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An approach for output feedback L1 adaptive control of small Unmanned Aerial Vehicles (UAVs) is presented in this paper. The 
design is based on a state observer instead of the state predictor. The main advantage is that a full state measurement can be avoided,
and the design and implementation of the controller are simplified. Furthermore, s ince t he s tate s pace d escription i s maintained,
the system dynamics including uncertainties can be specified w ith p hysical i nsight, w hich s implifies pr actical ap plications. The
adaptation law borrows insights from the sliding mode control to estimate the unknown bounds of external disturbances. Flight test
results for the control of a small UAV show the robustness of the L1 adaptive controller to large uncertainties and disturbances.
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1. Introduction

Small fixed-wing UAVs that is, with wingspans less than
2 metres and payload smaller than 2 kg are gaining grow-
ing interest because of their low cost, high manoeuvrability,
and simple maintenance. They are used for a wide range of
military and civilian tasks [1, 2]. Despite the advantages
of small UAVs, their control is still a challenging prob-
lem because of their small size, light weight, relatively low
speeds, mass/payload variations, reduced payload capacity,
unknown dynamics, limited sensors suite and insufficient
onboard computing [3–6].

A solution can be provided through the use of adaptive
control [7,8]. Adaptive control was introduced to meet the
challenge of automatically adjusting the controller param-
eters in the presence of uncertain and time varying aircraft
dynamics . It is a suitable method for small UAV because it
is robust against disturbances, automatically reconfigures
its parameters without a fault detection scheme, does not
need an accurate model of the UAV and it is relatively easy
for implementation [9]. The researches in [10–16] have pre-
sented successful applications of adaptive control for fixed-
wing UAVs.

However, in low-cost UAV control the state vector
is not always available through measurements by sensors.
This is why it is necessary to design output-feedback ap-
proaches that take into account this property of small
UAVs. Many methods dealing with adaptive output feed-
back control are described in [17–25] to cite a few.

A crucial aspect in applying adaptive control tech-
niques to real-world systems is the transient response guar-
antee, in the absence of which, overly poor tracking be-
haviour can occur before ideal asymptotic convergence

takes place [26–28]. Most adaptive control methods focus
on the asymptotic performance, providing no transient per-
formance guarantee without resorting to high-gain feed-
back [29].

A solution to this issue is based on L1 adaptive con-
trol [30]. The L1 adaptive control architecture decouples
the estimation loop from the control loop through the in-
troduction of a low-pass filter. As a result, arbitrarily fast
adaptation can be used without sacrificing system robust-
ness. These characteristics make it suitable for fixed-wing
UAVs control in the presence of faults and external distur-
bances [31–38].

Relatively few approaches are described for output
feedback L1 adaptive control. In [39] was designed an L1

adaptive output-feedback controller for unknown dimen-
sional systems with unmodeled dynamics and time-varying
uncertainties. In [40] was designed an L1 adaptive output
feedback controller for non-strictly-positive-real reference
systems. Missile longitudinal autopilot design was used to
illustrate the theoretical results. In [41] was presented the
application of L1 adaptive output-feedback control to two
different fields of engineering: feedback control of human
anaesthesia, and ascent control of a NASA crew launch ve-
hicle. In [42] the L1 adaptive output feedback controller was
considered to accommodate the disturbance entering at the
system output. Experimental results have shown successful
application to managed pressure drilling. In [43] was de-
veloped an L1 adaptive output feedback controller for a
class of underactuated multi-input multi-output (MIMO)
systems. The proposed approach has been applied as an
augmentation of an existing three-loop autopilot. A con-
trol methodology based on L1 adaptive output feedback
control has been applied to temperature control [44]. The
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work of [45] demonstrated the design of the L1 adaptive
output-feedback control combined with the model predic-
tive control for multivariable nonlinear systems subject to
constraints. In [46] L1 adaptive output feedback control
was applied for general Partial Differential Equation (PDE)
systems. The design presented in [38] addressed uncertain
nonlinear systems in the presence of unmodeled dynamics
and actuator faults.

