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ABSTRACT This paper presents a comprehensive evaluation of the near-field acoustics of an aircraft
auxiliary power unit (APU), based on experimental data acquired from an in-situ APU. The aim is to establish
whether near-field acoustics can be implemented for online condition monitoring. The APU of Cranfield
University’s demonstrator aircraft, a Boeing 737-400, has been instrumented to acquire acoustics (near-field
and far-field) and vibration data in synchronization with aircraft state parameters under a wide range of
operating conditions. The acquired data is first implemented to determine the efficacy of employing near-
field / far-field microphones, and vibration sensors, to monitor the combustion noise and tonal frequency
levels from the APU components. Subsequently, an evaluation of the broadband characteristics of the
vibroacoustic data and its variations against APU states and performance parameters is conducted based
on several categories of feature extraction techniques. The findings suggest that nearfield acoustics lacks the
ability to capture the combustion noise process. In addition, the tonal frequencies are also lost due to the
level of background noise, fluctuations in the APU speeds, and scattering effects. For the same reasons, the
phase couplings occurring between the signals generated by the APU components cannot be detected using
acoustic data. Nevertheless, the overall analysis substantiates that the near-field acoustic data can be used to
predict the APU operating states and has the potential to be implemented for developing APU performance
parameter estimation models to enable condition monitoring.

INDEX TERMS Condition monitoring, acoustics, vibration, feature extraction, acoustic scattering, high
order spectral analysis, coefficient of overlap, correlation coefficient, acoustic noise, aircraft.

I. INTRODUCTION
A. BACKGROUND
Monitoring of system parameters is essential for a feedback
control system, ensuring system operation within the required
performance and safety limits, and for condition monitor-
ing purposes. The complexities associated with designing,
integrating, and installing such a monitoring system depend
primarily on the type of sensing mechanisms employed.
Generally, the sensor required for a particular application
depends on its capability to sense the desired variations in
the system parameters or faults. The sensor-fault pairs (like
vibration sensors for bearing faults, and pressure transducers
for mass flow measurements) are well-established and are
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being used for a wide range of applications. However, the
intrusive nature of most of these sensors can make them
unsuitable for legacy aircraft due to hardware complexity and
the associated cost, including certification, which escalates
when developing retrofit solutions.

The aircraft auxiliary power unit (APU) is a turboshaft
engine [1], composed of several rotating components, valves,
guide vanes, igniters, and other associated accessories to
generate the required electrical and pneumatic power for
aircraft systems. An APU is a complex piece of machinery
that requires continuousmonitoring to ensure its performance
and reliability. Due to accessibility issues, space, power, and
weight constraints, installation of an elaborate sensor-set may
be prohibitive, and the desired condition monitoring capabil-
ity may not be possible. On the contrary, the acquisition of
noise data using microphones may prove to be useful for such

108564 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-6577-9164
https://orcid.org/0000-0002-5752-1873
https://orcid.org/0000-0002-7542-4356


U. Ahmed et al.: Evaluation of Aircraft Auxiliary Power Unit Near-Field Acoustics for Condition Monitoring

applications. A microphone-based solution could be readily
deployed, non-intrusive, and cost-effective.

The authors have initiated research on the development of
a microphone-based condition monitoring solution by first
considering the far-field noise as a probable source of infor-
mation about the health of the system. This led to the devel-
opment of a far-field noise estimation model [2]. Sensitivity
analysis has been performed using the developed model to
quantify the effect of APU component degradation on the far-
field noise. The effects, essentially negligible, have not led
to any practical solution. Moreover, the solution employing
far-field microphones is prone to interference from external
effects and cannot be used for onboard condition monitoring.
Therefore, in this study, the research has been extended to
the near-field acoustic data to ascertain the feasibility of its
utilization for onboard condition monitoring purposes.

B. LITERATURE REVIEW
Microphones have been used to study the sources of noise
in the far-field of an aircraft APU. Coherence analysis is
generally employed along with a set of multiple external
and internal microphones to study the sources of direct and
indirect combustion noise [3], [4]. The use of microphones is
also common for noise measurements [5], its effect on airline
employees [6], and the design of noise abatement solutions
[7]. A recent study employed far-field microphone data to
develop and validate a far-field noise estimation model for
the complete range of APU operating conditions [2].

From the perspective of condition monitoring, micro-
phones have been shown to detect faults in bearings, gears,
and rotors using statistical features [8], [9], [10], frequency
transform [11], [12], [13], [14], Bicoherence analysis [11],
[14], spectral sub-bands [15] and symmetric dot patterns [16].
The proposedmethodologies have been shown to be useful on
individual components placed in a controlled environment to
minimize acoustic reflections. The efficacy of these methods
on an actual system in its original configuration is not known,
and therefore the usual approach for condition monitoring of
aircraft APUs is to use thermodynamic data acquired from a
set of intrusive sensors [17].

The noise data acquired from a machine may also have
broadband characteristics peculiar to the state in which the
machine is operating. Several techniques can be used to trans-
form broadband characteristics into useful features for further
processing; such analysis has been widely used for speech-
related applications. The use of Linear Predictive Coefficients
(LPC) [18], [19], [20], [21], [22], [23] and spectral descrip-
tors [24], [25], [26], [27] are among such applications. The
same feature extraction techniques have not been evaluated
on the noise generated by an aircraft APU and their usefulness
for APU state and parameter estimation is yet to be ascer-
tained.

C. SCOPE OF WORK
Although the use of microphones for condition monitoring
purposes seems to be an attractive solution, the literature has

been found to be lacking a detailed analysis of APU noise data
(captured through microphones) to determine its potential
utilization. In this research, a thorough examination of the
noise generated by an in-situ aircraft APU is conducted in
order to determine the usefulness of the microphone data
for condition monitoring purposes. For this study, experi-
mental data has been acquired from Cranfield University’s
Boeing 737-400 demonstrator aircraft [Section-II], which has
been systematically processed using appropriate techniques
[Section-III]. The results and discussion [Section-IV] present
the scientific understanding associated with:

1) Detecting combustion noise along the periphery of the
APU using microphones and vibration sensors.

2) The possibility of examining tonal frequencies gener-
ated by the APU components (shaft, gears, bearing)
through acoustics.

3) Segregation between APU states using vibroacoustic
(near-field microphones and vibration) sensors.

4) Establishing relationships between various features
extracted from vibroacoustic data and APU thermody-
namic parameters.

This paper is a precursor to a detailed study, which is being
prepared, on the utilization of acoustics for condition moni-
toring of an aircraft auxiliary power unit. In the current paper
the APU nearfield acoustic and vibration signatures, and their
signal processing techniques, will be examined for applica-
tion to condition monitoring. The findings of this paper are
indicated where they occur {Finding #} and then referenced,
in total, in the Conclusions. It is to be noted that, the primary
focus of the paper is on analyzing the acoustic data, while the
vibration sensor data is considered for comparison purposes.

