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In 2017 the first field-based map of the central Congo Basin peatlands revealed 1 

them to be the world’s largest tropical peatland complex. However, peat was 2 

only sampled in largely rain-fed interfluvial basins in northern Republic of the 3 

Congo. Here we present the first extensive field surveys of peat in the 4 

Democratic Republic of the Congo, which contains two-thirds of the estimated 5 

peatland area, including from previously undocumented river-influenced 6 

settings. We use data from both countries to compute the first spatial models of 7 

peat thickness (mean 1.7 ± 0.9 m) and peat carbon density (mean 1,712 ± 634 Mg 8 

C ha-1) for the central Congo Basin peatlands. We show that the peatland 9 

complex covers 167,600 km2, 15% more than previously estimated; and that 29.0 10 

Pg C is stored belowground in peat across the region (95% confidence interval, 11 

26.3-32.2 Pg C). This is similar to the 2017 estimate, but with the lower 12 

confidence interval having increased from just 6 Pg C, our analysis gives high 13 

confidence of globally significant carbon stocks – approximately one-third of 14 

the world’s tropical peat carbon – in the central Congo Basin. Only 8% of this 15 

peat carbon lies within nationally protected areas, suggesting vulnerability to 16 

future land-use change.  17 

 18 

Peatlands cover just 3% of Earth’s land surface1, yet store an estimated 600 Pg of 19 

carbon (C)2,3, approximately one-third of Earth’s soil carbon4. While most peatlands 20 

are located in the temperate and boreal zones1, recent research is revealing the 21 

existence of tropical peatlands with high carbon densities1,2,5,6. Tropical peatlands are 22 

vulnerable to drainage and drying, with subsequent fires resulting in large carbon 23 

emissions from degraded peatlands, particularly in Southeast Asia3,6–8.  24 



4 

 

In the central depression of the Congo basin (the ‘Cuvette Centrale’) the only field-1 

verified peatland map to date reported that peat underlies 145,500 km2 of swamp 2 

forests, making this the world’s largest tropical peatland complex9. The field data used 3 

in this estimate are from northern Republic of the Congo (ROC), yet two-thirds of the 4 

central Congo Basin peatlands are predicted to be found in neighbouring Democratic 5 

Republic of the Congo (DRC)9, sometimes hundreds of kilometres from existing field 6 

data (Fig. 1a). Similarly, peat carbon stocks are estimated to be 30.6 Pg C, but the 7 

lower confidence interval is just 6 Pg C (ref. 9). Thus, it is unclear if the central Congo 8 

peatlands are truly as extensive or deep as suggested, and it is unclear whether they 9 

store globally significant quantities of carbon. 10 

  11 

Uncertainties are further compounded by a limited understanding of the processes 12 

that determine peat formation in central Congo, particularly hydrology9,10. Peat has 13 

only been systematically documented in interfluvial basins in ROC9,11, where an 14 

absence of annual flood waves9, modest domes12, and remotely-sensed water-table 15 

depths13 all suggest peatlands are largely rain-fed and receive little river water input. 16 

However, peat is also predicted in other hydro-geomorphological settings9, including 17 

what appear to be river-influenced regions close to the Congo River mainstem and 18 

dendritic-patterned valley-floors along some of its left-bank tributaries9 (Fig. 1a). These 19 

areas of swamp forest are likely seasonally inundated14 to depths up to 1.5 m during 20 

the main wet season15, suggesting seasonal river flooding and/or upland runoff as key 21 

sources of water. Whether peat accumulates under these river-influenced conditions 22 

is currently unknown.   23 
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Here, we present the first in situ data on peat presence, thickness, and carbon density 1 

(mass per unit area) from the central Congo Basin in DRC. We specifically investigated 2 

the river-influenced swamp forests along the Congo River and its Ruki, Busira and 3 

Ikelemba tributaries that contrast with previous data collection from interfluvial basins9 4 

(Fig. 1a). Every 250 m along 18 transects, we recorded vegetation characteristics, 5 

peat presence and thickness. We targeted a first group of ten transects in locations 6 

highly likely to contain peat, to help test hypotheses (detailed in Supplementary Table 7 

1) about the role of vegetation, surface wetness, nutrient status, and topography in 8 

peat accumulation. To improve mapping capabilities, we sampled a second group of 9 

eight transects specifically to test preliminary maps that gave conflicting results or 10 

suspected false predictions of peat presence (detailed in Supplementary Table 1). We 11 

combine these new field measurements from DRC with previous transect records in 12 

ROC using the same protocols9 and other ground-truth data (Supplementary Table 2) 13 

to produce (i) a second-generation map of peatland extent, (ii) a first-generation map 14 

of peat thickness, and (iii) a first-generation map of belowground peat carbon density 15 

for the central Congo Basin. These maps enable us to compute the first well-16 

constrained estimate of total belowground peat carbon stocks in the world’s largest 17 

tropical peatland complex. 18 

 19 

Mapping peatland extent 20 

We found peat along all ten hypothesis–testing transects in DRC that were predicted 21 

to be peatlands9. Our new field data shows that extensive carbon-rich peatlands are 22 

present in the forested wetlands of the DRC’s Cuvette Centrale, including in 23 

geomorphologically distinct river-influenced regions predicted as peatlands by Dargie 24 

et al.9. 25 
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 1 

Figure 1 | Maps of field sampling locations (a), peat swamp forest predictions from this study (b), and a comparison of our 2 

predictions with a previous map9 (c). a. Points indicate transects, coloured by region. The Congo and Ruki River regional groups 3 

appear to be in largely river-influenced peatlands, predominating in DRC, sampled for this study. The Likouala-aux-Herbes and 4 

Ubangi River regional groups are in largely rain-fed interfluvial basins, predominating in ROC, from Ref. 9. The base map, in green, 5 

shows the first-generation peat swamp forest map9. Inset: Location of central Congo Basin peatlands. b. Predicted landcover classes 6 

across the central Congo Basin as the most likely class per pixel (>50%), using a legend identical to Ref. 9 to facilitate comparison. 7 

c. Peat swamp forest predictions from this study and Ref. 9 using the most likely class per pixel. White indicates peat in both studies; 8 

red indicates peat in this study only; blue indicates peat only in Ref. 9. Open water is dark grey. In all panels, national boundaries are 9 

black lines; sub-national boundaries are grey lines; non-peat forming forest includes both terra firme and non-peat forming seasonally 10 

inundated forests.11 
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The best-performing algorithm (Maximum Likelihood classifier, based on its ability to 1 

most accurately predict in regions with no training data; see Methods) was run 1,000 2 

times on nine remotely-sensed datasets, using a random two-thirds of 1,736 ground-3 

truth datapoints each time (ED Fig. 1), giving a median total peatland area for the 4 

central Congo Basin of 167,600 km2 (95% CI, 159,400-175,100 km2). This is 15% 5 

higher than the previous estimate9. We found that 90% of all pixels that are predicted 6 

as peat in the median map result were predicted as peat in at least 950 out of 1,000 7 

runs (i.e., with ≥ 95% probability, either as hardwood- or palm-dominated peat swamp 8 

forest; Fig. 1b), showing that peat predictions are consistent across model runs and 9 

thus are robust. Overall model performance, using the Matthews correlation coefficient 10 

is 78.0% (95% CI, 74.2-81.6%).  11 

 12 

Comparing our field results with the original first-generation map9 shows that of the 13 

