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Abstract 

Advanced Air Mobility (AAM) is expected to 

revolutionize the future of general transportation 

expanding the conventional notion of air traffic to 

include several services carried out by autonomous 

aerial platforms. However, the significant challenges 

associated with such complex scenarios require the 

introduction of sophisticated technologies able to 

deliver the resilience, robustness, and accuracy needed 

to achieve safe, autonomous operations [39]. In this 

context, solutions based on Artificial Intelligence (AI), 

able to overcome some limitations found in traditional 

approaches, are becoming a major opportunity for the 

aviation industry, but, at the same time, a significant 

challenge with respect to the certification standards. 

With the focal point on further proposing a 

certifiable architecture for AI-enhanced vision 

navigation in AAM operations, this paper first, 

summarizes the current technologies and fusion 

methods applied to date to navigation purposes, to 

later address the certification problem. Regarding 

certification, it explores three specific points: 1) 

traditional certification procedures; 2) current status of 

AI homologation recommendations; and 3) other 

certification factors to be considered for future 

discussion. 

Introduction 

Urban Air Mobility (UAM) pretends to define 

safe and efficient air traffic operations performed by 

highly automated aircraft operating at lower altitudes 

within urban areas. Likewise, Advanced Air Mobility 

(AAM) builds upon the UAM concept by 

incorporating operations out of urban environments, 

such as: intercity passenger transportation, cargo 

delivery and/or other public or private services. In this 

context, several parallel efforts are focusing on 

defining the Concept of Operations (ConOps) for the 

initial phases of UAM and AAM. These studies 

suggest different perspectives of the high-level 

operational procedures, but all agree that safety must 

be the key principle. However, significant challenges 

arise when requiring technologies to deliver the strict 

performance needed to substitute the onboard pilot. 

Specifically, regarding navigation, operational 

procedures state that AAM vehicles shall estimate 

their own position accurately during all flight phases 

avoiding Single Point of Failure (SPOF) systems. 

Due to the limitations associated with GNSS-

based navigation systems, present commercial 

Position, Navigation and Timing (PNT) solutions start 

offering alternatives completely independent to GNSS 

techniques, typically based on pseudolites and vision 

technologies. Although pseudolites approaches 

provide accurate, reduced cost and easy integration 

solutions, they are susceptible to the same signal 

interferences as GNSS-based solutions. Conversely, 

visual-based localization techniques, an active 

research area, are gaining ground because of some of 

their advantages such as their immunity to external 

interferences and their adaptability to all types of 

platforms while satisfying payload size, weight, and 

power (SWaP) requirements.  

However, although visual-based solutions 

present promising results, they are still not mature 

enough to provide the resilience required for AAM 

operations. Thus, to overcome this limitation, two 

different strategies are addressing the problem. Firstly, 

combinations of dissimilar sensors operating at 

different wavelengths focus on compensating the 

limitations of each technology and expand the 

operational range of the overall solution. Secondly, 

traditional fusion methodologies are being replaced by 

Machine Learning (ML) techniques, which have 

demonstrated that are able to overcome some of the 

deficiencies present in traditional methods.  

Therefore, ML techniques are becoming a major 

opportunity for the aviation sector but also a 

significant challenge due to the strict certification 

procedures implemented in this industry. Accordingly, 
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some of the most important civil aviation authorities 

(CAAs), such as the Federal Aviation Administration 

(FAA) and its counterpart in Europe, the European 

Union Aviation Safety Agency (EASA), are currently 

focused on establishing the basis of certification 

procedures related to AI technologies for aerospace 

systems. Besides, in recent years, different technical 

reports have been published addressing problematic 

aspects of ML homologation, such as verification, 

validation, traceability, or coverage. However, due to 

the strict certification protocols, all reports drastically 

limit the considered ML applications to a reduced 

group which meets rigorous conditions, leaving apart 

a huge number of great-potential methodologies that 

could be key for achieving safe autonomous, aerial 

operations.    

Within this framework, and with the final goal of 

designing a certifiable architecture for an enhanced 

vision navigation system based on AI, this work 

encompasses the following points. It begins by 

summarizing the benefits of enhanced, visual 

navigation technologies and ML fusion methods in 

comparison to historical solutions. Then, the 

certification discussion starts by introducing the key 

aspects of the traditional aviation homologation 

process in order to increase the awareness of them. In 

continuation, the circulating considerations and 

recommendations related to AI-based solutions are 

analyzed. Finally, some novel ideas that could be 

considered in order to open the certification doors to 

all categories of ML applications are brought up.  

Navigation technologies 

Even as technology advances, GNSS still remains 

an integral part of current navigation systems. GNSS-

based technology, empowered by its augmentation 

techniques such as GBAS, RTK or DGNSS, provides 

accurate PNT. However, these solutions are 

vulnerable to intended or unintended radio 

interference, as well as to multipath errors. 

