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Abstract 

Developing a prognostic model to predict an asset's health condition is a maintenance strategy that 

increases asset availability and reliability through better maintenance scheduling. Therefore, 

developing reliable vehicle health predictive models is vital in the aerospace industry, especially 

considering a safety-critical system such as aircraft. However, one of the significant challenges faced 

in building reliable data-driven prognostic models is the imbalance dataset. Training machine-

learning models using an imbalanced dataset causes classifiers to be biased towards the class with 

majority samples, resulting in poor predictive accuracy in data-driven models. This problem can 

become more challenging if the imbalance ratio is extreme and classes overlap. In this paper, a novel 

approach called Balanced Calibrated Hybrid Ensemble Technique (BACHE) is developed to tackle 

the severe imbalanced classification problem. The proposed method involves the combination of 

hybrid data sampling and ensemble-based learning. It uses a cascading balanced approach to transfer 

a class imbalance problem into a sub-problem by decomposing the original problem into a set of 

subproblems, each characterized by a reduced imbalance ratio. Then uses a calibrated boosting with 

a cost-sensitive decision tree to enhance recognition of hard-to-learn patterns, which improves the 

prediction of the extreme minority class. BACHE is evaluated using a real-world aircraft dataset with 

rare component replacement instances. Also, a comparative experiment of the proposed approach 

with other similar existing methods is conducted. The performance metrics used are precision, recall, 

G-mean, and an area under the curve. The final results show that the proposed model outperforms 

other similar methods. Also, it can attain an excellent performance on large, extremely imbalanced 

datasets. 

Keywords: Prognostic, Imbalanced learning, Ensemble learning, Predictive maintenance, 

Aerospace. 
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Abbreviations 

Aircraft Communications Addressing and Reporting System             ACARS 

Aircraft Condition Monitoring System     ACMS 

Avionics Equipment Ventilation Computer               10HQ 

Air traffic Service Unit        1TX1 

A330 –Long-Range Aircraft        LR  

A320 -Single-Aisle Aircraft       SA  

Balanced Calibrated Hybrid Ensemble Technique     BACHE 

Built-In Test Equipment       BITE  

Central Maintenance System        CMS 

Conditioned-Based Maintenance       CBM 

Electronic Control Unit/ Electronic Engine Unit    4000KS 

Flight Warning Computers       FWCs 

Flight Deck Effect         FDE 

Functional Item Number       FIN 

High-Pressure Bleed Valve        4000HA 

Imbalanced Ratio         IR 

Line Replacement Unit        LRU 

Overall Equipment Effectiveness       OEE 

Pressure Regulating Valve        4001HA 

Satellite Data Unit        5RV1  

Synthetic Minority Oversampling Techniques     SMOTE  

Trim Air Valve        438HC 

The Air Transport Association       ATA 
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1 Introduction 

The technological growth in the aerospace industry and the continued advancement in data analytics 

have made the generation and analysis of large quantities of aircraft data more affordable. Therefore, 

this has caused a transformation in maintenance strategies by shifting from preventive maintenance 

to predictive maintenance. Research into the development of data-driven prognostic models for 

condition-based maintenance is gaining more attention [1,2]. However, researchers' major problems 

are the low representation of faulty asset behaviour, which results in an imbalanced dataset. The 

imbalanced data problem arises when the distribution of classes present in the dataset is not uniform, 

such that the total number of instances in one class far outnumber that of the other class [3]. While 

training the traditional machine learning algorithms with the imbalance dataset, the resulting model 

will be biased, which degrades the performance of the data-driven model, causing imprecise 

prognostics. The rapid flow of data from the industrial process has increased research focus in big 

data analytics and its many applications in academics, industries, and government sectors [2,4,5]. 

Therefore, solving the imbalanced classification problem is necessary in order to build a high-

performance predictive model. Research into this area is still an open issue [6–8], especially the data-

driven approaches [9].  

 The imbalanced classification problem is prevalent in many application domains. For example,  in 

building predictive maintenance for aircraft, the historical data is often imbalanced because the record 

about systems and processes is mostly healthy with fewer failure records [10]. Similarly, in financial 

fraud detection, in most cases, illegal transactions are often rare compared to the majority of 

legitimate ones. The fraudulent minority transactions are more critical to predict accurately to avoid 

the consequence of the successful occurrence of fraud [11]. The application of imbalanced learning 

is also seen in clinical science for rare disease detection. The majority of the population is healthy, 

and the minority is infected [12]. In this case, predicting the minority becomes critical. Likewise, 

imbalance learning can be seen in the oil spillage detecting problem. Large images of an ocean 

captured by satellite may show a few images representing the oil spillage portion, and most of the 

images represent the non-spillage areas [13].  In such cases, the target is to predict the minority 

spillage portion of the ocean.  In a situation where the ratio between classes is not significantly large, 

and the existing machine learning methods can adequately handle such an imbalanced problem. 

