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A B S T R A C T

The aim of this work is to determine the applicability of ultrasonic 
techniques to developing a non invasive flow meter capable of 
characterising multicomponent (liquid) flows. The possibility of 
detecting flow parameters such as velocity distributions, 
droplet/particle size distributions, spatial distribution and void 
fraction of the discontinuous phase has been investigated

An early consideration of the likely applications of this meter, 
revealed that an ultrasonic technique would be the most versatile and 
suitable. Consequently, a theoretical study of the interaction of an 
ultrasonic wave and a disperse system has been carried out, as well as a 
study of the possible regimes where these principles may be applied.

The work begins from first principles, studying both experimentally and 
theoretically the interaction of an acoustic wave with a single 
particle. This is then extended to characterising a flowing 
mu11icomponent system on a larger scale.

The nature of complex flows was then investigated from the point of view 
of a chaotic dynamical system. Both theoretical and experimental methods 
show this to be a valid approach to understanding the flow of mixtures.
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Ai Area of pipe covered by phase i
a Droplet radius
a Radius of ultrasonic transducer face
a Air
C Correlation
c Correlation
c Speed of sound
D Pipe diameter
D Fractal dimension
D180 Dielectric 180 spark erosion oil
d Droplet diameter
d Fractal dimension
Fb Buoyancy force
f Frequency
fC6> Angular scattering distribution function
G Superficial mass flow rate
g Acceleration due to gravity
g Glass
hm Spherical Hankel function of order m
H Height of convecting system
h Mean liquid depth in pipe
I Scattered intensity
i (-1)1/2
Jm Bessel function of order m
j* Spherical Bessel function of order m
K Thermal diffusivity
k Gas compressibility
k Wavenumber
k Kerosene
M Embedding dimension
m Embedding dimension
m' Mass flow rate
N Number density of scatterers
N Number of data points
n Kinematic viscosity
Pm Legendre polynomial of order m
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C h a pter 1: Introduction: Multiphase Flowmetering In The Oil Industry.

This thesis is concerned with the experimental and theoretical 
investigation of oil-water mixtures using ultrasonic methods. The 
emphasis lies with the analysis of ultrasonic waves scattered from the 
flowing mixture.

To this end it is necessary to define the extent of the problems 
encountered in this field and to describe the solutions that have been 
proposed to overcome these problems. A detailed study of the interaction 
of ultrasonic waves with systems of increasing complexity, starting with 
single discontinuities and ending with the characterisation of flowing 
emulsions is then be carried out. The use and application of concepts 
new to this field, such as chaos theory, are also investigated.

The monitoring and measurement of multiphase flows provides a very large 
class of problems within the process industries and especially the 
petrochemical industry. The latter area can be further divided into more 
specialist subsections, as follows;

1) General multiphase/multicomponent metering.
2) Water in crude oil, fiscal implications.
3) Oil in water, effluent from offshore installations.
4) Sand in oil or gas.

In order to understand the current state of thinking and practices in 
each of these areas, the following questions can be asked and 
investigated;

a) What is the nature of the physical problem? Under what circumstances 
are the flows encountered, including pipe size and geometry? What is the 
flow rate? What parameters of the flow are required, such as particle 
sizes, flow rates and flow quality? To what accuracy are these values 
required and how good are the current methods?

b) What practices and methods are in use at present? What physical 
principles are being utilised in currently available meters? How big are
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the flowmeters as a whole package and can trade-offs be made between 
required accuracy and necessary cost? What is this cost in terms of 
money and manpower, including installation costs, running costs and the 
cost of decommissioning/change-over? In other words, what is the total 
value of the instrument? Can the reliability of the meters be 
quantified? What is the market size for each type of meter, who is using 
them and how many does each use?

c) Are there problems of introducing new technologies such as 
ultrasonic methods? How accurate or cheap must a new design be, for the 
markets, either old or new, to use the design? What is the extent of 
market inertia and how long would it take for a new meter to be 
accepted? How large could the total market be?

following sections are the result of discussions with several 
specialists at BP Britannic House, London, on 27th November 1989 and 
elsewhere since that date.

1.1 General Multiphase Metering.

It is the aim of this section to outline the main areas of industry 
where multiphase flow metering is being considered. Also described are 
the techniques currently available or in development that might be of 
use in instrumenting these flows. Special reference will be made to the 
problems encountered in the oil industry, with its solid-Iiquid-Iiquid- 
gas flows, which pose some of the most complex flow problems.

Most areas of the chemical/process industries rely upon single phase 
measurements of the constituent parts of a multiphase flow before they 
are mixed, and use correlations thereafterwards. Problems arise when the 
initial conditions of a flow system are not known very accurately, for 
example; the output from a mixing device (cement), or when there is a 
relative slip velocity between the phases (food), or when the phases are 
reacting with each other and the pipework system (mass and heat transfer 
reactors).
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The physical techniques available for measuring two phase flow 
parameters, such as quality and flow rates, are listed below along with 
brief details of the approaches taken by a selection of companies in 
that area. Further details can be found in the references cited and the 
trade literature from each company. (Lenn 1987, Furness 1989, Dinham 
1989).

(a) Photometric, UV, IR, fibre optic (phase and fraction determination).
Anacon (Instuments) Ltd. IR Absorption methods in development. 
Fluid Data (UK) Ltd. Produce single phase IR absorption meters 
that could be applied to two phase systems.
Photonetics. Near IR refractive index detector, point measurement, 
in production.

(b) Microwave (phase and fraction determination).
Lee Engineering (Agar Corp.). Absorption methods, and also a multi 
principle 1iquid-1iquid-gas meter for subsea and land use, 
including a turbine meter, a separator, two nucleonic meters, 
temperature and pressure sensors. Accuracy is quoted as ±0.5-2% 
for the liquids and ±0.5-3% for the gas, depending on their 
relative concentrations, the errors referring to the whole flow. 
Phase Dynamics Inc. An electronic loading method (Yang 1990), in 
which the amplifier load required to drive a resonant microwave 
cavity varies sensitively with water cut. With allowances for 
salinity, temperature and pressure effects, accuracies of better 
than ±0.035% in water cut have been obtained, when compared with 
the Dean-Stark distillation method, for water cuts less than 0.5% 
at a cost of £15k per unit.
Texaco Ltd. For some years, this group have been developing an 
oil/water/gas subsea meter and its progress is well documented 
(Dowty 1992 and Dean 1990). It incorporates a gas separator and a 
microwave water cut monitor and accuracies around 5% in each phase 
are quoted across the full range of flows and fractions.
SRI International. A design has been patented (Gaisford 1990) 
which uses the pipe and flow as a resonant waveguide whose 
resonant frequency is determined by the mean dielectric properties 
of the flowing mixture. After a measurement of the density, and
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allowances for temperature and pressure, the three phases can be 
quantified.

(c) Capacitive (phase and fraction determination).
Endress & Hauser. In conjunction with BP have developed 'Aquasyst' 
which is accurate to ±0.05% of the total flow, though allowance 
must be made for the dielectric constant of the oil (see later). 
The flow must be homogeneous for this level of accuracy.
Fluenta, amongst several other types of multiphase meter, produce 
a high precision water in oil monitor with an accuracy of ±0.05% 
with 5% water, rising to ±0.5% at 80% water. The capacitive meter 
fails when there is any gas in the flow, though another model is 
produced that also incorporates a y ray densitometer for 
characterising liquid/liquid/gas flows (Fluenta 1991).

(d) Nucleonic (phase, fraction and density determination)
ICI Physics and Radio-isotopes Services. This is a -y-ray bulk 
density meter, which is essentially a single phase meter, but the 
principles are being extended to two phase. 400 were sold in the 
period 1981-1987.
Lee Engineering. See (b) above.
Panatron Radiation Engineering. Here medical radiological methods 
are being applied to multiphase flows. Novel electret/acoustic 
technology is also being considered and both are still, at the 
design study stage
Ramsey Process Controls Ltd. These provide several types of single 
phase meters based on nucleonic densitometers which they are 
tentatively marketing in the North Sea.
Ronan Engineering. General nucleonic density metering.
Berthold (UK) Ltd. Single phase metering, but looking at two 
phase flows.
Norsk Hydro have developed a multi-principle oi1/water/gas meter 
incorporating a static mixer, venturi meter and dual energy gamma 
densitometers. The mixer allows the meter to work to work to 10% 
errors in any combination of phases including the usually
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difficult elongated bubble and slug flow regimes (Norsk Hydro 
1991).

(e) Ultrasonic.
Kent Industrial Measurements. These market a purpose built multi
channel cross correlation multi-phase meter. The device is flow 
regime specific.
NEL are working with oi1-water-gas flows using cross-correlation 
and attenuation methods, in association with Kent and others. 
Panametrics. Single phase technology is being applied to oil, gas 
and water mixtures for an American oil company, to be published.

(f) Mechanical
Hersey Measurement Co. Inc. work mainly with single phase target 
meters, but are extending the techniques to two phase.
Micromotion Inc. Are actively developing their coriolis mass flow 
meters to be used in multiphase flows.
Chemex have marketed their FloComp II automatic well test system. 
This meter uses the bypass sampling principle, where the gas 
separates out in a vertical tube and its volume found using a 
thermodynamic method. The oil and water content is found from the 
mean density measurement. Though not absolute, the readings 
require external material properties, the device is very simple in 
principle (Chemex 1991).

The above are all of the general techniques, though it can be seen that 
many of the developments are industry specific. The techniques of single 
phase metering are being applied directly to the considerably more 
complex multiphase systems, with varying degrees of success.

1.2 Multiphase Fiscal Transfer Metering.

In this special case of multiphase metering, oil is the main fluid and 
water is the contaminant, in quantities up to 5%. When crude oil is 
brought ashore, as a combination of oil, water and gas, a 90% Petroleum 
Revenue Tax is charged. With a barrel of crude being worth approximately 
$15, small errors in the exact quantity of oil being transferred can



prove very costly for one of the parties. At present, the Karl Fischer 
titration technique is used to determine the water content of 
representative samples of the consignment. This involves grabbing 
samples at a rate proportional to the total flow rate. Icm3 is taken 
from every 10m3, and when the sample contains about 10L, this is further 
homogenised, and 0.5cm3 of this is tested. This amounts to 1 part in 650 
million, thus representative sampling and homogenisation are of the 
utmost importance for the technique to be valid. Problems of slip 
velocity in partially separated flows, dispersion and distribution must 
be addressed. A statistical analysis has shown that 10000 samples is 
enough to be representative of the whole flow.

With the quantities involved, and the real possibilities of large, but 
short term fluctuations in the flow quality, in future it may prove more 
practical to continuously monitor the primary samples, rather than 
resampling as described above.

For pipelines, the transients in the flow are relatively long, whereas 
in the case of supertankers, most of the water arrives in the first 30 
minutes (70% or more by volume). The washing of the tanks at the end of 
the delivery leads to another large flux of water that must be measured 
accurately. The device currently available from Endress & Hauser 
(Aquasyst) utilising capacitance techniques fails at water contents 
above 40%, and thus cannot measure the first and last stages of a 
delivery. This is not too significant when the first 20 minutes amounts 
to only 0.2% of the 36 hours required to empty a tanker, though this 
does set a limit on the accuracy of the system. Other problems with this 
technique include the varying material properties of the crude during a 
delivery.

For example Mexican Isthmus crude could only be bought if an equal 
amount of low grade Mire crude is also purchased. The delivery proceeds 
as follows; The Mire is unloaded, 70% water for the first 20 minutes, 
the Mire tanks are cleaned with Isthmus, the Isthmus tanks are then 
emptied, and then the whole system is then swilled out. Each of these 
stages requires independent calibration of the meters for the physical 
properties of the fluids.



With the current trends in pipeline sharing and the increase in bringing 
the whole multiphase flow ashore, new measurement techniques are 
required to monitor precisely what is being pumped into the pipes at the 
various inlets, both quantity and quality. Other areas of research
include microwave and nuclear magnetic resonance meters, and interested 
parties include Marconi and HiTec (Norway).

A typical sampling station costs £100k, whereas the Endress & Hauser 
apparatus costs £10k-£15k, leading to the current interest in this
method (Miller 1989).

1.3 Multiphase Effluent Metering.

This area can be further divided into two distinct topics, offshore
effluent and onshore effluent, each with its own problems. In the first 
case, £1M of hardware (eg allowances for access, accomodation and
safety) is required to keep a man offshore, with ZVi shifts per day, 
compared with Itfc shifts per day on land and comparatively neglegible 
housing costs.

The hydrocyclone is now the main type of oi1/water separator, however, 
droplets of EO-SOgm diameter or smaller remain in suspension, and there 
may also be dissolved contaminants. A meter would be required as either 
a discharge standard monitor or a process control feedback device. An 
example of both would be a monitor of the output of a sand filter, to 
determine when the filter needs washing. In many cases, the output 
liquid is opaque and contains air or gas bubbles that have either
degassed from the solution or ingressed through some form of leak. 
Solids may also be present. At this stage the gas and solid contaminants 
are generally irrelevant.

The effluent water stream from an offshore installation will typically 
have a high salt content (10%) and its temperature can vary from 30°C to
1200C, and can lead to salt growths and scale. This is further
complicated by dissolved and gaseous COz, leading to carbonate scales. 
Barium and strontium compounds are also present, including their
radioactive isotopes.
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The oil can vary greatly in viscosity and interfacial tension, leading 
to corresponding variations in droplet size.

Once out of the ground, the crude undergoes considerable shear at the 
wellhead choke, which is immediately followed by a heater (to minimise 
hydrate formation), and the first separator, with its control valves, 
the resulting droplets can be up to a few mm in diameter, with a mean of 
between 50 and 100pm. The smallest droplets are of the order l-2pm, and 
anything below 30-50pm can get through the primary separator, amounting 
to 10-300ppm contamination in the wastewater.

This wastewater can be treated with a flocculant additive to enhance the 
separation. This costs approximately £1000/tonne, and requires 
considerable storage space, its use should ideally be minimised 
especially off shore. The process is controlled with intermittent 
feedback from a standard sampling technique. This comprises just a 
single aspect of the work of a process control operator. A less involved 
procedure would prove more reliable, but would not release much 
manpower.

Further downstream, where several sources of wastewater have been mixed, 
the system is sampled at least every 12 hours, though more generally the 
process operators check the effluent three or four times on their rounds 
during their 12 hour shift. If the supply criteria are known or 
suspected to be changing, for example when a new well comes into 
production, the sampling rate is stepped up.

At a more complex station, such as a refinery, the spectrum of 
contaminants can be much broader than that from a single well, since the 
quality of the crude from a single well remains almost constant for long 
periods of time. There can be waxy residues, residual crude and even 
portions of the refined product and possibly up to 15ppm solids. The 
fluid contaminants might also include SOOOppm of 3pm droplets as a 
surge superimposed on the usual lOOppm background contaminants, should a 
storage tank be cleaned out. Emptying the bottom of storage tanks using 
pumps induces considerable shear, leading to these small droplets. Also 
entering into the wastewater system is the rain runoff, which can be 
contaminated with anything from oil to chemicals to sand.



As for chemical contaminants, spent caustic soda (used to remove 
sulphites) can cause excursions to pH 8 or 9. The ensuing chemistry can 
lead to simple soaps and detergents, producing émulsification and
aspherical droplets due to modified interfacial effects. One in five 
samples suffer from these problems and it leads to very inefficient 
filtering of the contaminants.

Dissolved solids become a problem at concentrations above lOOppm in the 
effluent stream, though this is much diluted when it reaches the main
water course. Culprits include phenols, sulphides, ammonia and
phosphates. The latter at 20ppm have recently been seen to cause
problems with algae formation. The overall contamination is currently 
checked using conductivity methods, though generally as alarms rather 
than for process control. Alternatively, spectral analyses in the infra 
red can be used on representative samples, with frequencies comparable 
with those described above. Other light scattering techniques have been 
found to require considerable maintenance, are not very reliable and are 
used only as alarms.

The most complex problems are to be found on land at refinery sites,
where 16" to 48" storm drains can carry almost any combination of the
materials described above, very intermittently.

Thus in conclusion, there are two possible uses for multiphase metering 
of wastewater systems, the first is a final discharge alarm, which would 
have to be accurate to ±2-5ppm, to satisfy the National Rivers 
Authority, and could cost £10k and would sell of order tens per
establishment. Anything more than £100k would not be considered. The
second would be a process control mechanism, accurate to ±20-30ppm, 
which could easily sell in the thousands, as no other methods are 
currently available, and sampling is not practical on the scales 
involved. To detect l-2pm droplets would be ideal, though 5-10pm would 
be quite useful (Chown 1989).

1.4 The detection of sand in liquid or gas flows.



The problems caused by sand appear ét the wellhead, where it can 
seriously interfere with the separation processes, leading to regular 
cleaning of the separating tanks. The sand also proves to be very 
destructive to the physical structure because of its abrasive 
properties.

Typical values for sand production are about lOOlbs per day or per 1000 
barrels of crude produced, though these figures are very dependent on 
the current circumstances of the production and also on the past history 
of the well. Before describing the significance of sand production and 
how and why it should be monitored and controlled, an overview of the 
prevailing 'experimental' conditions may be of use.

A typical well in the North Sea stands in 400-600ft of water at 400F, 
and at the sea bed, the pipe is 30" in diameter and the oil pressure is 
about 150psi. 200 feet below the sea bed are the subsurface safety 
valves. The well then extends through the sea bed to a depth of 5000- 
15000 feet, where the temperature is 150-3500F and the pressure is 4000- 
lOOOOpsi. The pipe at this point is about 4%" diameter. The bottom of 
the pipe and the concrete surrounding it are perforated using shaped 
charges that can penetrate 12" into the surrounding rock formation. In 
order to enhance the flow of the oil out of the porous medium, several 
techniques can be employed. One popular method is hydraulic cracking of 
the rock followed by chemical etching or infilling with Propan polymer® 
or graded sand. If the well is not natural ly flowing, then a secondary 
recovery technique, such as injecting sea water at the periphery of the 
field (to force the oil upwards), can be employed (Frances 1989).

The structure of the rock formation at the bottom of the well depends on 
the physical properties of the rock and also on its age and depth. The 
perforating gun generates approximately 4 to 8 holes, %" in diameter per 
foot of pipe. Thus for a flow rate of up to 40000 barrels per day (in 
the initial stages of a large well), the flow rate through these small 
holes will be very high (=10ms-i). This can loosen particles from the 
rock formation or from the packing materials. If the flow rate in the 
riser is not sufficient to carry the particles, then they will settle to 
the bottom of the pipe and gradually impede the flow.
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With a typical platform having 20 wells all feeding into a common 
separator, it is necessary to know which wells are producing sand so 
that remedial action can be taken to stop the well blocking, or to at 
least optimise its oil output versus sand output. One possible method of 
reducing sand production is to reduce the flow rate through the rock by 
reperforating the strata. The life of a well can be extended by 
carefully controlling the oil flow rate from the beginning, increasing 
the flow rate slowly, allowing the rock to adjust to the new conditions 
without incurring too much damage. The flow rate is increased to a point 
where the sand production is considered just acceptable.

The sand can be detected using three different methods, the first being 
a simple filter Cl0pm), the second is an impact detector which only 
works for gas flows and is thus also sensitive to condensates. The third 
is a differential pressure sensor, one end of which is covered by a thin 
tube which is eroded by the particles. When the particles break through, 
an alarm is set off.

With the current cost of platforms, there will be a tendency towards 
more subsea installations, and horizontal sea bed transport. Horizontal 
lines are prone to filling , and a weak point can usually be identified. 
However, a sand detecting meter could remove much of the guess work, but 
would have to be able to stand temperatures of up to 225°F, be reliable, 
be calibrated just once, and pose a neglegible risk of leaks.

1.5 Discussions And Conclusions.

The above four sections have briefly described the problems encountered 
in multiphase and mul ti component metering, and some of the attempts to 
overcome these problems. The metering of mixtures is a comparatively new 
subject, and it would seem that tried and tested single phase techniques 
are being applied to these new situations. From the point of view of 
numbers sold, devices for metering mixtures total about 5% of the whole 
flowmetering market (Halsey 1986). However, due to the complexity of the 
devices, and the savings that can be made if the mixture can be metered 
directly (rather than by separation followed by single phase metering), 
the unit price can be considerably higher than for a single phase meter.
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Primary metering at the wellhead needs only to be accurate to say 2% for 
gas and 1% for the liquids, since there is no direct financial penalty 
for any uncertainty. However, once the materials have been separated, 
and fiscal transfer is taking place, accuracies in the volumetric 
metering of ±0.02% (turbine and positive displacement meters calibrated 
using absolute methods) and in the water content of ±0.02% by volume 
(titration or distillation) are required. These flowmetering standards 
have evolved over many years and their revision to accomodate changes in 
technology is a slow process. It can be concluded (Gold 1986) "that
improved measurement accuracy is more likely to be achieved from
improved calibration and operating procedures than from the use of
different types of flowmeters". This is further reinforced by Halsey 
(1986), who found that over a large sample of flowmeter users, 55% of 
meters were over 10 years old, and that only the smaller establishments 
are quick to take up novel techniques. The metering of hydrocarbons 
makes up approximately 40% of the whole flowmetering market, making this 
the largest single industrial use of flowmeters.

It would seem that the areas of general multiphase metering and
multiphase fiscal transfer metering provide the largest markets, and 
this is where most of the effort is being directed. The problems of 
effluent metering are less well defined and can only become more 
difficult as the process technologies become more complicated and the 
legal discharge limits become tighter. Similarly the metering of sand in 
hydrocarbon flows will prove difficult, as has been seen by the lack of 
technology in the field.

In principle, all four areas can be approached using several different 
ultrasonic techniques. The accuracy and applicability of these 
techniques can only be determined after careful experimental testing, 
and comparison with the other contenders in the field. In the case of 
fiscal metering, the device would be competing with the Karl Fischer 
titration technique, which has become accepted as the standard, so any 
new technique would have to be very well proven before it was even 
allowed into the field. Since many of the meters either require or 
assume homogenised mixtures, it will be to these flows that much of the 
following work will be addressed.
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1.6 Layout of this Work

So far, only oil industry related problems have been covered, however, 
many other areas of the chemical and process industries also involve the 
flow of complex media and mixtures.

To show the scope of the problems, figure 1.6a tabulates some of the 
possible systems that appear in these areas and may be amenable to 
ultrasonic methods.

The non-invasive or non-destructive testing of each of these systems 
usually involves the interaction of the system with some sort of 
waveform, thus;

DATA

SYSTEM RECEIVERTRANSMITTER

SIGNAL DECONVOLUTION

Waveforms that have been used to date include Electromagnetic: Visible, 
X ray and Gamma ray. Particles: Neutron, Electron and Positron and, of 
course, all types of mechanical waves.

As has been outlined in the abstract, this work has been a feasibility 
study of the application of a very specific method to a very general 
class of problems, namely the ultrasonic interrogation of
multicomponent/multiphase flows, with a special reference to liquid in 
liquid systems.

The information that might be required from a system can be summarised 
as follows;
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DISCONTINUOUS PHASE

Solid Liquid Gas

CONTINUOUS

Solid Composites

Aggregates
Laminates
Impurities

Fluid inclusions in

sedimentary rocks 
Setting
Crystallisation

Internal 
fractures 
Bubble 
entrainment 
during casting

PHASE

Liquid Sedimentation

Elutriation 
Colloids 
Suspensions 
Blood analysis 
Food processing 
Wear particles and 
contaminants in 
lubrication and 
hydraulie systems

Emulsions

Crude oil settling 
Water contamination 
in hydraulic 
systems
Oil Contamination 
in water systems

Air
entrainment
Cavitation
Boiling

Gas Dust/Fallout Fogs/Mists

Aerosols

Mixing 
processes 
Sonar balloon 
detection

Figure 1.6a Table of possible systems where acoustic waves have been 
used to detect discontinuities.
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For a single particle: Position
Velocity
Size
Shape
Composition

For many particles : Spatial Distribution
Velocity Distribution 
Size Distribution 
Material Properties

An appropriate choice of waveform, for the data range required from the 
given system will optimise the data acquisition process. A review of the 
relevant parameters for all the combinations of experimental technique 
and data required, is far beyond the scope of this work, but they are 
adequately covered in the literature.

The layout of the rest of this work is now described.

Chapter 2 Is an introductory literature review of the interaction of 
ultrasonic waves with complex systems, several parts of which will be 
expanded in detail in later chapters.

C h a pter 3 Covers in detail the experimental and theoretical aspects of 
the multiangle scattering of an ultrasonic wave from a single stationary 
particle.

Chapter 4 Introduces the problems of back scattering and scattering 
cross-section and the technique of range gating. This is also extended 
to cover multiple scattering and the measurement of acoustic velocity 
and attenuation in mixtures as an alternative method of 
characterisation.

Chapter 5 Describes larger scale experiments, involving real flowing 
situations of oil water mixtures, and the use of several ultrasonic 
techniques to characterise the system.
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C h a pter 6 Describes the principles of chaotic dynamic systems and how 
they may be applied to the flow of mixtures. This leads to an improved 
understanding of the phenomena occurring within the flow and the 
experimental techniques lead to novel methods of characterising the 
flow.

Chapter 7 Brings all of the results and conclusions of the previous 
chapters together and describes where the work can be extended and 
improved.

This is followed by an alphabetical listing of the References.

A p p e n d i x  A  Describes the experimental techniques developed in order to 
study the scattering of ultrasonic waves from liquid droplets. Several 
technical difficulties were encountered, and in overcoming them, novel 
results on the motion of droplets in vertical pipes have been found.

A p p e n d i x  B Describes the construction and testing of the large scale 
apparatus.

A p p e n d i x  C Is a select literature review covering multiphase and 
multicomponent flows, including flow maps and flow transitions.

A p p e n d i x  D Is an introduction to chaos as applied to fluid systems, 
starting from first principles.



17

Chapter 2: Literature Review: An Overview of the Interaction of
Ultrasonic Waves with Complex Systems.

2.1 Introduction

The following sections describe the interaction of ultrasonic waves with 
complex systems, giving an overview of work that has been carried out 
and published in the literature, to date. Several of the sections will 
be expanded in more detail in later chapters.

A general ultrasonic interrogation system has the following form. The 
ultrasonic signal of a known form interacts with the system in question 
and the signal is modified by the system in a manner that is 
characteristic of the system. Useful information will be contained in 
some or all of the following measurands of the received signal.

Clearly, each measurand will provide different information about the 
system, either different parameters or if two measurands observe the 
same parameter, then the quality and quantity of the information will be 
different.

The interaction of an acoustic wave with a complex system has very many 
optical analogies, from the simplest reflection and refraction to the 
more complicated scattering. The work begins with the scattering of a 
wave from a single sphere. The general problem of the fluid sphere, 
including longitudinal wave penetration into the body of the sphere, as 
well as the inpenetreble sphere approximation are considered here. The 
full theory is derived from first principles in chapter 3. The solid 
approximation provides a useful comparison with other published works 
and allows for a greater test of the theoretical predictions in the 
experiments to be carried out later.

^  The acoustic velocity 
<^The attenuation constant 
? The angular distribution of the signal 
I/"The Doppler shift
 ̂ The phase/transit time of the signal

► and their spatial and 
temporal variation
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2.2 Single Scatterer

The earliest study of the scattering of waves from spheres dates back to 
the middle of the nineteenth century with the work of Clebsch (1863) and 
Strutt (later Rayleigh, 1945 reprint of 1896 work). The early work was 
carried out in order to explain the scattering of ether waves (later 
known as electromagnetic radiation) by the atmosphere and dust clouds. 
This and all the consequent theory is general enough to be applied to 
any type of scattering, from electromagnetic to acoustic to particle, 
provided the waveform can be described by simple potential theory. The 
first century of work in this field has been reviewed by Logan (1965).

All of the early work and many of the modern investigations require the 
material of the scatterer to be of totally different acoustic properties 
(namely specific acoustic impedance defined as pc, where p is the 
density of the medium and c is the speed of sound in the medium) so that 
the wave does not enter the body of the scatterer. The methods of this 
analysis have been covered elsewhere (Lenn 1985), and will appear as an 
approximation to the full derivation in chapter 3.

Clearly, as the physical properties of the scatterer approach those of 
the surrounding medium, the scatterer will become acoustically 
invisible, with the amplitude of the scattered wave approaching zero. 
The table below contains the relevant data for a few of the materials 
of interest to the project in general.

Material Density Speed of Sound Acoustic Impedance

p/kgm-3 c/ms-i pc/Rayls (SI)

Water 1000 1500 1 500 000
Kerosene 810 1324 1 072 440
Air (RTF) 1.2 330 396
Sand 2130 5750 12 247 500
Steel 5900 7800 ; 46 020 000
Erythrocyte 1180 2730 3 221 400

Figure 2.2a Table of some material properties.

Thus it can be seen that the materials chosen for this project, water 
and kerosene (mimicking the properties of light North Sea crude), are 
acoustically very similar. Later this will set limits on the 
approximations that can be made in the theory.
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2.3 Genera1 Theory

The theory for liquid in liquid scattering was first calculated by 
Anderson (1950), and is an extension of the works by Rayleigh (Strutt 
1894) and Stenzel (1938) taking into account the effects of the wave 
that enters the scatterer and the fact that the interface between the 
scatterer and the surrounding medium is flexible. The derivation is such 
that allowing the various parameters to tend to extremes, reduces the 
final equation to that of the solid scatterer again. Throughout this 
work, the approriate form of the equations will be used, except where 
comparisons are being made between the various approximations. The route 
taken is the classical method of solving the Greens Equation for the 
outside, inside and the interface of the scatterer, ie potential theory. 
The mathematics has been described in the literature (Anderson 1950) and 
(Morse 1953, 1968), and will be covered in detail in chapter 3. Only the 
final results will be given here.

Consider figure 2.3a. For a continuous medium of density p and speed of 
sound c, containing a spherical liquid scatterer of radius 'a', density 
pe and speed of sound ce, let a plane longitudinal wave of wavenumber k 
= 2ir/X and intensity I = p2/pc, where X is the wavelength and p is the 
pressure of the wave, incident on the sphere from the left.

For the above geometry in a spherical polar coordinate system, the 
pressure of the scattered wave is given by the following equation for a 
scatterer of arbitrary material, including solid, liquid and gas.

9 - ' j 1/ 6
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Figure 2.3a Coordinate system for a single scatterer
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oo
p(r • - I

m=0
(2m+l )i®fm(cos8) dm(kr) - dm'(ka) - pc dm'(kea) jm(ka)

PeCe jm(kea)
hm'(ka) - PC jm'(ke8) hm(ka)

PeCe jm(kea)

h«(kr)

Incident
Wave

Scattered
Wave

Range
Effects

Allowing for the material 
properties of the system 
and small amplitude 

' internal and surface waves.

(2.3.1)

Where: A = The amplitude of the wave
Pm = mth order Legendre polynomial.
jm = mth order Spherical Bessel function.
jm1 = The differential of dm with respect to its argument. 
hm = mth order Spherical Hankel function
hm1 = The differential of ha with respect to its argument.

2.4 Approximations to the General Theory

As mentioned above, letting p«ce»pc reduces the above equation to:

p(r, 6) = A ^  (2m+l ) i® Pm(cos6) 
m=0

dm(kr) - dm'(ka)
hm'(ka) .

ha(kr) (2.4.1)

This will be referred to as the solid approximation when used elsewhere 
in this work. The mathematics used to derive the above equations is 
totally general as to the value of ka and k«a, however, a few useful 
approximations can be derived from the above equations when the ka«l and 
when ka»l. The first case corresponds to the classical Rayleigh/Tyndall
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(blue sky) scattering and the second case to the geometric shadow 
equation (Urick 1965).

In terms of intensities, I=p2/pc, with U  being the incident intensity;

For ka-1, ie the wavelength is comparable with the circumference of the 
scatterer, the scattered pressure (or amplitude) is seen to oscillate 
about the value given by the equation for ka»l (figure 2.4a)

2.5 Scattering Cross-Section

The phenomena of scattering over the whole range of ka is best 
conceptualised in terms of the differential scattering cross section. 
The scattering cross section is defined as:

The proportionality becomes an equality when the incident beam has unit 
intensity and the receiver subtends a unit solid angle at the scatterer 
and is unit distance from the scatterer. Thus a has units of area. The 
real cross-section is simply given by ita2. Thus the ratio of cr/ita2 will 
give a measure of the effectiveness of the scatterer. Note that a is a 
function of 6 and r, so the effectiveness of the scatterer depends upon 
the angle from which it is observed. The total cross section is found by 
integrating a over a solid angle of 4it steradians. From now onwards, 
unless explicitly stated otherwise, ct will refer to ctiso, ie the 
backscattered cross section. The references given above all evaluate a, 
and also allow ka to tend to the extremes described previously.

ka«l : I(r,6) = 16it*a6I0 (1 - 3cos8) (2.4.2)
9X*r2 2

ka»l: I (r, 0) = I0 e2 + a2 cot2(0/2)*| Ji2(ka sinO)
4r2 4r2

(2.4.3)

• /-

a(r,6) a lp(r,0)|2 (2.5.1)

For a solid scatterer, the end result is shown graphically in figure 
2.5a. Note that in this and subsequent plots, as ka becomes large, the
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Figure 2.4a Scattering profiles for various ka
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Figure 2.5a Scattering cross-section for a solid sphere
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differential scattering cross-section tends towards unity, showing that 
the scatterer appears to be its real geometrical size.

