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Abstract

Multi-target missions are an attractive solution to visit multiple bodies, increasing the scientific return and reducing the cost, com-
pared to multiple missions to individual targets. Examples of multi-target missions are multiple active debris removals (MADR) and
multiple near-Earth asteroids rendezvous (MNR) missions. MADR missions allow for the disposal of inactive satellites, preventing
the build-up of space junk, while MNR missions allow to reduce the expenses of each asteroid observation. Since those missions are long
and highly demanding in terms of energy, it is paramount to select the most convenient propulsion system so that the propellant mass
and the duration of the mission are minimized. To this end, this paper proposes the use of a multi-objective optimization and artificial
neural networks. The methodology is assessed by optimizing trajectories for MADR and MNR sequences with off-the-shelf thrusters.
Multiple Pareto-optimal solutions can be identified depending on the propulsion system characteristics, enabling mission designers to
trade-off the different options quickly and reliably.
� 2022 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Interest for multi-target missions is emerging, as they
represent an attractive solution to increase the return of a
single mission, while reducing the cost with respect to mis-
sions with multiple spacecraft to transfer to individual tar-
gets (Izzo et al., 2014; Mereta and Izzo, 2018).

Multi-target missions to small objects represent one of
the biggest challenges for space engineering (Li et al.,
2019). These missions are highly demanding in terms of
energy, with a required DV which can greatly outrun that
of single-object missions. Small satellites can be an attrac-
tive solution as they can be propelled by smaller thrusters,
reducing the total DV of the mission. An additional ratio-
nale for smaller satellites is to reduce the cost of launch,
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since they can be launched as piggyback or from a smaller
and cheaper launch vehicle (Aglietti et al., 2020; Wells
et al., 2006).

According to the rocket equation, a linear increase in
DV corresponds to an exponential increase in the propel-
lant mass required to complete the mission (Betts, 1998).
For this reason, this study aims at selecting an efficient
propulsion system to significantly keep the propellant mass
ratio low. Low-thrust technologies, such as electric propul-
sion (EP), are good candidates because of their high speci-
fic impulse (Jahn, 2006; Wertz, 2009).

The use of electric propulsion (EP) for deep-space
science missions began with the launch of the Deep Space
1 in 1998. A trade study is performed in Ref. (Brophy,
2003) on advanced propulsion systems for deep-space mis-
sions. The study concluded that ion propulsion enables the
use of a smaller, less expensive launch vehicle, and signifi-
cantly shortens the overall trip time. Also, it resulted that
org/licenses/by/4.0/).
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2 solarsystem.nasa.gov/missions/near-shoemaker/in-depth/, accessed on
2021-11-07.
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increasing the specific impulse I sp and the maximum power
PEP;max (i.e., greater Tmax) can considerably reduce the
required propellant mass. Nevertheless, high values of I sp
and PEP;max) can result in a sub-optimal system mass
(Jahn, 1968). Consequently, a trade-off is necessary to iden-
tify the most appropriate propulsion system, depending on
the requirements and goals of the missions.

Examples of the multi-target missions, which are cur-
rently being investigated and whose demonstrator missions
are being designed and flown, are multiple debris removal
missions and multiple near-Earth rendezvous missions.

The last two decades have seen the build-up of junk,
such as non-functional spacecraft, abandoned launch vehi-
cle stages and other large objects (Bonnal et al., 2013; Liou,
2011; Liou and Johnson, 2008). Removing multiple debris
objects in a single active debris removal (MADR) mission
(Braun et al., 2013; Berend and Olive, 2013) can be advan-
tageous, beyond the financial prospective. Given the
urgency of the clean-up of the overly-crowded low-Earth
orbits, MADR missions can have a positive impact from
a timing prospective, especially in cases where it is neces-
sary to remove multiple objects within a limited time frame
(Van der Pas et al., 2014; Liou, 2011).

The RemoveDebris mission was the first mission to suc-
cessfully demonstrate, in-orbit, a series of technologies that
can be used for the active removal of space debris, using a
microsat of 100 kg in mass (Aglietti et al., 2020). Astroscale
Japan’s ADRAS-J, a 80 kg microsatellite with EP capabil-
ities, will launch to rendezvous with debris, demonstrate
proximity operations, deliver observational data to better
understand the debris environment, and de-orbit debris.1

Additionally, A. Daykin-Iliopoulos and R. Desai
(Daykin-Iliopoulos and Desai, 2014) examined state-of-
the-art micro-propulsion options which, thanks to their
increased operational capabilities, can be used for demand-
ing missions such as ADR.

Since the 1960s, near-Earth asteroids (NEAs) have also
been avidly studied, given the significant role they play in
the geological and biological evolution of Earth, the possi-
ble exploitation of their resources, and Earth protection
from future collisions (Cheng et al., 2017; Lissauer and
de Parter, 2013). NEAs vary greatly in size, shape and com-
position, thus rendezvous and close-up observations are
necessary to classify these objects and support any future
mitigation action. To reduce the expenses of each observa-
tion and increase the possibility of visiting multiple aster-
oids of interest in a single mission, multiple NEA
rendezvous (MNR) missions are preferred (Izzo et al.,
2014; Mereta and Izzo, 2018; Peloni et al., 2016; Song
and Gong, 2019). Near Earth Asteroid Rendezvous
(NEAR) was the first mission flown under NASA’s Discov-
ery program with the primary goal to rendezvous with the
minor planet 433 Eros (an S-class asteroid) and to gather
1 astroscale.com/astroscale-selects-rocket-lab-to-launch-phase-i-of-jaxa
s-debris-removal-demonstration-project, accessed on 2021-10-17.
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data on its physical properties.2 NEOSSat is a Canadian
microsatellite mission, with the main purposes of determin-
ing and monitoring the NEA orbits that cannot be effi-
ciently detected from the ground, demonstrating the
ability of a microsatellite for multi-NEA missions.3 The
novel mission concept called SIMONE (Smallsat Intercept
Missions to Objects Near Earth), whereby a fleet of
microsatellites may be deployed to individually rendezvous
with a number of NEAs at very low cost, assesses the abil-
ity to accommodate the necessary electric propulsion,
power, payload and other onboard systems within the sev-
ere constraints of a microsatellite (Wells et al., 2006).

