
Citation: Yang, J.; Xu, Y.; Yang, L.

Taichi-LBM3D: A Single-Phase and

Multiphase Lattice Boltzmann Solver

on Cross-Platform Multicore

CPU/GPUs. Fluids 2022, 7, 270.

https://doi.org/10.3390/

fluids7080270

Academic Editor: Mehrdad

Massoudi

Received: 4 July 2022

Accepted: 3 August 2022

Published: 8 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Taichi-LBM3D: A Single-Phase and Multiphase Lattice
Boltzmann Solver on Cross-Platform Multicore CPU/GPUs
Jianhui Yang 1 , Yi Xu 2 and Liang Yang 3,*

1 Geoscience Research Centre, TOTAL E&P UK Limited, Westhill, Aberdeenshire AB32 6JZ, UK
2 Taichi Graphics, Beijing 100089, China
3 Division of Energy and Sustainability, Cranfield University, Bedford MK43 0AL, UK
* Correspondence: liang.yang@cranfield.ac.uk; Tel.: +44-1234-758032

Abstract: The success of the lattice Boltzmann method requires efficient parallel programming
and computing power. Here, we present a new lattice Boltzmann solver implemented in Taichi
programming language, named Taichi-LBM3D. It can be employed on cross-platform shared-memory
many-core CPUs or massively parallel GPUs (OpenGL and CUDA). Taichi-LBM3D includes the
single- and two-phase porous medium flow simulation with a D3Q19 lattice model, Multi-Relaxation-
Time (MRT) collision scheme and sparse data storage. It is open source, intuitive to understand, and
easily extensible for scientists and researchers.

Keywords: GPU computing; lattice Boltzmann; two-phase flow; capillary pressure; Taichi programming

1. Introduction

The study of fluid flows is an important subject of civil, mechanical, and chemical
engineering. Accurate calculation of the forces, pressure, and velocity can help us to better
understand the flow and its mass/heat transport process. The lattice Boltzmann method
(LBM) is a numerical method for simulating fluid dynamics introduced three decades
ago [1,2]. Since then, it has quickly developed and has attracted significant attention in
academia and industry. The lattice Boltzmann method is based on a special discretisation
of velocity space, time, and space: an ensemble of particles, the motion and interactions of
which are confined to a regular space–time lattice [3,4]. These particle groups are much
larger than real fluid molecules, but they show the same behaviour in density and velocity
as the real fluid at macroscopic scale. The Navier–Stokes equations can be recovered by
LBM at macroscopic scale [5–7]. This unique mesoscale feature allows the LBM to simulate
fluid/gas flow without directly solving continuum equations and distinguishes it from
conventional computational fluid dynamics (CFD) methods: the conventional CFD method
discretises the governing equation in a top-down approach, the LBM recovers the governing
equations from the defined rules for discretised models in a bottom-up approach.

Several lattice models have been proposed for the LB method [6,8–10]. The most
popular and widely used lattice model has been used in 2D and 3D [10] called D3Q19. The
model contains 19 velocities at each lattice node. We used this lattice model as our LB solver
implementation. The collision term is the key component in the LB method; it defines how
particle groups exchange momentum and energy locally at lattice nodes. The simplest one
that can be used for flow simulation is the Bhatnagar–Gross–Krook (BGK) operator [11]. A
multiple-relaxation-time (MRT) scheme was developed to overcome the drawbacks of the
BGK model, e.g., numerical instability [12]. Using various relaxation-time parameters for
different moments of macroscopic quantities is the main concept behind MRT. The MRT
approach can increase the numerical stability while lowering the computational time by
at least one order of magnitude and keeping the same accuracy. A thorough analysis of
MRT’s numerical stability was conducted in [13]. We used the MRT scheme as a collision
term in our single- and two-phase solver development.

Fluids 2022, 7, 270. https://doi.org/10.3390/fluids7080270 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids7080270
https://doi.org/10.3390/fluids7080270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0001-9622-2713
https://orcid.org/0000-0003-0901-0929
https://doi.org/10.3390/fluids7080270
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids7080270?type=check_update&version=1

Fluids 2022, 7, 270 2 of 12

The LB method can be easily extended to multiphase multi-physics applications due
to its mesoscopic nature. There have been many multiphase/multicomponent LB models
proposed in the past two decades. These models generally can be grouped into four
categories: the colour gradient model [14–18], the free energy model [19–21], the pseudo-
potential Shan–Chen model [22–25], and the phase-field model [26–28]. We implemented
an optimised colour-gradient model proposed in [18], which permits improved numerical
stability, a higher viscosity ratio, and a lower capillary number compared to other two-
phase models.