However,  in a situation where the ratio between classes in the dataset is extreme, say, 10000:1 [14], 

learning becomes more challenging because examples from the overwhelming class can be well-

classified, whereas samples from the minority class can be misclassified. In the worst case, minority 
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examples are treated as outliers or noise of the majority class and ignored or dropped during learning. 

The learning algorithm ends up generating a trivial classifier that classifies every example as the 

majority class. Other factors that can impact the classification algorithm's performance apart from 

the imbalance ratio are; the class's small disjunct, the noise, and the class overlapping [15,16].   

This study uses over eight years' worth of data recorded from 60 aircraft. The datasets are collected 

from two databases. The first database is the Aircraft Central Maintenance System log (ACMS) data, 

which comprises error messages from BIT (built-in test) equipment (that is, aircraft fault report 

records) and the flight deck effect (FDE). These messages are generated at different stages of flight 

phases (take off, cruise, and landing). The second database is the record of the aircraft maintenance 

activities (the full description of all aircraft maintenances recorded over time). These databases are 

associated with a fleet of civil aircraft. The data is grouped into two categories of aircraft families; 

the A330–long-range (LR) and the A320 -Single-aisle (SA) aircraft. So far, CMS data have only been 

used for troubleshooting, anomaly detection, Line Replacement Unit (LRU) removal assessment, and 

system failure analysis or test. However, no comprehensive study has shown the use of a hybrid 

ensemble approach using the aircraft CMS data to develop a predictive model for aircraft component 

replacement. Building a predictive model from CMS data (which is purely textual) in the total 

absence of digital sensor data measurements is quite a challenging task, and it becomes more 

challenging when the data distribution is extremely imbalanced  
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Figure 1 The Aircraft CMS architecture 

As seen in Figure 1, CMS data is generated from an aircraft central maintenance computer (CMCs). 

The system is composed of LRU's (computers, sensors, actuators, and probes). The function of the 

CMC is to detect and memorize any failure occurring within the system, which is called the Built-in 

Test Equipment (BITE). During regular aircraft operation, the system is permanently monitoring and 

reporting the state of each failure. CMCs are responsible for centralizing and memorizing warnings 

generated by the flight warning computers (FWCs) and failure messages produced by the BITE 

function integrated into the aircraft computers. The CMC enables maintenance engineers to perform 

system operational tests, functional checks, and read-out BITE memory through the Multipurpose 

Control and Display Unit (MCDU). Reports can be printed on-board, saved on an external disk, or 

transmitted to the ground through the Air Traffic Service Unit (ATSU) as it is possible to perform an 

operational test from the cockpit. Most airlines hardly analyze this data further, especially for 

predictive maintenance modeling. The ACMS data is analysed in this work in order to construct a 

prediction model for aircraft component replacement. The problem of an imbalanced dataset in the 

context of aircraft predictive maintenance is examined in this article, which uses the ACMS dataset 

in particular.  
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Figure 2 Types of maintenance strategies 

Maintenance strategies have progressively developed over time, and the goal remains the same: to 

preserve equipment. Recently, industries are becoming more aware of the advantages of applying 

advanced machine learning methods to enhance quality, process performance, and system uptime by 

maintaining overall equipment effectiveness (OEE). This development has brought more research 

attention to predictive maintenance modelling for heavy equipment monitoring [5,9,17].  

Maintenance can be categorized into a time-based and conditioned base, as seen in Figure 2. In time-

based, we have reactive maintenance, which involves fixing after things have been broken down, and 

preventive maintenance involves keeping things from breaking. Reactive maintenance is quite 

expensive and time-consuming because no prior knowledge is available to plan effective 

maintenance. 