The design of multi-target missions with low-thrust
propulsion requires a complex global optimization prob-
lem to be solved, which consists of two coupled sub-
problems (Yang et al., 2018). The first is a large combina-
torial sub-problem, where the selection of the sequences of
objects is performed (Li et al., 2019). The second sub-
problem calculates the solution to an optimal control prob-
lem (OCP) to identify the optimal flight trajectory with
minimum propellant expenditure and/or time of flight
(TOF). Since more than 27,000 NEAs are known to date,
according to NASA’s database,4 and more than 29,000
space debris objects (for sizes larger than 10 cm) are in
Earth orbit, according to a European Space Agency
report,5 the complexity and computational effort involved
in solving multi-target problems is exceptional.

Recent studies proposed the use of machine learning, in
particular Artificial Neural Networks (ANN), to solve the
combinatorial problem and, at the same time, the continu-
ous problem through estimates (Snelling et al., 2021;
Viavattene and Ceriotti, 2020a,b). It was demonstrated
that a well-trained ANN is able to select high-accuracy
solutions, while considerably reducing the computational
time. The ANN is integrated within a sequence search algo-
rithm, based on a tree search and breadth-first criterion,
which computes the feasible sequences of targets. The can-
didate sequences which minimize the objective function
(e.g., mprop and/or TOF) can be selected and further refined
through optimal control problem solvers. Similarly, ANNs
have been applied for the fast design of Jovian-moon
gravity-assisted transfers (Yan et al., 2022; Yang et al.,
2022a) and multiple Jovian-moon three-body flyby mis-
sions (Yang et al., 2022b), where ANNs are used to solve
the complex restricted three-body-problem dynamics (for
which a numerical integration would be otherwise
required). In this case, the ANN takes the initial condition
of the spacecraft as inputs and calculates the final condi-
tions of the gravity-assisted transfer or at flyby, respec-
earth.esa.int/web/eoportal/satellite-missions/n/neossat, accessed on
2021-11-07.
4 cneos.jpl.nasa.gov/orbits/elements.html, accessed on 2021-10-17.
5 www.esa.int/Safety_Security/Clean_Space/How_many_space_de-

bris_objects_are_currently_in_orbit, accessed on 2021-10-17.
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tively, as outputs. An ANN was also employed in the deter-
mination of multiple NEA missions using solar sails with a
characteristic acceleration ac ¼ 0:75 mm/s2 (Song and
Gong, 2019). Similarly, ANNs are used to find a solution
to other multi-target optimization problems, such as multi-
ple time-optimal (or fuel-optimal) low-thrust transfers and
J2-perturbed multi-impulse transfers (Li et al., 2019).

From the analysis of the previous studies (Li et al.,
2019; Snelling et al., 2021; Song and Gong, 2019;
Viavattene and Ceriotti, 2020a,b), it can be noted that
the ANNs are trained with a fixed low-thrust propulsion
system, which is selected a priori. Therefore, the ANN
requires retraining every time that the use of thrusters
with other characteristics is explored, since these will
affect the cost and duration of the transfers. This process
may be particularly time-consuming, especially in the mis-
sion design phase, during which the identification of the
optimal low-thrust propulsion system to fly the mission
generally involves several iterations to identify the most
suitable propulsion system among a range of propulsion
capabilities. This study aims to show that an ANN can
both identify the most convenient trajectories for the
sequence of objects for MADR and MNR missions,
and consider different options of low-thrust propulsion
systems so that the most adequate one for these missions
can be selected. This would enable the design of an ANN
which can be used for different mission scenarios and dif-
ferent propulsion capabilities, without the need to be re-
trained when the thruster characteristics change. From
the literature review, it can be noticed that the use of
ANNs to scan through multiple low-thrust options for
multi-target missions remains largely unexplored, and
the approach proposed in this paper aims to fill this
gap, in aid of future mission designers.

Two objective functions are considered when optimizing
the EP system: the total duration of the mission and the ini-
tial mass of the system (which includes the mass of the
propulsion system and the propellant mass). A propulsion
system which minimizes the duration of the mission does
not necessarily optimize the initial spacecraft mass. In fact,
no unique solution exists that simultaneously minimizes
both objectives. These objectives are conflicting criteria.
This represents a multi-objective non-linear optimization
problem, for which a set of mathematically equally good
solutions can be identified, which are known as Pareto-
optimal solutions (Branke et al., 2008; Miettinen, 1999).
To solve such a problem, the ANN is combined with a
multi-objective genetic algorithm (GA).

In summary, this study analyzes the effects of different
characteristics of a propulsion system on multi-target mis-
sions. Ultimately, the proposed methodology of an ANN
and multi-objective optimization can provide a method
for a fast optimization of the propulsion system so that
the objectives of a given mission can be achieved, in terms
of duration or initial mass required. An ANN is trained to
quickly estimate the cost of a trajectory in terms of mprop

and TOF, given the debris orbits and propulsive character-
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istics. The proposed methodology can identify candidate
sequences of objects which, flown with the optimized
propulsion system, minimize the objective functions
according to the mission goals. The selected sequences
can be further refined through optimal control problem
solvers.

The paper is organized as follows. A description of the
proposed methodology which uses the multi-objective
GA and the ANN (GA-ANN) is provided in Section 2.
Section 3 describes the dynamics of the multi-target mis-
sions. The ANN is designed in Section 4, where the gener-
ation of the training database is also discussed and the
performance of the network is analyzed. In Section 5, opti-
mal MADR and MNR sequences are analyzed and the per-
formance of the proposed methodology is assessed. Finally,
Section 6 provides a summary of the methodology and the
findings.
2. Multi-objective optimization

Current low-thrust thrusters offer a range of characteris-
tics and capabilities to propel at different values of specific
impulse I sp and maximum thrust Tmax.

6 An accurate selec-
tion of the appropriate propulsion system can lead to mis-
sions with shorter time of flight and less propellant mass
required. This is paramount for multi-target missions
which are highly demanding in terms of energy.

In an effort to study how the choice of the propulsion
system can affect the performance of multi-target missions
and to ultimately identify the optimal propulsion system
for any given mission, the optimization logic which is
schematically presented in Fig. 1 has been developed.
Two nested optimizations are performed: (i) the inner opti-
mization to find the minimum initial mass m0 (for a fixed
payload mass) and (ii) the outer optimization over Isp
and Tmax of the EP system, to minimize the two objective
functions, i.e. the initial mass, m0, and the TOF, t0;f .