Compared with conventional CFD techniques, the LBM has several advantages:

- It is relatively simple to implement. LBM relies on particle group distributions. The
interaction between nodes are fully linear, while the nonlinearity enters into a local
collision process within each node [29]

- The LBM algorithm is mostly local, leading to efficiency and scalability on a paral-
lel computer [30]

- Robust handling of complex geometries.

In the past few decades, several code packages emerged and have been well-maintained,
including Palabos [31], OpenLB [32], Walbera [33], and many others [34]. Most of them
were implemented in C++ on CPU architecture for its high computing efficiency and object-
oriented language. However, the parallel packages require strong programming skills, e.g.,
CUDA and C++. To remove these barriers and allow the researcher to focus on algorithm
and application development, we developed a 3D single-phase MRT LBM solver and two-
phase improved colour gradient MRT solver [18] using Taichi programming languages [35],
named Taichi-LBM3D. The objective of this new LBM solver is to facilitate researchers
who want to focus on the LB algorithm or application but not on the programming, while
guaranteeing the high computing efficiency on parallel platforms. The researchers could
prototype their new algorithm rapidly and/or test their new applications on multicore
CPUs or massively parallel GPUs. Interestingly enough, recent efforts were found to use
PyTorch [36] to develop LBM models on GPUs, but these were limited to single-phase flow
applications.

Based on the Taichi computing infrastructure, Taichi-LBM3D can be executed on a
shared memory cross-platform with CPU backend (e.g., x86, ARM64) and GPUs (CUDA,
Metal and OpenGL). The implementation is short: around 400 lines for single-phase
flow and 500 lines for two-phase flow. The solver is also intuitive to understand and
is implemented using python-like syntax along with Taichi embedded vector/matrix
operations. This unique feature allows further extension with minimum effort. In addition,
the solver has a sparse storage option, which is essential for the simulation of flow over a
porous medium. The sparse storage option is decoupled from the computing kernel. The
computing performance is comparable with original C++ implementation on CPUs and
much faster on GPUs. Researchers will be able to test new ideas and applications on Taichi-
LBM3D without losing computing efficiency, and development time can be potentially
reduced from days to hours. Taichi-LBM3D would enable integrating the LBM simulations
with Taichi’s automatic differentiation facility [37], which will be our future work. This
paper is organised as follows. Section 2 presents the overview of the LBM algorithm and
its implementation. Section 3 shows three benchmark problems for the Stokes flow, Navier–
Stokes flow, and the two-phase flow. Section 4 shows different numerical applications and
the overall speed comparison. Section 5 presents a summary and conclusion.

2. Algorithm

The lattice Boltzmann method (LBM) uses a discrete Boltzmann equation to simulate
fluid flow that divides the algorithm into a collision and a streaming step. The location of the
particle distribution functions (PDFs) in space is presented on the nodes of the lattice grid,
and a small set of lattice velocities are used to represent the particle velocities. Under the
assumption of a low Mach number Ma = u/c� 1, the Maxwell–Boltzmann distribution

Fluids 2022, 7, 270 3 of 12

can resemble the equilibrium to second-order accuracy in velocity. To implement a lattice
Boltzmann simulation, four major steps should be included:

1. Initialisation of the distribution function fi(x, 0)
2. Collision step: A time iteration takes the populations from their state at time t to the

next state t + ∆t, where ∆t is a constant discrete time step:

Collision step: fi(x + ei∆t, t + ∆t) = fi(x, t) + Ωi, i = 0, ..., 18, (1)

We used the multi-relaxation-time scheme D3Q19 lattice Boltzmann method for the
Stokes flow calculation [13], which allows independent adjust adjustment of the bulk and
shear viscosity, which significantly improves the numerical stability for a low viscosity
fluid. D3 represents the space dimension and Q19 indicates the number of discretised
microscopic velocities, where ei is the discretised microscopic velocities:

ei =

0 c −c 0 0 0 0 c −c c −c c −c c −c 0 0 0 0
0 0 0 c −c 0 0 c −c −c c 0 0 0 0 c −c c −c
0 0 0 0 0 c −c 0 0 0 0 c −c −c c c −c −c c

 (2)

where c = ∆x/∆t, ∆x is the lattice length, and ∆t is the constant time step. The weights wi
for the D3Q19 stencil are

wi = 1/3 i = 0; wi = 1/8 i = 1...6; wi = 1/36 i = 7...18 (3)

The multi-relaxation-time (MRT) collision operator is:

Ω = M−1S(M f −meq) (4)

The collision process is conducted in the momentum space, and the equilibrium
moment is calculated by meq = M f eq. The moments of the distribution function are
expressed as

m = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pzx, mx, my, mz) (5)