382 locations assessed across DRC, 77.7% were correctly classified as either being 14 

peat swamp or not by the first-generation map9. Comparing our new map with the first-15 

generation map9 shows large areas of agreement (white in Fig. 1c). However, we 16 

predict areas of peat which were previously not mapped9, particularly around Lake 17 

Mai-Ndombe and the Ngiri and upper Congo/Lulonga Rivers in DRC (red in Fig. 1c). 18 

In addition, small areas of previously predicted peat deposits9 are no longer predicted 19 

by our new model, particularly along the Sangha and Likouala-Mossaka Rivers in ROC 20 

(blue in Fig. 1c). These areas of difference are likely areas of high uncertainty and 21 

should therefore be priorities for future fieldwork. 22 

 23 

More formally, we compare our new second-generation map with the original map9 24 

using balanced accuracy (BA), which is similar to Matthews correlation coefficient but 25 
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better suited for comparison across different datasets16. For our new map, median BA 1 

is 91.9% (95% CI, 90.2-93.6%), compared with 89.8% (86.0-93.4%) for the first-2 

generation map9. The substantially smaller BA interval indicates improved confidence 3 

in our new peatland map, despite only a small increase in median BA. This is likely 4 

due to the effect of our larger sample size being partly offset by an increase in its 5 

spatial extent and ecological diversity, particularly data from the Congo River region, 6 

where all algorithms that we tested are underperforming (Supplementary Table 3). 7 

Overall, our in situ data from DRC, including from river-influenced settings that are 8 

being reported for the first time, confirm the central Congo Basin peatlands as the 9 

world’s largest tropical peatland complex, and that DRC and ROC are the second and 10 

third most important countries in the tropics for peatland area after Indonesia5, 11 

respectively (ED Table 1). 12 

 13 

Mapping peat thickness and carbon density 14 

We measured peat thickness at 238 locations in DRC, finding a mean (± s.d.) 15 

thickness of 2.4 (± 1.6) m and a maximum of 6.4 m, showing that river-influenced 16 

peatlands can attain similar peat thickness as rain-fed interfluvial basins reported in 17 

ROC9 (Table 1). There is no uniform increase in peat thickness with distance from the 18 

peatland margin (ED Fig. 3), with linear regression being only a modest fit (R2 = 41.0%; 19 

RMSE = 1.21 m). Thus, we developed a Random Forest (RF) regression to estimate 20 

peat thickness, using 463 thickness measurements across both countries. Our final 21 

RF model includes four predictors after variable selection (see Methods): distance 22 

from the peatland margin, precipitation seasonality, climatic water balance 23 

(precipitation minus potential evapotranspiration), and distance from the nearest 24 

drainage point (R2 = 93.4%; RMSE = 0.42 m). The RF model outperforms multiple 25 
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linear regression with interactions using the same four variables (adj-R2 = 73.6%, 1 

RMSE = 0.80 m; ED Fig. 4). 2 

 3 

Spatially, we predict thick peat deposits in the centres of the largest interfluvial basins 4 

(far from peatland margins), and in smaller, river-influenced valley-floor peatlands 5 

along the Ruki/Busira Rivers (Fig. 2a). The river valley’s thick deposits are most likely 6 

driven by greater climatic water balance and lower precipitation seasonality in the 7 

eastern part of the Cuvette Centrale region (ED Fig. 5), plus potentially greater water 8 

inputs from nearby higher ground, which offsets the shorter distances from peatland 9 

margins. Our modelled results are consistent with our field data, as the two deepest 10 

peat cores are from the interfluvial Centre transect in ROC (5.9 m), and the river-11 

influenced Bondamba transect on the Busira River in DRC (6.4 m). Overall, mean (± 12 

s.d.) modelled peat thickness (1.7 ± 0.9 m) is lower than our field measurements (2.4 13 

± 1.5 m; Table 1), as expected given our linear transects, which oversample deeper 14 

peat at the centre relative to the periphery in approximately ovoid peatlands. Areas of 15 

high uncertainty in peat thickness occur where distance from the margin is uncertain 16 

(Fig. 2b). Our results contrast strongly with an “expert system approach” that assigned 17 

peat thickness values based on hydrological terrain relief alone and estimated a 18 

thickness of 6.5 ± 3.5 m for the central Congo Basin peatlands17, compared to our 19 

field-derived estimate of 1.7 ± 0.9 m (Fig. 2a). 20 

21 

22 
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 1 

Figure 2 | Maps of peat thickness and uncertainty across the central Congo Basin. a. Median prediction of peat thickness (m) 2 

from 100 Random Forest regression models with four predictors: distance from the peatland margin, precipitation seasonality, climatic 3 

water balance, and distance from the nearest drainage point. b. Relative uncertainty (%) of the peat thickness estimate, expressed 4 

as ± half the width of the 95% confidence interval as percentage of the median. Black lines represent national boundaries; grey lines 5 

represent sub-national administrative boundaries. 6 
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After distance from the margin, precipitation seasonality and climatic water balance 1 

are the most important predictors of peat thickness in the RF model, reflecting the 2 

relative importance of rainfall inputs in peat accumulation in central Congo. This 3 

appears to differ from smaller-scale assessments in temperate18 or other tropical 4 

peatlands19, where surface topography (elevation and slope) are primary predictors of 5 

peat thickness. However, this is potentially merely an artefact of the spatial scale of 6 

the studies, as climate only varies over large scales. Alternatively, the relatively low 7 

rainfall in the central Congo Basin (~1700 mm yr-1), compared to other tropical 8 

peatland regions (e.g., ~2,500-3,000 mm yr-1 in Northwest Amazonia and Southeast 9 

Asia)9,20, may mean that peat thickness is more strongly related to climate in central 10 

Congo, as it implies greater exposure to (seasonal) drought conditions that may cross 11 

thresholds that negatively impact peat accumulation rates. 12 

 13 

Peat bulk density measured across the central Congo Basin is 0.17 ± 0.06 g cm-3 14 

(mean ± s.d.; n = 80 cores), and mean carbon concentration is 55.7 ± 3.2 % (n = 80; 15 

56.6 [± 4.5] % for the 22 well-sampled cores). While peat bulk density is significantly 16 

lower in largely river-influenced sites than in rain-fed interfluvial basins (P < 0.01), no 17 

significant difference between these peatland types is found for either peat carbon 18 

concentration or carbon density (mass per unit area; Table 1).  19 

 20 

We used the peat thickness, bulk density, and carbon concentration measurements to 21 

construct a linear peat thickness-carbon density regression (ED Fig. 6). We applied 22 

this regression model to our peat thickness map to spatially model carbon stocks per 23 

unit area (Fig. 3a). Modelled belowground peat carbon density for the central Congo 24 