The outer optimization is solved by a multi-objective
GA. The objective is to analyze how the selection of the
propulsion capabilities affects the mission in terms of cost
(i.e., required initial mass m0 which, as will be specified
below, depends on the propellant mass and EP-system
mass) and duration. As both m0 and TOF are objective
functions of the GA, a multi-objective optimization (also
known as Pareto optimization) is conducted. The multi-
objective optimization entails the process of multiple-
criteria decision making, which is applied in cases where
optimal decisions need to be taken in the presence of
trade-offs between two or more conflicting objectives
(Branke et al., 2008).

The multi-objective GA identifies a number of Pareto-
optimal solutions, all of which are considered equally good.
The optimal solutions are obtained for different values of
I sp and Tmax and the selection of one solution over the



Fig. 1. Diagram of the optimization logic.
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others depends on the goals and/or requirements of the
mission.

For each combination of I sp;j and Tmax;j, with
j ¼ ð1; . . . ;NpÞ and Np given by the product of the number
of generations times the population size in a generation, the
evaluation of the objective functions requires the multi-
objective GA to run the inner optimization, and estimate
the optimal m0;opt;j and duration t0f;opt;j, which can be
obtained with the given EP system. To this end, the
ANN is trained, as discussed in Section 4, and used to com-
pute the cost of low-thrust transfers, given the orbital
parameters of the initial and final object, the characteristics
of the propulsion system (i.e., I sp and Tmax), and the mass
of the spacecraft at the beginning of the transfer. In partic-
ular, the ANN estimates the total propellant mass and
TOF required to fly the full sequence of objects with the
given propulsion system and initial mass.

The objective of the inner optimization is to identify the
minimum initial mass which allows to fly the given multi-
target mission when an EP system with I sp;j and Tmax;j is
used. Once the propellant mass is calculated by the ANN
for a preliminary mass budget, the total spacecraft mass
m0 can be calculated as (Ceriotti and McInnes, 2011):
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m0 ¼ mprop þ mtank þ nthrustersðmEP þ mgimbalÞ þ mpl ð1Þ
where each component can be described as follows:

� mprop is the propellant mass necessary to fly the desired
mission with duration equal to the TOF estimated by
the ANN

� mtank is the mass of the tanks and can be expressed as a
function of the propellant mass (Gershman and
Seybold, 1999):

mtank ¼ 0:1mprop ð2Þ
� nthrusters is the number of thrusters of the propulsion
system.

� mEP is the mass of a thruster, which is a function of its
power and, at a first approximation, can be expressed as:

mEP ¼ kEPPEP;max ð3Þ
with kEP is an empirical constant (Jahn, 1968) and
PEP;max being the maximum power required by the thrus-
ter, which is a function of the maximum thrust available
during the mission and of the specific impulse:

PEP;max ¼ TmaxI spg0
2gEP

ð4Þ

where gEP ¼ 0:7 is the efficiency of the propulsion sys-
tem to convert electrical energy (Kitamura et al.,
2007). In this work, off-the-shelf thrusters are consid-
ered, so the mass of the individual thruster mEP is
fixed to the mass of the thruster selected, as specified
in Section 3.3.

� mgimbal is the mass of EP gimbal system which is included
when more than one thruster are used, with the purpose
of compensating the misalignment of the thrust vector
produced by the thrusters with respect to the center of
mass of the spacecraft. The gimbal mass needs to be pro-
portional to the mass of the thrusters:

mgimbal ¼ qgimbalmEP ð5Þ
with qgimbal ¼ 0:1.

� mpl is the payload mass, which in this case includes the
structure and masses of all the required systems a part
from the propulsion system and the propellant mass.

Substituting the above expressions, Eq. (1) can be writ-
ten as follows:

m0 ¼ ð1þ 0:1Þmprop þ nthrustersð1þ 0:1ÞmEP þ mpl ð6Þ

where it can be concluded that minimizing the initial mass
m0 corresponds to optimizing the propellant mass mprop and
the number of thrusters nthrusters, given that mEP and mpl are
fixed.

The propellant mass, which is calculated by the ANN, is
a function of the initial mass m0, the DV required to per-
form the transfer, and the specific impulse of the propul-
sion system I sp, as defined by the rocket equation (Betts,
1998):
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mprop ¼ m0 1� e
DV

Ispg0

� �
ð7Þ

with g0 being the gravitational acceleration at the Earth’s
surface.

In the proposed inner optimization procedure, also illus-
trated in Fig. 1, a guessed initial mass m0;guess is used as
input to the ANN, which calculates the total cost and dura-
tion of the given multi-target mission. From the ANN out-
put, which provides an estimation of mprop, and from the
values of I sp;j and Tmax;j, which allow to identify the number
of thrusters needed, the initial mass m0 can be recalculated
using Eq. (6). The resulting value of m0 is compared to the
guessed initial mass m0;guess and, if the absolute value of the

difference jm0 � m0;guessj 6 � with � ¼ 10�5, convergence is
reached and the minimum initial mass m0;opt;j to fly the
desired mission is identified. Otherwise, the process is
repeated using m0 as the updated guessed initial mass, i.e.
m0;guess ¼ m0. This procedure is performed iteratively, until
convergence. Once the inner optimization converges, the
TOF is calculated by the ANN and set as the optimal
TOF, t0;f;opt;j, which is required to fly the mission with this
minimum initial mass m0;opt;j and the given propulsion sys-
tem (I sp;j and Tmax;j).

In conclusion, the multi-objective optimization process,
GA-ANN, where the multi-objective GA and the trained
ANN are used in the outer and inner optimizations, com-
putes the Pareto optimal solutions which are the output
solution vectors of the objective functions yGA;opt;i at the

values xGA;opt;i of the input variables of the multi-
objective GA, with:

xGA;opt;i ¼ ½I sp;i; Tmax;i� ð8Þ
yGA;opt;i ¼ ½m0;opt;i; t0;f ;opt;i� ð9Þ
where i indicates the i-th Pareto solution with
i ¼ ð1; . . . ;NGAÞ and NGA being the total number of
Pareto solutions identified by the GA. A final optimal
solution with xGA�ANN ¼ ½I sp;opt; Tmax;opt� and yGA�ANN ¼
½m0;opt; t0;f ;opt�can be selected among the Pareto-optimal
solutions following a decision making process, so that the
goals and requirements of the mission can be met.