II. BOEING 737-400 APU OPERATION
The Boeing 737-400 APU is a single-shaft gas turbine engine
with a load compressor and a generator to support pneumatic
and electrical loads (Fig. 1 in [2]). The APU has two cen-
trifugal compressors (one for the power section and one for
APU pneumatic system) with 17 impellers each, while the
radial turbine has 14 blades. The APU operates at 63,830 rpm
for all operating and load conditions. A set of Inlet Guide
Vanes (IGVs) control the flow through the load compressor
when demanded by the aircraft systems: the Environmental
Control System (ECS), wing anti-icing, and the Main Engine
Starter. A bleed valve (located outside the shroud) isolates the
APU’s output from the aircraft’s pneumatic system and is put
to a fully open position during bleed-on conditions. The surge
control valve, controlled by the surge valve torque motor
(SVTM), splits the flow produced by the load compressor
towards the aircraft pneumatic system and the APU exhaust
to prevent a surge condition.

The APU accessories (generator, fuel pump, cooling fan,
and oil pump) are driven by the gearbox. Lubricating oil
passes through the gearbox to reduce friction and gear wear.
The oil temperature is regulated by an oil cooler which acts
as a heat exchanger and the cooling air eventually leaves
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FIGURE 1. The scheme adopted for APU Acoustic Data Analysis.

the APU through the cooling air outlet. The APU assembly
is enclosed inside a shroud for noise reduction and safety
against fire. A Full Authority Digital Electronic Controller
(FADEC) controls the APU operation by varying the IGVs,
Surge Control Valve (SCV), and fuel flow to the combustor,
based on the input frommultiple sensors {RPM, Exhaust Gas
Temperature (EGT), etc.} which can be viewed through the
FADEC display.

The APU states can be divided into three categories:

1) Bleed system inactive (BL OFF)
2) Bleed System activated with no

pneumatic load (BL ON NL)
3) Bleed System activated with pneumatic

load (BL ON LD)

BL ON

There are major variations taking place when the APU tran-
sitions from BL OFF to BL ON states and vice versa. In the
latter state, the IGVs are fully open and there is a considerable
rise in fuel flow. Whereas, between BL ON NL and BL ON
LD, only mass flow through the bleed valve varies depending
on the load. This is achieved by varying the SCV angles by
changing the current through the SVTM, from 50mA for BL
ON NL to a maximum of 95mA for BL ON LD conditions.
The effects of load conditions on the APU thermodynamic
parameters and the far-field noise have already been dis-
cussed [2].

III. ANALYSES PERFORMED
A. OVERVIEW
This paper systematically analyses the noise generated by
an in-situ aircraft APU using appropriate signal processing
techniques to address the research gaps found in the literature.
The overall scheme adopted to perform the necessary set
of analyses is presented in Fig. 1. Acoustic (far-field and
near-field), Vibration and FADEC data form the basis of the
analysis; these have been acquired from the aircraft APU in
its original configuration (APU installed on vibration mounts
with shroud and exhaust muffler). The complete analysis is
divided into three categories:

(1) Coherence analysis between near-field and far-field
noise to establish the existence of combustion noise
inside the APU compartment.

(2) Tonal Frequency analysis evaluates the efficacy of uti-
lizing near-field acoustic data for shaft, gearbox, and
bearing condition monitoring. In this analysis, vibra-
tion data is treated as a reference and a comparison
between the performance of commonly applied signal
processing techniques using vibration and acoustic sen-
sors has been carried out.

(3) Broadband noise analysis evaluates various features
from the acquired vibroacoustic data for segregating
between the APU states and utilizing them for APU
parameter estimation.

B. EXPERIMENTAL DATA COLLECTION
The data collection is conducted by instrumenting Cranfield
University’s Boeing 737-400 aircraft APU. The overall exper-
imental setup involved nine 130F20 1/4’’ IEPE microphones
and 6 vibration sensors in combination with a National Instru-
ments Data Acquisition (DAQ) System, allowing data sam-
pling at 51.2 kHz. The arrangement of the microphones is
illustrated in Fig. 2. Six microphones have been installed
inside the APU shroud, while two (BV and BV2) were placed
outside the shroud but within the APU compartment. The
installation is made by attaching the microphones to the
APU cables / wires that run across the APU. The naming
convention adopted for the sensors allows quick identification
of the sensor locations. The locations are chosen in such away
that the noise characteristics around the keyAPU components
(BV, SCV, Oil Cooler, Combustor, Load Compressor) can
be monitored. Moreover, the microphones have been placed
uniformly to capture any trend in the acoustic characteristics
across the APU compartment. Onemicrophone is installed on
the outside of the aircraft body (near the cooling air outlet)
and is denoted by CAO. It will be utilized to study the effects
of external noise sources on the near-field microphone data.
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FIGURE 2. Microphone and vibration sensors placement.

Another microphone (FF) of the same specifications is
placed in the far field of the exhaust. This microphone is
on the left side of the jet axes so that the effect of noise
from the APU inlet is minimized. The APU has also been
instrumented with six CTC AC102 vibration sensors (using
adhesive mounts) which have a dynamic range of 50g. These
sensors are integrated with the same DAQ to ensure synchro-
nized data acquisition. It should be noted that three out of
the six vibration sensors did not provide readable data during
the experimentation and were excluded from the analysis.
For the remaining three sensors, sufficient data has been
acquired, and only their locations are mentioned in Fig. 2.
The setup also includes a camera facing the FADEC display
for recording TOil, IGV angle, output pressure from the Load
Compressor, and SVTM current. For mass flow through the
bleed valve (ṁBleed) and load compressor (ṁLC), appropriate
relationships have been used, details of which have been
previously reported [2]. The complete dataset was acquired
over a period of five months.

C. NEAR-FIELD AND FAR-FIELD NOISE COHERENCE
ANALYSIS
Combustion noise levels can provide useful information
about the state and health of an APU. These levels can be
measured in the far-field of the APU exhaust due to the
distinct nature of the combustion spectra at lower frequen-
cies [2], [28], [29]. Moreover, they can also be predicted by
using semi-empirical relationships, with APU geometric and
thermodynamic data [30]. For exact measurements, highly
specialized acoustic sensors have to be installed intrusive in
the combustor to withstand the harsh environment. To avoid
hardware complexities associated with the intrusive sensors,
it is desired that have the same information using ordinary
measurement microphones.

To detect the presence of combustion noise along the
periphery of the APU structure, coherence analysis has been
performed to ascertain the extent to which the low fre-
quency (combustion) noise is related between the far-field
and near-field acoustic / vibration sensors. The analysis also

establishes a relationship (if any) between the tonal noise
components of the far-field microphones and the vibration
sensor. MATLAB’s ‘mscohere’ function has been utilized for
this analysis with a window size of 51200 samples (1 second)
with 95% overlap and an FFT size of 218. The resultant
magnitude- squared (Mag. Sq.) coherence estimate is in the
range [0,1] for each of the frequency bins, where a value of
1 at a certain frequency indicates a linear relationship, and
nonlinear otherwise. The analysis has been done separately
for BL OFF and BL ON to evaluate the effect of activation of
the APU’s pneumatic system on coherence.