Basin is 1,712 ± 634 Mg C ha-1, similar to the field-measured mean of 1,741 ± 1,186 25 
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Mg C ha-1 (mean ± s.d., n = 80; Table 1). This carbon density is approximately nine 1 

times the mean carbon stored in aboveground live tree biomass of African tropical 2 

moist forests (~198 Mg C ha-1)21. Spatial patterns of peat carbon density (Fig. 3a) and 3 

uncertainty (Fig. 3b) follow similar patterns as peat thickness (Figs. 2a and 2b).  4 

 5 

Estimating basin-wide peat carbon stocks 6 

Median estimated total peat carbon stock in the central Congo Basin is 29.0 Pg (95% 7 

CI, 26.3-32.2; ED Fig. 7a), based on bootstrapping the area estimate and peat 8 

thickness-carbon density regression. This is similar to the median 30.6 Pg C reported 9 

by Dargie et al.9, but their lower 95% confidence interval was 6.3 Pg, which our study 10 

increases to 26.3 Pg, because our larger dataset allows a spatial modelling approach 11 

so that we can sum carbon density across all peat pixels. Therefore, the possibility of 12 

low values of carbon storage in the central Congo peatlands can now confidently be 13 

discarded.  14 

 15 

Our new results show that the central Congo Basin peatlands are a globally important 16 

carbon stock, harbouring approximately one-third of all the carbon stored in the world’s 17 

tropical peatlands5,9. About two-thirds of this peat carbon is in DRC (19.6 Pg C; 95% 18 

CI, 17.9-21.9), and one-third in ROC (9.3 Pg C; 95% CI, 8.4-10.2; ED Table 1), which 19 

is equivalent to approximately 82% and 238% of each country’s aboveground forest 20 

carbon stock, respectively22. The high peat carbon stocks are found across several 21 

administrative regions in both countries, with the largest stocks in DRC’s Équateur 22 

province (ED Table 1). Sensitivity analysis shows that uncertainty in total peat carbon 23 

stock is now mostly driven by uncertainty in peatland area (ED Fig. 7b).  24 

25 
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 1 

Figure 3 | Maps of belowground peat carbon density and uncertainty across the central Congo Basin. a. Median prediction of 2 

belowground peat carbon density (Mg C ha-1), obtained from applying 20 normally distributed thickness-carbon density regressions 3 

(ED Fig. 6) to 100 peat thickness estimates (Fig. 2a), generating 2,000 carbon density estimates. b. Relative uncertainty (%) of the 4 

carbon density estimate, expressed as ± half the width of the 95% confidence interval as percentage of the median. Black lines 5 

represent national boundaries; grey lines represent sub-national administrative boundaries.  6 
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Because the central Congo peatlands are relatively undisturbed23,24, our new maps of 1 

peatland extent, thickness and carbon density form a baseline description for the 2 

decade 2000-2010, given the remotely-sensed data used. Today, the peatlands of the 3 

central Congo Basin are threatened by hydrocarbon exploration, logging, palm oil 4 

plantations, hydroelectric dams and climate change23,25. While the peatlands are 5 

largely within a UN Ramsar Convention transboundary wetland designation, we 6 

estimate that only 2.4 Pg C in peat, just 8% of total stocks, currently lies within formal 7 

national-level protected areas (ED Fig. 8; ED Table 2). Meanwhile, logging, mining, or 8 

palm oil concessions together overlie 7.4 Pg C in peat, or 26% of total stocks (ED Fig. 9 

8; ED Table 2), while hydrocarbon concessions cover almost the entire peatland 10 

complex23,25. 11 

 12 

Keeping the central Congo Basin peatlands wet is vital to prevent peat carbon being 13 

released to the atmosphere. The identification of extensive river-influenced peatlands 14 

suggests that there is more than one geomorphological setting where peat is found in 15 

the central Congo Basin. Further work is required to understand both the sources and 16 

flows of water in these river-influenced peatlands, specifically the relative contributions 17 

of water from precipitation, riverbank overflow, and run-off from higher ground to peat 18 

formation and maintenance. Given the current areas of formal protection of peatlands 19 

are largely centred around interfluvial basins, we suggest that additional protective 20 

measures will be needed to safeguard the newly identified river-influenced peatlands 21 

of the central Congo Basin. Keeping the central Congo peatlands free from 22 

disturbance would also help protect the rich biodiversity, including forest elephants, 23 

lowland gorillas, chimpanzees and bonobos23,26,27, that form part of this globally 24 

important, but threatened ecosystem.25 
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Table 1 | Field-measured and spatially modelled estimates of peat thickness, bulk density, carbon concentration, and 1 

carbon density in the central Congo Basin peatlands. 2 

 Field measurements  ⃰  Spatial model † 

Peat thickness  

(m) # 

Peat bulk density  

(g cm-3) § 

Peat carbon concentration  

(%) ‡ 

Peat carbon density  

(Mg C ha-1) ‡  
Peat thickness  

(m) ¶ 

Peat carbon density  

(Mg C ha-1) $ 

Mean  

± s.d. 

Median 

 

Max Mean  

± s.d. 

Median 

 

Min Max Mean  

± s.d. 

Median 

 

Min Max Mean  

± s.d. 

Median Max Mean  

± s.d. 

Median Max Mean  

± s.d. 

Median 

 

Max 

Interfluvial basin 
peatlands (ROC) 

2.4  

(1.5) 

2.1 5.9 

 

0.19 

(0.06) 

0.19 0.10 0.31 56.2 

(2.7) 

56.5 49.6 61.8 1,619 

(810) 

1,640 3,183 1.7  

(0.9) 

1.3 5.4 1,653 

(687) 

1,402 3,852 

River-influenced 

peatlands (DRC) 

2.4 

(1.6) 

2.0 6.4 

 

0.15 

(0.07) 

0.15 0.02 0.33 55.0 

(3.6) 

55.8 42.0 59.2 1,883  

(1,511) 

1,762 5,162 1.8  

(0.8) 

1.6  5.6 1,740 

(604) 

1,697 3,970 

Central Congo  

Basin peatlands 

(ROC + DRC) 

2.4 

(1.5) 

2.0 6.4 0.17 

(0.06) 

0.17 0.02 0.33 55.7 

(3.2) 

56.3 42.0 61.8 1,741 

(1,186) 

1,700 5,162 1.7 

(0.9) 

1.6  5.6 1,712  

(634) 

1,661  3,970 

* Field measurement statistics include either the Likouala-aux-Herbes and Ubangi River groups of transects only (‘Interfluvial 3 

basin peatlands’), or the Congo and Ruki River groups of transects only (‘River-influenced peatlands’), or all groups (‘Central 4 

Congo Basin peatlands’).  5 

† Spatial model statistics include all 50 m resolution pixels mapped in either Republic of the Congo only (ROC), Democratic 6 