3. Dynamics of the system

In this section, the dynamics of the multi-target missions
is presented, where the spacecraft is modeled as a point
mass with continuous low-thrust. The dynamics of the sys-
tem can be described using the following differential equa-
tion (Betts, 2010):

_xðtÞ ¼ AðxÞaþ bðxÞ ð10Þ
where x is the state vector of modified equinoctial elements,
x ¼ ½p; f ; g; h; k; L� (Betts, 1998); ais the perturbing acceler-
ation in radial, transversal, and out-of-plane components;
AðxÞ and bðxÞ are the matrix and the vector of the dynam-
ics, respectively. A full definition of AðxÞ and bðxÞ can be
found in Ref. (Betts, 2010).
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For the MADR missions, the perturbing acceleration, a,
is given by (i) the acceleration due to the thrust aT (acting
only on the chaser and not on the debris objects), (ii) the
acceleration due to the oblateness of the Earth ag and
(iii) the acceleration due to atmospheric drag aD. Differ-
ently, for MNR missions, the effects of the Earth’s oblate-
ness and atmosphere are negligible and only propulsion
disturbances are considered, i.e.:

for MADRs : a ¼ aT þ ag þ aD ð11Þ
for MNRs : a ¼ aT ð12Þ
The acceleration of the spacecraft due to the thrust aT is
formulated as:

aT ¼ Tmax

m
N ð13Þ

where Tmax is the maximum thrust of the propulsion sys-

tem, m is the mass of the system and N ¼ ½Nr;N h;Nh�T indi-
cates the acceleration direction and magnitude vector in
radial, transverse, and out-of-plane coordinates. The mass
of the system m decreases with time due to the propellant
consumption as described by the following mass differential
equation:

_m ¼ � TmaxjNj
I spg0

ð14Þ

For MADRs the gravitational acceleration, due to the
Earth’s oblateness and generally mass density distribution,
is experienced by both the chaser and debris objects, as well
as the acceleration due to the atmospheric drag.

The gravitational acceleration is experienced by both the
chaser and debris objects in MADR missions, due to the
Earth’s oblateness and mass density distribution in the
north-south direction (i.e. zonal harmonics only). It can
be defined as follows (Wakker, 2015):

ag ¼ QT
r dg ð15Þ

where Qr ¼ ½ir; ih; ih� is the transformation matrix from the
rotating local-vertical-local-horizontal (LVLH) frame to
the Earth-centered inertial (ECI) frame and dg is the grav-
itational perturbation acceleration. The full definition of
Qr and dg can be found in Ref. (Viavattene et al., 2022).

The acceleration due to the atmospheric drag in the
radial, transverse and normal components can be defined
as (Wakker, 2015):

aD ¼ ½aDr aDh
0� ð16Þ

where the out-of-plane component of aD is negligible, as
the net plane change is close to zero. The radial and trans-
verse components are defined as follows:

aDr ¼ �0:5qSCDvvr ð17Þ
aDh

¼ �0:5qSCDvvh ð18Þ
where q is the atmospheric density, which can be estimated
using the Exponential Atmospheric Model, which consid-
ers the atmosphere as composed by an ideal gas at constant
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temperature in a hydrostatic equilibrium (Schroeder, 2000).
This model is a compromise between accuracy and ease of
implementation and considered appropriate for the level of
the study. Also, S is the aerodynamic surface area, CD is the
drag coefficient and v is the velocity magnitude, i.e.

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r þ V 2

h

q
, with vr and vh being its radial and tangential

components (Wakker, 2015).
3.1. Multiple active debris removals

AMADRmission requires the chaser to rendezvous and
dock with the first debris object in the sequence and descent
to a disposal low-Earth orbit. The object is released for de-
orbiting and re-entry before the chaser transfers to the next
target object. The procedure repeats until the propellant
mass is depleted. Fig. 2 provides a representation of the
mission scenario, where Di with i ¼ ½1; 2; . . .� indicates the
debris object located at different altitudes and DX is the dif-
ference in right ascension of the ascending node (RAAN)
between debris orbits.

In this case study of MADR, some assumptions are con-
sidered to keep the model simple and, consequently, mini-
mize the computational time required to generate the
database to train the ANN. Although these assumptions
are chosen to be representative of a real MADR mission,
they could be easily varied for future use-cases simply by
re-training the ANN with the desired model.

A set of debris objects on circular orbits at the same
inclination is considered. This is a reasonable assumption
because the current satellite constellations are often on cir-
cular orbits, at the same inclination and spaced in RAAN.
To perform the rendezvous transfers from a space debris
object to the other, the chaser has to match the altitude
and right ascension of the ascending node X (RAAN) of
the orbit of the arrival body (Debris 2, or D2) at the arrival
epoch, while departing from the departure body (Debris 1,
or D1). Since the spiral low-thrust transfer legs between
debris exhibits a large number of revolutions, the phasing
along the orbit between the chaser and debris can be
Fig. 2. Schematic representation of the MADR mission scenario.
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neglected as it can be attained with minimal propulsion
effort.

To minimize the propellant consumption, it is chosen to
use the thrust to obtain the change in altitude and to
exploit the Earth’s oblateness gravitational perturbation
(J 2) to achieve the change in X through RAAN-phasing
orbits. The orbital-averaged RAAN variation rate is given
by the Gauss equations as follows (Curtis, 2005):

_X ¼ � 3

2

J 2
ffiffiffi
l

p
R2

a7=2ð1� e2Þ2 cosðiÞ
" #

ð19Þ

which is experienced by both the chaser and the debris
objects. The optimal altitude where to perform the
RAAN-phasing can be selected so that the propellant mass
and/or TOF are minimized (Viavattene et al., 2022).
3.2. Multiple NEA rendezvous

During an MNR mission the spacecraft is expected to
rendezvous multiple NEAs, i.e., matching the position
and velocity of the asteroid so that proximity operations
can be conducted. Fig. 3 provides a schematic representa-
tion of the mission scenario, where Ai with i ¼ ½1; 2; . . .�
indicates the NEA object located on different orbits. Com-
pared to the MADR case, a level of complexity is added for
MNR missions where also objects with inclined and eccen-
tric orbits are considered. Consequently, it will be possible
to test the GA-ANN performance when a more complex
system dynamics is considered.