D. TONAL ANALYSIS
The use of vibration sensors for observing the tonal frequen-
cies generated by a gas turbine (or an APU) for condition
monitoring purposes has been well-established and is widely
employed. The amplitude and the location of the tones gen-
erated by shafts, bearing, and gearbox can be used for fault
detection and identification. For example, the amplitude of
the sidebands in the gear mesh frequency corresponds to the
gear tooth breakage [31] for a gearbox. During the early
stages of the fault, the sideband amplitudes are very low and
are further deteriorated by the background noise. The situa-
tion may become worse if acoustic sensors are employed due
to the increase in the background noise levels. For accurate
results, the signal (or tonal) amplitudes should be higher than
the noise levels (i.e., high SNR), so that they are observable
in the frequency domain.

In this study, the efficacy of utilizing microphones for
monitoring tonal frequencies is established. Since faults have
not been injected into the aircraft APU due to operational and
safety concerns, the vibration data is treated as a reference.
The exact source of the tones is also not discussed, due to
the unavailability of the gearbox / bearing geometry details
which are proprietary to the OEM. The aim is to determine
the extent to which the acoustic sensors can capture the same
number of tonal frequencies which are being captured by the
vibration sensors.
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First, coherence between a vibration sensor and the near-
field microphones is carried out to determine the possibility
of acquiring the tonal frequencies using either of the sensing
mechanisms. The coherence estimates have been computed
in the same manner as mentioned in section III.C while
considering one of the three installed vibration sensors as a
reference. In the analysis, each microphone has been treated
separately to identify the locations where a greater number
of coherent tones can be acquired. The effect of change in
the APU load conditions on the tonal amplitudes and overall
noise levels is also discussed, and the possible explanation
for such variations is presented. Lastly, the usefulness of
Bicoherence analysis on acoustic data using experimental and
simulated data is presented.

E. BROADBAND NOISE ANALYSIS
In this analysis, the vibroacoustic response with the variation
in APU states and parameters is studied. This analysis aims
to determine the usefulness of using nearfield acoustic and
vibration data for APU state identification and parameter esti-
mation. To achieve this, several feature extraction techniques
are employed on the vibroacoustic data, and the performance
of the resultant features is evaluated against a defined per-
formance metric. Comparison between the performance of
acoustic and vibration data is an inherent part of the analysis.
This analysis comprises the description of the various cate-
gories of features employed, performance analysis of features
against different APU states using the coefficient of overlap
as a metric, and lastly, studying the correlation of the features
with various APU parameters.

1) DATA PREPARATION AND FEATURE EXTRACTION
For computing the requisite sets of features, the time series
data from the vibroacoustic sensors is divided into segments
of one second with 80% overlap. For each segment, five
different categories of features are computed, which are:

(a) A set of 20 linear predictor coefficients (LPC) with the
error term, which are computed using MATLAB ‘lpc’
function.

(b) Mel-Frequency Cepstral Coefficients (MFCC), keep-
ing the 20 triangular filters regularly spaced between
0 and 25.6kHz.

(c) Spectral Power in sub-bands (BandPower) correspond-
ing to the average power in the 20 sub-bands computed
using MATLAB’s ‘bandpower’ function.

(d) The time-domain feature set includes RMS, Kurtosis,
Skewness, Max, Zero Crossing Rate, Negentropy [32,
eq. (81)], Impulse Factor, Crest Factor, and the Shape
Factor.

(e) Spectral Descriptors include the characteristics derived
from the audio frequency spectrum. These are com-
puted using the audio signal processing toolbox in
MATLAB and include skewness, spread, centroid, flat-
ness, arithmetic mean, geometric mean, crest, spectral
peak, flux, slope, decrease, and roll-off point.

FIGURE 3. Process followed for analyzing feature response under the
various APU States.

The thermodynamic parameters corresponding to the data
segments are also noted, and the segments are labeled as per
the APU states:

BL OFF → IGV angle = 22

BL ON NL → IGV angle > 22 and SVTM = 50

BL ON LD → IGV angle > 22 and SVTM > 50.

2) EVALUATION OF FEATURE RESPONSE AGAINST THE APU
STATES
From the perspective of condition monitoring, it is important
to ascertain the current state in which the APU is operating.
Any disparity between the current and the desired state of
operation can indicate the presence of a faulty condition.
In this study, the features extracted from the vibroacoustic
data have been evaluated to ascertain the potential of the use
of microphones and vibration sensors for condition monitor-
ing purposes. The overall approach followed is presented in
Fig 3. The five different categories of features are computed
for the vibroacoustic data using the approach mentioned in
section III.E.1. The computed features are then segregated
into three categories depending on the APU State determined
from the FADEC Data. For each of the features, coefficients
of overlap (1BL ON

BL OFF and1BL ON LD
BL ON NL) [33] are then computed

to evaluate performance, where:

1BL ON
BL OFF =

∫
min {fBL OFF (x) , fBL ON (x)} dx (1)

and:

1BL ON LD
BL ON NL =

∫
min {fBL ON NL (x) , fBL ON LD (x)} dx

(2)

In the above equations, fBL OFF (x) , fBL ON (x) , fBL ON NL
(x) , and f BL ON LD (x) correspond to the probability density
functions of a feature for BL OFF, BL ON, BL ON NL, and
BL ON LD conditions respectively. MATLAB’s ‘ksdensity’
function has been used to estimate the probability density
function of a feature for a particular APU state, and ‘trapz’
function is employed to perform the required numerical inte-
gration after the ‘min’ operation. The values of the coefficient
of overlap for a particular feature can range between [0,1],
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with lower values indicating that the feature changes signifi-
cantly between different APU states, thus leading to a lower
overlap between the feature values between those two states.
This would be a desirable condition, as opposed to a situation
in which the feature values do not alter significantly even if
the states are changing.

The values of 1BL ON
BL OFF and 1BL ON LD

BL ON NL have been segre-
gated into the type of sensor used (acoustic / vibration) against
each feature category. The resultant dataset contains 20 vec-
tors: Two coefficients of overlap (1BL ON

BL OFF and 1BL ON LD
BL ON NL),

two types of sensors (acoustics and vibration) and five cat-
egories of features (LPC, MFCC, BandPower, TimeDomain
and Spectral Descriptors). The resultant dataset is labeled as
follows:[

1BL ON
BL OFF ,1

BL ON LD
BL ON NL

]LPC, MFCC, BandPower,
TimeDomain, SpectralDescriptors

Acoustic,Vibration
(3)

The subscript refers to the sensor type, while the super-
script represents the feature extraction technique used for
each category of the sensor. For example,

[
1BL ON
BL OFF

]MFCC
Acoustic

is a vector comprising 160 values of coefficients of overlap
between BL OFF and BL ON conditions corresponding to
each of the 20 MFCC features for all eight microphones:[
1BL ON
BL OFF

]MFCC
Acoustic

= [1BL ONMFCC1

BL OFFS1
. . . 1BL ONMFCC20

BL OFFS1

. . . 1BL ONMFCC1

BL OFFS8 . . . 1BL ONMFCC20

BL OFFS8 ]

Here, S1 − S8 correspond to eight of the microphone loca-
tions, and MFCC1 − MFCC20 are the 20 MFCC features
computed at each of those sensor locations The distributions
of the resultant dataset (expression 3) are eventually analyzed
to ascertain the potential of using vibroacoustic data for the
desired condition monitoring purposes.

