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Abstract—To boost large-scale deployment of unmanned aerial
vehicles (UAVs) in the future, a new wireless communication
paradigm namely cellular-connected UAVs has recently received
an upsurge of interest in both academia and industry. Fifth
generation (5G) networks are expected to support this large-
scale deployment with high reliability and low latency. Due to
the high mobility, speed, and altitude of the UAVs there are
numerous challenges that hinder its integration with the 5G
architecture. Interference is one of the major roadblocks to
ensuring the efficient co-existence between UAVs and terrestrial
users in 5G networks. Conventional interference mitigation
schemes for terrestrial networks are insufficient to deal with the
more severe air-ground interference, which thus motivates this
paper to propose a new algorithm to mitigate interference. A
deep Q-learning (DQL) based algorithm is developed to mitigate
interference intelligently through power control. The proposed
algorithm formulates a non-convex optimization problem to
maximize the Signal to Interference and Noise Ratio (SINR) and
solves it using DQL. Its performance is measured as effective
SINR against the complement cumulative distribution function.
Further, it is compared with an adaptive link technique: Fixed
Power Allocation (FPA), a standard power control scheme and
tabular Q-learning(TQL). It is seen that the FPA has the worst
performance while the TQL performs slightly better. This is
since power control and interference coordination are introduced
but not as effectively in the TQL method. It is observed that
DQL algorithm outperforms the TQL implementation. To solve
the severe air-ground interference experienced by the UAVs
in 5G networks, this paper proposes a DQL algorithm. The
algorithm effectively mitigates interference by optimizing SINR
of the air-ground link and outperforms the existing methods.
This paper therefore, proposes an effective algorithm to resolve
the interference challenge in air-ground links for 5G-connected
UAVs.

Index Terms—Fifth-generation(5G), interference, deep Q-
learning, unmanned aerial vehicles (UAVs)

Engineering and Physical Sciences Research Council(EPSRC), Satellite
Applications Catapult

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been gaining

increasing popularity in recent years, especially as an enabler

for a plethora of new applications, such as cargo delivery,

surveillance and inspection, aerial photography, among others

[1]. Advances in communication technology for instance

miniaturization of hardware, have enabled UAVs to serve as

communication interfaces in the sky such as base stations

(BSs), to enhance the communication services for the

terrestrial or aerial users in demand.

To support the deployment of UAVs on a large scale, they

must be integrated into the future cellular network i.e., the

fifth generation (5G) as BSs to support terrestrial BSs [2].

Compared to the existing UAV-ground communications,

which is limited to within visual line-of-sight (VLoS)

range, cellular-connected UAVs can only be enabled by the

beyond visual LoS (BVLoS) communications. This leads to

significant performance enhancement in terms of reliability,

coverage, security and throughput [3].

Despite advantages, integrating UAVs into 5G networks faces

challenges [4] [5]. In particular, how to mitigate the severe

aerial-ground interference is deemed as a major question in

realizing cellular-connected UAVs. Compared to terrestrial

wireless channels that generally suffer from severe path-loss,

shadowing and multi-path fading [6], the high altitude of

UAVs leads to LoS-dominant channels with ground BSs. Due

to these LoS links from non-associated BSs, the UAV may

suffer severe downlink interference, which would significantly

degrade the communication performance of UAVs.
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A. Interference Mitigation Challenges

As mentioned above, one of the major challenges in the

functioning of UAVs as part of a cellular network lies in

severe air-ground interference that it faces. Compared to

traditional ground users, interference in UAVs is aggravated

by the LoS-dominated UAV-BS channels owing to the altitude

of the UAV. For downlink communication from BS to UAV,

each UAV may receive severe interference from a large

number of neighboring BSs that are not associated with it,

due to strong LoS-dominated channels. As a result, it is

expected that a UAV in general would have a poor downlink

performance. On the other hand, in the uplink communication

from UAV to BS, the UAV could also pose strong interference

to many adjacent but non-associated BSs and result in a new

exposed BS interference issue. Thus, devising an effective

interference mitigation technique by taking into account the

unique UAV-BS channel and interference characteristics is

crucial to cellular-connected UAVs. One simple method of

mitigating this interference is efficient allocation of resource

blocks(RBs), but for severe air-ground interference this cannot

be used. This is because the number of RBs available to

the UAVs in this case would be highly limited or even zero

with a high probability of outage, due to the dense frequency

reuse for terrestrial UEs in today’s cellular network and

their current number significantly surpasses that of UAVs.