Determining the cost and duration of a low-thrust trans-
fer, given the departure and arrival NEA orbital character-
istics, requires a low-thrust optimal control problem to be
solved. This is very computationally expensive and requires
an accurate first guess to identify an appropriate solution
(Alemany and Braun, 2007). To reduce the computational
time and effort, different methodologies have been devel-
oped to avoid the full low-thrust optimization and identify
an approximated solution. The shape-based approach is
used in this study. The shape of the minimum-cost ren-
dezvous transfer is defined analytically and can be approx-
Fig. 3. Schematic representation of the MNR mission scenario.
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imated for the given range of launch dates with zero depar-
ture and arrival velocity, TOF, and the number of revolu-
tions (Taheri and Abdelkhalik, 2012; Li et al., 2014; De
Pascale and Vasile, 2006). Thus, this choice is appropriate
for the preliminary search to design MNRs.

According to the shape-based method, a transfer rðtÞ is
defined as a parametrized analytical curve connecting two
points in a central force field (Petropoulos and Longuski,
2000; De Pascale and Vasile, 2006):

x ¼ x0 þ x1ðL� L0Þ þ k sinðL� L0 þ /Þ ð20Þ
which defines the solution of the full 3-D transfer based on

a set of modified equinoctial elements x ¼ ½p; f ; g; h; k; L�T .
The vector k ¼ ½k1; k2; k3� has as components the shaping
parameters, which are determined using a genetic algo-
rithm; x0 and x1 are defined from the boundary conditions;
and the phase parameter / is empirically set.

The acceleration which the propulsion system has to
provide to fly the calculated transfer is obtained by com-
puting the control thrust required to satisfy the dynamics,
as follows:

a ¼ €rþ l
r

r3
ð21Þ

where l is the gravitational parameter of the central body
(in this case, the Sun) and r is the position vector in the
Cartesian reference frame.

For each individual transfer between two selected bod-
ies, the shape-based method is used to compute the propel-
lant mass and duration required to fly the transfer. The
training database is built by storing, for each transfer,
the parametrization of the orbits of the departure and arri-
val asteroids, the angular position of the asteroids at the
departure date, and the cost and TOF of the minimum-
mass transfer.

3.3. Low-thrust propulsion systems

The choice of the on-board propulsion system to per-
form high-DV missions, such as multiple-target missions,
has a major impact on the cost (in terms of mass
required and, consequently, launch cost) and duration.
As mentioned, low-thrust systems can be beneficial for
this type of missions because it allows to deliver the
same DV using less propellant than high-thrust systems
(Wertz, 2009).

Instead of considering the propellant mass alone, the
number of thrusters (which defines the total mass of the
EP system) is also included in the optimization of this
study. As mentioned, off-the-shelf thrusters are used in this
application, thus the mass of the individual thruster is con-
sidered fixed. The time of flight of the transfers is also an
essential parameter which needs to be taken into consider-
ation for a complete analysis on the feasibility of EP sys-
tems for multi-target missions. The reason for this is to
investigate how the choice of the propulsion system affects
the design of a multi-target mission.
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In fact, a mission could be flown with an EP system with
certain values of I sp and Tmax which allow to reduce the
propellant mass, at cost of a higher mEP, which may have
a negative impact on the launch cost, and higher TOF,
which translates into the mission being completed at a later
stage. The opposite case can also happen. Considering the
full initial mass m0 and TOF in the optimization and trade
study offers space mission designers the possibility to
choose the most appropriate propulsion system on the
basis of their mission requirements and objectives.

In this work, EP systems for small satellites are consid-
ered, but the same analysis and considerations could be
expanded to larger satellites or different types of propulsion
systems. One crucial challenge to enhance the flexibility
and allow multi-target missions with such small spacecraft
is to develop a small, lightweight, compact and efficient EP
system. Many thrusters are available on the market, with
different characteristics. The models of the thrusters by
Enpulsion�. are selected as they offer a wide range of thrust
and specific impulse.

For the MADR mission, the Micro R3 thruster is
selected, with the operational envelope being presented in
Fig. 4(a). The operational envelope is obtained by approx-
imating the ranges of maximum thrust which can be obtain
for certain values of specific impulse, according to the
capability of the thruster, as detailed in the product speci-
fications.7 For a fixed I sp, any increase in Tmax results in a
higher operational power (which might result in higher
external power systems mass). It should be noted that,
the values of I sp and Tmax which are considered as input
to the multi-objective GA are values corresponding to an
operational point inside the operational envelope of the
EP system. Also, although the Micro thruster is offered
with a fixed amount of propellant mass, this is neglected
at this stage since the minimum amount of propellant mass
to fly the mission, as calculated by the ANN, is considered
and subject to the optimization as part of the total initial
mass m0. Also, the lifetime constraints of the thrusters is
not considered at this stage of the analysis, but it can be
easily implemented if additional thrusters (which equates
to an additional mass) are used to compensate for
degradation.

It is noted that the Micro R3 is a scaled technology of
the Enpulsion Nano thruster.8 Similarly, as the MNR mis-
sions generally require greater propulsion capabilities than
the MADR, the capabilities of the Micro R3 thrusters are
scaled up to obtain a thruster, referred in this paper as Mini
thruster, which can thrust with greater Tmax than the Micro
R3. This is achieved, to a first approximation, by simply
scaling up the Tmax achievable of the Micro R3 by a factor
of 4, resulting in an operational envelope of the Mini thrus-
ter which is shown in Fig. 4(b).



Fig. 4. Propulsive capabilities of the selected thrusters.8

9 Data available through the link https://ssd.jpl.nasa.gov/sbdb_query.
cgi#x (accessed on 2021-11-01).
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These off-the-shelf thrusters are engineered in a modular
approach, with units clustering easily together to form
building blocks that can be arranged for various mission
profiles. The mass of one thruster is mEP;MicroR3 ¼ 2:6 kg
and mEP;Mini ¼ 9:8 kg for the Micro R3 and Mini thruster,
respectively. Considering that the individual thruster mass
is fixed (i.e., mEP is fixed in Eq. (1)), the parameter that var-
ies in the multi-objective optimization is, apart from the
propellant mass, the number of thrusters.

The motivation for employing more than one thruster is
that the thruster operational envelope (Figs. 4(a) and 4(b))
stretches towards greater maximum values of Tmax. For this
study, the maximum number of thrusters allowed is 15.