3) FEATURES’ RESPONSE WITH APU PARAMETERS
Continuous monitoring of APU parameters, like mass flows,
oil temperatures, and IGV angles, can also give insight into
the health of the system. Generally, several intrusive sensors
are employed, however, in this study, the capability of using
microphones for the same purpose is explored. The results are
also compared with that of using vibration sensors. Similar
to the process followed in section III.E.2, the variation in the
feature responses to the various APU parameters is analyzed.
The correlation coefficient (ρ) is utilized to act as a metric to
establish a relationship (if any) between an APU parameter
(P) and a feature (F) for a specific sensor (Si):

ρPFSi
=

1
N − 1

∑N

i=1

(
Fi − µF
σF

)(
Pi − µP
σP

)
(4)

where ‘N ’ is the number of datapoints, ‘Fi’ and ‘Pi’ are the
feature and the parameter values at datapoint ‘i’, and σ and µ
represent the standard deviation and mean. Four of the APU
parameters are considered, which include ṁBleed, ṁLC, IGV
angles, and TOil. By observing these parameters, the state of
APU pneumatic system components (IGVs, SCV, and BV)

and lubrication oil cooling system can be monitored, and
deviations from the nominal limits will indicate the presence
of a faulty condition. The result of this analysis is a dataset
containing 40 vectors comprising four sets of correlation
coefficients corresponding to the four APU parameters, two
types of sensors, and five categories of features:

[ρTOil, ρmLC , ρIGV , ρmBleed ]

LPC, MFCC, BandPower,
TimeDomain,
Spectral Descriptors

Acoustic,Vibration (5)

As an example, [ρTOil]LPCAcoustic is a vector containing 168 val-
ues corresponding to the correlation coefficients between
each of the 21 features from eight microphones and TOil , that
is,

[ρTOil]LPCAcoustic = [ ρTOilLPC1S1 . . . ρTOil
LPC21
S1 . . .

ρTOilS8
LPC1 . . . ρTOilS8

LPC21]

Here, S1 − S8 corresponds to eight of the microphone loca-
tions, and LPC1−LPC21 are the 21 LCP features computed
at each of those sensor locations. In this study, the distribu-
tions of each of the 40 vectors ([ρTOil]LPCAcoustic , [ρmLC ]

MFCC
Acoustic,

[ρmBleed ]BandPowerVibration , etc) are visualized to assess the range of
correlation values existing between features and APU param-
eters for acoustic and vibration sensors.

It is to be noted that, since the IGV angles are only mod-
ulating during BL ON states, the correlation coefficients for
the IGV angles have been computed for those durations only.
Similarly, the correlation coefficients for ṁBleed include the
data from BL ON LD state only because it is zero otherwise.
Whereas, for Toil and ṁLC, the data from all the states have
been considered.

IV. RESULTS AND DISCUSSION
This section presents a detailed picture of the three indepen-
dent analyses that have been performed on the APU noise.
Initially, the coherence analysis between the far field and
nearfield acoustic is presented. This is followed by the analy-
sis of the tones present in the acquired vibration and acoustic
data. The disparity between the results is then explained using
engineering and physics principles. The practicality of using
Bicoherence analysis on APU acoustic data is also presented,
and validation of the results is done using synthetically gen-
erated data. Lastly, a thorough analysis of several features
extracted from the vibroacoustic data is carried out and the
results of coefficients of overlap and correlation coefficients
are presented in a summarized form.

A. NEAR-FIELD AND FAR-FIELD NOISE COHERENCE
ANALYSIS
Coherence estimates have been computed by choosing the
far-field microphone as a reference using 20 seconds of data,
and the results are presented in Fig. 4. Apart from the outside
shroud sensors (BV and BV2), there is a common trend for all
the sensors. Only a few tones [generator shaft rpm of 100Hz,
shaft frequency of 1 kHz and its harmonics, and compressor
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FIGURE 4. Coherence analysis between far-field and near-field acoustic data.

blade pass frequency (BPF) of 18kHz] are slightly coherent
with the far-field microphone data, with the coherence levels
reducing further under BL ON conditions. Furthermore, the
low-frequency (combustion) noise has not been found to be
coherent with any of the inside shroud sensors. BV and BV2
sensors show a certain level of coherence at low frequencies,
being slightly distant to the APU as compared to the remain-
ing sensors, but coherence levels are not sustained under BL
ON conditions where APU noise due to vibrations becomes
dominant (see the zoomed-in figure for sensor BV2).

Based on the analysis, it can be concluded that the near-
field microphones close to the APU are overwhelmed by
the noise generated by engine vibration and pneumatic flows
inside the APU compartment and are therefore unable to
sense the variations in the combustion noise taking place in
the far-field of the APU. Moreover, the combustion noise
from the far-field may also be getting attenuated while
traversing through the aircraft structure and the APU shroud.
The absence of the typical combustion spectra at any of the
sensor locations (analysis not shown) further substantiates
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FIGURE 5. Coherence analysis between far-field acoustic and APU
vibration data.

TABLE 1. Number of tones with coherence greater than 0.5.

this outcome. The analysis has been expanded to include
coherence of the far- field microphone data with the vibration
sensor [GBX] (Fig. 5). The results are similar to the ones with
the microphone data and show that the vibration sensor also
cannot sense the combustion noise. This can be because of the
design of the APU combustor and structure which restricts the
induction of low-frequency acoustic waves into the structure
to avoid acoustic fatigue. This suggests that combustion noise
levels cannot be estimated by microphones and vibration
sensors inside the APU compartment {Finding # 1}. On the
other hand, the shaft frequencies are coherent with the far-
field microphone data, thus making an external microphone
suitable for monitoring the APU shaft faults {Finding # 2}.

B. TONAL ANALYSIS
In this section, a detailed analysis of the tonal frequencies
acquired by the near-field microphones is presented. Ini-
tially, the outcomes of the coherence analysis between the
microphone and a reference vibration sensor are discussed.
The effect of sensor locations on coherence estimates is
also presented. Secondly, an in-depth analysis of the fre-
quency response of the acoustic data is performed. Lastly,
the performance of Bicoherence analysis on acoustic data
is presented, for which the Higher-Order Spectral Analysis
Toolbox, developed for MATLAB [34], has been utilized.

FIGURE 6. Coherence analysis between near-field acoustic sensors and
vibration data.

FIGURE 7. Variation in the number of coherent tones across APU.