The diffraction can be considered as the result of the combination of 
several effects, the most important of which (for a solid scatterer) is 
the "creeping" wave which moves around the interface between the 
scatterer and the surrounding medium (Gaunaurd 1985, has covered the 
theory and Faure 1977, has observed the effect experimentally).

In the case of gaseous and liquid scatterers, the problem becomes more 
complicated, primarily because of the flexibility of the interface 
separating the two media. In the case of a liquid scatterer, the wave 
that enters the sphere undergoes multiple internal reflections and is 
then re-radiated from the surface, the whole effect tending to reduce 
the scattering cross section, and provide more complicated interference 
patterns around ka~l. It would be expected that a sphere with the same 
material properties as the surrounding medium (ie p=p« and c=c«) would 
have no effect on the acoustic wave.

The effect of changing from a solid to a fluid scatterer is sketched in 
figure 2.5b.

However, in the case of a gaseous scatterer, a most significant effect 
arises, namely; resonance. The compressibility of a gas means that in an 
acoustic field, the bubble behaves as a classical Helmholtz resonator. 
When the frequency of the field is identical (see below) to that of one 
of the partial waves that fit into the resonator, the bubble hits 
resonance and the motion of its surface becomes extreme. For a gas 
bubble in a liquid, the most important mode is the monopole, rather than 
the dipole or any of the other higher order possibilities as sketched in 
figure 2.5c.

The damping of the motion (thus avoiding the unrealistic and highly 
embarrassing infinities) is provided by the viscosities of the two media 
and the thermal properties of the gas (Gaunaurd 1981, Khabeev 1986, 
Seybert 1988 and Urick 1965).

The frequency of the monopole resonance is given by (Pierce 1981):
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Figure 2.5b. Comparison of scattering cross section for solid and liquid 
spheres.
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Figure 2.5c Gas bubble resonances.
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f = p-l/2 
2ita

Where y is the ratio of the specific heats of the gas and a here is the 
interfacial tension. Taking this into account produces a scattering 
cross-section as shown in figure 2.5d.

Resonances are not just confined to gaseous scatterers in liquids, but 
can also be found in other combinations of phases. The variation in 
cross-section at resonance, and the sharpness of the resonance spike 
due to the physical properties of the two media (liquids and solids) 
high density and low compressibility, mean that resonances will be less 
significant in the flow regimes (confined pipe flow) to be considered 
later (Brill 1987, Flax 1978, and the five papers by Gaunaurd 1979- 
1982). Resonances would be expected to appear as spikes on scattering 
cross-section plots sketched in figure 2.5e.

Note that the scattering cross section of a resonating bubble is a few 
orders of magnitude greater than its geometric cross section. This means 
that in a system containing a random distribution of bubbles, a few 
resonating bubbles will produce a scattered signal greater than that 
from all the non-resonating bubbles combined. This phenomenon has been 
utilised experimentally (Medwin 1977).

So far, the only incident waves that have been considered have been 
longitudinal waves, the only waves that can propagate in the body of a 
liquid. However when a solid is involved in the system, either as the 
continuous or discontinuous phase, the possibility of transverse waves 
also occurs. The whole problem, including conversion between the 
waveforms and the inclusion of resonances (Gaunaurd 1979) requires a 
complicated matrix (tensor) approach, but has proved most useful in the 
elucidation of nuclear scattering from the "liquid drop model" and the 
"shell model" of the nucleus.

A recent paper (Seybert 1988) has shown that a resonating gas bubble has 
its motion severely restricted by any rigid boundaries, to the point 
where resonance is suppressed if the wall is less than 1000a from the 
bubble. Thus the problem of a few resonating gas bubbles totally masking

3 peCe2 + 2yo - 2o 1/2 (2.5.2)
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the signal from other scatterers of interest might not occur in the pipe 
flows under consideration.

2.6 Other Effects of the Material Properties of the Scatterer

The simple potential theory used to derive the equations for the 
scattering from solids and liquids takes only the density and acoustic 
velocity into account. Other physical properties such as compessibility 
can be taken into account (Rayleigh 1944 and Urick 1965). When ka«l 
there is also the possibility of the scatterer becoming involved with 
the bulk motion of the surrounding medium due to the acoustic wave 
motion. Taking these two effects into account, in the ka«l limit, 
changes the equation given previously as (2.4.2),

I(r,6) = 167t*a6l0 
9X*r2

to a modified form:

I(r,6) = 167t4a6I0 
9X4r2

1 + 3cos8 
2

1 - Ke - 3(pe/p - 1) COSQ
K 1 — 2pe/p

(2 .6 .1)

Where Ke is the compressibility of the material of the scatterer and K 
is the compressibility of the surrounding medium. These effects become 
minimal for large ka. Figure 2.6a shows plots of this correction factor 
(for small ka) for various values of the other parameters (Urick 1965).

Generally, in most of the cases likely to be encountered experimentally, 
the scattered pressures, intensities and cross sections are slightly 
reduced for solid and liquid scatterers and increased for gaseous 
scatterers when compared with the simple potential theory.

2.7 Aspherical Scatterers.

So far the scatterer has been spherical in shape. It would be expected 
that non-spherical scatterers would have a different effect on the
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acoustic wave. In the first approximation, all scatterers are spherical, 
but it is necessary to know when this approximation becomes invalid. 
This problem has been tackled both theoretically (Ahuja 1978, 1979) and 
experimentally CSheng 1988). For minor deviations from sphericity, as 
expected, the spherical approximation remains valid provided the 
deviations are less than a wavelength from the equivalent spherical 
radius. When the approximation does break down, it also usually involves 
a non-homogeneous scatterer eg fish (Foote 1979 and Haslet 1979) or 
submarines (Urick 1965).

As a final note, now that the theory of scattering has been covered for 
all three types of discontinuous phase for all values of ka, it is worth 
noting that acoustic waves are also scattered by the density variations 
that occur during turbulent flow (Morse 1968 and Korman 1988). This is 
clearly a non-linear effect, and is a function of Mach number (Lynnworth 
1981). As this is essentially scattering from a distribution of 
turbulent eddies, a simplistic view would be to consider the density 
fluctuations within the eddy as the primary cause of the scattering and 
so this scattering would be expected to be a few orders of magnitude 
smaller than the scattering from a droplet of the same size.

The significance of these results will be discussed in detail as 
necessary in chapter 3.

2.8 Effects of a Scatterer s Motion.

So far the problem has been concerned with the scattering of a plane 
ultrasonic wave from a stationary object. If the object is moving then 
the scattered signal will have a Doppler shift in frequency. For the co
ordinate system shown in figure 2.8a, the frequency shift is given by;

Af = fV IcosBcosa + sinofsin6cos<p - cos8} + terms 01fV2/c) (2.8.1)
c

The scattered pressure and intensity profiles will remain as described 
for the stationary particle.
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Figure 2.8a Co-ordinate system for Doppler scattering.
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2.9 Many Scatterers

The previous sections have considered scattering from just a single
particle. However, a simple order of magnitude calculation reveals that 
in most of the experimental circumstances described in the introduction, 
the chances of there being just one scatterer in the beam path are
minimal. Thus it is necessary to work out what happens when there are 
several particles simultaneously scattering the ultrasonic wave.

There are two distinct approaches to this problem; to sum over the 
individual scatterers to give the bulk properties, or to look at the
system as a whole and determine the bulk properties as a function of the
properties of the two phases. Clearly, both methods should be
equivalent, and should predict the same results. However, due to the
mathematics involved, the first approach is usually applied when ka>l 
and the second method when ka«l. Each approach gives details of the
secondary phase, including void fraction and droplet size distribution.

The two sections below will describe the results of each method in
turn.

2.10 Summing Over the Individual Scatterers

The scatterers will have a random size distribution and (chapter 5) a 
random spatial distribution which are unknown and which are required to 
be determined. It has been shown (Morse 1953, 1968 and Lenn 1985) that 
under these criteria, with a Gaussian randomness, that the scattering is 
predominantly incoherent (ie a random distribution of the phases of each 
scattered wave at the receiver) and proportional to the first power of 
the number density of the scatterers N and the average scattering 
cross-section of the scatterers. Reducing the randomness of the spatial 
distribution and of the size distribution, in the limit produces an 
ordered structure of scatterers which scatters a totally coherent wave 
(eg X ray crystallography) in which the scattered signal is proportional 
to N2o.



Thus if NCa), the size distribution per unit volume, is assumed Gaussian 
and <a(a)> could be calculated from this, then taking the scattered 
signal of the form N%e, deviations of x from 1 would give more
information as to what the size distribution really is.

As for the spatial distribution, this can be determined independently of 
the size distribution using range gating methods on the scattered
signal. The resolution of this method is limited only by the wavelength
of the ultrasonic wave.

2.11 Multiple Scattering.

The next problem is what happens when the scattered wave from one 
scatterer impinges on the other scatterers? This is commonly known as 
multiple scattering. For a system with dispersed phase fraction <x the 
particles will be separated, on average, by 1.61orl/3<a>.This is derived 
from a cubic approximation (figure 2.11a), where <a> is the average 
radius of the particle. The table below (figure 2.11b) gives a few 
values of this function.

or Séparation/<a>
0.0001 35
0.001 16
0.01 7.5
0.1 3.5
0.5 2.0

Figure 2.11b Table of particle separation as function of void fraction.

Clearly the simple cubic model breaks down for or - 50%, but other 
phenomena such as phase inversion occur around this point anyway (see 
appendices B and C).

Multiple scattering would be expected to produce deviations from the 
linear function (scattered signal proportional to No), described above. 
This has been observed experimentally, for or>0.1, in the transport of 
solids in liquid (Balachandran 1980, 1981 and Jansen 1978, 1979, 1981).



34

<a>

S/<a>

Figure 2.11a. Cubic approximation used to determine particle separation.
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There is no exact theory for the multiple scattering problem, with the 
numerical results always being highly dependent on the approximations 
made in the definition of the properties of the system. Theoretically, 
the multiple scattering should lead to the same conclusions as summing 
over the individual scatterers for the same system. As such, it is
beyond the scope of the present work, and will only be entered into when 
and if it becomes necessary to produce a more accurate solution to the 
problem (Ma 1983, Twersky 1988 and Tsang 1982). Clearly if the 
scattering is weak, then effects of multiple scattering will be 
negligible (see section 4.7).

2.12 Bulk Effects in the Long Wavelength Limit.

x' x V"In the long wavelength limit, ka»l, the scattering from the individual 
particles becomes very small as described above, dropping off as X-* 
(equation 2.4.2) The effect of the single scatterer can be neglected. 
This phenomenon has been utilised in the selective investigation of
suspended materials by choosing the wavelength to ignore silt but to 
interact strongly with sediment (Lenn 1985 and Jansen 1978, 1979, 1981). 
However, if all the particles are small, then the combined effect is not 
neglegible, and the wave "feels" bulk properties characteristic of the 
mixture rather than those of the individual components. The bulk 
acoustic properties of the medium are simply the speed of sound (or the 
acoustic impedance with its implicit density term) and the attenuation 
constant, and this is the order in which they will be treated below.

2.13 Acoustic Velocity

The speed of sound of an emulsion or suspension was given by (Stakutis 
1955);

C2 =  c (2.13.1)
[ < 1 -( 1 - pe/p)a} < 1 -Of+KeOf/Kl 3 1/2

Where all of the symbols have their usual meanings. This equation was 
seen to have several shortcomings especially for extreme values of a. On
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checking with the original (Herzfeld 1930) a typographic error was 
found, which has been corrected in (2.13.1). An alternative equation 
derived using full thermodynamic principles for 1iquid-gas, solid-gas 
and 1iquid-vapour systems (Griggs 1982) is as follows.

C2 = ______________ c_______________ _______  (2.13.2)
{ [c<+( l-or)p/pe] [<Xc2/Ce2+( l-a)pe/p] >1/2

Data for several 1iquid-gas combinations has been plotted by Griggs, and 
figure 2.13a is typical of the form of the results

This equation has the same form as the erroneous Stakutis equation for 
the acoustic velocity in solid-liquid mixtures. As no equation governing 
the speed of sound in liquid-liquid mixtures has been traced, it would 
be logical to assume an equation of a similar form.

This conclusion is backed by other work (Piotrowska 1971), which, 
besides showing the complex nature of this problem (the velocity of 
sound in an aqueous suspension being highly dependent on whether the 
solid is organic or inorganic!) reveals the following graph (figure 
2.13b) for the experimentally determined acoustic velocity in silicone 
oi1/water emulsions (stabilised with an emulsifier).

2.14 Wave Attenuation.

The attenuation of the waveform is governed by the equation;

I (x) = I0e-2«x (2.14.1)

Where x is the distance from a reference point and oc is the attenuation 
coefficient. The calculation of oc for a pure liquid is reasonably 
straight forward, involving just the thermal and viscous properties, and 
can be found in any text book (Wood 1946 and Morse 1953,1968). Clearly 
for a constant physical geometry (see experimental details in chapters 3 
and 4) the effect of attenuation will be a constant scaling multiplier 
throughout a series of experiments, and when ratios are taken, the 
effect is eliminated.
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The earliest work on attenuation in a solids suspension were carried out 
by Epstein (1941) and forms the basis of most modern treatments which 
extend this to emulsions (Allegra 1972 and Kol'tsova 1974). Generally 
the attenuation coefficient can be considered as the sum of several 
parts, thus:

a = <x0 + Acx = a0 + «s + <xn + or (2.14.2)

Where; a0 is the attenuation coefficient of the continuous phase
a« allows for the inertia of the two liquids at the interface
<Xn allows for the viscosities of the two phases
or allows for the thermal properties of the two phases

otm can be subdivided into two further terms, (a«)i and (a*)n, the first 
allows for the scattering caused by the different compressibilities of 
the two phases and the second allowing for the differences in shear and 
bulk viscosities between the two phases.

The significance of each of these terms has been found for a stabilised 
linseed oil emulsion (a=10%) with a mean droplet size of 2pm (Kol'tsova 
1974) and are reproduced in figure 2.14a, below;

Type Of Loss 
%

X
MHz

3 9 15 21 27

Acx 100 100 100 100 100
(Ods)l 0 0.4 1 2 3
(or,)n 5 20.6 36 50 60
<Xn 11 9 7 6 4
OCT 84 70 56 42 33

Figure 2.14a. Table of relative contributions to the attenuation 
constant as a function of frequency (Kol'tsova 1974)
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Aa has been found experimentally for natural oil emulsions (olive, 
linseed and castor) for <a>=6gm and is found to be linearly dependent on 
concentration up to 10% void fraction, for a given frequency, provided 
that k<a>«l. As the frequency is increased, a few of the droplets 
approach ka-1 (those at the tail end of the size distribution) and so 
begin to scatter strongly, thus making the relation Aa proportional to 
Nf2 outside the error limits, although Nfi«9 has been mentioned 
(Kol'tsova 1974) as a better approximation.

2.15 Phase Shifts.

As a final note, recent experiments (Shiokawa 1986) have revealed that 
when an ultrasonic wave passes through a suspension of polymethyl 
methacrylate spheres (mimicing living cells), the phase of the wave is 
modulated. The phase shifts are dependent on the size (distribution) of 
the particles and the void fraction, and are linear in the ka«l limits 
for a void fraction upto IX. The phase shift produced by a single 
particle depends on its size and is of the order 10-6 degrees.

2.16 Conclusions.

This concludes the review of the interactions of an ultrasonic wave with 
a discontinuity in a fluid medium, with especial reference to liquid in 
liquid systems. The theoretical results outlined here will be expanded 
in an appropriate manner in the next three chapters where they will be 
investigated experimentally.
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Chapter 3: Ultrasonic Scattering from a Single Particle.

3.1 Introduction

In contrast to the previous sections, this chapter will begin with a 
detailed account of the general theory of the scattering of ultrasonic 
waves from fluid spheres, followed by the solid and other 
approximations. This will be followed by appropriate experimental 
work, designed to investigate and verify the basic theory.

3.2 Theoretical Treatment.

It is clear that the wave scattered from an object will be dependent 
on several possible variables, which can be grouped as follows;

Ci) The properties of the initial incident wave, profile and 
intensity,

Cii) The difference in material properties of the media inside and 
outside the scatterer, primarily acoustic impedance, the product of 
density and acoustic velocity,

Ciii) Some function of the position of the observer with respect to 
the scatterer or the coordinate system.

The following analysis follows that given by Anderson (1950), an 
alternative approach, using the full Green's equation can be found 
elsewhere (Morse 1953, 1968)).

Consider a sphere of radius 'a' and acoustic impedance pece surrounded 
by a medium of acoustic impedance pc. The centre of the sphere is at 
the origin of a spherical polar coordinate system, a continuous (sine) 
wave of angular frequency w, of infinite extent and unit intensity 
impinges upon the sphere. The symmetry of the system about the origin, 
chosen in this way, removes any dependence on <p from the equations 
(figure 2.3a). This wave of pressure p0 (=(pcl)%) gives rise to an 
internal wave pe and a wave, p, emanating spherically from the 
scatterer. The far field value of p is required to be found. At the 
surface of the sphere (r=a), both the pressure and the normal
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component of the fluid velocities must be continuous. Thus for the 
acoustic pressure;

p(a) + p0Ca) = peCa) (3.2.1)

and for the radial component of the fluid velocity;

Ur (a ) + Uo,r(a) =  Ue,r(a) (3 .2 .2 )

The acoustic pressure must also satisfy the wave equation;

V 2p = £_£2p (3 .2 .3 )
c25t2

Where 72 is the Laplacian in spherical polar coordinates;

V2p = 1 6 >25p' + 1 5 sin65p + 1 52p (3.2.4)
r25r 5r r2sin8 56 59 r2sin265q>2

With the axial symmetry described above, the general solution to 
(3.2.3) has the following form (Morse 1968);

oo

- E -
P = J AmPm(p) 

m=0

jm(kr)

yo(kr)
e-iot (3 .2 .5 )

Where Pm is the Legendre function, p=cos6, jm is the spherical Bessel 
function and ym is the spherical Neumann function. For r<a, terms in 
ym cannot be allowed if the solution is to be finite and realistic at 
the origin, leaving;

Pe

00

— ̂  BmPm(p)jm(k«r)e-i*t (3.2.6)
m=0

However, outside the sphere, r>a, no such restriction exists and the 
general solution is of the form;
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oo
P ~ j AmPm(p)[ jm(kr) + iyœCkr) (3.2.7)

m=0

The exact equation for the incident plane wave has the same form as 
above, with known values for the constant Am, thus;

Po = (pci )i/2 > (-i)m(2m+l)Pœ(|i) jm(kr)e-i»t (3.2.8)
m=0

The radial component of the fluid velocity is given by the following 
equation, for any part of the system;

ur = -i S(p) (3.2.9)
pc 5(kr)

Combining (3.2.6) to (3.2.8) in (3.2.9) leaves the three elements of 
the velocity as;

oo
Ur - Am Pm(p)[oi:m(kr) + i30(kr) le-i“t (3.2.10)

pc m=0 2m+l

oo
^  (-i)mPmUo,r = -i(pcI)l/2/ (-i )mPm(p)CXm(kr)e-i“t (3.2.11)

pc m=0

and,
00

>,r = ~i Bm Pm<Uc,r = -i y Bm Pm(p)odm(ker)e-iût (3.2.12)
Pece m=0 2m+l

where ;

am(kr) = (2m+l)jm'(kr) (3.2.13)

and.



43

Pm<kr) = (3m+l)ym'Ckr) (3.2.14)

Where the prime indicates differentiation with respect to the 
argument.

Substituting the general equations (3.2.6) to (3.2.8) and (3.2.10) to 
(3.2.12) into the boundary conditions at the surface of the sphere
(3.2.1) and (3.2.2) respectively, leaves two equations in two 
unknowns. Am and Bm, which can be solved simultaneously, to give ;

Am = -(pci )l/2(-i)ra(2m+l ) (3.2.15)
1+iCm

Where ;

Cm = Ofm(kea) ym (ka) - pm(ka) peCe
ofm(ka) jm(k@a) (Xm(ka) pc
am (kea) jm(ka) PeCe
ofm(ka) jm(kea) pc

(3.2.16)

Hence the pressure at any point ouside the sphere can be found using 
(3.2.7);

00

p = -(pci )i/^  ' (-i )«(2m-H )Pm(p.)C jm(kr) + iym(kr) le-iot (3.2.17)
m=0 1+iCm

To rearrange this into the more usual format, substitutions are made 
for Cm, %  and 0m and it is noted that the spherical Hankel function 
is given by;

hm(kr) = jm(kr) + iym(kr) (3.2.18)

This leaves, with the term e-i°t understood;
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00
p = (pci )i/2 \  (2m+l)(-i)«Pm(cos6) jm'(ka) -pc jm'(k«a) jB(ka)

m=0 PeCe jm(kea)
hm'(ka) - pc jm'(kea) ha(ka)

peCe jm(kea)

haCkr)

(3.2.19)

In the case of the far field, kr»l, the above expression can be 
simplified by noting that (Lenn 1985);

(-i)mhm(kr) -» -i eikr(-l)» 
kr

(3.2.20)

And (3.2.19) becomes (2.3.1 from before);

p = (pci)1/2
oo

y (— l)m
m=0

(2m+l)Pm(cos6) jm'(ka) -pc jm'(kea) jm(ka)* 
PeCe jo(kea)

hm'(ka) - pc jm1(k»a) hm(ka) 
PeCe jm(k@a)

ieikr

kr

(3.2.21)

3.3 Approximations to the General Theory.

When the material of the scatterer has an acoustic impedance that is 
much greater than that of the surrounding medium, then pece»pc and 
equation (3.2.21) reduces to (2.4.1 from before);

00

p(r,6) = (pci)l/2^  (-l)m(2m+l)i"Pm(cos8) jm(kr) - jm'(ka)
hm ' (ka).

hm(kr)

m=0
(3.3.1)
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The mathematics used to derive the above equations has been totally 
general as to the values of ka and k.a, however, a few useful 
approximations can be derived from the above equation when ka«l and 
ka»l, as mentioned in chapter 2. The first case corresponding to the 
classical Rayleigh/Tyndall (blue sky) scattering and the second case 
to the geometric shadow equation.

In terms of intensities, I=p2/pc, with U  the incident intensity;

ka((l ; I (r, 0) = 16it*a61,
9 X *r2

1 + ScosOl;  J (3.3.2)

ka»l; I(r,6) = a2I, 
4r2 r cot2(0/2)Ji2(kasin0)l (3.3.3)

3.4 Calculating the Scattered Pressure.

In order to calculate the pressure of the scattered wave, so that 
comparisons with experiments can be made, it is necessary to evaluate 
equation (3.2.22) for every value 0<m<oo, which in turn means 
evaluating various spherical Bessel functions, Hankel functions and 
Legendre polynomials, each of which is the sum of an infinite series. 
The usual technique has involved evaluating the functions from first 
principles and then truncating each series with some predetermined 
convergence criteria (Abramowitz and Stegun (1965), Lenn (1985)).

For example, the spherical Bessel function of order m and argument z 
would be found using the following series;

jm(z) = z® n  - z2/2
1.3.5..(2m+l)

(z2/2)2
1 !(2m+3) 2 !(2m+3)(2m+5)

(3.4.4)

In order to make the calculations simpler, the following steps have 
been taken.

(i) The spherical Hankel function is split into its two component
parts, the Bessel and Neumann functions, as follows;



46

hm(z) = jm(z) + iy«(z> (3.4.5)

This allows the real and complex parts of equation (3.2.22) to be 
separated and double precision to be used for each part. Equation
(3.2.21) then becomes;

(ii) The spherical Bessel and Neumann functions can be replaced by 
simple trigonometrical functions which are standard to FORTRAN, and 
simple recurrence relationships negate the use of the primary level of 
summation used in previous works. The following substitutions and 
recurrence relationships were used (Abramowiz 1965);

jo(z) = sin(z)/z
jl(z) = sin(z)/z2 - cos(z)/z
jn(z) = (2n-l) jn-l(z)/z - jn-2(z) (3.4.7)

jo'(z) = -sin(z)/z2 + cos(z)/z
jl'(z) = (1/z - 2/z3)sin(z) + 2cos(z)/z2
jn'(z) = jn-l(z) - (n+1)jn(z)/z (3.4.8)

yo(z) = -cos(z)/z
yi(z) = -cos(z)/z2 - sin(z)/z
yn(z) = (2n-l)yn-l(z)/z - yn-2(z) (3.4.9)

00

P = (pci )l/2 ieikr
Tl2+T22 T12+T 22

(3.4.6)
Where, Ti=jm'(ka)-Bjm(ka), T2=ym'(ka)-Bym(ka) and B=pcjm'(kea)

PeCejm(ke8)

yo’(z) = cos(z)/z2 + sin(z)/z
yi'(z) = (2/z3 - l/z)cos(z) + 2sin(z)/z2
yn'(z) = (1 - (n+l)(2n-l )/z2)yn_i(z) + (n+1 )yn-2(z)/z (3.4.10)
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It is worthy of note that the differential terms are evaluated from 
the basic function. This approach saves a considerable amount of 
programming and computer time.

(iii) Similarly, the Legendre polynomials can be found using 
recurrence relationships as follows;

1 
x
(2 - l/n)xPn-i(x) - (1 - l/n)P„-2(x) (3.4.11)

Before continuing and evaluating the full equation for the scattered 
pressure, it will be instructive to see how accurate the above 
functions, (3.4.7) to (3.4.11) are, since recurrence relationships 
tend to amplify rounding errors of earlier terms. Figure 3.4a gives 
various comparisons between the above methods of calculation and the 
values given in Abramowitz (1965).

Po(x) = 
Pl(x) = 
Pn(x) =
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Calculated Published

JoCl) 
jlCl) 
jaCl ) 
j3(l> 
j4(l)
jsCD
j6(l>
j7d)
jeCi) 
jsCD 
jloCl )

0.8414709848 0.84147098 
0.3011686789 0.30116868 
6.203505201 IE-2 6.2035052E-2 
9.0065811171E-3 9.0066E-3 
1.0110158084E-3 1.0110E-3 
9.2561158605E-5 9.2561E-5 
7.1569362449E-6 7.1569E-6 
4.7901257872E-7 4.7901E-7 
2.8252435987E-8 2.8265E-8 
1.2788330672E-9 1.49137E-9 

-3.9546077107E-9 7.11655E-11

ynd) correct to n-2O to 10 figures, 
numerical overflow at n=28

jnCIO)
jigCIO)
jzoCIO)

correct to n=18 to 10 figures 
8.896627273E-6 8.896627269E-6 
2.308371975E-6 2.308371961E-6 
First figure lost at n=26

ynCIO) correct to n=50 to 10 figures, 
followed by numerical overflow

j4<0.1)
jsCO.l)

1.0577E-7 1.0577E-7 
2.3153E-9 9.6163E-10

ynCO.1) correct to n=10 to 10 figures, limited by tables.

Pn<COS8) correct for all 0<8<90° and n<10 to 8 figures.

Figure 3.4a Table comparing published (Abramowitz 1965) and calculated 
spherical functions.

The consequences for the finite accurate length of some of the series 
will be covered in detail later when the full scattering equation is 
analysed. The use of the full numerical series is also found to 
produce identical shortcomings due to the rounding errors in the most 
significant fractions of the series.

3.5 Computer Program to Calculate the Scattered Pressure.

The acoustic pressure scattered by a spherical object is given by 
equation 3.3.21 and figure 3.5a shows a flow diagram of the FORTRAN 
program used to evaluate the equation.
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END

m=0

converged ?

Input Wave Data

Input Material DataPreset Material Data

Input scatterer Data

Input Angular Step Size

Input Convergence Criteria

Save p(8), 1(8) 
In data file

Calculate p(8), 1(8) 
for all angles

Dimension arrays in 8 
for all variables

Calculate Legendre Polynomial 
for all angles

Functions for relevant interaction
Calculate Bessel and Neumann

Type Of Scattering 
Inpenetrable, Surface Effect, Body Effects

Figure 3.5a Flow diagram of FORTRAN Program to determine scattered 
pressure.
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3.6 Characterising the Acoustic Field of a Transducer.

Before beginning a description of the main experiments, namely 
ultrasonic scattering from liquid droplets, the concept of the far 
field must be investigated, the previous sections have already taken 
the far field into account with the approximation for h«(kr) given in 
equation (3.2.21). A more physical description is required before the 
mathematical approximation can be considered valid.

All of the preceding theory and calculations have required the 
wavefront to be infinite in space and a perfect sine wave. It is clear 
that this situation is physically unrealisable. Ultrasonic transducers 
can only be manufactured to a finite (small) size. The main problem 
with a continuous wave source are the standing waves that are set up 
in the apparatus. This can be overcome by using non-sinusoidal 
waveforms such as pulses of various shapes (Ha 1983 and Stepanishen 
1981), but the full analysis for the scattering problem becomes 
considerably more complicated than that described above. Provided the 
scatterers are smaller than the length of - the wavetrain, then some 
typical part of the wavetrain (eg the peak) can be assumed to be part 
of a sinusoidal wave of that amplitude for the analysis of the 
incident and scattered wave.

The finite size of the transducer (both receiver and transmitter) face 
provides its own problems. The following arguments will refer to plane 
transducer faces, but it should be noted that transducers with 
focussing surfaces are commercially available (Edwards 1983). The near 
field and far field of an acoustic transducer are defined exactly as 
their optical counterparts (Fresnel and Fraunhofer respectively), in 
the first case, the signal at a point must be found by integrating the 
signal from each point on the transducer taking into account its phase 
and in the second case, the phase from each part of the transducer can 
be assumed the same. The far field is the simplest to calculate since 
the transducer is behaving as a point source with its intensity 
dropping off as l/r2. The first case of the near field is much more 
complicated and has been studied experimentally and theoretically 
(Weight 1984 and Zemanek 1971). Reproduced below are some transducer 
characteristics, and although not directly comparable (they are for
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150 ,150
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Off ax is  (mm)
-20

Distance off axis (mm)Distance

Fig 3.6a Sound pressure as a function of radial position and range 
(a=19mD, f=2KHz) for a continuous wave excitation and a 1.5X pulse at 
that frequency (Weight 1984).

Ze

Fig 3.6b Sound pressure contour, showing complex near field (a/X=2.5), 
(Zemanek 1971)

Near Field Far Field
Zeros

z.o

“ l.o-

4.0
Normalised Axial Distance

1971)'6 C  MaSnltude of on~axls pressure variations <a/X=2.5), (Zemanek
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different transducers and from different papers), they should give a 
feel for what happens in the acoustic field of a typical transducer 
with a face of radius 'a' (figures 3.6a and b)

Further analysis (including a direct optical analogy) reveals that the 
greater the ratio a/X the more beam-like is the resulting far field 
wave, and in the limit the diffraction edges becoming negligible when 
compared with the cylindrical beam.

The main aim of this section is to find when the axial position can be 
considered to be in the far field, since, as can be seen in figures 
3.6c and d, a transducer has several 'blind-spots‘ in its near field, 
where the amplitude of the pressure wave is zero, and so could not be 
used to detect anything.

Most sources give a definition of the far field of a finite source as 
Ka2/X, where K is a constant between 0.5 and 2, depending on the 
author. These methods all involve finding the point closest to the 
source at which the waves from every point on the source contribute 
positively. An alternative and much simpler derivation will be given 
below.

Using the principles of reciprocity, let the transducer be a receiver 
and let the point in question be a perfect point source (figure 3.6g). 
The plane face of the transducer will intersect a continuous spherical 
wavefront. The potential difference generated by the transducer will 
be proportional to the integral of the instantaneous pressure on the 
face. For an axial source, the face will intersect more than one 
wavefront if the axial position is less than a certain critical value. 
For a distance less than this critical value, a phase pattern 
identicle to Newton's Rings experiment will be generated on the 
transducer face and so there will be a possibility of the total 
pressure being zero. When all of the waveform is contributary, ie a 
single wavefront, phase 0-it, this will give a minimum distance for the 
far field.

Using Pythagoras' Theorem, r = a2/X - X/4, thus for all sensible 
tranducer designs, the term X/4 is negligible.
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0.9
0.6 :: ..ne

 ̂ 0.5'
0.4

0.3 0.5a
0.2

Fig 3.6d A superposition of the last three plots <a/X=2.5), CZemanek 
1971)
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2 0 1 o g io p

VO , '

06"

Fig 3.6e Far field beam pattern (a/X=2.78), CZemanek 1971)

2 0 1 o g io p

d*

20*8̂
I

Fig 3.6f Far field beam pattern (a/X=5.62), CZemanek 1971)
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Point Source

Transducer

' X / 2

Fig 3.6g Derivation of a far field equation
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3.7 Preliminary Ultrasonic Experiments

In order to study the scattering of ultrasound from liquid droplets, 
an apparatus had to be designed that could suspend the droplet in the 
acoustic field. An experimental design had to be found that satisfied 
the following criteria;

Ca) The acoustic observation section must have as small an effect on 
the sound wave as possible, so as not to interfere significantly with 
the wave scattered from the droplet. This precludes any sort of 
physical support, which would necessarily be a solid. A solid would 
strongly scatter any acoustic wave as well as deform the shape of the 
droplet. The only way around this is to produce a purely hydrodynamic 
support.

(b) The flow must be laminar, otherwise the droplet would not be 
stationary in the acoustic field. A turbulent flow could also deform 
the droplet.