4. ANN for multi-target missions

An ANN is trained to approximate the system dynamics
described in Section 3 so that, given the orbital elements of
the departure body B1, arrival body B2 and propulsion sys-
tem (inputs), the ANN can provide a quick estimation of
the propellant mass and TOF (outputs) required to transfer
from B1 to B2, i.e.:

y ¼ ½mprop; t0;f � ð22Þ
The training database contains the inputs and the desired
outputs (targets), which are used during the training of
the network. In particular, considering the differences in
the dynamics and assumptions between the MADR and
MNR missions, the input vector x can be defined:

� for MADR:

x ¼ ½hD1;XD1;mD1; hD2;XD2;mSC; I sp; Tmax� ð23Þ
where h and X are the altitude and RAAN of the depar-
ture (D1) and arrival (D2) debris; mD1 is the mass of the
departure debris, which needs to be carried to disposal;
mSC is the initial mass of the chaser, which varies during
the mission due to the propellant consumption; I sp and
Tmax describe the propulsion system characteristics.

� for MNR:
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x ¼ ½xMEE;A1; xMEE;A2;mSC; I sp; Tmax� ð24Þ
where xMEE are the modified equinoctial elements of
departure (A1) and arrival (A2) asteroid; mSC is the initial
spacecraft mass, varying during the mission due to the
propellant consumption; I sp and Tmax describe the
propulsion properties.

A multi-layered feedforward ANN is selected for this
case study, as it is demonstrated to approximate any
non-linear mapping yt ¼ fðxÞ to any degree of accuracy
(Goodfellow et al., 2016). In order for the network to
approximate the desired function (network function) appro-
priately, the network needs to be trained with a database
containing the corresponding inputs and desired outputs
(or targets). The training of the network is achieved by
optimizing the weights and biases associated to each neu-
ron to minimize the network loss function, i.e., the mean
squared error EMSE between the outputs generated by the
network y and the targets yt:

EMSE ¼ 1

N

XN
i¼1

jjyi � yt;ijj2 ð25Þ

with N being the number of outputs.
The training database for the MADR case is generated

by randomly selected 150,000 pairs of fictitious debris
objects, with altitudes between 500 and 1500 km and mass
between 100 and 300 kg. The inclination is fixed to 87.9 deg
and the disposal orbit is at an altitude of 390 km. The
chaser mass can vary from 40 kg to 140 kg.

Similarly, for the MNR case, 50,000 pairs of NEAs9 are
randomly selected to define the training database of the
ANN. Asteroids with eccentricity below 0.4 and inclination
below 20 deg are used, as the highly inclined and highly
eccentric objects would require a larger cost and duration
to transfer to and from. The mass of the spacecraft can
vary from 40 kg to 220 kg. In the MNR case, a larger range
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is allowed for the initial mass because a higher thrust (thus,
a heavier propulsion system) and a greater propellant mass
is generally required for this kind of mission compared to
the MADR missions.

The effect of changing the values of the network hyper-
parameters and architecture on the final performance are
analyzed so that the values which allow to achieve a higher
performance can be selected (Viavattene and Ceriotti,
2020a). Two networks (one for the MADR case and one
for the MNR case) with four hidden layers and 80 neurons
using the sigmoid as activation function are built. The pre-
processing steps performed are the batch normalization of
the training data. To detect and prevent overfitting, the
training databases are divided into 70% training set, 15%
validation set and 15% test set (Kurková, 1992). The for-
mer is used to train the network. Following the training,
the validation set is used to eventually evidence the pres-
ence of overfitting during the training and the test set is
used to evaluate the final performance of the network.
Levenberg-Marquardt is used as a training algorithm, with
an initial value of the gradient constant l of 0.001 and a
decrease factor of 0.1.

4.1. Performance analysis

As the validation set includes samples which are not
used for the training, the validation-set MSE is often used
as a performance indicator. Additionally, regression plots
and the related correlation coefficients are used to illustrate
how well the network outputs (Y-axis) fit the targets (X-
axis) with respect to the training, validation, test sets and
overall. A perfect fit of the outputs and targets is obtained
when the data fall along the line with a unit slope and zero
y-intercept, i.e., y ¼ x and correlation coefficient R = 1.
Fig. 5. Regression (a) and performance (b) analy
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Figs. 5 and 6 show the performance of the trained net-
work for MADR and MNR, respectively. In both figures,
the plot (a) presents the regression analysis of the network
outputs and the targets for the train, validation and test
sets. The final overall correlation coefficient is 0.99 for
MADR and 0.97 for MNR, which indicates that the
ANN is able to approximate the fitness function which
relates inputs and outputs for both types of multi-target
missions.

The performance plot (b) shows how for each training
epoch the MSE decreases until the performance goal is
met (such as in the MADR case, Fig. 5(b) or before the
training starts overfitting (such as in the MNR case,
Fig. 6(b)). The latter case is verified when the validation-
set MSE becomes to increase while the training-set MSE
continues to decrease. The final validation-set MSE of
0.022 for the MADR case and 0.191 for the MNR case sug-
gests a very accurate performance of the trained networks.
These values of MSE correspond to a mean error of pro-
pellant mass and TOF of, respectively, 0.3% and 2.1%
(for MADR) and 1.5% and 2.9% (for MNR), which are
calculated between the output yi and the target yt;i as:

Ey ¼ 1

N

XN
i¼1

yi � yt;i
yt;i

� 100 ð26Þ

where y can be either the propellant mass or TOF.
The ANN trained for the MADR missions achieves a

better performance than the ANN for the MNR missions,
as it can be noticed from both the regression and perfor-
mance plots. This can be linked to the increased complexity
of the MNR model compared to the MADR model, which
are detailed in Section 3. In particular, the change of incli-
nation and eccentricity from an orbit to the next one; and
sis of the ANN trained for MADR missions.



Fig. 6. Regression (a) and performance (b) analysis of the ANN trained for MNR missions.
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the use of the GA in the shape-based model to find the cost
and duration for the optimal transfer, in MNR case. Also,
it can be noticed that for MADR the training is complete
when the performance goal is reached in the training set
(blue line), while for the MNR case, the training is com-
plete because of the early stopping method which is used
to avoid overfitting (i.e., the training is stopped when the
validation-set MSE starts increasing, while the training-
set MSE continues to decrease).

The impact of the use of ANNs on the computational
time for the estimation of the cost and duration of multi-
target missions is assessed by comparing the performance
with current methods employed in the industry. For
MADR, the current method consists of an industry expert
processing the same input and providing the best solution
possible within 4 h via an iterative approach (Snelling
et al., 2021). For MNR, the proposed methodologies sug-
gest to use a simplified model to identify the sequences of
asteroids and, successively, convert these solutions into fea-
sible low-thrust trajectories by means of an optimization.
For instance, in the method used by Peloni et al. (Peloni
et al., 2016), the shape-based method is used as the simpli-
fied model.