Republic of the Congo only (DRC), or both countries (ROC + DRC).  7 

# In situ measurements (laboratory and corrected pole-methods) from 213, 238 and 451 locations in ROC (ref. 9), DRC (this 8 

study) and combined, respectively. Peat is ≥ 0.3 m thickness and ≥ 65% organic matter. 9 
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§ n = 43, 37, and 80 well-sampled cores in ROC (ref. 9), DRC (this study) and combined, respectively, based on 0.1-m thick 1 

samples. 2 

‡ n = 43, 37, and 80 well-sampled and interpolated cores in ROC (ref. 9), DRC (this study) and combined, respectively, based 3 

on 0.1-m thick samples.  4 

¶ Median estimate from 100 thickness estimates per 50 m resolution pixel across the median extent map, with thickness 5 

estimated from 100 RF regression models trained with four predictor variables, each with a randomly selected Maximum 6 

Likelihood peat probability threshold to derive distance from the peatland margin. 7 

$ Median estimate from 2,000 carbon density estimates per 50 m resolution pixel across the median peat area map, with 8 

carbon density estimates derived from 20 normally distributed thickness-carbon regressions (ED Fig. 6) applied to 100 peat 9 

thickness estimates.   10 
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METHODS 1 

 2 

Field data collection 3 

Fieldwork was conducted in DRC between January 2018 and March 2020. Ten 4 

transects (4-11 km long) were installed, identical to Dargie et al.’s approach9, in 5 

locations that were highly likely to be peatland. These were selected to help test 6 

hypotheses about the role of vegetation, surface wetness, nutrient status, and 7 

topography in peat accumulation (Fig. 1a; Supplementary Table 1). A further eight 8 

transects (0.5-3 km long) were installed to assess our peat mapping capabilities (Fig. 9 

1a; Supplementary Table 1). 10 

 11 

Every 250 m along each transect, landcover was classified as one of six classes: 12 

water, savanna, terra firme forest, non-peat forming seasonally inundated forest, 13 

hardwood-dominated peat swamp forests, or palm-dominated peat swamp forests. 14 

Peat swamp forest was classified as palm-dominated when > 50% of the canopy, 15 

estimated by eye, were palms (commonly Raphia laurentii or Raphia sese). In addition, 16 

several ground-truth points were collected at locations in the vicinity of each transect 17 

from the clearly identifiable landcover classes water, savanna, or terra firme forest. 18 

 19 

Peat presence/absence was recorded every 250 m along all transects, and peat 20 

thickness (if present) was measured by inserting metal poles into the ground until the 21 

poles were prevented from going any further by the underlying mineral, identical to 22 

Dargie et al.’s pole-method9. Additionally, a core of the full peat profile was extracted 23 

every kilometre along the ten hypothesis-testing transects, if peat was present, with a 24 
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Russian-type corer (52-mm stainless steel Eijkelkamp model); these 64 cores were 1 

sealed in plastic for laboratory analysis.  2 

 3 

Peat thickness laboratory measurements 4 

Peat was defined as having an organic matter (OM) content of ≥ 65% and a thickness 5 

of ≥ 0.3 m (sensu Dargie et al.9). Therefore, down-core OM content of all 64 cores was 6 

analysed to measure peat thickness. The organic matter content of each 0.1-m thick 7 

peat sample was estimated via Loss-On-Ignition (LOI), whereby samples were heated 8 

at 550°C for 4h. The mass fraction lost after heating was used as an estimate of total 9 

OM content (% of mass). Peat thickness was defined as the deepest 0.1-m with OM 10 

≥ 65%, after which there is a transition to mineral soil. Samples below this depth were 11 

excluded from further analysis. Rare mineral intrusions into the peat layer above this 12 

depth, where OM < 65% for a sample within the peat column, were retained for further 13 

analysis. In total, 60 out of 64 collected cores had LOI-verified peat thickness ≥ 0.3 m.  14 

 15 

The pole-method used to estimate peat thickness in the field was calibrated against 16 

LOI-verified measurements, by fitting a linear regression model between all LOI-17 

verified and pole-method peat thickness measurements sampled at the same location 18 

(93 sites across ROC and DRC, including 37 from ref. 9). Three measurements from 19 

DRC with a Cook’s distance > 4x the mean Cook’s distance were excluded as 20 

influential outliers. Mean pole-method offset was significantly higher along the DRC 21 

transects (0.94 m) than along those in ROC (0.48 m; P < 0.001), due to the presence 22 

of softer alluvium substrate in river-influenced sites in DRC. We therefore added this 23 

grouping as a categorical variable to the regression. The resulting model (adj-R2 = 24 

0.95, P < 0.001; ED Fig. 2) was used to correct all pole-method measurements in each 25 
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group for which no LOI-verified thickness was available: corrected peat thickness = -1 

0.1760 + 0.8626 x (pole-method thickness) – 0.3284 x (country), with country dummy 2 

coded as: ROC (0) and DRC (1). 3 

 4 

Carbon density estimates 5 

To calculate carbon density (mass per unit area), estimates of carbon storage in each 6 

0.1-m thick peat sample (thickness × bulk density × carbon concentration) were 7 

summed to provide an estimate of total carbon density per core (in Mg C ha−1), 8 

identical to Dargie et al.9. We estimated carbon density for 80 peat cores (OM ≥ 65%, 9 

thickness ≥ 0.3 m), located every other kilometre along 18 transects, including 37 10 

cores from the ten transects used for hypothesis testing in DRC, and 43 cores from 11 

transects in ROC9. 12 

 13 

Peat thickness of the 80 cores was obtained by laboratory LOI. To estimate peat bulk 14 

density, every other 0.1-m down-core, samples of a known peat volume were weighed 15 

after being dried for 24h at 105°C (n = 906). Bulk density (in g cm−3) was then 16 

calculated by dividing the dry sample mass (in g) by the volume of the sample taken 17 

from the peat corer dimensions (in cm3). Within each core, linear interpolation was 18 

used to estimate bulk density for the alternate 0.1m-thick samples of the core that were 19 

not measured.  20 

 21 

For total carbon concentration (%), only the deepest core per transect, plus additional 22 

deep cores from the Lokolama transect (1) in DRC and Ekolongouma transect (3) in 23 

ROC (22 in total, 11 from DRC and 11 from ROC9) were sampled down-core. Every 24 

other 0.1-m thick sample was measured using an elemental analyser (Elementar Vario 25 
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MICRO Cube with thermal conductivity detection for all cores, except those from 1 

Boboka, Lobaka and Ipombo transects, which were analysed using Sercon ANCA 2 

GSL with isotope-ratio mass spectrometer detection, due to COVID-19 disruption). All 3 

samples (n = 422) were pre-dried for 48h at 40°C and ground to < 100 μm using a 4 

MM301 mixer mill. Again, linear interpolation was used within each core for the 5 

alternate samples that were not measured.  6 

 7 

The remaining 58 cores had less-intensive carbon concentration sampling. We 8 

therefore interpolated the carbon concentration for each 0.1-m thick sample, because 9 

well-sampled cores show a consistent pattern with depth: an increase to a depth of 10 

about 0.5 m, followed by a long, very weak decline, and finally a strong decline over 11 

the deepest approximately 0.5 m of the core9. We used segmented regression on the 12 

