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Crutchfield J.P.,Farmer J.D.,Packard North N.H.,Shaw R.S. 
(Chaos' Sci. American V255 p35-50 1986) 

Even the process of intellectual progress relies on the injection of new 
ideas & on new ways of connecting ideas. Innate creativity may have an underlying 

chaotic process that selectively amplifies small fluctuations & moulds them into 
macroscopic coherent states that are experienced as thoughts. In some cases 

the thoughts may be decisions, or what are perceived to be the exercise of 
the will. In this light, chaos provides a mechanism that allows for free 

will within a world governed by deterministic laws. 

Davies, P.C. W. 
(The Matter Myth, with Gribbon, J. (Simon & Schuster/Viking 1991)) 

We are necessarily ignorant of ultrafine detail.. & so is the universe itself 
The universe is its own fastest simulator. 

Wigner, E. 
('The unreasonable effectiveness of mathematics in the natural sciences, comm.pure&appl.maths.V13 

p1-14 1960) 
The enormous usefulness of mathematics in the natural sciences is something bordering on the 

mysterious & ... there is no rational explanation for it. ... 
Newton's law .. a monumental example of a law, ...simple to the mathematician, which has proved 

accurate beyond all reasonable expectation. ... 
The miracle occurred only when matrix mechanics was applied to problems for which Heisenberg's 

calculating rules were meaningless. Heisenberg's rules presupposed that [they] could not be applied to 
cases [such as Helium (He)]. Nevertheless, the calculation of the lowest energy level of He [1960] 

agree with the experimental data within the accuracy of.. 1 part in 10 million. 
Surely in this case we 'got something out' of the equations that we did not put in. ... 

we do not know why our theories work so well. 

Einstein, A. (Out of my later years' (Thames & Hudson 1950)) 
We should take care not to make the intellect our god; it has, 

of course, powerful muscles, but no personality. 

4 
Kepler, J. (Cosmic History) 

Thanks be to Thee, O Lord our Creator, who hast granted me visions of beauty in Thy creation 

Born, M (Letter to Einstein 15/7/44) 
I had a kind of breakdown last winter. It was the 

result of many causes: the most depressing idea was always feeling that our 
science, which is such a beautiful thing in itself & could be such a 

benefactor for human society, has been degraded to nothing but a means for 
destruction & death. We've really put our foot in it this time, poor fools that we are & I am 

truly sad for our beautiful physics! 

Ecclesiastes 1:18 
For with much wisdom comes much sorrow; the more the knowledge, the 

more the grief. 

Ecclesiastes 3:11 
[God] has made everything beautiful in its time. 

He has also set eternity in the hearts of men; yet they cannot fathom what 
God has done from beginning to end. 
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ABSTRACT 

The aim of the research presented in this thesis has been to develop an objective 

measurement technique to improve the detection of flow patterns in closed ducts. This 

activity is important for the safe and efficient running of many processes, particularly 

within the oil production, nuclear power, chemical and process industries. Signal analysis 

techniques based on nonlinear dynamic (chaos) theory have been applied to simulated 

and experimental transducer signals measuring properties of gas-liquid (air-water) flows 

in horizontal and vertical pipes. The techniques provide a method of measuring 

properties of the signals that are related to patterns within the signals. Signals from 

various non-invasive transducers (including differential pressure transducers, an electrical 

conductance transducer, a light attenuation transducer, an ultrasonic transducer and a 

gamma-ray densitometer) have been analysed. Signal analysis techniques include the use 

of singular value decomposition, the correlation integral and power spectra analysis. 

The results of signal analysis on the simulated signals illustrate their potential for flow 

regime identification. When applied to experimental signals it is shown that changes in 

some of the signal characteristics correlate well with changes in the flow regimes. 

Discernment between horizontal stratified-wavy, plug and slug and vertical slug and 

bubbly flow regimes has been achieved. The most successful analysis technique (using 

singular value decomposition) is more robust than previously used techniques and can be 

computed much more efficiently. 
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A pipe cross section area 
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CHAPTER 1 

INTRODUCTION 

Many industries use mixed flows of gas, liquid and/or solid in ducts, known as 

multiphase flows. Those in which multiphase flow is particularly important include the oil 

production, nuclear power generation, chemical and process industries. The behaviour of 

the components of the flow can play a crucial role on the efficient and safe working of a 

plant. In the nuclear power generation industry it is particularly important that heat 

transfer, which often involves multiphase flows, occurs safely. Accurate metering of 

multiphase flows is becoming increasingly important in the oil production industry as oil 

fields need to be exploited more efficiently. The interactions of the phases with each 

other and with the duct walls are very complex and difficult to- predict from a given set of 

flow parameters such as phase flow rates and duct geometry. 

Clearly it is advantageous to know the fluid flow behaviour occuring within a duct and 

research is still being carried out to investigate ways of detecting and predicting flow 

conditions and their interactions with the duct walls. The need for objective experimental 

data is still an important requirement which is the primary issue addressed by the research 

presented in this thesis. 

Typical flow conditions can be catergorised into various flow 'patterns' or 'regimes'. The 

detection and prediction of these regimes is very important in many industrial processes. 

A particular regime may be either desirable (e.g. by improving the efficiency of a 

process) or undesirable (by having a hazardous effect on a plant). The author describes 

the development and testing of a method to improve the objectivity of identifying certain 

characteristic behaviours of multi-phase flow. 

Since the late sixties there has been an increase in the understanding of the principles of 

chaotic, non-linear systems. These systems are governed by very simple processes but 

display surprisingly complex behaviour. They have measurable properties which has 

resulted in the development of novel measuring techniques that can be applied to signals 

that are related to the system. 

These techniques have been applied to signals collected from non-invasive transducers 

sensing various properties of multiphase flows. The measured signal properties have then 
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been compared with the flow regime in order to determine if there is a correlation 

between the two. 

A previously unused measuring technique investigated in this thesis has been successful 

in detecting changes in the signal properties which correspond with changes in the 

multiphase flow patterns. It is based on a standard technique known as singular value 

decomposition. The detection of such changes could accordingly be used for 

discriminating between different flow patterns. Additionally such measurements will 

provide objective data to assist in the development of more comprehensive models of 

multiphase flows, based on approximating appropriate flow parameters to dynamic 

variables governed by a finite number of non-linear equations, to enhance flow regime 

prediction. 

§1.1 Justifications for multiphase flow research 

Although multiphase flows are highly complex and their complete numerical modelling 

not yet practical there are components of their behaviour which are not beyond analysis 

and possible prediction. For example, Swther, et al. (1990) have made measurements of a 

particular multiphase flow (known as slug flow and described in Chapter 2) which 

indicate that predictable properties do exist. These results would be useful for the 

development of a model of the flow properties. 

Hewitt and Hall-Taylor (1970) rather tentatively commented that it could be considered 

fortunate that the distribution of fluid-fluid interfaces is such that it falls into a number of 

characteristic patterns which could hopefully be predicted from the independent variables 

of the system such as the flowrates of each phase and their physical properties. Twenty 

five years later Hewitt (1995) highlights the development of computer codes which are 

currently used in industrial applications where validation data is difficult to obtain. These 

codes appear to give realistic results and these tools have now become of enormous 

significance to industry. However it is emphasised that the models used for prediction are 
of limited generality. There is still need for more objective data related to many 

multiphase phenomena. 

The characteristic phenomena of multiphase flows are called flow patterns or flow 

regimes. It was first suggested by Kosterin (1949) that flow regime maps might prove 
useful for estimating the flow regime in a conduit given certain flow parameters. 

Parameters that have been used include superficial phase velocities, mass flow rates and 
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various dimensionless numbers. Many maps have been compiled since the first one 

developed by Baker (1954) and it has become apparent that the boundaries between 

different flow regimes are very sensitive to many factors including conduit geometry and 

inclination. Figure 1.1 shows the original Baker map with the boundaries determined 

empirically by relatively simple relationships between the dimensionless parameters. 

Figure 1.2 shows a later map constructed by Taitel and Dukler (1976) using superficial 

phase velocities and determined by mechanistic arguments accounting for pipe geometry, 

inclination and fluid properties. The maps are related to gas-liquid flows in a horizontal 

pipe. Another flow map developed is shown in Figure 1.3. It was constructed by 

Spedding and Nguyen (1980) for vertical upward gas-liquid flows and uses different 

parameters related to flow conditions, as do many of the other maps. To illustrate the 

continuing development in the understanding of multiphase flows Spedding and Spence 

(1993) conducted a detailed survey comparing many of the commonly used maps and 

found serious discrepancies between them. 

Some of these discrepancies have been known to exist for some time (Weisman, et al. 

(1979) and Vince and Lahey (1982) describe some examples). Partly in response to this 

situation there have been investigations of time varying flow parameters in an attempt to 

estimate flow patterns by more direct methods. Problems have also arisen in this area and 

are discussed in Chapter 2. A great many flow patterns have been defined in the relevant 

literature owing to the present subjective nature of flow regime identification. Different 

names have often been given to (essentially) the same pattern (a more detailed 

description of the main flow regimes is given later). A useful history of the developments 

in the understanding of multiphase flows can be found in Brill and Arirachakaran (1992). 

There is a need for an objective, generally applicable flow regime identification 

technique. The research presented by the author is an investigation of signal analysis 

techniques which measure properties that have not been identified using the more 

traditional statistical measurements or measurements associated with the power spectra. 

As well as practical applications in industry there is much purely academic interest in the 

nature of multiphase flows. Pure scientific and mathematical research often tends to be 

carried out from aesthetic motives, the results of which later lead to the research of 

practical applications. The signal analysis techniques described in Chapter 4 and used by 
the author for analysis of multiphase flows provide a very apt example. The techniques 
are the results of investigations of naturally occuring patterns carried out in the 1960's 
and 1970's concerning clouds and coastlines (Mandelbrot (1968)). This led to 

investigations of mathematical systems with similar properties and which turned out to be 
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unexpectedly beautiful and complex. Figure 1.4 shows one of the most spectacular of 

these patterns, known as the Mandelbrot set, which is generated by an incredibly simple 

rule (the rule involves repeated squaring of a complex number and adding the result to 

the initial complex number). 

Measurement and signal analysis techniques were developed (Mandelbrot (1968), 

Grassberger and Procaccia (1983)) which could be used to extract information from 

complex patterns which related directly to the complexity (or simplicity) of the rules 

generating the pattern. These techniques have been shown to be potentially useful in 

multiphase flow research. Complex flows, including turbulence, still pose many 

challenging problems. 

The numerical modelling/simulation of multiphase flows is being improved and will have 

many useful applications as progress continues (Hewitt (1995)). 

§1.2 Flow regime identification 

There are many applications for flow regime identification. Some of the most important 

of which are in the chemical, process, oil production and nuclear power industries, 

particularly with regard to the safety and efficiency of various industrial plant. The 

importance of flow regime identification is apparent in many industrial fields including 

the following examples. 

Hewitt (1982) pointed out that the vast majority of technical calculations on two-phase 

flow were made without any reference whatsoever to flow-pattern maps. Research 

subsequently demonstrated that more accurate results could be obtained by giving 

specific attention to specific flow patterns. Hewitt (1982) suggested that it would be 

likely that calculation methods based on flow-pattern delineation would ultimately 

supercede those that take no account of the nature of the flow and that the understanding 

of flow patterns would become increasingly important in the future. This indeed seems to 
be the case. 

In the design and operation of two-phase flow systems, it is essential to know the two-

phase flow pattern because hydro- and thermo-dynamic data such as pressure drop, void 

fraction and quality depend on flow pattern. It is therefore important to develop 

techniques to evaluate a flow pattern in an opaque pipe or duct (Matsui (1984)). 
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Continuous knowledge of flow patterns is essential in multiphase production not least in 

order to prevent hazardous events such as slug arrivals at processing plant for example. 

Flow patterns play a crucial role in the estimation of gas-oil contents in order to have a 

better knowledge of overall mass flow rates (Leducq and Hervieu (1991)). 

Certain flow patterns can be damaging to equipment over long periods such as the 

apparent increase in corrosion rates of large oil lines during slug flows (Wood (1993)). 

Within the nuclear power generation industry the successful analysis and design of light 

water reactors demands basic information on the boiling processes of two-phase flow. 

One of the most important aspects of this research field is the identification of two-phase 

flow patterns (King, et al. (1989)). 

Pressure drop and stability characteristics of the three-phase oil/gas/water flows in sub-

sea oil well lines are important factors in the proper operation of off-shore oil well 

platforms, and they depend intimately on the flow regimes that occur (Acikgoz, et al. 

(1992)). 

A more specific example in which the knowledge of flow regimes is important is in an 

oil-well riser. An oil well riser separates gas and liquid components most efficiently 

during the bubble type flow regime. If churn or plug type flows develop an undesirable 

overload of the separation process may occur. This change in flow behaviour needs to be 

detected and responded to. The analysis techniques presented here could be applicable to 

the development of such a diagnostic system. 

Another very important area in which knowledge of flow patterns is needed is the 

metering of flows. It is known that flow meters are sensitive to the changes in fluid 

dynamics caused by the addition of another phase. Delaye (1974), Baker (1970), Oddie 

(1992) and Kraft (1994), amongst others, give examples of the serious effects that 

multiphase flows have on the behaviour of various types of meters. 

The increasing importance of accurate multiphase flow measurement for the oil 

production industry is emphasised by Ashkuri and Hill (1985). Multiphase flow meters 

will be increasingly needed for optimizing oil production over the life of an oil field and 

in saving costs in developing and building phase separation systems which are used at 

present for the measurement of the individual oil, gas and water flow rates. 
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The awareness of the need for multiphase flow metering is increasing as noted by Baker 

(1989). Baker indicates that an increasing number of industrial processes result in a flow 

which is not single phase and in which the second phase can no longer be disregarded. 

Also that the efficiency of processes could be improved if multiphase metering were 

possible without the need of a separation process. There has been a rather extreme 

attitude towards multiphase metering summed up by Hayward (1977) suggesting that 

engineers proposing to meter two-phase flow should not even start because of the 

complexity. With the increased availability of computing power for signal analysis and 

modelling which has occurred within the last decade there is less justification for this 

pessimism. Baker (1989) acknowledges that there is still a lack of experience and data 

with regard to metering multiphase flows and distinguishing between flow patterns. 

The research presented in this thesis directly addresses this issue. It presents the 

improvement of signal analysis techniques for obtaining objective data related to 

multiphase flows which is needed for the improvement of industrial diagnostic systems 

and the development of non-linear models of variables associated with multiphase flows. 

Some of the justifications and applications for the research of multiphase flow patterns 

presented in the thesis have been outlined. 

§1.3 Scope of the thesis 

Chapter 2 provides an overview of the research that has been carried out in the 

development of flow pattern analysis. Reviews by other authors describing the present 

state of affairs and the problems associated with present detection methods are 

highlighted. Research that has stimulated the line of approach and the use of the 

particular methods employed by the author is highlighted. Finally justification for this 

approach is given. 

Chapter 3 describes the experimental apparatus including the methods of signal 

production and collection. The transducers that are used to detect properties related to 

multiphase flows and their interaction with the flow is described. The system has been set 

up to generate a variety of typical air-water flow patterns. 

Chapter 4 outlines the approach adopted for flow pattern detection. The methods of 
signal analysis that have been used are described. The signal analysis techniques include 
those that are based on recent developments in the theory of nonlinear dynamic systems. 
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These developments are found to be useful in a great number of applications and have 

recently demonstrated potential usefulness in the field of multiphase flows. The authors 

original improvements to the methods for application to flow regime identification are 

described. The methods are applied to signals simulating transducer responses to various 

multiphase flows to illustrate how they can be used on experimental signals. Thus the 

potential of the methods for flow regime identification is demonstrated from a theoretical 

point of view. 

Chapter 5 describes the experiments that have been carried out by the author. Transducer 

signals have been collected using the transducers described in Chapter 3 and the signal 

analysis techniques described in Chapter 4 have been applied. Results of the signal 

analysis are presented. The results of measurements from signals provided by CALtec (of 

the British Hydromechanics Research Group) are also presented. It has been found that 

some of the signal analysis techniques are successful in detecting changes in the 

transducer signal properties which correlate with changes in the flow patterns. 

Chapter 6 draws conclusions from the results. Potential advantages of the techniques 

applied are described. Areas where further work is required are highlighted. This includes 

testing the signal analysis techniques on a greater variety of flow configurations. 
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CHAPTER 2 

LITERATURE REVIEW 

§2.1 Definitions of flow regimes 

Before reviewing the work presented in the literature it is appropriate at this point to 

present a brief description of the typical flow regimes that are encountered in horizontal 

and vertical two-phase gas-liquid flows. It should be noted, however, that the precise 

definitions of certain flow regimes is problematical and this will be discussed further in 

Section 2.2. The descriptions that follow apply to flow patterns within pipes of circular 

cross section, though similar patterns often occur in ducts of other shapes. They are 

based on those suggested by Hewitt and Hall-Taylor (1970) and cover the most widely 

recognised patterns. There has been much debate on the nature and existence of many 

flow patterns which is made apparent by the large number of flow maps that have been 

produced since the Baker flow regime map (see Oddie (1992)). 

In horizontal flow six typical flow regimes shown in Figure 2.1 are commonly classified 

as follows (very approximate mass flux in Kg hr-1 m-2 are given in brackets):-

i) Stratified flow. At low liquid and gas flow rates the liquid flows along the bottom of 
the pipe and the gas along the top. The liquid surface is flat. (Gg<103 ,Gi<105) 

ii) Stratified-wavy flow. Waves are formed on the gas-liquid interface at higher gas flow 

rates due to the friction forces between the fast moving gas and slower moving liquid. 
(G <104 ,G/<105) 

iii) Annular-dispersed flow. This flow pattern occurs at high gas flow rates. The gas 

flows through the center of the pipe while the liquid flows as a film on the pipe wall. 

Often liquid droplets are entrained in the gas core and gas bubbles entrained in the liquid 

film. In horizontal annular flows the film along the bottom of the pipe is thicker than that 
at the top, due to the effect of gravity. (Ge104 ,G1<106) 

iv) Intermittent flows (ping/slug flows). These flows are characterised by the flow of 

large bubbles between slugs or plugs of liquid. Plug flow is characterised by bullet 

shaped bubbles flowing along the top of the pipe. Slug flow involves slugs of liquid with 

high entrainment of gas bubbles (a frothy mixture of gas and liquid) flowing between 
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long bullet shaped bubbles. The intermittent structures in semi-slug flow take the form of 

frothy waves which do not touch the top of the pipe. Franca and Lahey (1992) 

distinguish slug and plug flows by considering the phase which drives the flow. In slug 

flow the large bubbles become more unstable with wavy interfaces typical of gas driven 

flows. Jones and Zuber (1975) observe that slug flow can be considered as a combination 
of bubbly and annular flows. (Gg<104 ,G1<107) 

v) Dispersed-bubble flow. At higher liquid flow rates and low gas flow rates bubbles of 

gas are dispersed within a liquid continuum. At high flow rates the dispersion is 

reasonably uniform where as at lower flow rates the bubbles congregate near the top of 
the pipe. (Gg<102 ,G1-106) 

(vi) Mist flow. At very high gas flow rates and lower liquid flow rates the liquid becomes 

dispersed throughout the gas as small droplets. If there is no heat transfer from the pipe 
wall to droplets adhering to it then this regime tends to change to annular flow. (Gg>106

,G1<102) 

In vertical flow there are six commonly described flow regimes. Typical phase 

configurations are shown in Figure 2.2. The Spedding and Nguyen (1980) vertical 

upward flow regime map can be referred to (Figure 1.2). Commonly used regimes are:-

i) Bubbly flow. There is a continuous liquid phase containing a dispersion of bubbles. 