Consequently, pushed by the demanding performance 

required in AAM operations, there is at present a huge 

effort focused on developing navigation solutions able 

to overcome these deficiencies. One of the most 

considered technologies corresponds to pseudolites, 

which provide a ground-based GPS alternative. Some 

others rely on VOR/DME technologies. Nevertheless, 

both of them are also susceptible to signal interference, 

and they depend upon external systems for acquiring 

the necessary information for computing the aircraft 

position. 

On the other hand, visual-based localization 

techniques have long been an active research area 

since they present several advantages such as relying 

on exteroceptive sensors for sensing the surroundings, 

which make them immune to external interferences 

while typically satisfying payload size, weight, and 

power (SWaP) requirements, being able to be adapted 

to all types of aerial platforms.  

 However, while it is true that only a visual 

camera does not span the whole spectrum of situations 

expected in AAM, a multi-source localization 

approach, avoiding, also, Single Point of Failure 

(SPoF) systems, could be the proper solution. The idea 

builds upon incorporating complementary and 

redundant sources of information not only to 

overcome individual sensor weaknesses, but also to 

expand the operational spectrum and reliability of the 

final approach. Thus, for instance, fusing vision and 

infrared cameras allows to achieve robustness to 

illumination effects, expanding the operational range 

to night-time and poor weather conditions, introducing 

stereo configuration, LIDAR or altimeters enables 

depth computation, while accuracy can be  improved 

by adding Inertial Measurement Units (IMUs).  

To this end, a deep study about the exploitable 

technologies for navigation purposes has been 

performed. Table 1 gathers the main strengths and 

weaknesses of every one of them.

 

 

 

 

 

 

 



 

Table 1. Benefits and drawbacks of the different technologies used for navigation purposes 

Technology Advantages Disadvantages 

GNSS - Absolute Positioning 

- Easy integration and low cost 

- High accuracy (with augmentation 

techniques) 

- All weather and all light conditions 

- Not self-contained 

- Radio interferences 

- Multipath error 

- Susceptible to external attacks 

- Low acquisition rate 

Visual camera - Self-contained 

- Easy integration and low cost 

- Immune to external disturbances 

- Simple calibration 

- Navigation accuracy between  0.1-2% 

- Relative position 

- Scale uncertainty 

- Texture / light dependency 

- High computational cost 

- Blur images in high-dynamical systems 

Stereo cameras - Self-contained 

- Depth information available 

- Immune to external disturbances 

- Accuracy around 0.1 and 2% 

- Relative position 

- Precise calibration required 

- Complex synchronization 

- High computational cost 

- Texture / light dependency 

- Blur images in high-dynamical systems 

Inertial systems 

(Low SWaP) 

- Self-contained 

- Robust in high-dynamical systems 

- High acquisition rate 

- Easy integration and low cost 

- All weather and all light conditions 

- Immune to external disturbances 

- Unsuitable for positioning 

- Drift over time 

- Stationary error 

Infrared camera - Self-contained 

- All weather and all light conditions 

- Easy integration and medium cost 

- Immune to external attacks 

- Relative position 

- Scale uncertainty 

- Lack of features 

- High computational cost 

Near-Infrared 

camera 

- Self-contained 

- All weather and all light conditions 

- Easy integration and medium cost 

- Immune to external attacks 

- Very sensitive to natural elements 

- Relative position 

- Scale uncertainty 

- Lack of features 

- High computational cost 

- Light dependency 

Laser range 

(altimeter) 

- Self-contained 

- Accurate depth position 

- Easy integration and low cost 

- All weather and all light conditions 

- Only measures the distance to a point 

- Accuracy depends on the target material 

- Stationary error 

LIDAR - Self-contained 

- High accuracy 

- All weather and all light conditions 

- Accurate depth position 

- Expensive and complex integration 

- Power consuming and heavy 

- High computational cost 

- Relative position 



 

- Full environment understanding - Range depends on atmospheric conditions 

VOR / DME - Absolute Positioning 

- All weather and all light conditions 

- Large number of stations available 

- Easy integration and low cost 

- Not self-contained.  

- Requires recurrent ground stations  

- Accuracy around 200 meters and 0.35º 

- Ground stations require periodic calibrations 

- Limited to line-of-sight 

- Availability depends on current traffic 

Pseudolites - Centimeter accuracy 

- Absolute positioning 

- Easy integration and low cost 

- Same GNSS receiver compatible 

- Works with GNSS or independently 

- Not self-contained 

- Require recurrent ground stations  

- Interference and multipath problems 

- Susceptible to external attacks 

- Complex time synchronization 

- Low acquisition rate 

Low Earth Orbit 

(LEO) satellites 

- High accuracy 

- All weather and all light conditions 

- More resistant to interference 

- Easy integration 

- Not self-contained 

- Orbit determination uncertainties 

- Reduced coverage (more satellites required) 

- Private infrastructure 

Event camera - Self-contained 

- Very high acquisition rate 

- High pixel bandwidth 

- Low power consumption 

- Acquisition software to be developed 

- Expensive 

- Relative position 

- High computational cost 

- Light dependency 

Signals of 

Opportunity 

(SoO) 

- Incredible signal diversity 

- High power signals 

- No additional infrastructure required 

 

- Not self-contained 

- Availability varies by location 

- Transmitter locations must be known 

- Requires complex wideband antenna 

- Multipath and non line-of-sight problems 

- Not optimized for positioning 

On this basis, one of the decisive concerns when 

designing a positioning solution corresponds to the 

selection of the involved sources of information and 

its optimal fusion architecture. 