22 well-sampled cores (segmented package in R, version 1.3-1) to parameterize the 13 

three sections of the core, using the means of these relationships to interpolate carbon 14 

concentrations for the remaining 58 cores, following Dargie et al.9. 15 

 16 

To estimate carbon density from modelled peat thickness across the basin, we 17 

developed a regression model between peat thickness and per-unit-area carbon 18 

density using the 80 sampled cores. We compared linear regressions for normal, 19 

logarithmic-, and square root-transformed peat thickness, selecting the model with 20 

lowest AICc and highest R2. A linear model with square root-transformed peat 21 

thickness was found to provide the best fit (R2 = 0.86; P < 0.001; ED Fig. 6). 22 

Bootstrapping was applied (boot package in R, version 1.3-25) to assess uncertainty 23 

around the regression. 24 

 25 
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Modelling peatland extent 1 

Satellites cannot detect peat directly. We therefore mapped vegetation and used field-2 

based associations between peat and vegetation to infer peat presence9,28. Five 3 

landcover classes were used for the purpose of peatland mapping: water, savanna, 4 

palm-dominated peat swamp forest, hardwood-dominated peat swamp forest, and 5 

non-peat forming forest. In this classification, field recordings of non-peat forming 6 

seasonally inundated forest (< 30 cm thickness of ≥ 65% OM) were grouped together 7 

with field recordings of terra firme forest, which also does not form peat, to form the 8 

non-peat forming forest class. Our field recordings of hardwood- or palm-dominated 9 

peat swamp forest, by definition, consist of all forest sites that form peat, including any 10 

seasonally inundated forest that forms peat (≥ 30 cm of ≥ 65% OM). 11 

 12 

A total of 1,736 ground-truth datapoints was used: 172 in water, 476 in savanna, 632 13 

in non-peat forming forest (97 non-peat forming seasonally inundated forest, and 535 14 

terra firme forest), 188 in palm-dominated peat swamp forest, and 268 in hardwood-15 

dominated peat swamp forest (ED Fig. 1). This data comes from eight sources 16 

(Supplementary Table 2). First, ground-truth locations collected for this study using a 17 

GPS (Garmin GPSMAP 64s) at all transect sites in DRC for which a landcover class 18 

was determined (382 points). Second, published ground-truth data from nine transects 19 

in ROC (292 points)9. Third, 299 GPS locations of known savanna and terra firme 20 

forest landcover classes from archaeological research databases across the 21 

basin29,30. Fourth, 191 GPS locations from permanent long-term forest inventory plots 22 

of the African Tropical Rainforest Observation Network (AfriTRON), mostly from terra 23 

firme forest31, retrieved from the ForestPlots database32,33. Fifth, 229 GPS datapoints 24 

from terra firme forest or savanna locations in and around Lomami National Park (pers. 25 
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comm., R.B., G.I. and A. C-S.). Sixth, 24 published savanna datapoints in and around 1 

Lomami NP34. Seventh, 23 published locations of savanna, terra firme forest, palm- or 2 

hardwood-dominated peat swamp forest in DRC11. Eighth, 296 datapoints from 3 

Google Earth for unambiguous savanna and water sites (middle of lakes or rivers), 4 

distributed across the region. 5 

 6 

We used nine remote sensing products to map peat-associated vegetation 7 

(Supplementary Figure 1).  Eight of these are identical to those used by Dargie et al.9: 8 

three optical products (Landsat 7 ETM+ bands 5 [SWIR 1], 4 [NIR], and 3 [Red]); three 9 

L-band Synthetic Aperture Radar products (ALOS PALSAR HV, HH, and HV/HH); and 10 

two topographic products (SRTM DEM [Digital Elevation Model] void-filled with ASTER 11 

GDEM v2 data, and slope; acquisition date 2000). To this, we added a HAND-index 12 

(Height Above Nearest Drainage point), which significantly improved model 13 

performances (median Matthews correlation coefficient [MCC]: 79.7%, compared with 14 

77.8% or 75.6% for just DEM or HAND alone, respectively; P < 0.001).  15 

 16 

HAND was derived from the SRTM DEM with Clubb et al.’s algorigthm35, using the 17 

HydroSHEDS global river network at 15s resolution as reference product36. Alternative 18 

NASADEM- or MERIT DEM-derived37–39 combinations of DEM, HAND and slope were 19 

tested with an initial subset of data in R, while keeping all other remote sensing 20 

products the same (median MCC: 79.0% and 75.1%, respectively), but did not 21 

significantly improve model performance compared with SRTM-derived products 22 

(80.9% median MCC; P < 0.001). 23 

 24 
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The Landsat bands are pre-processed, seamless cloud-free mosaics for ROC 1 

(composite of three years, 2000, 2005, 2010) and DRC (composite of six years, 2005-2 

2010)40. These mosaics performed better than more recent basin-wide automated 3 

cloud-free Sentinel-2 mosaics that we developed (bands 5, 8A, 11; composite of five 4 

years, 2016-2020), likely because they contain less directional reflectance artefacts 5 

(the median MCC of 80.9% for the pre-processed Landsat mosaics is significantly 6 

higher than the 78.1% for our Sentinel-2 mosaics, P < 0.005).  7 

 8 

The ALOS PALSAR radar bands are mosaics of mean values of annual JAXA 9 

composites for the years 2007-2010 (ref. 9). More recent radar data (ALOS 2-PALSAR 10 

2 HV, HH, HV/HH; 2015-2017) did not significantly improve model performances 11 

(median MCC 80.9% and 80.6%, respectively; P < 0.01). All remote sensing products 12 

were resized to a common 50 m grid, using a cubic convolution resampling method.  13 

 14 

We then tested which classification algorithm to use, as more sophisticated algorithms 15 

might improve overall accuracy against our training dataset, but might also reduce 16 

regional accuracy of the map in areas far from test data, critical in this case given large 17 

areas of the central Congo peatland region are unsampled.  18 

 19 

Three supervised classification algorithms were tested in order of increasing 20 

complexity: Maximum Likelihood (ML), Support Vector Machine (SVM) and Random 21 

Forest (RF). We assessed each classifier using both a random and spatial cross-22 

validation (CV) approach41–43. Random CV was implemented using stratified two-23 

thirds Monte Carlo selection, whereby we 1,000 times randomly selected two-thirds of 24 



29 

 

all datapoints per class as training data, to be evaluated against the remaining one-1 

third per class as testing data.  2 

 3 

Spatial CV was implemented by grouping all transects datapoints in four distinct hydro-4 

geomorphological regions: (i) transects perpendicular to the blackwater Likouala-aux-5 

Herbes River (n  = 179 datapoints); (ii) transects perpendicular to the white-water 6 