Spedding and Nguyen (1980) found this regime very difficult to obtain. They have 

defined bubble type flow as an intermittent flow of gas bubbles and liquid that is more 

like the following description of Hewitt's plug flow. 

ii) Slug or plug flow. At higher gas (or secondary fluid) flow rates bubbles congregate 

eventually forming large bullet shaped bubbles of similar size to the pipe diameter. In 

slug flow the liquid between the long bubbles contains a dispersion of bubbles (frothy in 

nature and similar to those of horizontal slug flow). It is not uncommon for the liquid 

film around the slugs to fall in the opposite direction to the total average fluid-fluid flow. 

Spedding and Nguyen (1980) describe the plug type flow as bubble type flow. As the gas 

flow rate is increased the length of the bubbles increases and the gas-liquid interface 

becomes more disturbed, eventually leading to slug type flow. As the gas region moves 

upwards liquid drains down the side of the pipe and disturbs the liquid below it causing a 

froth to develop. 
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iii) Churn flow. At higher flow rates the slug flow bubbles break down leading to a 

complicated movement of irregularly shaped bubbles. Oscillatory motion of the liquid 

occurs in tubes of sufficiently large internal diameters. This flow regime has been debated 

as being similar to slug flow and its existence has been questioned (see Hewitt and 

Jayanti (1993) and Mao and Dukler (1993) and references therein). 

iv) Annular flow. This flow occurs at high gas flow rates. The gas flows through the 

center of the pipe while the liquid flows as a film on the pipe wall. The interfacial friction 

between the gas and the liquid provides upward force on the liquid. Often liquid droplets 

are entrained in the gas core and gas bubbles entrained in the liquid film. 

v) Wispy annular flow. When the liquid flow rate is high enough the droplets entrained 

in the gas core of annular flow congregate forming large streaks (wisps) of liquid. Flows 

of this type have a high mass flux. 

vi) Mist flow. This flow has the same flow structure as mist flow in horizontal ducts. 

§2.2 Review of previous work 

In the early days of multiphase flow research various classifications of the types of phase 

distributions were recognised (Kosterin (1949)). This resulted in the first of many flow 

regime maps (Baker (1954)). The map was an attempt to estimate the conditions 

necessary to produce some of the possible flow patterns in terms of phase flow rates and 

various fluid properties. Since then many more maps have been produced in attempts to 

improve the generality and accuracy of flow pattern prediction. By 1980 it was clear that 

a general flow map which could take into account phase flow rates, pipe geometry and 

inclination was not possible (Spedding and Nguyen (1980)). Problems concerning the 

actual definition and behaviour of various flow regimes also existed (and still does). 

Research has tended towards more detailed analysis of flow patterns using measurable 

properties of the flow such as pressure fluctuations at the pipe wall. Analysis of collected 

signals of these fluctuations using traditional statistical and frequency measurements had 

some success in identifying changes in flow behaviour. Improvements to analysing 

techniques are still taking place. These include the use of linear regression models (King, 

et al. (1989)), wavelet analysis (Leducq and Hervieu (1991)), neural networks (Beg and 

Toral (1993)) and fractal techniques (Sather, et al. (1990)). These techniques are briefly 

described in the following sections including some of the advantages and disadvantages 

that have been found in their use. Improvements are still necessary to most of the 
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techniques currently used. This thesis describes improvements that can be made to the 

measurements of fractal properties of signals related to multiphase flows in an attempt to 

gain more objective information about the complexity of the signals and hence the 

processes that govern the behaviour of the flow patterns. 

This section provides an overview of prominent researchers' work to high light common 

methods that have been employed in multiphase flow regime identification research. 

Table 2.1 (on the following page) summarises a cross section of the research that has 

been done. Information includes the flow regimes covered, the ranges of superficial flow 

velocities (or flow/mixture rates), the measuring techniques used and the methods of 

analysing flow parameters and determining the flow regimes of air-water mixtures 

(except set d investigated by Leducq, et al. (1991) which was for a gas-oil mixture). 

§2.2.1 Some explanatory notes for Table 2.1 

The flow regime denoted by Sb consists of axially symmetric shaped bubbles occuring 

between plugs in vertical flow. 

The probability distribution function (PDF) of a variable gives the probability of the 

variable having a particular value. It is estimated by calculating a histogram from the 

signal. 

Characteristic functions (CHAFs) include functions such as the PDF, cross-correlation 

functions and power spectral densities. 

The auto-regressive moving average (ARMA) model is a statistical model usually based 

on the assumption that each point of a time series is linearly dependent on a finite number 

of the previous points of the time series. Parameters used in the model can be used for 

characterisation. Beg and Toral (1993) also describe the use of such parameters by 

neural networks applied to flow regime identification (refer to Section 2.2.5). 

Wavelet analysis is a recently developed method for efficiently detecting intermittent 

components of a given frequency (Grossman and Morlet (1984)). It has similarities to 

applying a windowed fourier transform to a signal. The signal is decomposed into a set 

of short lived pulses which are given a particular position and frequency (refer to Section 

2.2.5). 
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Table 2.1 Experimental data from various authors 
Flow Method of 
regimes identifying 
covered flow 

regime 

Frequency 
range 
analysed 
/ Hz 

Superficial 
gas velocity 
/ ms-1

Superficial 
liquid 
velocity 
/ ms-1

Pipe 
I.D. 
/ 10-2m 

Pipe 
Orientation 

Measurement 
technique 

Nishikawa, B,S,C, CHAFs 
et al. (1969) A 

0-15 0.03-8 0.01-3 2.6 Vertical DPS 

Jones, Zuber B,S,A PDFs 
(1975) 

0-100 a0-37 a0-37 .5x6.4 
rectangle 

Vertical X-ray 
attenuation 

Wiesman, B,P,St, Signal 
et al. (1979) W,S,A amplitude 

ratios 
903-105 C105-107 1.2-5 Horizontal DPS 

Barnea, B,P,S, Signal 
et al. (1980) C,A,St, trace 

W analysis 
0.1-30 0-3 2.5 Various 

Electrical 
conductance 
probe 

Vince, et al. B,S,C, CHAFs 
(1982) A 

0-100 0.05-5 0.1-0.5 2.54 Vertical X-ray 
attenuation 

Lubbesmeyer, B,M, CHAFs 
et al. (1983) C,A 

0.2-66 0.1-8 0.1-1.4 2.5 Vertical Light 
attenuation 

Matsui (1984) B,Sb,S, PDFs 
C,A,M 

0.009-13 0-0.49 2.2 Vertical DPS 

King, Sb,B,S, ARMA 
et al. (1989) C model 

0-100 0.05-3.3 0.07-0.31 2.5 Vertical Neutron 
noise 

Franca, P,S,W, Fractal 
et al. (1991) A techniques 0-70 0.2-17 0.3-6.8 1.9 Various DPS 

Leducq, B,S,C Wavelet 
et al. (1991) Analysis 

0-48 
0-49d

-0-7 
b1-12.5 

-0-5 
b0.5-4 

0.1-4 
7.62 

Vertical 
Vertical 

vibration & 
DPS 

Das and B,S,C, 
Pattanayak A PDFs 
(1993) 

205 <12 2 1.1 Vertical 
Electrical 
conductance 
probe 

Beg,Toral St,S,P Neural 
(1993) Networks 

0.2-8 0.05-2 406 Horizontal y-ray densitometer 
& DPS 

Key 
a - mixture flow rate 
b - flow rates in litres s-1
c - flow rates in Kg hr-lm-2
d - gas-oil mixture 
I.D. - internal diameter 
CHAF - characteristic function 

PDF - probability distribution function 
DPS - differential pressure signals 
ARMA - auto-regressive moving average 
P - Plug flow 
A - Annular flow 
M- Mist flow 

W- Wavy flow 
B - Bubble flow 
St - Stratified flow 
C - Churn flow 
Sb - Spherical bubble flow 
S - Slug flow 
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Signal trace analysis involves visual observation of signal traces. 

Fractal techniques are those employed by the present author and are described in Chapter 

4. They provide an objective measurement of the apparent complexity of a signal. 

The various flow regimes that have been identified do not always agree between different 

authors (such as the difference between vertical upward bubbly and bubble flow 

described in Section 2.1). Examples of other discrepancies are detailed in Spedding and 

Spence (1993). 

§2.2.2 Experimental techniques used 

As can be seen from the table the analysis of differential pressure signals is a widely used 

technique. Pressure signals potentially contain useful information required about flow-

regimes since pressure fluctuations from disturbances caused by multiphase structures 

are transmitted along and across the duct at the speed of sound in the fluids. It is 

relatively cheap to extract signals using this method and installation is also relatively 

simple. Flush mountings with the pipe wall are important to keep interference with the 

flow to a minimum. 

The electrical conductance probe used by Barnea, et al. (1980) consisted of three needle 

like probes and a large flat electrode, and would be likely to be insufficiently robust in 

some industrial applications. The probe used by Das and Pattanayak (1993) was similarly 

fragile. The authors also mention that the presence of such probes in high liquid 

velocities can interfere with the flow and hence interfere with the behaviour of the other 

neighbouring probes. However, a variation of the apparatus using flush electrodes may 

be suitable for many applications where a significant difference in electrical conducting 

properties between the phases exists. 

Capacitance sensors for water-oil flows have been used by Xie, et al. (1989), using an 

arrangement of eight electrodes that enable tomographic imaging of the phase 

distributions across the pipe section. The setup proves to be adequate in retrieving 

suitable information for the purposes of flow regime identification. A simpler version 

(without the use of tomographic imaging) using just one capacitor has been used by 

Midttveit, et al. (1992) for the purposes of void fraction measurements. It is important to 

note that the capacitance across a duct is substantially reduced when the water fraction 

exceeds 30-40% (typically). The variation in the subsequent signals produced is small. 

13 



This is due to the high conductance of the water. These authors illustrate the strengths of 

the capacitance sensor for use in the appropriate environment (particularly where low 

conductance fluids are used). 

Photon attenuation proves to be suitably sensitive, however, the light attenuation sensor 

used by Lubbesmeyer and Leoni (1983) will only work for transparent or translucent 

fluids. The X-ray void measurement system of Jones and Zuber (1975) has certain 

drawbacks concerning extra safety precautions required and installation costs (partly 

because of these factors Lubbesmeyer and Leoni (1983) developed their light 

attenuation method). 

Oddie (1992) has measured the intensity of an ultrasonic beam which is attenuated and 

diffracted at the phase boundaries in oil-water flows. It has proved to be suitably 

sensitive for detecting flow parameter changes in oil-water flows, however, at a liquid-

gas boundary the transmitted ultrasonic waves experience very large attenuation (most of 

the energy of the wave is scattered away from the transducer) which makes detection and 

signal interpretation across a pipe diameter very difficult. The reflected waves can be 

detected from receivers placed on the same side of the pipe as the transmitter. 

Some authors were aware of the need for future application of experimental techniques. 

Leducq and Hervieu (1991) took industrial environments into consideration and 

remarked that to be available on a production installation the measuring technique should 

be non-intrusive, using flush mounted or external sensors and the signal processing 

hardware to be reduced as much as possible (on microcomputer for example). 

Lubbesmeyer and Leoni (1983) noted the following criteria for suitable transducers: 

-sensitivity for one of the fluid-inherent natural noise sources like temperature, 

conductivity, density or transparency. 

-suitable response times to changes in the flow. 

also recommended were: 

-minimal flow restriction. 

-mechanical and chemical stability at high pressures and temperatures. 

-low cost. 

§2.2.3 Analysing techniques used 

A common method of determining flow regimes has been by visual analysis of the flows, 

often with the aid of high speed photography (Jones and Zuber (1974) and Vince and 
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Lahey (1982) include the pictures taken) . Though flow regime identification is important 

there is, as yet, no generally accepted method to carry this out with satisfactory 

objectivity. Indeed it has, in the past, been acknowledged that, because of the lack of 

absolute methods for the determination of flow pattern, data on the patterns should be 

treated with some reserve (Hewitt (1982)). A decade later Franca, et al. (1991) amongst 

others acknowledged that this still needs to be borne in mind. 

Most methods that have been used to attempt flow regime identification have involved 

analysis of statistical properties of the signals from the flow. Typically characteristic 

functions (CHAFs) have been measured and their various patterns correlated with 

recognised flow regimes. Common CHAFs include the probability density function 

(PDF), auto-correlation function and power spectral density function (P SD). The PDF is 

usually estimated by producing a histogram of a signal (a count of the frequency of 

occurrences of a particular signal value). The auto-correlation function involves the 

comparison of the signal with a translation in time of itself. It is a function over a range 

of translations. The PSD is commonly estimated by squaring the components of a fast 

fourier transform of the signal. 

Once a CHAF has been constructed it requires subsequent analysis. This has been done 

by comparisons between the visual shape of the CHAF and the visually determined flow 

pattern and also by objective methods which involved making measurements related to 
their shape such as moments around the mean value of a PDF or ratios of particular peak 

heights (Jones & Zuber (1974) and and Vince and Lahey (1982)). 

§2.2.4 Theoretical techniques used 

When flow patterns have been defined and observed under various flow conditions 

attempts have been made to give theoretical explanations for the behaviour. Many 

expressions have been formed which attempt to describe quantitatively the boundaries 

between different flow regimes in terms of parameters related to flow rates and fluid 

properties. The Baker map (1954) was the first empirically obtained result of this 

technique and many others have followed. Taitel and Dukler (1976) later used 

mechanistic arguments to derive various transition boundaries. Reviews have been 

carried out by Weisman, et al. (1979) and Spedding and Spence (1993) amongst others. 
A great variety of expressions have been produced and little consistency has so far been 

attained. Weisman, et al. (1979) and Spedding and Spence (1993) high light the 

difficulties. 
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§2.2.5 Problems encountered with analysing techniques 

Using characteristic functions for flow regime identification has not been entirely 

successful. A typical problem that is encountered is described by Vince and Lahey 

(1982). They show that all moments associated with the PSD of X-ray attenuation 

signals exhibit a strong dependence on superficial liquid velocity. This characteristic is 

very undesirable for a flow regime indicator because any correlation would require prior 

knowledge of this variable. Since void fraction measurements are sufficiently difficult the 

additional requirement of a simultaneous liquid velocity measurement renders the use of 

PSD moments impractical. Moreover, they found that only the variance of the PSD has 

potential as a flow regime indicator. They conclude that the moments of the PSD are not 

considered to be as valuable as the moments of the PDF for flow regime identification. 

King, et al. (1989) found that in certain cases different flow patterns have similar CHAFs 

making discrimination between CHAFs very difficult. They acknowledged that there was 

no well established method for two-phase flow pattern identification suitable for certain 

processes relevant to the nuclear power industry. In a detailed analysis of the relationship 

between CHAFs and flow regimes carried out by Lubbesmeyer and Leoni (1983) the 

similar conclusions were reached. For example, they found that the high-void bubbly and 

churn-turbulent flow-patterns had very similar CHAFs while in other cases, some CHAFs 

were very sensitive to different bubble sizes in bubbly-flows. 

The comprehensive review of flow regime maps and analysis by Spedding and Spence 

(1993) concluded that existing regime maps and the theories for the prediction of phase 

boundary transitions did not satisfactorily predict observed flow pattern regimes, 

particularly when the geometrical parameters and physical properties of the phases were 

varied. 

Other investigations include Hubbard and Dukler (1966), Jones and Zuber (1975), 

Weisman, et al. (1979), Barnea, et al. (1980), Nishikawa, et al. (1969), Akagawa, et al. 

(1971) and Tutu (1982). All have had difficulty in precisely determining flow regime 

boundaries. Spedding and Nguyen (1980) point out the need for care when using maps 

that are drawn with sharp line boundaries since the uncertainty of flow regime is greatest 

near such lines. Maps drawn by Weisman, et al. (1979) used bands to indicate smooth 

transitions. Franca, et al. (1991), summarize the state of affairs:-
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'Despite the variety of methods adopted up to now, there is no accepted method to 

objectively distinguish between the flow regimes. Methods suitable for vertical flows 

cannot be used for horizontal flow since the phases show a different distribution. 

Moreover, the roll waves which are present in wavy and annular horizontal flows, give 

an output similar to those from intermittent flows. Clearly better objective flow regime 

indicators are needed.' 

§2.2.6 Potential improvements investigated 

Some of these authors have started to investigate a few methods that show promise in 

attaining a higher degree of objectivity. It is the aim of this thesis to improve the situation 

further by carrying out research required of methods that depend less on subjective 

determination of flow pattern. 

The use of CHAFs coupled with developments in pattern recognition systems such as 

neural networks (implemented by Beg (1993)) and large data bases (implemented by 

Annunziato (1991)) have more recently been tested with reasonable success. CHAFs 

used by Annunziato (1991) include:-

(i) The ratio of the low density peak area to total area of the two peaked PDF arising 

from intermittent type flows. 

(ii) The 'characteristic frequency' (the frequency corresponding to the maximum value of 

the PSD). 

(iii) The perturbation velocity (the velocity of dominant structures in the flow e.g. bubble 

velocity in bubbly flow, slug velocity in slug flow, etc.). This parameter is calculated 

using cross correlation functions. 

(iv) The 'characteristic length' between the dominant structures such as those described 

above. 

Annunziato (1991) reports success rates of greater than 90% using a pattern recognition 

system and database. 

The use of neural networks has recently been applied to multiphase flow analysis by Beg 

and Toral (1993). Various simple statistical measures and parameters associated with a 

linear prediction model (similar to those used by King, et al. (1989)) were estimated from 

pressure and gamma ray densitometer signals. Flow patterns covered were of the 

stratified and intermittent types. The neural network was then trained using the 

parameters to directly estimate flow rates. Flow rates of gas and liquid phases were 

sometimes estimated to accuracies of less than +10%. The use of trained neural networks 
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is very computationally efficient, however performance is critically dependent on the 

availability of a good quantity of well distributed training data (Beg, et al. (1993)). The 

actual training process for the neural networks can be very computationally expensive. 