Traditional vs AI-based fusion methods 

To date, countless different strategies have been 

applied for position estimation. While it is true that 

some of them involve a unique sensor, the latest trends 

advocate for considering measurements from different 

devices, due to the reasons mentioned before. 

Therefore, sensor fusion has become a vital process in 

complex and critical applications such as aircraft 

positioning [1]. 

Sensor fusion refers to techniques focused on 

combining data (processed or unprocessed) from 

different sources of information to produce a final 

solution composed by the combination of all available 

data. Fusion algorithms consider the advantages and 

disadvantages of every technology as well as tackle 

the redundancies and complementarities of the whole 

architecture. Thus, the final result corresponds to an 

improved and more trustworthy solution while 

increasing the resilience and expanding the 

operational range of the application. 

Traditional localization approaches, based on 

physical models or geometry theory, mainly apply 

statistical and probabilistic fusion methods 

[6][7][8][9]. Although they are able to achieve, in 



 

some cases, satisfactory accuracy, the final approaches 

do not procure enough reliability to operate in real 

AAM scenarios. Some of the limitations commonly 

found in these applications are: 

● Inability to estimate and maintain the absolute 

scale of the scene. 

● High sensitivity to external environmental 

conditions, such as light intensity, poor 

weather situations such as fog, snow or rain. 

● High sensitivity to high dynamical systems 

resulting in blurry images 

● Night vision difficulties 

● Problems when handling low texture images 

● Inability to operate in dynamic environments, 

where surrounding objects are not static. 

● Lack of adaptability to specific environments 

Thus, with the main focus on solving these and 

other deficiencies and thrusted by new technological 

advances for parallel processing, and the enormous 

amounts of data easily available, ML techniques are 

progressively replacing traditional fusion 

methodologies.  

Depending on how ML techniques are applied, it 

is possible to differentiate two groups of approaches:  

● End-to-end: entirely composed by ML 

techniques. They are an alternative to 

separated methods for detection, matching 

and/or estimation, since they perform all of 

the steps at once [10][11][12][13].  

● Hybrid: integrates classical geometric models 

with a ML framework. Thus, they replace 

parts of a geometric model with ML 

techniques. For instance, proposed works are 

already focused on extracting visual features 

[20], estimating and maintaining depth using  

a monocular architecture [19], real time data 

fusion [14][15][16] or loop closure in SLAM 

applications [17][18].  

Besides, another possible classification is made 

according to how the learning process is performed: 

● Supervised: learn by using labeled data. These 

applications map the inputs to the known 

results to find the relation between both.  The 

final goal is to apply the learned patterns to 

unknown data to predict discrete 

(classification) or continuous (regression) 

values. They require supervision during the 

learning process by matching the predictions.  

● Unsupervised: learn by using unlabeled data 

and without any guidance during the learning 

process. Similarly to supervised learning, their 

main aim is to explore the underlying patterns 

and predict outputs, but without any previous 

knowledge. To this end, they explore the 

association and relationships between input 

values to group them, that is, they perform 

association and clustering tasks. 

● Reinforcement Learning (RL): learn by 

interacting with the environment on their own, 

following a trial and error procedure. During 

the learning process, without any supervision, 

these applications go through different 

discrete steps. At every step, the applications 

get a reward based on whether the previous 

decision was correct or not. 

         

      Figure 1. Taxonomy of AI 

Finally, when talking about ML-based 

approaches, we refer to methods able to explore and 

learn relationships between different sources of 

information. However, ML covers a huge number of 

different methodologies that can be applied for aircraft 

navigation. Figure 1 shows the taxonomy of AI, 

contextualizing the most important ML techniques 

inside this field. 

While AI refers to the ability to imitate intelligent 

human behavior, ML specifically includes the capacity 

to automatically learn and improve from the 

experience. On their side, Neural Networks (NNs) 

refers to an interconnected group of artificial neurons, 



 

mimicking the human brain, able to classify input 

information according to a mathematical function 

based on weights and biases which are learned during 

the training process. Although NNs are capable of 

uncovering simple underlying patterns, Deep Learning 

(DL) is preferred when handling challenging hidden 

relations. This is because DL comprises multiple NNs 

layers, making them more complex, but increasing 

their capacity to model highly non-linear associations 

from a large amount of data. Finally, Convolutional 

Neural Networks (CNNs) correspond to NNs adapted 

for analyzing and identifying visual data from input 

images while Recurrent Neural Networks (RNNs) are 

a type of network modified for analyzing temporal 

dynamic behavior. 

At present, the most promising architecture for 

aircraft localization and navigation approaches based 

on ML techniques corresponds to CNNs used to 

estimate the spatial features from one or several 

cameras, and a Long-Short Term Memory (LSTM) 

architecture applied to estimate the temporal variation 

of these features from which the final pose may be 

estimated [5].  