The physical meaning of these moments can be found in [12]. The collision diagonal
matrix S is a diagonal comprised of relaxation rates:

S = diag(0, se, sξ , 0, sq, 0, sq, 0, sq, sν, sπ , sν, sπ , sν, sν, sν, sm, sm, sm) (6)

The relaxation rates sν and sξ are associated with the kinematic viscosity ν and bulk
viscosity ξ, respectively, that can be calculated as:

ν =
1
3
(

1
sν
− 1

2
)c2∆t, ξ =

2
9
(

1
se
− 1

2
)c2∆t (7)

The relaxation time τ is defined as τ = 1/sν. We chose the following value

se = sξ = sπ = sν, sq = sm = 8
2− sν

8− sν
. (8)

3. Streaming step:
fi(x + ei∆t, t + ∆t) = fi(x, t + ∆t) (9)

Different boundary conditions, e.g., simple bounce-back and periodic, were
implemented.

4. Computation of macroscopic hydrodynamic quantities, density, and momentum are
conserved values that can be calculated from:

ρ(x, t) = ∑
i

fi(x, t) (10)

Fluids 2022, 7, 270 4 of 12

ρu(x, t) = ∑
i

ei fi(x, t) (11)

Multicomponent Lattice Boltzmann Models

A general colour gradient lattice Boltzmann model can be summarised in 4 steps

1. Single phase collision using MRT scheme
2. Surface tension perturbation to f ′i obtaining f ′′i
3. Recolouring
4. Streaming.

We employed an optimised colour-gradient approach [18] for the two-phase flow
problem. To maintain the inbuilt parallelism of the lattice Boltzmann method, only the
values of distribution functions of the nearest neighbour nodes were required. High
viscosity ratios and a low capillary number problem were possible in this model, as it
increased numerical stability. Velocity and pressure use only one full size distribution
function. A recolouring approach was used to limit the diffusion on the interface while
adding additional terms to the equilibrium moments in the MRT collision stage. Two
component densities were indicated by the variables ρr and ρb. The definition of parameter
φ is

φ =
ρr − ρb
ρr + ρb

(12)

The colour gradient vector C of the phase field can be calculated using

C(t, x) =
3

c2∆t ∑
t

ωieiφ(t, x + ei∆t) (13)

The orientation of the interface can be obtained by a normalised gradient:

nα =
Cα

|C| (14)

The two separate LB equations will compute the convection of density field ρr, ρb.
Take ρr for example,

gi(x + ei∆t, t + ∆t) = geq
i (ρr(x, t), u(x, t)) (15)

The equilibrium distribution function geq
i is

geq
i = wiρr(1 +

3
c2 ei · u) (16)

Only the local equilibrium distribution function is required in the collision step. Thus,
only the summation ρr = ∑18

0 gi needs to be recorded rather than all the values.
The gradient of the phase field is required to calculate the surface tension term. The

extra terms for the surface tension are

m1 = −σ|C|(n2
x + n2

y + n2
z) = σ|C|

m9 =
1
2

σ|C|(2n2
x − n2

y − n2
z)

m11 =
1
2

σ|C|(n2
y − n2

z)

m13 =
1
2

σ|C|(nxny)

m14 =
1
2

σ|C|(nynz)

m15 =
1
2

σ|C|(nxnz)

(17)

Fluids 2022, 7, 270 5 of 12

The relaxation matrix, kinematic, and bulk viscosity calculation are the same as a
standard MRT–LBM.

The Taichi-LBM3D scripts are easy to understand and can be easily modified by the
users. For example, the collision operator in Equation (4) is the most computation intensive
task in the LBM algorithm. The reader could easily refer to Listing 1 and Equation (4).
Another benefit is the sparse data structure that has been built in Taichi. Listing 2 shows
the dense and sparse memory allocation in Taichi.

Listing 1. Example of collision operator in Taichi-LBM3D for single phase flow problem.

1 @ti.kernel
2 def colission ():
3 for i,j,k in rho:
4 if (solid[i,j,k] == 0):
5 m_temp = M[None]@F[i,j,k]
6 meq = meq_vec(rho[i,j,k],v[i,j,k])
7 m_temp -= S_dig[None]*(m_temp -meq)
8 if (ti.static(force_flag ==1)):
9 for s in ti.static(range (19)):

10 m_temp[s] += (1 -0.5* S_dig[None][s])*GuoF(i,j,k,s,v[i,j,k])
11

12 f[i,j,k] += inv_M[None]@m_temp

Listing 2. Examples of dense and sparse memory allocation in Taichi-LBM3D.