There are difficulties in demonstrating that a trained network will continue to generate 

reliable outputs from input data which differs significantly from the data used to train the 

network. 

Another promising technique is that provided by the wavelet transform (Grossman and 

Morlet (1984), Strang (1989), Mallat (1989)). The wavelet transform is a more powerful 

and efficient advancement of the windowed Fourier transform. Information about the 

frequency and location of structures within a signal can be extracted (more quickly than 

using a Fourier transform). A particular wavelet component provides information about 

the location of disturbances of a particular characteristic frequency. Initial studies applied 

to multiphase flows have been carried out by Leducq and Hervieu (1991). They conclude 

that two wavelet components seem sufficient to characterize the flow configuration, 

which could lead to simplified signal processing. However because the wavelet 

components only transform signal information (very efficiently) the results still require a 

further level of recognition and correlation with flow regimes using some appropriate 

method. 

Franca, et al. (1991), used what they called fractal techniques. These are measuring 

techniques that have arisen out of the analysis of mathematically generated objects which 

have proved to be applicable to a vast field of physical phenomena. Differential pressure 

signals from a horizontal 19mm internal diameter pipe were obtained. PSDs and PDFs of 

the signals were calculated and two types of fractal measure were obtained (one of these 

is fully described in Chapter 4). The fractal measures they obtained showed potential for 

better discrimination between flow patterns than the PSDs or PDFs and they concluded 

that fractal techniques offer a promising way to objectively classify flow patterns. 

However, with reporting only four measurements, they acknowledge that more work is 

needed before truly objective techniques are available. This thesis is written largely in 

response to the recommendations and initial results presented by Franca, et al. (1991). 

Other fractal measures have been used which the present author has found to be more 

robust and more efficient to compute. These are described in detail in Chapter 4, 

together with background information to fractal measuring techniques. 
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§2.2.7 Fractal measuring techniques applied to multiphase flows 

Fractal measuring techniques applied to data analysis have developed in the last two 

decades mostly because of the increased availability of computing power. They have 

been applied to a vast range of applications and are used throughout many of the 

sciences. They have been applied to single phase turbulence and found to be useful 

(Huang and Huang (1989)). Only in the last few years have they been applied to 

multiphase flows. The relevance of fractal measurement techniques to this field arises 

from the property of fractal measures being related to pattern (Mandelbrot (1977)). This 

property enables a pattern to be measured or classified in an objective manner. For 

example a line that has a very complicated and jagged appearance will have a higher 

fractal measure than a smoother and less complicated line. Measurements such as these 

have a great potential to be well suited to the discernment between different multiphase 

flow patterns using transducer signals from the flows. 

The main motivation for this thesis has been stimulated by the application of the fractal 

techniques carried out by Franca, et al (1991), Oddie (1992), Smther, et al. (1990), Fabre 

and Line (1992) and Lusseyran (1990). These authors have indicated the potential of 

fractal measurements to distinguish between flow patterns. The research presented 

describes particular methods that are more robust than those used by the above 

investigators. 

Oddie (1992) has measured a fractal property known as the correlation dimension 

(described in Chapter 4) for a vertical upward dispersed oil-water flow, showing a 

possible chaotic type behaviour which might be detectable by the use of fractal measuring 

techniques. 

Sather, et al. (1990) have carried out investigations on horizontal gas-liquid slug type 

flows. They measured a fractal property known as the Hurst dimension (Mandelbrot and 

Van Ness (1968)) of slug lengths. The results indicated that the slug lengths were 

governed by a non-random influence. Also the Hurst dimension showed some 

dependence on superficial gas velocity which could prove useful for multiphase metering. 

These results are further discussed by Bernicot, et al. (1993). 

Lusseyran (1990) made one fractal measurement of a signal related to vertical upward 

slug flow. Fabre and Line (1992) discuss the result and conclude that this indicates that 

such slug flow could be described by a model with a small number of degrees of freedom 
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(meaning that a few differential equations may describe the behaviour sufficiently. See 

Chapter 4). 

They conclude that the behaviour of slug flow has properties that are measurable by 

fractal techniques and that such measurements could be useful in developing more 

accurate models of slug type flows. 

Franca, et al (1991) have carried out measurements using the Hurst and correlation 

dimensions which suggest that measurements of fractal properties of signals show 

promise in objectively determining flow patterns. 

The fractal techniques described in Chapter 4 and used by the previously mentioned 

authors provide measures that are related in an objective and quantitative way to pattern 

and complexity (Mandelbrot (1977)). It is therefore well worth applying the use of such 

measures to flow regime identification. Because of the sensitivity of these techniques to 

various signal properties and variables used in the signal analysis some arbitrarily chosen 

factors are introduced. These factors are maintained as constants throughout the analysis 

carried out by the author to minimise their influence on the discernment between flow 

regimes. 

Measurements of fractal properties, though less computationally efficient and more 

difficult to apply do not require the training of neural networks. Suitably objective 

measurements of signal properties related to the flow patterns may provide information 

fundamentally useful for the development of models of some aspects of multiphase flow 

behaviour as well as providing a tool for distinguishing and classifying different types of 

flow. 

§2.3 Summary 

This chapter has highlighted the current difficulties in classifying and identifying flow 

patterns. Research by investigators using more recently developed techniques such as 

fractal analysis and neural networks has been discussed. The potential of the fractal 

analysing techniques have been shown to have a potential for improving the 

determination and classification of flow patterns, particularly because an objective 

measurement of signal properties can be made. However only a few results were 

published by the initial investigators of the technique for flow regime identification 

(Franca, et al. (1991)), namely measurements from four time series from different flow 

20 



situations. This may have been because of the large amount of computing time that is 

required by the particular techniques used. The sensitivity and robustness of the methods 

was not discussed. It can be concluded that improvements to the methods are required. 

The present author has carried out further testing and development of some of the 

techniques that have indicated potential in improving flow regime identification. 

Improvements to the analysing techniques has been done with regard to improving the 

robustness of the techniques to the effects signal noise and simplifying computational 

complexity. A well established signal analysis technique known as singular value 

decomposition that has not (to the author's knowledge) been applied to flow regime 

identification has been investigated and provided results that indicate this method to be 

more effective and robust than those employed by the previous authors. 

§2.4 Justifications and objectives 

Research has been discussed which suggests that fractal measuring techniques have the 

potential of providing objective data related to multiphase flows. This is because the 

measuring techniques provide a method of analysing and classifying patterns. It has been 

acknowledged that there is a growing need for more such information for the 

classification, understanding and modelling of multiphase flows and that the use of fractal 

techniques has not yet been fully investigated. 

The objectives of the research presented in this thesis have been the following. 

■ To develop a method of measuring fractal properties of transducer signals related to 

multiphase flows that is : 

(i) suitably sensitive to changes in flow pattern, 

(ii) less sensitive to different signals from the same flow patterns and 

(iii) more efficient to compute than those previously used. 

• To extend the testing of such a method on relevant signals (including simulated 

signals). 

The methodology and results of the research are presented in the following chapters. 

21 



CHAPTER 3 

EXPERIMENTAL SETUP AND PROCEDURES 

§3.1 Introduction 

Multiphase flows were produced in an air-water flow loop. Flow patterns (regimes) 

included horizontal slug, plug and dispersed bubble flows and vertical bubble and slug 

flows. A variety of non-invasive transducers were used to provide signals which were 

collected by digital computer and subsequently analysed. Details of the flow loop, flow 

production and the transducers are presented. 

§3.2 Flow rig 

Figure 3.1 shows the layout of the main components of the rig. The experimental rig for 

producing water-air flows consisted of a loop of 50mm ID plastic and perspex pipe 

sections. Two straight 2.4m sections of perspex pipe held the various transducers. One 

section of 50mm ID was orientated vertically and horizontally. The other section of 

25mm ID was orientated vertically. 

The water was circulated via a tank of approximately 3m3 capacity using a pump that 

produced a maximum head of 3.5x105Nm-2. Flow rates between 1 x10-4m3s-1 and 

15x10-3m3s-1 were used to obtain the various flow patterns. Air was supplied from a 

7x105Nm-2 air line at flow rates between 5x10-6m3s-1 and 2x 1 0-3 m3 s-1 (when at S.T.P. 

using the pressure regulators). The details of the arrangements for entraining the air into 

the water are shown in Figure 3.1. 

Various flow patterns were produced using the full range of measurable air and water 

flow rates. Slug, plug and bubble flows were directly visually determined from the 

structures observed through the perspex pipe sections. The temperature of the water 

varied between 18°C and 24°C. This variation did not affect the result of visual 

estimation of a particular flow regime. 
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§3.2.1 Flow meters 

Two turbine meters provided measurements of the various water flow rates that were 

used. The meters were manufactured by Fisher Controls Ltd. (U.K.). Model numbers 

were 7185-4015-A (this smaller range meter was connected via a 25mm by-pass line) 

and 7102-0008-A. Refer to Figure 3.3 for the calibration curves. 

Pelton wheel meters were used to measure small air flows which were necessary to 

produce vertical bubble flows. The meters were manufactured by Quadrina Ltd. (U.K.). 

Model numbers were PWG7 (7 Umin max. flow) and PWG2/EP1 (2 Umin max. flow). 

Refer to Figure 3.2 for the calibration curves. 

A turbine meter for the larger air flows was used (A Quadrina meter, model number 

QEG13B. Refer to Figure 3.3 for the calibration curve). 

The necessary air meters (in parallel with each other) were used in series with pressure 

regulators to enable a greater range of flow rates at different pressures to be obtained 

(refer to Figure 3.1). 

§3.3 Data collection 

Various types of transducers were selected to collect information related to the flow 

phenomena in the pipe. During experiments the data collection was started when flow 

meter readings had stabilised. Visual estimation of a flow pattern was made by 

identifying the characteristic structures of a particular flow pattern as described in 

Section 2.1. 

An IBM PC (with a processor clock speed 25MHz) was used with an analogue to digital 

converter (ADC) to record the signals. The ADC was manufactured by Pico Technology 

Ltd. (U.K.). Maximum sampling frequencies of the order of 5KHz for 1 channel were 

obtainable. Up to four channels were recorded simultaneously. About 300,000 data 

points could be collected without interruption. 

§3.4 Transducers 

A wide variety of sensors have been used in the literature for flow pattern analysis. These 

included pressure transducers, photon attenuation meters (using y-rays, X-rays and 
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visible light) and electrical properties (eg. conductance and capacitance). They all are 

sensitive to parameter changes that are affected by the instantaneous distribution and/or 

momentum of the fluids in the pipe and have therefore been used for flow regime 

research. 

Transducers are required which respond suitably quickly to the passage of the various 

bubbles and droplets that are encountered in the multiphase flow across a pipe cross 

section. The movement of such structures past some transducers may be faster than the 

response time of the transducers or not close enough to them to be detected. A device 

such as a thermocouple is unlikely to detect much of the useful information that is 

provided by small bubble or droplet movement that occurs away from its immediate 

vicinity. Its fragility, particularly, makes it an impractical sensor for multiphase flows. 

Transducers that are able to respond quickly enough include those that measure electrical 

properties of the fluids and densitometers which relate to the local 'instantaneous' void 

fraction. 

Pressure transducers are also suitable due to the relatively high speed of sound compared 

to flow velocities and their sensitivity to effects that occur across the whole pipe section 

in the vicinity of the transducer. They have been used extensively in this field. They are 

cost effective and usually pose relatively few implementation problems which are also 

important criteria to consider. 

Non-invasive transducers are recommended, since flow patterns are directly influenced 

by the geometry of the flow duct. Turbine meters and vortex meters will interact with 

bubble formations and are very likely to cause disturbances that change the fluid-fluid 

interfaces. Such devices are therefore unsuitable for flow regime indicators. 

The requirement of high durability sensors in multi-phase environments makes the use of 

turbine meters and hot wire anemometry impractical. 

Due to their suitable sensitivity, robustness and cost effectiveness the sensors that were 

used were pressure transducers, a light attenuation sensor, an electrical conductance 

sensor and an ultrasonic transmitter and receiver system. Their arrangement on the 

perspex pipe sections is shown in Figure 3.4. Details of the pressure tappings are 

included. 
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§3.5 Transducers and their interaction with air-water flows 

i) Pressure transducers. 

Pressure transducer tappings were arranged diametrically opposite and axially along the 

perspex test sections. The differential pressure ranges measured were up to 3.5x104Nm-2

(the larger range) and 1.25x103Nm-2 (the smaller range). The larger range differential 

pressure transducer was also used as an absolute pressure transducer (having one side at 

atmospheric pressure). The transducers were acquired from RS Components Ltd. (U.K.). 

Response times for both were less than 10-3s. The signals produced were amplified to a 

range of 0-2.5V. The connecting tubes between the differential pressure transducers and 

pipe wall introduced problems that affected the signals due to bubbles entering the tubes. 

Absolute pressure measurements were subsequently taken having the transducer 

mounted flush with the inner pipe wall. Typical differential and absolute pressure 

transducer signals are shown in Figures 3.5 and 3.6. The vertical flows described as 

bubble flows in the subsequent Figures use the Spedding and Nguyen (1980) description 

given in Section 2.1. 

The pressure transducers produced large signal fluctuations when slugs passed the 

tappings. These intermittent fluctuations were dominant features of the signals. In the 

horizontal plug flows and vertical bubble flows the signals were dominated by more 

continuous higher frequency components. This occurred due to the transmission of 

vibrations from the pump via the liquid phase which was in contact with the transducer. 

A small set of signals from dispersed bubble flows were collected using the absolute 

pressure transducer. These signals were characterised by noisy high frequency 

components in a similar fashion to those of the plug and bubble flows. 

Vibration produced by the pump was transmitted through the pipe walls and the water 

which affected the pressure transducer signals. It would be reasonable to expect large 

amounts of such vibration in many industrial applications. 

Difficulties were found in discerning flow regimes using the differential pressure signals. 

This was caused by the increased noise sensitivity of the devices due to the flexibility of 

the pipes between the transducers and the tappings. The absolute pressure transducer 

was not susceptible to such problems. Its signals were also sampled at a higher sampling 

frequency than the differential pressure signals. Initially it was hoped that the signal 

analysis techniques would enable discernment using the noisey differential pressure 
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transducer signals, but there were insufficient differences in signal quality from the 

different flows regimes. 

ii) Light attenuation sensor. 

The light sensor consisted of a laser and a photodiode similar to that used by 

Lubbesmeyer and Leoni (1983). A low power laser beam (15mW HeNe with wavelength 

632.8nm) was directed through the perspex test section via an opaque 15mm tube and 

onto a semiconductor photodiode (also via an opaque tube). The beam passed along a 

diameter of the perspex test section. Figure 3.7 shows the arrangement of the sensor and 

the typical behaviour of a light beam during the passage of a bubble through the pipe. 

The beam went through many reflections and refractions which often resulted in very 

little light reaching the diode for short periods of time. The signal produced by the 

photodiode was in the range 0-0.5 V. 

Typical signals produced by the photodiode are shown in Figure 3.8. Bubbles as small as 

the diameter of the laser beam (1mm approx.) dramatically affected the amount of light 

reaching the diode as the beam was reflected and refracted from the air-water boundary. 

When many bubbles in complex arrangement passed through the pipe it was common for 

the amount of light reaching the diode to be substantially reduced. This often occurred 

when a frothy slug passed through the pipe (shown particularly clearly in the slug signal 

from the 25mm pipe). In the example of the slug flow signal from the 50mm pipe most of 

the light was impeded and scattered by froth in the annular flow as well as in the slugs. 

Occasionally light was focused towards the photodiode by a suitable configuration of 

air/water boundaries. This is shown clearly by the increased signal detected during 

vertical bubble flow in the 25mm diameter pipe (labelled B in Figure 3.8). 

During the passage of clear water in the horizontal plug and vertical bubble flows a 

steady, high signal level was produced. 

iii) Electrical conductance sensor. 

The electrical conductance sensor consisted of eight brass electrodes situated around the 

inside of the pipe and connected as shown in Figure 3.9. The arrangement was such that 

variations occuring in the water distribution across the whole cross section of the pipe 

were detected. The resistors R1, R2 and R3 were set to give a potential difference in the 
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range 0-2.5 V (resistances are of the order of 10 Icf2 ). Figure 3.10 shows typical signals 

collected by the electrical conductance transducer. 

Wet structures such as plugs and slugs (P and S) that passed the sensor increased the 

conductivity around the pipe wall, thus producing an increase in signal strength. When 

large bubbles passed through the sensor the signal voltage decreased at rates dependent 

on the rate at which water drained from the sides of the pipe and on the depth and length 

of the bubble(s). 

Difficulties were found in discriminating between some of the signals produced by plug 

and slug type flows where the difference was dependent on the intermittent structure 

being either a homogeneous liquid (plug) or a frothy mixture of air and water (slug). The 

froth containing many small bubbles tended to have similar conductance properties to 

that of clear water especially near the pipe surface where the electrodes were placed. 

Surface tension tended to keep the electrodes and pipe wall between them wet whether a 

slug or plug had passed them. 

iv) Ultrasonic reflection sensor. 

The ultrasonic sensor consisted of a piezoelectric transmitter and receiver placed on one 

side of the pipe (see Figure 3.11). The transducers were silver coated piezo-electric 

ceramic discs (diameter 10mm) that resonate at 2MHz. They were arranged inclined 

towards each other to maximise the sensitivity of the system. The transmitter was driven 

by a constant frequency (at 2MHz) with an amplitude of 10V. The receiving transducer 

detected reflections of the transmitted ultrasonic wave that occurred at phase boundaries. 

A 2MHz signal with an amplitude dependent on the intensity of reflected waves was 

produced. Reflections occurred at perspex-water, water-air and perspex-air boundaries. 

The amplitude of the reflected wave received by the transducer changed as the 

configuration of air and water changed near the transducers. It was very sensitive to the 

angle, area and position of the boundaries present in the region where the transmitter and 

receiver interacted. The signal generated by the receiver was amplitude modulated 

(producing signals up to 2KHz) and amplified to a range of about 0-2V. Figure 3.12 

shows typical ultrasonic transducer signals collected. Only signals from vertical flows 

were collected. 

Bubbles that passed through the pipe near the transducers tended to increase the amount 

of energy reflected producing a larger amplitude wave at the receiver. This was 
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particularly clear from the signals produced by a bubble type flow. As the edge of a 

bubble (B in the Figure) passed the transducer a strong reflection was detected. Smaller 

peaks in the signal are produced by the occasional small trailing bubbles. During slug 

flow many reflections were almost continuously detected due to the air-water boundary 

being close to the pipe wall. In a typical slug, S, and in the annular type film following it 

there were many small bubbles of air that passed the transducer which produced 

reflections of the incident wave (due to their close proximity to the pipe wall). These 

reflections were apparent by the many small peaks that were present throughout the 

signal. 