Cc) The flow rate has to be able to be controlled accurately enough to 
bring a single droplet to rest anywhere in the acoustic field, with 
the buoyancy forces exactly cancelling the hydrodynamic forces.

Cd) This flow rate must remain stable over long periods of time 
(-hours) in order to carry out adequate ultrasonic experiments.

(e) The apparatus must be easily dismantled and cleaned, so that 
repairs can be effected and contaminants removed.

(f) The design must be capable of being modified such that the flow in 
the observation section can be either (i) upwards or (ii) downwards, 
depending on whether the droplet is (i) more or (ii) less dense than 
the surrounding fluid.

A full description of the design and testing of the apparatus is given 
in appendix A.
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90

50
logic (Rx/mV)

Figure 3.7a Continuous wave scattering from the observation section
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Before beginning the scattering experiments from droplets, it was 
necessary to investigate fully the behaviour of the whole acoustic 
system. Criteria such as repeatability, accuracy and any possible 
technical problems have to be eliminated at this early stage.

All of the initial tests were carried out using the downflow apparatus 
(shown in figure A.2a), with the transmitter being a Schlumberger 
1.25MHz ceramic transducer and the receiver being a MatEval 1MHz 
transducer. The reasons for this choice will be discussed elsewhere. 
The transmitter was driven with a 10V peak to peak 1MHz continuous 
sine wave from a Philips digital signal generator. Both transducers 
are 5cm i 0.1cm from the centreline of the observation section. Slowly 
sweeping the receiver from 8=00 to 1350 revealed some sort of 
weakinterference pattern with peaks at approximately 30 intervals. 
This showed up clearly even though the receiver subtended an angle of 
170 with respect to the centre of the observation section. In order to 
appreciate the size of the signal scattered from the observation 
section, it is plotted in figure 3.7a for an angular step size of 100. 
Because of the fineness of the interference pattern and the fact that 
8 could only be measured to ±0.250 an average of ten values was taken 
for each point.

An analysis of the acoustic system, assuming the observation section 
and the transmitter to be coherent point sources generating an 
interference pattern and the receiver to be a point also, reveals that 
there would be an amplitude maximum when;

cos(8/2) = (1 + nX/R)/2 (3.7.1)

for all integer values of n. This leads to 33 maximae for 00<8<1800, 
confirming qualitatively the above results. This means that the signal 
from the transmitter cannot be assumed to be a narrow beam and the 
signal in the periphery is comparable with the signal scattered from 
the observation section. Indeed this is confirmation that the 
observation section is scattering some of the incident signal.

The scattered signal from the observation section was found to be 
independent of the static head of the liquid in the section and
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independent of the flow rate of the liquid. After several hours, the 
water started to degas onto the solid surfaces, transducer faces and 
both inside and outside the observation section, which caused a severe 
disruption of the acoustic signal. The degassing inside the 
observation section set an upper limit on the period of a single 
experiment.

Small leaks in the observation section could be sealed with a tiny dot 
of cellulose lacquer without affecting the scattered signal.

The problem of the interference pattern on this scale cannot be 
resolved without resorting to considerably more repeatable apparatus 
and theoretical complexity. However, the interference pattern could be 
eliminated from the apparatus by a choice of waveform other than 
continuous. Two distinct possibilities exist for the form of the 
driving signal for the transmitting transducer, either some form of 
modulated sinewave or some sort of spike approximating to a Dirac 
delta function. A suitable choice of waveform would produce a spatial 
separation between the wave from the periphery of the transducer and 
the scattered wave from the observation section (and ultimately from 
the scattering droplet).

The first experiments along these lines involved the use of a Par 150B 
spike generator, driving the transducer with a 150V spike of 
approximately 50ns duration repeated every 0.2ms. The transducer could 
not respond this quickly, and produced a short pulse of waves at its 
resonant frequency. The length and shape of the pulse was determined 
solely by the physical properties of the transducer. The Schlumberger 
transducer produced a wavepacket 3X long at a frequency of 
1.15±0.04MHz. Assuming the speed of sound in water to be 1450m/s, this 
meant that the pulse was 3.8mm long in water. A plan of the acoustic 
system is shown in figure 3.7b and a typical scattered signal is 
sketched in figure 3.7c

Thus it can be seen that the wave packets were quite distinct for 
large values of 8, and two separate signals were scattered from the 
observation section. These two signals were found to be far more 
complicated than figure 3.7b would imply, since the tube was not just
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Droplet

Observation Section
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Figure 3.7b A plan of the acoustic system
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f time/ps
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Figure 3.7c A typical scattered signal.
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a simple front wall and rear wall, but was cylindrical . The two 
signals could be resolved for 6 > 250, below which they became
superposed and interfere in a fairly simple manner.

The size of these wall signals was used as a check that the acoustic 
and electronic system was repeatable from experiment to experiment and 
from day to day. Figures 3.7d and 3.7e show the scattered signals from 
the front and rear walls respectively and figure 3.7f is a plot of the 
path difference between these two signals.

Identical results were found if the transmitter was driven using a 10V 
p-p signal at a frequency of 1.15MHz for 3 periods of a sinewave.

3.8 Ultrasonic Scattering From Single Droplets.

In order to check the conclusions of the above section, scattering 
experiments were carried out using all three types of driving signal; 
continuous sine wave 10V p-p, 150V spike and the modulated sine wave, 
3X at 10V p-p.

In the case of the continuous wave, even more interference phenomenae 
occurred when a droplet was placed in the observation section. A 
kerosene droplet -1mm in diameter Cka-2.3) produced a minimum signal 
when it was at the point where the axes of the transducers intersected 
the axis of the observation section, and produced maxima when moved 
vertically ±17mm from this point. Again a simple calculation, assuming 
the observation section to be a line source and the droplet to be a 
point source confirmed this observation.

The angular scattering was determined for the upper maximum position, 
and the droplet was moved in and out of the observation section (by 
adjusting the flow rate), without moving the transducer, so that the 
signal scattered from the observation section alone could be found.

For small scattering angles, even with the short wavepackets, the 
wavepacket scattered by the droplet could not be easily distinguished 
from the waves scattered by the observation section. By moving the
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Figure 3.7d Signal scattered from the front wall
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Figure 3.7e Signal scattered from the rear wall
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Figure 3.7f Acoustic path difference between the front and rear walls
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droplet around in the observation section, it became clear that the 
phase relationship between the two signals (droplet and observation
section) was spatially dependent. To overcome this, the droplet was
moved around until a maximum value was found, and so the two signals
could be considered to be in phase, and the difference was taken to be
the signal scattered by the droplet.

The total signal scattered from the droplet and pipe is given in 
figure 3.8a and having assumed these two signals to be in phase, the 
signal from the droplet a 1one was calculated and is given in figure 
3.8b.

It is clear, even from this single experiment, that the scattered 
signal can be resolved form the background signal, and that scattered 
lobes are being detected, in qualitative agreement with published 
theoretical plots, Morse (1953,1968) and Anderson (1950).

Due to the considerable technical difficulties encountered during the 
above experiment, mainly in finding a maximum signal for each angle, 
which took a total of over 4 hours, this method was not continued.

The following figures contain scattering data for a series of 
experiments that used the spike generator to drive the transmitter. 
The frequencies and particle sizes were chosen to highlight a range of 
values of ka where interesting phenomena are expected, ie near 
Rayleigh and diffraction scattering.

The experimental data is tabulated in figure 8.3b' and is plotted 
along with the theoretical calculations of the scattered pressures 
(found using the full form of equation 3.2.21.), in figures 3.8c to x 
The droplets were sized photographically as described in appendix A. 
As mentioned above, the peak amplitude is taken as the representative 
scattered signal and the main frequency component is taken to be that 
of the continuous sinewave for the theoretical treatment.

The data is a representative part of a series of experiments designed 
to cover the whole range of materials and droplet sizes. As an aside, 
the scattering from solid particles of glass, sand and iron was also
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Figure 3.8a The total scattered signal from a kerosene droplet, d=lmm

to

0 5
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Figure 3.8b The scattered signal from the kerosene droplet, d-lmm
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6

Fig Detail 0 10 20 30 40 50 60 70 80 90 100 110 120 130 ka

c kiw O.SSttœr 10 10 8 7 4.4 2.8 1.8 1.8 1.6 2.0 1.8 1.8 1.6 1.6 4.4
d kiw O.&nmr t 6 5 5 3.5 2.2 2.0 1.2 1.6 1.6 1.6 1.6 1.6 1.6 4.0
e kiw 0.75mmr 1.2 1.6
f kiw 1.06mnr 20 15 10 5 2.4 2.4 2.0 2.0 2.0 2.0 1.6 2.0 1.6 1.4 5.3

kiw 0.255omr t t t t *.2 *.2 *.2 *.2 *.2 <.2 .2 .6 .4 .4 1.2
aiw 0.34&nmd 2.6 2.6 2.4 1.7
aiw ? 1.0
kiw 895pmr 1.8p 4.45
kiw 940pnr 1.6p 4.68
kiw 790pmr 1.6p 3.94
kiw 740pmr 1.6p 3.69
giw 420pmd 1.0 1.05
giw 250pmd 2-.3 0.62
giw 177pmd (.1 0.44
giw 149pmd no signal 0.37
aiw lOGpmd no signal 0.26
giw 500-600pmd 0.8 1.37
giw 600-710pmd 1.0 1.63
giw 710-850pmd 1.0 1.94
giw 850-100Opmd 1.5 2.30
giw 1-1. 4flmd 2.0 2.99

g giw 2.3mrod 10 10 8 6 4 4.2 4 4 4 3.4 3.8 4 4 4.8 5.73
h giw 1-1.4mmd 1*4 3-4 *2 *2 *1 *1.5 *3 *2 *1.5 *1.5 *1 *2 *2 *2 2.99
i giw 850-1000pmd 1*2 *1 1 1 *1.5 1 1.5 2 2 2 2 2 1.5 *1.5 2.30
j giw 710-850pmd ».5 *1 *1 *.5 *.5 1.5 1 2 1.5 2 1.5 1 1 1 1.94
k giw 600-710pmd 1.5 *.5 *.5 *.5 .5 *.5 *.5 .5 .5 .5 .8 1 1 *1 1.63
1 giw 500-600fimd 1.2 *.2 *.2 •.2 *.2 *.2 * 4  *.4 *.5 *.5 .8 *.8 *.B *.B 1.37

wik 1289pmr *1.8 7.03
n wik 364pmr t t *.5 *.5 .4 .6 .8 1 1.2 1.2 1 .8 .8 .5 1.99
o wik 777(jmr t t 1 1.6 1.6 1.6 1 2 1.4 1.6 1.4 1.4 1 1.2 4.24
m wik 989pmr (10 10 10 8 6 3 2.2 2 1.6 1.6 1.6 1.2 1.6 1.2 5.40
P multiple t t + *.6 .6 1 1.4 1.6 1.6 1.2 1.2 1 .8 .8
q wik 2.2mmd 20 *20 >10 10 5 2 2 2.4 2.2 2 1.6 1.6 1.2 1.6 6.00
r wik 1.05nrod t t *1 t 1.2 1.2 2 2 1.6 1.4 1.4 1.2 1.2 1.2 2.87
s wik 1.22mnd t t *2 *2 *2 *2 1.6 2 1.2 .8 1 *.6 .8 .8 3.32
t wik 1.29nmd t t *6 4 4.2 2.8 2.8 1.6 1.6 1 .8 <1 1 1 3.52
u wik 1.44mmd t 8 2-4 8 5.2 3.2 3 1.6 1.6 1.4 1.2 1.2 *1.2 1.2 3,93
V iik 1.4-1. ISmud + t 4 4 *3 1.6 2 2 1.6 *2 2 1.4 1.2 1 3.52
w iik 1-1.18nmd t *4 *2 2 1 ?1 2-2.4 2.4 2.4 2 1.6 1.6 1.6 1.6 2.97
X iik 850-lmnd t t 1-2 .5-1 1 1.6 2 2 2 1 1.2 1.2 1.6 1.6 2.52

Figure 3.8b' Sample of experimental 

Key: Detail: k=kerosene, w=water, s

data. 

=sand, g=glass , i==iron. i=in,
d=diameter, r=radius 
t=too small to measure or indistinguishable from the wall reading 
*=difficult reading 
Fig= Figure 3.8
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30

Rx/nV 10

Figure 3.8c Experimental scattering from kerosene in water, ka=4.4

2.5
Pi /Pa

Figure 3.6C Theoretical scattering from Kerosene in water, ka=4.4
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100 R x /h V

Figure 3.8d Experimental scattering from kerosene in water, ka=4. 0

SO

2.5
I p i / P a0

Figure 3.8d.' Theoretical scattering from kerosene in water, ka 4.0
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20
R x / h V

Figure 3.8e Experimental scattering from kerosene in water, ka=5.3

pi  / P a

Figure 3.8e' Theoretical scattering from kerosene in water, ka=5.3
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Figure 3.8f Experimental scattering from kerosene in water, ka=1.27

pi / P a

Figure 3.8f' Theoretical scattering from kerosene in water, ka=1.27
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100

Figure 3.8g Experimental scattering from glass in water, ka=5.73

10pi  / P a

Figure 3.8g' Theoretical scattering from glass in water, ka=5.73



0 Rx/nV 5

Figure 3.8h Experimental scattering from glass in water, ka=2.99

pi  / P a

Figure 3.8h' Theoretical scattering from glass in water, ka=2.99



50 Rx/mV

Figure 3.81 Experimental scattering from glass in water, ka=2.30

pi  / P a

Figure 3.81' Theoretical scattering from glass in water, ka=2.30



Rx/mV

Figure 3.ÔJ Experimental scattering from glass in ater, ka=l.94

2.5

p i / P a

Figure 3.8j Theoretical scattering from glass in water, ka=l.94
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SO

20 Rx/mV

Figure 3.8k Experimental scattering from glass in water, ka-1.63

20 I p i / P a

Figure 3.8k' Theoretical scattering from glass in water, ka-1.63
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10

Figure 3.81 Experimental scattering from glass in water, ka=1.37

10 I pi/Pa
Figure 3.81' Theoretical scattering from glass in water, ka-1.37
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Rx/mV

Figure 3.8m Experimental scattering from water in kerosene, ka=5.40

90

100 I pi/Pa

Figure 3.8m' Theoretical scattering from water in kerosene, ka=5.40
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Rx/mV

Figure 3.8n Experimental scattering from water in kerosene, ka=l.99

50

10pi /Pa

Figure 3.8n' Theoretical scattering from water in kerosene, ka=l.99



u Rx/mV

Figure 3.8o Experimental scattering from water in kerosene, ka=4.24

pi /Pa

Figure 3.80' Theoretical scattering from water in kerosene, ka=4.24
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Rx/mV

Figure 3.8p Experimental scattering from water in kerosene, ka 5.40

Figure 3.8p' Theoretical scattering from water in kerosene, ka=5.4
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20Rx/nV

Figure 3.8q Experimental scattering from water in kerosene, ka=6.00

10pi /Pa
kerosene, ka=6.00Figure 3.8q' Theoretical scattering from water infrora
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Rx/mV

Figure 3.8r Experimental scattering from water in kerosene, ka-2.87

pi /Pa

Figure 3.8r' Theoretical scattering from water in kerosene, ka 2.87
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2. 5Rx/mV

Figure 3.8s Experimental scattering from water in kerosene, ka=3.32

2. 5
I p i / P a

Figure 3.8s' Theoretical scattering from water in kerosene, ka=3.32
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90

10Rx/mV

Figure 3.8t Experimental scattering from water in kerosene, ka=3.52

50 I pi/Pa

Figure 3.8t ' Theoretical scattering from water in kerosene, ka=3.52
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10Rx/mV

Figure 3.8u Experimental scattering from water in kerosene, ka=3.93

pi /Pa

Figure 3.8u' Theoretical scattering from water in kerosene, ka=3.93



Rx/mV

Figure 3.8v Experimental scattering from iron in kerosene, ka=3.52

5Ü

pi /Pa

Figure 3.8v' Theoretical scattering from iron in kerosene, ka=3.52
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Rx/mV

Figure 3.8w Experimental scattering from iron in kerosene, ka=2.97

I pi/Pa

Figure 3.8w' Theoretical scattering from iron in kerosene, ka=2.97



87

2.5Rx/mV

Figure 3.8x Experimental scattering from iron in kerosene, ka=2.52

2. 5pi /Pa

Figure 3.8x' Theoretical scattering from iron in kerosene, ka=2.52
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carried out. The fluid flow was not great enough to suspend these 
particles, and so the particles were graded and dropped through the 
acoustic observation section one at a time.

The experimental measurements were taken every 100 from +1300 to - 
1300, with a minimum of 10 measurements at each angle. The droplet was 
moved through the observation section by varying the flow, thus 
ensuring the droplet was at the point of maximum acoustic intensity of 
the beam, and hence producing repeatability from droplet to droplet. 
The voltage of the peak was measured directly on an oscilloscope. For 
8<300, the signal from the droplet arrives at the receiver at the same 
time as the signal from the front and rear walls, producing one 
combined signal, as described in the last section. Thus the droplet 
was moved in and out of the observation section, till the change in 
signal due to the presence of the droplet was found to be a maximum, 
implying the signal scattered from the droplet is in phase with those 
from the walls and that the droplet is on the axis of the transmitted 
signal.

None of the experiments showed any discrepancy between VC+8) and V(-6) 
greater than the experimental error that could not be accounted for 
(and eliminated) as a changing experimental parameter, such as an 
impurity on the wall of the observation section.

3.9 Discussion and Conclusions.

Starting from first principles, this chapter has considered the 
scattering of an acoustic wave from a fluid sphere. The ultrasonic 
properties of the experimental apparatus have been studied in detail, 
so as to reveal the best method for determining the scattered pressure 
from individual spheres.

The use of the full scattering equation when comparing theoretical and 
experimental scattering profiles, has produced good agreement over the 
full range of scatterer parameters (acoustic impedance and size), in 
the general shapes and sizes of the signals. Nodes and peaks in the 
scattered profile occurring at approximately the correct angles and
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the relative sizes of the peaks also show good agreement. The effect 
of approximating the general theory, ie assuming the fluid spheres to 
be solid, has not been considered at this stage, but will be detailed 
in the next chapter.

Section 3.8 listed a series of results over a range of scatterer 
properties. Figures 3.9a, b and c, contain a selection of these in the 
form of three series of results from which several qualitative but 
important conclusions can be made, as published in Oddie et al 
(1989,1990) and Lenn et al (1990).

In each case, increasing the size of the scatterer increases the
forward scattered signal, in agreement with the theory. Where a 
distinct broad minimum is found in theory, a dip in the scattered
profile is found experimentally. The sharper dips cannot be resolved, 
due to the finite size of the receiver. In general there is a simple 
linear scaling between the experimental and theoretical results across 
the whole range of scatterer properties displayed here.

There are also a few inconsistent results, for example the spikes
appearing on a few of the results. These are not directly attributable 
to experimental error, since all of the data is a compilation of the 
results from scattering angles of +0 and -8, and the spikes were 
observed on both. An error analysis of these scattering experiments 
will be given in chapter 4, where quantitative conclusions will be 
outlined.

At this stage the qualitative conclusion is that an individual
particle produces a unique scattering profile and can be sized using 
just the profile of the scattered pressure, with the position and 
amplitude of the nodes and lobes, or possibly, the ratio of the 
scattered pressure through two different angles (see chapter 5 for 
details of this letter method in use)

The following chapter will consider characterising the particles using 
the wave scattered through a single angle, as a function of frequency 
(ie ka instead of just the radius a).
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O  P/mV 1.0
JOL

O  P/P; 0 .5

O  P/mV IO O  P/P;

O O  P /P , 5

O  P/p,

Figure 3.9a Scattering profiles for kerosene droplets in water.
ka=1.27, 4.0, 4.4 and 5.3
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O  R/mV 5 O  P/P, 2 0

O  P/mV
j O -  X

O  P/P, IO

P /mV O  P/p, I o
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x y - \

O  P/p, 2 0

Figure 3.9b Scattering profiles for water droplets in kerosene.
ka=1.99, 3.32, 4.24 and 6.00
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1.0P/mV O  P/P; 2

O  P/mV O  P/P; IO

O O  P/r

Figure 3.9c Scattering profiles for sand particles in water.
ka=l.37, 1.94, 2.99 and 5.73
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Chapter 4 : Scattering Cross-Section of a Single Particle.

4.1 Introduction and Theory

An alternative view of scattering, in contrast to the single particle 
size, multiple angle scattering of the previous sections, is to 
consider a single angle and then vary the particle size. The principle 
is best expressed in terms of the 'differential scattering cross- 
section' (briefly detailed in chapters 2 and 3), which is defined as 
follows;

a ( r ,6,<p) a lp(r,8,<p)|2 (4.1.1)

Following the previous approach, the dependence on <p is removed by the 
symmetry of the system, and r is chosen to be a unit constant 
distance, in the far field, and merely acts as a scaling factor. Thus 
(4.1.1) reduces to;

cr ( 6 )  a  I p ( 6 ) 12 ( 4 . 1 . 2 )

The real, or geometric, cross section of the scatterer is given by 
na2. Therefore, the ratio o(8)/na2 will give a measure of the 
effectiveness of the scatterer at that angle. The total cross section 
is found by integrating o(6) over a solid angle of 4ir steradians.

The more usual approach is to find oiso, ie, the backseattered cross 
section. However, due to the physical limitations of the apparatus, 
the largest angle that could be attained was 1300.

From previous arguments, note that p(8) is proportional to the voltage 
shown on the oscilloscope, and consequently;

ct(8) of 1 V(8) 12 (4.1.3)
na 2 7ia2

These values can be found directly from the data in table 3.8b'.
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4.2 Computer program to determine scattering Cross-Section.

The computer program listed and described in section 4.5 was modified, 
so as to calculate <T(6)/ita2 and the resulting flow chart is given 
below.

m=0

End

—  m=m+l

Save a(8)

Converged ?

Calculate ct(8)

Increment radius

Scattering angle

Input wave data

Input size increment

Accuracy/convergence

Input material data Preset material data

Input particle size range

Calculate Legendre polynomial

Calculate relevant Bessel 
and Neumann functions

Type of scattering? 
Inpenetrable, surface or body

Figure 4.2a Flow diagram of the computer program to determine 
scattering cross-section.
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4.3 Theoretical and Experimental Data at 130*.

The scattering cross-section at 130* is calculated directly from table 
3.8b', and the theoretical value is found using the full form of the 
scattering equation, the results being tabulated below in figure 4 .3a 
and appearing graphically in figures 4 .3b to d

Detai1 Viao/mV ka logio( Ipl2/Tca2)

kiw 0.89mmr 1.6 4.4 0.012
kiw 0 .8mmr 1.6 4.0 0.105
kiw 0.75mmr 1.6 3.7 0.160
kiw 1.06mmr 1.4 5.3 -0.256
kiw 0.255mmr 0.4 1.27 -0.0969
aiw 0.967mmd 2.4 2.4 0.895
aiw 0.753mmd 1.0 1.9 0.352
kiw 895pmr 1,8p 4.45 0.109
kiw 940jimr 1.6p 4.68 -0.040
kiw 790gmr 1.6p 3.94 0.116
kiw 740pmr 1.6p 3.69 0.173
giw 420pmd 1.0 1.05 0.857
giw 250pmd . 2— . 3 0.62 -0.088
giw 177pmd <.1 0.44 -0.398
giw 149pmd no signal 0.37
siw 106jimd no signal 0.26
giw 500-600p.md 0.8 1.37 0.430
giw 600-710gmd 1.0 1.63 0.472
giw 710-850pmd 1.0 1.94 0.321
giw 850-1OOOpmd 1.5 2.30 0.525
giw 1-1.4mmd 2.0 2.99 0.549
giw 2.3mmd 4.8 5.73 0.744
giw 1-1.4mmd -2 2.99 0.549
giw 850-1000pmd =1.5 2.30 0.525
giw 710-850|imd 1 1.94 0.321
giw 600-7lOpmd =1 1.63 0.472
giw 500-600pmd = .8 1.37 0.430
wik 1289pmr =1.8 7.03 -0.207
wik 364pmr .5 1.99 -0.211
wik 777pjnr 1.2 4.24 -0.120
wik 989pmr 1.2 5.40 -0.329
multiple .8
wik 2 .2mmd 1.6 6.00 -0.171
wik l.OSmmd 1.2 2.87 0.221
wik 1 .22mmd .8 3.32 -0.262
wik 1.29mmd 1 3.52 -0.166
wik 1.44nvnd 1.2 3.93 -0.0535
iik 1.4-1.18mmd 1 3.5 -0.166
iik 1-1.18mmd 1.6 2.97 0.438
iik 850-lmmd 1.6 2.52 0.581

Figure 4.3a Table of experimental scattering cross-sections at 130* 
The key for the details is the same as for figure 3.8b' above.
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Figure 4.3b Experimental y 130 For kerosene, air and glass in water.
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Figure 4.3b' Theoretical cso For kerosene, air and glass in water,
assuming an extended reaction.
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Figure 4.3c Experimental r,3o for water and iron in kerosene.
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Figure 4,3c' Theoretical triao For iron and water in kerosene, assuming
an extended reaction.
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Figure 4.3d Theoretical o'130 For air, sand and water in kerosene,
assuming an extended reaction.
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All of the above experiments, including those of chapter 3, have 
involved the direct measurement of the scattered signal using a 
Tektronix 2215 oscilloscope. The gain of the oscilloscope was adjusted 
during each reading to maximise the size of the signal on the screen.

Direct reading errors amount to no more than half of the smallest 
division on the screen at that scale. The smallest scale used was 
2mV/division, leading to an error of tO.lmV. The droplets were sized 
photographically as described in appendix A, leading to errors of less 
than 5% in diameter. The solid particles were generally from reliable 
sources (BDH Chemicals Ltd) and were all sieved using standard meshes, 
to produce narrow size distributions, though these were not 
quantified.

4.4 Backscatiering Introduction.

As has been described in the previous sections, the apparatus was
limited to 0o<8<130°. In order to obtain information about the 
differential backscattering cross section, ie with 6=180°, a totally 
different approach must be taken.

4.5 Backscattering Apparatus.

During this part of the experiment, a prototype range gated
backscattering cross correlation flowmeter was made available for test 
purposes. The circuit design and construction is that of Pogaridis 
(1988). The design was also rebuilt so that the whole of the timing
circuit was digital and so could be controlled by a BBC microcomputer.
The latter design was found to produce inferior results during the 
initial comparative experiments, and so the original circuit was used 
during the main series experiments.

The basic principles of the system are as follows;
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(a) The transducer is driven at its resonant frequency (2MHz) for a 
short period of time, usually producing a small and integral number of 
wave1 eng ths(-3X).

(b) The driving circuit is then switched off, and the transducer lies 
dormant.

C O  A predetermined time later, a receiving circuit is activated, 
again for a finite duration, for the transducer to behave as a passive 
receiver. These times determine the size and position of the 
observation window relative to the front face of the transducer.

(d) For this work, this signal is then analysed. For the cross 
correlation flow meter, this signal would then be filtered, amplified 
and then compared with the signal from an identical system that is a 
known distance further down the pipe, the correlation peak giving the 
time for the scatterer to move between the two transducers.

Ce) In contrast to all commercially available backscattering systems, 
the amplifiers in this circuit are balanced so that they are not 
saturated when an object passes through the observation window. This 
leaves an output signal that is a function of the scattered pressure 
incident on the face of the transducer.

4.6 Theoretical and Experimental Data at 180*.

Two separate experiments were carried out. The first involved the flow 
of a kerosene emulsion past the face of the tranducer, such that at 
any instant, the droplets in the observation window were approximately 
monodisperse and the window was narrow enough, and the emulsion dilute 
enough for the signal from an individual droplet to be observed. The 
emulsion was generated by injecting a known volume of kerosene in a 
known period of time through a capillary tube. The time for the 
droplets to rise to the observation window was noted alongside the 
reading, and the droplets were also photographed. As has been noted in 
previous sections, the photographic method was the best way to 
determine the droplet sizes.
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The second experiment involved dropping glass and iron beads of known 
sizes through the observation window. As with the last section, the 
backseattered cross section was calculated directly from the output 
voltage and the measured size of the particle. The various results and 
calculations appear tabulated below in figure 4.6a. The particle data 
was entereded into the previous computer program and plots for the 
backseattered cross-section were found for the various material 
combinations. Various experimental results can be found in figures 
4.6b to h. The results will be fully discussed in section 4.9.

Medium Size Signal ka loglO(ka) IV|2/ra2 logl0< IV|2/na2)

Emulsion 0-18s 430pm' Saturated 3.7 0.568 4.975B6 6.70
20s 190pmr 1.5V 1.6 0.204 1.984E7 7.30
30s 160pmr IV 1.4 0.146 1.243E7 7.09
50s 120pmr .5V 1.0 0.000 5.526B6 6.74
60s HOpmr ,5V 0.95 -0.0223 6.576B6 6.81
90s Slpmr .25V 0.79 -0.102 2.402B6 6.38
120s 79pmr .IV 0.68 -0.167 5.100E5 5.71

giw 2.3brad >1.7-Sat Saturated 10 1.000 6.800E5 5.83
giw 1-1. 4n*ad 1.5-Sat 1.5-sat 4.33-6.1 0.636-0.785 2.86B6-1.88B6 6.46-6.27
iiw 1-1.18amd 1.5-Sat 1.5-Sat 4.33-5.1 0.636-0.708 2.86E6-2.06E6 6.46-6.31
giw 850-lmnd 1.2 1.2-1.5 3.7-4.3 0.568-0.633 2.54B6-1.83B6 6.40-6.26
iiw 850-lmmd 1.2-Sat 1.2-Sat 3.7-4.3 0.568-0.633 2.54E6-1.83E6 6.40-6.26
giw 710-850pmd 1.2 1 3.1-3.7 0.491-0.568 3.03E6-2.12B6 6.48-6.33
giw 600-71Opmd ?1 .8-1 2.6-3.1 0.415-0.491 3.54E6-2.52E6 6.55-6.40
giw 500-600pmd 1 1-1.5 2.2-2.6 0.342-0.415 5.09E6-3.54B6 6.71-6.55
giw 420pmd 1 1-1.2 1.8 0.255 7.22E6 6.86
giw 250pmd .7 .5-,75 1.1 0.0414 1E7 7.00
giw 177pmd .3 .4 0.77 -0.113 3.6666 6.56
giw 149pmd .1 . 1— .2 0.65 -0.187 5.2765 5.76
giw 90-106pmd 0.02 0.02 0.35-0.4E -0.456— 0.337 6.2864-4.564 4.80-4.66

Figure 4.6a Table of experimental data for calculating oiso.
The key for the details is the same as for figure 3.8b' above.

4.7 Theory of Multiple Scattering.

The last section considered backseattering from what was considered a 
very dilute and monodisperse system of droplets, and, with a narrow 
enough gate, the individual scattered pulses could be resolved. It has 
also been seen in chapter 3, that the wave scattered from an 
individual droplet can be many orders of magnitude weaker than the
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Figure 4.6b Experimental tneo for glass and kerosene in water.
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Figure 4.6c Theoretical tneo for air, iron, sand/glass and kerosene in 
water, assuming an extended reaction.
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Figure 4.6d Theoretical <r,eo for air, sand (hard) and water in kerosene.
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Figure 4.6g Theoretical meo for kerosene in water with local,solid and 
extended reactions.
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Figure 4.6h Theoretical y iso comparing solid, extended (Z=1010, 10® and 
Sand) in water.
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incident wave. Thus it would be expected that multiple scattering will 
be a very weak and possibly undetectable effect.

A more rigorous analysis of the multiple scattering problem outlined 
in chapter 2 will now be undertaken. The method is that of Morse 
C1953).

Consider a sphere of radius a containing N scatterers. The position of 
the nth scatterer is given by the vector rn with respect to the centre 
of the sphere 0, as shown in figure 4.7a. Let an incident plane wave 
of unit intensity be of the form;

Pi =  eikr cose (4.7.1)

The wave is scattered from each particle with an angular distribution
function f(6) (=p(rr8) of chapter 3). Thus at the point P, the first
order scattered wave is given by the sum of the individual scattered
waves ;

The second order scattered wave, ie the wave wave scattered by 
particle n and then rescattered by particle m towards point P, will be 
of the form;

N Ci(ko.rn +kRn)l
(4.7.2)

n=l Rn

N N £i(kn.(rn-rm)+krm)1 Ei(ko.rm +kRn)]
.e

m=l n=l (rn-rm)Rm

(4.7.3)

Equations of this form and higher order terms are not solvable for 
finite distributions, without specific details of the particle spatial 
and size distributions. However, the form of the equation leads to



vectors for the scattering
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several conclusions. Firstly, the rescattered pressure goes as the 
square of the angular scattering function and thus for non resonating 
particles (Morse 1953) will always be much smaller than the first 
order scattering. It would also be expected that for a large number of 
uniformly sized particles that are randomly distributed, that the 
scattering will be predominantly incoherent and thus small in 
amplitude, ie the sum of the exponential terms in (4.7.3) will be 
small. Hence second order scattering will be neglected.

Returning to the first order scattering (4.7.2) and taking the phase 
of the incident wave to be zero at the origin. When r»a this reduces 
to;

Each component of the wave at P has its own phase and the resulting 
intensity is a function of this phase. If the spatial distribution is 
totally random, so will be the phases, leading to incoherent 
scattering. Regular arrays of scatterers produce coherent scattering. 
Intermediate distributions will produce combinations of both types of 
scattering.