For the comparison, the same set of input data and the
same assumptions are used. For MADR, the computa-
tional time required by ANN is more than 26 times faster
than the time required by the methods employed by the
industry (Snelling et al., 2021). This result was obtained
with only 100 debris objects in the database, and it is
expected that the benefits of using the SS-ANN method
become even more important when a larger set of satellites
is considered. A detailed description of the analysis can be
found in (Viavattene et al., 2022).
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For MNR, when the same input data (2,768 objects) and
assumptions are considered, the use of the ANN makes the
algorithm almost 100 times faster compared to the method
in Ref. (Peloni et al., 2016), while maintaining a compara-
ble level of accuracy. This is because as the number of
sequences or objects to analyze increases, the number of
permutations to calculate increases exponentially; thus,
the advantages of using an ANN and the difference in com-
putational time will be greater. Please refer to Ref.
(Viavattene and Ceriotti, 2021) for the complete analysis
on computational speed.

5. Multi-target missions

The optimal MADR and MNR sequences, identified in
Refs. (Viavattene et al., 2022 and Viavattene and Ceriotti,
2021), respectively, are used to demonstrate the capabilities
of the proposed methodology. These sequences were
selected in the referenced works using a sequence search
(SS) algorithm. The logic of the algorithm is based on a
tree-search method and breadth-first criterion. Each node
of the tree represents a transfer leg and how one proceeds
through its branches depends on the mission objectives
which, in this case, is the TOF minimization. The SS works
by selecting a body Bj as departure object and Bi as arrival
object, with j and i 2 ½1;N � so that all the possible permu-
tations between the N objects in the database can be eval-
uated. The trained ANN is used to calculate the mprop and
TOF of each low-thrust transfer. At this point, the arrival
object becomes the departure object of the following leg
and the same procedure is iterated. The sequence is com-
plete once the total mission duration exceeds 10 years (or
until the depletion of the propellant mass).
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For larger number of objects, the complexity and
required memory of the tree search grow factorially. The
motion of each object along its orbit needs to be calculated
and updated at each iteration. Therefore, each node of the
search tree is designed to record the orbital parameters of
the selected target at the departure time, current flight time,
current propellant mass expenditure, and the quality of the
transfer to reach the selected target (i.e., mprop and t0;f , as
calculated by the ANN).

In the following sections, the performance of the pro-
posed methodology, in which a multi-objective optimiza-
tion is used in combination with the trained ANNs, is
demonstrated in term of the accuracy to identify the most
convenient low-thrust capabilities to fly multi-target mis-
sions by optimizing the thrusting properties on the basis
of the mission objectives, i.e., desired duration of the whole
mission and initial launch mass, as described in Section 2.

5.1. MADR mission design

The selected MADR sequence from Ref. (Viavattene
et al., 2022) (Table 3, Sequence B) allows for the disposal
of 11 debris objects in 10.87 years with a required propel-
lant mass of 60.76 kg, when the initial mass is 400 kg. In
this study, a trajectory through the same sequence will be
optimized for using a micro-satellite equipped with the
Micro R3 low-thrust thrusters.

Fig. 7 illustrates the Pareto front obtained from the
multi-objective GA and the trained ANN. Plot (a) shows
the values of I sp and Tmax associated to the optimal points
in the Pareto plot (b), which presents the two objective
functions, namely the TOF and m0;opt. The colors of points
in the plots depend on the number of thrusters on-board to
achieve the desired Tmax, going from 1 (deep blue) to 15
(dark red), as indicated in the color bar.

The computational time required to run the multi-
objective GA and ANN is 42.48 min. Considering that
the GA is recomputing the sequence multiple times with
different values and combinations of I sp and Tmax, it can
Fig. 7. Low-thrust propulsion characteristics (a)
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be appreciated how the use of the ANN allows to consid-
erably reduce the computational time, as discussed in
Section 4.1.

It can be noticed that, with highest values of I sp and low-
est values of Tmax (minimum number of thrusters), solu-
tions with minimum m0;opt are obtained, at the expenses
of the TOF which is exponentially high. Differently, lowest
values of I sp and highest values of Tmax (larger number of
thrusters) allow for solutions with minimum TOF, at the
expenses of an higher initial mass. This tool offers the mis-
sion designer the opportunity to investigate each option
and select the point along the Pareto front which better
suits the mission objectives.

In this case we selected a point just after the elbow in the
Pareto front (indicated by the arrow in the plots of Fig. 7),
where an initial mass of 72.04 kg (of which 11.05 kg are
propellant mass) and total TOF 9.13 years are achieved
when using seven Micro R3 thrusters which deliver a
I sp = 3265 s and Tmax = 7.30 mN. This sequence is recalcu-
lated by solving the dynamics of the system to obtain the
exact values of mass and transfers’ duration. Also, these
values can be used for a comparison with the ANN values
and evaluate the accuracy of the ANN.

Table 1 presents the characteristics (altitude h, RAAN,
and mass m) of the objects de-orbited as part of the opti-
mized MADR sequence and the mission characteristics
(propellant mass mprop and TOF). Additionally, Fig. 8 illus-
trates the altitude and used propellant mass of the space-
craft along the sequence. The final duration of the
mission is 9.02 years and it requires a propellant mass of
11.86 kg (achieving a propellant mass ratio
mprop=m0 ¼ 0:16). It follows that the GA-ANN methodol-
ogy is able to identify the TOF and propellant mass of
the system with an error of approximately 1.2% and
6.8%, respectively. Additionally, this shows the advantages
of using a micro-satellite to fly MADR missions. In fact,
when comparing these results with those obtained in Ref.
(Viavattene et al., 2022), the same sequence requires about
60.76 kg of propellant mass, when the initial mass is 400 kg
and Pareto front (b) for the MADR mission.



Table 1
Characteristics of the selected MADR sequence.