1 # Non Sparse memory allocation
2 f = ti.Vector.field (19,ti.f32 ,shape =(nx ,ny ,nz))
3 F = ti.Vector.field (19,ti.f32 ,shape =(nx ,ny ,nz))
4 rho = ti.field(ti.f32 , shape=(nx ,ny,nz))
5 v = ti.Vector.field(3,ti.f32 , shape =(nx,ny ,nz))
6

7 # Sparse Storage memory allocation
8 f = ti.field(ti.f32)
9 F = ti.field(ti.f32)

10 rho = ti.field(ti.f32)
11 v = ti.Vector.field(3, ti.f32)

3. Numerical Benchmark

In this section, the implementation of the Taichi-LBM3D is benchmarked by com-
parison with well-known numerical test cases. We started with the viscous-driven to
inertia-driven flow; finally, we benchmarked the two-phase capillary fingering.

3.1. Stokes Flow

Here, we considered a Plane Poiseuille flow problem. The flow was created between
two infinitely long parallel plates. A constant pressure gradient was applied in the direction
of flow. The analytical velocity profile u(x) is described by the Poiseuille equation

u(x) =
f

2ν
(a2 − x2) (18)

where f is the pressure gradient or a body force, x is the coordinate, ν is the viscosity,
and 2a is the distance between two plates. We chose four different widths 3, 5, 11, and
21 lattice points. The comparison of the simulated results and analytical results are shown
in Figure 1. Excellent agreement was achieved for all widths, due to the use of halfway
bounce-back boundary conditions for the walls along the flow direction and the usage of
the multiple-relaxation-time scheme.

Fluids 2022, 7, 270 6 of 12

Figure 1. The velocity field compared with the analytical solution under different channel widths of
3, 5, 11, and 21 lattice size.

3.2. Lid-Driven Flow

The 3D lid-driven flow is a classic benchmark problem and has been extensively
validated [38,39], especially for laminar flow cases. The flow in a cube chamber was driven
by a constant velocity at the top lid. The domain was [0, 1]× [0, 1]× [0, 1]. The top wall had
a velocity (1,0,0). The laminar flow with Reynolds number Re = 1000 was considered for
our benchmark. The flow will become steady state at Re = 1000, and the simulation was
performed until the relative residual reached the tolerance. Figure 2 shows a comparison of
velocity profiles through the centre of the cavity with a lattice refinement of 253, 503, 1003,
and 2003. It can be observed that the simulated results agreed with the references with
mesh refinement [38]. The iso-surfaces of the Q-criterion of the velocity field for the lattice
size 503 are shown in Figure 2.

Figure 2. Lid-driven cavity flow for Re = 1000. Left: velocity profiles on the mid-plane y = 0.5 with
mesh refinement with reference data [38]. Right: Iso-surface of Q-criterion of the velocity field for
the lattice size 503 visualised in Paraview.

3.3. Capillary Fingering

Capillary fingering is a well-known hydrodynamic instability problem, and it was
used to validate the LBM multicomponent model. Two fluids had different viscosities. One

Fluids 2022, 7, 270 7 of 12

fluid was displaced by a second phase of fluid along a non-slip channel. A growing finger
of the driving fluid was observed if the capillary number Ca was large enough. The Ca is
defined as

Ca =
utν2

σ
(19)

where ut is the velocity of the tip of finger, ν2 is the kinematic viscosity of the driving
fluids, and σ is the surface tension. The colour gradient model was used to study the
capillary fingering. A lattice size 512 × 32 was used. The first half of the domain contained
substance 0, and the rest was occupied by phase 1. Periodic boundary conditions were
used in the x direction and bounded with non-slip boundaries. A pressure gradient was
imposed by applying a body force in the x direction. Figure 3 shows the evolution of
fingers for binary fluids with a viscosity ratio of 20 and a tip velocity of 0.05 simulated by
the colour gradient model. Halpern and Gaver [40] studied the fingering phenomenon in a
channel, by measuring the width of the fingers as a function of the capillary number Ca.
The simulated results with the colour gradient models were compared with reference [40],
as shown in Figure 4. A good agreement with the experimental data can be seen. These
numerical examples show that the fingering phenomena can be captured and properly
modelled in Taichi-LBM3D.

Figure 3. Capillary fingering evolution for viscosity ratio 20 at equal time intervals of 1000 time steps
from top to bottom with a surface tension of 0.00496. The tip velocity is 0.05.

Figure 4. Finger width as a function of capillary number. Our simulation results from the colour
gradient model are shown as stars in comparison with the results from Halpern [40] shown as a
solid line.

4. Engineering Applications

This section presents a list of numerical applications from inertia dominated flow to
viscous dominated flow and from single phase to two phase to illustrate the wide range of
Taichi-LBM3D capability.