The intensity of the scattered wave is given by lpsI2, leading to;

Where rm-rn is the vector from the nth to the mth scatterer. By 
separating the m=n terms, the equation becomes;

ikr N i(ko-k).rn
(4.7.4)

n=l

N i(ko-k).(rm-rn )
(4.7.5)

r2 m,n=l

N i(ko-k).(rm-rn)
If(6) I2 N + (4.7.6)
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The first term is the intensity that would be measured if the N 
scatterers sent out their waves independently, producing random phase 
relationships at the observer. This is the incoherent part of the 
scattered wave. The second term is the coherent part of the scattered 
wave, which takes into account the phase relationship between each 
wave. Again, a purely random distribution leads to incoherent 
scattering only (Morse 1953), thus the scattered intensity is 
proportional to the first power of the number of scatterers;

lp«|2 = N If(6) 12 (4.7.7)
r2

The coherent scattering term leads (eventually) to an N2 dependency. 
Should the effects of multiple scattering become significant in the 
later experiments the above outline will be expanded in detail.

4.8 Speed of Sound and Attenuation Effects.

These factors have already been discussed in some detail in chapter 2, 
where the general interaction of the acoustic wave with many 
scatterers was considered. This is an appropriate place to investigate 
some of those conclusions experimentally. The simplest method of 
measuring the speed of sound in a material is to take a known length 
of the material and find the time of flight of an acoustic pulse 
across the material. This technique has several drawbacks which lead 
to poor accuracy (-±1%) mainly caused by problems of identifying the 
position of the received peak, and identifying the real length of the 
system since the transducer is of finite thickness.

These problems can be eliminated using an interferometric method. The 
usual technique involves using a single transducer and reflector 
(Gooberman 1968), driving the transducer at a constant voltage (at the 
resonant frequency of the transducer) and measuring the current 
passing through the transducer. As the fluid cavity varies in length 
it moves in and out of resonance and the current shows minima and 
maxima respectively. These resonances occur every half wavelength of 
the incident sound wave. This method has the advantage over the static
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transducer, fixed frequency, time of flight methods in that only the 
properties of the cavity are involved in the calculations.

A novel approach to the resonant cavity method was adopted which 
involved letting the refelector be a passive receiver (voltage 
detect), thereby measuring the intensity of the sound in the cavity. 
Thus by moving the receiver, the effective cavity moved in and out of 
resonance and again the received voltage has maxima every X/3.

The final apparatus is sketched in figure 4.8a.

In order to minimise the effects of lash in the threads of the 
micrometer and receiver support, all motion for any one measurement 
was carried out in one direction. Part of a typical received signal is 
shown in figure 4.8b, showing that the maxima are easier to 
distinguish than the minima. The subsidiary peaks imply non
parallel ici ty of the transducers but are easily distinguished and not 
counted (Gooberman 1968). To further reduce the errors caused by end 
effects, the length of the cavity must be varied by as much as 
possible, and the motor speed must be carefully controlled at each end 
of the traverse.

The resonant frequency of the transducers used was found to be 1.1MHz 
and the frequency supplied by the signal generator was stable and 
accurate to 5 figures as confirmed by the timer counter. The position 
of an individual peak could be found to ±5pm using the digital 
voltmeter and the motorised micrometer in a single direction. Moving 
backwards and forwards around the peak led to errors of ±25jim in 
position. The micrometer had a range of 50mm and was checked at both 
ends using a standard 25mm micrometer, with agreement to ±5jim.

Thus the speed of sound could be found knowing only the frequency and 
the length required to produce a given number of peaks. For water , 
over several readings and a range of temperatures, the speed of sound 
was found to be 1480.2+0.6ms-l with a temperature coefficient of 
+2.0ms-l per 0.10C. These errors are only five times greater than the 
best published (Kaye 1986). For kerosene, c was found to be 1324.0ms-l 
and for Dielectric 180, c=1295.5ms-l.
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Figure 4.8a Schematic of the moving transducer acoustic interferometer.
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Figure 4.8b Part of a typical received signal from the interferometer
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The finite size of the transducers and apparatus preclude this 
technique from producing realistic values for attenuation, as the 
geometric factors cannot be eliminated from the fluid effects. 
Problems of producing repeatable emulsions means that attenuation 
measurements were not be made at this stage, since attenuation is very 
sensitive to the particle size distribution (Lenn 1985, Morse 1953).

Figure 4.8c shows the results of determining the speed of sound in a 
very well mixed emulsion (droplets estimated <ljim), using the pulse 
reflection method and the interferometric method.

As for the measurement of attenuation coefficients, several technical 
problems had to be overcome. First and foremost, there was effects of 
particle sizes even when ka was very small and the individual 
reactions were in the Rayleigh region. All methods that could be 
practically devised showed a dependence on the transducer and 
apparatus geometry which would not transfer easily between 
experimental situations. Thus absolute attenuation coefficients could 
not be practically determined.

4.9 Discussions and Conclusions.

This chapter has involved a different theoretical approach and 
experimental techniques to those described in chapter 3. Although two 
different frequencies have been utilised ie 1MHz at 1300 and 2MHz at 
1800, the results were made directly comparable by the use of the 
dimensionless ka as the axis of the scattering cross-section plots.

A slope characteristic of the 4th power law was evident for both the 
kerosene droplets and the glass beads/sand particles at both angles 
for ka<l, a direct experimental confirmation of the Rayleigh 
scattering theory. For ka>l, a more complicated behaviour including 
scattering cross-section maxima and minima are observed for both solid 
and liquid scatterers. The scattering cross-section of the solids 
being generally greater than their liquid counterparts, by an amount 
approximately in line with the theory.
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There is a lot more detail in the theoretical plots, resonant spikes, 
steps etc, than is resolvable by the experiments. The few air results 
confirm that for ka>l, the scattering cross section of the air bubble 
is of the same magnitude as the equivalent solid and slightly greater 
than the equivalent liquid scatterer. The behaviour of air bubbles for 
ka<l could not be observed in this apparatus, since the flow rates 
required to hold them stationary could not be maintained accurately 
enough. However, the theory shows that for ka<l the resonance effects 
of the bubbles overcome the size effects down to ka-0.016, where the 
main resonance occurs, after which the 4th power law becomes evident.

The experiments at 180° extend the range of ka for the scattering from 
liquid droplets and again, the 4th power law is observed for ka<l, and 
more interestingly, around ka=l a few liquid droplets were observed 
with scattering cross sections greater than the equivalent solid 
particle. These results are all in line with the theoretical 
predictions for the extended scattering from liquid droplets, since 
treating the liquid droplet as a solid would lead to scattering that 
is always smaller than the scattering from a sand particle of the same 
size.

For ka>l a reduction in a was seen as is characteristic of diffraction 
scattering, though, as with the experiments at 1300 there was not 
sufficient data or resolution to observe the finer theoretical 
predictions.

The theory of a local reaction type of scattering approximation would 
have produced scattering for ka<l with a slope =2. This is not 
observed experimentally for solid or liquid scatterers and therefore 
this model is not valid for the acoustic interaction.

The magnitude of the scattering from gas bubbles for ka<l has not been 
investigated experimentally, as described above, however, the 
theoretical predictions agree with those published elsewhere. The 
large resonance might cause some problems in subsequent experiments if 
air bubbles cannot be eliminated or separated from the liquid droplet 
flow.
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As a final note, a novel method of determining the acoustic velocity 
has been proposed and tested, which is not only very accurate but also 
simple in design and operation. The simple time of flight method (-±1% 
due to length measurement and timing) is not capable of detecting any 
deviation from linear in the c(a) plot. It must be noted that the 
homogeneity of the emulsion is very important if either method for 
determining the acoustic velocity is to produce reliable results. 
Droplet density waves must be avoided as well as large droplets, since 
these will complicate the measurement, especially in the 
interferometer. A similar method for determining the attenuation 
coefficient that was absolute and independent of transducer geometry 
has yet to be devised.

Thus far the ultrasonic investigations have been of fairly simple and 
small scale systems where the experimental parameters are easily 
controlled. The following chapters will apply some of these ultrasonic 
methods to a larger scale system, more representative of the 
industrial environments described in chapter 1.
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C h a pter 5 : Larger Scale Experiments.

5.1 Introduction.

This chapter describes experiments carried out on a two-component flow 
loop, extending the work of the last few chapters to a much larger 
scale, where the number, position and size of the scatterers are less 
well defined. In order to maintain continuity with the preceding and 
following chapters, only those experiments directly related to the 
ultrasonic investigations are considered here. A full description of the 
design, testing and operation of the flow loop appears in appendix B. 
The droplet flow regime is generated using a jet mixer, and so the 
chapter begins with the physical characterisation of these droplet flow 
regimes.

This is followed by the application of the angular scattering and
Doppler techniques to characterising the droplet flow regime.
Limitations to these ultrasonic techniques are described in detail.

5.2 Testing The Jet Mixer.

The two critical parameters that determine the droplet size distribution 
from a well designed jet mixer are the flow rate and nozzle size. This 
requires a jet Reynolds number (Re=pvl/p) that is much greater than the 
Reynolds number of main pipe flow (Fernando 1990). For low void 
fractions (<10%) the resulting emulsion can be considered to be 'frozen'
into the main flow for several diameters downstream of the injection
point (horizontal pipes). Beyond this, the swirl generated by the 
injector decays to the point where the droplets can move under gravity 
to the pipe wall. The resulting increased void fraction at the pipe wall 
enhances the chance of coalescence, and the droplets can be considered 
lost from the main flow. As in the previous sections, the emulsion 
properties were chosen such that the droplets produced Rayleigh and near 
diffraction scattering, and had diameters comparable with those produced 
in normal pipe and mixer systems.
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A series of experiments were carried out using varying nozzle sizes, 
whilst keeping the volumetric flow rates in both the jet and main pipe 
constant. Thus the void fraction remained constant for each experiment.

Rather than trying to interpret high speed photographs of the resulting 
emulsion a few diameters downstream of the injector, the flow was 
abruptly brought to rest (the resulting pressure surges were large, but 
not catastrophic!) and still photographs were taken through the pipe 
wall. The droplets in the resulting images were sized manually, using 
not fewer than 1000 droplets per image. No attempts were made to analyse 
the resulting size distributions and only a simple mean droplet diameter 
was calculated. A typical example of the resulting size distribution is 
shown in figure 5.2a.

The mean droplet diameter is plotted as a function of nozzle diameter in 
figure 5.2b. As expected, a simple relationship is evident. Almost 
identical curves (within experimental error) were found when the water 
flow rate was varied whilst keeping the jet (oil ) flow rate constant. 
That the mean droplet diameter is largely independent of the main flow 
rate will prove useful in later experiments.

5.3 Angular Scattering Experiments.

Several technical problems had to be overcome before these experiments 
could be carried out successfully. Firstly, the gas bubbles generated by 
the cavitation at the flow controlling valves (described in appendix 
B.5) had to be eliminated, or at least reduced to the point where they 
did not interfere with the experiment. Thus a series of experiments was 
carried out to investigate the scattering from the gas bubbles in an 
otherwise single component flow. Secondly examination of figure 5.3a 
reveals that the scattering from an emulsion in the test section spool 
piece was not as well defined (both spatially and angularly) as in the 
single droplet experiments described in chapters 3 and 4.

it is clear from figure 5.3a that the signal (from a single pulse from 
the transmitting transducer) could be scattered by several droplets, 
each with a different scattering angle. A range gating system was thus
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Figure 5.3a General scattering geometry in the spool piece, neglecting 
edge diffraction effects
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constructed which could control the effective volume where the 
scatterer(s) could reside.

The whole circuit consisted of a series of counters driven by an 
external clock which controlled the relative positions (in time) of the 
active periods of the transmitter and receiver. It was also capable of 
operating a single transducer as both a transmitter and receiver 
(compare section 4.5).

The circuit is reproduced for completeness in figure 5.3b, including 
timing diagrams for the various elements of the circuit. A photograph of 
the final constructed circuit appears in figure 5.3c with an annotated 
photograph of the final electronics package appearing in figure 5.3d 
where a typical transmitted pulse and the receiving gate are just 
visible on the oscilloscope screen. By using only switches (no 
amplifiers etc), the effect of the electronics remains linear and so the 
results are directly comparable with the previous angular scattering 
experiments. It should also be noted that when a 3X pulse was used, the 
scattering from a droplet on the axis of the pipe is taking place in an 
almost identical physical geometry to the experiments of chapters 3 and 
4, ie the relative positions of the transducers and droplets and the
size of the active volume.

Thus the theory of the ultrasonic interaction with a complex system has 
been given, and much of the basics investigated and proved 
experimentally. Now the work can be extended onto a larger scale of
flow.

5.4 Comparing Experiment and Theory.

As can be seen from figure 5.3a the spool piece allowed angular 
scattering measurements in increments of 150 from 00 (forward scatter) 
to 1500 subtended at the centreline of the pipe. The range gating 
circuit could be used to reduce the effective volume of the pipe within 
which the scatterer could lie. For scattering angles greater than 450
the volume was quite well defined at about lcm3 on the axis of the pipe
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(figure 5.4a) when using a 3fis gate received 60jis after the beginning of 
the transmitted toneburst.

For scattering angles smaller than 450, the scattering volume became 
less well defined, as the range gating principle completely failed in 
forward scatter. The forward scattered signal could not be measured due 
to the simultaneous arrival of the transmitted signal. Though the volume 
where the scatterer could lie increased, this was partially compensated 
for by the resulting transmitter/receiver geometry which tended to keep 
the effective scattering angles within the whole scattering volume close 
to that of the receiver angle.

Because of the geometry of the spool piece, and the fact that only four 
transducers were available for the experiments, it was necessary to 
generate each scattering profile in stages. This involved shutting down 
the flow loop and rearranging the transducer positions until all the 
angles had been covered.

The scattered pressure incident on the receiver was measured directly as 
a voltage on an oscilloscope (as in chapters 3 and 4). The largest 
signal constantly present across the whole width of the gate was taken 
as the appropriate measurement.

Figures 5.4b, c and d show some typical scattering profiles from oil 
droplets in water. This series of experiments kept the main water flow 
rate and jet flow rate (oil) constant. Thus by varying the nozzle size, 
emulsions with varying mean droplet diameters (with corresponding 
variations in number density) can be created as described in section 
5.2.

From these plots several points are immediately clear. The general 
shapes are reminiscent of those from single droplets (sections 3.8 and 
3.9). The various lobes, and more importantly, nodes that are present in 
the scattering profiles are in good agreement with the theoretical 
predictions for the scattering from an individual droplet of the mean 
diameter (see associated figures 5.4b', c ' and d'). The ratio of the 
scattered signals through any pair of angles also provides a good test 
of the theory. The ratio of the signals scattered through 300 and 1500
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Figure 5.4a Effective scattering volume with a 6ps receive gate 60ps 
after the initial toneburst (full scale).
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Figure 5.4b Scattering from oil droplets in water. Water flow rate = 
1.95xl0-3m3s-’ (120Hz), jet flow rate = 3.85xl0-4m3s-1 (460Hz), void 
fraction=16%, nozzle diameter=l/8", <d>=0.2mm, ka=0.42
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Figure 5.4b' Scattering from a single oil droplet in water, ka=0.42

( Theoretical )
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Figure 5.4c Scattering from oil droplets in water. Water flow rate = 
1.95xl0-3m3s-1 <120Hz), jet flow rate = 3.85xl0-tm3s™1 (460Hz), void 
fraction=16%, nozzle diameter=3/16", <d>= 1.67mm, ka=3.5
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Figure 5.4c' Scattering from a single oil droplet in water, ka=3.5
( Theoretical )
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Figure 5.4d Scattering from oil droplets in water. Water flow rate = 
1.95xl0-3m3s-1 (120Hz), jet flow rate = 3.85xl0~llm3s-1 (460Hz), void
fraction=16%, nozzle diameter=l/4", <d>=2.72mm, ka=5.7
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Figure 5.4d' Scattering from a single oil droplet in water, ka=5.7

( Theoretical)



are found for the three sets of data shown in figures 5.4b, c and d, and 
are listed below.

ka V30/V150 (Experiment) V30/V150 (Theory)
0.42 0.14 0.5
3.5 3.5 3.2
5.7 2.0 2.8

Figure 5.4e Table comparing theory and exeriment for the ratio of 
thescattered pressures at 300 and 1500 for various ka

From these values and the figures, a few points are immediately clear. 
The scattering in figure 5.4b is typical of Rayleigh scattering with 
larger signals being backseattered. The overall scale of the signal in 
figure 5.4b when compared with figures 5.4c and d (and their theoretical 
plots) which are typical of diffraction scattering at first appears at 
odds with the single scatterer profiles until number densities are 
considered.

For a monodisperse flow, the particle separation can be found from 
equation 2.11, which reduces to S-3<a> for this set of experiments, 
since the void fraction is constant at 16%. Thus for <d>=0.2mm, 1.67n*n 
and 2.72mm the number densities of the scatterers is approximately 
3.7xl04cm-3, 65cm-3 and 15cm-3 respectively. It can now be seen that the 
particles in the Rayleigh scattering region will produce comparable 
signals to the diffraction scattering emulsions due to the number 
density effect C-a-3) counteracting the weak scattering effect (-a*).

The assertion that the scattering intensity from an ensemble of 
particles goes as the first power of the number density can now be 
checked experimentally. By keeping the jet properties constant (size and 
flow rate) and varying the main water flow rate, the void fraction can 
be varied at will. This also provides a check that the mean droplet size 
is independent of the main flow rate, the flow loop being shut down and 
photographs of the resulting emulsion being taken for each experiment. 
No change in the mean droplet size could be detected for the flow rates 
considered here. However for very low water flow rates (below the range
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of the water meter) a reduction in the droplet size was observed, 
probably due to recirculation in the jet mixing zone.

Figure 5.4f shows the scattered voltage at 1500 as a function of water 
flow rate, for a 1/8" jet nozzle (therefore small droplets and Rayleigh 
scattering). Converting the liquid flow rates into a void fraction
allows figure 5.4g to be plotted, the least squares slope through the 
points is found to be 0.502, which, within the experimental errors 
(0.502+0.12 from the worst possible case through the error bars) can be 
taken as 0.5.

Thus: Voltage a (void fraction)i/2
Pressure od (number density))l/2 
Intensity <x Number Density

Using larger jet sizes, lower jet flow rates or smaller scattering
angles all tend to produce less good results, since the number densities 
are much reduced, there are the scattering nodes to contend with and the 
signals are generally smaller.

Another important conclusion concerns the number of scatterers involved 
in the scattering. From the equation and table of section 2.11 and the 
above flow data, it is seen that there are approximately 103 scatterers 
involved in each measurement. Thus the effects of multiple scattering 
need not be allowed for (even when the droplets are only separated by a 
few radii on average), when the scattering is weak.

During all of the previous experiments, great care has been taken to 
eliminate the effects of air bubbles coming out of solution in the flow
loop. This is achieved by increasing the pressure of the whole loop (by
partially closing the outlet valves) to the point where bubbles are no 
longer evident in the pipe, either visibly in the flow or eventually 
appearing on the upper walls of the pipes when the flow is suddenly 
switched off.

A check for the presence of air bubbles in an apparently 'clean' flow 
would be to use them to scatter ultrasound exactly as in the previous 
sections. A water flow was set up with no back pressure in the system,
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leading to visible clouds of bubbles moving down the pipe. The angular 
scattering from these bubbles was measured and the results are plotted 
in figure 5.4h.

Again Rayleigh scattering is evident, and this was confirmed
photographically with a mean diameter of 0.17mm. It is clear from the
figure 5.4h that the most effective bubble detector would work at
scattering angles of between 750 and 1500. Minimising this signal by
increasing the back pressure in the flow loop proved to be as good a 
method of eliminating the air bubbles as visual observation.

To quantify the amount of air in the flow is very difficult as its
origin is not directly controllable, however, when the flow is stopped, 
the bubbles rise to the upper surface after several seconds, where they 
can be photographed, exactly as in the sizing measurement. This enables 
an estimate of void fraction to be made. For the unrestricted flow the 
void fraction is approximately 0.01%.

Comparing figure 5.4h with figure 5.4b shows that a 0.01% air flow
produces similar scattering to a 16% oil flow when both are in the
Rayleigh scattering regime. This is in line with the earlier theoretical 
result (figure 4.3b') that the scattering from air bubbles for ka<l is 
always much greater than from similar sized liquid droplets. This is a 
serious drawback since optimising the scattering from the liquid
droplets (Rayleigh scattering from many small droplets) leads to a very 
sensitive air meter.

5.5 Acoustic Doppler Measurements.

As was outlined in section 2.8, the acoustic wave scattered by a moving 
particle undergoes a frequency shift dependent on the particles velocity 
and the angles between the velocity vector and the directions of the 
incident and scattered waves. The general equation for the frequency 
shift is given by equation 2.8.1 for the coordinate system shown in 
figure 2.8a.
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Figure 5.5b Block diagram of the circuitry used to determine the Doppler 
frequency shift.
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The simplest Doppler scattering geometry from the point of view of the 
analysis and interpretation available within the spool piece is shown in 
figure 5.5a. This geometry leads to a frequency shift given by;

Af = fVcos450 (5.5.1)
c

A block diagram of the circuitry used to determine this shift is given 
in figure 5.5b. Full details of the design, testing and analysis of this 
circuit can be found elsewhere (Lenn 1985).

Figure 5.5c shows a typical demodulated signal printed from the screen 
of the spectrum analyser, with the peak frequency being determined
visually in conjunction with the cursor on the screen.

A series of experiments was carried out in the horizontal flow section,
keeping the jet parameters constant (an oil flow rate of 460Hz or
5.85xl0-4m3s-l and nozzle size of 1/8") and varying the water flow rate. 
A plot of the Doppler frequency shift versus the water flow rate is 
plotted in figure 5.5d. Clearly, the total flow rate is due to a 
combination of the oil and water flow rates. Thus assuming no slip 
between the two fluids, figure 5.5e is a plot of the velocity inferred 
from the Doppler measurement versus mean velocity and centreline 
velocity, the latter assuming a fully developed turbulent velocity 
profile.

5.6 Discussion and Conclusions.

This chapter has required the extensive use of a two-component flow 
loop, incorporating a jet mixer/injector. Very simple methods have been 
used to characterise the flow including visual observation and 
photography, especially of the emulsion/droplet flow regime

The spool piece was designed to incorporate a range of ultrasonic 
techniques, however, in the end, considerations of time allowed only the 
new technique of droplet sizing by angular scattering and the old 
technique of ultrasonic Doppler velocimetry to be analysed in detail.
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The flow loop could produce all of the flow regimes required and the jet 
mixer/injector gave a flexible enough range of droplet sizes (in fair 
agreement with other published theoretical and experimental results 
(Fernando 1990)), for a representative series of angular scattering 
experiments to be carried out.

A simple range gating circuit was designed and constructed to define 
more accurately the scattering volume and scattering angles. This 
allowed angular scattering measurements to be made around the axis of 
the pipe, the results of which are in line with those expected from 
theory, only after an allowance is made for the number density of the 
scatterers. Rayleigh scattering and diffraction scattering have both 
been observed from appropriate droplet flows, with the scattering nodes 
approximately agreeing with the appropriate nodes of the single droplet 
of the mean diameter.

The classical assumption that the scattered intensity is proportional to 
the number density of scatterers has been proved experimentally, thus 
also confirming that the droplets are randomly distributed.

A final scattering experiment has confirmed the previous theoretical 
conclusion that scattering from gas bubbles with ka<l is much greater 
than from the equivalent oil droplets. An air fraction of approximately 
0.01% produces similar scattering to a 16% oil fraction, both for ka<l. 
Thus air is the critical parameter in the effective application of the 
scattering technique.

A standard Doppler method was used to determine the velocity of the 
flow. The result confirms that the Doppler method is measuring the 
centreline velocity. These calculations assume that the speed of sound 
in the main flow is that of water. For the void fractions involved, a 
correction must be made for the speed of sound in the emulsion. This is 
not a trivial exercise, as the droplet distribution in the flow and 
especially near the transducer sections may not be uniform. Any 
corrections for this effect will tend to reduce the Doppler implied 
velocity to somewhere between the centreline velocity and the mean 
velocity.
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Thus the droplet flow can be sized and the velocity determined usng only 
ultrasonic methods. Multi angle scattering methods can be used to 
determine coarse differences in size distributions leading to Rayleigh 
scattering and diffraction scattering, as well as finer details within 
the diffraction scattering regime. Even for large void fractions, (-20%) 
the weakness of the scattering negates the problems of multiple 
scattering, meaning that the individual scatterers can be summed 
statistically, making the analysis simpler than it might have been. 
Similarly, Doppler methods can be used to determine velocities within 
the flow, the weakness of the scattering meaning that attenuation is not 
a problem in detecting the signals. Incorporating void fraction 
measurements using speed of sound methods (chapter 4) would allow a 
comprehensive characterisation of the whole flow. Other standard 
techniques not investigated here, such as range gated backseatter and 
range gated cross-correlation would allow number density distributions 
and velocity distributions to be defined also.
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Chapter 6: Detecting Chaos in an Oil-Water Flow.

6.1 Introduction.

Thus far this work has concentrated on the ultrasonic characterisation 
of an oil-water flow in the droplet flow regime. Clearly, as both 
components of the flow are fluids, they can appear in many different 
configurations across the pipe. Obvious flow regimes such as 
stratified, wavy and annular, provide fairly simple interfacial 
geometries to study and quantify. These are just a few of the 
qualitative descriptions of two-phase and two-component flows that 
have appeared in the literature. The published literature on flow 
regimes and flow regime maps has been briefly reviewed in appendix C 
along with some of the semi-empirical relationships that have been 
derived to predict flow transitions.

One possible approach towards producing a unified view of multiphase 
and multicomponent flows involves generating large databases of 
experimental data. From measurements of parameters such as time series 
of differential pressure or electrical impedance, combined with 
thresholding, spectral and visual methods, methods can be devised that 
can predict the flow parameters and flow regime of an unknown system. 
The accuracy of these systems varies greatly with flow regime, since 
there is no physical basis for the techniques used.

An alternative approach, which may lead to a better understanding of 
the physics of the flow of mixtures, is to impose a tractable model 
upon the flowing system. It has been shown experimentally, and often 
verified theoretically, that a flowing system goes through several 
transitions as the flow rates are increased. For low flow rates, a 
simple laminar flow always appears, and at high enough flow rates, 
something approaching fully developed turbulence is evidenced. This 
type of behaviour is also observed in simple experimental and 
numerical systems that are described as chaotic.

This chapter will show experimentally that the droplet flow regime has 
somewhere between five and six degrees of freedom, implying that the
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flow can be modelled using five or six variables, thus indicating that
two-component flows display chaotic behaviour. A detailed discussion
of chaos and fluid flows can be found in appendix D, which is a
literature review that starts from first principles and finishes with 
the few published works that have detected chaos experimentally in 
multiphase flows.

6.2 Oil-Water Experiments and Data Analysis.

As mentioned above and in appendix D, a few attempts have been made to 
investigate multiphase flows from a chaos perspective. The following 
paragraphs describe a preliminary proof of principles for the 
application of some of these methods, to oil-water flows.

In the end, three sets of experimental data were available for
analysis. One from the flow loop built for this project (chapter 5 and 
appendix B) and the rest from the oi 1-water loop at Schlumberger 
Cambridge Research.

The Cranfield data comprised a measure of the amplitude of a 
continuous 1MHz ultrasonic beam scattered through 1500 in a vertical 
oi1-in-water disperse flow with a water superficial velocity of 
0.4ms-l and an oil holdup of 0.05. The Schlumberger data involved two 
different oi1-water flows. Firstly, an oi1-in-water dispersion with a 
water superficial velocity of 0.4ms-i and an oil holdup of 0.05 
monitored using a resistive method. Secondly a vertical water-in-oi1 
disperse flow with an oil superficial velocity of 0.4ms-i and a water 
holdup of 0.1 was monitored using a capacitive method.

Exact experimental details of the Schlumerger work is not available. 
However, that the data was gathered via a 12bit 1kHz A-D converter for 
5 seconds is sufficient for the present purposes. The data was sent 
directly to the Cranfield computer center VAX over JANet, the academic 
network transmission system.

The experiments carried out on the Cranfield loop consisted of taking 
the scattered 1MHz signal, extracting the modulating envelope (1kHz
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low pass filter), sampling and digitising the signal using the built 
in A-D of a Horizon S100 data processor and computer. The data was 
first saved in machine code on the Horizon disk and then sent via the 
serial port to an Opus personal computer. The data file transfer 
package Hermit was then used to send the data to the VAX mainframe 
where the analysis would be carried out.

Thus three sets of data were available for analysis and portions of 
each are reproduced in figures 6.2a, b and c. It is immediately clear 
that the transfer function of the capacitive measuring system has 
filtered out many of the higher frequency components of the signal, 
leaving a characteristic frequency of about 3Hz. This frequency lies 
within the region l-20Hz expected for the density waves of the droplet 
flow regime CDrahos 1989). The resistive and ultrasonic data show 
similar dominant frequencies, but also contain much more information 
at the higher frequencies.

6.3 Identifying the Attractor Governing the Dynamics of the Flow.

The instantaneous state of the system can be considered as a point in 
a multidimensional phase space, with each orthogonal coordinate 
representing an independent parameter governing the underlying 
dynamics. As the system evolves in time, the trajectory of this point 
traces out an object in all of the coordinates. The trajectories of 
all physically realisable systems tend towards a finite attractor 
whose shape and complexity are determined by the underlying dynamics.

If the system is chaotic, the trajectory has a sensitive dependence on 
initial conditions, though the gross shape of the attractor is 
independent of the initial conditions. In the full expansion of the 
phase space, the trajectory of the chaotic system never repeats 
itself, and hence, if the attractor is to remain finite, must have 
structure on every scale less than that of the attractor, ie infinite 
structure and a fractal by definition. The trajectories produced by 
non-chaotic systems must necessarily lie on closed loops or (hyper) 
surfaces.



151

Thus, in order to construct an attractor for a dynamical system, a 
knowledge of all the independent variables governing the behaviour is 
required. Simultaneous measurement of all of these variables would 
allow the attractor to be drawn and analysed. For most systems, even 
the number of underlying variables is not known, so measuring them 
would prove difficult to say the least.

However, it has been shown that an attractor can be reconstructed from 
the time series of a single experimental variable (Packard 1980, 
Takens 1981 and appendix D). The level to which the reconstructed 
attractor resembles the real attractor, depends on how representative 
of the behaviour of the system, the data is. Thus the data shown in 
figure 6.2c would be expected to reproduce a less realistic attractor 
than the other two sets of data, since its information content is much 
less.

6.4 Reconstructing the Attractor.

The attractors were reconstructed using the method of delays, by 
taking the experimental time series (Xo(t)> and creating other sets of 
data from this using the method of delays, ie Xi(t)= XoCt+x), X2(t>= 
Xo(t+2x), ... Xn(t)= Xo(t+nx). Figures 6.4a to d show projections f 
the reconstructed attractor for the resistive data onto the planes 
(X(t),X(t+x)>, (X(t),X(t+3x), (X(t),X<t+5x)> and (X(t>,X(t+7x)). In
this case, x was taken as the data interval (1ms), however, any 
multiple of this could be used, though large values reduce the 
effective amount of data at large n. It is clear from these figures 
that the trajectory is starting to become less "knotted" as the delay 
is increased, implying that a low dimensinal phase space will be able 
to totally unwind and contain the attractor.

6.5 Determining the Dimension of the Attractor.

The number of dimensions in which the attractor is plotted, the 
embedding dimension M, is increased until the attractor (if strange) 
is totally unwound, and never crosses itself. Ideally the next integer
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higher than the fractal dimension of the attractor would totally 
unwind the attractor and any increases in M beyond this would lead to 
no further expansion of the attractor. Limitations of the experimental 
data usually means that an embedding dimension considerably higher 
than the fractal dimension is usually required before the attractor 
stops crossing itself. This, and the fact that it is not a simple 
procedure to visualise objects in more than 3 dimensions, means that a 
more mathematical approach must be taken to determine the fractal 
dimension of the attractor and the next higher integer for the 
embedding dimension.

Several different numerical methods have been proposed in the 
literature for finding the fractal dimension directly from the 
experimental data. These are mostly modifications and improvements to 
the method proposed by Grassberger and Procaccia (1984) modified in 
Holler (1989) and Dvorak (1990).

A correlation integral is defined as follows:

where 6 is the Heaviside step function that tests whether Rj lies 
within a hypercube of side 2e of Ri. Ri and Rj are points on the 
reconstructed attractor in the M dimensional phase space as described 
in the previous section.

For an attractor with a fractal dimension D, by definition 
(Grassberger 1984);

C(e ) = eD (6.5.2)

N
C(e) = 1im lim (6.5.1)

N-*» E-»0 N2 i , j

i*j

e->0

Thus a plot of logioC(s) versus logios will have a slope of D, 
provided the phase space has a dimension >D and the attractor is fully
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expanded. For the latter criterion to be met, both experimentally and 
theoretically (Packard 1980), requires an embedding dimension M>2D+1.