Debris h, km RAAN, deg m, kg TOF, days mprop, kg

D1 661.73 162.03 131.24 N/A N/A
D2 504.96 158.72 270.37 295 1.14
D3 577.40 149.33 163.74 254 0.95
D4 534.05 145.48 256.27 405 2.02
D5 517.24 145.16 253.91 195 0.99
D6 514.14 138.62 139.19 426 0.95
D7 534.61 128.19 213.67 282 0.67
D8 667.95 84.76 222.82 213 1.05
D9 694.88 66.66 200.81 313 1.74
D10 517.45 123.32 171.80 431 1.59
D11 588.01 88.94 213.15 178 0.76
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for mprop=m0 ¼ 0:15. It follows that a comparable propel-
lant mass ratio is achieved, however using a micro-
satellite allows to reduce the initial mass (and, conse-
quently, the propellant mass and launch mass), for a com-
parable duration of the mission.
5.2. MNR mission design

To study the performance of GA-ANN for the MNR
case, a sequence which was obtained in Ref. (Viavattene
and Ceriotti, 2021) (Tables 8 and 9, Sequence C) is selected.
This sequence allowed to visit six asteroids in less than
10 years, requiring a total DV of 17.95 km/s for an initial
launch mass of 1000 kg, I sp ¼ 3000 s and Tmax ¼ 0:1 N.

Apart from identifying the most appropriate propulsion
system which optimizes the TOF and m0 of the basis of the
mission objectives, this analysis aims to prove how such a
mission could be flown by a small satellite to reduce the
launch mass costs.

Fig. 9 illustrates the Pareto front obtained from the GA-
ANN methodology. Plot (a) shows the values of I sp and
Tmax associated to the optimal points in the Pareto plot
(b), which presents the two objective functions, namely
Fig. 8. Altitude and propellant m
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the TOF and m0;opt. The colors of the points in the plots
depend on the number of thrusters on-board to achieve
the desired Tmax, going from 1 (deep blue) to 15 (dark
red), as indicated in the color bar.

Similarly to the MADR mission, high values of I sp and
small value of Tmax allow to fly the sequence with minimum
initial mass but in a considerably longer amount of time.
On the other hand, relatively low values of I sp and high
value of Tmax allow to fly the sequence faster but a higher
initial mass is required. It should be noticed that, differently
from the MADR case where all the I sp values were consid-
ered to provide an optimal solution within the Pareto front,
for MNR only values of I sp larger than 3500 s give a solu-
tion in the Pareto front. This means that values below
3500 s of specific impulse result in a mission associated with
larger TOF and/or larger initial mass.

The point in the Pareto front (indicated by the arrow in
the plots of Fig. 9), which is selected for further optimiza-
tion, corresponds to an initial mass of 120.10 kg (of which
43.42 kg are propellant mass) and total TOF 11.91 years
and a propulsion system with I sp = 4082 s and
Tmax = 10.81 mN. This sequence is recalculated by solving
the dynamics of the system and finding the optimal solu-
tion. The optimal control problem is solved by using a dis-
crete non-linear programming (NLP) together with a
variable-order adaptive Radau collocation method
(Patterson and Rao, 2014; Rao et al., 2010; Garg et al.,
2011), encoded in IPOPT (Wachter and Biegler, 2006).

Table 2 presents the characteristics of the transfers,
namely departure and arrival dates, TOF, mprop and stay
time at the asteroid to allow for proximity operations.
Additionally, Fig. 10 illustrates the heliocentric ecliptic-
plane view of the complete trajectory.

It results that a small satellite of 120.10 kg is able to fly
the NEA sequence equipped with three Mini low-thrust
thrusters. The total duration of the mission is 11.44 years
and requires 42.40 kg of propellant mass (achieving a
ass for the MADR sequence.



Fig. 9. Low-thrust propulsion characteristics (a) and Pareto front (b) for the MNR mission.

Table 2
Characteristics of the selected MNR sequence.

Leg Departure Arrival TOF, days mprop, kg Stay Time, days

Earth - 2014 WX202 2035-03-12 2036-11-25 625 6.01 50
2014 WX202 - 2008 EA9 2037-01-17 2038-12-24 706 5.70 86
2008 EA9 - 2015 VO142 2039-03-21 2040-03-19 364 5.03 180
2015 VO142 - 2012 EP10 2040-09-15 2041-04-01 197 4.45 50
2012 EP10 - 2013 CY 2041-05-21 2043-11-21 913 9.89 50
2013 CY - 2014 UV210 2044-01-10 2046-08-24 956 11.32 –

Fig. 10. MNR sequence: heliocentric ecliptic-plane view.
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propellant mass ratio mprop=m0 ¼ 0:35). Comparing the
optimized results with those obtained by the ANN, it fol-
lows that a percentage error of 4.1% for the TOF and
2.4% for the total propellant mass is obtained.

Finally, the same sequence was optimized with a system
of initial mass 1500 kg and requiring around 685 kg of pro-
pellant mass so that mprop=m0 ¼ 0:46 (Viavattene and
2299
Ceriotti, 2021). In this case, the use of a small satellite
allows to reduce the propellant mass ratio. This analysis
demonstrated that a small satellite equipped with the
appropriate low-thrust EP system is able to fly the same
sequence in a similar amount of time. As a consequence
of using a small satellite, the necessary propellant mass
and initial launch mass can be significantly reduced.
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6. Conclusions

The proposed methodology (GA-ANN) uses a multi-
objective genetic algorithm (GA) optimization in combina-
tion with an artificial neural network (ANN) to identify the
most convenient low-thrust system to fly multi-target mis-
sions. Multiple active debris removal (MADR) missions
and multiple NEA rendezvous (MNR) missions are consid-
ered as case studies.

The logic of the optimization which has been developed
includes an inner optimization over the initial mass m0,
where the ANN is used to estimate the cost and duration
of each transfer, and an outer optimization performed by
the GA over the propulsion properties, namely specific
impulse I sp and maximum thrust Tmax. This allows to inves-
tigate the effects of different propulsion capabilities on
multi-target missions in terms of the cost (i.e., m0) and
duration. Pareto-optimal solutions are identified for differ-
ent values of I sp and Tmax.

The GA-ANN methodology is assessed with MADR
and MNR sequences. In both cases, a point along the Par-
eto front is selected for further analysis and optimization.
The error in mission duration and cost between the values
computed by GA-ANN and the optimal values is on aver-
age lower than 3% and 5%, respectively.

It can be concluded that the proposed methodology is
able to identify Pareto-optimal solutions for different
low-thrust capabilities, so that mission designers can
quickly analyze the options available and select the solu-
tion which most suits the objectives and requirements of
the mission. The use of miniaturized electric thrusters can
enable, when technologically feasible, small satellites to
fly multi-target missions, providing advantages in terms
of reduced propellant mass and initial launch mass, while
completing the mission in comparable amounts of time.
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