§3.6 Gamma-ray densitometer signals 

A set of signals from a gamma-ray densitometer was kindly provided by CALtec Ltd., 

part of the British Hydrodynamics Research Group Ltd. Signals were from horizontal 

stratified wavy and intermittent air-water flows in a 406mm diameter, 400m long pipe. 

The signals are shown in Figure 3.13. During the passage of an intermittent plug or slug 

structure the signal increases quickly and then tails off as the water level decreases and 

water drains from the pipe wall. During the wavy flows the occasional small peaks 

appear in the signals as the result of single large waves passing, but generally a very 

complicated, noisy signal is produced. 

§3.7 Conditions investigated 

Table 3.1 shows the flow conditions investigated using the experimental flow rig and 

those investigated by CALtec Ltd. The author's experiments were carried out over a 

period of about 2 years. The absolute pressure transducer signals were taken after 

considering the need to improve on the poor results obtained from the differential 

pressure transducers. These are all documented in Chapter 5. 

Figure 3.14 shows the superficial velocities of the air and water plotted on a Taitel and 

Dukler (1976) flow map for horizontal flow. The visually estimated slug and plug flow 

patterns agreed with the Mandhane, et al. (1974) transition band. The points labelled 

with a * indicate dispersed bubble flows that did not agree with the corresponding Taitel 

and Dukler (1976) boundary. 

Figure 3.15 shows the superficial velocities of the air and water obtained in the vertical 

25mm and 50mm pipes. Figure 3.16 shows the transformed points on the Spedding and 
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Nguyen (1980) flow map, where UT is the total average superificial velocity of both 

phases, D the pipe diameter, g the acceleration due to gravity and QG and QL the 

volumetric flow rates of air and water, respectively. The point labelled with a * indicates 

a bubble type flow that did not agree with the map boundary. 

Table 3.1 Conditions investigated 

No. flow 
conditions 
covered 

Pipe Flow patterns 
arrangement covered 

Transducers 
used 

Sampling 
frequency 
(KHz) 

53 Horizontal (50mm) slug, plug PL, Ps, El, Lt 0.8 

52 Vertical (50mm) slug, bubble PL, El, Lt 0.97 

29 Vertical (25mm) slug, bubble PL, Us, Lt 1.6 

8 Horizontal (50mm) slug, plug 
dispersed bubble 

Pa 4 

8 Vertical (50mm) slug, bubble Pa 4 

6 Vertical (25mm) slug, bubble Pa 4 

11 Horizontal (406mm) slug, stratified-wavy y 0.02 

PL-Large range differential pressure transducer Ps-Smaller range D.P. 
PA-Absolute pressure transducer El-Electrical conductance transducer 
Lt-Light attenuation transducer Us-Ultrasonic transducer 
y - gamma-ray densitometer 
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CHAPTER 4 

SIGNAL ANALYSIS TECHNIQUES 

The signal analysis techniques which have been used are based on the theory of non-

linear dynamics or chaos theory. This is the study of systems which display complex 

behaviour but which are governed by comparatively simple rules. These systems and the 

measuring techniques developed are described. Their application to typical signals related 

to multiphase flows is then illustrated. 

§4.1 A brief summary of chaotic systems 

Before discussing the application of chaos theory to signal analysis a brief summary of 

definitions and properties displayed by chaotic systems is given. The discovery of these 

systems has enabled the measurement of properties which are potentially very well suited 

for detecting changes in flow patterns. 

A deterministic system is such that its behaviour can be fully described by a finite number 

of state variables which are governed by the same number of differential equations or 

mappings. In principle the state of a deterministic system can be calculated at any instant 

(given the initial conditions) using the governing equations. Since the sixties it has 

become known that many of these deterministic systems display dynamics that are non-

repeating in behaviour, having an apparently random quality. Such aperiodic behaviour is 

called chaotic behaviour (the variables never repeat exactly any previous pattern of 

behaviour). At first sight it seems surprising that such systems (with no external random 

influences) could behave in such a way, but it has become apparent that most 

deterministic systems when forced at certain rates do (even very simple ones such as the 

forced pendulum). 

Chaotic behaviour is different from purely random or stochastic behaviour in that it is, in 

principle, predictable since the governing system is deterministic. In practice finite 

accuracy (incomplete knowledge) of a systems present state severely limits the success of 

prediction to finite times. This is due to the system being extremely sensitive to initial 

conditions. With the discovery of chaotic behaviour there has been the definition of 

measures which quantify how predictable these types of systems are (measures of chaos). 

These measures have been very useful in classifying different types of chaotic behaviour. 

Two classic examples of such systems are the logistic map (Holden (1986)) and the 

Lorenz equations (Lorenz (1963)). 
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The logistic map produces a series of numbers, xi, each of which is calculated from the 

preceding number, xi_1, according to :-

xi = 4 x._1(1-x1.1) 0<xo<0.5 ; 0.5<X0<1 (4.1) 

It has been used to model fluctuations in predator-prey populations. Figure 4.1 shows 

the erratic behaviour of the numbers that can arise. Typical measures of chaos associated 

with the logistic map have values between 0 and 1 because each number is only 

dependent on the one immediately preceding number (described as having 1 degree of 

freedom). These measures are known as fractal dimensions. 

The Lorenz equations describe the behaviour of 3 variables that are dependent on each 

other in the following way: 

d X= a.(Y - X), 
dt 

d Y = rX - Y - XZ, 
dt 

dZ= - bZ+XY. 
at 

(4.2a) 

(4.2b) 

(4.2c) 

The system models the convection of a steadily heated fluid. Figures 4.2-4.4 show typical 

chaotic behaviour of the variables (the following parameter values were used: a=10, 

b=8/3, r=28 with initial conditions: X=20.4, Y=24, Z=20). It is important to appreciate 

the complexity of the behaviour of the system variables given the simplicity of the 

governing system. From the Figures it can be noted that there is an apparent qualitative 

difference between the behaviour of Z and X or Y. These differences are not detected by 
analysis based on chaos theory since the underlying system which generates each signal is 
the same. Fractal dimensions (measures of chaos) associated with this system have values 

between 2 and 3 since the system behaviour is dependent on three variables (described as 

having 3 degrees of freedom). The higher fractal dimensions associated with the Lorenz 

equations indicate that it is a more complex system than that governed by the logistic 

map. This distinction between the level of complexity of the systems gives these 

measures their potential for distinguishing between signals associated with different 

multiphase flows. 
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A powerful aspect of chaos theory is that information regarding the whole system can be 

obtained from sufficiently large amounts of measurements of a single dynamic system 

variable (e.g. measurements of any one of the variables, X, Y or Z, of the Lorenz system). 

It is this aspect that provides the practical application of analysis methods based on chaos 

theory to the analysis of signals measuring multiphase flow phenomena. 

§4.2 The application of chaos theory to flow regime identification 

It is suspected that the dynamic variables describing multiphase flow of fluids in a pipe 

may exhibit chaotic behaviour or at least may be modelled by a chaotic system which has 

a minor random influence incorporated within it. Certainly there are apparently random 

fluctuations in the behaviour of many of the parameters associated with multiphase flow 

and the complexity of such behaviour is observed to have different qualities for different 

flow regimes (Sether, et al. (1990) have investigated the apparent chaotic behaviour of 

slug lengths and frequencies). It is this property of the flows which may enable the 

measures of chaos associated with different flow regimes to be used to distinguish 

between them. The use of these measures depends on :-

i) whether the behaviour of relevant, measurable parameters is chaotic (or at least if the 

behaviour can be adequately modelled by a chaotic system) 

ii) whether the measures of chaos for each flow regime are measurable and 

distinguishable. 

Initial tests of this method have been carried out already, most notably by Franca, et al. 

(1991), and they show some promising results (see Section 4.6). The present author has 

not reproduced them and has adopted signal analysis techniques that are more practical 

to implement and robust than those used by Franca, et al. (1991) and others. 

It is worth noting that the measures of chaos obtained from complex, noisy experimental 

signals will not necessarily give accurate estimates of the properties of a fundamental 

model of the system. With regard to a multiphase flow system (a fluidised bed) this has 

been indicated by Tam and Devine (1992). However, when using the methods for 

comparing properties of different signals the measures can perform a very useful role 

since the measures, though possibly inaccurate for predicting a model, still detect 

changes in the complexity of signal behaviour. 
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An outline of the theory of obtaining measures of chaos from dynamic systems is 

presented below. 

§4.3 Measures of chaos from dynamic systems 

The behaviour of a deterministic dynamic system is fully described by all the independent 

state variables or parameters of the system. The number of these variables is called the 
embedding dimension, me, and it is equal to the number of degrees of freedom that the 

system has. A set of vectors which have components made up of these variables can be 
plotted in an me dimensional space (called a phase space) and their evolution through 

time can be observed. Chaotic systems behave in such a way that the object drawn in the 
me dimensional phase space has an infinitely detailed structure and is known as a strange 

attractor. Figure 4.5 shows examples of two strange attractors (the double looped 

attractor is from the Lorenz system. The other attractor is known as the Rossler attractor 

(Rossler (1976))). These are unlike periodic systems in which the variables tend to an 

attractor which is a closed loop or a point (once initial fluctuations known as transients 

have dissipated). Transients in the Lorenz system can be seen in the behaviour of the 

variables X, Y and Z where O<K3 in Figures 4.2-4.3. Once the transients have dissipated 

the variables describe the double looped Lorenz attractor shown in Figure 4.5. Also 

shown in Figure 4.5 are examples of non-chaotic attractors generated by periodic 

systems such as simple unforced pendulums. 

The infinitely fine structure of a strange attractor is due to the aperiodic behaviour of the 
state variables, i.e. the attractor is made up of an infinite number of orbits, which, though 

they may be close to each other, never actually touch each other (i.e. the system never 
returns exactly to a previously obtained state). A consequence of this is that the attractor 
has a non-integer dimension that lies between me and me-1. This dimension, known as a 

fractal dimension, and the embedding dimension give measures of the complexity of the 
system. If the dimension has a non-integer (fractal) value then the system exhibits chaotic 

behaviour. 

Another property of the strange attractor is that orbits within it that initially are close 

together will tend to diverge away from each other at an exponential rate as the system 

evolves in time. This is an inherent property of chaotic systems which makes itself 

apparent by the extreme sensitivity of the system to initial conditions. Measuring the 

exponential rate at which such orbits diverge gives a measure of the amount of chaotic 
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behaviour the system displays. These measures are known as Lyapunov exponents (Wolf, 

et al. (1985)). 

§4.4 Fractal dimensions 

The fractal dimension of an object describes how much the object fills space. A square 

requires a two dimensional space in which to draw it, and its surface area and perimeter 

are finite in value. However a fractal dimension object, such as the Lorenz attractor, is 

drawn using a one dimensional line that tends to erratically fill the three dimensional 

space in which it is drawn (because no part of the line ever overlaps exactly another part 

of itself). The line has an infinite length and yet is contained in a finite volume. These are 

the distinguishing properties of strange attractors. The term fractal refers to the non-

integer dimension values that most strange attractors have. There are various methods 

for calculating the fractal dimensions of strange attractors. Some of these dimensions are 

easier to estimate than others (particularly with regards to factors such as computation 

time). Most of the methods involve the reconstruction of the attractor which is assumed 

to exist for the system. To extract the information about the attractor of a dynamic 

system a time series of measurements of one of the relevant parameters needs to be 

collected. The attractor can be reconstructed from this time series using the method of 

delays developed by Takens (1982). 

Given a series of measurements of a suitable variable taken at regular time intervals, 
xi = x(t+i-c) (where i = 1, , N), a series of vectors xi can be constructed as follows :-

(4.3) 

where j = 1, , N-m+1, 
m is known as an embedding dimension (though not necessarily suitable) 
and -r is known as the sampling or delay time. 

When these vectors are plotted in the m dimensional phase space they follow a trajectory 

(a line in the phase space) which forms an attractor that has the same topological 

properties (such as dimension) as the original attractor constructed from all the 

independent variables describing the system dynamics (see Figure 4.6). This produces a 

mapping (denoted by 0 in the Figure) of the original attractor onto a reconstructed 

attractor which can be analysed and has proved to be an elegant and very useful method 

in the analysis of non-linear systems. The process of constructing an attractor in the 

phase space is known as embedding the attractor. 
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The two parameters i and m play a crucial role in the reliable and accurate estimation of 

measures associated with the attractor. Estimates are sensitive to the values of 't and m. 

This applies particularly in the case of experimental signals which tend to be noisy, are of 

finite resolution and are limited in length. Such problems are highlighted by Broomhead 

and King (1986), Fraedrich and Wang (1993), Buzug and Pfister (1992a & b), Ding, et al. 

(1993), Lawkins, et al. (1993) and Abarbanel and Kennel (1993). They describe methods 

of estimating suitable values of i and m by observing the behaviour of attractors 

embedded in the spaces using a range of values of T and m. Tam and Devine (1992), who 

have applied chaos measures to fluidised-bed pressure fluctuations, emphasise the need 

for careful utilisation of these measuring techniques to avoid drawing spurious 

conclusions about the governing models (i.e. the measures may not be accurate estimates 

of the governing system's dimension). 

The value of in is restricted for practical reasons to a maximum of about 10. This is 

because as m gets larger the number of points required to describe the attractor 

sufficiently increases exponentially. All dimension estimates require a suitable density of 

points throughout the phase space to give reasonable estimations of averages of various 

parameters that are needed. Reliable measurement of high dimensional chaos (eg. 

dimensions of the order 10 and above) cannot practically be made at the moment by 

methods such as these which estimate various statistical properties associated with a 

reconstructed attractor (data sets with more than the order of 105-106 points often result 

in impractical computer analysis time, if not sampling time and space). Tam and Devine 

(1992) suggest that fluidised bed behaviour is likely to be of a high dimensional nature 

(rendering inaccurate model prediction) but are still able to use these measurement 

techniques to obtain limited but useful information about changes in behaviour. A similar 

philosophy has been adopted by the author applying these methods to multiphase flow 

pattern identification since unreliable dimension estimates were obtained for the purpose 

of accurate model construction. 

§4.5 Effects of the delay time, 

The delay time, z, is especially important for accurate model construction and there are 

numerous methods of estimating a suitable value (Broomhead and King (1986), Buzug 

and Pfister (1992a & b), Stelter and Pfingsten (1991)). However most of these methods 

are at least as computationally intensive as the estimation of the chaos measures 

themselves. This is because they involve a detailed analysis of the structure of the 
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reconstructed attractor or they require the analysis of the behaviour of the dimension 

estimate itself as T is varied. Some of the methods do not clearly determine a suitable 

value for "C particularly from noisy experimental data sets. 

For flow regime identification which requires detecting an appropriate change in signal 

properties the sampling time was used as the delay time. When the sampling time proved 

to be inadequate (i.e. no change in signal properties were detected with flow regime 

change) an attempt to provide a suitable delay time using a robust and fast method of 

delay time estimation method developed by the author was used. The method adds little 
extra computation time to the signals analysis by measuring the angle, 01, between 

successive tangent vector approximations on the attractor for a given delay time. The 

method described has not been used before, to the author's knowledge. Its 

implementation is described in Section 4.9.1. 

For an attractor that has been reconstructed using a delay time, t, that is too small most 
angles between successive tangent vectors will tend to have a value of 01 0. This is 

because the attractor lies very closely along the direction vector (1, 1, ... ,1) as the 

components of the vector describing the attractor point are all too similar. A few values 
of 01 will tend to be lOi l ,--t• it, when the trajectory changes to the opposite direction of the 

unit vector. Figure 4.7 shows the appearance of such a reconstructed Lorenz attractor. 

If too large a value of -r has been chosen then typically ir/210eir as most successive 

points on the attractor jump from one side to another without clearly following a smooth 

trajectory around the attractor (see the reconstructed Lorenz attractor in Figure 4.8). 

For a suitable value of T then typically 0<leil<n/2 as successive attractor points flow 

along a smooth trajectory which bends around the attractor (see the reconstructed 

Lorenz attractor in Figure 4.9). 

§4.6 The correlation dimension 

A commonly measured dimension from experimental data is that known as the 
correlation dimension, D2, due to the large amount of useful information that can be 

extracted about the attractor from its computation. There are problems with the 

application of this method to experimental signals, however, which will be discussed 

later. 
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Once the attractor has been reconstructed an estimate of the correlation dimension is 

obtained using the following definition (Grassberger and Procacia (1983)):-

Given the correlation integral 

N N 

C m(r) =  2 E 0( r - - xj I), (4.4) 

N(N-1) 1=1 j=i+1 

where the Heaviside function 0(y) = 0 for y ≤ 0 and 0(y) = 1 for y > 0 
and I x I is usually taken as the maximal norm, the correlation dimension, D2, is given by:-

D2 := lim lim lim lc In(cmg (r)). (4.5) 
r-40 N->0O d log(r) 

Cm(r) is the probability that a pair of randomly chosen points on the attractor both 

lie within the same hypercube of side r (refer to Figure 4.10 showing an example of a 
three dimensional reconstructed attractor). D2 then gives a measure of how rapidly this 

probability changes over different scales of the attractor (this is a typical sort of analysis 

related to dimension measurements). It is known (Takens (1982)) that for sufficiently 

large and clean data sets and for a suitable range of r that the gradient 

d log(Cm(r)) = as m--->2me+1 (me the original (4.6) 
d log(r) attractor's embedding dimension) 

There is also evidence that it is possible for the convergence to occur for lower values of 
m (Ding, et al. (1993)). However there are many problems that arise from attempting to 
estimate D2 from experimental measurements. Some of these include :-

(i) Only approximations to the limits of equation (4.5) can be calculated. i.e. N can only 
be large rather than infinite (and needs to be at least of the order of nD2, where n >5. See 
Fraedrich and Wang (1993) and Grassberger, et al. (1991)), r has a lower bound 
restricted by measurement resolution and noise and the maximum size of m is restricted 

by failings in the method of delays for experimental data (these failings are similarly due 

to finite amounts and resolutions of the data set). The data set also needs to be large 
enough for the measured variable to be stationary (that is the statistical properties of the 

data being independent of time). Another consequence of the data set not being large 
enough is that unreliable estimates of the probabilities Cm(r) are obtained. This is 

because as m increases the density of points on the attractor decreases rapidly. 



Cm(r) is sensitive to the sampling time, ti (as discussed in the previous section). 

(iii) The estimation of D2 involves the estimation of the gradient d log(Cm(r))/d log(r). 

Practically this is done using a least squares method with a suitably large set of values of 

Cm(r) calculated at different r values which introduces errors particularly from 

experimental data. It was found that these errors combined with the difficulty of 
determining whether D'2 had converged sufficiently often made an estimation of D2 very 

difficult. These procedures are very computationally intensive. 