The common drawback of the proposed approaches is
that they are based on transfer function formulation which
makes the interpretation of uncertainties and the definition
of reference models less intuitive compared to a formulation
with a state-space model [9,47]. In fact, the state variables
can more comprehensively reflect the internal characteris-
tics of a system [38]. Furthermore, the previous approaches
for L1 output feedback adaptive control were formulated
under the assumption that the bounds of external distur-
bances are known. However, these bounds are hard to quan-
tify in practice. Therefore, if an external disturbance goes
beyond its supposed bound this will result in poor perfor-
mance of the controller. Moreover, most of the previous L1

adaptive output-feedback designs are particularly complex,
which makes difficult their practical implementation on the
resource-limited onboard computers of small UAVs.

In this paper, based on [9], the state-feedback L1 adap-
tive controller for systems with disturbances of unknown
bounds [48] is extended to output-feedback. The proposed
solution uses a state observer instead of the state predic-
tor, characteristic of the L1 adaptive controller. When com-
pared with the observer, a state predictor is designed based
on the assumption that the full system state is measur-
able [30], whereas the state observer is based on the mea-
sured output of the system. The main advantage of this
scheme is that only the output measurements are required,
while a state space representation can be maintained, which
makes the design and the analysis of the controller similar
to the state feedback approach. As a consequence, the sys-
tem dynamics including uncertainties can be specified with
physical insight, which simplifies controller design and anal-
ysis. The proposed solution was initially introduced in [47],
where was presented an output feedback L1 adaptive con-
troller that combines the use of an estimated state feedback
with a switching adaptation law. However, it was assumed
that the bounds of external disturbances are known. Fur-
thermore, only testbed tests were presented.

The contributions of this paper are:

• Development of a method for output feedback L1

adaptive control based on the Luenberger observer
instead of the state predictor, so as to maintain
a state-space formulation of the controller design
that reflects more comprehensively the internal
characteristics of the system.

• Improving the robustness of the output-feedback
L1 adaptive controller in the presence of external
disturbances by using the sliding surface structure
from sliding mode control. This approach relaxes
what is commonly assumed in L1 adaptive output-

feedback control that external disturbances bounds
are known.

• Design and flight demonstration of an output feed-
back L1 adaptive fault-tolerant controller for fixed-
wing UAVs. Only [33,49] presented flight test re-
sults for the output feedback L1 adaptive controller
designed in [39].

2. Observer-based L1 Adaptive Control

Given a class of Single-Input Single-Output systems defined
by

ẋ (t) = Amx(t) + b
(
ωu(t) + θ⊤x(t) + ηm(t)

)
+ ηu(t, x),

y(t) = c⊤x(t), x(0) = x0.
(1)

where Am ∈ Rn×n is a known Hurwitz matrix that defines
the desired dynamics of the system; b, c ∈ Rn are known
constant vectors; x(t) ∈ Rn is the state vector which is
assumed available through measurement; u(t) ∈ R is the
control input; y(t) ∈ R is the system output; ω ∈ R is an
unknown constant with known sign representing the model
input uncertainties; θ ∈ Rn is a vector of constant unknown
parameters representing model uncertainties; ηm(t) ∈ R is
an unknown matched disturbance; and ηu(t, x) ∈ Rn is an
unknown unmatched disturbance.

Assumption 1. The pair (Am, b) is controllable and
the pair (Am, c) is observable.

Assumption 2. The non-linear functions ηm(t) and
ηu(t, x) are uniformly bounded, i.e., there exist unknown
real constants Lm > 0 and Lu > 0, such that for all t ≥ 0
the following bounds hold:

|ηm(t)| ≤ Lm and ∥ηu(t, x)∥ ≤ Lu.

Assumption 3. The unknown model parameters are
bounded, i.e., θ ∈ Θ, where Θ is a known compact convex
set and 0 < ωl ≤ ω ≤ ωu.

Remark 1. Assumptions 2 and 3 are conventionally
acceptable for real systems, given that a superior bound
of disturbances and unknown parameters, which the sys-
tem may hold without being broken, is usually known from
technical specifications or engineering insights.

Assumption 4. The system is minimum phase of rel-
ative degree one, i.,e, c⊤b ̸= 0. This assumption is quite
common in adaptive output feedback control, because di-
rect adaptive controllers employ high gain feedback that
can drive the system to instability [50].