Furthermore, existing terrestrial mitigation techniques have

their limitations in dealing with the more severe air-ground

interference.

The aim of this paper is to develop a unique method

of power control to mitigate interference in 5G networks

that cope with the unique challenges posed by the use of

UAVs. A deep Q-learning algorithm is proposed to mitigate

interference via power control. The following explains why

the proposed DQL is a good solution to the problem:

• The proposed solution does not require the channel state

information (CSI) (as opposed to standard link adaptation

techniques), to find the optimal Signal-to-Interference

and Noise-Ratio(SINR).

• It also reduces the need for UAV feedback to the BS. In

existing methods [7], the UE or the UAV has to report

its CSI which is a vector of length equal to number of

antenna elements. In the proposed method, the UAVs

send only their received SINR and co-ordinates, while

the agent manages the power control and consequently

the interference coordination commands.

• The proposed solution provides explicit power control

and interference mitigation commands sent by the UAV

to the serving and interfering BSs as opposed to current

industry standards which only require the serving BS to

send power control commands to the UAV.

B. Contributions

This paper therefore, makes the following contributions:

• Formulate the power control, and interference problem

in the downlink direction as an optimization problem

that maximizes the UAV’s received SINR.

• To create a deep reinforcement learning based solution

where multiple actions can be taken at once using

information in a data set and change the power values

to achieve optimal SINR.

The paper is structured as follows, Section II discusses

the existing works and identification of the gaps and the

challenges associated with present interference mitigation

techniques. 5G and UAV functionality is discussed in detail

in Section III. A brief introduction on deep reinforcement

learning and existing techniques of interference mitigation

against which the proposed solution is compared are

presented, further the proposed algorithm is also presented in

Section IV. Network model, system model, and the channel

models are discussed along with the simulation setup and

results in Section V. The work is concluded and the impact

of the results discussed in Section VI.

II. BACKGROUND AND RELATED WORKS

Although various interference mitigation techniques have

been studied in the literature some of which were applied to the

terrestrial networks such as inter-cell interference coordination

(ICIC) [8] [9], coordinated multi-point (CoMP) transmission

[10] [11] they may be inadequate to deal with the new and

more severe interference issue brought by UAVs, owing to

their unique LoS-dominant air-ground channels. The industry

standards adopted the method of almost blank sub-frame

(ABS) to resolve the co-channel inter-cell interference problem

in LTE where two BSs interfere with one another. ABS works

well in fixed beam antenna patterns, the dynamic nature of

UAVs reduces the usefulness of ABS for UAV networks.

In [12], the interference characteristics of directional UAV

networks is characterized based on the stochastic geometry,

where each UAV is equipped with a directional antenna and

is placed in three dimensional (3D) locations. In particular, the

3D location of UAVs is assumed to be uniformly distributed

in a certain volume, which is modeled by Poisson point

process. As discussed earlier, UAVs in cellular network as

new aerial users is a promising solution to meet their ever-

increasing communication demands, but owing to the high

UAV altitude, the channels are dominated by the strong LoS

links. A UAV can communicate with a large number of base

stations at the same time, leading to a higher probability

of interference as compared to terrestrial users. However, on

the other hand, severe interference may be generated from

the LoS links, which renders the interference management

with coexisting terrestrial and aerial users a more challenging



problem to solve. In [13], the authors propose a new coopera-

tive interference cancellation strategy for the multi-beam UAV

uplink communication, which aims to eliminate the co-channel

interference at each of the occupied BSs and maximize the

sum-rate to the available BSs. Over the last few years, the use

of deep learning in wireless communications was studied in

certain literature [14]. Specifically, [15] uses deep reinforce-

ment learning to perform power control for mmWave and this

was designed as an alternative to beamforming in improving

the non-line of sight (NLOS) transmission performance. The

power allocation problem to maximize the sum-rate of UEs

under the constraints of transmission power and quality tar-

gets was solved using deep reinforcement learning. In their

solution, the authors use a convolutional neural network to

estimate the Q-function of the deep reinforcement learning

problem. [16] defines a policy that maximizes the successful

transmissions in a dynamic co-related multichannel access

environment as obtained using deep Q -learning. In [17], the

authors jointly optimized beamforming, power control, and

interference coordination in a 5G wireless network to enhance

the communication performance to end users. They developed

Q-learning algorithm to maximize the downlink SINR in a

multi-access OFDM cellular network from a multi-antenna

base station to single-antenna UEs.

