 
that contrary to an initial hypothesis the trajectories for class 
"drone" targets are more curved than the flying objects of the 
other class, which are usually birds. Intuition would tell us that 
birds, being living beings with a greater capacity for reaction 
and much greater mobility and agility, would have to trace 
more curved trajectories, with all kinds of movements and 
pirouettes. However, the data confirms that this is not entirely 
true. 

The distributions of the features "angle_30_60_s0", 
"angle_60_90_s0", "angle_90_120_s0", "angle_120_150_s0" 

and "angle_150_180_s0" confirm the above observation. The 
most repeated value of these distributions is "0", indicating 
that for class “other” trajectories the angular rotations are 
smaller than for another class. It is particularly curious to note 
that the distributions are similar, except for the peaks resulting 
from the "0" values of each distribution. The distribution of 
the feature "max_angle_s0" reconfirms the previous 
observation. The "drone" targets seem to make sharper turns 
than the “other” target class.  

c) Slope Angle Features 

From the distributions "slope_0_30_s0", 
"slope_30_60_s0", "slope_120_150_s0" and 
"slope_150_180_s0", it can be obtained that most of the 
trajectories of "other" describe slope angles whose values are 
between "-30" and "30" with respect to the ground plane (it 
should be remembered that the feature names indicate the 
range of angles with respect to the vertical line Z, not with 
respect to the horizontal plane). The maximum and minimum 
slopes (min_”slope_s0” and max_”slope_s0”) show a big 
difference as shown in Fig 6. Drones seem to be having 
trajectories with steeper slopes, both positive and negative. 
The "other" class targets, on the other hand, show a 
distribution similar to a uniform one. 

d) t-SNE 

To check the separability presented by these selected 
features, t-SNE is used for visualization purposes. To 
considerably reduce the computational time of this statistical 
algorithm, PCA is applied on the extracted features dataset, 
reducing the number of features from 19 to 2. These 2 features 
captured more than 99% of the variance of the data. 

The number of trajectories used from each class for these 
visualisations has been balanced. A random sample of 274 
trajectories from the class "other" has been taken for this 
purpose. Even though 274 trajectories are not as 
representative, they can provide a general visualization of the 
separability of the classes. These 2-D representations allow us 
to check the separation between the classes. The legends of 
the graphs indicate the negative class ("other") with the value 
"0" and the positive class ("drone”) with the value "1". 

In the graphs of velocity features and slope angle features 
a separation of the classes can be observed. There are clusters 
that are more defined in the positive class and others that 
contain more data from the negative class. Even so, it can be 
observed that there are many trajectories of both classes that 
are not differentiated from the other classes. This may indicate 
that there are indistinguishable trajectories or that the 
extracted features do not contain enough information to make 
this classification more accurate. 

The t-SNE of angle features shows some separation of the 
classes, but it can be observed that most of the trajectories 
show similar values, making it more difficult (or impossible 
without overfitting) to classify them using angle features. 
Even then, a large cluster of the positive class can be seen in 

Fig 6. Distributions of max and min slope angle for classes 

Fig 5. Distributions of velocity features. 



the upper left of this graph, with some outliers from the 
negative class. 

Finally, Fig 7 using all features shows a separation of the 
classes. This separation is promising for the training of the 
model. However, as previously said, the class separation is not 
totally evident in any case, possibly due to the extracted 
features or due to the trajectories being indistinguishable 
between "drone" and "other". 

2) Features Importance 
The RF model of the Scikit-learn library allows us to know 

the importance of the features used for classification. For this 
experiment, the dataset is constructed to have a 50/50 ratio of 
the two classes. This is because keeping the original ratio 
(>0.7% of the positive class) to the models struggles to learn 
the differences between the classes and perform much worse. 
In the next section, the effect of the training imbalance on the 
results obtained will be studied. For this analysis, all features 
were used in the training of the first model. Once the 
importance of the features is analysed, the least important 
feature is removed, and the model trained again. These steps 
are then repeated until 1 feature remains.  

After analysing the importance of each feature, it appears 
that the average, maximum and minimum speed are the most 
important features. In fact, the 3 features remain among the 
best until the end. The angle features are the first to be 
eliminated. This may indicate that these features provide little 
information for the classification of the trajectories. Then, 
slope features are the ones to be eliminated. The last 4 features 

are “minimum_vel”, “max_slope_s0”, “mean_vel” and 
“min_slope_s0”. When analysed in Fig 8, the number of 
features doesn’t affect the performance of the model until half 
of the features are not used and decrease steeply when going 
under 7 features. 