Generally, ML-approaches permit learned 

models to be resilient and adaptive to environmental 

changes. Some of the key aspects that learning 

approaches offer over traditional methods are: 

● More robust to calibration and timing errors.  

● Extract high-level features, which, in contrast 

to hand-crafted feature extractors, make them 

more robust to featureless areas, changing 

light conditions and/or blurring.  

● Model the motion dynamics, handling highly 

non-linear systems. 

● Handle optimization problems related to data 

association (matching, map optimization). 

● Allow to combine multi-sensor information 

providing a final enhanced estimation. 

● No necessity of system’s prior knowledge 

However, despite the benefits shown by ML 

methods, some considerations must be kept in mind: 

● They require large amounts of data correctly 

labeled for training purposes.  

● ML applications are considered as black-box 

models since their architecture does not allow 

an easy human understanding. 

AI certification discussion 

Since its inception, one of the pillars on which 

civil aviation has been founded corresponds to safety. 

To this end, big efforts have been put into setting the 

rules and procedures that ensure safety air operations. 

On the other hand, civil aviation corresponds to a 

worldwide marketplace, so it is expected that the 

CAAs are harmonized in the demanded requirements. 

Specifically, regarding the software in airborne 

systems, the current applicable guideline around the 

world is the standard DO-178C, which is focused on 

assuring that software developed for avionics systems 

is reliable and safe to be used in flight.  

However, although DO-178C corresponds to an 

updated version approved in 2013, it does not make 

any allowance for adaptive approaches, putting aside 

all applications based on AI. Thus, in order to cover 

this gap and allow taking advantage of the great 

potential of AI-based applications in airborne systems, 

different CAAs are currently working on the 

implementation and certification processes related to 

AI technologies for aerospace systems. Moreover, in 

parallel, numerous researches address specific 

problematic aspects of AI certification, such as 

verification, validation, traceability or coverage, 

trying to find solutions to some of these points, which 

could ease and accelerate the certification course. 

Traditional aviation industry standards 

At the present time, the development of aviation 

systems is designated by the compliance of three 

fundamental standards, addressing each of them 

different aspects of aircraft certification: DO-178C 

(software), DO-254 (hardware), and ARP4754A 

(high-level system integration). Thus, DO-178C, titled 

Software Considerations in Airborne Systems and 

Equipment Certification, describes the software 

planning process, software development process, and 

the verification activities for delivering high-quality 

avionic software. Therefore, standard DO-178C is the 

principal document used by applicants to develop all 

commercial software-based aerospace systems, as 

well as by the CAAs to validate them.  

DO-178C was published by the Radio Technical 

Commission for Aeronautics (RTCA) and the 

European Organization for Civil Aviation Equipment 

(EUROCAE) and approved by the FAA in 2013. The 

standard corresponds to an updated version of the 

document DO-178B, released in 1992, upgraded to 



 

include the progress in software technology during 

these two decades. Besides, DO-178C is accompanied 

by four technology supplements focused on different 

aspects which require detailed attention: tool 

qualification (DO-330), model-based development 

and verification (DO-331), object-oriented technology 

(DO-332), and formal methods (DO-333). 

DO-178C is based on a framework for defining 

Development Assurance Levels (DAL). It defines five 

different levels, from A to E related to the gravity of a 

software failure. Thus, level A means ”Catastrophic” 
condition while E refers to ”No effect on safety”. The 
requirements to be covered for compliance depends on 

the specific level. Thus, applications categorized in 

level A must meet all safety requirements, while lower 

risk applications are less stringent, covering a 

decreasing number of requisites according to each 

specific level.  

In order to assure software reliability, DO-178C 

demands the following key aspects to be 

demonstrated:  absence of errors, coverage of all 

specific requirements based on the criticality level and 

bidirectional traceability between requirements, code 

and tests. Regarding coverage, DO-178C identifies 

two types of coverage:  

● Requirements-based coverage: focused on 

demonstrating that all requirements can be 

validated through the proposed test cases. 

● Structural coverage: refers to the necessity 

that the proposed test cases go through all 

code structure, ensuring the absence of 

ambiguous, or unnecessary code. 

On the other hand, with respect to traceability, 

two-way connections must be evidenced between the 

requirements, source code and test cases. Thus, every 

specific test case must be linked to the requirement/s 

to be validated going through the portion of code that 

implements the functionality and vice versa. This step 

further guarantees the absence of orphan or dead code 

which cannot be traceable.  

AI-based certification guidelines 

In order to move forward towards the 

certification of ML solutions, three main difficulties 

inherent to the ML algorithms must be addressed: 

● Generalization problem: since the behavior 

of every ML model builds up based on the 

data used during the training process, the main 

challenge regarding AI/ML certificability sits 

on the impossibility to predict the conduct of 

the application when facing situations out of 

the training range.  