Ubangi River (n = 113); (iii) transects perpendicular to the Congo River, intermediate 7 

between black and white-water (n = 123); and (iv) transects perpendicular to the 8 

blackwater Ruki, Busira and Ikelemba Rivers, plus other nearby transects (collectively 9 

named the Ruki group; n = 258). To each group we added ground-truth datapoints 10 

from other non-transect data sources (Supplementary Table 2) that belonged to the 11 

same map regions (n = 82, 27, 20, 113, respectively). We then tested 1,000 times how 12 

well each classifier performs in each of the four regions, when trained only on a 13 

stratified two-thirds Monte Carlo selection of the remaining datapoints (i.e., datapoints 14 

from the three other regional transect groups, plus ground-truth datapoints not 15 

associated with or near any transect group (n = 821). For example, the savanna and 16 

terra firme forest datapoints in Lomami National Park in DRC which are far (> 300 km) 17 

from any transect group. 18 

 19 

Model performance was based on Matthews correlation coefficient (MCC) for binary 20 

peat/non-peat predictions (hardwood- and palm-dominated peat swamp forest classes 21 

combined into one peat class; water, savanna and non-peat forming forest combined 22 

into one non-peat class). We compared MCC, rather than popular metrics such as 23 

Cohen’s kappa, F1-score or accuracy, because it is thought to be the most reliable 24 

evaluation metric for binary classifications44,45. We also computed balanced accuracy 25 
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(BA) from random cross-validation to compare with the first-generation map. While 1 

less robust than MCC, BA is independent of imbalances in the prevalence of 2 

positives/negatives in the data, thus allowing better comparison between classifiers 3 

trained on different datasets16. The best estimate of each accuracy metric or area 4 

estimate per model or region is the median value of 1,000 runs, alongside a 95% 5 

confidence interval. 6 

 7 

In the case of SVM and RF, random CV models were implemented in Google Earth 8 

Engine (GEE)46 using all nine remote sensing products. However, because ML is 9 

currently not supported by GEE, random CV with this algorithm was implemented in 10 

IDL-ENVI software (version 8.7-5.5), using a principal component analysis (PCA) to 11 

reduce the nine remote sensing products to six uncorrelated principal components to 12 

reduce computation time. All spatial CV models were implemented in R (superClass 13 

function from the RStoolbox package, version 0.2.6), with PCA also applied in the case 14 

of ML only. All RF models were trained using 500 trees, with three input products used 15 

at each split in the forest (the default, the square root of the number of variables). All 16 

SVM model were implemented with a radial basis function kernel, with all other 17 

parameters set to default values.  18 

 19 

Comparison of the ML, SVM and RF models with Dargie et al.’s model performance9, 20 

using balanced accuracy from random cross-validation, shows improved results only 21 

in the case of the ML classifier (Supplementary Table 3). Comparing MCC using the 22 

spatial CV approach, we found that the ML algorithm is also most transferable to 23 

regions for which we lack training data. While RF gives slightly better MCC with 24 

random CV, when no regions are omitted, spatial CV shows particularly poor predictive 25 
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performance of this algorithm for the Congo and Ruki regions, when trained on data 1 

from the other regions. SVM has lowest MCC of all three classifiers with random CV, 2 

and also performs worst of all three in the Congo region with spatial CV.   3 

 4 

Additionally, applying spatial CV to the largely interfluvial basin region (ROC transects; 5 

n = 401), and the largely river-influenced region (DRC transects; n = 540), also shows 6 

RF performs poorly (Supplementary Table 3). This further supports selecting the ML 7 

algorithm to produce our second-generation peat extent map of the central Congo 8 

peatlands. The final peatland extent estimate is then obtained as the median value 9 

(alongside 95% confidence interval) out of the combined hardwood- and palm-10 

dominated peat swamp forest extent from 1,000 ML runs, each time trained with two-11 

thirds of the ground-truth data. 12 

 13 

Modelling peat thickness 14 

A map of distance from the peatland margins was developed in GEE using the median 15 

ML peat probability map, i.e. the ML map with a 50% peat probability threshold (> 500 16 

hardwood- or palm-dominated peat swamp predictions out of 1,000 runs). For each 17 

peat pixel in this binary classification, a cost function was used to calculate the 18 

Euclidean distance to the nearest non-peat pixel, after speckle and noise were 19 

removed using a 5x5 squared-kernel majority filter. Using this distance map, transects 20 

were found to have markedly different relationships between peat thickness and 21 

distance from the peatland margin, i.e. different slopes (n = 18, P < 0.001, ED Fig. 3). 22 

The modest linear fit (R2 = 41.0%; RMSE = 1.21 m) cautions against a uniform 23 

regression between peat thickness and distance from the margin across the basin.  24 

 25 
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Instead, we developed a spatially-explicit Random Forest regression model to predict 1 

peat thickness, derived from 14 remotely-sensed potential covariates that may explain 2 

variation in peat thickness. These 14 variables included the nine optical, radar and 3 

topographic products used in the peatland extent analysis, as well as distance from 4 

the peatland margin, distance from the nearest drainage point (same reference 5 

network as for HAND)36, precipitation seasonality47, climatic water balance (mean 6 

annual precipitation47 minus mean annual potential evapotranspiration48), and live 7 

woody aboveground biomass49. Ten of these variables were found to be significantly 8 

correlated with peat thickness (Kendall's τ, P < 0.01): all three optical bands, all three 9 

radar bands, distance from the peatland margin, distance from the nearest drainage 10 

point, precipitation seasonality, and climatic water balance. Applying stepwise 11 

backward selection, we tested combinations of these ten predictors by each time 12 

dropping one predictor out of the model in order from low to high variable importance, 13 

selecting as the best model the one with highest median R2 and lowest median root 14 

mean square error (RMSE) obtained from 100 random (two-thirds) cross-validations. 15 

The importance of each variable was assessed by calculating Mean Decrease Impurity 16 

(MDI), the total decrease in the residual sum of squares of the regression after splitting 17 

on that variable, averaged over all decision trees in the random forest. Median MDI 18 

was calculated for each variable based on 100 random (two-thirds) cross-validations 19 

of the overall model containing all ten significant predictors.  20 

 21 

The best model contained four predictors: distance from the peatland margin, distance 22 

to the nearest drainage point, climatic water balance (all positively correlated with peat 23 

thickness; Kendall's τ coefficient = 0.49, 0.15 and 0.13, respectively; P < 0.001 for all), 24 
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and precipitation seasonality (negatively correlated with thickness; Kendall's τ = -0.11, 1 

P < 0.01), see ED Figure 5 for their spatial variability.  2 

 3 

The RF regression was implemented in GEE with 500 trees and all other parameters 4 

set to default values. Predictor variables were resampled to 50 m resolution. As 5 

training data, we included all LOI-verified and corrected pole-method thickness 6 

measurements that fell within the masked map of > 50% peat probability (n = 463), 7 

including thickness > 0 and < 0.3 m from non-peat sites that could improve predictions 8 

of shallow peat deposits near the margins (n = 12).  9 

 10 

Our final RF model (R2 = 93.4%, RMSE = 0.42 m) had consistently smaller residuals 11 

compared to a multiple linear regression model containing the same four predictors 12 

with interaction effects (adj-R2 = 73.6%, RMSE = 0.80 m; ED Fig. 4). It also performed 13 

better when testing out-of-sample performance, using 100 random two-thirds cross-14 

validations of training data (median R2 = 82.2%, RMSE = 0.68 m; and median adj-R2 15 