Fluids 2022, 7, 270 8 of 12

4.1. Single Phase Flow

In this section, an inertia-dominated external flow problem with direct numerical
simulation is presented. The geometry is from a car and an urban building model. The 3D
CAD models were first converted into voxel-based images, by a binary matrix with 0 and 1
that represented pore nodes and solids, respectively. There are many voxelisation tools
available [41,42]. A uniform flow condition was imposed with a grid of 200× 600× 200
and 300× 400× 200 for these two cases. The streamlines were plotted in Figure 5. The
second order accurate halfway bounce-back boundary condition was used. There was no
turbulence model for all the simulations.

Figure 5. The snapshot of the external flow simulation and streamlines using Taichi-LBM3D with
computational domain 200× 600× 200 and 300× 400× 200. The fluid viscosity is 0.1 in the lattice
unit, and dt = 1 in the lattice unit.

4.2. Simulation of Single-Phase Flow in Porous Media with Sparse Data Storage

Here, we validated the Taichi-LBM3D solver for porous media application and com-
pared the permeability with the standard CPU implementation. A porous medium with a
Fontainebleau sandstone was extracted from the image of a cylindrical core [43,44]. Here,
we tested the Fontainebleau sandstone sample with a resolution of 7.5 (µm/ pixel) with
porosity 13%. The flow was driven only by a body force. The flow field of porous medium
flow is shown in Figure 6. The permeability of a porous medium can be calculated from
the empirical Darcy’s law. We reached the same permeability value with 789 (mD) with
the flow resolution 1313, with a sparse storage scheme, which significantly reduced the
memory requirement in proportion to the porosity.

Figure 6. The flow field of porous medium flow simulation using Taichi-LBM3D: left: streamline of
velocity field, right: initial geometry of porous structure. The domain is 1313 lattice units,and the
fluid viscosity is 0.1 in a lattice unit.

4.3. Two-Phase Flow with Sparse Data Storage for Porous Medium

A two-phase flow through the same Fontainebleau sandstone is presented in this case.
To simulate the drainage and imbibition processes, two buffer layers were added at the

Fluids 2022, 7, 270 9 of 12

inlet and outlet of the sample to allow fluid to be injected and flow out. The contact angle
of the solid surface was specified as ψs = 0.7; this value is the cosine of the desired contact
angle, and the value is between −1 and 1. The interfacial tension of the two phases was set
at CapA = 0.005.

Figure 7 shows the snapshots of the Bentheimer sandstone drainage process. Excluding
the inlet layer, which was saturated with oil initially, the sample was completely saturated
with water (wetting phase) (non-wetting phase). To drive the non-wetting fluid into the
sample, the uniform body force was added in the x-direction. Before entering the inlet,
the fluid that was moving out changed colour and entered a non-wetting phase. This
simulated a pure injection drainage process with a non-wetting phase. Given the high
capillary pressure, some small holes and throats were not filled with a non-wetting phase.

Figure 7. Snapshots of the drainage process simulation of Bentheimer sandstone. The non-wetting
phase (oil) is shown in blue, and the rock is shown in transparent green. Saturation increases from
left to right. The viscosity of invading fluid is 0.5 in a lattice unit and the viscosity of the defending
fluid is 0.1 in a lattice unit.

4.4. Performance Tests on Parallel Platforms

Taichi programming languages provide good performance on different platforms. The
adopted computing platforms were an NVIDIA A100, AMD Radeon Pro 5300 4 GB in Metal
backend, and 3.3 GHz 6-Core Intel Core i5 with 12 threads. A modified performance metric
for LBM codes is Million Lattice Updates per Second (MLUPs) considering the porosity for
flow over porous media. This metric is calculated by

MLUP =
nxnynz

Compute Time (s)× 106 × porosity (20)

where nx, ny, and nz are the dimensions of the simulations. CPUs and NVIDIA A100
support both double and single precision. The AMD Radeon Pro 5300 4 GB in metal
backend supports single precision only, so all the cases were shown in single precision
for comparison purposes. Three flow problems were run under mesh refinement from
single phase to multiphase. The details of computation speed are reported in Table 1.The
computation speeds reached over 900 MLUPs using an NVIDIA A100 with D3Q19 and
MRT. The performance was much better than the PyTorch implementation with 150 MLUPs
reported in [36]. Other popular LBM codes, e.g., the latest version of OpenLB [32], require
over 200 cores CPUs to reach the same speed. Palabos showed 24.8 MLUPS at 128 cores and
required over 4000 cores to reach 900 MLUPs [31]. The current version of implementation

Fluids 2022, 7, 270 10 of 12

shows that the NVIDIA A100 was 60 times faster than its CPU counterpart. Figure 8 shows
the overall comparison of performance of Taichi-LBM3D with other codes reported in the
literature. The implementation will require further optimisation. A well-optimised LBM
algorithm could reach over 1000 MLUPs using V100 GPU [31].