Unfortunately the tests carried out by Franca, et al. (1991), did not indicate how much 

these problems interfered with the dimension estimates that they obtained for signals 

from various flow regimes. The tests were carried out on pressure transducer signals 

produced by wavy, plug, slug and annular flows (in a 19mm internal diameter (ID) 

horizontal pipe) with dimension estimates of 6.2, 7.2, 5.1 and 5.9 respectively. One set of 

flow rates for each flow regime was tested. Some measurements carried out by 

Vitsikounaki (1995) showed some correlation with fluid component flow rates and 

possible correlation with flow regimes, though the flow regime information was not 

available to be able to draw conclusions about responses to flow regimes. Added to 

computation times for the correlation integrals for many values of r was the additional 

processing to provide useful measures that were then correlated with flow conditions. 

Vitsikounaki (1995) made no comment about the computation times. 

Because of these problems in estimating D2 the author has not found it to be very 

practical for the application of flow pattern identification. Figure 4.11 shows the typical 
behaviour of Cm(r) that occured for many of the experimental signals obtained by the 

author. The behaviour of the gradients, D'2, is also shown. Typically there is insufficient 

convergence of D'2 to a fixed value as m increases to obtain reliable estimates of D2. m 

cannot be increased indefinitely because the reliability of the probability estimates 

decreases due to the rapidly decreasing density of points. A more robust method has 

been adopted. The results of this method applied to the noisy and relatively small 

experimental signals do seem to provide a measure that plays a role in the discernment 

between signals from different flow patterns. It must be emphasised, however, that the 

dimension estimates obtained do not necessarily reflect the true nature of the underlying 

dynamics governing the behaviour of the measured variable due to the restrictions on the 

size of m particularly. 
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r 

The method is based upon properties of the correlation integral as previously defined and 

was developed by Savit and Green (1991). It seems to be more robust at detecting signal 

properties from noisy data. They introduced a delta measure, on,(r), defined as:-

r 

6m(r) = 1 - Cm2(r) 

Cm-1(r) Cm+i(r) 

(4.7) 

These oni(r)'s give a measure of the dependency of xi on xi, aside from the 

dependencies of xi on xk for i-m < k < i. 

For a chaotic signal produced by a system with me degrees of freedom the following 

behaviour tends to result :-

8,n(r) > for m = 1, ... e and 8,„(r) < form > me (4.8) 

The parameter represents a threshold below which a given 5„,(r) is influenced more by 

noise factors rather than deterministic mechanisms. Typical behaviour of om(r) from 

experimental signals is shown in Figure 4.12. There is a general trend for om(8) to 

decrease as m increases. Where 6,48) is above the noise threshold then there are at least 

m degrees of freedom. Savit and Green (1991) recommended r to be one half of the 
standard deviation, a, of the time series, x1. However the signals that have been analysed 

by the author show that om(r) has a dependence on the flow conditions for values other 

than at r=a12 (and hence provided potentially useful information). The authors particular 

method of using the delta measures is further described in Section 4.9.2. 

§4.7 Singular value decomposition 

This method has been widely used in signal analysis and is an application of the 

Karhunen-Loeve expansion of a random process (Bundick (1973) gives a good 

introduction). Ciliberto and Nikolaenko (1991) applied the method to investigate single 

phase fluid dynamic behaviour between sliding moving surfaces. To the author's 

knowledge singular value decomposition (SVD) has not been successfully applied to 

flow regime identification. An unsuccessful attempt by Vitsikounaki (1995) was probably 

due to lack of sufficiently large data sets. Also, unfortunately, the flow regimes were not 

known. Tam and Devine (1992) used SVD for the noise reduction in the analysis of 

signals obtained from fluidised beds (upward fluid/solid flows), but they did not 



implement SVD to extract more directly a dimension estimate as has been carried out by 

the author. 

Karhunen-Loeve expansion involves the construction of a matrix from a set of vectors 

describing a reconstructed attractor from a time series. This is the same reconstruction 

process as for the correlation integral calculations, except that different parameter values 

are used. The square roots of the eigenvalues of this matrix are called singular values. 

They give information about the relative strengths of deterministic properties within the 

original signal. Information about the amount of stochastic noise in the signal can also be 

extracted. The Karhunen-Loeve expansion is efficient at projecting the reconstructed 

attractor onto a special space such that the information about the deterministic and 

stochastic influences in the signal can be extracted via the singular values. Figure 4.13 

shows a reconstructed attractor in the space and the singular values related to the spread 

of the attractor along individual axes in the space. 

The method was implemented by constructing an m x m covariance matrix, E, from a 
time series of N measurements, xi, 1=1, , N = n x m, using a set of vectors describing 

an attractor, vi , j = 1, , m. vi  are given by :-

j (Xj3 Xj+n3 • • • 3 X j+(m-l)n) 

and an average vector, a, given by: 

a =  1  E = (al, a2, ... am) 

n 
=  1  (Y,Xj, f.xj+n, • • • , aj+(m-l)n)-

n 

(4.9) 

(4.10) 

m is an embedding dimension playing the same role as that of the correlation integral. 
However it is practical to use larger values with SVD than can be used with the 
correlation integral because the computation process is much faster. 

is then given by: 

= 1 UTU 
n 

(4.11) 

where U is then x in matrix of n row vectors ui. = vi  - a, j = 1, , n. 
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The eigenvalues, ak2, k=1, , m of E (a real symmetric matrix) have the following 

important property: 

ai 2 (322 c3m2> O. (4.12) 

The eigenvalues can be easily computed using one of the routines produced by the 

Numerical Algorithms Group (NAG) which produces numerical analysis software for 

many computer systems. 

The orthonormal eigenvectors of form the basis vectors onto which the vectors yi can 

be projected. These projections are called principle components. The largest eigenvalue, 
O12, gives a measure of the energy contributed by the most significant (and most likely 

deterministic) principle component (Broomhead and King (1986)). The smaller '37,2, 

k=Ds+1, , m, correspond to the energy contributions from principle components that 

represent noise in the original attractor where Ds can be considered as an upper bound of 

the dimension of the attractor if suitable values of N, m and sampling time have been 

chosen. These parameters are difficult to determine for accurate estimates. Values were 
selected which provided discernable differences in Ds which were dependent on the flow 

pattern (though accurate dimension estimates are unlikely). This was done since changes 
in Ds were of most interest for this particular research. The embedding dimension, m, 

was typically of the order of 20, which provided a large enough variation in Ds to be 

observed for signals from different flow patterns. The large value in m meant that N 

needed to be as large as possible (of the order of 105 data points). 

Estimations of Ds have been obtained by counting the number of singular values that 

make up at least 90% of the total energy of the system, i.e. 

100% x Sn ≥ 90%, (4.13) 
k 

where Sk= CY 

i=1 

Ds is the number of significant singular values that may be considered to be related to 

deterministic influences in the original signal (Broomhead and King (1986)). The value of 
90% was somewhat arbitrarily chosen, leaving what was considered a reasonable value 
(10%) for random influences in the signal. 
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Figure 4.14 shows the typical behaviour of the ratio, Sk Sn, as k increases for signals 

from bubble and slug type flows. The labels, p and s, indicate the the values of k=D s

where the singular values above the threshold are considered as insignificant and related 

only to signal noise. The position of the vertical lines indicate the estimated value of 
k=D s. As can be seen from the figure the rate of increase of Sk Sn occurs at different 

rates for the different flow patterns. E.g. the light signal from slug flow has many more 

significant singular values than the light signal from plug flow and hence has a larger 

number of degrees of freedom. 

§4.8 Power spectra analysis 

Another method of estimating a measure of the complexity or roughness of a signal, x(t), 

is to measure the exponential rate of decay of the power spectra, P(w), with respect to 

log(w). This method was applied to anemometer signals from two-phase bubbly flow and 

single phase turbulent flow by Wang, et al. (1990) to analyse the turbulent nature of the 

flows. 

A signal, x(t), has fractal properties if for a range of a scaling factor, a, 

x(at)oc aHx(t) (a>0), 

where H is known as the scaling exponent (Barnsley, et al. (1988)). 

(4.14) 

The decay of the broad band power spectra, P(co), of the signal is a consequence of this 

scaling property and tends to have the following behaviour 

p( p) = c ico l 2Dp-5, 1 <D <2 (4.15) 

where D is a fractal dimension related to the roughness of the signal, x(t) (in this case 

the smallest integer greater than Dp is not the same as the number of degrees of freedom 

of the system producing x(t)) and c is a constant (Fowler (1993) and Prechner (1993)). 

These authors describe practical implementations of this method. 

The gradient (2Dp-5) of the log(P(o)))-log(m) graph was estimated by a least-squares 

best-fit line and so provided a non-iterative method for estimating fractal dimension. A 

Bartlett window was applied to each signal prior to Fourier transforming to reduce 

undesirable effects of using discrete data (this simply involved the following operation : 
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----> 2ix1/N when i<N/2 and xi --> 2(N-OxiIN when i>N/2). Typical logarithmic behaviour 

of the smoothed power spectra from some of the experimental signals is shown in Figure 

4.15. Smoothing was done using a moving average of 90 neighbouring points. Different 

average slopes can be seen in the curves from light signals from bubble and slug flows. 
Errors in D estimates occured due to large and isolated frequency components 

(examples are indicated by a and b in Figure 4.15) which deviated from the law described 

by equation (4.15). The effects of peaks in the spectra representing these components 

(which reflected regular structures in the signal) were reduced by applying the moving 
average. The variation in Dp of signals obtained from the same flow patterns was also 

reduced by the smoothing process. 

§4.9 Improvements to the signal analysis techniques 

Improvements to some of the analysing techniques were made to improve, where 

possible, the detection of signal properties that changed with the flow regime and to 

improve the speed and efficiency of the computations. These included (i) the introduction 

of a fast and robust method for estimating a delay time when the sampling time proved to 

be ineffective and (ii) improvements to the speed of the analysis techniques that used the 

correlation integral. 

§4.9.1 Estimation of the delay time, ti

The most commonly used delay time in the analysis of the experimental signals was the 

sampling time (i.e. the smallest delay time available) in the initial attempt to detect 

changes in signal properties which correlated with flow regime. When the sampling time 

proved to be inadequate (i.e. no change in signal properties were detected with flow 

regime change) an attempt to provide a suitable delay time using a robust and fast 

method of delay time estimation method developed by the author was used. The method 

added little extra computation time to the signals analysis by measuring the angle 

between successive tangent vectors on the attractor for a given delay time. The method 

described has not been used before, to the author's knowledge. It involved finding the 

cosine of the angle between successive tangent vectors on the reconstructed attractor 

trajectory: - 
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= cos(e(t)) (4.16) 

where cos(0(t)) is the most frequently calculated cosine of the angle 
between successive tangent vectors. This was estimated by calculating 
a histogram of the cosines. 

The cosines were computed efficiently using the cosine rule :-

cos(0i) = OXFOXi+i (i8Xiiii52c4+1i) (4.17) 

where lxil represents the Euclidean norm of the in dimensional vector xi

and oxi = xi - xi_i (Figure 4.16 shows the angles Oi on a trajectory) 

The most likely cos(0(T)) was estimated by finding the most frequently occuring cos(0i) 

within a given small range using a histogram. 

13(r) gives a measure of the average cosine of the angle found between successive 

tangent vectors lying on the reconstructed attractor. It was generally found that the 

contributions to 13(c) from each m correlated with each other. Because of this all the 

attractors from a range of embedding dimensions (m=2, ..., 7) were used to produce the 

histogram of cosines measurements. 

The behaviour of f3(c) is shown for various time series. Figure 4.17 shows 13(r) for 

numerically generated data from the X variable of the Lorenz system. The effects of noise 

on Kr) are shown (Gaussian noise was added to the numerically produced time series in 

various amounts indicated). Generally as the noise levels increase the angles between 

successive tangent vectors become more obtuse (due to the deviation of points from the 

'clean' trajectory) and the value of OW decreases. For the Lorenz system a suitable delay 

time is known to be vt',0.1 corresponding to OW satisfying 013(T)<0.8. 

Figures 4.18 and 4.19 show 13(c) for experimental data collected from the rig described 

in Chapter 3. It was found that often the most suitable delay time provided by the given 

data was the smallest possible (i.e. the sampling time). This was decided by the fact that 

often 13(T)<O, corresponding to reconstructed attractors with delay times that were too 

large. Although this is a serious problem with regards extracting information about the 

true nature of the underlying dynamics governing the data it has not prevented 

discernment between signals from different flow regimes. This is because the dimension 

estimates (though not necessarily accurate for system model prediction) still responded 

to fundamental changes in signal properties resulting from changes in the flow properties. 

44 



The structures of the reconstructed attractors from experimental signals are shown in 

Figures 4.20-4.22. Figure 4.20 shows two attractors, (a) and (b), reconstructed from 

light transducer signals from horizontal plug flow. Attractor (a) was reconstructed using 

t=sampling time and attractor (b) reconstructed using z=20x sampling time. It can be 
seen that many angles, 01, between successive tangent vectors on each attractor satisfy 

7c/2<lOil<rc, hence f3(t) (shown in Figure 4.18) is less than 0. This is due to the nature of 

the light transducer signals, which tend to have magnitudes which congregate around the 

maximum or minimum values possible (refer to Figure 3.8). Figure 4.21 shows attractors 

(c) and (d) reconstructed from light transducer signals from horizontal slug flow 

(z=sampling time for attractor (c) and z=2Ox sampling time for attractor (d)). The 

structure of the attractors from the light signals all look very similar due to the signals 

tending to have either maximum or minimum values. The attractors are embedded into a 

3-dimensional phase space which is not large enough to reveal differences in structure 

which are detected by the signal processing methods. 

Figure 4.22 shows attractors from absolute pressure transducer signals from horizontal 

plug and slug flows. A delay time of z=3x sampling time was used for each attractor 

(since (3(z),=0 suggested that this value oft was suitable). The differences in the structure 

of the attractors are more clear than those from the light signals. During slug flow there 

are more orbits in the attractor (denoted by O in Figure 4.22) that extend from the main 

body of the attractor (denoted by M) due to the larger fluctuations that occur during the 

passage of a slug. These differences in attractor structure are reflected in suitable fractal 

measures of the attractors. These are shown in the results presented in Chapter 5 (refer 

to Tables 5.1 and 5.2). 

In an attempt to reduce the computation times for signal analysis the most common 

recommended sampling time was maintained as a constant for all signals from a whole 

set of flow rates. In the analysis of the experimental signals it was found that with many 

of the successful cases discernment between flow patterns could be obtained using 

equal to the sampling time and that often the use of an optimised value of ti did not 

always improve the discernment. 

§4.9.2 Efficient use of the correlation integrals 

In Section 4.6 the use of delta measures was introduced, since they improve the 

efficiency of extracting information from signals using the correlation integral. The 
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information contained in the behaviour of delta measures was analysed by defining a 
measure, Ds, which included information over a range of hypercube sizes (described in 

Section 4.6 and shown in Figure 4.10). 

max 

D6 = E D(2i) / imax (4.18) 
i=o 

where the embedding dimension estimate, D(r) is such that 8 -D0+1(r) < and 

61,O> t, k=1, ,D(r) and E is the threshold parameter given in equation (4.8). 

r 

The parameter imax was chosen such that the 6k(r) values were observed to vary 

with a change in flow pattern as much as possible. imax governs the maximum size of 

hypercube used and is restricted by the maximum possible size of r, (i.e. r ----1024=210
(imax=10) in the case of the 10 bit signals collected by the author). Useful values of 

max were typically less than this (imax-5), since too many of the attractor points 

were contained in hypercubes with large r (r>25) and information with regards the 

more detailed attractor structure was excluded. Computation times were greatly 
reduced by using small values of since less pairs of points were enclosed (and 

therefore less points counted) in smaller hypercubes. The value F, was set to 0.08 

representing a noise floor of 8%. 

Note that D6 is not a fractal dimension but an average of integer embedding dimensions. 

It does not therefore have the same meaning as the correlation dimension, D2. 

§4.9.3 Improvements in computation speed of the correlation integral 

A very important factor in the use of fractal measuring techniques applied to practical 

situations is the computation time. Optimisation of algorithms is often essential if a 

method is to be used in an industrial situation. Also for extensive and practical research 

to be carried out excessive computation time can be prohibitive. The computation of the 

correlation integral is a very intensive process and the author has developed a fast 

algorithm which is given in detail in Appendix A and Figures A.1 and A.2. Computation 

of the correlation integral is intensive because ideally the distance between all pairs of 

points on the reconstructed attractor needs to be calculated. The algorithm minimises the 

number of times that this calculation is made. 



§4.10 Signal analysis techniques applied to simulated signals related to multiphase 

flows 

The particular method using the correlation integral and delta measures and the SVD 

method of signal analysis have not been successfully applied to modelled or experimental 

signals associated with multiphase flows (to the author's knowledge). The results of these 

measuring techniques are illustrated by applying them to signals produced by a 

hypothetical transducer which is presumed to detect typical multiphase flow structures 

such as slugs, plugs, bubbles or waves. The results show the sensitivity of these 

measurements to the complexity of the signals which is directly related to the 'visible' 

complexity of the signal generating algorithms. 

Signals that contain characteristics reflecting the response of the hypothetical transducer 

to multiphase flows have been simulated by considering the appearance of typical 

transducer signals acquired by the author. Dispersed bubble, stratified wavy, plug and 

slug type flows have been considered (see Chapter 2). 

It has been assumed that a suitable transducer is sensitive to the shape of the gas-liquid 

boundaries in the location of the transducer across the pipe (such as the light signals 
shown in Figure 3.8) or to the void fraction of the mixture. The measures D6, Ds and Dp

have then been estimated from the signals to provide information on how they could be 

expected to respond to different experimental signals. 

§4.10.1 Simulated signals related to dispersed bubble, stratified, plug and slug 

flows 

In the case of a dispersed bubble or stratified wavy horizontal flow it is assumed that a 

noisy signal will be produced which has a homogeneous structure. The characteristics of 

the noise would be dependent on the many frequent and complex interactions that the 

transducer has with either the small bubbles or moving gas-liquid boundary passing it. 

In the case of a horizontal plug or vertical bubbly flow the same noisy signal is assumed 

to exist during the passage of a bubble where a complex, moving gas-liquid boundary 

passes the transducer. However when a section of clear liquid passes it is assumed that 

the transducer produces a constant signal. 



In the case of a horizontal or vertical slug flow during the passage of a slug it is assumed 

that a complex interaction between the transducer and the frothy slug occurs, producing 

a visible change in signal structure. The signal modelling the stratified flow is assumed to 

be produced during the absence of a slug. 

The basic noise signal, vj , (j=1, ,1V) is produced using the following function:-

1000 

v• = E 1000  sin(k(00-4k) 
k=1 k+100 

(4.19) 

where (1)k is a random phase satisfying -7r4k<ic (see the probability function shown in 

Figure 4.23) and coo=1.25x10-4. 

