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‚ Abstract

In this paper, a data-driven Inertial navigation systems

(INS) and Global Navigation Satellite System (GNSS)

fusion algorithm based on the use of the Gated Recur-

rent Unit (GRU) is proposed. In this project, we trained

the GRU neural network with Inertial Measurement Unit

(IMU) raw data and GNSS Position, Velocity and Tim-

ing (PVT) solutions as input and the position difference

between GNSS and ground truth as labels. Therefore, the

trained model can estimate the rover’s positions by sub-

tracting the predicted GNSS error from GNSS positions

given IMU raw measurements and GNSS PVT solutions.

To evaluate the performance of GNSS/INS fusion algo-

rithms in realistic scenarios, we developed an experimental

platform. Our experimental platform consists of a moving

test rig and an external validation system. The moving test

rig consists of a rover equipped with an LPMS-CU2: 9-

Axis Inertial Measurement Unit (IMU) and U-Blox ZED-

F9P GNSS receiver. For validation purposes, we employ

an onboard real-time kinematic positioning (RTK)-GNSS

receiver. The test scenarios include both open-sky and

challenging conditions near buildings, which is beneficial

for devolving and testing urban navigation systems. After

training with collected experimental data in multiple test

scenarios, the proposed algorithm is able to improve GNSS

positioning accuracy by more than 60% for the open-sky

environment and 30% for the urban environment.

‚ Introduction

Global Navigation Satellite Systems (GNSS) is one

of the most important position, navigation, and timing

(PNT) sources in various applications, such as Urban

Air Mobility, Unmanned Aircraft System (UAS) Traf-

fic Management, and Air Traffic Management. However,

GNSS performance can be degraded when operating alone

on high-speed platforms, in an urban environment, or

applications with high accuracy requirements [1]. Inertial

navigation systems (INS) can perform well in a short time

range yet accumulates past errors, leading to performance

that can deteriorate in the long range. Fusing Inertial

Navigation Systems (INS) data with GNSS is a common

way of partially mitigating the weakness of GNSS [2], [3].

Common fusion algorithms for INS and GNSS integra-

tion can be categorised by the utilised GNSS data: Un-

coupled integration, Loosely coupled integration, Tightly

coupled integration and Ultra-tight/deep integration. For

This research is funded by European Space Agency under NAVISP
Element 2 program with grant number 4000134037/21/NL/MP/mk

uncoupled integration, INS bridged the data when GNSS is

not available. However uncoupled integration doesn’t miti-

gate the error accumulation issues of INS, thus not suitable

for high accuracy navigation [4]. For loosely coupled in-

tegration [5], the GNSS receiver calculated the navigation

solution (position and velocity) from the GNSS signal

and combined it with the INS output. Tight and ultra-

tight coupling [6], [7] use the GNSS raw measurement

(pseudorange, pseudorange rate, tracking phase data, etc)

and fused them with IMU data to obtain fused Position,

Velocity and Timing (PVT). Even though tight and ultra-

tight can provide better accuracy than loosely coupled,

they involve the intermediate data of GNSS receivers (i.e.,

the digital tracking loops), which are not always accessible

[8] from commercial products. Therefore, loosely coupled,

as one of the most common fusion schemes for INS and

GNSS integration, is adopted in this paper.

There are two major categories of loosely coupled

algorithms: rule-based and data-driven approaches. For

rule-based methods, filters are mostly applied, including

Kalman filter [], Extended Kalman filter [9], Unscented

Kalman filter [10], and particle filter [11]. Filtering algo-

rithms require the knowledge of all measurement models

and noise to perform GNSS/INS fusion. However, for real

applications, this assumption tends to cause trouble. For

instance, when multipath occurs neither the GNSS obser-

vation model nor the GNSS noise is capable of effectively

modelling the measurement to state conversion. Moreover,

the sensor measurement model and the noise term may

not be directly available or contains errors when certain

conditions are not considered (e.g. communication delay

or packet loss). Instead, various tests and approximations

are required. Therefore, we aim to develop a data-driven

approach for fusing GNSS and Inertial Measurement Unit

(IMU) data with the capabilities of handling a more

complex environment and less demanding on modelling

of the sensors.