Figure 6.5a shows the main features of a plot of logioC(e) versus 
logioe for various values of embedding dimension. As the value of M is 
increased, there is a range of e where the slope-M, above this region, 
the e is too great, and is encompassing a greater volume of the 
attractor than that over which the fractal definition C ( e ) - e D  is 
valid. Below this value, e is less than the data quantisation step e, 
so further reductions in e cannot separate the data points. As M is 
further increased, the slopes tend towards a constant value, the 
fractal dimension of the attractor. Convergence occurs around M-2D+1.

The region of linearity is also limited by the number of data points, 
since a single correlation gives C(M,e)=l/N2 as a lower limit. These 
criteria all provide limiting values of e over which the analysis can 
be carried out. The correlation integral is defined in the limit e->0. 
The assumption here is that the behaviour of the attractor at these
intermediate values of e is the same as that as c->0. In order to
increase confidence that this is the case, it has been proposed that 
the linear region of the graph should cover at least a decade of e. 
This means that the size of an attractor that can be determined from a 
given data set is limited by the data itself. These factors will be 
further quantified in a later section.

These methods have been applied to the ultrasonic and resistive data,
and the resistive results are plotted in figures 6.5b to e for various 
values of M.

The slopes of the linear portions of the graphs have been determined 
using a least squares method and are plotted as a function of the 
embedding dimension, M, for both the ultrasonic and resistive data in 
figure 6.5f.

The 'linear' part of the graph is obtained by finding the slope of the 
line joining each pair of consecutive points. A least squares line is 
found for those points between which the individual slopes deviate by 
less than 10% from the mean.
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As expected, for M«D, the correlation saturates and the curve follows 
the line for white noise. As M is further increased, deviations from 
the white noise line occur, and for M>12, D has tended towards a 
constant value of between 5 and 6 for both the ultrasonic and 
resistive data.

6.6 Errors.

At present, an exact quantification of the errors of this series of 
experiments is not possible. However, a published numerical analysis 
provides a useful analogy and starting point (Holzfuss 1986).

A numerical system consisting of a 5-torus, constructed from a time 
series with a Fourier spectrum of 5 incommensurate frequencies, has 
been studiedwith reference to the errors inherent in the numerical 
routines used to calculate attractor dimensions. A value of 5+0.5 was 
found for the Grassberger-Procaccia algorithm, and although this looks 
a little pessimistic for the limited data presented here, this value 
for the error will suffice, till a more rigorous analysis of the data 
is carried out.

Taking the analysis to extremes, figure 6.5a shows values of the 
correlation integral (resistive data) for embedding dimensions of 30 
and 40, the straightest portions of which lead to attractor dimensions 
of 6.4 and 6.8 respectively. Similar problems are found for the
ultrasonic data as can be seen in figure 6.4f. This would suggest that 
there is an upper limit to the dimensionality of any analysis that can
be carried out on the data. This limit must be inherent in the data
file.

Consider a system producing a signal made up of S bits with an
external noise of Q bits, the digitising error e or what ever, and let 
the system have reached its current complex behaviour via a period 
doubling route, for as good a reason as not. As the system is allowed 
to evolve, the error in the initial data will be amplified, till it 
becomes comparable in amplitude with the signal itself. This implies a 
sensitive dependece on initial conditions and hence chaos.
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For a system such as a logistic equation (appendix D.2), the number of 
iterations or measurements required for this to happen is given by:

n=S-Q (6.6.1)

Thus when the points on the attractor are reconstructed from a single 
time series of data, the later coordinates of any point are unrelated 
to the earlier coordinates, and so for M>S-Q, the analysis becomes 
invalid. Alternatively, the analysis is only valid for embedding 
dimensions that satisfy:

M < Iogio(Signal/Noise) (6.6.2)
logio(2)

Along with the criterion relating the maximum analysable fractal 
dimension to the length of the data file (Ruelle 1990):

D < -logiod/N2) (6.6.3)

Noting that for convergence of the correlation N - 2D+1, then;

M < 1 - 2Iogio(l/N2) (6.6.4)

and this means that both the quality and the quantity of the data set 
strict limits on the dimensionality of attractors that can be 
detected. For the resistive data with 5000 points of 7 digit data, 
this means;

Mmex(Quality) - 23 
Mmex(Quantity) - 15

and the most stringent criterion is set by the quantity of the data, 
and this is still sufficient to allow the attractor dimension (D-5 -> 
Mconvergence2"! 1 ) to be found.



160

6.6 Discussion and Conclusions.

The flow of multiphase and multicomponent mixtures in pipes is one of 
the greatest unsolved problems of modern process engineering. The 
complexity of the behaviour has meant that all but the simplest 
phenomena have remained unexplored, both experimentally and 
theoretically. The droplet flow regime in an oil/water flow in a 
vertical pipe has been investigated using ultrasonic and resistive 
techniques, and the data analysed using the Grassberger-Procaccia 
algorithm. The dimension of the attractor governing this flow lies 
somewhere between 5 and 6 and is the same for both methods of 
measurement, as is implicit in the theory.

As yet, there exists no general method of solving the equations 
governing an arbitrary fluid flow, especially the flow of any type of 
combination of materials and phases. Indeed, there is no unified 
approach to predicting, even semi-empirically, the transition 
boundaries wihin these flows. There is a need for objective and 
reliable diagnostic criteria, since confidence in the flow pattern 
maps used in design and operation is limited (Drahos 1989).

Many of these systems display complex and erratic behaviour, often 
qualitatively described as chaotic. The systems can be interrogated 
using many different physical principles and the results can be 
analysed using either a non-parametrie or parametric approach. The 
first involves the usual statistical analysis in the amplitude, time 
and frequency domains, leading to 'characteristic' distribution and 
correlation functions. Stochastic discriminants, such as moments of 
various orders, or shape comparisons can then be used to identify the 
flow. The parametric approach requires a semi-empirical model to be 
generated in terms of power series, based on time series from the 
system. These methods have a limited success, though are in common use 
and their implementation has been reviewed in (Drahos 1989).

It has become clear that the spectral methods do not provide an 
adequate tool for quantifying and characterising the behaviour of 
these systems (Mayer-Kress 1986). The determination of other 
independent quantities from the experimental data, such as the
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Hausdorff-Besicovich or 'fractal' dimension provides another route to 
quantifying the behaviour. The fractal dimension gives a measure of 
the number of degrees of freedom governing the dynamics of the system, 
with non-integer values indicating chaotic behaviour.

The determination of fractal dimensions for the flow of mixtures has 
received very little experimental attention. The few instances being 
reviewed in appendix D.7

Thus far, this chapter has described the analysis of a single flow 
condition, with fixed experimental parameters. For flows other than 
this specific (droplet) system, this method of analysis should provide 
a useful and quantitative discriminator between flow types. The 
(fractal) attractor dimension gives a measure of the complexity of the 
behaviour and a rough guide to the number of parameters governing the 
dynamics of the system. It would be expected that different types of 
behaviour would be governed by different parameters.

Clearly, a point on the usual flow regime maps (eg appendix C), 
represents a time average of the behaviour in a cross-section of the 
pipe, or for a controlled experiment, the inlet conditions. As the 
attractor dimension takes into account the temporal behaviour of the 
system, it is more closely related to the dynamics of the system. It 
is proposed that a flow regime map, drawn in terms of fractal 
dimension contours will provide better detection of flow transition 
boundaries and eliminate all of the vague transitions. The variation 
of fractal dimension with flow conditions should also assist in the 
analysis of developing flows and also in the analysis of the more 
complicated, yet developed flows.

Any flow map drawn in this way must take into account single phase 
flows, as these are special cases of the flow of mixtures. As most 
flow transitions in mixtures occur for mean Reynolds numbers 
considerably less than those required for classical turbulence, sudden 
jumps in fractal dimension might be expected around the single phase 
flow transition (ususally on the axes of flow maps).



162

The simpler flow regimes will produce attractors with dimensions that 
could be found from an analysis of the dynamics of the behaviour, for 
example;

Smooth stratified -» 0
Periodic (linear and non-linear) waves -> 1
Aperiodic (non-linear) waves -» l-»2
All other flow regimes -» >2

In view of the computer time that would be required to map the main
areas and transitions of flow regime maps, it might be possible to
develop an analogue or digital circuit to determine the fractal 
dimension of a signal in real time. Circuits already exist (Pyragas 
1987, Nama junas 1988 and Cenys 1988) that can determine the next 
highest integer.

It is not possible at this stage to show that the fractal dimension is 
not an integer (implying chaos), due to the size of the errors 
inherent in the analysis (DiO.5).

However, that the dimension is this small, implies that a low number 
of parameters and equations are governing the dynamics of the system, 
and maybe, an analytical approach to finding the equations might be 
worthwhile.

Absolute proof of chaotic behaviour requires the calculation of the 
Lyapunov exponents of the attractor, and for at least one of them to 
be posistive. At this stage it is sufficient that a low dimensional 
attractor has been detected to justify further work in this area. This 
work offers the possibility of at least flow regime detector which is 
purely quantitative.
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Chapter 7: Conclusions, Comments, Future Work and Directions.

The first part of this work has involved a study, starting from first 
principles, of the characterisation of complex flows using scattered 
ultrasound. This has been followed by a study of the more fundamental 
aspects of these and other measurements to provide a more global view 
of the flows themselves.

7.1 Ultrasonic Conclusions.

The aim of this thesis was to develop a non-invasive meter capable of 
characterising a disperse two component flow. In the process of 
attaining this goal it became clear that there is indeed a need for 
such a meter and that ultrasonic techniques could provide the 
appropriate physical principles.

Much of classical scattering theory for liquid and solid particles has 
been investigated and proved experimentally from the various angular 
scattering profiles, to the Rayleigh fourth power law to diffraction 
type scattering effects. Although only using a short toneburst rather 
than a continuous wave, this work has served to fill in some large 
unexplored gaps in experimental ultrasonics.

It has been shown that ultrasonic methods can determine droplet sizes, 
droplet velocities and void fractions, and on the small and easily 
controllable scale agreement with theory is good. However, on the 
larger scale, the effects of gas contamination of the flow has been 
quantified, and therefore this work clearly shows the operational 
limits of the ultrasonic techniques. The scattering from very low 
number density air bubbles is comparable with that from high 
concentration oil dispersions, their effect on speed of sound 
measurements will also be disproportionately large. This is a very 
serious limitation which would have to be taken into account if these 
principles are to be applied in the field.
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7.2 Conclusions of the Chaotic Analysis of Complex Flows.

Flow maps derived for diverse systems show many qualitative 
similarities. Simple systems governed by a small number of equations 
and parameters can show very complex behaviour, indeed the sort of 
behaviour usually expected of more complex systems.

Almost all fluid systems undergo a series of simple transitions, as 
some external parameter is varied, prior to the onset of turbulence. 
If there is finite symmetry within the flow, the first transition from 
laminar flow will involve this symmetry being broken either spatially 
or temporally. These transitions are governed by simple underlying 
equations from the macroscopic point of view, analogous to equations 
of state or equations of motion.

From the microscopic point of view, ther are a very large number of 
degrees of freedom within the fluid system, but these must interact to 
produce an effective macroscopic behaviour with an effective number of 
degrees of freedom which is much smaller. Thus for a liquid 
dispersion, the classical argument, similar to single phase 
'turbulent' flows would be that the number of degrees of freedom of 
the system is proportional to the number of droplets in the system.

It has been shown experimental ly that the whole system follows a low 
dimensional attractor and is governed by between five and six 
variables ie five or six first order equations with each parameter 
scaled according to some dimension!ess group.

For instance, the dimensionless groups that have already been 
extensively utilised to theoretically model the flows CJ.C.R. Hunt, 
DAMTP Cambridge) may offer an insight into the number of parameters 
required to characterise the flows, namely;

Reynolds Number Re = pvR/n Inertia/viscous forces

Morton Number Mo = gn2Ap/p2o3 A useful multiphase flow parameter

Eotvos Number Eo = d2gAp/o Gravity/surface tension forces
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Froude Number Fr = v2/gR Inertia/gravity forces

L = d/R Droplet/pipe length scale

This may indicate that an analytical approach to the phenomena might 
be worthwhile, though very difficult with five or six variables.

These techniques could be extended across the whole of the flow maps, 
producing results in the form of fractal dimension contours.

It would be expected that the more obvious flow boundaries would show 
up as sharp changes in dimension. This may be analogous to the 
behaviour around classical phase transitions (entropy and dimensions). 
This should be able to detect between wavy stratified and wavy annular 
flows, where spectral methods fail.

There is an analogy here with an ideal gas in an engine. Classically, 
there are six degrees of freedom for every atom of the gas. However, 
the whole system is totally defined in a PVT plot, each point on this 
plot showing some instantaneous state of the system. These three 
parameters thus characterise the system which can thus be considered 
as effective degrees of freedom. For the gas, there are laws (albeit 
statistical) that connect the behaviour of the individual atoms to the 
behaviour of the gas. The ensemble average of the deterministic 
behaviour of the individual elements allows this connection to be 
made.

For the case of multiphase/multicomponent flows, the flow must be 
deterministic, since the external parameters can be controlled and the 
component particles are real and confined. The equations connecting 
the behaviour of the parts to that of the whole are not yet known. 
Indeed, equations governing the behaviour of the whole are at best 
semi-empirical.
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7.3 Reconroendations for Future Work.

There are many ways in which the ultrasonic experiments can be 
improved such as absolute quantification of the incident and scattered 
acoustic waves rather than the ratios and relative values used here. 
This would merely serve as fine tuning of the basic principles which 
have been proved here. Extending the range of ka in the scattering 
experiments would be interesting, especially if ka could be tuned to 
some of the theoretically predicted resonant spikes, which would 
provide very stringent tests of the scattering theory.

The standard techniques of range gated cross correlation, spatial 
filtering and spectral methods (applied to the various signals) could 
be tried on the liquid/liquid system.

Many fundamental questions about the transition to turbulence in the 
general fluid system have yet to be addressed, such as; how if at all 
is the work described here related to classical turbulence? Is the 
huge transition in a straight pipe around Re=2000 related to the order 
of the symmetry of the flow? What is the attractor for fully developed 
turbulence, is it finite?

On a simpler note the following work could be approached with 
considerably less effort.

Absolute proof of chaotic behaviour requires the determination of 
Lyapunov exponents (positive), since the methods of finding the 
dimension of attractors lead to values that are not conclusively 
fractional.

This route requires considerable computer power. An analogue/digital 
circuit has been designed to find the next highest integer to the 
fractal dimension. Maybe a circuit could be built to detect the 
Hausdorff dimension in real time.

Once these techniques have been perfected a systematic survey of 
multiphase/multicomponent flows could be undertaken.
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A p p e n d i x  A. Single Droplet Experiments.

A .1 Introduction.

This appendix describes the experimental techniques developed to allow 
the experimental investigation of the scattering of an ultrasonic wave 
from a single liquid droplet. During the course of this development, 
several interesting phenomena were observed concerning the motion of a 
droplet in a pipe flow. The results are described and investigated in 
the latter sections of the appendix.

A.2 Apparatus.

In order to study more closely the scattering of ultrasound from 
single liquid droplets in another immiscible liquid; an experimental 
design must be found that satisfies the following criteria;

(a) The acoustic observation section must have as small an effect on 
the sound wave as possible, so as not to interfere significantly with 
the wave scattered from the droplet. This precludes any sort of 
physical support, which would necessarily be a solid. A solid would 
strongly scatter any acoustic wave as well as deform the shape of the 
droplet. The only way around this is to produce a purely hydrodynamic 
support.

(b) The flow must be laminar, otherwise the droplet would not be 
stationary in the acoustic field. A turbulent flow could also deform 
the droplet.

Cc) The flow rate has to be able to be controlled accurately enough to 
bring a single droplet to rest anywhere in the acoustic field, with 
the buoyancy forces exactly cancelling the hydrodynamic forces.

Cd) This flow rate must remain stable over long periods of time 
(-hours) in order to carry out adequate ultrasonic experiments.
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(e) The apparatus must be easily dismantled and cleaned, so that 
repairs can be effected and contaminants removed.

(f) The design must be capable of being modified such that the flow in 
the observation section can be either Ci ) upwards or (ii ) downwards, 
depending on whether the droplet is (i) more or (ii) less dense than 
the surrounding fluid.

The final design for pe<pi appears in figure A.2a, with details of the 
ultrasonic observation section in figure A.2b, the droplet injector in 
figure A.2c and the final design for pe>pi appears in figure A.2d.

An optical observation section was built in order to take stereo
photographs of each droplet in the pipe, and the design appears in 
figure A. 2e. Due to the complexities of the optics and the 
interpretations of the images, the design was not fully utilised or 
analysed. Most of the photographs of the following sections were taken 
directly through the pipe wall.

A.3 The motion of a single particle in another fluid.

The first approximation to the above title, is the classic Stokes' law
of 1845, where a solid particle moves through an infinite fluid
medium. The equation of motion being ;

md2x = Sitpadx +m*g (A.3.1)
dt2 dt

Where all of the terms have their usual meanings (see figure A.3a).

When the acceleration of the particle is zero, then the particle has 
reached its terminal velocity v t , given by;

v t  = 2 ( p - p ')ga2 
9p

(A.3.2)
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C ] A c o u s t i c  o b s e r v a t i o n  

s e c t i o n
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Figure A.2a Downflow Apparatus (=l/10th scale).
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Figure A.2b The Acoustic Observation Section Cnot to scale)
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Figure A.2d Upflow Apparatus (=l/10th s c a l e ) .
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V is c o u s  d r a g  = 6 j tn r d x

D e n s i t y  =

D e n s i t y  = p « 

F l u i d  v i s c o s i t y  = n

d t  d t 2

E f f e c t i v e  mass = m* = 47ur3 ( p - p ' )

Figure A.3a Basic coordinates for the motion of a single particle.
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A basic calculation for the previous design criteria Cb) and Cf), is 
to consider a typical case, say, trying to suspend a droplet of 
kerosene (assumed solid, p'=0.81gcm-3, r=0.5mm) in a flow of water
(Newtonian, p=lxl0-3Nsm-2, p=lgcm-3).

This gives a terminal velocity of 0.103ms-i and a Reynolds Number 
(Re=pva/p) of 103 around the droplet. Thus a downwards flow of water 
of -0.103ms-i should exactly cancel the buoyancy force of the drop.

A preliminary test of the apparatus containing a drop of kerosene 
(a-lmm) required a flow rate of about 50cm3 in 15 seconds to hold the 
drop stationary. This gave the mean flow velocity in the pipe as 
0.042ms-i and a droplet Re of 42. Stopping the flow and measuring the 
time for the particle to rise 80cm in the pipe (=13s) at its terminal 
velocity, gave v t = 0 .0615ms-i and a drop Re of 61.5.

Thus the hydrodynamic criteria (b) to (e) have been satisfied.

A few simple timing experiments revealed that the particle reached its 
terminal velocity very quickly, always within the first few cm of its 
motion. This can be checked mathematically as follows.

Equation A.3.1 is of the form;

d2x + Adx = B (A.3.3)
dt2 dt

A complementary function to this can be found of the form x=aieCt+of2, 
thus ;

C2aie=t + ACaiect = 0 (A.3.4)

C = 0 or -A and x = aie-At+oœ (A.3.5)

The other part of the general solution can be found via the particular 
integral, which, by inspection has the form; x = ast,

0 + A«3 = B (A.3.6)
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•• 0(3 =B/A

*-3., h>.

(A.3.7)

x - Ofie-At + fit + a2
A CA.3.8)

Where A and B are given by;

A = dp.

2a2P' (A.3.9)

B = (P-P')g
P' (A.3.10)

ln 0rder to determine the coeffici
apply the boundary conditions that at th “h ^  ^  ^  ^  necessary to 
position and velocity are zero. This leal ^  ^  the

0(1 = -CX2 = B/A2
(A.3.11)

Dk:
or

ve

C]

*;r i"i:r r z:

lX90% = J L f loS«(10) - 0.9*1
A2 L (A.3.i n
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Substituting the material properties into A.3.9 and A.3.10 and then 
into A.3.11, for the above droplet gives xgox = -0.0065m, thus
confirming the experimental results.

A few other points, worthy of note, which became apparent during thee 
early tests, are listed below. They will be returned to, as and when 
necessary.

When the droplet is held statinary by the flow, it moves to an off 
axis position approximately 1/2 of the pipe radius from the axis. 
Initially, this was thought to be due to the pipe not being exactly 
vertical, however, careful alignment of the pipe produced a stable 
position for the droplet that could be anywhere on the circle of this 
radius. This would account for the discrepancy between the terminal 
velocity and the pipe flow velocity (both experimental 1 y determined), 
as shown in figure A.3b

The terminal velocity for a kerosene droplet (assumed solid, a-lmm) 
from Stokes’ law is 0.414ms-i, almost 7 times greater than the 
experimental value. Other effects such as the boundary conditions set 
by the pipe walls, the particle position within the pipe and the fluid 
properties of the particle, must be having a considerable effect on 
the motion of the particle.

When the kerosene particle is allowed to rise through the stationary 
pipe liquid, it always moves to the off axis position at about R/2 , 
independent of its initial position.

To return the kerosene droplet back down the pipe requires the flow 
velocity within the pipe to be greater than the terminal velocity of 
the droplet. Under these conditions, the droplet moves to the axial 
position. This is consistent with previously reported experimental 
results (Wohl 1974).

Thus, in summary, the motion of the droplet in the pipe, during a 
timing experiment, appears as is shown in figure A.3c.
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Parabolic (Laminar) flow

<v> = 0.042ms-1 
Vt = 0.0615ms-'
v*xi» = 2<v> = (. 084ms-'

Figure A.3b Velocities Within The Pipe
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Figure A.3c Particle Motion Within The Pipe.
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The discrepancies and possible causes mentioned above require further 
investigation, since a simple method to determine droplet size would 
be to measure the terminal velocity and compare this with some sort of 
calibration curve.

The terminal velocities of several more kerosene droplets have been 
measured and are compared with Stokes' law for a solid particle of the 
same size in figure A.3d.

The size of the droplet is determined photographically, and the motion 
of the particle is timed by hand (±0.01s on the clock and +0.1s on the 
hand). The largest error is in the interpretation of the photographs 
(—5%), with the spread in the value of v t due to timing errors
amounting to <1%.

The internal fluid motion of the droplet, due to the motion of their
centre of gravity relative to the surrounding medium, has been studied
extensively, due to its importance in process/chemical engineering
applications. For example; fuel atomisation at fuel injectors, 
emulsions and mixing/interfacial chemistry.

The laminar equations were first solved independently by Rybczynski 
(1911) and Hadamard (1911) and the method is described below.
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Figure A.3d. Comparing terminal velocities for kerosene droplets in 
water in a 1cm pipe, with Stokes Law for a solid particle of the same 
size and material properties.
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A.4 Derivation of the Rybcznski-Hadamard Equation.

This work follows the method of Levich C1960), and as well as being a 
useful exercise, provides insight into where the various terms appear 
from.

The general equations for an infinite outer liquid in spherical polar 
coordinates, having noted the symmetry about <p (figure A.4a);

The pressure is given by the Navier Stokes equations, thus;

S2Vr + 1 S2Vr + 25Vr + cotSSVr - 2SVe - 2Vr + 2cot0Ve5 p  =  JJL

5r 5r2 r2692 rSr r2 58 r258 r2 r2

1 5 p  =  p. 

r58
52Ve + 1 02Ve + 25Ve + ctg85Ve - 25Vr - Ve

(A.4.1)

(A.4.2)
6r2 r2582 rSr r2 58 r258 r2sin20

And the continuity equation is;

5Vr + ISVe +2Vr + Vecot0 = 0 (A.4 .3)
Sr r56 r r

For the inner liquid the equations have exactly the same form with
V(r,8) and p replaced by V(r,8)1 and p' respectively.

The easiest way of setting the boundary conditions is to make the 
centre of gravity of the droplet the origin of the coordinate system, 
by moving the rest of the system, infinite pipe and liquid, upwards 
with a velocity U.

The equation of the pipe wall is thus;

rsin8 = R (A.4.4)

as r -» 00, at the pipe wall, the effect of the droplet must be zero;
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Figure A.4a Co-ordinate system for a liquid sphere on the axis of a 
cylindrical pipe.
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Vr = -UCOSÔ (A.4.5)

Ve = +Usin0 (A.4.6)

The stress tensor at the surface of the droplet reduces to; 

the normal component ;

Prr = -p + 2p5Vr (A.4.7)
8r

and the tangential component ;

Pre = p. ISVr + 5Ve - Ve 
rS6 5r r

CA.4.8)

The pressure in the outer liquid is p-it where p is the hydrostatic 
pressure determined by the coordinate system and n is the buoyancy 
pressure or effective pressure due to the inner liquid.

Thus at the surface of the droplet Cr=a);

(p-7t) + 2p5Vr = -p' + 2g' 5Vr' 
5r 5r

(A.4.9)

15Vr + CM £ -Ve = V-'

> 
I + 5Ve' - Ve'

,r50 Sr r. rS0 5r r .
CA.4.10)

M s o  for the droplet to remain spherical, with no slip at the 
interface requires, respectively;

Vr = Vr' = 0 

Ve = Ve1

(A.4.11)

CA.4.12)

Phis completes the mathematical description of the system, and now all 
fchat is required is to solve the above equations with the boundary 
conditions.
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Sensible solutions for each of the parameters would have the following 
forms ;

Vr = f (r)cos6 , Ve = <p(r)sin6 and p= pf (r)cos6 (A.4.13)

Vr ' = f ' (r)cos8 , Ve' = <p'(r)sin6 and p' = p'y' cos8 (A.4 .14)

Substitutuing (A.4.13) into (A.4.1) gives;

pSycose = p 52fcos8 + 1(-f)cos6 + 26fcos6 + cot8fC-sin8)
5r 6r2 r2 rSr r2

- 2<pcos8 - 2fcos8 - 2cot6cpsin8 (A.4.15)
r2 r2 r2

5xp — S2f — f + 2Sf — f — 2<p — 2f — 2<p
6r 5r2 r2 r6r r2 r2 r2 r2

5y = 52f + 25f - 4(f +9 ) (A.4.16)
6r Sr2 rôr r2

52f + 25f - 4(f +9 ) = 5y (A.4.17)
Sr2 rSr r2 Sr

Similarly, (A.4.2) gives;

529 + 269 - 2(f + 9 ) = (A.4.18)
Sr2 rSr r2 r

and (A.4.3);

5f + 2(f + 9 ) = 0 (A.4.19)
Sr r

^ow f ,9 and 9 need reducing to functions of r only;
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(A.4.19) gives ;

<p = -rSf - f 
25r

(A.

(A.4.18) gives;

f = 52 > 6f + f +25 "r5f + f
r Sr2 25r rSr _25r

- 15f 
r6r

(A.-

v = r253f + 3r52f + 25f 
2 5r3 5r2 5r

•*« (A.4.17) gives;

r354f + 8r2S3f + 8r62f - 86f = 0
S M  5r3 6r2 5r

Letting f = rn reduces (A.4.23) to;

n(n-l)(n-2)(n-3) + 8n(n—l)(n—2) + 8n(n-l) + 8n = 0

n(n-2)(n+1)(n+3) = 0

Leaving n=0, +2, -1 or -3

■ f = bi + b2 + bs + air2
r3 r

(A.'

(A.4

(A.4

and;

<p = bi - ba - bg - 2ai 
2r3 2r

(A.4

V = ba + lO a i 

r2 r
(A.4

.20)

.2 1)

. 22 )

.23)

.24)

.25)

.26)
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Outside the drop, the general equations are ;

Vr = bi + bz + bs + air2 
r3 r j

cos0 (A.4.27)

Ve = bi - bz - bg - 2air2 
2r3 2r

sin6 (A.4.28)

b2 + lOair 
r2

C O S 0 CA.4.29)

The equations for the motion inside the drop are found using a similar 
method, with ba replaced by another constant a2. Because this constant 
is not a coefficient of r, it will be a function of material 
properties only, and does not need to balance across the interface.

Vr' = bi + b2 + 82 + air2 
r3 r

C O S 0 CA.4.30)

Ve' = bl - b2 - 82 
2r3 2r

2air2 sin0 (A.4.31)

P' = P' b2+ 10air
r2

C O S 0 (A.4.32)

^nd the hydrostatic pressure at any point on the surface of the drop 
is given by;

it = (p'-p)gacos0 CA.4.33)

Inputting the boundary conditions (A.4.9) to (A.4.12) leaves:

Vr = b2 + bi + ba 
r r3

C O S 0 (A.4.34)

Ve = bi - t>2 - ba 
2r3 2r

sin0 (A.4.35)
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p = jib2cos6
r2

(A.4.36)

And Inside The Drop;

Vr' =Cair2 + a2>cos8 (A. 4.37)

Ve ' = -C2air2 + a2)sin0 (A.4.38)

p ' = 10p.1 aircosô (A.4.39)

Thus as r-*oo,

-UcosB = b2 + bi + bi 
r r3

cos8 CA.4.40)

And at r=a, for all 0

0 = b2 + bi + bi 
r r3

cos8 CA.4.41)

0 = (air2 + a2)cos0 (A.4.42)

bi - b2 - bs 
2r3 2r

sin0 = -C2air2 + a2)sin0 (A.4.43)

CA.4.40) gives

b2 = -U (A.4.44)

(A.4.41) gives

U = b2 + bi 
a a3

CA.4.45)

(A.4.42) gives

aia2 + a2 = 0 CA.4.46)
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CA.4.43) gives

bi - b2 + U = -2aia2 - az 
2a3 2a

CA.4

Substituting (A.4.34) and CA.4.37) into (A.4.9) gives

-Cp - ti) + 2p •b2 - 3bi
a2 a*

cos8 = -p' + 2p'2aircos6 CA.4

-p.b2Cos6 + 7i + 2p. 
82

-ba - 3bi 
a2 a*

cos8 = -lOp. ' aircosô + 2p'2aircos8

CA.4

-3pb2 - 6pbi + TTsecS = -6p ' aia
a2 a4

CA.4

Substituting CA.4.34), CA.4.35), CA.4.37) and CA.4.38) into CA.4

1 ba + bi + ba C-sin8) + 3bi + ba* sin8 - 1 bi - ba - ba-- — ---

.a .a a3 .2a4 2a2 a .2a3 2a
sin

_Kaia2 + aa) C-sin8) + C-4aia)sin8 - 1 C-C2aia2 + a2)sin6) 
a a

CA.4

~ba - bi - bs - 3bi + b2 ~ bi + b2 + bs 
. a2 a4 a 2a4 2a2 2a4 2a2 a

-aia - a2 - 4aia + 2aia + a2 
a a

CA.4

•3bi
a4

= p ’C-3aia) CA.4

.47)

.48)

.49)

.50)

.10); 

81 =

51)

52)

53)
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p.bi = ji'aiaS (A.4.55)

Thus in summary so far;

u = b2 + bi 
a a3

CA.4.56)

aia3 + a2 = 0 (A.4.57)

bi - b2 + U = -2aia2 - a2 
2a3 2a

CA.4.58)

-3jxb2 - 6jibi + nsec0 = -6p. ' aia 
a2 a4

(A.4.59)

P-bi = g'aiaS CA.4.60)

Eliminating bi/a3 using (A.4.56) leaves;

bi = U - b2 
a3 a

CA.4.61)

aia2 + 32 = 0 (A.4.62)

U - b2 - b2 + U = -2aia2 - az 
2 2a 2a

CA.4.63)

-3jib2 - 6p. 
a2 a

U - b2 
a

+ itsecB = -6p.'aia CA.4.64)

U - b2 
a

= ji'aia2 (A.4.65)

/hich reduce to;

aia2 + a2 = 0 CA.4.66)
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3U - b2 = -2aia2 - 32 
2 a

(A.4.67)

-6p.U + 3p.b2 + 7tsec8 = -6p. ' aia 
a a2

CA.4.68)

J ill -  g b 2  =  J i ' a i a 2 (A.4.69)

Eliminating 32 using CA.4.66) leaves;

82 = -aia2 (A.4.70)

3U - b2 = -aia2 
2 a

(A.4.71)

-6|iU + 3p.b2 + irsecQ = -6g ' aia 
a a2

(A.4.72)

j i U  -  p .b 2  =  j i ' a i a 2 CA.4.73)

Eliminating ai using CA.4.73) produces ;

ai = jiU - jib2
p'a2 p'a3

CA.4.74)

-6pU + 3pb2 + Ttsec0 = -6p'a 
a a2

pU - pb2
p  ' a 2 f i ' a 3 _

(A.4.75)

3U - b2 = -a2 
2 a

jiU - jib2
,.Ji ' a2 ji1 a 3.