● Non-deterministic behavior: traditional 

software certification procedures focus on 

demonstrating the absence of unexpected 

behavior during the entire operation. To date, 

unexpected behavior derived from specific 

identifiable elements such as concurrency 

bugs, inadequate control conditions or 

unconsidered situations. So, once discovered, 

they can be mended. However, the behavior of 

an ML model is determined by a set of 

parameters learned during the training phase. 

Moreover, different learning methodologies 

(unsupervised, supervised or reinforcement 

learning) and several learning algorithms can 

be applied. Finally, the system can be pre-

trained, using fixed weights during operation, 

or rely on online learning, adjusting the 

weights during the operation. 

● Requirements traceability and coverage: 

As pointed out in the previous section, 

standard DO-178C demands bidirectional 

traceability between the requirements, code 

structure and test cases and full coverage 

evidence.  In traditional applications, this is 

possible since the code is easily interpretable, 

but in the case of ML applications, the direct 

traceability and coverage is not feasible. 

To overcome these obstacles, several researchers 

are focusing on solving these problems with the final 

purpose of finally enabling AI certifiability. In this 

line, [24] is focused on uncovering complex AI models 

to human users in a highly systematic, interpretable, 

and understandable manner, named as Explainable AI 

(XAI). [25] identifies the challenges and techniques to 

address the issues posed by learning-enabled 

components. [23] analyzes the design, requirements 

and test objectives related to ML-based low criticality 

airborne applications. Finally, [26] corresponds to a 

White Paper about Machine Learning in Certified 

Systems, which was the result of an international 

research program on Dependable and Explainable 

Learning. 

On the other hand, different CAAs are currently 

working in the same direction, publishing diverse 

development guidelines which will facilitate the 



 

further certification of the solutions designed 

following the recommended methodologies. 

FAA & NASA 
In the framework of the NextGen program, the FAA is 

working on identifying new opportunities to improve 

the efficiency and effectiveness of air traffic 

management operations. Activities ongoing include 

engineering to support the potential use of AI/ML to 

help National Airspace System (NAS) controllers. 

Certification processes are being analyzed to assess 

FAA Artificial Intelligence system software assurance 

and check-out requirements to map out where current 

certification processes are adequate and where gaps 

exist as current certification standards for the aviation 

industry were developed before Machine Learning 

popularization without taking specifics of ML 

technology into account. Also, Adaptive Systems, 

widely used in Aviation applications, have been 

analyzed in detail by the FAA and NASA in regards to 

Neural Networks and deep learning implementations 

that aim to be certified. 

The FAA checked the applicability of existing 

software assurance procedures, especially the DO-

178C, with its supplements. Determining what the 

design assurance requirements should be for software 

aspects of those systems was the main focus of the 

Verification of Adaptive Systems tasks. 

The outcome is clear, there are some fundamental 

incompatibilities between traditional design assurance 

approaches and certain aspects of ML-based systems. 

Specifically, it is still necessary to determine whether 

additional validation and verification (V&V) methods 

and activities or system-level constraints are needed to 

meet the DO-178C objectives. 

More recently, NASA has put the focus into analyzing 

the certification of Low Criticality Airborne 

Applications in terms of traceability, coverage, and 

ML model verification issues. To mitigate these 

issues, NASA has proposed the basis of an ML 

development workflow, limiting the scope to non-

adaptive, supervised learning systems with a specific 

breakdown between system and software/hardware 

artifacts inspired by the model-based design approach. 

Finally, NASA has defined how the applicability of 

DO-178C, DO-331, DO-254, and ARP-4754 can be 

achieved for Low criticality Airborne ML Systems 

(Level D) using standard activities and methods. 

EASA 
Although there is no formal regulatory 

framework for AI in Europe, the European Union 

Aviation Safety Agency (EASA) has a clear roadmap 

to allow certification of ML/AI applications. 

EASA identifies three general levels of AI starting 

with assisting functions (Level 1 AI), then making a 

step towards more human-machine collaboration 

(Level 2 AI) and at Machine autonomous behavior 

(Level 3 AI). The applicability of these guidelines is 

limited as follows: 

● Covering Level 1 AI applications, but not 

covering Level 2 and 3 AI applications;  ”No 
Safety Effect”, 

● Covering supervised learning, but not other 

types of learning such as unsupervised or 

reinforcement learning; 

● Covering offline learning processes where the 

model is ‘frozen’ at the time of approval, but 
not adaptive or online learning processes are 

approved. 

As introduced in the EASA Concept Paper 

(EASA, 2021), AI/ML certification will be focused on 

three objectives which require further research: 

● Guarantees on ‘ML model generalization’ 
● Guarantees on ‘Data completeness and 

representativeness’ 
● Guarantees on model robustness 

In order to anticipate future guidance and requirements 

for safety-related machine learning application, the 

agency has released the concept paper: First usable 

guidance for Level 1 machine learning applications 

(EASA, 2021), combining the European Commission 

Ethical Guidelines with the EASA trustworthy AI 

building blocks that are considered essential for 

enabling the readiness of AI/ML in aviation.  