For this class of systems, the state feedback L1 adap-
tive control architecture is composed of a state predictor, a
control law, and an adaptation mechanism [30]. When the
full state measurement is not available, it is proposed here
to use a sate observer instead of the state predictor in order
to maintain a state-space representation.
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2.1. Controller Design

The state observer is defined as follows

˙̂x(t) =Amx̂(t) + b
(
ω̂(t)u(t) + θ̂⊤(t)x̂(t) + η̂m(t)

)
+ η̂u(t)− Lv ỹ(t),

ŷ(t) = c⊤x̂(t), x̂(0) = x̂0,

(2)

where x̂ is the predicted state and, θ̂(t), ω̂(t), η̂m(t), and
η̂u(t) are the estimates of the unknown system parame-
ters and disturbances, Lv ∈ Rn is chosen such that Ac =
Am − Lvc

⊤ is Hurwitz, ỹ(t) = ŷ(t) − y(t) is the output
estimation error, and x̂(0) is initialized arbitrarily.

Remark 2. A particular case is the use of an open-
loop observer by choosing Lv = 0 [47].

The sliding surface is given by

σ(t) = λỹ(t), (3)

where λ ∈ R∗ is an arbitrary real.
The estimation of the matched disturbance ηm(t) is

defined by

η̂m(t) =

{
−(λc⊤b)−1α σ(t)

|σ(t)| − L̂m(t) λc⊤bσ(t)
|λc⊤bσ(t)| if σ(t) ̸= 0,

0 otherwise,

(4)

where α ∈ R+ is arbitrary, and the estimated bound L̂m(t)
of the unmatched disturbance ηm(t) is given by

˙̂
Lm(t) = Γ|λc⊤bσ(t)|, Lm0 = L̂m(0), (5)

where Γ ∈ R+ is the adaptation rate.
The estimation of the unmatched disturbance ηu(t, x)

is given by

η̂u(t) =

{
−L̂u(t)

(
λc⊤σ(t)

)⊤

∥λc⊤σ(t)∥ if σ(t) ̸= 0,

0 otherwise,
(6)

where the estimated bound L̂u(t) of the unmatched distur-
bance ηu(t, x) is computed by

˙̂
Lu(t) = Γ∥λc⊤σ(t)∥, Lu0 = L̂u(0). (7)

The estimation of the unknown parameter θ and the
input gain ω are defined by

˙̂
θ(t) = −Γ Proj

(
θ̂(t), λc⊤b σ(t)x̂(t)

)
,

˙̂ω(t) = −Γ Proj
(
ω̂(t), λc⊤b σ(t)u(t)

)
.

(8)

The control law is given by

u(s) = kD(s)
(
kg r(s)− ν̂(s)− ϕ(s)η̂u(s)

)
, (9)

where k > 0 is arbitrary, D(s) is a transfer func-
tion that leads to a strictly proper stable filter C(s) =
ωkD(s)/(1 + ωkD(s)) with C(0) = 1, the static gain is
chosen as kg = −1/(c⊤A−1

m b), ν̂(s) is the Laplace transfor-

mation of the term θ̂⊤(t)x̂(t) + ω̂(t)u(t) + η̂m(t), ϕ(s) =

c⊤(sI −Am)−1/Hm(s), Hm(s) = c⊤(sI−Am)−1b, and
η̂u(s) is the Laplace transform of η̂u(t).

Remark 3. The adaptation laws of the external dis-
turbances in equations (4) and (6) use the estimated
bounds from equations (5) and (7). This relaxes the as-
sumption that the bounds of the external disturbances are
known, which is required in L1 adaptive control based on
projection-type adaptive laws [39].

2.2. Controller analysis

In this section, the performance of the L1 adaptive con-
troller is analysed. More specifically it is shown that:

• The reference model resulting from perfect knowl-
edge of the uncertainties and a corresponding non-
adaptive controller is stable, subject to some con-
ditions involving the filter C(s).

• The prediction error, i.e. the errors between the
states of the plant and those of the state predic-
tors, is bounded.

• The difference between the states/input of the sys-
tem and those of the reference system is propor-
tional to the prediction error

Let

L = max
θ∈Θ

∥θ∥1, H(s) = (sI−Am)−1b,G(s) =
(
1−C(s)

)
H(s).

The L1 adaptive controller is defined via equations (2)
to (9), and is subject to the L1-norm condition

∥G(s)∥L1L < 1. (10)

Moreover, the design of k and D(s) needs to ensure
that

Gu(s) = (sI−Am)
−1 − C(s)H(s)ϕ(s), (11)

is proper and stable.