There are several data-driven approaches for performing

sensor fusion of GNSS and INS sensors. Recurrent Neural

Network (RNN) [12] was first applied to GNSS/INS inte-

grations. The issue with RNN is that it has difficulties solv-

ing problems that require learning long-term dependencies

due to the gradient of the loss function decaying. [13]

applied RNN and its variations long-short term memory

network (LSTM) and gated recurrent unit (GRU) for INS

navigation when GNSS fails at open sky environment. The

results showed that Both LSTM and GRU outperforms

RNN with less computational efficiency. Among them,

GRU provides higher computational efficiency [14]. As

for the urban environment, [15] used LSTM to estimate
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the satellite visibility, thus enabling a more accurate PVT

result. The discussed approaches are mostly evaluated

through simulated data which lacks the real world ca-

pability test. It can be identified that from the above

literature, RNN based machine learning method is capable

of processing IMU data, providing reliable PVT given time

serial measurement data. Furthermore, since phenomenons

like multipath are hard to model mathematically, we need

real world data to validate our algorithm.

Inspired by the literature mentioned above, this paper

aims to develop a machine learning based fusion algorithm

that is capable of providing accurate positioning results

given IMU and GNSS data even within an urban environ-

ment. To develop a practical algorithm, an experimental

platform is developed with the capability of real-time data

collection and validation purposes. These two are also the

major contributions of this paper. The rest of the paper

is organised as follows. Section II presents our proposed

algorithm. Section III gives the architecture of our experi-

mental platform and experiment setups. In Section IV, the

performance analysis of the proposed algorithm is done

via real-world experiments. Finally, some discussions and

conclusions are provided.

‚ GRU based IMU-GNSS Fusion

‚ GRU

As discussed before, a machine learning approach are

required for solving the fusion problem. Considering the

nature of the real-time navigation application, the machine

learning model needs to be not complicated and trained

quickly considering that the model needs to run on a

vehicle onboard computer. Also, since navigation is time-

dependent, the machine learning model must simultane-

ously consider the relation between current and past data.

Therefore, GRU, as an efficient variant of RNN, is adopted

as the choice for this paper since it meets the listed

requirements. The architecture of GRU is shown in Figure

1.

Figure 1: GRU architecture

The GRU model can be describe as the follow equations

[13]:

zt “ σ pWz ¨ rht´1, Xts ` bzq

rt “ σ pWr ¨ rht´1, Xts ` brq

ĥt “ tanh pW ¨ rrt d ht´1, Xts ` bq

ht “ p1 ´ ztq d ht´1 ` zt d ĥt

yt “ σy pWyht ` byq

(1)

where Wz,Wr,W are the parameter matrices, bz, br, b are

the bias terms, ht is the hidden layer vector, yt is the

output vector, Xt is the input vector, and σh, σy are the

activation functions (Tanh). GRU takes the information

from the previous time step ht´1 and multiply it with a

weight matrix. The same is done for the new input Xt and

is then combined with the previous state to create the new

hidden state ht. Because of the way GRU is structured,

it allows for information in the past to be linked with the

information at the current time step. Unlike other neural

networks that links one set of inputs to one set outputs,

RNN has “memory” to learn the relation between time

steps. However, RNN has the limitation of not able to

learn the long-term relationship since it only considers

the gradient of the data between steps. GRU, as a recent

variant of RNN, is capable of mitigating the RNN’s issue

of learning the long-term relationship by memorising long-

term with three gates. GRU uses only one ’update’ gate

to decide how much information will be kept and what

information will be updated and added into the states,

which makes GRU one of the most efficient model among

other RNN variants.

‚ System Architecture

In this project, we used machine learning (ML) based

fusion algorithms to improve the PVT accuracy of the

GNSS receiver given IMU data. IMU can perform well in

a short time range; however, since IMU accumulates past

errors, the performance can deteriorate in the long range.

On the other hand, GNSS can provide time-dependent

navigation solutions while maintaining homogeneous ac-

curacy. However, the data rate of GNSS receivers may

not fulfil the requirement for some applications, and nav-

igation solutions may not be available in challenging en-

vironments. Combining the advantages of INS and GNSS

can allow systems to produce high data rate solutions with

interpolation and bridge the GNSS outage.

The architecture of the proposed fusion algorithm is

shown in Figure 2. The proposed algorithm is based on the

idea of using a GRU neural network to estimate the GNSS

PVT error with IMU and GNSS measurements as input.

Our algorithms contains two modes: training and testing.

Both the training and testing data set are generated from

real experimental data using our developed test rig.

The output from IMU contains the raw measurement of

3 directional acceleration, angular rate, and magnetometer

reading. As for the GNSS, it contains latitude, longitude,

and height. It is known that GNSS is not capable of
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(a) Training

(b) Testing

Figure 2: Fusion algorithm for training and testing

providing accurate height measurement since all visible

satellites are on the same side of the earth as the receiver.