(A.4.76)

Expanding the last two terms leaves;

-6jiU + 3jib2 + itsecQ = -6jiU + 6jib2
a a2 a a2

CA.4.77)
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3U - ba = -p-U + |ib2
2 a" p.' p. ' a

CA.4.78)

Reducing these gives ;

TTsec0 = 3p.b2
a2

(A.4.79)

U 3 + p. =
2 ii'

b2 1 + p.
7  7

(A.4.80)

Eliminating b2 finally gives ;

U = 2ansec6 (1 + p./p ' )
3li (3/2 + g/g')

(A.4.81)

Substituting for n from (A.4.9) leaves;

U = 2(p - p ’)ga2 
3p-

H + P.’
L2p. + 3p. 'J

(A.4.82)

This is the Rybcznski-Hadamard formula, which reduces to the familiar 
Stokes' Law when p.' tends to co, thus;

U = 2(p - p ')ga2 
%

(A.4.83)

Thus it can be seen that Stokes' Law has been modified by a factor of

2p + 3p. '
(A.4.84)

For a kerosene droplet in water, p=0.001Nsm-2 and p.'-0.001ISNsm-2, 
this amounts to 1.18, which means that the particles are travelling 
more quickly than given by Stokes. This is to be expected since a 
mobile surface produces less drag.
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A further modification (Boussinesq 1913), allows the interface, 
between the droplet and the surrounding medium, to have a different 
viscosity to either of the media. He defined a surface viscosity 
coefficient 'e ' which expresses the relationship between the surface 
tension and the rate at which the surface is changing. The end result 
is a modification to Stokes' Law of the form;

3 R + li ' + 2e/3a
2p + 3p' + 2e/a

(A.4.85)

The exact value of e at any instant is determined by the effects of 
soluble or insoluble contaminants on the interface. The effect of the 
value of e can only make the terminal velocity tend towards that given 
by Stokes' Law, since with total contamination, the surface will be 
effectively rigid, and internal circulation will not occur. Another 
way of looking at this modification, is that since 0<e<co, then;

" #i + |i' " > 3 ji + ji ' + 2e/3a
+ 3(1 2|i + 3)i ' + 2e/a

> 1 (A.4.86)

A.5 Discussion and Conclusions

Thus even after the analysis of the last section, and the results 
presented therein, other phenomenae must be considered.

A more plausible explanation for the discrepancies shown in the Figure 
A.3d will be the effects of the pipe wall on the motion of the 
droplet. A first order correction to Stokes' Law was found by 
Ladenberg (1890), with a more recent form being the 5th order 
correction of Gerrard (1960);

Vt  = 1 - 2.104a + 2.09a3 - 0.95a5 (A.5.1)
Vstokes R  R3 R5

)ther approximations allow for a rotation of the particles as they 
'all through the fluid (Ambari 1985, Tozeren 1983). This rotation 
>roduces lateral forces analagous to the Magnus/Robins effect (Barkla
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1 9 7 1 ) . Small dust particles trapped on the interface of a few of the 
droplets while they were held stationary by the flow, revealed that 
the droplets do not rotate. No data on particle rotation during free 
fall could be taken with this apparatus. The previous authors have 
evaluated the modifications and for the range of sizes involved here, 
the effects do not amount to more than 10% of Stokes' Law.

The effect of particle spatial eccentricity in the pipe was first 
studied by Harmathy (1960) and more recently by Ambari (1984). His 
findings (figure A.5a) are that the Stokes velocity must be modified 
(reduced) by a factor of not less than 3.8 for a=0.43mm and R=lcm, and 
has this minimun value at c/R=0.4, where c is the eccentricity. 
However for a/R-0.1, this effect would be considerably reduced. The 
sensitivity of the correction factor with particle position 
eccentricity also sets very strict limits on the vertical alignment of 
the pipe as mentioned in section A.3. Clearly, the larger droplets 
will get closer to the pipe wall than the smaller droplets and so will 
produce greater shear forces and drag than the basic Stokes' Law, thus 
reducing the functional dependence on r from r2 to somewhere closer to 
ri for large r, though retaining the quadratic terms for small r 
(Harmathy 1960).

The experimental results, as well as Stokes' Law, the Rybczynski- 
Hadamard modification, Gerrard's modificaion and Ambari's work are 
summarised in figures A.5b, A.5c and A.5d.

Till these discrepancies can be explained and quantified more 
accurately, the timing method will not be used as the main means of 
determining drop size. The photographic method, is slightly more 
accurate but takes considerably longer.
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Figure A.5a Effect of particle eccentricity on drag force, compared with 
Stokes' Law CAmbari 1985).
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A p p e n d i x  B: Larger Scale Experiments.

B.l Introduction.

In order to carry out larger scale experiments an apparatus had to be 
designed that could create oil/water flows that were comparable with 
those encountered in the oil processing industry (see chapter 1). To 
make the flow phenomena repeatable, a detailed understanding of the 
behaviour of the apparatus and the fluid properties is required. A test 
section in the form of a spool piece was also constructed that would 
allow the ultrasonic interrogation (angular scattering, Doppler 
scattering etc) of the flow. This appendix describes the design, 
construction and testing of a custom built flow loop.

B.2 Apparatus Design.

The principal aim of this part of the work was the characterisation of 
the droplet flow regime of an oil/water flow. Four distinct 
possibilities existed for generating this flow regime.

(i) Both fluids could be drawn into a single pump, and then mixed by the 
pump, before being sent down the pipe.
(ii) Both fluids could be pumped separately, and then forced through 
some sort of mixing device before entering the pipe.
(iii) Both fluids could be pumped separately, with the natural 
turbulence in the pipe providing the mixing.
(iv) Both fluids could be pumped separately, and then some sort of 
externally controllable mixing device used to generate the droplets.

Methods (i) and (ii) provide very little control over the nature of the 
flow regime generated, above and beyond velocity and void fraction. 
Similarly, the third method is limited in that droplet size is only a 
function of the mean pipe velocity if all the other physical properties 
are constant, and so is not controllable externally. The final method 
provides the greatest experimental control over the behaviour of the 
flow. The mixer that was finally developed was a single nozzle jet
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mixer, which has advantages over other methods of dynamical mixing (eg 
stirrers) in that it is easier to clean and maintain, has no moving 
parts and does not impede the flow when it is not activated. This is the 
simplest type of mixer and its behaviour has been analysed in detail 
elsewhere (Fernando 1990). This will be covered in section B.8 and 
chapter 5.2.

No specification had been made as to which fluid was to be continuous, 
and so the apparatus needed to be flexible enough to allow for either 
the water or oil to be the continuous phase to similar superficial 
velocities (-5ms-i). For most multiphase systems, it is usually stated 
that a minimum of 100 diameters should be allowed for a horizontal flow 
to develop, and slightly less for a vertical flow. Thus for pipes of 2" 
diameter, test lengths of around 5m are required. Allowing for a few 
bends and return pipes, a pressure drop of =30psi and a flow rate of 
-0.01m3s-i are required (Miller 1978). These criteria are satisfied by a 
Worthington Simpson pump 65WJE160 for both fluids, though one pump 
required modified seals to be useable in oil.

The separation method also had to be considered carefully, if 
émulsification and complete mixing were to be avoided. The simplest 
method is by gravitation in settling tanks. If the flow loop were to be 
operated at the highest flow rates for about 5 minutes in a single shot 
mode, then the storage volume needed to be at least 3m3.

A schematic diagram of the final flow loop is shown in figure B.2a, and 
a photograph of the constructed loop in figure B.2b.

B.3 Fluid Properties.

The next problem was the liquids that were to be used in the flow. The 
experiments described in chapter 3 involved tap water and kerosene, for 
reasons described in that chapter, essentially mimicking some North Sea 
crude oils, both physical Iy and acoustically. On the larger scale of the 
proposed rig, kerosene has several serious disadvantages.
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Figure B.2b Photograph of the flow loop
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Ci) The flash point of kerosene is 39°Cr and so cannot be stored indoors 
in any quantity in an open container.
(ii) The liquid is not pure, containing aromatic hydrocarbons to several
% by volume and so producing strong odours.
(iii) The liquid is a pale yellow colour, and several of its components 
are broken down by light, leading to a gradual darkening of the liquid.

The last two make the physical and chemical properties of the kerosene
vary with time, and all three made the fluid unacceptable for the 
proposed experiment. A substitute had to be found that did not suffer 
these problems.

For physical and chemical stability, and similarity with kerosene, it is 
easiest to consider a pure oil or at least a very narrow fraction. It 
must have a very high flash point, that could never be reached in the 
laboratory, a low volatility, and ideally be transparent. Several oils 
satisfy these criteria, and are commercially available in quantity. The 
one that was finally chosen was BP Dielectric 180, and was kindly 
donated by BP Exploration.

The physical properties of both the tap water and the D180 were found 
using standard techniques and the results are summarised in the table 
below (figure B.3a). All measurements were taken at 18+0.5°C

Method Tap water D180

Density Density bottle 998.0+0.4 kgm-3 748.6+0.3 kgm-3

Speed of sound Acoustic
Interferometer

1480.2+0.6 ms-l 1295.5+1.3 ms-i

Viscosi ty 
(Kinematic)

Ubbelohde Tube 1.0574E-6 m2s-i 1.9930E-6 m2s-i

Viscosity Calculation 1.055E-3 Nsm-2 1.492E-3 Nsm-2

Surface tension 
with air

wire 0.06306 Nm-i 0.02895 Nm-i (t=0) 
0.02535 Nm-i (t=oo)

Interfacial
Tension

wire 0.02950 Nm-i (t=0) 
0.03670 Nnr1 (t=œ)

Figure 6.3a Table of the experimentally determined physical properties 
of the fluids.
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B.4 Flowmeter Calibration.

As can be seen from figure B.2a, there were three turbine meters on the 
flow loop: one for the main water flow (FEU048), one for the main oil 
flow (FEU052) and one for the jet mixer (FEU043F). All of the meters 
were supplied with water calibrations, though out of date. It is clear 
that turbine meters are sensitive to variations in density and viscosity 
(Hayward 1984) and that calibrations can drift with time. Thus it was 
decided to recalibrate all of the meters in their appropriate fluids.

Both FEU048 and FEU052 had their water calibrations checked against a 
recently calibrated turbine meter supplied by the EEC for another 
project (Community Bureau of Reference Intercomparisons Project, Oddie 
1990). Each meter agreed with this test meter to within 1.2% over the 
ranges shown in figure B.4a. Thus it could be concluded that both meters 
were working correctly. These meters were then installed in the test 
loop, to be checked on the experimental fluids. A gravimetric 
calibration of FEU052 would have been the ideal method, however it is 
impractical at the higher flow rates due to the quantity of oil 
involved. An alternative method is to use Laser Doppler Anemometry to 
measure the fluid velocity downstream of the meter. Two possibilities 
exist for this method of calibration:

(i) Find the flow profile in the pipe using the LDA, and then integrate 
to find the total flow rate and the calibration point.
(ii) Measure only the centreline velocity, assume the form of the flow 
profile and hence calculate the flow rate.

Method (i) had been investigated extensively as a part of the above 
mentioned EEC project and errors of the order 1% had been found for 
fully developed straight pipe flow. This error arises mainly from the 
accuracy of the velocities measured near the wall (Oddie 1990). The 
second method is considerably quicker (-1:100), and the errors in 
assuming a profile, for example the Prandtl l/7th power law, are also of 
the order 1% again due to wall effects. Hence the second method was 
used. Prandtl's law gives the velocity of any point in the pipe as a 
function of it position (y), the radius of the pipe (r) and the centre 
line velocity ( U c l ) , as follows:
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U(y) = Uci Cr-y) Cy/r )i/7

Thus, integrating the point profile across the pipe, will give the total 
flow rate:

rr
T ir 2 < U >  =  2 t iU c l Ci y)(y/r)i/? dy where <U> is the mean velocity,

= 49-itr2UcL 
GO

Ucl = 1.224 <U>

The oil meter was calibrated in this way, and to provide a check on the
method, the water meter was also recalibrated.

As for the jet mixing meter, the flow rates required to produce suitable 
mixing were quite small, and so velocities in large pipes (for accurate 
LDA) would also be quite small. This meter was gravimetrically 
recalibrated for the oil, as small turbine meters are very sensitive to 
changes in viscosity. It was found that the meter was being used below 
its linear region for some of the jet flow rates. To make the later 
experiments easier, look-up graphs were produced, to give an idea of the 
various flow parameters within the pipe. These are reproduced in figures 
B.4b, c and d, where other relevant fluid parameters are also included.

B.5 Single Phase Testing of the Flow Loop.

As can be seen in figure B.2b, much of the test loop is constructed from 
Perspex (polymethylmethacrylate) tubing. This is of the extruded type, 
as opposed to the cast variety, and so is rated to between 30 and 50psi,
depending on the construction of the joints. The pumps are rated to
50psi, and so a quick investigation was carried out to find the maximum 
pressures in the system as a function of fluid flow rate for both the 
oil and the water. The results appear in figures B.5a and B.5b.
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Figure B.5a Flow characteristic of the water pump
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Figure B.5b Flow characteristic of the oil pump
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As was mentioned in section B.3, the physical properties of the fluids 
are a function of temperature. The temperature rise of the appropriate 
liquid in the main tank was noted whilst the above experiments were 
being carried out. For both liquids, the rate of change of temperature 
was around 0.02°C/minute for the highest flow rates, though it is fairly 

^  independent of flow rate. Viscosity is the most sensitive parameter, and 
noting that it varies by 3%/°C (Perry 1973) for water, and that the 
viscosity is measured to ±2%, then the apparatus should have been 
capable of being run continuously for about 30 minutes before
temperature variations in this and the other physical parameters became 
significant.

There is also a problem with gases dissolved in the liquids. This must 
be addressed carefully at this stage if it not to interfere with future 
experiments. Small quantities of dissolved gas tend to come out of
solution whenever the carrying liquid is subjected to a severe pressure 
drop such as occurs in flow rate controlling valves when only a small 
percentage of the available flow is required. In this apparatus, the 
phenomenon could be clearly seen and heard in the pipe. The presence of 
any gas scatterers will interfere with any ultrasonic experiments 
carried out in the pipe. The bubbles could be eliminated by increasing 
the pressure within the whole apparatus.

B.6 Multiphase Testing Of The Loop.

As a basic test of the behaviour within the loop under multiphase 
conditions, a systematic survey was carried out of the appearance of the 
flow as a function of the oil and water flow rates. Both horizontal and
vertical phenomena were observed and are sketched in figures B.6a and
B.6b, which take the form of simple flow regime maps. The ideas behind 
flow regime maps will be greatly expanded in appendix C and chapter 6.
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Figure B. 6a Flow regime map for horizontal oil/water flow in the 2" 
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B.7 Construction of the Test Section.

The design of the test section needed to be flexible enough to allow 
several different ultrasonic experiments to be carried out with minimum 
disruption to the apparatus. The following techniques had to be 
attainable within a single spool piece:

(i) Angular scattering 
Cii) Doppler scattering
(iii) Long wavelength attenuation and speed of sound 
Civ) Spatial filtering

The most difficult problem was the measurement of the angular scattering 
at as many angles as possible. It was found to be impossible to design a 
mechanism that would allow the angle between the transmitter and 
receiver to be varied continuously. The next best solution was to have 
several transmitter and receiver positions, various combinations of 
which would allow scattering through different angles to be studied. The 
final design is sketched in figure B.7a and a photograph appears in 
figure B.7b.

The spool piece was constructed from a cast perspex block. This allowed 
the positioning of the transducers on the 'o' rings to be checked before 
the loop was run and also allowed any air bubbles that might be trapped 
on the transducer faces to be seen and then bled off, by relaxing the 
retaining bolts on the rear of the transducers. The original design 
allowed for circlips to hold in the large, low frequency transducers, 
however misalignment of spring steel circlips would have seriously 
damaged the perspex, and so retaining bolts were used instead.

To prevent rust on the blanking plugs, and to allow easy insertion of 
the transducers, engine oil was smeared on all surfaces during each 
reassembly. Details of the ultrasonic transducers, along with their 
electronics can be found in chapter 5.3 where the ultrasonic experiments 
are carried out.
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n

Figure B.7a Sectional drawings of the spool piece
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Figure B.7b Photograph of the finished spool piece in use, Wote also the 
jet mixer and solenoid valve/actuator (Section B.8)
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B.8 Construction of the Jet Mixer.

The jet mixer consisted of a small diameter pipe taken directly from one 
of the main pump outlets, through the meter FEU043F, then a solenoid 
valve, and finally the injector nozzle. The nozzle consisted of a 
straight piece of copper pipe, whose outlet was flush with the inner 
surface of and directed towards the center of the main pipe and its axis 
was normal to that of the main flow. The flow rate was controlled by the 
valve upstream of the flowmeter, and the droplet size was varied by 
changing the flow rate and the inner diameter of the nozzle (see 
chapter 5.2 for more details). A photograph of the injector section and 
solenoid valve appears in figure B.7b.

B.9 Cleaning the Apparatus and General Maintenance.

The use of both oil and water in the same apparatus pose several 
problems above those encountered in single phase flow loops. These are 
summarised below.

(i) As can be seen from figure B.3a, the interfacial tension varies with 
time, implying some sort of chemical reaction between the oil and water, 
probably due to the migration of ionic impurities within the water, as 
the phenomenon has not been observed with distilled water (Hayes 1988). 
For a small droplet, the migration would be complete after a few 
seconds, however with a tank containing three tonnes of fluid, the 
reaction took about three weeks if the tank was stirred continuously. 
The reaction product was a soap like scum which resided on the interface 
between the two fluids, and had to be removed before each run to stop it 
contaminating the pipework and, more importantly, the meters. Despite 
this cleaning procedure, the reaction took place independently within 
the pipe, leaving slimy deposits.

(ii) As the water in the tank was totally covered by the oil, the tank 
had to be continuously aerated to avoid anaerobic bacteria thriving in 
the water. These bacteria still appeared in the water droplets that 
stuck to the side of the tank and were surrounded by the oil, producing
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a foul smell and discolouring the water. The discolouring appeared after 
about three days and became very serious after two weeks.

Ciii) On disposing of the water, care must be taken to minimise oil 
losses to the drain, in order to avoid infringing the local pollution 
regulations.

(iv) The apparatus could not be cleaned with any substances that might 
act as surfactants to the oil/water reaction (for example, detergents 
and alkalis) and, as the oil was to be used repeatedly, any cleaning 
agents could not be soluble in the oil. Observing these precautions 
meant that the interfacial properties remained constant throughout the 
experiments.

With these conditions in mind, the following cleaning procedure was 
adopted every three weeks.

(i) The system was allowed to stand with the pipes full of water for one 
day after the last experiment. This allowed total separation of the oil 
and water components.

(ii ) The oil was siphonedoff the surface of the water in the tank. The
last few litres, including any scum, water etc were placed in a waste
barrel to allow further separation.

(iii) The water was drained from the tank, and the sides of the tank 
were regularly washed with clean water to remove any residual scum.

(iv) The residual water was vacuumed out and the tank allowed to dry.

(v) The tank was partial ly refilled with water and a sterilising fluid 
such as sodium hydroxide (Milton Fluid) was added, and the tank was 
thoroughly cleaned.

(vi) The tank was drained, rinsed and dried again.
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(vii) The pipework was drained and then disconnected at the bends. The 
pipes were then pigged using a bristle brush and cloth soaked in the 
sterilising fluid.

(viii) The pipe was thoroughly rinsed and reassembled.

(ix) The tank was partially refilled with water. The whole system was 
then rinsed and then drained.

(x) The tank was then refilled with water and oil ready for use.

This whole procedure could be carried out in 12 hours..

B.10 Discussion and Conclusions.

This appendix has described the design and testing of a large scale two- 
component flow loop. As this was a new test facility, each element of 
the loop had to be investigated in turn in order to find the limits and 
usefulness of the loop. Though some of the procedures appeared lengthy, 
they were considered the minimum necessary to provide good repeatable 
experimental conditions.
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A p p e n d i x  C : Select Literature Review: Multiphase and
Mu11icomponent Flows.

C.l Introduction.

Thus far the terms multiphase and multicomponent have been used quite 
vaguely as the experiments have cent %» ed around a very special case, 
the spherical discontinuity and disperse flows. The aim of this 
appendix is to briefly review the state of the art in multiphase and 
multicomponent flows, and to see how the current understanding and 
terminology has been arrived at. The review will cover the work of 
various authors in the areas between semi-empirical and purely 
experimental multiphase and multicomponent flows. Flow regimes and the 
transitions between them will be covered as well as attempts to 
produce coherent classifications in the form of flow regime maps

The term multiphase implies a combination of phases (ie solid, liquid 
or gas), where each phase can be made of the same or different 
materials. The term multicomponent implies a single phase (usually 
liquid), but different materials. The terminology has been used 
indiscriminately in the past, and ideally it should be qualified, so 
that there can be no doubt as to the specifications of the problem. 
For example, the most complex flows occurring in the oil industry 
comprise sand/oil/water/gas mixtures and so are
multiphase/multicomponent systems, and can be ambiguously described.

Most of the work in this area has centred around gas/liquid, 
liquid/liquid and liquid/vapour flows, ie fluid/fluid flows, and this 
review will be limited to fluid/fluid flows within cylindrical pipes.

C.2 Flow Transitions

Consider two fluids flowing in a pipe, with the entrance criteria to 
the system being constant. As the interface between the two fluids is 
compliant (ie can be stretched and otherwise deformed), the two fluids
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can be distributed across the conduit in a variety of ways, depending 
on the following system parameters;

Superficial velocity of fluid 1 Uls
Superficial velocity of fluid 2 U2s
Pipe diameter D
Density of fluid 1 Pi
Density of fluid 2 p2
Viscosity of fluid 1
Viscosity of fluid 2 |12
Interfacial tension between fluids CT12
Acceleration due to gravity S
Pipe roughness £

Pipe inclination angle e

Other parameters that enter under more specialised circumstances are 
heat flux, various heat capacities, thermal conductivities, boiling 
points, temperatures, pressures, reactions between the fluids and pipe 
walls (wetting and surface tension) and the compressibility of any 
gaseous phase.

As the 11 parameters in the list above are dimensioned in terms of 
CM] , CL] and CT] , the Buckingham Pi theorem can be invoked to reduce 
them to the following 8 dimensionless parameters ;

Uls+U2s, Uls, gpiD3, e, pi, pi, apiD, p 
(gD)tt Ü2s |il2 D p2 |12 jii2

The primary method of determining what is happening within the pipe is 
visual observation, or for faster phenomenae, high speed photography. 
Other methods will be described later in this section which provide
secondary information about the flow. Clearly, every combination of
experimental parameters will produce a unique flow pattern within the 
pipe and this would require an infinite number of descriptive terms or 
an accurate measurement of every dependent parameter. This is not 
practical, and since many of the flow patterns show similar
qualitative characteristics when subjectively observed, they are
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grouped together under broad flow regime titles. In horizontal pipes, 
these regimes go under the following titles;

Stratified: smooth 
wavy 
laminar 
ro11-wave 
inertia

Wave
Plug: elongated bubble
Slug: proto slug

slug 3
Annular: flow through

wavy 
mist
semi annular 

Pulsating froth 
Spray
Bubble: dispersed bubble
Homogeneous: disperse

and in vertical tubes;

Bubble
Slug: annular

frothy 
quiet 
dispersed 

Plug: piston
Annular: pulsating

mist 
wispy

Churn
Dispersed bubble
Homogeneous
Froth
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Several of the basic flow regimes are sketched in figures C.2a and
C.2b for horizontal and vertical flows respectively.

Many of these flow regimes do not have distinct boundaries and are 
very sensitive to the experimental parameters. Thus to map a fluid 
fluid flow would require at least an 8-Dimensional map to incorporate 
the important variables described above. Clearly a 2-D map would be 
the most practical to use, but in choosing two parameters for the 
axes, the others are lost, and so the maps are very experimental ly 
specific and cannot be extended to other situations. See appendix B.6 
for a typical example derived for the main experimental loop.

C.3 Generalised Flow Maps.

Of the 7500 papers and theses published this subject between 1954 and 
1984, almost all were restricted to finding the boundaries of a 
particular flow regime, whilst varying a few of the relevant 
variables. Only a few attempts have been made to collate this 
information.

The earliest flow regime map was produced by Baker (1954), and is 
reproduced in figure C.3a. On the axes wi and wg are the mass flow 
rates in lb mass/hr, the densities are in Ib/ft3, the liquid viscosity 
is in cp and the interfacial tension in dyn/cm. The use of a 
dimensional axis limits the applicability of this map to parameters 
that are close to those of the original experiments. Inspite of this, 
the simplicity of the map means it is still used extensively, 
sometimes with the minor modifications to be described below.

In the Baker map, the parameters X and y were invoked to take into 
account the possible variations in material properties from system to 
system, and were defined as follows;

X = Pg Pi 
Pa Pw

(C.3.1)
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(C.3.2)

where the subscripts g,a,w and 1 refer to gas, air, water and liquid 
respectively. Thus for a water/air system, X=y=l.

This work was extended by Scott (1963), to include the transition 
regions between the regimes, and the transition from annular to 
dispersed was omitted due to the fact that it is almost impossible to 
observe (figure C.3b). The axes were later simplified by Bell (1969), 
though they are still dimensional (figure C.3c).

A different approach, proposed by Eaton (1967) and shown in figure
C.3d, involves a definition of a two phase Reynolds number and Weber 
number as follow;

Re = 1488 MœE]2 (C.3.3)

where the subscript m refers to the mixture, M is the mass flow rate, 
S is the average slip velocity in ft/s and E] is the in situ volume 
fraction of the liquid. This last factor means that a holdup 
correlation has to be used, which considerably reduces its accuracy 
and ease of use. The slug to froth transition was originally known as 
slug three flow. The use of an effective Weber number, We, made from 
an arithmetic rather than a geometric mean, is a most unusual 
approach, and has not been explored anywhere else.

The most directly usable axes for the flow maps are the material 
superficial velocities, Uis and UgS, since these are the most easily 
varied and measured experimental parameters. These axes were first 
used by Mandhane (1974), and the results are compared with the works 
of Govier and Aziz (1972) in figure C.3e and Taitel and Dukler (1976) 
in figures C.3f, g and h. All of these maps show similar shapes, but

Dgm

We = 453D piViZEi* + pgS2(l-Ei)* (C.3.4)
a or
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Figure C. 31 Definition of some system parameters for gas/liquid flow 
in a pipe.
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with large distortions due to variations in unmapped experimental 
criteria.

Taitel and Dukler continued with their work (Dukler 1986, and the 
references therein), and were the first to publish a theoretical 
analysis of some of the more obvious transitions and compare them with 
experimental results. This was in contrast to the vast number of 
empirical correlations published previously, and the analysis below, 
follows their description of the following transitions;

A: Stratified wavy - Intermittent
B: Annular - Dispersed
C: Stratified smooth - Wavy
D: Intermittent - Dispersed

The most basic flow in a horizontal pipe containing two fluids is 
smooth stratified. All other flow regimes must be considered as a more 
stable equilibrium that has been arrived at after the smooth 
stratified flow has been perturbed. For a given piping system, the 
flow regime at a point is independent of the past history of the flow 
through that system, for a given set of flow parameters. See figure
C.3i for some of the terms used below.

A momentum equation for each phase can be written as;

-  t i S i  +  T i S i  + piAigsinp = 0 (C.3.5)
1

-  TgSg -  T i S i  + pgAggsinp = 0 (C.3.6)
s

Noting that, for an equilibrium flow;

dP* = dP (C.3.7)
dx l dx. g

-Ac dP
dx

-A] dP
dx

then;
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tgSg - TiSi + TiSi 1 + 1 + (pi - pg)gsinf3 = 0 
Ag Ai [A] Ag

(C.3.8)

The shear stresses can be found from;

xi = flplU%2, xg = fgpgUgZ and xi = fipg(Ug - Ui)2 (C.3.9)
2 2 2

and the friction factors ;

fl = Ci DiUi -« and fg = Cg DgUg -» (C.3.10)
L FI L FgJ

The above equations require the definition of an equivalent hydraulic 
diameter, as follows (Agrawal 1973, Mil 1er 1978);

Provided the flow is fairly smooth, the above diameters arise because 
the liquid is behaving as in open channel flow and the gas as in 
closed duct flow. Thus fi=fg and fi«fi.

For laminar flow, Taitel and Dukler take, Cg=Ci=16, n=m=l and for 
turbulent flow, Cg=C]=0.046 and n=m=0.2.

Reducing these equations to a dimensionless form in D,D2,U]S and UgB, 
and denoting these with a tilde, leaves;

Di = 4A] and Dg 
Si Sg+Si

4Ag (C.3.11)

X2 (UiDi)-nUi2Si
AlJ

4Y = 0 (C.3.12)

Where ;

X2 = 4Ci UisD' -npiUis2 = I (dP/dx)isl (C.3.13)
D L FlJ 2 I(dP/dx)gS I



245

(P1 ~ pg>gsinft = (pi - p8)gsinp CC.3.14)
“nPsugs2 I (dP/dx)gS I

2

Thus X is the familiar Lockhart-Martinel1i parameter, proposed in 1949 
for steam/water flow, and used with varying degrees of success for all 
other types of multiphase flows since then. Y is a measure of the 
relative sizes of the gravitational forces and the axial pressure 
drop.

A geometrical analysis reveals that all of the dimensionless variables 
can be rewritten in terms of h = h/D, thus ;

Al = 0.250e - cos-iC2h-1) + (2h-l )(l-(2h-l (C.3.15)
Ag = 0.25(cos-i(2h-l) - (2h-l)(1-C2h-1)2)K)
S i = ti - cos-i (2h-l )
Sg = -cos-i (2h-l)
Si = (l-(2h-l)2)%

' Ui = Z/K\ 
tig = X/^g

Thus the coefficients in equation C.3.12 can be calculated in terms of
h/D, and thus for a given pair of X and Y, determined by the external
system parameters, the equilibrium liquid level Ch/D) can be found. 
This requires a Reynolds number to be calculated for each phase, using 
the real velocity and the hydraulic diameter (rather than superficial 
velocity and pipe diameter), to determine whether each flow is laminar 
or turbulent, and hence the values of n,m and C.

Now that the equilibrium liquid level is known, the next problem is to 
find what happens when this surface is perturbed, producing some 
deviation in the liquid level. Several possibilities have been 
proposed, and are summarised below;

4Cg
D

UgsD
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Smooth equilibrium^*.Unstable perturbation
Growth rate <0

Stable p e r t u r b a t i o n ^ L i n e a r  periodic waves 
Growth rate =0

Nonlinear periodic waves 

Solitary waves

Unstable perturbation^-*.Exponentially growing wavesr— *.Tops blown off 
Growth rate >0 \ nonlinear periodic (Breaking)

Nonlinear solitary

Plug flow

Liquid bridges 
pipe section

Increasing gas
Slug flow flow rate

I
Blow through

Annular flow

The general approach towards the behaviour of a finite disturbance is 
via the Kelvin-Helmholtz instability (Chandrasekhar 1961). Here, the 
wave will grow if ;

U* > g(pl-p6)hg
Pb

1/2 (C.3.16)

This was originally proposed for large rectangular ducts, where the 
liquid level is much smaller than the depth of the duct. This has been 
extended to flows in round pipes (Taitel and Dukler 1976), and leads 
to;

U* > Cz (p]-pg)gcospAg
pg(dA]/dh)_

1/2 (C.3.17)

Where ;
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C22 - (Ag' /Ag)2 = 1-h/D CC.3.18)
1+Ag 1 / Ag

The latter approximation being valid for finite waves when h/D>0.5, 
and the primes indicate the values at the disturbance. Reducing these 
to a dimensionless form leaves the criterion as;

F2 1 Ug'2dAi/dh
C22

> 1 (C.3.19)

Where F is the Froude number, modified by the density ratio, thus;

F = Pg
pl-pg.

1/2 uss (C.3.20)
(Dgcosp)i/2

Thus this is the criterion for waves growing out of control, and 
producing, plug, slug, annular and other intermittent flows. These 
transitions can be mapped in terms of F versus X or Y, as in line A in 
figure C.3j, where X has been rewritten in terms of h/D.

It has been observed that for h/D<0.35, the transition from stratified 
wavy goes directly to annular mist, and for h/D>0.5, intermittent 
flows occur. This criterion is dependent solely on the concepts of 
conservation of fluid, and so is independent of the other experimental 
parameters, and leads to the vertical lines shown as b in figure C.3j.

The above two criteria have considered the behaviour of finite 
disturbances, however, the transition from smooth stratified to a 
finite disturbance requires the analysis of the behaviour of an 
infinitessimal disturbance. This transition is not yet understood due 
to the non-obvious method by which energy is transferred from the gas 
to the liquid. The following equation was proposed by Jeffries (1925);

CUg-C)2C > 4nig(pi-pg) 
sPg

(C.3.21)
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Where C is the wave speed on the interface and s is a sheltering 
coefficient in the lee of the wave (-0.01-0.03). Noting that, at the 
transition, Ug»C and U]=C, leaves;

4ni(pi-pg)gcosp
spgUi

1/2 (C.3.22)

In dimensionless form, this criterion reduces to;

UgUll/2gl/2
(C.3.23)

where;

K2 = F2Re i s = pgUgs2_______DUl, (C.3.24)
(pi-pg)Dgcosp m

Again, as with the last two transitional criteria, the terms in 
brackets can be rewritten in terms of h/D. Hence the criterion for the 
transition fron smooth stratified to stratified wavy is plotted as 
line C in figure C .3j.

A recent investigation (Jurman 1989), into the transition from smooth 
stratified to stratified wavy, and the types of waves involved, in a 
rectangular duct, has shown that the Orr-Sommerfeld wave equation for 
the surface of the thin film has two singular solutions. These 
solutions are characteristic of smooth stratified and shock waves. A 
Hopf bifurcation occurrs in the smooth stratified solution, leading to 
stable periodic waves (the eigenvalues are purely imaginary), as the 
lowest linear solution. Other waveforms such as solitary waves also 
appear as solutions.