1) COHERENCE ANALYSIS BETWEEN ACOUSTIC AND
VIBRATION SENSORS
Coherence analysis has been performed between the vibra-
tion sensor installed on the APU gearbox and the near-field
microphones under BL OFF and BL ON states (two of the
results are shown in Fig. 6). Under the BL OFF state, a large
number of tones display a certain level of coherence, however,
under the BL ON case the tones are no longer coherent.
Table 1 provides a summary of the number of tones that have
coherence greater than 0.5 at various sensor locations. The
drastic reduction in the number of coherent tones is visible
across all the sensor locations under BL ON conditions, with
the GBL microphone being able to retain 23 coherent tones
due to its proximity to the source. On the contrary, the micro-
phones farthest from the gearbox show a downward trend.
Fig. 7 shows this information overlaid on the APU schematics
using a surface plot, where the color represents the number
of coherent tones (brighter color indicates a greater number
of coherent tones and vice versa). It can be concluded that
the region around the gearbox can be an appropriate choice
to observe some of the tonal frequencies. However, as per
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FIGURE 8. Power spectrum of acoustic data from microphones at location (a) GBL and (b) BV.

FIGURE 9. Power spectrum of gearbox vibration data.

the analysis (not shown), only the shaft frequencies are in
a majority amongst the coherent tones while the remaining
ones get hidden behind the background noise (especially
under BL ON conditions) {Finding # 3}. Possible reasons for
the deterioration in the coherence results under the BL ON
state are explained in subsequent paragraphs.

Consider the power spectrum of the acoustic data from two
of the sensor locations (GBL and BV) under BL OFF and
BL ON states (Fig. 8). The clear distinction between the two
states is visible from the figure in terms of reduction in the
amplitudes / weakening of certain tones and the increase in
the overall noise levels for BL ON states. These effects (some
of which have been highlighted in the figure) are more pro-
nounced at sensor location BV which is outside the shroud.
This sensor is only able to retain four tones corresponding to
shaft frequencies and the compressor blade-pass-frequency.
All the other tones are overwhelmed by the background noise.

In order to identify the possible source of these effects, the
frequency power spectrum of the vibration data correspond-
ing to the same APU states is presented in Fig. 9. Firstly, it is
evident that the vibration sensor is less affected by the change
in the APU state as it only shows a very slight reduction
in some tonal amplitudes. There is, however, some increase
in the vibration levels for frequencies above 7 kHz, but the
increase is still small enough not to completely conceal the
tones. The vibration characteristics remain unaffected by
the combustion noise (which is present at low frequencies)
{Finding # 4}. After conducting this analysis, the disparity
between the vibration and acoustic sensors (in terms of the
degradation of tones amplitudes under BL ON conditions
for acoustic sensors) can be explained to be because of the
combined effect of the increase in the overall noise levels
and decrease in tonal amplitudes. The increase in the overall
noise floor can be because of the microphones being sensitive
to the variations in the flow noise. For the reduction in tonal
amplitudes, two phenomena have been identified which may
be causing this effect: RPM fluctuations and the Doppler
effect.

2) EFFECT OF RPM FLUCTUATIONS ON TONAL
FREQUENCIES
In the absence of the raw RPM signal from the APU to deter-
mine the extent of RPM fluctuations, the power spectrum
has been used to ascertain the extent of fluctuations. Fig. 10
shows the power spectrum of the vibration and acoustic data
by dividing the data into one-second segments, which have
been zoomed into the tone at 12.53kHz. The tone appears
to be quite stable (not fluctuating its position in terms of
frequency) under BL OFF conditions for both the vibration
and acoustic data. Whereas the same tone is shifting back and
forth under BLON conditions for vibration data. This, in turn,
distorts the tone in the acoustic data which is evident from the
figure. The net effect is the reduction in the amplitude and
increase in the spread of tones for both types of sensors.
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FIGURE 10. Power spectrum of the segmented versions of vibration and acoustic data.

FIGURE 11. Deviation in tonal frequencies during BL OFF and BL ON
states.

In order to quantify the degree of RPM fluctuations
under BL OFF and BL ON conditions using experimentally
acquired data, certain tones (for example 12.53 kHz) in the
vibration data have been chosen for analysis. For each of
the one-second data segments, the location of the tones (fi)
is noted using MATLAB’s ‘findpeaks’ function, and even-
tually, the deviation for each frequency (σfi) is computed.
The process is carried out for both cases (five tones for
BL OFF and nine tones for BL ON) and the results are
presented in Fig. 11. There is a distinct difference between
both states. Under low load conditions, the deviation in the
frequencies is low (maximum σfi of 0.5Hz), whereas for high
load conditions the deviations are high. Moreover, for high
frequencies, the deviations are high as well, which confirms
that the fluctuations are related to the variations in the RPM
because the higher-order tones are affected more as compared
to the ones with lower orders.

Consider a tonal frequency generated by a component that
is rotating at a multiple of ni with respect to the APU RPM,
that is,

fi = niRPM/60 (6)

Conversely, the term ni can be computed if the average
RPM (RPM ) and average frequency (f̄i) are known:

ni = 60f̄i/RPM (7)

If the RPM is fluctuating with σRPM , there will be equivalent
fluctuation in the tonal frequencies (σfi) which is given by:

σfi = niσRPM/60 (8)

Or,

σRPM = 60 σfi/ni (9)

Combining 7 and 9 give,

σRPM = σfi RPM/fi (10)

Since there are multiple tonal frequencies generated by the
APU, σRPM computed from the individual tones (fi) can be
averaged to provide an accurate estimation of RPM fluctua-
tions (σ̄RPM ),

σ̄RPM =
RPM
N

∑
i

σfi

fi
(11)

where ‘N ′ is the number of tones used for the analysis.
The analysis reveals that the average deviation in APU

RPM (σ̄RPM ) is 2.64 under lower load conditions which
increases to 11.77 when the APU pneumatic system is acti-
vated. This, in turn, fluctuates the tones, and the variation is
more for higher frequencies where ni is high (equation 8).
These fluctuating tones generated by the engine vibrations
are translated into sound and the superposition of sinusoidal
tones with varying amplitude, phase, and fluctuating frequen-
cies takes place. The resultant effect is a decrease in acoustic
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FIGURE 12. Power Spectrum of Sf12 (t) for different levels of RPM
fluctuations.

tonal amplitudes spread over a wider range of frequencies.
The tones which display an opposite trend in their amplitudes
are the resonating frequencies of the APU structure and are
not affected by the change in RPM (see tone at 20kHz in
Fig. 9).

To illustrate the effect of RPM fluctuations on the SNR of
tones, the relationship between σRPM , ni and SNR for a signal
with a tone at fi is studied using synthetically generated data.
Consider a signal in which the tone fi is varying due to RPM
fluctuations:

Sfi (t) = sin(2π
∫
fi (t) dt)+ n (t) (12)

where n(t) is additive Gaussian noise, and fi is related to RPM
using relationship (6),

Sfi (t) = sin(2πni/60
∫
RPM (t) dt)+ n (t) (13)

RPM (t) is simulated as a triangular wavewith amplitudeA =
√
3σRPM [35] to generate the desired σRPM . The frequency of

the triangular wave has been arbitrarily chosen to be 0.25Hz.
MATLAB’s ‘sawtooth’ function has been used to generate the
desired triangular wave [tri(t)], that is,

RPM (t) = RPM +
√
3σRPM tri(t) (14)

where tri(t) is a triangular wave that spans in the range
[−1,1]. By combining (13) and (14),

Sfi (t) = sin{2πni/60(RPM

+
√
3σRPM

∫
tri (t) dt)} + n (t)

(15)

Using the above relationship, a set of signals [Sf 1 (t),
Sf 4 (t) , Sf 8 (t) and Sf 12 (t)] have been derived correspond-
ing to ni = [1, 4, 8 and 12] for 0 ≤ σRPM ≤ 12.5 with
RPM = 63, 830(1063.8Hz). For the required numerical
integration, MATLAB’s ‘cumtrapz’ function has been used.