= 73.6%, RMSE = 0.85 m; for RF model and multiple linear regression, respectively). 16 

 17 

For uncertainty on our thickness predictions, we first estimated area uncertainty by 18 

creating 100 different maps of distance from the peat margin, by randomly selecting 19 

(with replacement) a minimum peat probability threshold > 0% and ˂ 100%, removing 20 

speckle and noise, and re-calculating the closest distance to the nearest non-peat 21 

pixel. We then combined the 100 distance maps each time with the three other 22 

selected predictors (precipitation seasonality, climatic water balance, distance from 23 

nearest drainage point) as input in a RF model to develop 100 different peat thickness 24 

maps. For these model runs, we included all available thickness measurements (> 0 25 
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m) that fell within each specific distance map. Each output map was masked to an 1 

area ≥ 0.3 m thickness, consistent with our peat definition.  A map of median peat 2 

thickness (Fig. 3a) and relative uncertainty (± half the width of the 95% CI as 3 

percentage of the median; Fig. 3b) was then calculated for each pixel based on the 4 

100 available thickness estimates. 5 

 6 

Carbon stock estimates 7 

We mapped carbon density across the central Congo Basin in GEE, by applying 20 8 

bootstrapped thickness-carbon regressions that were normally distributed around the 9 

best fit (ED Fig. 6) to the 100 peat thickness maps from the RF regression model, 10 

generating a map of median carbon density out of 2,000 estimates (Fig. 3a), together 11 

with relative uncertainty (± half the width of the 95% CI as percentage of the median; 12 

Fig. 3b).  13 

 14 

Total peat carbon stocks were computed in GEE by summing carbon density (in Mg 15 

ha-1) over all 50 m grid squares defined as peat. To assess uncertainty around this 16 

estimate, we again combined the 100 peat thickness maps (i.e., uncertainty from area 17 

and thickness), with 20 bootstrapped thickness-carbon regressions (i.e., uncertainty 18 

from carbon density, including bulk density and carbon concentration). We thus 19 

obtained 2,000 peat carbon stock estimates for the total central Congo Basin peatland 20 

complex, which were used to estimate the mean, median and 95% CI (ED Fig. 7a).  21 

 22 

Regional carbon stock estimates were similarly obtained for each sub-national 23 

administrative region (departments in ROC and provinces in DRC; ED Table 1), as 24 

well as national-level protected areas (national parks and nature/biosphere/community 25 
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reserves)50 and logging51,52, mining53,54 and palm oil55–57 concessions (ED Fig. 8; ED 1 

Table 2). As hydrocarbon concessions cover almost the whole peatlands area23,25, 2 

they cover almost 100% of the central Congo peat carbon stocks.   3 

 4 

Sensitivity analysis was performed by bootstrapping either the area, thickness, or 5 

carbon density component, whilst keeping the others constant (ED Fig. 7b). For area, 6 

we bootstrapped 100 randomly selected peatland area estimates; for thickness, 100 7 

randomly selected two-thirds subsets of all thickness measurements; for carbon 8 

density, 20 normally distributed regression equations from the bootstrapped thickness-9 

carbon relationship. 10 

 11 

 12 

DATA AVAILABILITY 13 

All map results from this study are available for download as raster files from 14 

https://congopeat.net/maps/. The supporting ground-truth data, peat thickness 15 

measurements, and carbon density measurements are available from 16 

https://figshare.com/s/ba6dc13288a901883812. The remote sensing datasets used 17 

are available for download from https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm 18 

(ALOS PALSAR and ALOS-2 PALSAR-2 25 m HV and HH data), http://osfac.net/ 19 

(OSFAC ROC and DRC 60 m Landsat ETM+ bands 5, 4 and 3 mosaics), and 20 

http://earthexplorer.usgs.gov/ (SRTM DEM 1-arc second and ASTER GDEM v2 1-arc 21 

second data).  22 

https://congopeat.net/maps/
https://figshare.com/s/ba6dc13288a901883812
https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm
http://osfac.net/
http://earthexplorer.usgs.gov/
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CODE AVAILABILITY 1 

The IDL-ENVI script to run the Maximum Likelihood classification model is available 2 

from https://figshare.com/s/a1b26aa7f31bd8bb93f7. The scripts to run the peat 3 

thickness model and carbon stock calculations are available on Google Earth Engine: 4 

https://code.earthengine.google.com/?accept_repo=users/gybjc/Central_Congo_Pea5 

tlands_2022.  6 
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 1 

Extended Data Figure 1 | Spatial overview of ground-truth datapoints (n = 1,736) 2 

across the central Congo basin study area, grouped by six landcover classes 3 

(a.-f.). Only the palm-dominated and hardwood-dominated peat swamp forest classes 4 

(e., f.) are associated with the presence of peat. Terra firme forest (c.) and non-peat 5 

forming seasonally inundated forest (d.) are combined into a single non-peat forming 6 

forest class when running classification models. The RGB baselayer of Landsat ETM+ 7 

(SWIR 1, NIR and Red bands) reflects different forest types (shades of green), open 8 

savanna (pink), agricultural land (yellow) and open water (blue).  9 
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 1 

Extended Data Figure 2 | Relationship between peat thickness estimated using 2 

the pole-method (in m) and laboratory-verified peat thickness using Loss-On-3 

Ignition (LOI; in m) across four regional transect groups. Mean pole-method offset 4 

is significantly higher in the largely river-influenced transects in DRC (0.94 m, blue 5 

line) than in mostly interfluvial basin transects in ROC (0.48 m, red line; P < 0.001). 6 

No significant differences were found between either the Likouala-aux-Herbes and 7 

Ubangi transects in ROC, or between the Congo and Ruki transects in DRC. Best-8 

fitting line: Corrected peat thickness = -0.1760 + 0.8626 x (pole-method thickness) – 9 

0.3284 x (country); n = 93, adj-R2 = 0.95; P < 0.001. Country is dummy coded as: ROC 10 

(0) and DRC (1). Shaded grey shows 95% confidence intervals. Outliers (n = 3) with 11 

> 4x the mean Cook’s distance are excluded from the analysis.   12 
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 1 

Extended Data Figure 3 | Relationship between field-measured peat thickness 2 

(LOI + corrected pole-method measurements; in m) and distance from the 3 

peatland margin (km). Distance from the peatland margin is calculated as the 4 

shortest distance to a non-peat pixel in any direction, based on the median Maximum 5 

Likelihood map of peatland extent (> 50% probability threshold). Transects are 6 

ordered by increasing regression slope (in m km-1; upper left corner of each panel), 7 

with colours indicating the four transect regions. Note that the horizontal axes are 8 

different for each panel. Shaded grey shows 95% confidence intervals for each 9 

regression.   10 
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 1 

Extended Data Figure 4 | Relationship between observed and predicted peat 2 

thickness (in m). a. Multiple linear regression model with interaction effects (adj-R2 = 3 

73.6%, RMSE = 0.80 m). b. Random Forest regression model (R2 = 93.4%, RMSE = 4 

0.42 m). Both models are trained and validated against 463 datapoints and include the 5 

same four predictor variables: distance from the peatland margin, precipitation 6 

seasonality, climatic water balance, and distance from the nearest drainage point. 7 