An alternative perspective, which has yet to be considered, is to 
consider the gas forcing its way downwards and displacing the liquid, 
rather than lifting the liquid. This would lead to an analysis 
identical with the Rayleigh-Taylor instability, where a denser liquid 
lies above a less dense liquid and so is inherently unstable.
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The final, and probably the most important transition, is where the 
flow becomes homogeneous. At this point, the turbulent fluctuations in 
one of the fluids is enough to overcome the buoyancy or gravitational 
forces in the other. Consider a turbulent liquid entraining a gas. The 
buoyancy force per unit length of the gas is;

Fb = gcosp(pi-pg)Ag CC.3.25)

The force due to turbulent fluctuations is CLevich 1962);

Ft = &piV'2si (C.3.26)

Where V  is the radial velocity fluctuation whose rms value is taken 
to be the friction velocity, thus;

(v'2)l/2 = U* = UiCfi/2)l/2 (C.3.27)

Therefore, for Ft )Fb the criterion becomes ;

CC.3.28)

And in dimensionless form, this becomes ;

T2 > 8Af« CC.3.29)
SiUl2(UlDl )-n

Where ;

T = C4Ci/D)(UisD/ni)-n(pi(U]s)2/2>1 1/2 I(dp/dx)i,l 1/2 CC.3.30)
(pl-pg)gcosp . (pi-Pg)gcosB

Again, this can be rewritten in terms of h/D, and is plotted as line D 
in figure C.3j. Figures C.3k, 1 and m show comparisons between the
experimental results of Taitel and Dukler (1976), their theory.
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outlined above, and the first two also show the results of Mandhane 
(1974), all with axes of superficial velocity.

Figures C.3n to C.3u show the results of several other authors, 
Hoogendoorn (1959), Govier et al (1977), Choe (1978) and Weisman 
(1979), culminating in the very detailed works of Sakaguchi (1979) and 
Spedding et al (1980). These last two are the most recently published 
flow regime maps, and give details of intermediate transitions, as 
well as the basic four described above. It is worthy of note, that 
these maps contain several boundaries which bifurcate into areas 
surrounded by quadratic-1 ike curves.

Figure C.3v reproduces the only published flow regime map for 
oil/water flow in a horizontal pipe. This is from Charles et al. 
(1961) who used oils with viscosities of 6.29 and 16.8cp and a 
specific density of 0.988. Experimental data pertaining to 
liquid/liquid flows is almost non existent. This is surprising, since 
by varying the density ratio, the effect of gravity can be varied 
considerably, allowing transitions to occur at lower flow rates.

Vertical fluid/fluid flow has been studied almost as extensively as 
the horizontal situation, due to its importance in reactor core 
cooling, and chemical transfer processes. These are usually modelled 
using unreactive gas/liquid flows, which leads to results that are 
easier to test experimentally. Flow transitions have been observed in 
numerical models of periodically forced heat exchanger tubes (Rizwan- 
Uddin 1988), but this is beyond the unreactive and simple flows under 
review here. Figure C.3w shows the Hewitt-Roberts map (1969) for 
vertically upwards two phase flow. Figures C.3x and y show Spedding 
and Nguyens' data (1980) for verically upwards and vertically 
downwards flow.

All of these maps consider cocurrent flow, ie the liquid and gas going 
in the same direction. However, there is the possibility of 
countercurrent flows. In the horizontal case, this is fairly trivial, 
since only smooth stratified and stable waveforms can exist within the 
pipe. Any liquid bridges lead to a violation of the countercurrent 
definition and catastrophic pressure surges. In a vertical pipe, where
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gravity doesn't provide a symmetry to be broken, flow regimes such as 
droplet,' annular, mist etc, can exist in the counter current system.

For example the transition between countercurrent and cocurrent, known 
as flooding, the liquid flow rate must be zero, and the liquid is 
suspended in the pipe against gravity, by the friction forces of the 
gas. This provides a very well defined transition which will reappear 
in appendix D.

All of the above flow regime maps have been determined primarily by 
visual observation. Several of the transitions can be picked up using 
experimental techniques which determine some structural parameter 
which is characteristic of the distribution of the materials in the 
flow.

These include;
Visual observation
Photography - high speed phenomenae
X-ray photography - opaque liquids/tubes
Optical methods - refraction, scattering, absorption
Photon attenuation - Single or multibeam X-ray and y-ray
Hot film anemometry
Electrical conductance
Electrical capacitance
Pressure or pressure drop fluctuations
Wall shear stress fluctuations

The results of these experiments could be analysed using either a non- 
parametric approach or a parametric approach. The first involves the 
usual statistical analysis in the amplitude, time and frequency 
domains, leading to characteristic distribution and correlation 
functions. Stochastic discriminants (such as moments of different 
orders) or shape comparisons could then be used. The parametric 
approach requires a semi-empirical model to be generated in terms of 
power series, based on the time series. The implementation of these 
techniques has been reviewed by Drahos (1989).
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C.4 Discussion and Conclusions.

As yet, there is no method of solving the Navier-Stokes equations for 
an arbitrary fluid flow (including fluid/fluid flows), and no unified 
approach to predicting, even semi-empirically, the transition 
boundaries within these flows. "There is a need for objective and 
reliable diagnostic criteria, since confidence in the flow pattern 
maps, used in design and operation, is limited" (Drahos 1989).

Returning to the flow maps, consider a flow map in X 1-X2 parameter 
space, and let the inlet conditions be known to be xi,X2. These 
coordinates will define a point on the map, however, at a given point 
in the pipe, the parameters may not be xi,X2 and this point is merely 
the geometric center of the mean of all the trajectories of all the 
points within the pipe. At any instant, the system will be at a point 
somewhere else in the parameter space. The idea of parameter or phase 
space will be expanded in appendix D.

This appendix has reviewed a fairly representative sample of the 
published literature in the fields of multiphase and multicomponent 
flows. It is clear that there is a need for an improved understanding 
of this field, starting at a more fundamental level, rather than 
extending the semi-empirical results published to date.
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A p p e n d i x  D : Chaos In Fluid Flows.

D.l Introduction

The following sections constitute an introduction to chaotic 
phenomenae, with the final aim of developing a new model for the flow 
of multiphase and multicomponent mixtures in pipelines. Because of the
universality and diversity of chaotic phenomenae, the number of
publications in this area has been increasing exponentially over the 
last few years, under many varied subject titles. It is not the aim of 
this work to cover the subject as a whole, space will not permit an 
undertaking of that magnitude, but to take a very specific line
through the literature, drawing only on those works which appear 
necessary for the argument. This enables the work to remain of a 
readable length, but also means that some important concepts may have 
been overlooked. Where this becomes apparent, the reader will be 
referred to the appropriate literature.

The work begins in section D.2 with the logistic equation for
population growth, and other phenomena, and a simple modification to 
the equation, which produces several interesting results. This leads 
to very explicit definitions of what will be understood by the terms 
deterministic, chaotic and random, in the ensuing sections.

Section D.3 begins with a description of 2-Dimensional free (Bénard) 
convection and the extensively studied Lorenz equations. These 
differential equations are studied numerically using a simple 
difference method, and the basic principles for extending this method 
in order to study other systems of more general differential equations 
are described. This leads to the concept of attractors.

Section D.4 studies attractors in more depth, with a rigorous 
definition of dimensionality, embedding dimensions, Hausdorff 
(fractal) dimensions, Poincaré sections, Hénon mapping, and the 
physical meaning of Liapunov exponents. Methods for determining these 
factors are described in section D.5, with especial reference to the
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Grassberger-Procaccia method. The effects of numerical, digital, 
random and systematic noise are also outlined.

Section D.6 brings all of this information together and shows how the 
basic principles can been seen to be applicable to fluid flows and 
flow transitions. Outlines of possible experimental procedures that 
can be used to verify these conclusions are given and compared with 
current trends in experimental and theoretical work. Applications 
include the primary transition to turbulence in single phase flows, in 
(i) cylindrical Taylor-Couette flow, Cii) spherical Taylor-Couette 
flow, (iii) flow in curved ducts and (iv) flow in straight pipes.

Section D.7 extends the concepts to multiphase and multicomponent 
flows. The few pulished applications of chaos in multiphase flows are 
reviewed including core/annular flow instabilities, the flooding 
transition (air/water), horizontal gas/solids flows and coolant 
(periodic forced) flow in reactor cores. This leads to the conclusion 
that a given flow situation will have a characteristic Hausdorff
dimension, which will remain finite for all experimentally realisable 
situations, the accuracy being limited by the resolution of the 
measuring technique and the scale of the smallest significant event in 
the system.

Section D.8 then brings all of the preceding sections together,
providing a suitable starting point for the material appearing in
chapter 6.

D.2 The Logistic Difference Equation.

As yet there are no satisfactory approaches to the problem of the 
transition between laminar flow and turbulence in hydrodynamical 
systems. The usual technique is to ensure that the system is either 
laminar or fully developed turbulent. The first is accurately modelled 
using simple potential theory and the second succumbs to statistical 
methods. In order to model the transition between laminar and
turbulent, it is necessary to study other systems which show this type 
of transition, investigate the transition region, generalise the
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methods (if possible) and then apply them to the hydrodynamica 1 
systems, the simplest system displaying such a transition is the
logistic difference equation, which has been used by biologists to 
model population dynamics for over 50 years, though the full structure 
and significance of the equations has only been realised in the last 
two decades.

Consider the nth generation of a colony of animals, with a population 
xn. The next generation will have a population that is a simple
function of xn, in general the equation will have the form;

Xn+l =  R(Xn> (D.2.1)

If there are no controlling factors, for example rabbits in Australia 
in the 19th century, the equation takes the form;

Xn+l = rxn (D.2.2)

This implies, unrealistically, that each generation breeds once and
then dies. Thus for r>l, the population grows exponentially, and if 
r<l, the population dies out, and the population is only stable for 
r=l.

However, real populations are governed by more than the single 
reproductivity parameter, r . Other factors such as food supply, 
overcrowding or predator-prey interactions are of importance. For the 
single generation problem, the other factors can only enter in the
following form;

Truncating thes feedback factors down to the first term, and with 
appropriate scaling, this reduces to the logistic difference equation;

œ
Xn+1 = rxn SmXnm CD.2.3)

m=2

Xn+l = rXn(l-Xn) CD.2.4)
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This equation has been extensively studied (Kadanoff 1985, Doherty 
1988), and the results can be summarised as follows (figures D.2a and 
a'). For 0<r<l, the population is unstable and x®-»0 for all xo. For 
Kr<3, the population has two stable values, the trivial extinction, 
and the value l-l/r=Xo, the latter case occurring for all xo^O. For 
3<r<3.44, xn oscillates between two fixed values, Xi and Xz, with Xo 
being an unstable fixed point. When r=3.44, each of these stable fixed 
points period doubles to produce a stable 4-cycle, with stable points 
Xs-Xe, with Xo,Xi and X2 behaving as unstable fixed points between 
these. As r is increased further, the period doubling cascade 
continues, tending to the geometric series in r ;

ro(=l)-»20,
ri(=3)-»2i,
r2(=3.44)->22,
r3(=3.545)->23,
r4(=3.565)-»24,

rn-»2n
rn+i-»2n+i

rro(=3.5699)->2®

Where the higher order terms tend to the geometric series as follows;

rn - rn-i •» 5n = 4.6692016....... (D.2.5)
rn+l - rn

The constant 5n is known as the Fiegenbaum universal constant 
(Fiegenbaum 1978), as it has been found (and shown) to be a 
characteristic of every iterative system containing a quadratic term. 
It should be noted that each successive iteration (generation) lies on 
opposite sides of the Xo line. Thus a high order 2^-cycle has a large 
scale structure, though the individual steps may appear random, 
depending on how many generations are observed.

At rm(=3.5699), the period of the cycle is infinite, thus making the 
motion appear totally chaotic. For 3.5699<r<4, the totally chaotic
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Xn+1-RXn(1 x n)

r» R

Figure D.2a Population dynamics in the normalised logistic equation.

r ,  r 2 r. R

Figure D.2a' An enlarged version of the chaotic region showing some of 
the fine structure.
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behaviour is interrupted for bands of r, within which, a period k2" 
cascade appears, where k is any positive integer. Within these windows 
there are also random outbreaks of chaotic motion, and thus the time 
series never repeats itself. Thus for r<3.5699, the system is totally 
deterministic, since xn+i can be found to an infinite number of 
decimal places, even from a less than perfect value of xo, provided 
the transients caused by the error in xn are allowed to die down. For 
r>3.5699, if xo has a truncation error e, the nth iteration has an 
error of 2ns, and so when, xn + 2ne > xo, all correlation between xn 
and xo is lost, and so the system can be considered random. A 
correlation function can be defined as;

The system is considered to be chaotic if c(i:)-»0 as t -w q „ The above
derivation was originally carried out for r=4. At this point, an exact
solution for Xn has been found (Kadanoff 1983), and the error analysis 
is a direct result of binary number theory and is also known as the 
Bernoulli shift. The analysis is applicable (in principle) to any 
chaotic system, and leads to the conclusion, that a chaotic system has
a sensitive dependence on the initial conditions.

An alternative method of analysing the behaviour of the system is to 
consider the power spectrum of x. The discrete Fourier transform is 
defined as;

c(t) = lim 1/t t x'(t)x'(t+T)dt CD.2.6)

where ;

x'(t) = x(t) - lim x(t)dt CD.2.7)
0

N
CD.2.8)

N* n=l N
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and the power spectrum is a plot of Ix(tok) I2 versus wk. If the
population is known to be normalised (0<x<l ), then this can be
simplified to;

For time independent signals, the power spectrum is a spike at zero 
frequency. In time-periodic signals, spikes appear at the frequency of 
oscillation and its harmonics. The harmonics are integer multiples of 
the fundamental frequency and appear due to the finite period of the 
observations or due to the discrete nature of the data. With the 
period doubling cascades, more spikes appear in the gaps, and 
eventually form a continuous background, which then swamps the primary 
signals (see figure D.2b).

It has been recently proposed (Morimoto 1989) that equation D.2.3 may 
be further modified to include other iterations (generations), of the 
following general form;

Truncating each series to the first term and scaling appropriately, 
leaves;

This equation was originally proposed as a possible model for the 
behaviour of a biological nervous circuit, where the chemical feedback 
controlling the impulses, takes longer than a single refractory 
(iterative) period to become ineffective. However it can be seen to be 
equally applicable to population dynamics where there are multiple 
generation interactions. In the biological sense, the value of B must 
be limited to, 0<B<1, and clearly when B=0 equation D.2.11 reduces to
D.2.4. Mathematically a finite solution can be obtained for -1<B<4.26.

P(w) = 1 N 2 (D.2.9)

n=l

oo oo
Xn+1 = rxn (D.2.10)

m=2 1 = 1

Xn+l = Axn (1 - Xn - Bxn-1 ) (D.2.11)
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Figure D.2c shows the variations of the bifurcation diagram (in A,x(t) 
space) as the value of B is varied. Note that the axes have been 
aligned such that the scales are uniform. When B changes slightly from 
0» a pattern similar to the logistic (B=0) model is maintained, with 
some of the complex bifurcation pattern being suppressed. For B>0.1 
only a periodic 21 or 22 pattern is left. In the region 0.15<B<0.21, a 
3-cycle point suddenly appears. This 3-cycle point continues for 
0.21<B<0.52 but also includes large areas of instability. This then 
jumps to a 4-cycle point at B=0.52, and shortly afterwards, an 
oscillatory section (following a Hopf bifurcation (Hopf 1949)) 
appears. These patterns are summarised in the form of a phase diagram 
in the A,B plane in figure D.2d.

D .3  The L o re n z  E q u a t io n s .

Before going into the details of the Ray1eigh-Bénard problem and the 
Lorenz equations, it will prove useful to briefly introduce the idea 
of 'degrees of freedom' in a dynamical system. For a simple dynamical 
system that can be described by a single ordinary differential 
equation, there is only one possible solution to each possible set of 
initial criteria, ie the system is determinate and has one degree of 
freedom. If there are two possible solutions, this means two degrees 
of freedom and two ordinary differential equations are required to 
fully describe the system.

For a system whose number of degrees of freedom can be increased by 
changing an external parameter, a knowledge of the number of degrees 
of freedom of the system will be a useful parameter in characterising 
that system.

Clearly, if a hydrodynamic system is considered to be a continuum 
(Swinney 1983), each infinitessimal piece of space could have at least 
6 degrees of freedom (3 position, 3 velocity, angular momentum 
vectors, potential etc), leading to an infinite number of degrees of 
freedom. Laminar flow can be considered to be a basic single body 
problem and thus be one dimensional. A simple derivation for the
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number of degrees of freedom of a hydrodynamic flow (Landau 1959) 
gives;

N -  (R /R c )9 /4  (D.3.1)

Where R (= pvl/n) is the Reynolds number, and v and 1 are taken to be 
those values which are characteristic of the 'whole' system. Rc is the 
critical Reynolds number, at which the first deviation from the 
classic laminar solution becomes a stable feature of the flow. Thus, 
just beyond the onset of this new type of flow, the number of degrees 
of freedom remains small, and hence the current interest in the 
structure of turbulent flows. Some authors (Newell 1988) have taken N 
- R9/4, which means that even laminar flows have a high
dimensionality. A full derivation of D.3.1, along with a description 
of the classical view of turbulence, will be given in section D.6 .

In a Ra1eigh-Bénard system, a fluid is contained between parallel 
plates, which is heated from below. The behaviour is usually studied 
(Swinney 1983) as a function of the Rayleigh number;

Ra = gocd3. AT (D.3.2)
kn

Where g is the gravitational acceleration, oc the thermal expansion 
coefficient (assumed positive), d the separation between the plates,, 
k the thermal diffusivity and n the kinematic viscosity. Other control 
variables are the Prandtl number , P = n/k, the aspect ratios ri=l i/d 
and f2=l2/d and the boundary conditions at the sidewalls.

A primary example of a Rayleigh-Bénard (Bénard 1900) system is the 
motion of the atmosphere, which is generally caused by convective 
forces, derived from solar heating. For low heating rates, the thermal 
conductivity of the atmosphere can maintain a stable equilibrium. 
However, as the heating rate is increased, above a certain critical 
value of Ra, convection sets in at various scales, depending on the 
other experimental criteria. The convective transport of heat and 
momentum are the cause of the essentially non-linear behaviour of the 
atmosphere.
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Before considering such a complicated real system it will be useful to 
consider the pioneering work in this area (Saltzman I960 and Lorenz 
1961). The equations that are commonly referred to as the Lorenz 
equations can be derived as follows, using the same notation as the 
original papers, where ;

%,y = horizontal coordinates
z = vertical coordinate
t = time
u = dx/dt
V = dy/dt
w = dz/dt
p = densi ty
p = pressure
T = temperature
P = kinematic viscosity
k = coefficient of thermal diffusivity
S = acceleration due to gravity
8 = coefficient of volume expansion
H - height of fluid

<f> = average of f over a horizontal plane
f ' = f -<f >
Cf)av = average of f over the entire field
fl = f - <f).v
fo = initial value of f
PhO = gCp)av(z-H)
P = (p - phO)/(p)av

The full equations of motion (Navier-Stokes, continuity etc) governing 
the motion of the convection can be reduced (Oberbeck 1879 and 
Boussinesq 1903) to the following;

du + SP - p X72u = 0 (D.3.4)
dt Sx

dv + SP - p ^2u = 0 
dt Sy

(D.3.5)
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dw + 5P - geTi - p. ^ 2W = o (D.3 .6)
dt 5z

£Ti - k V 2 Ti = 0 (D.3.7)
dt

5u + ôv + 5w = 0 CD.3.8)
5x 5y 5z

Also it is taken that ;

p = (p)av/(l + eTi) CD.3.9)

The temperature gradient ATo = <To(0)> - <ToCH)> is kept constant and
both the upper and lower boundaries are considered to be rigid. If the
motion is restrained to be in the x-z plane only, ie v=0, S/6y=0, then
the governing equations are further reduced;

Su + uSu + wSu + 5P - p. ^ 2u = 0 CD.3.10)
St Sx Sz Sx

5w + uSw + wSw + 6P - geTi - p. ̂ 2w = 0 CD.3.11)
St Sx Sz Sz

STi + uSTi + wSTi - k ̂ 7271 = 0 CD.3.12)
St Sx Sz

Su + Sw = 0 CD.3.13)
Sx Sz

Using CD.3.10) a stream function ig can be defined as follows;

u = -Sig, w = Sy CD.3.14)
Sz Sx

Ti'Cx,z,t) and <Ti"Cx,z,t)> are defined as follows;

TiCx,z,t) = <TiCz,t)> + Ti'Cx,z,t) CD.3.15)
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<Ti(z,t>> = <Ti(0,t)> - AToz/H + <Ti"(z,t)> CD.3.16)

The first equation gives the temperature with respect to the average
in that plane and the second gives the average value of Ti with
respect to a hypothetical linear variation in temperature between the 
upper and lower boundary layers.

Substituting CD.3.16) into CD.3.15) leaves;

Ti(x,z,t) = <Ti(0,t)> - AToz/H + 0 CD.3.17)

Where;

9 = <Ti"Cz,t)> + Ti 'Cx,z,t) CD.3.18)

Eliminating P from CD.3.11) and CD.3.10) by reducing them to terms in 
del2\j/ (= Su/5z - 5w/5x) and introducing CD.3.14) and CD.3.18) produces 
the equations that govern the model ;

5_ \72V - V 2v + 5f5 V 2̂  “ Ss50 - p. ^  = o CD.3.19)
5t 5z5x 8x5z Sx

60 - 5^80 + 6f80 - AToSf - k 5729 = 0 CD.3.20)
St SzSx SxSz H Sx

These can be further simplified by resorting to Jacobian operator 
notation, as follows;

5 V 2f + SCiy, ̂ 2y) - geS0 - p = 0 CD.3.21)
5t SCx,z) Sx

60 + 5Cyt 0) - ATo5f - k y 2 8  = 0 CD.3.22)
6t SCx,z) H Sx

Rayleigh found that fields of motion of the form;

V = yosinC7tax/H)sinC7tz/H) CD.3.23)



0 = 8ocos(7rax/H)sin(Ttz/H) CD.3.24)

would develop if ;

gaH3AT > it4(i+a 2)3 CD.3.25)
p.k a2

which defines what is now known as the critical Rayleigh number and in 
this case occurs when a2=% and thus Rc=27ii4/4.

Saltzman C1960) derived a set of ordinary differential equations by 
expanding y and 6 in double Fourier series in x and z, with functions 
of t alone for coefficients, and substituting these series into 
CD.3.21) and CD.3.22). The resulting infinite set of ordinary
differential equations were then reduced to a set of seven equations, 
in seven variables and time, by omitting all but a very narrow range 
of functions of time. Upon numerical integration, four of these 
variables tended to zero and the other three would neither converge 
nor diverge, but underwent irregular, apparently non-periodic
fluctuations.

Alternatively these three terms can be found by using the following 
equations rather than CD.3.23) and CD.3.24),CLorenz 1961);

atp = X2*sinC%ax/H)sinC%z/H) CD.3.26)
Cl+a2)k

TiRaG = Y2^cosCnax/H)sinCirz/H) - ZsinC27tz/H) CD.3.27)
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And aftër some rearrangement, the resulting equations are;

dX^= -crX + aY (D.3.28)
dr

dY = -XZ + rX - Y CD.3.29)
dx

dZ = XY - bZ CD.3.30)
dx

Where dimension!ess time, x=%2Cl+a2)kt/H2, n/k=Pr the Prandtl number, 
r=:Ra/Rc and b=4/Cl+a2). These three equations are dimension!ess 
versions of Saltzman's equations A, D and G, and are now known as the 
Lorenz equations. The variable X is proportional to the intensity of 
the convective motion, Y is proportional to the temperature difference
between the ascending and descending currents, and Z is a measure of
the distortion of the vertical temperature profile from linearity.

It is also possible to derive the Lorenz equations for a leaky 
waterwheel CSparrow 1980, Malkus 1979)! This does not extend the 
theoretical understanding of the equations, but provides a simple 
experimental demonstration of the transition to chaos.

Because of the severe truncation of the series, these equations can 
only be expected to bear any resemblance to real convection when the 
system is just supercritical.

As an aside, it can be noted that the variables Y and Z can be 
eliminated from the Lorenz equations above, leaving XCt);

d^x + Ca-b)d2x - Cb+r+bcr+l+x2)dx + Cr-o-ob+rb-ox2)x = 0 CD.3.31) 
dt3 dt2 dt

This equation has a very similar structure to the equations governing 
the van der Pol or Duffing oscillator CMiles 1989, Awrejcewicz 1989), 
which can be written as follows;
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AidZx + (A2X2+A3>dx + (A4+A5x2)x = f (t) CD.3.32)
dt2 dt

This equation has been used to describe many systems which are forced 
and suffer non-linear damping, for example electrical circuits and 
mechanical oscillators (Pippard 1985).

In order to investigate the temporal behaviour of the Lorenz 
equations, they must be integrated, and the simplest method is by 
iteration. Noting that the differential of the nth iteration can be 
defined as follows;

dx„ = Xn+l - Xn CD. 3.33)
dt dt

and similarly for the differentials of y and z, leading to;

Xn+l = Xn + cr(yn-Xn>T CD.3.34)

yn+1 = yn + (rXn-yn-XnZn)T CD.3.35)

Zn+1 = Zn + Cxnyn-bZn)T CD.3.36)

where x is the time increment between the steps. If r<l, the equations
converge to a stable point for all values of b and a, as expected 
there is no fluid motion, and the heat is transferred through the 
liquid by conduction only. However for r>l, the evolution of the 
system in x,y,z space becomes more complicated. The possibilities are 
described below and full derivations and examples can be found 
elsewhere CSparrow 1980, Doherty 1988).
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Ci) Stable singular points.
(ii) Attraction to and then entrapment onto a simple closed curve
(iii) Attraction to and then entrapment onto a curve that lies on the

surface of a torus. If the solution is periodic, then the curve is
closed and produces a one dimensional line on the surface. Quasi- 
periodic solutions are not closed, and eventually cover the whole 
surface.
Civ) Other closed, but unbounded, surfaces exist onto which the path 

can be attracted, however these do not enter the three dimensional
case.
Cv) Under certain cicumstances Cchaos), the trajectory is attracted 

to an object, within which it wanders haphazardly. The path never 
settles onto a surface or repeats itself. This object is known as a 
strange attractor.

Figures D.3a and D.3b show the first 2000 points of the integration of 
the Lorenz equations, projected onto the x-z plane, for parameters 
given in the figures. As the integration time is increased, the space 
appears to be slowly filled with the line. Since, in reality, the line 
has zero width, the volume can never be filled, and the conditions in 
Cv) above apply.

Having integrated the Lorenz equations by converting them into 
iterative equations, using CD.3.33), it would be interesting to find 
the form of the differential equations that produce the iterative 
equations that were studied in section D.2; namely the logistic 
equations. The following approximations will be employed;

dxn = Xn+l - Xn CD.3.37)
dt x

d2xw= Xn+2 - 2xn+l + xn CD.3.38)
dt2 T;2

d 3Xn =  Xn+3 - 3xn+2 + 3xn+l - xn CD.3.39)
dt3
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Figure D.3a. The first 2000 iterations of the Lorenz equations for; 
X0=l, Yo=l, Zo=l, ft=0.01, r=10, b=8/3 and r=28, projected onto the X- 
Z plane.
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Figure D.3b. The first 2000 iterations of the Lorenz equations for; 
Xo=l, Yo=l, Zo=l, dt=0.01, o,=10, b=8Z3 and r=60.5, projected onto the 
X-Z plane.
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It can be seen that the basic logistic equation CD.2.4) contains only 
two generations, and so the differential equation will be first order, 
and of the form of (D.3.37), and can be reduced to;

Tdx + Rx2 - x(l+R) = 0 
dt

CD.3.40)

The modified logistic equation, CD.2.11), with three generations 
reduces to;

x2d2x + t 2R 
dt2

dx
dt

2 + xdx C 2t-Rt+2Rx+RBx) + x2RCl+B)+xC1-R)=0 CD.3.41) 
dt

Thus it should be expected that a system which can be described by 
either of these equations, with the appropriate scaling parameters t , 

R and B will display any of the types of behaviour patterns described 
in Ci) to Cv) above.
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D.4 Attractors, Theory and Experiment.

In the last section, the concept of phase portraits was introduced, in 
figures D.3a and D.3b. In projecting the three dimensional data onto a 
two dimensional plane, the information that was contained in the 
contracted dimension was lost. In a general experimental system, 
governed by parameters P i ,P2...Pn , an N dimensional phase space will 
be required to cover all the possible variations in these parameters. 
For example, for two phase flow in a pipe, the basic parameters are, 
flow rate (2), density (2), viscosity (2), interfacial tension, pipe 
diameter, roughness, inclination and the acceleration due to gravity 
(appendix C). Compressibility, thermal and chemical effects could be 
included amongst these for completeness. The real parameters can 
usually be reduced to a smaller number N ’ of dimensionless parameters, 
using the Buckingham Pi theorem.

Thus when the system is switched on, the behaviour of any point within 
the system, or the system as a whole, will follow a trajectory in this 
N' dimensional phase space. Clearly, for all but the simplest cases, 
the experimental problems of determining all of the parameters are 
insurmountable. For real physical systems, the trajectory must be 
attracted to some shape, within the N' dimensional phase space, from 
any arbitrary starting point. The possible shapes were described in 
section D.2. Not all of the parameters that were originally defined 
for the system will have an influence on the trajectory, ie are 
constant or zero for the given experimental conditions. Thus the 
trajectory shape can have a dimensionality only less than or equal to 
N'. The minimum value of the dimensionality of the shape is known as 
the embedding dimension. Conversely, the embedding dimension is the 
minimum number of variables (O.D.E.'s and B.C.'s) required to define 
the system under those conditions.

For a system that is behaving in a chaotic manner, the trajectory in 
the phase space defines an object that has finite extent and infinite 
structure. Since the trajectory never crosses itself in the full 
embedding dimension, parts of this space are asymptotically filled 
with the line. Thus there is an infinitely long and infinitessimal ly 
thin line confined to a finite volume of this hyperspace.
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The existence of structure in the object, even on the smallest scale, 
means that the object is a fractal, and the efficiency with which this 
fractal fills the space is known as the Hausdorff dimension (which is 
generally fractional) and must have a value less than or equal to the 
integer embedding dimension.

This can be summaraised as:

0 < Hausdorff Dimension < Embedding Dimension (N*) < All Parameters(N)

The complexity of a system can be gauged by taking a Poincaré section 
(1879) of the attractor. This involves finding the patterns produced 
when the trajectory crosses a hypersurface that is at least one 
dimension smaller than the embedding dimension and can be as small as 
a 1-D line. The result is a series of dots where the intersection
takes place.

For a non-chaotic system, the dots produce patterns that are either 
asymptotically discrete or merge to form a very simple shape. A
chaotic system has a Poincaré section that has infinite structure,
since the cross-section of a fractal is another fractal , and this is 
usually easier to recognise in a low dimensional section, rather than 
the whole attractor.

An example of this is the Hénon map (1976), in which the Lorenz
equations (3-D) are reduced to a 2-D Poincaré section. The mapping of 
the discrete dots is governed by the equations;

Xn+l = -axn2 + yn + 1 (D.4.1)

yn+1 = bxn (D.4.2)

Real Integer 
O.D.E.'s

Integer 
P.D.E.'sMeasured data

Number of active degrees 
of freedom

Where -1<b<l, and the section has the structure shown in figure D.4a. 
The general shape is insensitive to the initial conditions (xo,yo),
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Figure D.4a. A Poincaré section of a Lorenz attractor, a Hénon map.
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though the values of the nth iterations are very sensitive to the 
initial conditions. When b=0, the above equations reduce to the 
logistic equation (D.2.4), which suggests fundamental connections 
between the models for the Rayleigh-Bénard flows and very simple 
iterative equations, or that there may be alternative ways of 
attacking fluid flow problems than by approximating the Navier-Stokes 
equations.

Sensitivity to initial conditions has already been mentioned as a 
characteristic of chaotic systems. It is possible to quantify this 
attribute of an attractor as follows. Consider two points within the 
attractor (to save problems with initial transients), with coordinates 
(Pi ,P2. - .Pn) and (P1+ÀP1 ,P2+AP2. . .Pn+APn) , plotted in an N dimensional 
space that is greater than or equal to the embedding dimension. Allow 
both systems to run in the same coordinate system.

After a certain interval (iterations or time), the coordinates will be 
(Pi ' ,P2' . . .Pn' ) and (Pi'+APi ' ,P2,+AP2'. . .Pn'+APn'), and the Liapunov 
exponent (also Lyapunov) is defined as;

Xi = exp(ait) (D.4.3)

where,

ai = APi - APi’ (D.4.4)
t

This is a measure of the rate at which two initially close points 
separate with time in each coordinate. Clearly for any Xi>0, the 
points will separate along the Pi coordinate indefinitely, and all 
correlation between the two points will be lost in this direction. If 
all Xi<0, the two points will asymptotically converge, and the system 
must repeat itself. Conversely, for any Xi>0, any two points will 
diverge, no matter how close together they were in the beginning, and 
thus the system can never repeat itself, and the trajectory must be 
chaotic.
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D.5 The Grassberger-Procaccia Algorithm.