Therefore, we are not using height as a data source. It is

worth noting that we didn’t include any processed GNSS

data from the receiver such as velocity and angular rate to

avoid introducing further uncertainties from the receiver.

The GRU model estimates the GNSS PVT error given

IMU and GNSS measurements as input. By subtracting

the estimated GNSS PVT error given from the GNSS PVT

solution, the fused PVT can be obtained. For training, we

use the IMU raw measurement and GNSS PVT solutions

as input and ground truth trajectory to train the model. The

collection of ground truth in this paper will be further

discussed in the next section. The parameters required

to conduct the training of the proposed deep RNN are:

maximum number of epochs is 200, number of GRU

units is 500, steps per epoch set to 100, dropout set to

0.4, sigmoid chosen as the activation function, and Adam

as the optimiser. The training process is to minimise the

difference between the estimated GNSS error and the real

GNSS error computed by subtracting the GNSS result

from the ground truth position of the receiver. To measure

the progress of the training, estimated positioning errors

are compared to the ground truth to compute the mean

squared error. Once low enough mean squared error is

achieved, the system is well trained and can be applied in

real applications.

‚ Experimental Setup
To investigate the performance of our proposed algo-

rithm in real applications, we developed a test rig and

carefully designed a series of experiments around it. In

this section, the proposed experimental platform and cor-

responding setups are presented. Then general architecture
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and each component of the test rig are presented. Finally,

the experiment setup and trajectory design are discussed.

‚ System Architecture

The flowchart of the planned hardware configuration for

the mobile test is presented in Figure 5. All components

are installed on the rover. Here, the same receiver with

a network-based RTK service is applied as the validation

source since it is able to achieve centimeter level accuracy

in real time which enables point to point validation.

The antenna is connected to a signal splitter to ensure

that the signal feed into both the validation receiver and

experimental receiver are identical. An IMU module is

also connected to the computational unit, a ThinkCentre

M90n-1 (I5-8265u, 8G RAM, 256G storage) mini desktop

for providing IMU input. After the fusion is done, the

fused result and corresponding validation trajectory can

be obtained.

Figure 3: Test rig illustration

The selected IMU is powered and accessed through

USB. Furthermore, the sensor fusion algorithm is set to

be integrated with the GNSS receiver data, processed on

the ThinkCentre computer. Detailed explanations on the

fusion module will be presented in later sections. The

control centre of the rover will be a Raspberry Pi 4B to

receive commands, communicate navigation information,

and command the microcontroller to control the actuators.

The additional sensor module for fusion application is

selected as the LPMS-CU2 from Omni-instrument. LPMS-

CU2 is a 9-Axis inertial measurement unit (IMU) with

USB connectivity. The integrated component of LPMS-

CU2 includes a 3-axes accelerometer, a 3-axes gyroscope,

a 3-axes magnetometer, and a barometer. The data output

can be either raw data from each sensor or quaternion

with an update rate of 400 Hz. Considering the vehicle’s

maximum speed, the overall sensitivity and update rate of

the LPMS-CU2 is more than enough for this project.
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(b) Testing with open sky data
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(c) Testing with urban data

Figure 4: Trajectory for training and testing

The LeoRover platform is selected for its development

flexibility and high payload in this project. The LeoRover

has a dimension of 447x433x249mm and a payload ca-

pacity of 5kg, suitable for loading our devices. The total

weight of the GNSS Receiver devices is estimated to be

around 3kg - with batteries, GNSS Receiver, and a mini-

PC. The surface dimension of the LeoRover is only going

to be enough for stacking up all the devices. The largest

among all devices of GNSS Receiver is the battery, with

a 220x150x20 mm. The average run time of LeoRover is

estimated to be 1 hour with added weight using its 11.1
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Figure 5: Architecture of the testing rig

V, 5000 mAh Li-Ion battery.

‚ Trajectory Design

In this project, we plan to drive the developed rover

platform on an existing smart road of Cranfield Univer-

sity, the Multi-User Environment for Autonomous Vehicle

Innovation (MUEAVI). MUEAVI is a purpose-built exper-

imental facility for the rapid development of on- and off-

highway, ground and airborne autonomous solutions. This

includes vehicles, infrastructure, data, logistics, environ-

ment, sensors and their implementation and management.

We choose MUEAVI as our experimental environment for

it contains both an urban section and an open-sky section

- and is instrumented with the sensors that can be utilised

for future performance validation independently of GNSS.