It covers Level 1 applications; 1A-Human 

Argumentation, 1B-Human cognitive assistance in 

decision and action selection, shifting the paradigm 

from coding based applications to learning based 

applications. A description of Learning assurance, AI 

explainability and AI Safety risk mitigation building 

blocks is provided with especial emphasis in the W-

shaped learning assurance process that supersedes the 

non-AI/ML component V-cycle process. 

According to the Agency Roadmap the first AI/ML 

applications will be approved by 2025, by 2026 the 



 

final framework and guidance for Level1 and Level2 

will be in place and finally by 2028 the guidance for 

Level 3 applications will be ready being all enablers 

for single pilot and fully autonomous operations. 

Proposed ML certification considerations 

This paper introduces the following ideas to be 

considered when designing AI-based approaches, 

expecting to pave the way for their certifiability.  

Algorithm redundancy 
Redundancy has constituted a fundamental pillar 

of high reliability engineering over the latter decades. 

The objective of redundancy is to achieve fault 

tolerant systems, increasing, thus, their reliability by 

introducing duplicate elements. Moreover, 

redundancy not only enlarges the system reliability, 

but it also enables designers to quantitatively 

demonstrate it [31]. Three important concepts are 

associated to the redundancy applicability: 

● Independence: one problem arises when the 

redundancy is introduced in a system by just 

duplicating existing elements since identical 

elements will likely fail under similar 

circumstances. To avoid this issue, the 

concept of dissimilarity or diversity design 

was introduced.  The idea is based on the 

premise that introducing redundant but 

different elements, i.e. components 

performing the same tasks but based on 

different technologies or principles,   will 

ensure failures in different ways and at 

different times [31].  

● Component redundancy vs partitioned 

redundancy:  redundancy can also be applied 

in a system at different levels. Component 

level means that the whole component is 

duplicated, while partitioned redundancy 

implies lower level duplicity. Both 

methodologies require similar resources, but 

partitioned redundancy has a significant 

reliability advantage, particularly if longer 

intervals are involved [32]. 

 

   Figure 2. Component vs partitioned redundancy 

● Number of redundant elements: dual 

redundancy allows to detect an anomaly, but 

usually more information is required to 

identify the corrupted element. Using three or 

more elements enables both, detect the fault 

and identify the source element. 

Similarly to traditional safety-critical systems, 

redundancy could be applied in AI-applications in 

order to increment the reliability of the final solution. 

As Figure 3 shows, it could be implemented applying 

three different approaches: 

1. Same AI architecture, but different datasets 

for training purposes.  

2. Different AI architecture, but using the same 

training dataset.  

3. Different AI architecture and different 

training datasets.  

 

Figure 3. AI redundancy approaches 

 

AI explainability (XAI) 
As mentioned before, one of the concerns 

regarding ML applications is that they are considered 

as black-box systems. This impossibility to human 

understanding, makes them difficult to trust and, then, 

difficult to certify. XAI works on achieving AI 

systems transparency, enabling users to logically 

decompose and understand the system’s result. “With 

Interpretable AI, predictions can be logically justified, 

errors can be traced to their source in logical fashion, 

and a level of confidence in outcomes can be 

ascertained” [34].  

Thus, paying attention to interpretable AI when 

designing a new AI application could open the door to 



 

solve the traceability and non-deterministic problems, 

easing their future homologation. Several works 

including [24] [30] [35] present recent developments 

and applications in this field. 

ML/AI uncertainty 
Similarly to XAI, there exist other emerging 

fields of study that aim to clarify additional aspects of 

AI/ML applications. In this direction, uncertainty 

quantification is gaining, also, a major significance 

since the importance of the output uncertainty when 

determining the confidence of a system. Currently, 

several researchers are putting a big effort on the 

challenge of developing accurate and formal 

uncertainty quantification tools enhancing the 

confidence and trustworthiness of AI/ML applications 

[36][37]. Considering this field of study by software 

developers could be a good practice to smooth their 

certification path. 

Run-Time Assurance (RTA) 

RTA architecture is defined in the standard 

F3269-17 [28] as “a system of pedigreed components 

that implements real-time monitoring, prediction, and 

fail-safe recovery mechanisms that bounds the flight 

behavior of a non-pedigreed complex function to 

ensure the safety of a UAS”. Traditionally, RTA 
architectures have been applied to complex and/or 

experimental functions that cannot be fully tested. 

Standard F3269-17 provides directions to software 

developers regarding how to use RTA to restrict 

complex functions to ensure a reasonable level of 

safety. For its part, [27], a collaboration of the FAA 

and NASA, leverages it for providing safe operations 

of highly autonomous aircrafts. 

Likewise, RTA mechanisms could be applied to 

ML-based applications to monitor, regulate and ensure 

the correct operation of ML models during their entire 

operation, but especially in the course of unknown 

scenarios. Applying this methodology and taking 

advantage of the previous knowledge of the system 

(flight dynamics, sensor performance, etc), it could be 

possible to bound the ML outputs while predicting 

anomalous operation of the ML algorithms. Thus, the 

generalization and non-deterministic behavior 

problems could be tackled directly. In this line, [29] 

presents a RTA architecture based on a NN aircraft 

taxiing application showing how RTA could be used 

to ensure safe operation. 