It is seen that, the solutions provided to mitigate interference

for UAVs are developed on existing interference cancellation,

sum-rate maximization and beamforming techniques but these

only work for certain use cases. With UAVs touted as the

solution to wide range of challenges and applications, it is of

importance that in future 5G networks is able to accommodate

UAVs operating at high altitude and speeds with minimum

possible interference.

III. 5G-UAV FUNCTIONALITY

Using 5G networks for UAVs is an opportunity to provide

stable connectivity, while reducing scale, weight and power

usage costs and specifications. 5G is expected to provide

a wide variety of wireless services across multiple access

channels and multi-layer networks. To that end, it uses a

smarter Radio Access Networks (RANs) architecture, that is

not limited by the proximity of the base station or complex

infrastructure. Some of the technology enablers that support

5G networks and impacts the UAVs are, 5G spectrum and

frequency, beamforming, multi access edge computing, soft-

ware defined networks and network function virtualization and

network slicing [18].

According to 3GPP standard [19], the new 5G Network Core

uses a cloud Service-Based Architecture (SBA), as Fig. 1

depicts, that covers all 5G functions and interactions, such

as authentication, protection, session management and end-

user traffic aggregation. It emphasizes virtualised functions

deployed using the Multi-access Edge Computing(MEC) in-

frastructure, as an integral design principle. As an advance-

ment of cloud computing, MEC is a crucial element of the

5G infrastructure that takes applications from centralized data

centres to the edge network, which means closer to the end

user, offering advantages such as low latency, high bandwidth,

and real-time access to RAN information. It also guarantees

very low-latency communication for the C2 link.

Fig. 1. 5G System Architecture

The system considered in this paper, consists of primarily

of the following components:

1) UAV: The UAV consists of the following sub-

components as shown in Fig. 2 which serve different

functions to enable different functionalities for the UAV:

Fig. 2. UAV functionality

• Flight Controller: The flight controller is responsible

for mainly three different functions, viz. (i) sensing



- sensors give the flight controller information like

its height, orientation, and speed. Common sensors

include an Inertial Measurement Unit (IMU) for

determining the angular speed and acceleration, a

barometer for the height, and distance sensors for

detecting obstacles, (ii) controlling - UAVs can

rotate and accelerate by creating speed differences

between each of its four motors. The flight

controller uses the data gathered by the sensors to

calculate the desired speed for each of the four

motors, (iii) communicating - flight controllers

need to communicate with other computer systems

about its flight destination, UAV health and other

mission critical data.

• GPS: A GPS module allows UAVs to know their

location relative to a network of orbiting satellites.

Connecting to signals from these satellites allows

the UAV to perform functions such as position hold,

autonomous flight, return to home, and way-point

navigation.

• Sensors: Sensors for UAVs are used for surveying,

mapping, and inspections, to support a wide

range of application in industries such as mining,

construction, energy, environmental management,

agriculture, infrastructure, and waste management.

Sensor advances are capable of improving multi-

functionality to allow for a wider range of

applications.

Additionally the UAV also consists of a transceiver,

that sends and receives data from the ground control

station (GCS) which in this case is a 5G base station.

In the proposed algorithm, the UAV sends the received

SINR values along with its co-ordinates to the base

station, based on which the interference is mitigated.

The SINR values are reported from the flight controller

unit, while the co-ordinates are reported for the GPS

module.

2) Ground Control Station(GCS): Ground control stations

are mainly responsible for the following functions-

attitude control of the UAV, display and control of pay-

load data, mission planning, UAV position monitoring,

map display of routes,navigation and target positioning,

and communication links with other subsystems.

In the system considered, power control and interference

mitigation on the signal from the non-serving BS is performed

at a central location. The decisions are computed at a central

location, which is located at in a cloud architecture. The

measurements from the UAVs are relayed to the central

location over the backhaul as shown in Fig. 3 which is further

linked to the 5G core network.

Fig. 3. Base station functionality

Therefore, by modifying functionalities at the BS end,

the deep reinforcement learning algorithm is implemented to

mitigate interference by improving SINR of the UAV.

IV. DEEP REINFORCEMENT LEARNING

Deep Reinforcement Learning (DRL) is a machine learning

technique in which an agent is enabled to discover a certain

action it should take to maximize its expected future reward

in an interactive environment. This interaction is shown Fig.