Closed-Loop Reference System

The reference system in this case is the same as in all previ-
ous L1 adaptive control architectures. The reference system
is defined by

ẋr(t) =Acxr(t) + b
(
ωur(t) + θ⊤xr(t) + ηm(t)

)
+ ηu(t, xr),

yr(t) =c⊤xr(t), xr(0) = x0.
(12)

The reference control law is given by

ur(s) =
C(s)

ω

(
kgr(s)−θ⊤xr(s)−ηm(s)−ϕ(s)ηu(s)

)
. (13)

Lemma 1 If the filter C(s) is designed such that it
verifies the L1-norm condition in (10) and the requirement
in (11), then the closed-loop reference system in (12) and
(13) is Bounded-Input Bounded-Stable (BIBS) stable with
respect to the reference input and initial conditions.
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Fig. 1. Block diagram of the observer-based L1 adaptive controller.

Proof. The closed-loop reference system (12) and (13)
can be written

xr(s) =H(s)C(s)Kgr(s) +G(s)θ⊤xr(s)

+G(s)ηm(s) +Gu(s)ηu(s) + xin(s),
(14)

where xin(s) = (sI−Am)
−1

x0.
Then, for all t ∈ [0, τ ] we have

∥xrτ ∥L∞ ≤∥C(s)H(s)∥L1Kg∥rτ∥L∞ + ∥G(s)∥L1L∥xrτ ∥L∞

+ ∥G(s)∥L1
∥ηmτ

∥L∞ + ∥Gu(s)∥L1
∥ηuτ

∥L∞

+ ∥xinτ
∥L∞ ,

(15)

where ∥ · ∥L∞ denotes for the L∞ norm and ∥(·)τ∥L∞ de-
notes for the truncated L∞ norm at the time instant τ .

Substituting the upper bounds of ηm and ηu and solv-
ing for ∥xrτ ∥L∞ in the equation above to obtain the follow-
ing bound

∥xrτ ∥L∞ ≤∥C(s)H(s)∥L1Kg∥rτ∥L∞ + ∥G(s)∥L1Lm

1− ∥G(s)∥L1
L

+
∥Gu(s)∥L1

Lu + ∥xin∥L∞

1− ∥G(s)∥L1L
.

(16)

If the L1 norm condition in (10) is verified then
∥xrτ ∥L∞ is uniformly bounded for all τ > 0, and the proof
is complete. □

Transient and Steady-State Performance

In the following Lemma, it is stated that the prediction
error x̃(t) = x̂(t) − x(t) and the estimation errors of the
unknown parameters are bounded.

Lemma 2 The following uniform bound holds for the
prediction error

∥x̃∥L∞ < ρ =
α

|λ|∥c∥
(
∥Ac∥+ ∥b∥ θm

) ,
where θm = max

θ∈Θ
∥θ∥.

Proof. From (1) and (2), the estimation error dynam-
ics can be written as follows

˙̃x = Acx̃+ b
(
ω̃u+ θ⊤x̃+ θ̃⊤x̂+ η̃m

)
+ η̃u, (17)

where θ̃ = θ̂−θ, ω̃ = ω̂−ω, η̃m = η̂m−ηm and η̃u = η̂u−ηu.
We define also L̃m = L̂m − Lm and L̃u = L̂u − Lu.

Consider the Lyapunov function candidate

V =
1

2
σ2 +

1

2
Γ−1

(
θ̃⊤θ̃ + ω̃2 + L̃2

m + L̃2
u

)
. (18)

The derivative of the Lyapunov function is given by

V̇ = σσ̇ + Γ−1
(
θ̃⊤

˙̃
θ + ω̃ ˙̃ω + L̃m

˙̃Lm + L̃u
˙̃Lu

)
. (19)

From (3), the derivative of the sliding surface can be writ-
ten as follows

σ̇ =λc⊤Acx̃+ λc⊤b
(
θ⊤x̃+ θ̃⊤x̂+ ω̃u+ η̃m

)
+ λc⊤η̃u.