Table 1. Performance report for different hardware.

Test Cases NVIDIA A100 AMD Radeon Pro
5300

3.3 GHz 6-Core Intel
i5 12 Threads

Memory 40 GB 4 GB 64 GB

503 662 189 13.6
1003 870 192 13.5
1503 861 \ 13.5
2003 900 \ 13.5
2503 890 \ 13.5

1-phase 1003 449 110 12.1
1-phase 2003 550 115 14.5
1-phase 3003 550 \ 14.5
1-phase 4003 550 \ 14.5
2-phase 1003 250 70 6.9
2-phase 2003 283 \ 7.7
2-phase 2503 310 \ 7.7

Figure 8. Performance of Taichi-LBM3D under different hardware with other codes measured
in MLUPS.

5. Conclusions

In this work, we presented Taichi-LBM3D, a novel cross-platform 3D single-phase
and two-phase LBM solver on shared-memory many-core CPUs or GPUs implemented in
Taichi programming language. We were able to produce an LBM solver under 500 lines
of code for a complex two-phase problem with surface tension. Scientists and engineers
could easily prototype their LBM models and employ them on GPU-accelerated worksta-
tions. Numerical implementation was benchmarked with three well-known problems with
convergence studies. A wide range of applications from viscous and capillary to inertia
dominated flow was shown. In the last, the MLUPS were employed to measure the speed
of LBM under different platforms. The performance of the NVIDIA A100 GPU reached
over 900 MLUPS for single-phase flow and 500 for two-phase flow with surface tension. It
is approximately 60 times faster than the 3.3 GHz 6-Core Intel Core i5. The code is available
under MIT Licence on GitHub.

Fluids 2022, 7, 270 11 of 12

Author Contributions: Conceptualisation, J.Y. and L.Y.; methodology, J.Y., Y.X. and L.Y.; software,
J.Y., Y.X. and L.Y.; validation, J.Y., Y.X. and L.Y.; formal analysis, J.Y. and L.Y.; investigation, J.Y. and
L.Y.; writing, review, and editing, J.Y. and L.Y. All authors read and agreed to the published version
of the manuscript.

Funding: This research was funded by Supergen ORE ECR Fund and British Council.

Data Availability Statement: The Taichi-LBM3D is open source under MIT License and available in
the Github repository at https://github.com/yjhp1016/taichi_LBM3D (accessed on 1 February 2022).

Acknowledgments: The authors acknowledge the support from the Taichi developer community
and the Delta 2 HPC facility at Cranfield University. L. Yang acknowledges the support from EPSRC
Supergen ORE ECR Fund, “Parametric study for flapping foil system for harnessing wave energy”.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CPU Central processing unit
GPU Graphics processing unit
CFD Computational fluid dynamics
BGK Bhatnagar–Gross–Krook
OpenGL Open Graphics Library
CUDA Compute unified device architecture
LBM Lattice Boltzmann method
HPC High performance computing
MRT Multiple-relaxation-time
MLUPS Million lattice updates per second
D3Q19 Three-dimensional lattice stencil with 19 discrete velocity directions in each node

References
1. Higuera, F.J.; Jiménez, J. Boltzmann approach to lattice gas simulations. EPL Europhys. Lett. 1989, 9, 663. [CrossRef]
2. McNamara, G.R.; Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 1988, 61, 2332.

[CrossRef] [PubMed]
3. Benzi, R.; Succi, S.; Vergassola, M. The lattice Boltzmann equation: Theory and applications. Phys. Rep. 1992, 222, 145–197.

[CrossRef]
4. Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [CrossRef]
5. Frisch, U.; Hasslacher, B.; Pomeau, Y. Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 1986, 56, 1505.

[CrossRef]
6. Chen, H.; Chen, S.; Matthaeus, W.H. Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys. Rev.

A 1992, 45, R5339. [CrossRef]
7. Ladd, A.J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation.

J. Fluid Mech. 1994, 271, 285–309. [CrossRef]
8. d’Humières, D.; Lallemand, P.; Frisch, U. Lattice gas models for 3D hydrodynamics. EPL Europhys. Lett. 1986, 2, 291. [CrossRef]
9. Higuera, F.; Succi, S.; Benzi, R. Lattice gas dynamics with enhanced collisions. EPL Europhys. Lett. 1989, 9, 345. [CrossRef]
10. Qian, Y.H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier–Stokes equation. EPL Europhys. Lett. 1992, 17, 479.