The transducer response to plug type structures is crudely modelled by a constant:-

pi = 812 for Tp<j<Tp+Lp. (4.20) 

Where the length of the plug, Lp, (or slug, Ls, for the next case) (indexed by p=1, 2, ...) 

is described by:-

Lp=50up/+350, (4.21) 

where µpt (i=1,2) is a random variable with a Gaussian probability distribution (see 

Figure 4.23). The time delay, Tp, (or Ts. for slugs,) between plugs p-1 and p is given by:-

Tp=(90µp2+500)To. (4.22) 

To governs the average delay in slug or plug arrival. 

The transducer response during the passage of a slug type structure is modelled by 
amplifying and displacing the noise signal, v1. The signal is given by:-

si=1.2(vi+300). (4.23) 

The simulated time series for the various flow regimes are given by:-
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xj- vj for the dispersed or stratified flow regimes, 

pJxJ — • when TP <j<TP +LP' x -J otherwise for plug flow and —vJ 
XJ J =S• when TP <j<TP +LP, J x•=v J • otherwise for slug flow 

Figure 4.24 shows the simulated signals, using values of T0=1 and T0=5 for the 

intermittent flow regimes. 

§4.10.2 Measurements of the simulated signals 

Measurements of D8, Ds and Dp have been carried out on each signal. The most 

appropriate delay of T=(3 sample intervals) (i.e. time series given by xi, x4, ) was used 

having measured f3(t) for each signal. 

For the D6 measurement the following parameter values were used : N=15,000 and 

imax=5. Five sections of each time series were analysed. 

For the Ds measurement the following parameter values were used : N=120,000 and 

m=40. Ten sections of each time series were analysed. 

For the D measurement the following parameter values were used : N=4,096. Ten 

sections of each time series were analysed. 

The results of the measurements (averaged over the sections) are shown in Table 4.1. 

Table 4.1 Measurements made on simulated signals 

Signal Ds Ds Dp

Dispersed bubble or 
Stratified 3.3 12 1.94 

Slug (To=1) 4.1+0.2 6 1.85 

Slug (T0=5) 4.0+0.3 7 1.86 

Plug (T0=1) 1.5+0.5 2 1.71 

Plug (T0=5) 2.6+0.3 2 1.74 

The measures Ds and Dp seem to indicate that the most complicated signal is the basic 

noise signal used to model the dispersed bubble or stratified flow whilst D8 indicates that 
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the slug flow signals are more complicated. In terms of computational effort to generate 

the signals the slug flow signal requires greater effort and hence a more complex 

generating algorithm is required (as is apparent from the fact that equation (4.19) is 

sufficient for the basic noise whilst the additional equations (4.21)-(4.23) are required for 
the slug flows). Do may then be considered to provide more fundamental information in 

terms of the governing system. However in terms of the appearance of the signal the slug 

flow signal might be considered simpler in that the response to slugs break up the 
irregularity of the basic noise, which is reflected in the lower values of Ds and Dp. This 

becomes more apparent when considering the signal representing the higher frequency of 

slug arrival time. The signal structure seems to become simpler with the higher 
frequency, according to Ds and Dp. In terms of computational effort per data point the 

higher frequency slug flow signal requires greater computational effort, as is reflected by 
the increase in Do. In terms of usefulness for flow regime identification the measures Ds

and Dp vary less for different sections of the same signal analysed and perform adequate 

discernment. 

All three measures behave consistently with regard the plug flow signal. Although the 

plugs are of random length and arrive at unpredictable times the transducer response is 

very simple during each plug interaction. The constant nature of the signal reduces the 

computational effort per data point required to generate it. For the higher frequency plug 

flow signal this simplicity in generation reduces the computational per data point and 
hence Do is smaller. The signal simplicity of the modelled plug interaction has a 

significant reducing influence on each of the measures. 

From this analysis of simulated signals the use of measures of chaos demonstrate a 

potential use for multiphase flow regime identification. 

§4.11 Summary 

The use of fractal measuring techniques based on chaos theory has been described. The 
calculation of three measures, D8 (using correlation integrals), Ds (using singular value 

decomposition) and Dp (using power spectra) have been described. Computation times 

are an important factor and the author has introduced original improvements to the 

effectiveness and computation efficiency of the calculations. Measurements have been 

made on simulated signals that contain structures typical of various multiphase flows. 

The results show that fractal measuring techniques have potential for discriminating 

between flow regimes. 
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CHAPTER 5 

PRESENTATION OF RESULTS 

5.1 Introduction 

The results of measurements of chaotic properties of experimental time series related to 

various multiphase flows is presented. A variety of horizontal and upward vertical flow 

patterns were obtained and the measures described in Chapter 4 were calculated. Some 

simpler statistical measures were also calculated for comparisons to be made. 

§5.1.1 Conditions investigated 

The signal analysis techniques described in Chapter 4 have been applied to signals 

collected from the transducers described in Chapter 3 and to signals collected from a 

gamma-ray densitometer on a 406mm internal diameter horizontal pipe (kindly provided 

by CALtec Ltd. of the BI-IR Group Ltd.). Using the test sections described in Chapter 3 

data from the situations shown in Table 3.1 was collected. 

§5.1.2 Signal analysis 

Each of the 477 transducer signals (time series) from the author's experiments contained 

120,000 data points to a maximum resolution of 10 bits (0-1023). Each time series was 

analysed several times by taking up to 50 measurements from various sections of each 

time series. This provided an indication of how much variation in the measures could be 

expected. For measures using large numbers of data points (more than half those in the 

complete time series) the variation is under estimated due to overlapping sections of time 

series being analysed more than once. 

The following measures were calculated from each time series:-

i) Do (using N=15,000 data points) from 5 time series sections. Fewer sections were 

tested due to the rather long computation time required for each D8 estimation (between 

2 and 5 minutes on a 175MHz clock speed workstation). The parameter imax (in 

equation (4.11)) which produced some suitable changes in D8 with the flow pattern had a 

value of 5. Variations in D5 were of the order of D8±1. 
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ii) Ds (using N=100,000 data points) from 20 overlapping time series sections. The size 

of the embedding dimension (given by m in equation (4.13)) was set at 20. This gave a 

reasonable sized sample of 5000 points to be used in the calculation of the average 
vector, a in equation (4.14). Standard deviations in Ds for each set of flow rates were of 

the order of 0.05 (though the over lapping of time-series is considerable, so this is an 

underestimate). 

iii) D (using N=8192 data points) from 20 overlapping time series sections. A moving 

average of 90 neighbouring points was used to smooth each power spectra to reduce 
excessive variation of D estimates (see Figure 4.15). Standard deviations in D for each 

set of flow rates were of the order of 0.05. 

iv) the average, 

A=

N

xi I N 
1=1 

v) a variance measure (the mean absolute deviation), 

V=

N

E I Xi-A IN 
1=1 

(5.1) 

(5.2) 

vi) the mean absolute difference between successive data points (high when high 

frequency signal components are present), 

N 

E= Ixe IN 
1=2 

(5.3) 

vii) a measure of how often a certain threshold is exceeded (high when points 

approximately larger than the median are visited frequently), 

L=

N

0(x1 - 600 ) IN 
i=1 

(5.4) 

where 0 is the Heaviside function as described in equation (4.4). 
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The simple measures A, V, E and L were calculated using N=100,000 from 50 

overlapping time series sections. They were included as comparisons with the measures 

based on the fractal techniques. Standard deviations in A, V, E and L for each set of flow 

rates were of the order of 0.05 (though the over lapping of time-series is considerable, so 

this is an underestimate). 

§5.2 Presentation format 

Results are presented for measures that could be used to successfully detect changes in 

the flow pattern. Measurements are as a function of the air and water flow rates. The 

visually estimated flow patterns are also indicated. Successful flow pattern identification 

is possible when a change in a measure correlates with a change in the the visually 

estimated flow pattern. In the surface plots this is apparent by a step or dip in the surface 

where measures associated with one of the flow patterns are above or below a threshold 

separating the measure values associated with the other flow pattern. 

Many measurements were made which showed negative results, i.e. there was no 

consistent change in the value of a measure with a change in the flow pattern. Most 

figures included in Appendix B show these results. Figures which show a jagged and 

messy surface or line with flow pattern labels appearing mixed clearly indicate an 

unsuccessful measurement for flow pattern discrimination. Different axes orientations are 

used in the surface plots in order to provide as clear a view of the surface as possible. 

Though such results are negative they reflect the difficulties of detecting multiphase 

flows which were described in Chapter 2. 

The signal source is given in the title. For most of the measurements the minimum delay 

time, T, was used (restricted by the sampling time of the time series). Where correlation 

with flow pattern changes could be improved (or if it was not obtained with the use of 

the sampling time) a different delay time was used having used the delay estimation 

parameter, 13(t), described in Section 4.9.1. Where a delay time was used that was 

different from the sampling times given above it is indicated in the Figure title. For all the 

measurements on the absolute pressure signals a delay time of 7.5x10-4s was used having 
measured OW from each time series (except for p s. measures from horizontal flows 

where t is shown in Figure 5.4). 
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Included on the bases of the surface plots are labels indicating the visually estimated flow 

patterns to indicate the approximate air and water flow rates at which the flow patterns 

occured. 'p' indicates horizontal plug flow, 'b' vertical upward bubble flow (as described 

by Spedding and Nguyen (1980)), 's' horizontal or vertical slug flow and 'd' horizontal 

dispersed bubble flow. The behaviour of the successfully discriminating measures for the 

different flow conditions is displayed in Figures 5.1 to 5.20. 

§5.3 Results from horizontal plug and slug flows in the 50mm pipe 

Table 5.1 shows the measures that discriminate between the plug and slug flow patterns. 

Successful measures are shown in Figures 5.1 to 5.5. It is worth noting that the measure, 
Ds, (Figure 5.4) applied to light signals which seems to be correlated with the visually 

estimated flow pattern indicates a gradual change in signal complexity with respect to the 

flow rate. This suggests that the transition boundary between the horizontal slug and 

plug flow patterns may not be clearly definable justifying the use of bands defining flow 

pattern boundaries that have been used in some of the later flow regime maps (e.g. 

Weisman, et al. (1979)). The theoretically simulated signals in Section 4.10 also 

produced similar behaviour. 

The successful results from the absolute pressure transducer signals from the horizontal 

plug and slug flows are included in Figures 5.2, 5.3 and 5.9 to 5.12. However none of 

the measures could be used to successfully discriminate absolute pressure transducer 

signals from the dispersed bubble flow pattern from the slug or plug flow patterns (see 

Figures B.78 to B.85). Absolute pressure transducer signals in Figure 3.6 show some 

similarity in the higher frequency noise content in signals from a typical dispersed bubble 

flow and a plug flow. This is possibly due to the large amount of system vibration that is 

transmitted through the dominating liquid fraction of both flows and detected by the 

transducer. It seems that the effect of the bubbles tended to be over-shadowed by the 
system noise. The behaviour of Ds reflects the similarity of the signals as shown in Figure 

B.83. 
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Table 5.1 Measures discriminating between plug and slug flow (50mm horizontal pipe) 

Signal 
source 

Measure Limits recorded for :- 
Plug flow Slug flow 

Figure 

Light L 0.457>L>0.202 0.188>L>0.023 5.1 

Absolute 
pressure 

E 45>E>15 10>E>5 5.2 

Absolute 
pressure 

Ds Ds≥2 Ds=1 5.3 

The measures which showed no overlapping across the flow pattern boundary were L on 
the light transducer signals and E and D, on the absolute pressure transducer signals 

(neglecting the dispersed bubble flow). The next best discriminating measure was the Ds

measure on the light transducer signals using a delay time of 0.00375s (three times the 
original sampling time). The trend was Ds>9 for slug flows and Ds<8 for plug flows. The 

use of a delay time of 0.00375s was prompted by 13(t) indicating a possible improvement 

in attractor structure on the other transducer signals. Although for the light transducer 

signals the minimum delay time available was recommended by 13(r). With regard to this 

matter it can be noted that there is little qualitative difference between the behaviour of 
Ds shown in Figures B.24 and 5.4. The ambiguity of Ds in discriminating between slug 

and plug flows occurs for one flow condition (air flow: 94 1/min, water flow: 100 1/min). 
Ds <8 for all plug flows except for this one flow condition where Ds=9. Also of the 20 

sections of time series used 2 produced measurements of Ds=8 for the slug flow at an air 

flow of 117 1/min and a water flow of 200 1/min. Of 1060 measurements of Ds 22 gave 

incorrect discernment (2% failure rate). Taking into consideration the over lapping of 

sections of time series the error could be more safely estimated as 2 failures out 53 (4% 

failure rate). 

Table 5.2 gives a summary of the behaviour of Ds and also V which had a similar failure 

rate. 

Table 5.2 Measures discriminating between plug and slug flows with failure rates < 5% 
(50mm horizontal pipe) 

Signal 
source 

Measure Limits recorded for :- 
Plug flow Slug flow 

No. failures 
out of 53 

Figure 

Light Ds 5<Ds≤8 9<Ds≤.12 2 5.4 

Light V* 400> V>259 255> V>100 2 5.5 

* margin for discernment < 1% of total range of V (not particularly safe) 
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Poor results from the differential pressure transducer signals are due to the noise inherent 

in them, partly due to electrical interference and mechanical vibration of the rig. Further 

signal analysis and filtering might have isolated the flow regime dependent properties, 

however this would have increased computation time. The author was interested to see 

whether the fractal measuring techniques would be less sensitive to the noise, since the 

signal properties may change to some extent with the more obvious changes in flow 

pattern. The electrical conductance transducer signals tended to show little difference in 

properties from bubble and slug type flows due to its lack of sensitivity to small air 

bubbles in the frothy slugs (the conductance still increased dramatically whether a slug or 

plug passed the transducer). Because of this insensitivity there was no discrimination 

between the flow patterns from the electrical conductance transducer signals and the 

differential pressure transducer signals analysed by the author. 

§5.4 Results from upward vertical bubble and slug flows in the 50mm pipe 

Table 5.3 shows the measures that successfully discriminate between the vertical bubble 

and slug flow patterns in the 50mm internal diameter pipe. Figures 5.2 and 5.6 to 5.12 

show the behaviour of the various successful measures from the transducer signals 

(unsuccessful measures are included in Appendix B). The differential pressure and 

electrical conductance transducers failed to provide any discriminating measures for the 

same reasons as given in the previous section. The measures related to light signal 
complexity (Ds in Figure 5.8 and Dp in Figure 5.13) that seem reasonably well correlated 

with flow pattern show an increase with air flow rate during the bubble flows, possibly 

related to the increase in frequency of the bubbles. During the slug flows these measures 

then become reasonably stable, probably due to the majority of the signal complexity 

resulting from the transducer interaction with the highly complex frothy structures 

between slugs rather than from the pattern of slug arrivals. All the statistical measures 

(A, V, E and L) from the absolute pressure transducer signals were reasonable 

discriminators. A, V and L from light transducer signals displayed similar qualitative 
behaviour as Ds and Di, (Figures 5.6, 5.7 and 5.14). A, V and L changed by only small 

amounts near the transition boundaries and hence disadvantageous for flow pattern 

discrimination.. 

The measure which changed most significantly with a change in flow pattern was D. The 

success of the statistical measures did not continue when applied to flows from the 
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smaller 25mm vertical pipe shown in the next section (with the exception of V from the 

absolute pressure transducer and A from the light transducer signals). 

Table 5.3 Measures discriminating between bubble and slug flow (50mm vertical pipe) 

Signal 
source 

Measure Limits recorded for :- 
Bubble flow Slug flow 

Figure 

Light A* 461>A>36 35>A>14 5.6 

Light Vh'' 331>V>57 54> th21 5.7 

Light Ds 3<Ds<8 11<D <13 5.8 

Absolute 
pressure 

A*** 470<A<541 544<A<570 5.9 

Absolute 
pressure 

V 60<V<85 105<V<170 5.10 

Absolute 
pressure 

E 42>E>17 10>E>5 5.2 

Absolute 
pressure 

L 0.05<L<0.23 0.33<L<0.47 5.11 

Absolute 
pressure 

Ds Ds≥2 Ds=1 5.12 

* margin for discernment < 0.25% of total range (not particularly safe) 

** margin for discernment < 1% of total range (not particularly safe) 

*** margin for discernment < 1.5% of total range (not particularly safe) 

Small failure rates resulted in the following measures (Table 5.4). The Dp failures 

occurred for less than 10% of the sections from about 12 of the time series (1040 
sections were measured). Average Dp measurements are shown in Figure 5.13 with 

variation of approximately ±0.1. 

Table 5.4 Measures discriminating between bubble and slug flows with failure rates < 5% 
(50mm vertical pipe) 

Signal Measure Limits recorded for :- No. failures Figure 
source Bubble flow Slug flow 

Light Dp 1.5<DP <2 2.1<Dp<2.3 25 out of 1040 5.13 

Light L 0.6>L>0.032 0.017>L>10-3 1 out or52 5.14 
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§5.5 Results from upward vertical bubble and slug flows in the 25mm pipe 

Table 5.5 shows the measures that successfully discriminate between the bubble and slug 

flow patterns in the smaller 25mm internal diameter pipe. Figures 5.10, 5.12 and 5.15 to 

5.19 show the behaviour of the various successful measures from the transducer signals 

(unsuccessful results are shown in Appendix B). 

In contrast to the results from the vertical 50mm pipe the behaviour of the successful 

statistical measures A, V, E and L during slug flows was not stable (Figures 5.10, 5.15, 

5.16 and 5.17). The visible difference between the light transducer signals in Figure 3.8 

from the vertical slug flows in the different sized pipes is that those from the smaller pipe 

indicate that more light reaches the photodiode. This may have caused the statistical 

measures to be more sensitive to the frequency of slug arrivals which depends on the air 

flow rate. 

Both measures Dp and Ds maintain their stability during the slug flows (Figures 5.12, 

5.18 and 5.19), remaining consistent with the results from the larger pipe. This suggests 

that these types of measures related to signal complexity are less dependent on factors 

such as pipe diameter. The complexity of light signals increased with the transition from 
the bubble to slug flows as measured by Dp and D. The complexity of absolute pressure 

signals decreased with the transition from the bubble to slug flows as measured by Ds. 

This difference in behaviour can be explained by considering the transducer signals 

shown in Figures 3.6 and 3.8. The light transducer is highly sensitive to small bubbles 

(e.g. in slug froth) and not clear liquid (during bubble flow) whereas the pressure 

transducer is very sensitive to system vibrations when clear liquid is present during the 

bubble flow. 
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Table 5.5 Measures discriminating between bubble and slug flow (25mm vertical pipe) 

Signal 
source 

Measure Limits recorded for :- 
Bubble flow Slug flow 

Figure 

Light A* 700>A>370 365>A>100 5.15 

Light E 18<E<75 80<E<130 5.16 

Light L 0.9>L>0.35 0.3>L>0.03 5.17 

Light Ds 2>D >5 6>Ds≥7 5.18 

Light Dp 1.3<Dp<1.75 1.88<Dp<2.17 5.19 

Absolute 
pressure 

V 80<V<105 160<V<200 5.10 

Absolute 
pressure 

Ds Ds≥2 Del 5.12 

* margin for discernment < 1% of total range of A (not particularly safe) 

With 29 flow conditions tested no other measures had less than 5% failure rates. 