(20)
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Replacing (20) in (19), it follows that

V̇ =σλc⊤Acx̃+ σλc⊤b
(
θ⊤x̃+ θ̃⊤x̂+ ω̃u

)
+ λc⊤b

(
η̂m − ηm

)
+ σλc⊤

(
η̂u − ηu

)
+ Γ−1

(
θ̃⊤

˙̂
θ + ω̃ ˙̂ω + L̃m

˙̂
Lm + L̃u

˙̂
Lu

)
=σλc⊤Acx̃+ σλc⊤bθ⊤x̃+ σλc⊤bη̂m

− σλc⊤bηm + σλc⊤η̂u − σλc⊤ηu

+ θ̃⊤x̂σλc⊤b+ ω̃uσλc⊤b

+ Γ−1
(
θ̃⊤

˙̂
θ + ω̃ ˙̂ω + L̃m

˙̂
Lm + L̃u

˙̂
Lu

)
.

(21)

Given η̂m and η̂u from (4) and (6) and the adaptation law
(8) it can be written

V̇ =− α|σ|+ σλc⊤Acx̃+ σλc⊤bθ⊤x̃

− σλc⊤bηm − σλc⊤ηu

− |σλc⊤b|L̂m − ∥σλc⊤∥L̂u

+ Γ−1
(
L̃m

˙̂
Lm + L̃u

˙̂
Lu

)
.

(22)

Hence, the following upper bound can be derived

V̇ ≤− α|σ|+ σλc⊤Acx̃+ σλc⊤bθ⊤x̃

+ |λc⊤bσ| |ηm|+ ∥λc⊤σ∥∥ηu∥
− |σλc⊤b|L̂m − ∥σλc⊤∥L̂u

+ Γ−1
(
L̃m

˙̂
Lm + L̃u

˙̂
Lu

)
.

(23)

From assumption 2 and 3, it can be written

V̇ ≤− α|σ|+ σλc⊤Acx̃+ σλc⊤bθ⊤x̃

− |σλc⊤b|L̃m − σ∥λc⊤∥L̃u

+ Γ−1
(
L̃m

˙̂
Lm + L̃u

˙̂
Lu

)
.

(24)

Considering the adaptation laws from (5) and (7), it follows
that

V̇ ≤ −α|σ|+ σλc⊤Acx̃+ σλc⊤bθ⊤x̃. (25)

Given that σ ≤ |σ|, λc⊤Acx̃ ≤ |λ|∥c∥∥Ac∥∥x̃∥,
λc⊤bθ⊤x̃ ≤ |λ|∥c∥∥b∥θ∥∥x̃∥ and since the projection law
insures ∥θ∥ ≤ θm, then the following bound holds for (25)

V̇ ≤ |σ|
(
− α+ |λ|∥c∥

(
∥Ac∥+ ∥b∥ θm

)
∥x̃∥

)
. (26)

If α is chosen arbitrarily large so that it verifies ∀ t > 0

α > |λ|∥c∥
(
∥Ac∥+ ∥b∥ θm

)
∥x̃∥, (27)

then

V̇ < 0. (28)

It follows that the sliding surfacer σ, the estimation errors
of θ̃, ω̃, L̃m and L̃u are uniformly bounded,

From (27), the following bound holds for x̃

∥x̃∥ < ρ =
α

|λ|∥c∥
(
∥Ac∥+ ∥b∥ θm

) . (29)

Recalling, that ∥ · ∥L∞ ≤ ∥ ·∥ this completes the proof.
□

Remark 4. We notice that the upper bound of the
prediction error in (42) is inverse proportional to the the
sliding surface coefficient defined in (3), implying that one
can arbitrarily improve the prediction error by increasing
the sliding surface coefficient λ.

Next, in the following theorem, the performance
bounds of the L1 adaptive controller are shown.

Theorem Given the system (1), the reference system
(12), (13) and the L1 adaptive controller (2), (5), (8) and
(9) we have

∥xr − x∥L∞
≤ γ1, (30)

and

∥ur − u∥L∞
≤ γ2, (31)

where

γ1 =2
∥G(s)∥L1

1− ∥G(s)∥L1
L
Lm + 2

∥Gu(s)∥L1

1− ∥G(s)∥L1
L
Lu

+
∥H(s)C(s)H−1

m (s)c⊤∥L1

1− ∥G(s)∥L1L
ρ,

and

γ2 =∥C(s)

ω
∥L1

(
Lγ1 + 2

(
Lm + ∥ϕ(s)∥L1Lu

))
+ ∥C(s)

ω
H−1

m (s)c⊤∥L1
ρ.