[CrossRef]
11. Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and

neutral one-component systems. Phys. Rev. 1954, 94, 511. [CrossRef]
12. d’Humières, D. Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. Math.

Phys. Eng. Sci. 2002, 360, 437–451. [CrossRef] [PubMed]
13. Lallemand, P.; Luo, L.S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and

stability. Phys. Rev. E 2000, 61, 6546. [CrossRef] [PubMed]
14. Gunstensen, A.K.; Rothman, D.H.; Zaleski, S.; Zanetti, G. Lattice Boltzmann model of immiscible fluids. Phys. Rev. A

1991, 43, 4320. [CrossRef]
15. Grunau, D.; Chen, S.; Eggert, K. A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids A Fluid Dyn. 1993, 5, 2557–2562.

[CrossRef]
16. Lishchuk, S.; Care, C.; Halliday, I. Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents. Phys. Rev.

E 2003, 67, 036701. [CrossRef]

https://github.com/yjhp1016/taichi_LBM3D
http://doi.org/10.1209/0295-5075/9/7/009
http://dx.doi.org/10.1103/PhysRevLett.61.2332
http://www.ncbi.nlm.nih.gov/pubmed/10039085
http://dx.doi.org/10.1016/0370-1573(92)90090-M
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1103/PhysRevLett.56.1505
http://dx.doi.org/10.1103/PhysRevA.45.R5339
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1209/0295-5075/2/4/006
http://dx.doi.org/10.1209/0295-5075/9/4/008
http://dx.doi.org/10.1209/0295-5075/17/6/001
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1098/rsta.2001.0955
http://www.ncbi.nlm.nih.gov/pubmed/16214687
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://www.ncbi.nlm.nih.gov/pubmed/11088335
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://dx.doi.org/10.1063/1.858769
http://dx.doi.org/10.1103/PhysRevE.67.036701

Fluids 2022, 7, 270 12 of 12

17. Latva-Kokko, M.; Rothman, D.H. Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids. Phys.
Rev. E 2005, 71, 056702. [CrossRef]

18. Ahrenholz, B.; Tölke, J.; Lehmann, P.; Peters, A.; Kaestner, A.; Krafczyk, M.; Durner, W. Prediction of capillary hysteresis in
a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network
model. Adv. Water Resour. 2008, 31, 1151–1173. [CrossRef]

19. Swift, M.R.; Osborn, W.; Yeomans, J. Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 1995, 75, 830. [CrossRef]
20. Swift, M.R.; Orlandini, E.; Osborn, W.; Yeomans, J. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys.

Rev. E 1996, 54, 5041. [CrossRef]
21. Inamuro, T.; Konishi, N.; Ogino, F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using

free-energy approach. Comput. Phys. Commun. 2000, 129, 32–45. [CrossRef]
22. Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E

1993, 47, 1815. [CrossRef] [PubMed]
23. Shan, X.; Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E

1994, 49, 2941. [CrossRef] [PubMed]
24. Sbragaglia, M.; Benzi, R.; Biferale, L.; Succi, S.; Sugiyama, K.; Toschi, F. Generalized lattice Boltzmann method with multirange

pseudopotential. Phys. Rev. E 2007, 75, 026702. [CrossRef]
25. Li, Q.; Luo, K.; Li, X. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential

model. Phys. Rev. E 2013, 87, 053301. [CrossRef]
26. He, X.; Chen, S.; Zhang, R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of

Rayleigh–Taylor instability. J. Comput. Phys. 1999, 152, 642–663. [CrossRef]
27. Inamuro, T.; Ogata, T.; Tajima, S.; Konishi, N. A lattice Boltzmann method for incompressible two-phase flows with large density

differences. J. Comput. Phys. 2004, 198, 628–644. [CrossRef]
28. Li, Q.; Luo, K.; Gao, Y.; He, Y. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Phys.

Rev. E 2012, 85, 026704. [CrossRef]
29. Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method; Springer: Berlin/Hei-

delberg, Germany, 2017; Volume 10, pp. 4–15.
30. Succi, S. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond; Oxford University Press: Oxford, UK, 2001.
31. Latt, J.; Malaspinas, O.; Kontaxakis, D.; Parmigiani, A.; Lagrava, D.; Brogi, F.; Belgacem, M.B.; Thorimbert, Y.; Leclaire, S.;

Li, S.; et al. Palabos: Parallel lattice Boltzmann solver. Comput. Math. Appl. 2021, 81, 334–350. [CrossRef]
32. Krause, M.J.; Kummerländer, A.; Avis, S.J.; Kusumaatmaja, H.; Dapelo, D.; Klemens, F.; Gaedtke, M.; Hafen, N.; Mink, A.;