Simulation tool to address Generalization problem 
Supplement DO-330 (tool qualification), referred 

previously, establishes the directions on how to use 

external software tools, which can be applied to 

develop, assess or validate the main program, to gain 

certification credit. For that purpose, the tool 

qualification process focuses on ensuring the tool's 

trustworthiness. Moreover, bidirectional traceability 

between the requirements and the code, as well as an 

explanation on how the tool will be applied within the 

main program life cycle is also demanded [22]. 

 Following these guidelines, a simulation tool 

could be developed based on traditional deterministic 

methods to diagnose and validate the AI-based 

application, especially in situations out of the training 

range. This simulation tool, designed according to the 

certification processes described in DO-178C, could 

be used to analyze the results of the ML-based 

algorithms not only using synthetic data (generated 

artificially), but also applying real data gathered from 

authentic flight operations. The use of such a tool 

would directly address the generalization problem 

while increasing the application's confidence and 

intelligibility, thus, raising the certification options. 

Product Service History (PSH) 
PSH corresponds to another strategy to acquire 

additional certification credit for software that has 

been in service a length of time. PSH is defined in DO-

178C as “A continuous period of time during which 

the software is operated within a known environment, 

and during which successive failures are recorded”.  
To date, PSH has been successfully used to 

supplement certification evidence as long as three 

requirements are met: PSH relevance must be 

demonstrated, must be sufficient and in-service 

problems must be collected and analyzed [38].  

Usually, PSH is applied to software that was not 

totally compliant to DO-178C, which is the case of AI 

applications. Thus, considering the three stated 

requirements when designing the AI-based solution 

will make possible a successful claim of PSH in the 

future to gain extra certification credit. 

DO-178C traceability exception 

A novelty introduced by DO-178C corresponds 

to how to handle object code generated by a compiler 

which is not directly traceable to the source code. 

When compilers translate source code to object code, 

they produce additional lines of code to handle 

exceptions, error detection or code for object-oriented 



 

features, among others. However, these additional 

lines are not traceable to source code. Thus, subsection 

6.4.4.2.b of DO-178C focused on how to address this 

exception on traceability, which usually requires 

additional verification efforts.  

Then, DO-178C makes an exception to certify 

Level A software which does not totally comply with 

the bi-directional traceability requirement, the case of 

AI-based applications. However, in order to overcome 

this deficiency, developers must keep in mind that 

supplemental verification evidence must be 

demonstrated to achieve acceptability. 

Proposed enhanced vision AI-based 

navigation architecture 

In this section a preliminary architecture for a 

vision-based navigation approach applying AI 

techniques is presented. The main idea is to apply all 

the concepts seen so far not only to achieve an 

accurate, reliable, and robust application, but also to 

design a high operational range solution while 

considering the reviewed certification guidelines. 

In order to establish the specific requirements of 

the navigation solution, it is necessary to understand 

the whole range of operations that AAM is expected 

to cover. To date, at least 36 potential use cases across 

16 market categories have been identified 

encompassing from air commute services, to 

emergency first response or goods delivery [39]. Then, 

the necessity of every service enormously varies from 

one to the other. Thus, while it is true that not all them 

must satisfy the same requirements, the following ones 

have been identified to be desirable in all use cases: 

● Safety: only self-contained solutions, which 

do not depend on external systems, will be 

considered, avoiding external attacks. 

● All-weather functionality: the final solution 

must be able to operate independently to the 

light and weather conditions. 

● Real-time operation: the computational cost 

required by the final approach must be 

adequate to provide solutions in real time. 

● SWaP requirements: the final solution must 

be easy to integrate, aircraft agnostic and 

comply with low SWaP restrictions.  

● Level of performance: the final approach 

must provide the accuracy, robustness and 

resilience required for AMM operations. 

● Future certifiability: in order to ease the 

further solution certification, the elements and 

tools mentioned for additional certification 

credits will be contemplated. 

Hardware selection 

According to the first requirement in the above 

list, the technologies which are not self-contained are 

directly discarded, that is GNSS, VOR, DME, 

Pseudolites, LEO satellites and SoO. Moreover, 

because of its advantages, among the remaining 

possibilities, the technology chosen to be the principal 

one corresponds to the visual camera. However, some 

shortcomings must be handled to achieve the 

mentioned requirements: 

● Scale uncertainty: three complement 

technologies are available to overcome this 

limitation: stereo cameras, LIDAR and 

altimeter. The first option requires a complex 

calibration while the depth accuracy is not 

suitable enough. The second option, LIDAR, 

is difficult to integrate, expensive and does not 

comply with the SWaP requirement. Thus, the 

altimeter is the option chosen to deal with 

depth estimation. 

● Texture / light dependency: LIDAR, infrared, 

and near-infrared cameras deal with these 

concerns. LIDAR is discarded because of the 

reasons mentioned above. Then, among the 

optical solutions, infrared is chosen because it 

is the most extended and easy to acquire 

solution.  