Proof. The control law in (9) can be written as

u(s) =
C(s)

ω

(
Kgr(s)− θ⊤x(s)− ηm(s)

)
− C(s)

ω

(
ϕ(s)

(
ηu(s) + η̃u(s)

)
− ν̃(s)

)
,

(32)

where ν̃(s) is the Laplace transformation of ν̃(t) = ω̃u(t)+

θ̃⊤x(t) + η̃m(t) and η̃u(s) is the Laplace transformation of
η̃u(t).

Hence, the Laplace transformation of the closed loop
system (1) and (32) can be written

x(s) =H(s)C(s)Kgr(s)

+G(s)
(
θ⊤x(s) + ηm(s)

)
+Gu(s)ηu(s)

−H(s)C(s)
(
ν̃(s) + ϕ(s)η̃u(s)

)
+ xin(s).

(33)

Taking the difference of (14) and (33) it follows that

xr(s)− x(s) =G(s)
(
θ⊤

(
xr(s)− x(s)

)
+ ηm(s)− ηmr(s)

)
−Gu(s)

(
ηu(s)− ηur(s)

)
+H(s)C(s)

(
ν̃(s) + ϕ(s)η̃u(s)

)
.

(34)

From (17) the Laplace transformation of the prediction
error dynamics can be written

x̃(s) = H(s)ν̃(s) + (sI −Am)−1η̃u(s). (35)
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Multiplying both terms of (35) by H−1
m (s)c⊤ one ob-

tains

H−1
m (s)c⊤x̃(s) = ν̃(s) + ϕ(s)η̃u(s). (36)

Substituting in (34) it follows that

xr(s)− x(s) =G(s)θ⊤
(
xr(s)− x(s)

)
−G(s)

(
ηm(s)− ηmr(s)

)
−Gu(s)

(
ηu(s)− ηur(s)

)
+H(s)C(s)H−1

m (s)c⊤x̃(s).

(37)

Solving for xr(s)−x(s), the following bound holds for
t ∈ [0, τ ]

∥(xr − x)τ∥L∞ ≤ ∥G(s)∥L1

1− ∥G(s)∥L1
L
∥(ηmτ

− ηmr)τ∥L∞

+
∥Gu(s)∥L1

1− ∥G(s)∥L1L
∥(ηu − ηur)τ∥L∞

+
∥H(s)C(s)H−1

m (s)c⊤∥L1

1− ∥G(s)∥L1
L

∥x̃τ∥L∞ .

(38)

Given the upper bound of x̃(t) from Lemma 2, and the
disturbance bounds from assumption 2, it follows that

∥(xr − x)τ∥L∞ ≤2
∥G(s)∥L1

1− ∥G(s)∥L1
L
Lm

+ 2
∥Gu(s)∥L1

1− ∥G(s)∥L1L
Lu

+
∥H(s)C(s)H−1

m (s)c⊤∥L1

1− ∥G(s)∥L1
L

δ,

(39)

which leads to the bound in (30).
To show the second bound in (31), by taking the dif-

ference of (9) and (32), one can derive

ur(s)− u(s) =− C(s)

ω
θ⊤

((
xr(s)− x(s)

))
+

C(s)

ω

(
ηm(s)− ηmr(s)

)
+

C(s)

ω
ϕ(s)

(
ηu(s)− ηur(s)

)
+

C(s)

ω

(
ϕ(s)η̃u(s) + ν̃(s)

)
.

(40)

Hence

ur(s)− u(s) =− C(s)

ω
θ⊤

((
xr(s)− x(s)

))
+

C(s)

ω

(
ηm(s)− ηmr(s)

)
+

C(s)

ω
ϕ(s)

(
ηu(s)− ηur(s)

)
+

C(s)

ω
H−1

m (s)c⊤x̃(s).