3) Imbalance Parameter 
The class imbalance will significantly affect the 

classification capabilities of an RF, so it is important that the 
effect of this imbalance is analysed. To do so, the parameter 
"imbalance_parameter" is defined as the division of the 
number of trajectories of the positive class ("drone") and the 
number of trajectories of the negative class ("other"). This 
parameter is used to indicate the relationship of the classes in 
the different training sets.  

In the next experiment, 7 training sets were generated as 
follows. For each “imbalance_parameter” (1, 2, 5, 10, 20, 50, 
100): 

The training set is initially empty. 

Add all trajectories of the positive class of the dataset (215 
trajectories) to the training set. 

Add 215*imbalance_parameter trajectories (randomly 
chosen) of the negative class of the dataset to the training set.  

Thus, the proportion of classes will be different for each 
training set. The proportions of each training set are as shown 
in Table I. 

Table I. Imbalance parameter proportions 

Imbalance parameter Proportion (%) 

1 50/50 

2 33/67 

5 17/83 

10 9.1/90.9 

20 4.8/94.2 

50 1.96/98.04 

100 1/99 

Based on the imbalance parameter values seven different 
models have been trained using dedicated training sets and 
with cross-validation (with a validation/training ratio of 0.2). 
The following metrics are calculated and analysed: AUC, 
accuracy, recall, F1 score and False Positive Ratio (FPR). Fig 
9 shows these metrics vs imbalance parameter for balancing 
precision and recall (left panel) and maintaining high 
precision (right panel). 

a) Maintaining Precision and Recall Balanced 

 The precision remains above 75% for all models. The 
model with “imbalance_parameter” =1 obtains a precision and 
recall of ~0.8, approximately. In the following models, with 
“imbalance_parameter” equal to 2, 5, 10, 20 and 50, recall and 
F1 drop drastically, falling below 40% in the last two models. 
The AUC remains above 80% in all models. And the FPR goes 
from 15.3% to 1.6%.  

Fig 7. t-SNE of sets of features and all features. 

Fig 9. Performance vs imbalance parameter. 

Fig 8. Performance vs number of features. 



b) Maintaining High Precision 

Model precision remains above 75% for all models. The 
recall and F1 drop drastically, lower than in the previous case, 
and reach below 20% in the models trained with less balanced 
datasets. The model with “imbalance_parameter” =1 obtains 
an accuracy and recall of ~75%, approximately. In the 
following models, with “imbalance_parameter” equal to 2, 5, 
10, 20 and 50, recall and F1 drop drastically, falling below 
20% in the last two models. The AUC remains above 80% in 
all models. And the FPR drops from 21.1% to 0.7%. 

4) Feature Impact Analysis 
 Next, the study of the performance changes due to the 

selected features has been performed. For this purpose 4 RF-
based models were created with different features: velocity 
features, angular features, slope features and the last model 
used all features. A hyperparameter optimisation of these 
models was carried out using a Grid Search. The scoring 
criteria used is the F1 score. The reason for choosing this 
scoring is to have a balance between precision and recall. 

The hyperparameters evaluated were the following: 
• 'class_weight':   ['balanced'], 
• 'bootstrap':   [True, False], 
• 'n_estimators':   [100, 300, 500], 
• 'max_features':   [1,2,3,4], 
• 'criterion':  ['gini', 'entropy'] 

The rest of models used in this work where also optimized, 
but it was redundant to include the optimization in every 
section. The optimized models used in this work can be found 
in the Appendices section. 

The Receiving Operating Characteristic (ROC) curve for 
the 4 models, cross-validated on training set is shown in Fig 
10. The AUC values for these models are shown in Table II: 

The model which uses all features appears to outperform 
the other models significantly. The model with the worst 
performance is the one using only angular features, followed 
by the one using slope features. This may indicate that the 
features used in the last two models lack important 
information to classify with high accuracy classes “drone” and 
“other”. As this is an ensemble model based on the 3 that uses 
specific set of features would create a redundant model. An 
ensemble model of the 3 models was trained and the ROC 
curve and AUC value was exactly the same as the simple 
ensemble model that used all the features. 

5) Test 
Next, the final test of the effect of the imbalance parameter 

over the training set will be analysed. The first analysed result 

is the decrease in false positives. In the trained model with a 
ratio of 50/50 % the number of false positives is very high 
(~860). In contrast, in the trained model with a ratio of 1/99%, 
the number of false positives is 49 (0.69%), a low value. 