As shown in Figure 6 (a-1), the region on the north

region of MUEAVI is between two buildings and is consid-

ered an urban canyon. The positioning output of the UBlox

receiver in this region shows significant deviates to the real

trajectory, which indicates that multipath happens within

this section of the road. Apart from covering both the sce-

narios, we need to understand whether entering or exiting

an urban canyon would have impacts on the PVT result of

the receiver and our fusion algorithm. Furthermore, inertial

sensors are well-known to have good performance when

going straight lines with relatively slow speed, yet shows

poorly performance with turns or inconsistent speed. We

don’t want to exclude such uncertainties in our system

even though the selected rover can only provide relatively

low speed. Taking these factors into consideration, we

want not only the rover’s trajectory to cover the selected

section of MUEAVI multiple times, but we also want it

to have enough turns and repeating trajectories. With all

these considered, we planned to have two full circles in

the urban region (Figure 6 (a-1) to (a-3)), two cycles with

the open section (Figure 6 (a-4) to (a-6)), then all the way

back to the entrance (Figure 6 (a-7) to (a-8)).

‚ Results and Discussion
In this paper, we use the starting 80% of the open sky

section of the trajectory as the training data, the later

trajectory within open sky or urban environment as the

testing data. Detailed sections for training and testing are

plotted as Figure 4.

‚ Open Sky Results

In Figure 7, the fusion result under opens sky en-

vironment is compared with the RTK GNSS generated

trajectory in the North(N) and East(E) directions. The

fused results are obtained by taking the U-blox PVT

measurement and subtracting the estimated GNSS error.

Comparing the fused result to the U-blox PVT and RTK

result Figure 7-(c), visually it can be seen that the proposed

fusion algorithm is capable of reducing the GNSS PVT

errors. By comparing the root-mean-squared error (RSME)

of the fused result to U-blox PVT, it can be identified that

our fusion algorithm is capable of reducing the average

error by more than 75%, the RSME reduces from 0.98m

to 0.23m. From the trajectory comparison Figure 7-(a

and b) and RMSE difference comparison Figure 7-(c),

the majority of the errors generated by the U-blox PVT

are mitigated by the GRU architecture. However, there

are still some sections that the GRU struggles to provide

reliable improvements, for instance, trajectory near the

400s time step when approaching a building. This may

indicate that more training data is required to improve the

performance of the GRU, which can be potentially solved

by training the GRU on multiple routes. In Figure 7-(b),

a comparison between the RMSE of the GRU and U-blox

PVT is made. From this graph, it can be identified that the
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Figure 6: Illustration of the designed trajectory

proposed method reduces the position error evenly instead

of reducing drastically on very few specific points.

‚ Urban Results

In Figure 8, the comparison of fused, RTK, and U-

blox PVT of the urban trajectory are compared in the

North(N) and East(E) directions. Compared to open sky

data, the fused result of urban result improves the GNSS

accuracy to 30% (Figure 8-(c)), from 1.3m to 0.96m. By

comparing the North and East plot, it can be identified

that our proposed GRU model addresses mostly the bias of

UBlox PVT. From East estimation, the fusion result mostly

performs a bias removal while keeping the overall shape of

the trajectory unchanged. This indicates that the proposed

fusion algorithm is not mitigating GNSS errors evenly.

The issue with the urban performance comes mainly with

the fact that the multipath effect is not well represented

in the proposed model. Improving the performance of our

model in urban environment will be the main focus of our

future study.
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Figure 7: Fusion result on open sky data
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‚ Conclusion
In this paper, we developed a machine learning based

IMU-GNSS fusion algorithm and an experimental plat-

form to validate the proposed algorithm. The proposed

fusion algorithm is based on the GRU neural network

with IMU raw measurement and GNSS PVT as input,

and GNSS PVT error as output. Therefore, the trained

model can estimate the rover’s positions by subtracting

the predicted GNSS error from GNSS PVT solutions. The

developed experimental platform is capable of providing

synchronised data collection of sensor data, valid reference

data, and corresponding time stamps. Moreover, the devel-

oped platform has versatile extendabilities which enables

it to be applied to other types of trials with insignificant

modifications. From the experimental result, our proposed

algorithm is capable of providing state-of-the-art fusion

results in an open-sky environment with an average of

less than 0.3m average RMSE. As for the urban canyon,

our model is able to reduce the average RMSE from 1.3m

to 0.96m. Future studies will focus on deriving methods

on improving the GNSS/INS fusion performance in urban

environment.
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