§5.6 Results from horizontal air-water intermittent and stratified flows in a 406mm 

pipe 

The 11 gamma-ray densitometer signals provided by CALtec, BHR, covering horizontal 

air-water intermittent (slug) and stratified-wavy flows were analysed. The signals were 

sampled at 20Hz and up to 16,000 data points were collected. The 7 measures were 

estimated using the same number of sections described in Section 5.1.2, however 

because fewer data points were available the value of N used for the measures Ds, Do, A, 

V, E and L was reduced to 9000 (for the Dp measure N was maintained at 8192). For the 

Ds measure it was necessary to use a value of 10 for the parameter m in equation (4.11) 

(this gave 900 points for the each estimation of the average vector, a, in equation 

(4.12)). The smallest possible delay time of 0.05s was used for all estimates. 

Table 5.6 shows the results of the measures applied to the normalised time series (such 
that 0<xj<1023). Table 5.7 show the measures (D, and E) that successfully discriminated 

between the slug and stratified-wavy flow patterns. 
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Table 5.6 Results from gamma-ray densitometer signals from slug and stratified wavy 
flows (406mm horizontal pipe) 

Flow Ug /ms-' Ui /ms-1 Successful 
discriminating 
measures 

Unsuccessful 
measures ( * Estimates which do not correlate 

with flow pattern boundaries ) 

Ds E D8 Dp A L V 

slug 7.57 0.486 1 20 1 1.63 196 .04* 107* 

slug 7.25 0.724 1 30 1.8+0.8* 1.9* 184 .09* 189 

slug 2.71 0.73 1 33 1.5+0.5* 1.67 212 .1* 213 

slug 1.16 0.985 1 20 1.2+0.2 1.68 80 .14* 79* 

slug 1.18 0.486 1 25 1 1.68 130 .05* 137 

slug 1.12 1.195 2 48 2.3* 1.56 548* .39 292 

slug 2.29 1.461 2 33 1 1.56 381* .16* 195 

wavy 1.08 0.0976 3 175 2+0.3* 1.94 467 .16 104 

wavy 3.62 0.0976 3 65 2* 1.85 391 .07 101 

wavy 6.41 0.245 4 73 1.5+0.5* 1.9 348 .05 101 

wavy 6.64 0.0976 5 116 3 2.06 407 .14 124 

Table 5.7 Measures discriminating between slug and stratified wavy flow 

Measure Limits recorded for :-
Stratified wavy flow Slug flow 

Ds Ds>3 Dsg 

E E>60 E<50 

Figure 5.20 shows the results of Ds on the superficial velocity flow map, which includes 

the slug/stratified-wavy flow pattern boundary predicted by the Taitel and Dukler 

horizontal flow pattern map (Taitel and Dukler (1976)). 

The only measures which successfully discriminated between slug and stratified wavy 
flows were Ds (slug: Ds<2 ; wavy: D?3) and E (slug: E<50 ; wavy: E>60). As can be 

seen from the normalised signals in Figure 3.13 those from stratified-wavy flow appear 

more complex than those from slug type flow (due to the lack of the occasional large 
structure which reduces the apparent randomness of the signal). Ds. is therefore larger for 



the stratified-wavy signals. The response of Ds to the qualitatively similar simulated 

signals was comparable (shown in Table 4.1). 

The measure, E, is successful because there is a large difference in relative amplitude of 

the high frequency noise components of the normalised signals from the different flow 

patterns. 

§5.7 Interpretation of the results 

The signals that have been analysed have come from very complex situations involving 

the interactions between two turbulently moving fluids. Various properties have been 

measured using non-invasive transducers which each reflect some of the aspects of the 

systems complex behaviour. The apparent structure in different signals can be very 

different even though the same situation is measured. For example, the light transducer 

signals shown in Figure 3.8 show very different behaviour to the corresponding electrical 

signals shown in Figure 3.10. Because such differences in the transducer signals exist 

differences in behaviour of the various measures that have been obtained also exists. The 

qualitative behaviour of the measures has been illustrated by use of the simulated signals 

in Chapter 4. These help to explain the behaviour displayed in the results of Chapter 5, 

but with not much quantitative accuracy, due to the nature of measures based on non-

linear dynamics and their sensitivity to certain important parameters such as sampling 

frequencies (and hence delay times) and number of sample points. 

Even for signals produced by numerical methods the behaviour of various measures 

classifying signal properties can be complex and difficult to predict. The signals shown in 

Figures 4.2 to 4.4 show the variety in signal behaviour that can arise from a system as 

simple as the Lorenz system described in Chapter 4. The example of such measures 

known as Lyapunov exponents (Wolf, et al. (1985)) applied to 'clean' numerically 

produced signals illustrates this. These measures are ideal indicators of how chaotic a 

system is by describing how quickly two very close states of a system diverge from each 

other as the system evolves in time. They are difficult to measure from experimental data 

and tend to require more computation time than even the correlation dimension estimates 

described in Section 4.6. Hence the author has not carried out such measurements for the 

present application. Wolf, et al. (1985) tabulate a series of Lyapunov exponents from 

different chaotic mathematical systems which clearly shows that their behaviour is in no 

way simply related to the apparent complexity of the systems. Since this is the case for 

clean numerical systems one should not necessarily expect to be able to infer what 
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underlying mechanisms may be causing the particular behaviour of the measures from 

systems as complex and noisy as the multiphase flow systems analysed here. 

§5.8 Summary 

The most consistent measure which changed coherently with visually estimated flow 
patterns from horizontal and vertical pipes was Ds using the light transducer, absolute 

pressure transducer and y-ray densitometer signals (with the exception of the 4% of 

failures for horizontal plug/slug flow discernment from the light signals described in 
Section 5.3). Table 5.8 shows the values of D, associated with particular signal sources 

and flow patterns. 

The table shows the consistency with which Ds is a measure of signal complexity, 

particularly when applied to the absolute pressure transducer signals (i.e. Ds=1 during 

slug flows and P s>2 during the intermittent bubble and plug flows). For the light signals 

Ds is greater during the slug flows. This provides evidence that Ds does provide an 

objective and robust measurement of signal complexity that is dependent on flow pattern. 

Table 5.8 Summary of successful Ds measurements 

Pipe arrangement Flow 
patterns (a;b) 

Signal 
Source 

Range of D, 
(a;b respectively) 

Relevant 
Figure no. 

Horizontal 50mm pipe Slug;Plug Lt* >9 ; ≤8 5.4 

Ap =1 ; >2 5.3 

Horizontal 406mm pipe Slug;Wavy <2 ; >3 5.20 

Vertical 50mm pipe Slug;Bubble Lt >11 ;  <8 5.8 

Ap =1 ; >2 5.12 

Vertical 25mm pipe Slug;Bubble Lt >6 ; ≤5 5.18 

Ap =1 ; >2 5.12 

Ap - Absolute pressure transducer Lt - Light transducer y - Gamma ray densitometer * 4% failure rate 

Other measures which successfully showed a significant change in behaviour with a 

change in flow pattern for the various pipe orientations are summarised in Table 5.9. 
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Table 5.9 Summary of successful measures other than Ds

Pipe arrangement Successful Measures(Signal Source) Relevant Figure no. 
(respectively) 

Horizontal 50mm pipe E (Ap), L (Lt) 5.2, 5.1 

Horizontal 406mm pipe E (y) 5.20 

Vertical 50mm pipe E (Ap), L (Ap), V (Ap) 5.2. 5.11, 5.10 

Vertical 25mm pipe E (Lt), L (Lt), Dp (Lt), V (Ap) 5.16, 5.17, 5.19, 5.10 

Ap - Absolute pressure transducer Lt - Light transducer y - Gamma ray densitometer 

These other measures are less robust than Ds (comparing Table 5.8 with Table 5.9). As 

can be seen the measure E is the next most consistent measure, but it is not consistent for 
one type of transducer (unlike Ds). 

§5.8.1 Trends in the behaviour of successful discriminating measures 

The figures presented in this chapter show the behaviour of the successfully 

discriminating measures with significant changes in behaviour that correlate with flow 

pattern change. 

Ds indicates that light signals are more complex for vertical or horizontal slug flows than 

the bubble or plug flows. This suggests that the slug structures introduce a more 

complex contribution to the these signals than was estimated in the simulations of 
Section 4.10. The behaviour is consistent with the trends shown in Dp and D8 applied to 

the light and ultrasonic transducers. This is a clear indication of a more complex signal 

content for these transducers for slug flows. For the absolute pressure signals from 

horizontal slug/plug flows and vertical slug/bubble flows the opposite trend is observed 

(Figures 5.3 and 5.12). This suggests that the interaction of a slug on the absolute 

pressure transducer introduces a simplification to the signal. From considering the 

example signals in Figure 3.6 this is consistent, since the slug arrivals introduce a 

simplification to the signal structure by reducing the proportion of system noise in the 

signal. This follows the behaviour demonstrated by the theoretical simulations given in 
Section 4.10 for the D and D measures. 

The magnitude of Ds for the light signals from the bubble or plug flows in the different 

pipes varies and is not particularly consistent. This is likely to be because different delay 

times were used. Very approximate estimates of the embedding dimension of the 
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processes governing the light transducer signals could be suggested as of the order of 5 

for plug/bubble flows and of the order of 10 for slug flows. 

Trends in the statistical measures are somewhat easier to explain since the contribution of 

each individual signal point measurement can be visualised. Non-linear measures are 

more reliant on contributions from a whole series of neighboring points which become 

near impossible to visualise when dealing with complex signals. This limits the possibility 

of interpreting generalised explanations from the results of the chaos measures. 

The larger values of L for light signals from plug flows (Figure 5.1) are a result of the 

signal spending more time above a normalised value of 600 (see equation (5.4)) during a 

clear plug than during a frothy slug. Similar behaviour exists in the vertical flow cases 

(Figures 5.14 and 17). For the absolute pressure signals from the 50mm vertical pipe it 

can be seen from Figure 3.6 that more signal points are above the normalised value of 

600 during the slug flow, which is consistent with the results shown in Figure 5.11. 

The larger values of E for absolute pressure signals from plug/bubble flows (Figure 5.2) 

in the 50mm horizontal and vertical pipe are a result of the plug/bubble structures 

producing larger disturbances to the transducer behaviour than slugs structures (Figure 

3.6). The light signals in the 25mm pipe (Figure 3.8) clearly show many more 

fluctuations during slug flow than for bubble flow which is reflected in the values shown 

in Figure 5.16. From the y-ray signals shown in Figure 5.20 it is clear that the normalised 

stratified wavy flows contain many more fluctuations than in the slug flow signals which 

is consistent with the behaviour of E (which is higher for the stratified flows) shown in 

Table 5.7. 

The measure V from absolute pressure signals from vertical flows has larger values 

during the slug flows. 

§5.8.2 Measures and signals appropriate for flow regime identification 

The measure that changes most consistently with a change in flow pattern and could 
therefore be used to discriminate between flow patterns is the measure Ds, computed 

using singular value decomposition and described in Section 4.7. Because of this 
consistent behaviour it is possible that Ds could be used to help classify flow patterns and 

possibly to aid the development of nonlinear models of important multiphase flow 

variables. 
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The successfully used transducer signals were the light attenuation signals, the absolute 

pressure signals and the gamma-ray densitometer signals. The electrical conductance 

transducer was insufficiently sensitive to the small bubbles present in the frothy slugs. 

The small and large range differential pressure transducers were seriously affected by 

tapping arrangements and pipe vibration. Improvements may be made by introducing 

signal filtering and by the use of more rigid and narrower tubes between the test section 

and pipe walls. 
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CHAPTER 6 

CONCLUSIONS 

§6.1 Advances made in signal analysis techniques applied to multiphase flows 

In Chapter 2 it was shown that there is a need for more objective data regarding 

multiphase flows. This includes more objective methods of classifying and detecting 

multiphase flow patterns. Methods for analysing signals associated with multiphase flows 

have been investigated. In terms of the objectives given in Section 2.3 it can be 

concluded that :-

• A more robust and efficient signal analysing technique has been found and adapted for 

analysing transducer signals that measure properties of multiphase flows. It is based on a 

well established method known as singular value decomposition using theory based on 

non-linear dynamics. Results of the analysis of various transducer signals show good 

correlation with changes in multiphase flow patterns that could prove to be useful in 

discriminating between flow patterns. The method has shown a consistent behaviour, 

noticeably better than any of the other methods tested. 

• The testing of the appropriate method has been carried out on a variety of non-invasive 

transducer signals from a variety of multiphase flow situations (including horizontal and 

vertical flows). 

Successfully used transducers were a light attenuation transducer, an absolute pressure 

transducer and a y-ray densitometer. 

The results show that there does exist a method of signal analysis that correlates well 

with the apparent changes in multiphase flow patterns that occur at different fluid flow 

rates. In this respect the successful results show a clear change in the measure when the 

flow pattern changes. The most successful examples are shown in the figures referred to 

in Tables 5.8 and 5.9. The negative results shown in Appendix B by the rough and less 

coherent surfaces or lines of many of the other measures tested confirm the difficulty of 

obtaining suitable flow regime identification methods discussed in the literature and 

referred to in Chapter 2. 
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The analysis method which provides the measure Ds that displays most clearly a 

behaviour which is related to the flow pattern is singular value decomposition (described 

in Section 4.7). From the measurements that have been carried out by the author this 

method seems robust, though further testing on more signals is obviously required. The 
relevant measure, Ds, has a high value associated with light attenuation transducer 

signals from slug flow (where many small bubbles in the frothy structures produce many 

peaks) and a lower value with plug or bubble type flow signals (where highly complex 
frothy structures are not present). With gamma-ray signals Ds is high for wavy flows and 

is lower for slug type flows where the intermittent slugs introduce a simplification of the 
signals. With the absolute pressure transducer signals Ds-=1 for all the slug flows and 

D s>2 for all the bubble or plug flows. 

With regards to providing information that may be useful for the development of 

nonlinear models of two-phase flow behaviour the results presented by the author are 

limited, probably to the development of signal simulations rather than fluid dynamic 

modelling (which ultimately will only be achieved by sufficiently comprehensive 

computational fluid dynamics). This has been made apparent by the sensitivity of the 

signal processing methods to various parameters that have so far been chosen in a some 

what arbitrary manner. For singular value decomposition the parameters concerned are 

the delay time, C, and the embedding dimension m. The author has used values that 
optimise the response of the measure, Ds, to flow pattern changes. Where unsuitable 

delay times caused poor discrimination a better value of T was estimated using a simple, 

fast and robust method developed by the author (Section 4.9). 

The measure, Ds, provides an improved method of objectively measuring the complexity 

of a signal from a multiphase phenomena for flow regime identification. It must also be 
pointed out that the estimation of Los, is very much faster than the more common methods 

that require the calculation of the correlation integral or a similar type of measure. The 

computational intensity of these methods is probably the reason that only a small amount 
of data has been produced in the literature. The faster estimation of Ds will enable more 

extensive and practical research to be carried out. 

§6.2 Future work 

Having concluded that singular value decomposition provides a measure of a suitable 

transducer signal that seems to be related to flow pattern a useful development would be 
to use it in conjunction with a system such as the neural networks developed by Toral 
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and Beg (1993), to improve the success rates obtained by such methods. The method 

employed by Toral and Beg (1993) requires the training of the neural networks using any 

measure that is likely to be dependent on the flow patterns and/or flow rates, thus that 

provided by SVD would be highly appropriate. Neural networks are trained by inputting 

large amounts of series of relevant parameters that can be distinguished between by 

possible subtle differences in the parameter values. A training algorithm is run to adjust 

the state of the network so that it produces an output that is related to patterns within 

the input data. This training takes many hours and requires large amounts of data from a 
great variety of input possibilities. Using the measure Ds as a network input parameter 

may improve the speed and efficiency of the neural network training process. 

An improvement to the Ds measurement itself can be made. Currently it has been 

calculated as an integer since it represents the significant number of singular values of a 

matrix (see Section 4.7). However a non-integer value can be produced by calculating 
the intersection of the curve that passes through the points Sk/S, and the threshold line 

which represents the cut off for significant singular values (refer to Figure 4.14). The 

non-integer value of the ordinate of this intersection point will provide a higher 
resolution measure, that is directly related to D. In fact it would be much more like a 

fractal dimension with the great advantage of being much more efficient to compute than 

most (this is due to the fundamental efficiency of the SVD process). The process of 
finding the intercept of the Sk/Sn curve with the threshold line will add negligible 

computation times. The improved resolution will enable better investigation of signal 

structure. 

Improvements to the other signal processing methods described in Chapter 4 may make 
some of the other measures (such as D6 and Dp) more effective at discriminating 

between flow pattern changes. The correlation integral method (giving L05) may well 

benefit from the use of signal filtering prior to analysis. This however would increase the 

already intensive amount of computational effort involved in the signal processing. 

The estimation of the fractal measures known as Lyapunov exponents could be applied 

to signals. However the measurement process is more complicated and more 

computationally expensive than even the correlation integral calculations. It was for this 

reason that this method was not investigated by the author. An implementation of the 

method could have the following steps: 

i) estimation of a suitable delay time using the method described in Section 4.9.1 
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ii) application of singular value decomposition to reconstruct the attractor a second time 

in the space described in Section 4.7. 

iii) application of the correlation integral computation to find points in the second 

reconstructed attractor that are close together. 

iv) estimation of the rate at which the trajectories from the points diverge away from 

each other along each axis of the space in which the second attractor is reconstructed. 

The application of the analysis methods to more signals from a greater variety of flow 
conditions is also essential to the testing of these measurement techniques to evaluate 

further their reliability. Detailed analysis of the behaviour of fractal measures at flow 

regime transition boundaries will help classify regimes and may reveal characteristics that 
were previously unobserved, leading to better definitions of flow regimes. 