FIGURE 13. Effect of variation in RPM fluctuations on SNR of tones at
various orders.

Fig. 12 shows the effect of varying σRPM on the tonal ampli-
tude of the signal Sf 12 (t) in the frequency domain. The ampli-
tude can be seen to be decreasing as the RPM fluctuation
increases. The tone also spreads in the frequency domain in
the same way it has been noticed in the experimental data.
Fig. 13 shows a summary of the analysis for all the considered
tones. It can be seen that the SNR of the tones decreases
with the increase in σRPM , and the effect is more pronounced
for higher-order tones. This behavior will reciprocate in the
acoustic data to an extent that the tones may totally disappear
[see the vanishing tones highlighted in Fig. 8(a)].

3) DOPPLER EFFECT ON DATA COLLECTION
The tones produced by the APU undergo reflections by var-
ious surfaces inside the APU compartment and eventually
reach the microphones. Some of these surfaces are under
continuous oscillations, and the acoustic waves propagat-
ing inside the compartment are incident on those vibrating
surfaces. Moreover, since the microphones are installed on
wires / cables, they also experience a certain level of shaking.
Under such circumstances, the acoustic waves encounter a
Doppler effect due to the vibrations of surfaces / microphones
with a multitude of frequencies. To study this phenomenon,
an experiment has been set up that includes a tone-generating
instrument, which is kept stationary, and a microphone
installed on a shaker to generate vibrations (Fig. 14).

Acoustic data from the microphone is sampled at
11.025 kHz and a 1kHz tone is transmitted from the speaker.
Five sets of data are acquired by varying the shaker vibration
frequencies (0-40Hz with an interval of 10Hz). Fig. 15 shows
the frequency power spectrum of the acquired acoustic data.
Apart from the tones and harmonics corresponding to the
selected vibration frequency (not shown in the figure), mod-
ulation of the transmitted 1kHz tone is taking place, which
leads to sidebands corresponding to 1kHz ± n fshaker , with
the amplitude of the sidebands diminishing for higher values
of n. For example, with fshaker = 30Hz, the sidebands occur at
around 1.03kHz and 0.97 kHz for n = 1. The slight reduction
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FIGURE 14. Experimental setup to study the effect of vibration on
generated acoustic tones.

FIGURE 15. Power Spectrum of acquired acoustic data from the
microphone undergoing vibrations.

in the 1kHz tonal amplitude is also visible when compared
with the shaker in a stationary condition. These results are in
agreement with previous work [36], where a slightly different
experiment was set up and a very high frequency (225 kHz)
was used.

The combined effect of RPM fluctuations and the Doppler
effect is the superposition of multiple tones generated by the
components and sidebands due to the acoustic reflections
from vibrating surfaces. The sidebands can also interfere with
the frequencies of interest and thus render them ineffective for
condition monitoring purposes. Moreover, as the tones move
back and forth, due to RPM fluctuations, their superposition
may lead to a reduction in their amplitude due to phase
mismatch during propagation inside the APU compartment.
Furthermore, since the vibrations are taking place at multiple

frequencies, a clear separation between the tone and the
sidebands will not be present, and the tonal frequency will
spread over a wider range. Under such circumstances, the
appearance of any new tonal frequency or an increase in the
amplitudes of the already existing frequencies (which has not
been detected under healthy conditions using microphones)
due to a faulty condition cannot be captured through the
deployment of microphones in the APU compartment.

4) BICOHERENCE ANALYSIS
Vibration signals measured from a rotary machine can have
many forms of amplitude and phase modulations which can
indicate a large range of failure conditions [37], [38]. High-
order spectral techniques (like Bicoherence) can detect such
modulations which are otherwise not visible in the frequency
spectrums. In this study, the possible utilization of Bicoher-
ence analysis on near-field acoustic data is assessed. In the
absence of detailed information about the system parameters,
Bicoherence graphs of the vibration data have been con-
sidered as a reference, and the possibility of those graphs
getting reciprocated in the acoustic data is ascertained. The
parameters selected for Bicoherence analysis are similar to
the ones for coherence (described in Section III.C), however,
the FFT size is chosen to be 512 to reduce the computational
requirements.

The Squared Bicoherence values for vibration data from
sensor GBX during BL OFF and BL ON states are shown
in Fig. 16. Phase coupling can be seen to be occurring
between 100Hz and 12.1kHz. The Bicoherence at this pair
of frequencies remains almost constant and has been found
to exist at locations GEN and GBY (results not shown).
The Bicoherence value for GBX decreases slightly (0.6 to
0.5) under the BL ON state, which is attributable to the
increase in the overall vibration levels and decreasing tonal
amplitudes (SNR decreasing). Treating the identified phase-
coupled frequency pair as a reference, the same analysis is
repeated for acoustic data [sensor = GBL] (Fig 17). The
resultant graphs do not reproduce similar results regardless of
the APU state. Moreover, any other phase-coupled frequency
pairs do not surface across the whole spectrum, which renders
Bicoherence analysis on highly noisy (acoustic) data com-
pletely ineffective to generate any useful information about
the system {Finding # 5}.

To observe the effect of SNR on Bicoherence results,
the process is repeated on synthetically generated data with
known phase coupling and varying SNR. A phase-modulated
signal is created with a sinusoidal carrier (fc = 1300Hz)
and sinusoidal signal (fm = 5100 Hz) with the sampling
frequency of 51.2kHz using the following relationship:

S (t) = Spure(t)+ n(t) (16)

where,

Spure (t) = sin (2π fmt + ϕm)

+ sin [2π fct + sin (2π fmt)] (17)
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FIGURE 16. Bicoherence analysis of vibration data.

The noise power [σ 2
n(t)] of the added normally distributed

noise [n(t)] is varied to produce three sets of signals with
different SNRs [0dB,−15dB, and−20dB]. SNR is computed
using the following relationship:

SNR = 10 log
(
σ 2
Spure(t)

/
σ 2
n(t)

)
(18)

The results of Bicoherence estimates on the simulated
signals are shown in Fig. 18. At 0dB SNR, the phase coupling
between 1300Hz and 5100Hz is visible with a high value
of Bicoherence. The estimated Bicoherence value reduces to
0.28 at SNR = −15dB and eventually diminishes to almost
zero at SNR of −20dB. The results are similar to [39] where
a different phase coupling model was used to report that
Bicoherence fails to reliably detect phase couplingwhen SNR
is less than −16 dB (or S/N = 0.158). As per their analysis
[39, Fig. (3)], for a sq. bicoherence of 0.6 [computed for the
vibration sensor – Fig. 16(a)], SNR of−4 dB (or S/N= 0.63)
is required. Since no phase coupling is detected in the acoustic
data, it implies that, during vibration to acoustic conversion,
SNR reduces by at least 0.158 / 0.63= 1/4 to produce a signal
which has an SNR ≤ −16dB at which bicoherence does not
produce useful results. The reduction in SNR can be because
of the combined effect of the decrease in the tonal amplitudes
and the increase in the noise floor for microphone data (the
effects have been shown in Fig. 8).