Both panels show 277 aggregated means only to account for duplicates in observed 8 

values. The black lines indicate the 1:1 relationship.  9 
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 1 

Extended Data Figure 5 | Spatial variability of the four predictor variables 2 

retained in the final Random Forest regression model of peat thickness. a. 3 

Distance from the peatland margin (km). b. Precipitation seasonality (coefficient of 4 

variation). c. Climatic water balance (mm). d. Distance from the nearest drainage point 5 

(km). All maps have been masked to the smoothed median Maximum Likelihood 6 

peatland extent (> 50% peat probability). Black lines represent national boundaries; 7 

grey lines represent sub-national administrative boundaries.  8 
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 1 

Extended Data Figure 6 | Relationship between peat thickness (in m) and carbon 2 

density (in Mg C ha-1). Dots are coloured by transect region. Best-fitting line: Carbon 3 

density = -942.4 + 2088.4 x SqRt (peat thickness); n = 80, R2 = 0.86; P < 0.001. 4 

Shaded grey shows 95% confidence interval. 20 bootstrapped regressions, normally 5 

distributed around the best-fitting line, were used to include this uncertainty when 6 

scaling peat thickness to carbon estimates.   7 
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 1 

Extended Data Figure 7 | Distribution and sensitivity of peat carbon stock 2 

estimates in the central Congo Basin peatland complex. a. Distribution of 2,000 3 

peat carbon stock estimates, obtained by combining 100 random peat probability 4 

thresholds in the peatland extent model and computing the associated RF peat 5 

thickness map, with 20 normally-distributed equations from the bootstrapped peat 6 

thickness-carbon density regression. Median, 29.0 Pg C; mean, 29.1 Pg C; 95% CI, 7 

26.3–32.2 Pg C. b. Sensitivity analysis by in turn bootstrapping peat area estimates 8 

(n = 100), peat thickness measurements (n = 100), or carbon density regressions (n = 9 

20), whilst keeping the other components constant. Black lines show the median, 10 

boxes show the upper and lower quartiles, and the vertical lines show maximum and 11 

minimum values. Dots represent potential outlying values.   12 
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 1 

Extended Data Figure 8 | Distribution of national protected areas and industrial 2 

concessions across the central Congo Basin peatlands. Base map shows 3 

belowground peat carbon (shaded grey; Fig. 3a), overlaid with protected areas at 4 

national-level (national parks and nature/biosphere/community reserves)50, or logging 5 

concession51,52, mining concessions53,54, and palm oil55–57 concessions. Black lines 6 

represent national boundaries; grey lines represent sub-national administrative 7 

boundaries.  8 
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Region Peatland area  

(km2) 

Peat thickness 
(m) 

Peat carbon density 

(Mg C ha-1) 

Peat carbon stock 
(Pg C) 

Republic of the Congo (ROC) 

Likouala 28,636 1.9 ± 1.0 1,815 ± 740 5.4 (4.8 - 5.8) 
 

Cuvette 17,757 1.6 ± 0.8 1,626 ± 624 2.9 (2.7 - 3.2) 
 

Sangha 7,465 1.1 ± 0.4 1,218 ± 325 0.9 (0.8 - 1.0) 
 

Plateaux 1,183 0.9 ± 0.1 1,059 ± 162 0.1 (0.1 - 0.1) 
 

Total ROC 55,072 1.7 ± 0.9 1,653 ± 687 9.3 (8.4 - 10.2) 
 

 

Democratic Republic of the Congo (DRC) 

Équateur 58,276 1.9 ± 0.9 1,822 ± 658 10.7 (9.9 - 11.7) 
 

Mai-Ndombe 29,825 1.8 ± 0.7 1,752 ± 548 5.2 (4.8 - 5.7) 
 

Tshuapa 11,628 1.9 ± 0.5 1,917 ± 343 2.1 (1.8 - 2.6) 
 

Sud-Ubangi 7,557 1.1 ± 0.4 1,243 ± 370 1.0 (0.8 - 1.2) 
 

Mongala 5,329 1.2 ± 0.4 1,259 ± 360 0.6 (0.5 - 0.8) 
 

Total DRC 113,201 1.8 ± 0.8 1,740 ± 604 19.6 (17.9 - 21.9) 
 

 

ROC and DRC combined 

Total central Congo 
Basin peatlands 

 

167,648 (159,378 
- 175,079)  

1.7 ± 0.9  1,712 ± 634 29.0 (26.3 - 32.2) 

Extended Data Table 1 | Estimated peatland area, peat thickness, carbon density 1 

and carbon stocks per administrative region. All values are regional means (± s.d.) 2 

of the median peat thickness and carbon density maps; or median estimates (with 95% 3 

confidence interval in parentheses) for total peatland area and peat carbon stock. For 4 

regional area estimates without confidence interval, the median peatland map (> 50% 5 

probability) was used. Sub-national administrative regions are provinces (DRC) or 6 

departments (ROC). Marginal peat predictions in other administrative regions (Kasaï, 7 

Tshopo, Kwilu, Nord-Ubangi in DRC; Cuvette-Ouest in ROC) are included in total 8 

country estimates, but not listed separately.  9 
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Region Peatland area  

(km2) 
Peat thickness 
(m) 

Peat carbon density 

(Mg C ha-1) 
Peat carbon stock  

(Pg C) 

 

Republic of the Congo (ROC) 

Total in logging / mining / 
palm oil concessions  

13,539 (25%) 1.2 ± 0.6 1,299 ± 451 2.0 (22%) 

Total in national protected 
areas  

6,402 (12%) 1.4 ± 0.6 1,463 ± 478 1.0 (11%) 

 

Democratic Republic of the Congo (DRC) 

Total in logging / mining / 
palm oil concessions  

29,712 (26%) 1.6 ± 0.7 1,671 ± 567 5.4 (28%) 

Total in national protected 
areas  

8,105 (7%) 1.5 ± 0.8 1,552 ± 592 1.4 (7%) 

 

ROC and DRC combined 

Total in logging / mining / 
palm oil concessions  

43,250 (26%) 1.5 ± 0.7 1,551 ± 560 7.4 (26%) 

Total in national protected 
areas  

14,511 (9%) 1.5 ± 0.7 1,513 ± 547 2.4 (8%) 

Extended Data Table 2 | Estimated peatland area, peat thickness, carbon density 1 

and carbon stocks in industrial concessions and protected areas. Estimates are 2 

calculated for protected areas at national-level (national parks and 3 

nature/biosphere/community reserves)50; or for industrial logging51,52, mining53,54, and 4 

palm oil55–57 concessions combined (ED Fig. 8). All values are means (± s.d.) of the 5 

median peat thickness and carbon density maps, or median estimates for total 6 

peatland area and peat carbon stock. Percentages show the proportion of total 7 

peatland area or peat carbon stock in ROC, DRC and combined (ED Table 1), that is 8 

found in protected areas or industrial logging/mining/palm oil concessions.  9 