79 



REFERENCES 

Abarbanel, H.D. & Kennel, M.B., 'Local false nearest neighbors and dynamical 
dimensions from observed chaotic data', Physics Review E 47 3057-3068 (1993) 

Acikgoz, M, Franca, F. & Lahey Jr., R.T., 'An experimental study of three-phase flow 
regimes', International Journal of Multiphase Flow 18 327-336 (1992) 

Akagawa, K., et al., Bulletin JSME 14 447-469 (1971) 

Annunziato, M., 'A measurement system for two-phase flow pattern recognition using 
statistical analysis', Proceedings Multiphase Flow and Heat Transfer 2nd International 
Symposium, Xi'an P.R.C., Xue-Jun Chen, Veziroglu, T.N. & Tien, C.L. (eds.) 
(Hemisphere, New York) 1990 

Ashkuri, S. & Hill, T.J., 'Measurement of multiphase flows in crude oil production 
systems', Petroleum Review Nov. 14-16 (1985) 

Baker, O., 'Simultaneous flow of oil and gas', Oil Gas Journal 26 185-195 (1954) 

Baker, R.C., 'Effects of non-uniform conductivity in electromagnetic flowmeters', Journal 
Physics D Applied Physics 3 637-639 (1970) 

Baker, R.C., 'Multi-phase flow moves on', Control & Instrumentation 21 35-37 (1989) 

Barnea, D., Shoham, O. & Taitel, Y., 'Flow pattern characterisation in two-phase flow 
by electrical conductance probe', International Journal of Multiphase Flow 6 387-397 
(1980) 

Barnsley, M. F., Fractals Everywhere, (Academic Press, San Diego) 1988 

Beg, N.A. & Toral, H., 'Off-site calibration of a two-phase pattern recognition 
flowmeter', International Journal of Multiphase Flow 19 999-1012 (1993) 

Beg, N.A., McNulty, J.G., Sheppard, C. & Frith, A., 'Non-intrusive multiphase metering 
using artificial neural networks', Proceedings 6th International Conference Multiphase 
Production, Wilson, A. (ed.) (Elsevier) 1993 

Bernicot, M., Dhulesia, H. & Deheuvels, P., 'On fractal dimension and modelling of slug 
and bubble flow processes', Proceedings 6th International Conference Multiphase 
Production, Wilson, A. (ed.) (Elsevier) 1993 

Brill, J.P. & Arirachakan, S.J., 'State of the art in multiphase flow', Journal Petroleum 
Technology May 538-541 (1992) 

Broomhead, D.S. & King, G.P., 'Extracting qualitative dynamics from experimental 
data', Physica D 20 217-236 (1986) 

Bundick, W.T., 'A unified development of several techniques for the representation of 
random vectors and data sets', Report no. NASA TR R-398, NASA, Hampton, Va., 
USA, 1973. 

80 



Buzug, T. & Pfister, G., 'Optimal delay time and embedding dimension for delay-time 
coordinates by analysis of the global static and local dynamical behaviour of strange 
attractors', Physics Review A 45 7073-7084 (19929 

Buzug, T. & Pfister, G., 'Comparison of algorithms calculating optimal embedding 
parameters for delay time coordinates', Physica D 58 127-137 (1992b) 

Ciliberto, S. & Nikolaenko, B. 'Estimating the number of degrees of freedom in spatially 
extended systems', Europhysics Letters 14 303 (1991) 

Daubechies, I., 'Orthonormal bases of compactly supported wavelets', Communications 
Pure & Applied Maths. 41 909-996 (1988) 

Das, R.K. and Pattanayak, S., 'Electrical impedence method for flow regime 
identification in vertical upward gas-liquid two-phase flow', Measurement Science 
Technology 4 1457-1463 (1993) 

Delaye, J.M., 'Two phase flow measurement', Bulletin d'informations Scientifiques et 
Techniques - Commisariat a 1'Energie Atomique 197 5-20 (November 1974) 

Ding, M., Grebogi, C., Ott, E., Sauer, T. & Yorke, J.., 'Plateau onset for the correlation 
dimension: When does it occur?', Physics Review Letters 70 3872-3875 (1993) 

Eckmann, J.-P. & Ruelle, D., 'Ergodic theory of chaos and strange attractors', Review 
Modern Physics 57, 617-656 (1985) 

Fabre, J. & Line, A., Modelling of two-phase slug flow', Annual Review Fluid 
Mechanics 24 21-46 (1992) 

Fowler, E., 'Interpretation of synthetic aperture radar images using fractal geometry', 
PhD Thesis, Cranfield University (1993) 

Franca, F., Acikgoz, M., Lahey, Jr, R.T. & Clausse, A., 'An application of fractal 
techniques to flow regime identification', Proceedings 5th. International Conference on 
Multiphase Production, Burns, A. (ed.) (Elsevier) June 1991. 

Franca, F. & Lahey Jr., R.T., 'The use of drift-flux techniques for the analysis of 
horizontal two-phase flows', International Journal of Multiphase Flow 18 787-801 
(1992) 

Fraedrich, K. & Wang, R., 'Estimating the correlation dimension of an attractor from 
noisy and small datasets based on re-embedding', Physica D 65 373-398 (1993) 

Grassberger, P. and Procacia, I., 'Measuring the strangeness of strange attractors', 
Physica D 9 189- (1983) 

Grossman, A. & Morlet, J., 'Decomposition of Hardy functions into square integrable 
wavelets of constant shape', SIAM Journal Mathematical Analysis, 15 723-736 (1984) 

Hewitt, G.F., Flow regimes, Handbook of multiphase systems, Hetsroni, G. (ed.) 
(McGraw-Hill) 1982. 

Hewitt, G.F., 'Transient multiphase flows - programme definition document', Marine 
Technology Directorate (MTD) Ltd. Managed Programme (11th May 1995) 

81 



r 

Hewitt, G. F. & Hall-Taylor, N. S., Annular Two-Phase Flow (Pergamon Press) 1970. 

Hewitt, G.F. & Jayanti, S., 'To churn or not to churn', International Journal of 
Multiphase Flow 19 527-529 (1993) 

Holden, A.V. (ed.), Chaos (Princeton University Press) 1986 

Hubbard, M. & Dukler, A., Proceedings Heat transfer & Fluid Mechanics Institute 
(Stanford University Press, California) 1966. 

Huang, Y. & Huang, Y., 'On the transition to turbulence in pipe flow', Physica D 37 153-
159 (1989) 

Jones, O. & Zuber, N., 'The interrelation between void fraction fluctuations and flow 
patterns in two-phase flow', International Journal of Multiphase Flow 2 273-306 (1975) 

King, C.H., Ouyang, M.S., Pei, B.S., 'Identification of 2-phase flow regimes by neutron 
noise-analysis', Nuclear Technology 86 70-75 (1989) 

Kosterin, S.I., Izv. Akad. Nauk SSSR, Otdel Tekh. Nauk 12 1824-1830 (1949) 

Kraft, R., 'Multiphase flow in electromagnetic flowmeters', PhD Thesis, Cranfield 
University (1994) 

Lawkins, W.F., Daw, C., Downing, D. & Clapp Jr., N., 'Role of low-pass filtering in the 
process of attractor reconstruction from experimental chaotic time series', Physics 
Review E, 47 2520-2535, (1993) 

Leducq, D. & Hervieu, E., Proceedings 5th. International Conference on Multiphase 
Production, Burns, A. (ed.) (Elsevier) June 1991. 

Lorenz, E.N., 'Deterministic nonperiodic flow', Journal of Atmospheric Science 20 130-
141 (1963) 

Lubbesmeyer, D. & Leoni, B., 'Fluid-velocity measurements and flow-pattern 
identification by noise-analysis of light beam signals', International Journal of Multiphase 
Flow 9 665-679 (1983) 

Lusseyran, F., 'Caracteristiques cellulaires du regime a poches en ecoulement gaz-liquide 
co-courant vertical. Transition vers le regime destructure, These Inst. Natl. Polytech. 
Lorraine, Nancy, France (1990) 

Mallat, S., 'A theory for multiresolution signal decomposition: The wavelet 
representation', IEEE Transactions Pattern Analysis & Machine Intelligence, 11 674-693 
(1989) 

Mandelbrot, B.B., Fractals: Form, chance and dimension (W.H. Freeman & Co., San 
Francisco) 1977. 

Mandelbrot, B.B. & Van Ness, J.W., 'Fractional Brownian motion, fractional noises and 
applications', S.I.A.M. Review 10 422-437 (1968) 

Mandhane, J.M., Gregory, G.A. & Aziz, K., 'Flow pattern map for gas-liquid flow in 
horizontal pipes', International Journal of Multiphase Flow 1 537-553 (1974) 



Mao, Z.S. & Dukler, A.E., 'The myth of churn flow', International Journal of Multiphase 
Flow 19 377-383 (1993) 

Matsui, G., 'Identification of flow regimes in vertical gas-liquid two-phase flow using 
differential pressure fluctuations', International Journal of Multiphase Flow 10 711-720 
(1984) 

Midttveit, 0., Berge, V., Dykesteen, E., 'Multiphase flow metering using capacitance 
transducer and multivariate calibration', Modeling, Identification & Control 13 65-76 
(1992) 

Nishikawa, K., Sekoguchi, K. & Fukano, T., 'On the pulsation in gas-liquid two-phase 
flow', Bulletin JSME 12 1410-1416 (1969) 

Oddie, G.M., 'The characterisation of multicomponent (liquid) flows using scattered 
ultrasound', PhD Thesis, Cranfield Institute of Technology (1992) 

Parlitz, U., 'Identification of true and spurious Lyapunov exponents from time series', 
International Journal of Bifurcation & Chaos 2 155 (1992) 

Prechner, P.B., 'Texture models in coherent imaging', PhD Thesis, Cranfield University 
(1993) 

Rossler, O.E., 'An equation for continuous chaos', Physics Letters A 57 397 (1976) 

Sxther, G., Bendiksen, K., Muller, J. and Fredand, E., 'The fractal statistics of slug 
lengths', International Journal of Multiphase Flow 16 1117-1126 (1990) 

Savit, R. & Green, M., 'Time series and independent variables', Physica D 50 95-116 
(1991) 

Spedding, P.L. & Nguyen, V.T., 'Regime maps forair-water two phase flow', Chemical 
Engineering Science 35 779-793 (1980) 

Spedding, P.L. & Spence, D.R., 'Flow regimes in two-phase gas-liquid flow', 
International Journal of Multiphase Flow 19 245-280 (1993) 

Stelter, P. & Pfingsten, T., 'Calculation of the fractal dimension via the correlation 
integral', Chaos, Solitons & Fractals 1 273-280 (1991) 

Strang, G., 'Wavelets and dilation equations: a brief introduction', SIAM Review 31 614-
627 (1989) 

Takens, F., 'Detecting strange attractors in turbulence', Lecture notes in Mathematics 
898 (Springer) 1981. 

Taitel, Y. & Dukler, A.E., 'A model for predicting flow regime transitions in horizontal 
and near-horizontal flow' American Institute of Chemical Engineering Journal 22 47-55 
(1976) 

Tam, S.W. & Devine, M.K. 'A study of fluidized-bed dynamical behaviour: a chaos 
perspective', Applied Chaos, Jong, H. K. & Stringer, J. (eds.) (Wiley & Sons, Inc.) 1992. 

Tutu, N., 'Pressure fluctuations and flow pattern recognition in vertical 2 phase gas-
liquid flows', International Journal of Multiphase Flow 8 443-447 (1982) 

83 



Vitsikounaki, D., 'Fractal techniques for the interpretation of multiphase 
Thesis, Imperial College of Science, University of London (1995) 

Vince, M.A. & Lahey Jr., R.T., 'On the development of an objective 
indicator', International Journal of Multiphase Flow 8 93-124 (1982) 

Wang, S.K., Lee, S.J., Jones Jr, O.C., Lahey Jr, R.T., 'Statistical analysis 
two-phase pipe flow', Journal Fluids Engineering 112 89-95 (1990) 

Weisman, J., Duncan, D., Gibson, J. & Crawford, T., 'Effects of fluid properties and pipe 
diameter on two-phase flow patterns in horizontal lines', International Journal of 
Multiphase Flow 5 437-462 (1979) 

Wolf, A., Swift, J.B., Swinney, H.L., & Vastano, J., 'Determining Lyapunov exponents 
from a time series', Physica D16 285-316 (1985) 

Wood, D.G., 'Slug Flow - occurrence, consequences and prediction', Proceedings 6th 
International Conference Multiphase Production, Wilson, A. (ed.) (Elsevier) 1993 

Xie, C.G., Plaskowsi, A. & Beck, M.S. '8-electrode capacitance system for 2-component 
flow identification. 2. flow regime identification', ME Proceedings 136 184-190 (1989) 

flow', MSc 

flow regime 

of turbulent 

84 



APPENDIX A 

Computation of the correlation integral, Cm(r) 

A simplistic implementation of the definition of Cm(r) given by equation (4.6) is very 

computationally intensive and therefore not very practical, particularly when large data 
sets are analysed. This is because every xi is compared with all others in the data set to 

obtain the separation between points on the attractor. Particularly for experimental data 

it is often important to maximise the size of the data set thus increasing the need for 

efficient computation. 

A fast algorithm has been developed by the author which minimises the number of 
calculations of xi-xj I Vi i. A list of the xi's in order of their magnitudes is constructed. A 

pointer is then used that enables the neighbours, x1, of a given xi to be immediately 

accessed from the list. The pointer is constructed such that the xis giving the smallest I xi-

xj I are accessed first. Once a given I xi-xj I has exceeded r all the other subsequent xis 

accessed by the pointer from the list are outside the r limit and therefore do not need to 

be used. 

The flow charts which give the details of the list construction and calculation of Cm(r) 

are shown in figures A.1 and A.2. The flow charts are drawn to make it easy to translate 

the chart into a computer program. The statements in the diamonds can be easily 

translated into 'if statements. Statements of the form x---) f(x) are to assign a new value, 

Ax), to the variable x. Statements of the form x=fii), i=a,..,b are to assign new values to 

x, looping through i starting from i=a and ending at 

Figure A.1 shows the construction of the following necessary pointers: 

• p(k) (such that xp(i) is the smallest of the xi's through to xp(M being the largest of the 

xi's), 

• pp(k) (such that Xp(pp(i+j)) is the IjIth nearest x greater or less than xi (depending on the 

sign off) ). It is this pointer that provides the main time saving mechanism. 

Figure A.2 shows the use of the pointers for calculating the correlation integral. Before 
the computation the xi's are normalised between 0 and 1023, hence r values (giving 

hypercube sizes) increase exponentially in powers of 2 starting from 1. 
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i is the index of the current x value. sign determines whether to check x's greater 
(sign=1) or lesser (sign=-1) in magnitude than xi. ptl points to the next largest or 

smallest x to xi, where pt2 is the index of that x. Once this xpt2 (=x(pt2)) has been 

determined the separation of the (m'+1) dimensional attractor points (xl,xl+1,••,xi+m') and 

(xpt2,xpt2+1,••,xpt2+m') can be calculated and compared with the hypercube sizes 

r=2°,..,27. If the separation is less than r for m'<mx' then the intermediate integrals, 

c'(incr) are incremented. Incrementing the c'(m',r) values is terminated as soon as 

possible. When a pair of points do not fit inside an m' dimensional hypercube then higher 

dimensional cubes and smaller cubes can be ignored. The largest dimension is set using 

the statement mx'=m' and the smallest hypercube is set using the statement rmin=r. 

idf is a parameter that prevents counting points of an attractor that are close together 

simply because they are on parts of the trajectory that are close in time to each other 
(such counting would produce errors in the estimate of C,n(r) from finite sized data sets). 

mf is the maximum embedding dimension used (mx' is an intermediate maximum that can 

be reduced to save computation time). rmin is an intermediate minimum of r that can be 

increased for time saving. 

The final computation which sums the intermediate c'(m',r) values (m'=mf,..,1) uses the 

fact that m' dimensional points within an m' dimensional hypercube of side r also contain 

the correspondingly positioned m'-1 dimensional points within the m'-1 dimensional 

hypercube of side r. 

This method improves the speed of computation of Cm(r) by orders of magnitude. 



APPENDIX B 

Presentation of results 

Many results have been computed showing the behaviour of the measures defined in 

Chapters 4 and 5. They are plotted as surfaces or lines showing the relationship between 

the measure related to some property of a transducer signal and the air and water flow 

rates producing a particular multiphase flow (which has been visually determined). 

Most of the measurements resulted in lines or surfaces that often cross over the flow 

regime boundaries, apparent by jagged and messy lines with different flow pattern labels 

spreading over similar ranges of vertical axis coordinates. Such negative results show 

that the measure does not detect flow pattern dependent properties. Generally the 
measure D8 showed very poor correlation (particularly when compared with the success 

of Ds). One reason may be because not enough data points were used in the Do 

computation, however this would only lengthen the already long computation process. 

The large number of negative results show that flow patterns are an elusive quality to 

measure, classify and detect. This is also shown by the variety of classifications that have 

been made of multiphase flow phenomena in the literature (refer to Chapter 2). The 

successful measurements that the author has carried out are described in Chapter 5 and 

stand in stark contrast to the unsuccessful measurements as is easily seen by the 

difference in the shapes of the lines or surfaces. Successful measures show a marked 

change in the line or surface which correlates well with the flow pattern. 

Figures B.1-B.30 show the measures A, V, E, L, D8, Ds and Dp estimated from large and 

small range pressure, light and electrical transducer signals (respectively) from the 50mm 

horizontal pipe. 

Figures B.31-B.54 show the measures A, V, E, L, D8, Ds and Dp estimated from large 

range pressure, electrical and light transducer signals (respectively) from the 50mm 

vertical pipe. 

Figures B.55-B.77 show the measures A, V, E, L, D8, Ds. and Dp estimated from 

ultrasonic, light and large range pressure transducer signals (respectively) from the 25mm 

vertical pipe. 



Because no correlation was found between the differential pressure transducer signal 

properties and flow patterns a set of measurements were made using an absolute pressure 

transducer which did not require pipes between the transducer and pipe wall. Figures 
B.78-B.85 show the measures A, V, E, L, Dg, Ds and Dp estimated from the absolute 

pressure transducer signals from the 50mm horizontal pipe and the 25mm and 50mm 

vertical pipes. It was originally hoped that the signal processing techniques might detect 

structure in the rather messy and inadequate differential pressure transducers but this 

proved to be over optimistic. Much better flow regime detection was found with the 

absolute pressure transducer signals. 
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Figure 1.4 The Mandelbrot Set 

The set is generated by taking the complex number 20.---x0+iy0 and performing the iteration 
Zn+1=42+Z0
As n tends to infinity I Zn I remains finite or tends to infinity itself. If the latter occurs then a the 
point Z0 is plotted with a colour dependent on the rate at which I Zn I increases. 

The complexity and beauty of the set is all the more stunning when the simplicity of this 
generating equation is considered. Fractal measurements of the object are directly 
related to the generating equation. 
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Figure B.64 L : Ultrasonic transducer 
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Figure B.65 L : Light transducer 
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Figure B.66 L : Large range pressure transducer 
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Figure B.67 D8 : Ultrasonic transducer 
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Figure B.72 Ds : Light transducer 
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Figure B.73 Ds : Large range pressure transducer (t =0.0055s) 
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Figure B.74 Ds : Large range pressure transducer 
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Figure B.75 Dp : Ultrasonic transducer 
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