4. DRL exploits the capability of deep neural networks to

learn better representations and operate as a universal function

approximator.

Fig. 4. Agent-environment interaction

A. RL learning elements

Reinforcement learning has several elements [20]. These

elements interact together, and are as follows:

• Observations: Observations are continuous measures of

the properties of the environment and are written as a p

-ary vector O ε Rκ where p is the number of properties

observed.

• States: The state st εS is the discretization of the

observations at time step t. Often, states are also used to

mean observations.

• Actions: An action atε A is one of the valid choices that

the agent can make at time step t. The action changes

the state of the environment from the current state s to

the target state s’.

• Policy: A policy π(·) is a mapping between the state of

the environment and the action to be taken by the agent.



A stochastic policy is π(|ξ) ` S × A→ [TWU].

• Rewards: The reward signal νξWξ′W[οaλ] is obtained

after the agent takes an action a when it is in state s at

time step t and moves to the next state s’.

• State-action value function: The state-action value func-

tion under a given policy π is denoted Qπ(ξW ). It is the

expected discounted reward when starting in state s and

selecting an action a under the policy πY

These elements work together and their relationship is

governed by the objective to maximize the future discounted

reward for every action chosen by the agent, which causes the

environment to transition to a new state. The policy dictates

the relationship between the agent and the state. The value of

the expected discounted reward is learned through the training

phase.

B. Existing Methods

In this paper, the proposed algorithm is compared with

some industry standards, which are discussed as follows:

1) Fixed Power Control (FPA): The fixed power allocation

(FPA) power control is used as a baseline algorithm that sets

the transmit signal power at a specific value. No interference

coordination is implemented in FPA. Total transmit power

is divided equally among all the Physical Resource Blocks

(PRBs) and is therefore constant. In this algorithm, the BS

fixes its transmit power and only changes the modulation

and code schemes of the transmission. This is known as the

“link adaptation.” Link adaptation takes place based on the

measurement reports sent by the UAV back to the BS (i.e., the

SINR and received power). Since the BS transmit power is

fixed, the link adaptation takes place based on either periodic

or aperiodic measurement feedback from the UAV to the

serving BS. This results in an improved effective SINR and

a reduction in the packet error rate. There is no measurement

sent to the interfering BS based on FPA.

2) Tabular RL: The tabular setting of Q -learning (or

“vanilla” Q -learning) is used to implement the algorithm

for interference mitigation. In a tabular setting, the state-

action value function Γπ(ξο W ο) is represented by a table

ΓεR|Ε|×|A|. The learning rate of the Q-learning update, de-

fines how the experience update takes place with respect to

the previous experience. Computationally, the tabular setting

suits problems with small state spaces where maintaining a

Q-table is possible.

C. Proposed Solution

Algorithm 1 is proposed, which is a DRL-based approach.

This algorithm performs power control without the UAV send-

ing explicit power control commands. This Deep Q-Learning

(DQL) may provide a lower computational overhead compared

to the tabular Q-learning depending on the number of states

and the depth of the deep Q-network [17].

Algorithm 1 Deep Q-Learning Algorithm for Interference

Mitigation

Input: Downlink SINR measured and reported by the

UAVs

Output: Sequence of power control and interference

coordination commands to optimize the SINR

1: Initialize time,states,actions,and replay buffer D

2: repeat

3: repeat

4: ο `= ο + UY
5: Observe Current state ξο
6: ε `=Δ‘(ε · ΧW εηn)

7: Sample ν ∼ Uniform(0,1)

8: if ν ≤ ε then

9: Select an action ο ε A at random

10: else

11: An action ο = Σ˘Δ‘′ Γπ(ξο W 
′
aθο)

12: end if

13: Compute γ
Ψƒ ƒ
[ο] and νξWξ′ W[οaλ]

14: if γ
Ψƒ ƒ
[ο] k γηn then

15: νξWξ′ W[οaλ] `= νηn

16: Abort episode

17: end if

18: Observe next state ξ
′

19: Store experience Ψ[ο](ξο W ο W νξWξ′ W′ W ξ
′
) in D

20: Minibatch sample from D for experience

Ψδ ≜ (ξο W ο W νδW ξδ+U)

21: Set τ `= νδ + τη

′Γπ(ξδ+UW 

′
aθο)

22: Perform SGD on (τ −Γπ(ξδW δaθο)
V), find θ∗

23: Update θο `= θ∗ in the DQN and record loss ıο
24: ξο `= ξ

′

25: until ο ≥ Ζ
26: until convergence or aborted

27: if γ
Ψƒ ƒ
[ο] ≥ γονgΨο then

28: νξWξ′ W[οaλ] `= νξWξ′ W[οaλ] + νη

29: end

The main steps of Algorithm 1 are as follows:

1) Select an optimization action at a time step t.