(41)

Consequently, the following bound holds for t ∈ [0, τ ]

∥(ur − u)τ∥L∞ ≤∥C(s)

ω
∥L1L∥(xr − x)τ∥L∞

+ 2∥C(s)

ω
∥L1(Lm + ∥ϕ(s)∥L1Lu)

+ ∥C(s)

ω
H−1

m (s)c⊤∥L1
∥x̃τ∥L∞ ,

(42)

which holds uniformly for all τ ≥ 0, leading to the bound
in (31). □

Implementation Issues

In practical applications, the sliding surface σ(t) does not
go to zero due to sampled computation, noisy measure-
ments or other uncertainties. This results in a persistent
increase of the estimated bounds of (5) and (7). A solu-
tion to this problem is the dead-zone modification. Hence,
equations (5) and (7) are modified to be:

˙̂
Lm(t) =

{
Γ|λc⊤bσ(t)| if |σ(t)| > ϵm,
0 if not,

(43)

and

˙̂
Lu(t) =

{
Γ∥λc⊤σ(t)∥ if |σ(t)| > ϵu,
0 if not

(44)

where ϵm ∈ R+ and ϵu ∈ R+ are real constants.
Furthermore, in order to eliminate the chattering, the

discontinuous components in equations (4) and (6) are re-
placed by a smooth sliding mode component to yield

η̂m(t) = −(λc⊤b)−1α
σ(t)

|σ(t)|+ ϵ
− L̂m(t)

λc⊤bσ(t)

|λc⊤bσ(t)|+ ϵ
,

(45)
and

η̂u(t) = −L̂u(t)

(
λc⊤σ(t)

)⊤
∥λc⊤σ(t)∥+ ϵ

(46)

where ϵ > 0 is an arbitrarily small constant. This formula-
tion creates a boundary layer about the switching surface
in which the system trajectory will remain. Therefore, the
chattering problem can be reduced significantly [51].

3. Flight Test Results

Flight experiments were conducted on the Twinstar-II
small fixed-wing UAV airframe Fig. 2. The Twinstar-II has
a wingspan of 1.4 m and a weight of about 1.2 kg. It is a
popularly small UAV airframe that has been used in several
research projects [11, 52]. The UAV can be monitored and
commanded by a PC based ground station which is con-
nected via RF link. The sensor suite of the UAV platform
consists of a low cost Inertial Measurement Unit (IMU),
magnetometer, barometric and differential pressure sensors
and a GPS receiver. The Twinstar-II was equipped with an
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on-board computer which consists of a Gumstix Overo SBC
and an FPGA [53]. Fig. 3 shows a scheme of the on-board
computer system and the applied sensors.

Fig. 2. Twinstar II Small UAV.

Fig. 3. On-board computer system and applied sensors, actu-
ators and communication interfaces [54].

The control architecture is based on the augmentation
of the existing baseline linear controller by the adaptive
architecture, as the common approach in aerospace sys-
tems [55]. The baseline controller is developed assuming a
nominal system and the L1 adaptive controller is added to
compensate for unknown parameters and disturbances that
affect the system (Fig. 4). The objective is to design a con-
trol input δe to enable tracking of the pitch rate command.
The total deflection of the elevator

δe(t) = ub(t) + u(t) (47)

is the sum of the commands from the baseline linear con-
troller ub(t) and the adaptive controller u(t).

Fig. 4. The augmented controller.

The design is based on the short-period dynamics
model of fixed-wing aircraft defined by [56][

α̇
q̇

]
︸︷︷︸

ẋ

=

[
Zα

Va
1 +

Zq

Va

Mα Mq

]
︸ ︷︷ ︸

A

[
α
q

]
︸︷︷︸

x

+

[
Zδe

Va

Mδe

]
︸ ︷︷ ︸

b

δe︸︷︷︸, (48)

where q is the pitch rate, α is the angle of attack, Va is
the trimmed airspeed, (Zα, Zq, Zδe) and (Mα,Mq,Mδe) are
fixed-wing aircraft stability derivatives. It should be noted
that the stability derivatives can not be measured, and they
vary depending on flight conditions [56].

Taking into account the model uncertainties and the
external disturbances, the system in (48) can be extended
as follows

ẋ(t) = Apx(t) + bpδe(t) + f(t, x), (49)

where Ap = A +∆A, ∆A is an unknown matrix of model
uncertainties, bp = b ω , ω is an unknown factor of the con-
trol input uncertainties, and f(t, x) is a vector of unknown
non-linear functions.

As mentioned above, the total deflection of the elevator
from (47), the resulting system can be written as follows

ẋ(t) = Amx(t) + bωu(t) + f̃(t, x), (50)

where Am = Ax + ub is a known Hurwitz matrix that de-
fines the desired dynamics of the system in the nominal
case and f̃(t, x) = ∆Ax(t) + (ω − 1)ub + f(t, x).