C. BROADBAND NOISE ANALYSIS
This section presents the results acquired based on the anal-
ysis described in section III.E. Initially, the results for coef-
ficients of overlap for calculated features are presented and
discussed. This is followed by a detailed discussion of the
computed correlation coefficients between vibroacoustic data
and the considered APU parameters. Lastly, the possibility

of external sources affecting the near-field acoustics is pre-
sented.

1) COEFFICIENTS OF OVERLAP
A significant amount of near-field acoustic, vibration and
FADEC data has been acquired for this study. Several cat-
egories of features (mentioned in section III.E.1) have been
computed in order to proceed with the desired analysis. The
acquired dataset consists of 13,879 data points (correspond-
ing to one-second data segments), out of which 6,265, 4,098,
and 3,516 correspond to BL OFF, BL ON NL, and BL ON
NL conditions, respectively. For any data point, there are 8×
5× 20 features from eight microphones and 3× 5× 20 from
vibration sensors, where there are 5 feature categories and the
approximate number of features in each category is 20. For
computing the coefficients of overlap (1BL ON

BL OFF ,1
BL ON LD
BL ON NL),

the kernel density for each of the features is computed sep-
arately for BL OFF, BL ON, BL ON NL, and BL ON LD
states, and then expressions (1) and (2) are employed.

Fig. 19 illustrates the process of computing 1BL ON
BL OFF for

a time-domain feature (RMS value) for each of the acous-
tic and vibration sensors. The figure shows that the RMS
value is a good feature to separate between BL OFF and BL
ON conditions for acoustic sensors BV and BV2, both of
which are outside the APU shroud. OLC is the only sensor
inside the shroud which exhibits a similar behavior and pro-
vides a lower overlap (0.13). Apart from these sensors, the
RMS values have overlapping distributions for the remaining
sensors, including the vibration sensors. Fig. 20 shows the
same procedure repeated for 1BL ON LD

BL ON NL but with a different
feature (the fifth feature of MFCC). It is evident from the
figure that the two APU states (BL ON NL and BL ON
LD) cannot be distinguished using this feature. However, the
microphones installed near the igniter and the surge control
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FIGURE 17. Bicoherence analysis of acoustic data.

valve demonstrate better performance. These two locations
are closest to the bleed duct and therefore have a better chance
of acquiring any change in acoustic characteristics due to flow
variations.

Figures 19 and 20 have considered each microphone and
vibration sensor separately to illustrate the employed scheme
for computing the coefficients of overlap, each for a single
feature. However, in order to provide a summarized version of
the results, the two coefficients (1BL ON

BL OFF ,1
BL ON LD
BL ON NL) have

been accumulated (refer to expression (3)) while keeping
segregation between feature categories (Section III.E.1) and
sensor type. Fig. 21 shows the distributions of the over-
lap coefficients for each of the five categories of features,
separately for acoustic and vibration sensors. Considering
1BL ON
BL OFF first, the results show that a clear separation between

BL OFF and BL ON states can be made (i.e., several features
demonstrate zero values of overlap coefficient) regardless of
the sensor and the category of feature extraction technique
used [Fig. 21(a)] {Finding # 6}. The acoustic data, however,
offers a larger number of features (32%) with zero overlaps as
compared to the vibration data where only 10%of the features
can reliably separate the two states using a given feature
category. Furthermore, the ‘BandPowers’ have the highest
number of lower 1BL ON

BL OFF values for both sensor types and
may prove to be a better choice for developing classification
models if all the sensors are concurrently considered. The
ability of the vibroacoustic sensors to be able to segregate
between the BL OFF and BL ON states stems from the fact
that numerous changes take place when the APU’s pneumatic
system is activated, which can be easily picked up by these
sensors. In BL ON states (BL ON NL / NL ON LD), IGVs
open increasing the mass flow through the Load Compres-
sor, Surge Valve and Bleed Valve. This increases the torque
required by the load compressor. To keep the APU RPM
constant under such conditions, the fuel flow to the com-
bustor increases thus increasing the combustion noise. The
combined effect is the increase in vibrations and noise across
the whole APU, which can be picked up by vibroacoustic
sensors with appropriate feature extraction techniques.

The situation is considerably different when segregating
between BL ON NL and BL ON LD states, which is evident
from Fig. 21 (b). There is a distinct difference between the
response of the acoustic and vibration sensors, as the latter
does not show promising results. The values of 1BL ON LD

BL ON NL
for the vibration sensors are high (1 > 0.3) regardless of
the technique used, while for the acoustic data there are
some features for which the values of coefficients are close
to zero which is desirable {Finding # 7}. This behavior can
be attributed to the fact that, between the two APU states,
only the mass flow through the surge valve and the bleed
valve varies, while everything else remains the same. The
flow variations lead to changes in acoustic characteristics
around the bleed duct, which may not get induced as vibra-
tions and picked up by the vibration sensors. Amongst the
feature categories, certain features from MFCC and Band-
Power exhibit better performance on acoustic data, where
the former slightly outperforms the latter using acoustic data
{Finding # 8}.

2) CORRELATION COEFFICIENTS
In this section, the distribution of the correlation coeffi-
cients accumulated using: different categories of features;
microphone and vibration data; and various APU parame-
ters, is presented. The distributions depict the number of
features that are correlated / uncorrelated with a specific APU
parameter. The desired response of a distribution is to have
a minimum number of features exhibiting zero correlations,
while the maximum is highly correlated (i.e. |ρ|≈1). Such
a distribution will imply that the majority of the features in
that category change linearly with an APU parameter, or in
other words, most of the features are directly affected by only
that parameter and uninfluenced by any other variation taking
place in the APU.

The amount of data utilized for this analysis consists
of: 13,897 data points (corresponding to all APU states) to
compute ρTOil and ρmLC , 7,614 data points (corresponding
to BL ON states) to compute ρIGV , and 3,516 data points
(corresponding to all BL ON LD states) to compute ρmBleed .
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FIGURE 18. Result of bicoherence analysis on simulated data.

The result of the complete analysis is presented in
Fig. 22 which gives the complete picture of the distributions
of the computed correlation coefficients while segregating
between acoustic and vibration data for all the five categories
of feature extraction techniques (refer to expression (5)).

Considering Toil first [Fig. 22 (a)], the superiority of vibra-
tion sensors over acoustic sensors can be clearly observed.
The values of [ρTOil]vibration range between −1 and 0.9,
whereas for [ρTOil]acoustic the values are between −0.9 and
0.8. Moreover, the ratio of features exhibiting higher corre-
lations is also high for the vibration sensors. This makes the
vibration sensors a better choice utilizing them to estimate the
oil temperature {Finding # 9}. MFFC features using vibration

FIGURE 19. Results of 1BL ON
BL OFF for RMS feature (Time domain feature

category) for all the sensors.