Even though the accuracy and recall are not optimal, the 
accuracy of the final model (with a more realistic proportion) 
is 98.82%. The metrics used for the evaluation of models 
using imbalanced data should be analysed with care. In most 
papers, the data are either balanced and the precision and 
recall are high (~80% or more) or the metric used for 
evaluation is accuracy, which can be misleading, like in this 
case. With the low number of target trajectories, these models 
are very likely to have suffered from overfitting. 

B. Sliding Window Classification 

In a real use case scenario, in addition to receiving 
trajectories from birds and other flying objects hundreds of 
thousands of times before a drone appears, there is the issue 
of detection and classification time. As described above, the 
sample time of the trajectory data is 0.279 seconds. If the 
detection needs to happen in real time, an optimal window size 
must be chosen to perform this type of classification. 

1) Best Window Size 
In this section the effect of segment size on model 

performance is analysed. 34294 trajectories are selected, 238 
for class "drone" and 34056 for class "other" (randomly 
chosen), and segmented each trajectory is to generate a new 
training set. 

The segmentation was performed for 10 different window 
sizes: 20, 25,…,60, 65. For each window size, the total 
number of segments of the new dataset increases as expected, 
as the original trajectories can be divided into more segments 
when the window size is reduced. 10 different training sets 
were generated, one for each window size. The total number 
of segments ranged between 2524 and 4163 for "drone" 
trajectories, and 24368 and 50734 for class "other" 
trajectories. The new training sets were much richer in 
quantity and in information, as the following results will show. 

Eleven identical RF-based models were trained using 
different training sets. The confusion matrices 10-fold cross-
validation have been generated and evaluated. They show 
high accuracy (>94%). The precision, recall, F1 and F-beta 
scores for each window size are shown in Fig 11. The scores 
increase from approximately 50% to around 70% for window 
sizes of 45 to 65. The effect on performance with larger 
window sizes has not been tested, as the number of trajectories 
with 70 or more datapoints is low. Furthermore, with a larger 
window size, the time to the first classification of a trajectory 
would increase, also increasing the risk of not detecting a 
target in a real scenario. Although a window size of 20 or 30 

Table II. ROC curves AUC values 

Angle features: 0.7632 Slope features: 0.7798 

Velocity features: 0.7977 All features: 0.8666 

Fig 10. ROC curve of 4 models. 

Fig 11. Performance vs window size 



could be chosen, a window size of 50 is selected for the rest 
of the section, which translates into 13.95 seconds. In the 
following section, new training and testing sets are generated 
to analyse the effect of class unbalancing. 

2) Validation 

a) Train Balanced, Test Balanced 

A model was trained with 31442 "drone" segments and 
36269 "other" segments, an approximately balanced ratio. 
Through 5-fold cross-validation, the ROC curve and AUC 
score of 0.9674 are obtained.  

The large increase in performance over models using the 
full trajectory for classification can be observed. By increasing 
the number of trajectories (new segments), the model can 
learn more accurately the characteristics of "drone" and 
"other" flights. The hypothesis that by dividing trajectories 
into segments, local information can be extracted more 
accurately from the trajectories is made, i.e. eventual 
behaviours unique to each class. Both the increase of samples 
and the extraction of local information significantly improve 
the performance of the model. 

The model was evaluated with a validation set of 6248 
"drone" segments and 7283 "other" segments of trajectories 
never seen before by the RF. The confusion matrix is shown 
in Fig 12 and the scores obtained in Table III. 

 Table III. Scores on validation set 

Precision: 0.9409 Recall: 0.9767 

F1: 0.9585 Fbeta: 0.9693 

Accuracy: 0.9589 

 Here the FPR is 0.05. Comparing this model with the 
previous model in Section V. A. 3), where the training and 
validation set were balanced, the performance has increased 
by approximately 15% (from ~80% to ~95%). 

These results, although very promising, will be challenged 
in the next section, where the same experiment will be 
performed with unbalanced training and validation sets. 

b) Train Imbalanced, Test Imbalanced 

A model was trained with 1353 "drone" segments and 
36269 "other" segments, a ratio closer to that of a real case, 

where the number of drone trajectories is much lower than that 
of other flying objects such as birds. The ROC curve and the 
AUC of 0.8868 were obtained using 5-fold cross-validation 
and are shown in Fig 13.  