2) Select a power control and interference coordination

action.

3) Assess the impact on effective SINR γ
Ψƒ ƒ
[ο].

4) Reward the action taken based on the impact on

γ
Ψƒ ƒ
[ο] and its distance from γtarget or γηn, i.e.

higher reward for being closer to γtarget and lower for

being closer to γηn.



5) Train the DQN based on the outcomes.

The notations and abbreviations used in the algorithm are

described in Table I

TABLE I
LIST OF NOTATIONS

Notation Description

t Time Sample
sο State Variable
ε Exploration rate
d Exploration rate decay
aο Action Variable
Qπ State Action Value Function
γ SINR
γeff Effective SINR
γtarget Target SINR
γmin Minimum SINR
γthresh Threshold SINR
SGD Stochastic Gradient Descent

V. SIMULATION SET-UP AND RESULTS

A. Network Model

A downlink cellular network of L BSs is considered. This

network is comprised of a serving BS and at least one interfer-

ing BS. A downlink scenario, where a BS is transmitting to the

UAV is adopted. The BSs have an inter-site distance of R and

the UAVs are randomly scattered. The association between the

UAVs and their serving BS is based on the distance between

them. A user is served by one BS maximum. The cell radius

is ν > ΔZV to allow overlapping of coverage.

B. System Model

Considering the above explained network model, and

adopting a multi-antenna setup where each BS employs a

uniform linear array of M antennas and the UAVs have single

antennas, the received signal at the UAV from the l -th BS

can be written as :

τ = β∗
W
ƒ +
∑

Υ ̸=
β∗
WΥ
ƒΥΥ + n (1)

where l, b ε C are transmitted signals from the l -th and b

-th BSs, and it satisfies the power constraint

E[ ||V] = ΒTX,l (2)

The ȷ × U vectors βl,lW βl,b ε Cȷ×U are the channel vectors

connecting the UAV at the l th BS with the l th and b th BSs

respectively. Finally, nl ∼ Normal(TW σV
n
) is the received noise

at the user sampled from a complex Normal distribution with

zero-mean and variance σV
n

.

The first term in (1) represents the desired received signal. The

interference received by the UAV from the non-associated BSs,

is depicted by the second term in (1).

Every BS l is assumed to have a transmit power ΒTX,l ε P ,

where P is the set of possible transmit powers. This set is

defined such that the possible transmit powers is a power offset

(above or below the current power level).

C. Channel Model

A narrow-band geometric channel is adopted for this

algorithm. With this geometric model, the downlink channel

from a BS b to the UAV in BS l can be written as

βl,b =

p
ȷ

ρl,b

µ
κ

WΥ
∑

κ=U

α
κ

WΥ
∗(θ

κ

WΥ
) (3)

where,

α
κ

WΥ
= complex path gain of the p-th path

θ
κ

WΥ
= angle of departure(AoD) of the p-th path

(θ
κ

WΥ
) = array response vector associated with AoD

µ
κ

WΥ
= No. of channel paths

This model accounts for both LOS and NLOS scenarios.

For the LOS case, µ
κ

WΥ
= U is assumed

The received downlink power as measured by the UAV

over a set of physical resource blocks (PRBs) at a given time t

as

Βl,b

UAV
[ο] = ΒTXWΥ[ο]

�

�

�β∗
l,b
[ο]ƒΥ[ο]

�

�

�

V
(4)

where,

Β
l,b
UAV[ο]- Received downlink power

ΒTXWΥ[ο]- Transmit power from BS b

Next the received SINR for the UAV served in BS l at

time t is computed as follows,

γℓ[ο] =
ΒTXWℓ[ο] |β∗ℓWℓ[ο]ƒℓ[ο] |

V

σV
n
+
∑

Υ ̸=ℓ ΒTXWΥ[ο] |β∗ℓWΥ[ο]ƒΥ[ο] |V
(5)

This is the received SINR that will be optimized.