● Blur images in high-dynamical systems: IMU 

technology is the best complementary 

candidate due to its high acquisition rate and 

robustness in high-dynamical systems. 

● High computational cost: Although GPUs 

excel at parallel processing, it is at the expense 

of energy efficiency. However, FPGAs offer 

hardware customization, which allows great 

performance and low latency at a low power 

consumption [40]. 

Summarizing, the selected hardware corresponds to: a 

visual camera, an infrared camera, a laser altimeter 

and an IMU device, all of them managed by a FPGA 

unit. Moreover, it should be noted that the proposed 

hardware allows to increase its accuracy in critical 

situations such as the approach or landing phases using 



 

complementary landmarks or IR signs placed on the 

ground, near to the landing points. 

Software selection 

The proposed software architecture is depicted in 

Figure 4. As we can see, two redundant models (a 

hybrid and an end-to-end), are suggested to perform 

the same tasks, that is, estimate the aircraft pose. 

Although the goal of both models is the same, both are 

implemented using different techniques, following the 

redundancy and dissimilarity guidelines. Thus: 

● End-to-end model: a recurrent CNN (RCNN) 

will be in charge of computing the pose 

estimation from sequential sensor inputs. 

Specifically, the CNN extracts visual features 

from consecutive visual and infrared images 

while the RNN models the temporal 

correlation of these features and the rest of the 

sensors to estimate the final pose. 

● Hybrid model: the pose estimation is carried 

out by different modules, marked in dark teal 

in the Figure 4: 

○ Sensor fusion: the fusion of the data from 

the different sensors can be implemented 

using CNNs, RNNs or even traditional 

methods such as Kalman or particle filters. 

The optimal method will depend on the 

nature of every sensor. 

○ KeyPoints detection & matching: a CNN 

will be applied to analyze and extract high-

level features from the images, increasing 

the capabilities against unknown 

environments. 

○ Motion estimation: a RNN will model the 

motion dynamics from the fused 

measurements in order to preliminary 

estimate the aircraft pose. 

○ Local Optimization: a NN will be applied 

to handle the data association problem 

related to optimizing the final result using 

the current image and all the images 

connected to it in the graph. 

○ KF Culling: an optional module in charge 

of discarding redundant information so that 

the subsequent steps can be performed 

more efficiently. 

 

Figure 4. Software architecture of the proposed vision-based navigation solution

On the other hand, all elements in orange are control 

elements added to facilitate the solution certifiability.  

● Uncertainty estimation: modules focused on 

compute the uncertainty of each estimation.  

● RTA: control elements added to monitor the 

outcomes of the algorithm. The aircraft 

constraints and the flight dynamic will be used 

to set the thresholds which will alert about a 

model’s malfunction.  
● Redundancy Management: the main control 

element. It will receive all control information 

in order to select the most reliable result. 



 

Moreover, it will prepare the Explanation box 

using all the data available. 

● Explanation box: according to the XAI 

guideline, it corresponds to a description of 

the final outcome to increase the user's 

reliability. This description will gather the 

uncertainty related to every estimation as well 

as other internal control information. 

Finally, the module Model Results will provide the 

final result, the pose estimation. Although three 

redundant elements are deseable according to 

redundancy recommendations, the computational cost 

will probably be quite large. However, considering all 

the control elements added, it is expected not only to 

detect, but also to identify any source of errors.  

Conclusions 

The major opportunity that AI techniques 

represent for the aviation industry due to their great 

potential has put the spotlight on their certifiability 

discussion. On the other hand, the demanding 

scenarios proposed by AAM operations require 

advanced technologies able to overcome traditional 

limitations. Thus, the use of AI algorithms in real 

applications is becoming fundamental, pushing to 

accelerate their certification path. However, traditional 

certification procedures are not prepared for adaptive 

solutions, which are not compliant with traceability or 

coverage requirements. Then, alternative certification 

procedures must be considered enabling the 

homologation of systems based on AI techniques 

while ensuring their maximum level of safety. 

In this context, this work presents an AI-based 

architecture for a navigation solution aligned with the 

current direction of civil aviation certification 

procedures. The proposed design not only aims to be 

compatible with current certification requirements for 

its further use in real operations, but also to provide an 

accurate, resilient and robust performance in a wide 

range of AAM scenarios.  

While it is well known that GNSS-based 

solutions, or their ground-based or low orbit 

alternatives, will remain a main part of the aerial 

navigation solutions, it is also true that they are 

vulnerable to external disturbances, making them not 

reliable enough. Consequently, dissimilar 

technologies are required to detect, at least, 

degradation performance, guaranteeing the integrity of 

the whole system. In this context, enhanced visual 

solutions provide a distinct advantage since their self-

contained condition makes them immune to natural or 

deliberate distress. Thus, enhanced visual solutions are 

not the only or the best solutions but, to the best of our 

knowledge, they are the uniques which comply with 

all desirable requirements previously identified for 

AAM scenarios. 
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