These results show a significant drop in model 
performance. One of the reasons may be the considerable 
reduction of data for training (30089 less "drone" trajectories). 
This reduction of data may cause the model to underfit the data 
and that could be the reason for this drop in performance. The 
model was evaluated with a validation set of 271 "drone" 
segments and 7283 "other" segments of trajectories never seen 
before by the RF. See the confusion matrix in Fig 14 and the 
scores obtained in Table IV.  

Table IV. Scores on validation set. 

Precision: 0.4053 Recall: 0.3948 

F1: 0.3999 Fbeta: 0.3969 

Accuracy: 0.9573 

Here the FPR is 0.022. Still, comparing this model with 
the previous model in Section V.  A.  3), where the training 
and validation set were imbalanced with a similar proportion, 
the performance has increased by about 10% (from ~30% to 
~40%). These results show the importance of the choice of 
metrics used for the evaluation of these models on balanced 
and imbalanced datasets. 

3) Test 
In this section, a method for semi real-time trajectory 

classification is depicted. For this, a final test set is generated, 
using 30 complete "drone" trajectories and 2237 complete 
"other" trajectories. The test is imbalanced to represent the 
typical diversity in radar trials. The models used are the two 
trained in the previous section: one with a balanced training 
set and the second with an imbalanced training set. For the 
final test the method is described in Section IV. C has been 
used, where each trajectory is segmented to simulate a semi 
real-time prediction. That is, for each trajectory, the new 
datapoint and the 49 previous datapoints are collected to 
generate a segment of 50. The model then predicts the class of 
each segment and performs a final classification of the 
trajectory. 

a) Train Imbalanced, Test Imbalanced 

Fig 15 shows the "real-time" predictions of the trajectories 
of the test set of the model trained with an imbalanced training 
set. The red dashed lines represent the predictions of the 
"drone" trajectories, and the blue dashed lines represent the 
predictions of the "other" target trajectories. The x-axis 
represents the number of predicted segments over time. The 
vertical axis represents segment predictions, with "0" being 
the negative class and "1" the positive class.  

Fig 14. Confusion matrix on validation set. 

Fig 12. Confusion matrix on validation set. 

Fig 13. ROC curve of model using imbalanced training set 



For better visualisation, the predictions have been cut from 
300 datapoints, as the lengths of the trajectories are very 
different and make their visualisation more difficult. 

With the classification method used, it appears that 
trajectories corresponding to the "drone" class have higher 
prediction scores than those corresponding to the class 
"other". Towards the end, the trajectory tends to be correctly 
classified, even if a few false positive/negative appears. Fig 16 
shows the confusion matrix of the final classification of each 
complete trajectory, scores are shown in table Table V. 

Table V - Scores of final classification on test set. 

Accuracy: 0.9816 Precision: 0.3777 

Recall: 0.5666 F1: 0.4533 

The accuracy in this case is above 98%. There were only 
28 false positives out of 2237 trajectories classified as "other". 
Accuracy, recall and F1 score are low, but the model managed 
to correctly classify 17 of the 30 "drone" trajectories even with 
such a low FPR. 

The thresholds of the RF and the final trajectory 
classification algorithm could be adjusted to achieve the 
required performance. Perhaps a much higher FPR could be 
assumed, as long as all or almost all "drone" trajectories are 
classified correctly. This question is outside the scope of this 
paper, as it is a decision to be made by experts using these 
classification systems for real cases. 

b) Train Balanced, Test Imbalanced 

Fig 17 represent the "real-time" predictions of the 
trajectories of the test set of the model trained with a training 
set balanced. 

A lot of noise can be observed in the initial predictions of 
"other" trajectories, however, majority of the predictions for 
this class stabilises around "0". As a general observation and 

compared to the previous case, the predictions are more 
confident. That is, the trajectories of class "drone" receive a 
prediction score closer to "1". In the previous case, very few 
trajectories exceeded the 0.5 threshold. Fig 18 shows the 
confusion matrix of the final ranking of each full trajectory 
whereas Table VI shows the scores. 

Table VI. Scores of final classification on the test set. 

Accuracy: 0.9874 Precision: 0.5313 

Recall: 0.5666 F1: 0.5484 

The results are similar to the previous case, but the 
precision has increased by almost 20% and the F1 score by 
10%. The accuracy is still high. Training with a balanced 
dataset, in addition to including more data (segments), 
increases the accuracy of the final classifier. 