D. Simulation Setup

The network, system, and channel models are described

in earlier sections. The users are moving at a speed v with

both log-normal shadow fading and small-scale fading. The

cell radius is r and the inter-site distance R=1.5r. The UAVs

experience a probability of line of sight of κLOS. The rest of the

parameters are shown in Table II. The target effective SINRs

are set as:

γtarget `=W dBW

γthresh

target
`=γthresh

T
+ UT ΓΛ˘ȷ dB (6)



where γοβνΨξβ
T

is a constant threshold. A minimum SINR of -3

dB below which the episode is declared aborted and the session

is unable to continue, is set.

The hyper parameters required to tune the RL-based model

are shown in Table II. Further, we run Algorithm 1 on the

cellular network with its parameters in Table III.

TABLE II
REINFORCEMENT LEARNING HYPER PARAMETERS

Parameter Value

Discount Factor γ 0.995
Initial exploration rate ε 1.000
Number of States S 8
Deep Q-Network width H 24
Exploration rate decay d 0.995

Minimum exploration rate εηnW ε
οβνΨξβ
ηn

(0.15,0.10)

Number of Actions A 16
Deep Q Network Depth 2

The simulated states S are setup as:

(ξT
ο
WξU
ο
)`=UAVℓ([ο]W τ[ο])W (ξ

V
ο
W ξW

ο
) `= UAVΥ([ο]W τ[ο])W

ξX
ο
`=ΒTXWℓ[ο]W ξY

ο
`= ΒTXWΥ[ο]W

ξZ
ο
`=fℓ

n
[ο]W ξ[

ο
`= fΥ

n
[ο]W

where (x,y) are the Cartesian co-ordinates (i.e longitude and

latitude ) of the given UAV.

TABLE III
RADIO ENVIRONMENT PARAMETERS

Parameter Value

BS maximum transmit power P
max
BΕ

46 dBm

Cellular Geometry Hexagonal
Antenna Gain(TX,thresh) (11,3) dBi

Probability of LOS (PLOSW Β
thresh
LOS
) (0.9,0.8)

Downlink Frequency 4.7 GHz
Cell Radius r 150m
UAV Antenna Gain 0 dBi
Inter-site distance R 225m
Number of Multipaths Nκ 15
Average UAV Speed v 20m/s
Frame Duration 20ms

E. Results

Fig. 5 shows the Complementary Cumulative Distribution

Function (CCDF) of the effective SINR γeff for three algo-

rithms viz. FPA, Tabular Q-Learning and DQL, all for the same

episode. This episode generates the highest reward. Here we see

that the FPA algorithm has the worst performance, which was

expected since FPA has no power control or interference coordi-

nation. The tabular Q-Learning implementation has better per-

formance compared with the FPA. This is because even though

power control is introduced to the BSs, it not as effective, which

explains why close to γeff = 9 dB tabular Q-Learning under-

performs FPA. Further, we observe that DQL, the proposed

algorithm outperforms the tabular Q-Learning implementation,

since DQL has resulted in a higher reward compared to tabular

Q-Learning.This is because DQL has converged at a better

Fig. 5. CCDF plot of effective SINR for three different interference mitigation
algorithms

solution, unlike the tabular Q-Learning, the convergence of

which is hindered by the choice of a initialization of the state-

action value function. However, as the effective SINR γeff

approaches 13 dB, the UAVs are close to the BS center and

therefore all power control algorithms perform almost similarly

thereafter.

VI. CONCLUSION

With the unique challenges presented by the UAVs owing

to their 3-D movement causing air-ground interference, new

and unique methods to mitigate interference are required to

address the challenges. In this paper, an algorithm is developed

to maximize the downlink SINR in a 5G cellular network with

UAVs. The UAVs experience interference from non-associated

BSs due to multiple LoS channels. To this effect, power control,

and interference mitigation algorithm using deep reinforcement

learning is developed in this paper. By leveraging the cloud-

based architecture of 5G systems, this algorithm is imple-

mented in a cloud location and receives UAV measurements

over the backhaul. The algorithm outperforms both the tabular

Q -learning algorithm and the industry standard fixed power

allocation algorithm. The proposed algorithm requires that the

UAV sends its coordinates and its received SINR every mil-

lisecond to the base station. However, it does not require the

knowledge of the channel state information, which removes

the need for channel estimation and the associated training

sequences. Moreover, the overall amount of feedback from the

UAV is reduced because the UAV sends its coordinates and

would not need to send explicit commands power control and

interference mitigation. Thus, this algorithm provides a solution

to one of the major roadblocks to implementing 5G-connected

UAVs, i.e., air-ground interference
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