Trunk, R.; et al. OpenLB—Open source lattice Boltzmann code. Comput. Math. Appl. 2021, 81, 258–288. [CrossRef]
33. Feichtinger, C.; Götz, J.; Donath, S.; Iglberger, K.; Rüde, U. WaLBerla: Exploiting massively parallel systems for lattice Boltzmann

simulations. In Parallel Computing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 241–260.
34. Huang, C.; Shi, B.; Guo, Z.; Chai, Z. Multi-GPU based lattice Boltzmann method for hemodynamic simulation in patient-specific

cerebral aneurysm. Commun. Comput. Phys. 2015, 17, 960–974. [CrossRef]
35. Hu, Y.; Li, T.M.; Anderson, L.; Ragan-Kelley, J.; Durand, F. Taichi: A language for high-performance computation on spatially

sparse data structures ACM Trans. Graph. 2019, 38, 1–16. [CrossRef]
36. Bedrunka, M.C.; Wilde, D.; Kliemank, M.; Reith, D.; Foysi, H.; Krämer, A. Lettuce: Pytorch-based lattice boltzmann framework. In

Proceedings of the International Conference on High Performance Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 40–55.
37. Hu, Y.; Anderson, L.; Li, T.M.; Sun, Q.; Carr, N.; Ragan-Kelley, J.; Durand, F. Difftaichi: Differentiable programming for physical

simulation. arXiv 2019, arXiv:1910.00935.
38. Yang, J.Y.; Yang, S.C.; Chen, Y.N.; Hsu, C.A. Implicit weighted ENO schemes for the three-dimensional incompressible Navier–

Stokes equations. J. Comput. Phys. 1998, 146, 464–487. [CrossRef]
39. Yang, L.; Badia, S.; Codina, R. A pseudo-compressible variational multiscale solver for turbulent incompressible flows. Comput.

Mech. 2016, 58, 1051–1069. [CrossRef]
40. Halpern, D.; Gaver, D., III. Boundary element analysis of the time-dependent motion of a semi-infinite bubble in a channel. J.

Comput. Phys. 1994, 115, 366–375. [CrossRef]
41. Bacciaglia, A.; Ceruti, A.; Liverani, A. A systematic review of voxelization method in additive manufacturing. Mech. Ind.

2019, 20, 630. [CrossRef]
42. Thorpe, D.B. Cad2Vox. 2022. Available online: https://github.com/bjthorpe/Cad2vox (accessed on 1 June 2022).
43. Yang, L.; Yang, J.; Boek, E.; Sakai, M.; Pain, C. Image-based simulations of absolute permeability with massively parallel

pseudo-compressible stabilised finite element solver. Comput. Geosci. 2019, 23, 881–893. [CrossRef]
44. Nillama, L.B.A.; Yang, J.; Yang, L. An explicit stabilised finite element method for Navier–Stokes-Brinkman equations. J. Comput.

Phys. 2022, 457, 111033. [CrossRef]

http://dx.doi.org/10.1103/PhysRevE.71.056702
http://dx.doi.org/10.1016/j.advwatres.2008.03.009
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1016/S0010-4655(00)00090-4
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://www.ncbi.nlm.nih.gov/pubmed/9960203
http://dx.doi.org/10.1103/PhysRevE.49.2941
http://www.ncbi.nlm.nih.gov/pubmed/9961560
http://dx.doi.org/10.1103/PhysRevE.75.026702
http://dx.doi.org/10.1103/PhysRevE.87.053301
http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1016/j.jcp.2004.01.019
http://dx.doi.org/10.1103/PhysRevE.85.026704
http://dx.doi.org/10.1016/j.camwa.2020.03.022
http://dx.doi.org/10.1016/j.camwa.2020.04.033
http://dx.doi.org/10.4208/cicp.2014.m342
http://dx.doi.org/10.1145/3355089.3356506
http://dx.doi.org/10.1006/jcph.1998.6062
http://dx.doi.org/10.1007/s00466-016-1332-9
http://dx.doi.org/10.1006/jcph.1994.1202
http://dx.doi.org/10.1051/meca/2019058
https://github.com/bjthorpe/Cad2vox
http://dx.doi.org/10.1007/s10596-019-09837-4
http://dx.doi.org/10.1016/j.jcp.2022.111033

	Introduction
	Algorithm
	Numerical Benchmark
	Stokes Flow
	Lid-Driven Flow
	Capillary Fingering

	Engineering Applications
	Single Phase Flow
	Simulation of Single-Phase Flow in Porous Media with Sparse Data Storage
	Two-Phase Flow with Sparse Data Storage for Porous Medium
	Performance Tests on Parallel Platforms

	Conclusions
	References