For control design the following approximation can be
made

f̃(t, x) = B
(
θ⊤x(t) + ηm(t)

)
+ ηu(t, x). (51)

Therefore, the system in (50) can be parametrized as fol-
lows

ẋ(t) =Amx(t) +B
(
ωu(t) + θ⊤x(t) + ηm(t)

)
+ ηu(t, x),

(52)

where θ is a vector of constant unknown parameters repre-
senting model uncertainties, ηm(t) is an unknown matched
disturbance, and ηu(t, x) is an unknown unmatched distur-
bance. The resulting model is similar to (1), which makes
straightforward application of the L1 adaptive controller
(2)-(9).
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Fig. 5. Performance of the adaptive controller under large un-
certainties.

For the controller implementation, the desired eigen-
values of the system were chosen λ1,2 = −5.6 ± 4.2j, i.
e., a pulsation ωn = 7rad/s and a damping ξ = 0.8.
The controller was designed to be robust against model
uncertainties within the compact sets Θ = [−1, 1] and
Ω = [0.25, 1.25]. The L1 adaptive controller parameters
were set Γ = 500, D(s) = 1/s, k = 150.

The proposed scenario was that the UAV follows, au-
tonomously, a path defined by four waypoints at a fixed
altitude h= 70m. The robustness of the designed controller
was tested in the presence of the following faults:

• A loss of actuator effectiveness ω = 0.5;
• A constant control bias ηm(t) = −0.10 rad.

The onboard control system is not aware of the faults, and
the UAV is expected to continue to follow the desired path.

As it is shown in Fig. 5, the adaptive controller, with-
out any retuning, maintains the altitude of the UAV under
those uncertainties, introduced at flight time t= 792s. Note
the presence of peaks due to the rolling motion of the UAV
when turning. The frequency and amplitude of the peaks
are reasonable for this type of UAV and faults conditions.
It can be seen in Fig. 6 that the input command of the
L1 adaptive controller and the total elevator command are
smooth and do not present saturations.
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Fig. 6. Output commands with the adaptive controller.
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Fig. 7. Performance of the adaptive controller under large un-
certainties.
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Fig. 9. Performance of the adaptive baseline under large un-
certainties.

Additionally, good tracking and estimation perfor-
mances for the pitch rate q are demonstrated in Fig. 7.
It can, also, be noted that the estimated angle of attack α
is within a reasonable interval. Oscillations in the pitch rate
and the angle of attack are observed. These oscillations are
acceptable given the bias and the loss of effectiveness of the
elevator command.

It is also shown in Fig. 8 that the parameters of the
adaptive controller are within their corresponding bounds.
It should be noted that these parameters do not converge
to their true values because this needs persistence of ex-
citation [57]. L1 adaptive control has guaranteed transient
performance and guaranteed robustness without introduc-
ing or enforcing persistence of excitation [30].

In contrast, as it appears in Fig. 9, when the adaptive
controller was turned off, at time t= 896s, the baseline PI
controller was not able to hold the altitude of the UAV
under the same uncertainties.

These flight tests conclude that the output feedback
L1 adaptive controller outperforms the baseline controller,
and shows good tracking and estimation performance in
the presence of faults and uncertainties.

4. Summary

It is shown in this paper that the L1 adaptive controller
can be formulated on the basis of a state space formula-
tion, while using only output measurements rather than
full state knowledge. The key idea is to replace the state
predictor with a Luenberger observer. Through the use of
a state space model, a physical representation of the sys-
tem parameters can be maintained, which supports uncer-
tainty specification and the definition of the reference dy-
namics. The adaptation law is based on the sliding surface
that provides better robustness under disturbances with
unknown bounds. The controller was successfully tested in
a real flight, along with the presence of disturbances and
actuator loss of effectiveness. This approach offers an alter-
native design for systems that are not fully instrumented
with sensors, such as small UAVs. From this point of view,
the use of the presented method is justified.

Future directions may include the use of the proposed
method in system monitoring and fault detection based
on estimated states. Another more realistic approach to
the problem of L1 adaptive control is to consider that in
the real world, external disturbances are completely un-
predictable, i.e., they are stochastic phenomenon. Such an
approach needs to borrow tools from stochastic analysis.
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