It is interesting to note that the number of correctly 
classified drone trajectories is exactly the same as in the 
previous case (17 correct classifications). In fact, a further 
check was performed to determine whether they were the 
same trajectories in the two cases. It was found that the 
trajectories of correctly and incorrectly classified "drones" 
were the same. This may indicate that there are trajectories 
that cannot be distinguished or that the proposed method is not 
efficient in distinguishing them. 

The low amount of drone trajectories used in these tests 
may be the reason of the low results as well. 30 trajectories 
could be not enough for evaluation. In the context of machine 
learning, big numbers are the key, for training and for testing. 
More trajectories could be used to make this test more 
representative. In any case, although the metrics used show 
low values, the results are promising and show that there is 
still room for improvement. 

C. General Discussion of Results 

Due to the random nature of the experiments performed 
(such as the choice of non-drone trajectories) and the 
randomness of the RFs training algorithm, the results could 
vary with each new result or new training. Each result of this 
work has been repeated dozens of times with numerous small 
changes in the way the dataset splits, trajectory choices, 
metrics used, models used, and features chosen, among others. 
The results shown in this study are the most significant ones 
found during the development work, and represent issues that 
are not covered in other published works known to the authors. 

Among these issues is the effect of the imbalanced training 
and testing dataset. From the results of the sliding window 
classification section, it can be observed that training with a 
balanced training set gives a better performance, in particular, 
a higher precision. This may be due, as mentioned above, to 
the increased number of samples in the training set, rather than 
to the unbalanced training set itself. These types of issues 
should be studied in future work on similar topics to this one. 

Fig 15. Predictions of classes over time on the test set. 

Fig 17. Predictions of classes over time on the test set. 

Fig 18. Confusion matrix of final classification on test set. 

Fig 16. Confusion matrix of final classification on test set. 



Work dealing with the development of classification systems 
for drones and other flying objects hardly considers the real 
context of this topic. Encountering a drone flying in the sky is 
much less common than encountering birds flying. In a real 
application of these systems, a 50/50 drones-birds ratio isn’t 
possible, a ratio of 1 to 10000 or more orders of magnitude is 
more realistic. 

Although the results in the sliding window test are not the 
best, only one method has been proposed for the final 
classification. A new method could increase precision and 
recall. Even though the model performs worse in the sliding 
window classification, the high performance in the validation 
test only indicates that the classification method for real time 
classification is the limiting factor, the one that makes the final 
classification perform worse. Also, as said earlier, 30 
trajectories (drones) could be a very low number for testing. 
With 1 or 2 more orders of magnitude of drone trajectories the 
models could be better evaluated and give confident metrics. 

In short, and as a final comment, the quantity of data in the 
context of machine learning is as important as its quality. By 
working with so few drone trajectories, the results obtained do 
not indicate that this system should be used in real time 
without risk; the number of drones that are not classified 
correctly is still high and could lead to very dangerous 
situations for people or facilities. A near-perfect recall should 
be the main goal, i.e. to be able to classify almost all drones 
correctly. But, of course, this should be coupled with a very 
low FPR, as it is not desirable to have so many false alarms, 
which can be counterproductive for the operators who 
ultimately control this type of drone detection and 
classification system. The creation of new trajectories with 
different types of drones will undoubtedly help the creation of 
models with very high recall and very low FPR. 

Furthermore, the average speed of the targets of class 
“drone" in the dataset surely indicates that the drones used for 
the creation of the dataset are the rotary ones. Fixed-wing 
drones can reach much higher speeds. Furthermore, the 
trajectories and flight patterns that fixed-wing drones can 
generate are likely to be different, adding more data variety 
and complexity to this type of work. 

When comparing our work with what is present in the 
literature, the results seem to match the performance of the 
most relevant literature in terms of accuracy or precision when 
given. The only model that clearly outperforms the ones in this 
work is [16]. Their model was a NN with 3 hidden layers of 
64 neurons each, which is less explainable and 4 of the 
features input of the model were not only trajectory ones, but 
also included visual/shape features (number of pixels of the 
detected object, mean, variance and standard deviation). 

VI. CONCLUSION 

A full trajectory classifier with 95% accuracy, precision 
and recall has been developed. This classifier has been 
produced in response to a way to differentiate drone and other 
trajectories from radar trajectory data only. This classifier can 
serve as the basis for real-time use supported by the optimized 
window size parameter. 
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