It has been shown (Takens 1981, Packard 1980), that the attractor of a 
given system of N variables can be reconstructed by analysing the 
behaviour of a single variable. The dimensionality of this 
reconstructed attractor will be the same as that of the attractor 
drawn using the full set of variables, though the shape may be 
considerably distorted. The attractor can be constructed as follows.

Consider a single parameter x(t), measured at equal time intervals t . 
The attractor is constructed by taking the consecutive readings as the 
independant variables. Thus in an m dimensional space, the first few 
points will be as follows;

xCt), xCt+x), x(t+2x) x( t+Cm-1 ) t )

x(t+r), x(t+2%), x(t+3T),...,xCt+mT)
x(t+2T), x(t+3T), x(t+4T),...,x(t+(m+l)T)

Figure D.5a shows such a plot in two dimensions (m=2), for the Lorenz 
equations for the given parameters. Figure D.5b shows a similar plot 
for the logistic equation, which, because of the discrete nature of 
the data (purely iterative, rather than differential), appears as a 
series of dots, and has a striking resemblance to figure D.4a.

The dimension of the attractor calculated in this space (see later), 
increases with m until m equals the embedding dimension, and then the 
dimension of the attractor is the Hausdorff dimension. Further 
increases in m have no effect on the attractor, as discussed earlier.

The dimensionality of the attractor (fractional if strange and 
chaotic) can be determined using;

d = lim LogioN(e) 
e->0 Logiol/e

(D.5.1)
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X(t) vs X (t+ r )
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Figure D.5a. A reconstructed attractor from the X parameter of the 
Lorenz equations for the following parameters; Xo=l, Yo=l, Zo=l, 
dt=0.01, <r=10, b=8/3 and r=28.
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Figure D.5b. A reconstructed attractor for the logistic equation.
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Where N is the number of m dimensional cubes of side e required to 
cover the phase trajectory. This method is only easily carried out for 
m<2, since the method requires considerable computer memory.

An alternative method for finding the embedding and Hausdorff 
dimensions, using more computational power, but less memory, has been 
proposed (Grassberger 1984).

A correlation integral is defined as follows;

Where 6 is the Heaviside step function that tests whether Rj is within 
a hyper cube of side 2e of Ri. The original work considered a 
hypersphere of radius s, and produces the same correlations, but 
scaled by a linear factor Nl/®, where N is the total number of data 
points. This can be further simplified by noting that IRi-Rjl = IRj-Ri I , 
and for computational ease, the argument of the Heaviside function can 
be expanded, leaving;

As e becomes small, this correlation is related to the Hausdorff 
dimension of the attractor, thus;

The principles of the calculation are shown in figure D.5c. Thus if 
all the points after ta fit within the corresponding error bars (e) of 
the template set up at ti, the the m-dimensional point at ta has 
correlated with that template and 6=1. If one or more of the points 
after ta lie outside s, there is no correlation and 6=0. A new 
template is set up for each ti and compared with all the other

CD.5.2)
N-wo N2 i* j

m-1
CD.5.3)

N->co N2 j>i D=0

CCe) a sd or d = lim logio CCe) CD.5.4)
e*»0 logio e
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Figure D.5c. Setting up templates and error bars in order to calculate 
the correlation function.

1 0 g ' ° y  l O g l O  ( Xm a.K Xrn i  n ^

logToe

Figure D. 5d. A sketch of the plot used to determine the Hausdorff 
dimension, showing the typical characteristics of limited data, where 
y is the minimum distance between any two of the data points.
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subsequent t's, and the whole process is repeated for various values 
of e and m.

For m less than the embedding dimension, the correlation saturates and 
d=m. For m > the embedding dimension, the correlation reveals the 
Hausdorff dimension via equation D.5.4. Thus systematically working 
through e and m will eventually reveal the embedding dimension and the 
Hausdorff dimension.

For example, consider a phase trajectory that has a Hausdorff 
dimension of 3.5. A plot of logioCCe) versus logioe for increasing
values of m would have the form shown in figure D.5d.

A computer program has been written to evaluate equation D.5.3 for an 
arbitrary data file. The correlation dimension and embedding dimension 
have been evaluated for several sets of numerical data, described in 
figures D.5e to D.5i.

Other routines have been devised CLanda 1990, Biage 1989), one
involving matrix methods, which uses considerable memory space and 
array manipulation, and the second uses a statistical method,
analogous to a random walk through the attractor (a Monte-Carlo 
method). Each has its advantages, but all involve calculating the
correlation function (equation D.5.6) and then the Hausdorff and
embedding dimensions (equation D.5.7). The methods described here have 
been used to find the complexity of several different experimental 
systems, from semiconductor oscillations, to electrodissolution in a 
spinning system, to the transition to flooding in a vertical
gas/liquid flow (see section D.7 for more details). The general 
experimental criteria and the effects of noise will be discussed later 
in this section and in chapter 6 .

A circuit has been proposed that will evaluate, in real time, the
embedding dimension of a continuous experimental system (Pyragas 1987, 
Namjunas 1988 and Cenys 1988). The method is essentially an
analogue/digital circuit that carries out the comparisons sketched in 
figure 0.5c, except that the error bars are reversed, so that only
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k>9io<
Figure D.5e. The Lorenz equations, using the same parameters as figure 
D* 3a, are evaluated for 5000 iterations after ignoring the first 2000 
iterations, to eliminate initial transients. The value of the slope of 
the graphs for increasing embedding dimension tends to a value of 
2.30, and as expected for d=l and 2, the slopes are 1 and 2 
respectively. Thus the system is chaotic and governed by three 
variables.
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l09TO€
Figure D.5f. The Lorenz equations as above, but only every 100th point 
is taken from the time series. Thus, instead of mapping the whole 
attractor, only discrete points are taken. Again, the slope tends to a 
value of 2.30, and shows how insensitive the routine is, to the 
spacing of the data points.
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Figure D.5g. The unmodified logistic equation, with feedback factors 
(R) of 3.85 and 3.90. The slopes are 1/3 and 1 respectively represents 
the variation in the complexity of the behaviour as R is varied.
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Figure D.5h. A pseudo-random number generator, given by the following 
equation; XCN) = 100tan(N)-IITT100tan(Ii), has an embedding dimension of 
at least 5. A purely random number series, would have an » 
dimensionality, but would require an » amount of data to be analysed.
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Figure D.51. A simple series, given by the equation; X(Iî>=sinŒ), has 
a slope of 1, as would be expected, since aplot of X(N) vs X(N+1> is a 
Lissajous figure, which is a one dimensional line.
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points outside the error bars (above a certain limit), are considered. 
A block diagram of the circuit is given in figure D.5j.

The level detector generates short pulses when the signal crosses a 
certain predetermined level. The multivibrator generates a sequence of 
pulses at a chosen frequency. The frequency of the multivibrator is 
varied till it approximately equals the peak frequency of the P.S.D. 
of the input signal. The commutator then sets the number of 
multivibrator pulses to be used in the comparator, an integer that 
will be increased sequentially. When the intervals between the time at 
which the level detector pulses, is close enough to the interval 
between the multivibrator pulses, the comparator sends out a pulse 
(after a preset time delay), to increase the instantaneous brightness 
of the storage scope. A more detailed circuit diagram, showing how 
this can be realised, is given in figure D.5k. Typical traces from the 
storage scope are sketched in figure D.51.

For m greater than or equal to the embedding dimension, the m period 
long template, set up by the multivibrator will totally define the 
trajectory, and so, the bright spot set up after the delay (constant) 
will always appear at a given point on the trajectory. If m is less 
than the embedding dimension, the trajectory will not be defined in 
the template, and the bright spot will appear at some random point on 
the trajectory. Thus as the length of the template is increased, the 
spread of the bright spots on the screen will decrease, reaching a 
minimum when the embedding dimension is reached.

The susceptibiliy of the above methods, of determining the 
dimensionality of an attractor, to experimental noise, is a function 
of several parameters; the embedding dimension itself, the length of 
the data file or time series analysed, the relative sizes of e, the 
rounding errors in the data and the signal to noise ration of the 
data.

A real signal can be considered to be made up of a superposition of 
the following parts;
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Figure D.5k. Circuit designed to realise the above block diagram.



297

* V* •> •> •

m <em bedding d im e n s io n  In c r e a s in g  m m )e m b ed d in g d im e n s io n

F ig u re  D .51. S k e tc h  o f  image seen on s to ra g e  scope f o r  v a r io u s  v a lu e s  

o f  em bedding d im e n s io n .



298

The absolute measurement, amplitude Ai 
Systematic errors, amplitude A2 
Random errors/noise, amplitude A3
Signal digitisation/quantisation errors/noise, amplitude A4

Clearly, any method involving just the correlation integral (equation 
D.5.2) to determine the dimensionality of an attractor cannot 
differentiate between the various contributions to the signal, and 
will therefore find the attractor to the part making the largest 
contribution to the signal. Consequently, since random noise has an 00 
dimensionality (and will always be larger than the dimension of any 
experimental system), it should be minimised. Conversely, the 
amplitude of the noise sets lower limits on the size of e, for which 
the correlation integral is considering tha absolute data only.

For the worst possible case; A3+A4<e<Ai, and within this range of e, 
Ai must satisfy C ( E ) = e d ,  for the correlation method to be valid. Where 
a system has two different mechanisms at work simultaneously, for 
example in many aspects of multiphase/multicomponent flow (see later, 
but briefly, there can be several different characteristic wavelengths 
in the flow, each producing a peak in the PSD, and produced by a 
different mechanisms), each mechanism can have its own Hausdorff 
dimension, to which the other signals can be considered as noise, and 
should be filtered out so that the signal to noise ratio is greater 
than unity over the range of frequencies to be studied.



299

D.6 Single Phase Fluid Flow Transitions.

Having now described several numerical systems which exhibit 
complicated transitions from order to chaos, the characteristics of 
the transition regions, and how they may be detected, studied and 
quantified, fluid flow transitions in simple systems will now be 
studied. This involves an introduction to stability theory (following 
Landau and Lifshitz 1959), to provide a basic and qualitative 
background to the rest of the section.

Consider an arbitrary fluid flow in a system that is governed by the 
full Navier-Stokes equations. These partial differential equations 
govern every aspect of the fluid flow, and cannot be solved exactly 
for anything but the simplest of flows. The solution of the equations 
usually involves linearisations and approximations (for example see 
section D.3), which lead to inaccuracies and loss of solutions. If 
several solutions to the equations of motion are found, then they are 
all possible, however, some are more likely to occur than others 
(consider stable and unstable points in figure D.2a), depending on the 
relative stability of each solution. A system will always tend towards 
the most stable solution, which can always be identified, since any 
perturbation, no matter how large, will not affect the asymptotic 
solution. All other solutions must be either inherently unstable, 
singular points or marginally stable, i.e. perturbations up to a 
certain size decay away and perturbations above this size allow the 
system to drop into a more stable solution.

The mathematical analysis of the stability of a flowing system tends 
to be very complicated, and has yet to be derived for the transition 
to turbulence in a straight pipe! A more complicated case, that can 
lead to a simple qualitative understanding of the transition to 
turbulence, is to consider the flow around a bluff body as the flow 
rate is increased.

For a low Reynolds number, the flow is simple and laminar, the 
streamlines being given by potential theory (the inviscid solution), 
and the velocity distribution takes the viscosity into account. Any 
perturbations to this flow, for example. Brownian motion fluctuations
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(quantum mechanical), or irregularities in any of the solid
boundaries, produces an effect which dies away more quickly than it 
can be amplified using the energy of the surrounding flow. Thus the 
flow is stable. Above a certain flow rate, the perturbation grows 
exponentially till it fills the system, drawing on the energy of the 
previously laminar flow.

At the transition between these two regimes, it is necessary to 
consider the nature of the perturbation. Clearly, it would be expected 
that the spectrum of a typical (natural) perturbation would be broad - 
almost noise-like. As the flow rate is increased, just through the 
critical Re transition, only one frequency of the arbitrary
perturbation will initially be amplified and propagate through the 
medium, rather than decaying away. This one frequency will draw energy 
from the flow to the detriment of the other frequencies, thus delaying 
their appearance in the spectrum of the disturbed flow. This frequency 
selective amplification is utilised extensively in fluidic and vortex 
flowmeters and accounts for their large turndown ratios and linearity.

Once again, the previously stable solution becomes an unstable 
stationary point between the two branches of the oscillating 
bifurcation. Thus it is possible for the laminar state of flow to 
exist beyond the transition point, though it is very unlikely. The
case for the transition to turbulence in a straight pipe provides
problems in the defining of the perturbations, and the exact form 
(route) of the loss of stability. There are two possible sources for 
the perturbation, either from the wall (surface roughness or external 
vibrations) or from within the body of the fluid (Brownian 
fluctuations).

The primary transition from laminar flow around a bluff body appears 
in two stages, for 30<Re<100, a stationary vortex pattern appears, and 
for Re>140 these vortices are periodically shed forming a wake. For 
pipe flow, the primary transition doesn't occur till Re-2000, and very 
careful experiments have maintained laminar flow upto Re=l40000. At 
these high velocities, the finite length of the apparatus means that 
even if something is perturbing the flow, the expanding front of the 
perturbation may be swept from the pipe before it fills the cross-
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sectional area of the pipe. For an infinite length of pipe, or an 
infinitely long experiment, the output of the pipe would always be
turbulent for Re>2000. The transitions to turbulence in a straight
pipe are a very special case of stability breakdown, because of the 
high symmetry perpendicular to the direction of the laminar 
streamlines.

Before going into more details of turbulence in straight pipes, a few 
examples, showing lower orders of symmetry (perpendicular to the 
laminar streamlines) will be considered.

The earliest investigations into flow stability were carried out in
the system of flow that is generated between two concentric cylinders, 
when there is relative angular motion between the cylinders. The basic 
configuration of what is now known as a cylindrical Taylor-Couette 
cell (Taylor 1923) is shown in figures D.6a and a'. A simple analysis 
concerning the stability of a small element of the fluid to positional 
perturbations reveals that the flow will be stable (laminar Couette), 
provided that;

Qoro2 > &in2 (D.6.1)

where Ü is the angular velocity and r is the radius of the cylinders,
subscripts o and i referring to the outer and inner cylinders
respectively. This is known as the Rayleigh criterion.

A more advanced analysis, involving viscosity and its ability to 
suppress the onset of turbulence (Chandrasekhar 1961), is very
mathematically involved, and in general, requires numerical solution.

Figure D.6b shows a flow map for the types of flow observed in a 
Taylor-Couette cell in terms of a Reynolds' number, defined for each
cylinder as follows;
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Rei = ri(r0-ri)Qi 
n

and Re0 = ro(ro-ri)Oo (D.6.2)
n

The Rayleigh criterion appears as a straight row of dots from the 
origin, and the stabilising effect of viscosity is clearly visible 
around the origin, though for higher angular velocities, the 
experimentally determined transition from Couette flow asymptotically 
tends to the Rayleigh criterion.The primary transition from Couette 
flow is given very accurately by the numerical methods mentioned 
above.

It is clear from figure D.6b, that there are many different types of 
flows between the classical laminar Couette flow and the fully 
developed (featureless) turbulence which eventually occurs at high 
enough Re. The flow patterns are characterised by the various 
wavelengths and frequencies that appear in the vortices of the flow.

The shapes of the stability boundaries show considerable fine 
structure (Andereck 1986), and are very sensitive to the experimental 
criteria (Coles 1965). Many of them show approximately parabolic 
shapes and have other stability boundaries emanating from their lowest 
point, indicating some sort of bifurcation in this parameter space.

Experiments have been carried out using Laser Doppler Anemometry to 
analyse variations in the velocity at a point in the flow (Mull in 
1983). Figures D.6c and c ', show the time variation in the velocity at 
a point in the flow when the outer cylinder is at rest and the inner 
cylinder has a Rei=l29.47. The aspect ratio of the gap is varied by 
0.15% between the two figures, showing the sensitivity of the flow to 
system parameters.

The attractors were reconstructed using methods described in the last 
section and are clearly less than 3-D, and the second example shows 
considerably more structure. The change in the structure of the 
attractor indicates that some sort of transition has occurred in the
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flow, probably between Taylor vortex fow and wavy vortex flow (figure 
D. 6b)

Similar experiments have been carried out in a spherical system 
(Wimmer 1981), and for a small fluid gap, the primary transition from 
Couette flow is given by exactly the same theory as for cylindrical 
flow. A comparison between the Rayleigh criterion, the theoretical 
primary transition for cylindrical Couette flow and the experimental 
results for spherical Couette flow are shown in figure D.6d. The types 
of vortices that are generated for various relative angular velocities 
are sketched in figure D.6e.

Thus it can be seen that when a fluid flows over a curved surface, the 
first deviation from a laminar flow situation, is in the form of 
simple vortices, whose axes are parallel to the mean flow and 
perpendicular to the normal from the surface. The general case between 
two solid surfaces with realtive motion is known as the Taylor vortex, 
and if only one surface is involved, or other surfaces are too far 
away to be considered relevant, then the vortices are known as Gbrtler 
vortices. Gortler vortices (Gbrtler 1944) occur in high shear 
boundary layers, and are very difficult to observe experimentally. The 
principle is sketched in figure D.6f.

On a much larger scale, these vortices have been used to explain the 
existence of large scale coherent structures observed in the wind on 
the surface of the earth, for example the trade winds. This was first 
proposed (Hadley 1735!) long before most of the southern hemisphere 
had been explored and before techniques existed to study high altitude 
wind speeds! The general circulations are skeched in figure D.6g, with 
a modern representation of the various flow (vortex) cells in figure 
D.6g*. These flows are not as simple as those sketched in figure D.6d 
since thermal forces also enter into the problem, but the large scale 
structure is qualitatively similar to laboratory experiments (see Lugt 
1983 for a review).

A numerical model of a yet larger structure, the atmosphere of 
Jupiter, has been studied, in which the laminar flow is perturbed by a 
series of small scale eddies which develop into the obeserved zonal
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Figure D.6f. Gortler vortices on a concave wall.
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Figure D.6g. The motion of the earth's atmosphere according to Hadley 
and (g*) a modern representation CLugt 1983).

a

Figure D.6h. The development of zonal jets in the Jovian atmosphere 
after perturbing the laminar system (Williams 1978).
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jets with a large scale structure (Williams 1978). The transitions 
from perturbation to large scale coherent structures are shown in 
figures D.6h, with the inset showing the mean zonal wind velocity. The 
cause and stability of the Red Spot amongst this level of coherence is 
still under active research, and has been modelled and experimentally 
verified for a 2-D circulating flow.

A more easily realisable experimental geometry is to consider the flow 
of a fluid around a bend in a pipe. It is usual to consider bends that 
go through 180°, and compare the output flow profile with the input 
flow profile. The primary perturbation is caused by unbalanced 
centrifugal forces acting in the plane of the bend (compare the 
Rayleigh criterion in Couette flow), again suppressed by viscous 
effects. Figures D.6i show flow visualisations at the exit of the bend 
as a function of mean Re and Dean number K=Re(a/R)%. The figures on 
the left rely upon the natural centrifugal perturbation, whilst those 
on the right are also perturbed at the 90® point with a hyperdermic 
needle stuck through the pipe wall (see Cheng 1987 for more details).

The basic transition involves two counter-rotating (Dean 1927) 
vortices (vorticity is conserved, and is zero at the inlet), and the 
next higher perturbation produces two pairs of counter-rotating 
vortices. Another higher order perturbation to the flow can be caused 
by oscillations in the driving mechanism of the mean flow (i.e. the 
pump). Again, this generates extra pairs of vortices (Lugt 1983) and 
can be advantageous in heat exchangers, since this causes a greater 
circulation between the centre and walls of the pipe than a basic pair 
of Dean vortices.

As an aside, it should be noted that a straight horizontal pipe that 
is heated anisotropically produces (thermally driven) convection cells 
(Bénard), identical with the (momentum driven) Dean vortices of figure 
D.6i .

Combinations of 180® bends have been modelled numerically (Jones 
1989), allowing for the bends to be in different planes. The 
coordinate system employed is shown in figure D.6j and the motion of a 
particle of fluid around a single 180® bend is given by;



309

I

R .-4 0 3
K-127

R.-657
K-200

R .-8 22
K-260

R e -1150
K-384

Figure D.61. Secondary flow patterns at the exit of a 180° bend (Cheng 
1987).
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Figure D.6j. Perspective drawings and projections of the general 
coordinate system for two consecutive 180° bends, for various Re and 
Dean numbers (Jones 1989).

(</)

o

o

(e)

A

Figure D.6k. Poincaré sections for %=100, and (a) %=0, (b) ^=m/l8, (c) 
X = J i / 8 f (d) x=%/4, (e) x=3%/8, <f> X=7r/2» (g) x=5%/8, (h) x=3%/4, (i) 
X=7ii/8 (Jones 1989).
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dx — y  (4-5x2-23y2+x*+8x2y2+7y4) CD.6.3)
d6 1152

dy = y xy(3-x2-y2) CD.6.4)
d6 192

Where;

y = -a2 5p CD.6.5)
Ru2 56

And the end of the bend, the cross-sectional plane of the pipe is 
rotated through %, and the particles path is integrated around the 
next bend. For combinations of two bends, the output of the second is 
used as an input for the first. Thus, starting from suitable points on 
the cross-section of the inlet, and iterating around the bend many 
times, produces a Poincaré section of the trajectory, projected onto 
the inlet or outlet plane. These Poincaré sections are plotted for 
several values of % in figure D.6k. The fine structure in some of the 
plots indicates chaotic trajectories, and the large blank areas imply 
stable flow tubes through the chaos.

This behaviour provides two distinct areas of study, firstly, to find 
which combinations of pipework will produce the most effective mixing 
sections and secondly, to find how these flows will influence 
flowmeters that are downstream of the bends.

The transition to turbulence in a straight pipe was briefly mentioned 
at the beginning of this section, and although a cursory inspection 
reveals this to be a very simple problem to analyse and quantify, the 
absence of any universally accepted model covering the transition to 
turbulence and the behaviour of turbulent flows in straight pipes, 
shows this not to be the case.

This transition to turbulence shows none of the structures that heve 
been described in previous sections. In order to conceptualise the 
turbulence, the idea of eddies has been proposed and the following 
paragraphs will qualitatively describe their properties.
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If a disturbed arbitrary flow is considered to be made up of eddies of 
size X," then there will be a spectrum of X, characteristic of the 
flow. Clearly, X can be no larger than the size of the apparatus, 1 , 
and there will be a minimum size, known as the Kolmogorov length X0 
(Kolmogorov 1944), below which, the fluid dynamic forces are 
insufficient to maintain an eddy against the viscous forces. Thus 
below X0, the flow is laminar and the eddies of size X0 are being 
continuously dissipated as heat. This implies a cascade of energy from 
the largest to the smallest scales.

If the energy dissipation per unit time per unit mass of fluid is e, 
then the variation in velocity across an eddy is given by dimensional 
analysis as ;

vx - CeX)i/3 (D.6.6)

If the mean flow velocity is u and the fluctuations in u due to the 
combined effects of all of the eddies is Au, and if the system is 
considered to be in a dynamic equilibrium, then conservation of energy 
means that;

E - vx = Au CD.6.7)
Xl/3 11/3

The Re of an eddy and the fluctuations in the whole flow respectively 
are given by;

Rex = v\X Re = lAu (D.6.8)
V) n

Therefore, combining (D.6.7) and the first part of (D.6.8) leaves;

Rex - Au X4/3 (D.6.9)
Tt 11/3

Noting that Au/nl 1/3 is a constant for the system, then it follows 
that ;
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Rex - Re (D.6.10)
X4/3 14/3

whence ;

Xo - I. Rexo3/4 CD.6.11)
Re3/4

where Rxo is the Re below which the flow is laminar, i.e. Récrit.

The number of degrees of freedom will be roughly equal to the number 
of Kolmogorov eddies, i.e.

N - _1 - Re9/4 CD.6.12)
X o3 13Recrit9/4

And the total number of degrees of freedom in the flow is given by;

N' = (Re/ReCrit)9/4 CD.6.13)

This is an important result and provides a way of characterising the 
flow provided R é c r i t  can be determined. For a pipe flow. R é c r i t  is 
found to be about 2000 experimentally. The following table gives some 
typical theoretical values for pipe flow.

Re/Recrit N' Pipe Re Xo/m for a 0.05m pipe
1 1 2000 0.05
1.36 2 2720 0.040
1.63 3 3260 0.035
1.85 4 3700 0.0315
2.04 5 4080 0.0293
2.78 10 5560 0.0232
7.74 100 15480 0.0108

21.5 1000 43000 0.0050
50 6648 100000 0.0027

100 31623 200000 0.0015
500 1200000 1000000 0.0005

Figure D.61 table of turbulent flow parameters.
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It can be seen form these results that for Re<5000, the eddy sizes and 
the number of degrees of freedom are at odds with experimental 
results. For Re>50000, the eddy sizes are of the same order as is 
observed experimentally, and this area is known as fully developed 
turbulence. As only a small percentage of the eddies are in contact 
with the boundaries, the turbulence can be considered isotropic.

Clearly, the theory is incapable of modelling the flow transition. The 
similarities between this transition and the transition between simple 
and chaotic behaviour in a low order numerical system was first 
observed in Burgers' equations (Hopf 1949), but again, the number of 
degrees of freedom were introduced in the form described above.

The intractability of the straight pipe transition implies that the 
system is more complicated than the other systems described in this 
section. The only physical factor that could explain this difference 
is the symmetry of the system. The pipe flow has an infinite number of 
planes of symmetry in which the mean velocity vector can lie, whereas 
the other systems have just a single plane of symmetry. Symmetry 
arguments have been briefly touched upon in the literature, with 
reference to a Tayloi— Couette system with a square outer container, 
and also with a fixed rod between the square box and the cylinder 
(Price 1989). The perturbation approach to the numerical modelling of 
the transition to turbulence has been successfully carried out for a 
straight rectangular duct (Lin 1955). Again this sytem has finite 
symmetries.

Thus it can be seen that flows with low order symmetries produce 
transitions and flow maps that have striking similarities with the 
maps produced by very simple differential equations and iterative 
routines. This implies that the flows themselves are governed by only 
a few parameters and so should be easily modelled. The flow in a 
straight circular pipe is another problem altogether.
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D.7 Multiphase Flows and Transitions.

This section will cover in more detail than the previous sections, the 
few instances that have appeared in the literature where a multiphase 
flow has been shown to be chaotic. The first and a unique occurrence, 
involves the horizontal pneumatic transport of solid particles and the 
modulation of their number density by the flow. The second is a series 
of papers where various gas/liquid flows have been studied both 
numerically an experimentally, initially from the point of view of 
heat transfer efficiency of a two phase cooling system, though later 
for the fluid flow itself.

The horizontal flow of solid particles in a gas has been studied using 
the apparatus shown in figures D.7a and b CSirok 1988). It is clear 
that the angular velocity of the feed mechanism will produce regular 
density waves in the concentration of the solids - determined 
photographically 14 diameters downstream of the mixing section. Indeed 
this is observed for certain gas flow rates as a mutually correlated 
signal with a sharp spectrum. The reconstructed attractor for this 
type of flow would be 1 dimensional, though is not given in the paper. 
However for other gas flow rates and at certain points in the cross- 
section of the pipe, the nature of the flow changes, leading to a 
correlation exponent, derived by the Grassberger-Procaccia algorithm, 
of 3.7. A version of the reconstructed attractor appears in figure 
D.7c and the graph used for determining the correlation exponent in 
figure D.7d.

Enhanced heat transfer caused by oscillating single phase flows in 
cooling systems has already been mentioned in section D.6. The effect 
of periodically driving the coolant of a boiling water reactor has 
been studied numerically (Rizwan-Uddin 1988). As was pointed out in 
section D.4, a numerical model has all of the variables at hand for 
analysis and variation. It was observed that for certain transients 
and periodic driving frequencies, the attractor drawn in the full 
phase space could be made to go through several transitions before 
settling on an attractor that was either a stable point, limit cycle, 
toroid or a strange (chaotic) attractor. The dimension of the strange 
attractor was found to be 2.048 in an embedding dimension of 6. Low
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Figure D.7b Details of solids feed mechanismCSirok 1988).
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dimensional attractors would be expected from numerical models because 
of the simplifying approximations used to derive the model itself.

At about the same time upwards, downwards and horizontal annular flows 
were being studied experimentally (Hagiwara 1988). Hot wires were used 
to study the wall shear stress, and conductance methods used to 
measure the wall film thickness. Rather than using these signals as 
the basic time series, curiously, the intervals between consecutive 
peaks were chosen to produce another series which were then plotted on 
a discrete Lorenz plot. This is analagous to the Poincaré and Hénon 
sections appearing in sections D.2 and D.3, but with Atn+i plotted 
against Atn. The precedent for this approach appears elsewhere (Shaw 
1984, Xiaomao 1989) where the intervals between drips from a tap are 
studied. In both cases, chaos is concluded, but not quantified.

Following directly on from this work, an experimental study of the 
flooding transition was carried out (Biage 1989). The flooding 
trasition is very well defined experimentally as the transition 
between countercurrent and cocurrent flows of a liquid film and a gas 
layer. At the transition, the water flow rate is on average 
identically zero, though tends to be very agitated. Conductance and 
capacitance techniques were used to determine the wall film thickness 
and a time series obtained and then analysed using the Grassberger- 
Procaccia algorithm, the attractor dimension was found to converge 
(section D.5, M>2n+1) on a value dependent on the flow regime and the 
position in the pipe. For countercurrent flows the correlation 
dimension was about 12 and for cocurrent flows the dimension was about 
7. It was also suggested that the low value of this number and the 
implied number of variables and order of the governing equations may 
make the transition amenable to analysis. No attempt at the analysis 
was made.

Another numerical experiment in a boiling water reactor cooling system 
looked at density wave instabilities (Lahey 1989) as a function of 
Froude number. Again, bifurcations, limit cycles and chaotic 
attractors were observed in the behaviour of several of the variables.



319

The most advanced papar to date, has recently come to light (Franca 
1991) and involves the use of fractal techniques (amongst others) to 
identify flow regimes in air/water systems. It also appears that the 
apparatus is also capable of air/oil/water flows - but results are not 
presented. The measurand was differential pressure at the pipe wall 
and a time series of the signal was analysed in the usual manner to 
find the coorrelation dimension. This dimension was found to be a 
function of flow regime as follows.

Flow Regime Correlation Dimension

Wavy 1.03/6.21
Plug 7.17
Slug 5.07
Annular 0.97/5.93

Figure D.7e Table of correlation dimensions for various flow regimes 
(Franca 1991).

The wavy and annular flows showed two separate dimensions over 
different length scales, which were interpreted as two different 
deterministic phenomena occurring in the pipe at the same time, such 
as roll waves and surface waves, with the more intermittent flow 
producing the higher dimensions.

D.8 Discussions and Conclusions.

Starting from first principles, this appendix has covered those areas 
of chaos theory that seem most applicable to fluid flow problems, such 
as transitions between flows with different levels of complexity.

As mentioned in appendix C.4, there is no method of solving the 
Navier-Stokes equations for an arbitrary fluid flow (including
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fluid/fluid flows), and no unified approach to predicting, even semi- 
empirical ly, the transition boundaries within these flows. "There is a 
need for objective and reliable diagnostic criteria, since confidence 
in the flow pattern maps, used in design and operation, is limited" 
(Drahos 1989).

The work of Biage has indicated that an approach involving the fractal 
dimension of some characteristic measureable parameter of the flow, 
can discriminate between flow regimes. It is proposed that every flow 
in a confined system (of low order finite symmetry) has a 
characteristic Hausdorff dimension, which is continuously variable 
around the parameter space of a given flow regime, and jumps in value 
(possibly by an integer), when a regime boundary is crossed. This can
thus be used to determine flow regime boundaries.

As the embedding dimension also gives a measure of the complexity of 
the behaviour, a flow regime map, plotted in Hausdorff dimension
contours, should also aid the modelling of the various flow types.

From an experimental point of view, the variation in results found 
using different types of measurements (point, path or area) needs to 
be investigated, to check that the readings are characteristic of the 
flow as a whole. There should be no problem detecting the Hopf
bifurcation from smooth stratified flow, which shoud have a Hausdorff 
dimension of 1 for periodic waves, and between 1 and 2 for solitary 
waves. The droplet flow regime will probably have a Hausdorff 
dimension well in excess of 10, and may even be comparable with the 
number of droplets in the measurement region! The developement of the 
circuit described in section D.3 should enable this determination to 
be very speedy, and give a starting point for the Grassberger- 
Procaccia routine, to determine the value more accurately.

The trajectory, be it strange or otherwise on the X1-X2 plane is a 
projection of the full trajectory in the full embedding dimension. 
Thus the experimentally determined dimension will always be less than 
or equal to the embedding dimension, as outlined in section D.4. The 
trajectory itself may also cross the classical flow regime boundaries.



321

It should be expected that all of the flow regime transitions defined 
by Hausdorff boundaries should be derivable from a simple set of 
equations, similar to those described in section D.3. Although this 
will be an easier task than deriving the boundaries from the full 
Navier-Stokes equations for the two fluids, it is a comparable task to 
trying to find the logistic equation from a study of the rabbit 
population in Australia!

On a less fundamental note, the ideas underlying deterministic chaos 
would seem to pose a possible route to the solution - although only 
qualitative at the moment - to all complex fluid flows, and maybe 
eventually the transition to turbulence in a straight pipe.