FIGURE 20. Result of 1BL ON
BL OFF for the fifth feature (MFCC feature

category) for all the sensors.

sensors have been identified as the best feature extraction
technique for this purpose. The situation is different for the
other three APU Parameters (ṁLC, IGV angles, and ṁbleed),
with the acoustic sensors showing better correlations as com-
pared to their counterpart. The values of [ρmLC ]acoustic have
been found to be nearly±1 using any of the feature extraction
techniques [Fig. 22 (b)] which makes the acoustic sensors
a suitable candidate for developing a regression model for
monitoring the performance of the load compressor {Find-
ing # 10}.

A greater deviation between the two types of sensors can
be observed when computing correlations with IGV angles
[Fig. 22 (c)]. With the acoustic sensors, |ρIGV | values can
be as high as 0.85 with certain MFCC features, while they
are below 0.75 with the vibration sensors regardless of the
feature extraction technique used. This may be attributed to
the vibration sensor being sensitive to localized variations
in the vibrations and therefore not being able to capture a
wide range of variations taking place due to the change in
APU operating characteristics. Within the acoustic sensors,
it can be observed that the Time Domain and BandPower
features are not the most desirable set of inputs for regression
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FIGURE 21. Distributions of coefficients of overlap for different categories of acoustic and vibration features.

FIGURE 22. Distributions of correlation coefficients for APU parameters and different categories of features.

since most of the features are uncorrelated. Lastly, acoustic
sensors have also been found to be better in terms of higher
values of correlations between the derived features and mass
flow through the bleed valve [ρmBleed ]acoustic [see Fig. 22(d)].
Either of the LPC and MFCC features can be used to provide
correlations |ρmBleed | > 0.8, making them suitable for devel-
oping a regression model to translate the raw acoustic data

into meaningful information about the mass flow through the
bleed valve {Finding # 11}.

3) EFFECT OF EXTERNAL NOISE SOURCES ON NEAR-FIELD
ACOUSTICS
Having successfully demonstrated that the near-field acoustic
features exhibit good correlations with APU operating states
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FIGURE 23. Analysis of external and internal microphone data (a) Time
domain signal (b) Frequency Spectrum.

and performance parameters, this substantiates their potential
to be implemented for APU condition monitoring purposes.
In order to further strengthen their potential, the quantifi-
cation of the effect of external noise sources on near-field
acoustics needs to be addressed. To do this, the acoustics
data corresponding to two microphones has been analyzed:
one outside the APU compartment, mounted on the aircraft
fuselage, labeled as Cooling Air Outlet (CAO), and the other
one mounted inside of the APU shroud (GBL). Fig. 23 shows
the time domain signal and power spectrum for both micro-
phones when the APU is not in operation. From the time
domain signal (Fig. 23(a)), it can be established that the
(CAO) is more prone to external noise relative to the GBL.
After listening to the audio files, the wind has been identified
to be the major noise source for CAO, whereas for GBL it is
mostly silent with faint sound due to the chirping of birds at
around 40-50 seconds.

To further elaborate on the results, the frequency spectrum
of acoustics data at CAO and GBL and their difference has
been analyzed, shown in Fig. 23(b). Considering CAO first,
it can be established that the external noise is present till
10kHz with the noise dominating between 0-100Hz region,
after which the noise levels gradually decrease in the 100-
10kHz range. Such noise, while traversing through the air-

craft’s metallic structure, experiences a frequency-dependent
reduction in the noise levels that can be observed at sensor
location GBL. For frequencies below 70Hz, the noise is atten-
uated by 10dB −20dB, and for frequencies above 100Hz,
there is an average of 40dB reduction in the noise, which can
reach a value of 53dB at 1kHz. As there is no background
noise present for frequencies above 3kHz, the attenuation
levels cannot be ascertained from this analysis. As reported
in the literature, the sound attenuation increases for higher
frequencies [40], therefore the acquired average attenuation
level of 40dB can be extended for frequencies above 3kHz.

The aircraft’s metallic structure and the APU shroud are
responsible for attenuating the sound originating from exter-
nal sources. As per the design, the APU is covered by the
shroud for decreasing the noise produced by the APU as well
as for containing flames in case of fire. This noise is further
reduced by the aircraft structure which is holding the APU,
elevators, and rudder. Such a reduction is favorable for the
acoustic data captured inside the APU during operation since
it will attenuate the external noise.

V. SUMMARY AND CONCLUSION
A comprehensive evaluation of the APU near-field acous-
tic data has been conducted to determine its potential for
online condition monitoring purposes. To support this study,
experimental data has been acquired from an in-situ aircraft
APU under various load conditions, to generate an elaborate
set of near-field and far-field acoustic, vibration, and APU
state data. The acquired data is then processed to support the
underlying scientific understating associated with the APU
state and performance parameters, as well as its potential
utility for online condition monitoring. The major results of
this research work, collected from the {Findings} in the text,
can be summarised as:

(a) Microphones (and vibration sensors) installed inside
the APU compartment are not useful for capturing
the combustion process (or combustion noise) {Find-
ings # 1 and 4}. The noise generated from the APU
vibration and the pneumatic system flows is domi-
nant, which swamps the combustion noise propagation,
either through the APU structure or from the APU
exhaust.

(b) Microphones external to the APU compartment can
monitor APU shaft frequencies for potential faults
{Finding # 2}.

(c) The near-field microphones only capture part of the
tonal frequencies generated by the shaft, bearing, and
gearbox under low-load operating conditions. Under
the high load operating conditions, the capability of
the near-field microphones is further limited and has
been demonstrated to predominantly capture tones cor-
responding to the frequency of the shaft {Finding # 3}.
The possible reasons for the limited ability of the
microphone for capturing the tones can stem fromRPM
fluctuations, the Doppler effect, and the rise in overall
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noise levels due to the pneumatic flows through the
load compressor, bleed duct, bleed valve, and the surge
control valve.

(d) Bicoherence analysis is found to performwell on vibra-
tion data for condition monitoring. However, it fails
to respond in the same manner for the acoustic data
regardless of the APU operating state due to low SNR
{Finding # 5}.

(e) Vibration and acoustic sensors are equally good in
segregating between the two primary states of APU
operation (BL OFF and BL ON) using any of the
feature extraction techniques {Finding # 6}. However,
the vibration sensors are unable to capture the varia-
tions taking place when the APU starts delivering flow
through the Bleed Valve, which otherwise can be done
with acoustic sensors using MFCC features {Findings
# 7 and 8}.

(f) The acoustic data outperforms vibration data by
demonstrating a high correlation with most of the APU
performance parameters {Findings # 9, 10, and 11}.

The results acquired suggest that microphones have limited
capability (as compared to the vibration sensors) to cap-
ture the tonal frequencies to enable condition monitoring of
APU components (shaft, bearing, gears). However, themicro-
phones prove to be an appropriate sensor for estimating the
APU operating states and performance parameters to facil-
itate condition monitoring of lubrication oil cooling system
and pneumatic system components (IGVs, SCV, and BV).
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