On the other hand, preventive maintenance allowed the pre-emptive measure to be taken before 

equipment failure, for example, by conducting repairs at fixed intervals regardless of the equipment 

condition. Advancement in technology has allowed the second category of maintenance, known as 

conditioned-based maintenance (CBM). CBM optimizes preventive activities based on the actual 

conditions of the asset. Predictive maintenance is a form of CBM where a predictive model is 

developed to forecast future failure using past failure records.  
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The imbalanced dataset's problem in developing a data-driven prognostic model for predicting 

unplanned aircraft component failures is considered in this study. The study proposes a novel method 

that involves a unique fusion of two machine learning techniques (ensemble learning and cost-

sensitive learning) to form a hybrid approach. In the proposed hybrid algorithm, we use a balance-

cascading algorithm to cascade the majority class. Then the minority class is synthesized and boosted 

using boosting data expansion policy, which overcomes the extreme imbalance classification 

problems and reduces the computational cost-efficient for larger datasets compared to deep learning 

methods [18]. The ensemble process provides a unique classifier arrangement and cost sensitivity to 

each weak learner, which produces state-of-the-art performance.  

The contribution of this paper is as follows:  

One of the fundamental research questions that this study seeks to answer is can a class overlapping 

and small disjunct problem inherent in the extremely imbalanced ACMS dataset be overcome using 

a hybrid ensemble learning? A new algorithm known as Balanced Calibrated Hybrid Ensemble 

Technique (BACHE) is designed and implemented to answer the above question. The approach's 

novelty is found in the uniqueness of ensemble architecture that combines cost-sensitive weak 

classifiers to improve minority class sample prediction. The inclusion of cost-sensitive in the weaker 

learners, which is applied to all subsets, lowered the imbalance ratio, assisting in overcoming the 

challenge of class overlaps, reducing bias, and improving the prediction rate for both minority and 

majority classes. Another contribution is that the effectiveness of the proposed approach is validated 

using a real-world dataset (the aircraft central maintenance system-CMS dataset); this is a distinctive 

contribution because of the dataset's heterogeneous nature, which is challenging to mine for 

predictive modelling. 

The remainder of this paper is organized as follows: Section 2 provides related work. Section 3 

presents the methodology. Section 4 presents the experimentation. Section 5 discusses the results and 

model validation, and finally, section 6 presents the conclusion and future work. 

2 Related Work 

This section gives an overview of imbalanced classification problems. Several research approaches 

have been conducted to solve the imbalanced classification problem, and some comprehensive 

reviews can be found in [19–22]. The solution to the imbalanced classification problem can be 

categorized into three main groups [20]. The data level, the algorithm level, and the hybrid approach, 
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as seen in Figure 3. The data level approach involves resampling the dataset before presenting it as 

an input to the learning algorithm. The data level approach has gained a lot of research attention, 

especially the over-sampling techniques, which involve increasing the minority class samples to have 

a balanced class. Some of the methods are based on oversampling are the Synthetic Over-sampling 

Techniques (SMOTE) developed by Nitesh et al. [23]. Their technique creates new synthetic samples 

into the minority class to balance with the majority. Although the SMOTE approach has widely been 

used to address the imbalanced classification problem. However, SMOTE contains some drawbacks, 

such as class overlapping because it ignores adjacent samples when creating new synthetic points 

[24] and overgeneralization problem. Hence, many advanced versions of SMOTE have been 

developed, such as SMOTE-Boost [25], which introduces new dynamic weighted synthetic data 

points in the minority class at each round of boosting steps to eliminate the overgeneralization 

problem. SMOTE-boost tries to solve these drawbacks of the main SMOTE by adding synthetic data 

points in each weak classifier of the easy-ensemble method [26]. Other versions are the Easy-SMOTE 

Algorithm [27], Borderline-SMOTE [28], and many more. Also, Wing et al. [29] propose a neural-

network training method to balanced an error yield by minority class via minimization of the cost-

sensitive localized generalization error-based objective function. The approach shows better 

performance in terms of G-mean as compared to other similar algorithms.   

 

Figure 3 The three existing categories of the State-of-the-art approach of the handling 

imbalance problem 
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The algorithm level approach tackles the imbalanced learning problem by altering the learning 

algorithm to respond favourably to both classes during learning [20]. Cost-sensitive learning is an 

algorithm-level approach. The cost-sensitive method is explored by defining the cost of 

misclassification for each class. Determining the cost of misclassification is challenging in the 

traditional classification algorithms (such as support vector machines, decision trees, and more) 

because the algorithms presume that all classification errors carry the same cost. Hence, they focus 

on minimizing the error rate and the percentage of a class's incorrect prediction, ignoring the 

difference between the misclassification errors. Therefore, cost-sensitive learning takes into 

consideration the different costs that vary by type of classification (true-positive, true-negative, false-

positive, false-negative) across all samples. The goal is to minimize the total cost, such as the G-

mean score. From a business point of view, it is vital to determine the misclassification cost for each 

class. For instance, in aircraft maintenance, the cost of misclassifying the minority class (failure) has 

a higher impact on the business than the misclassifying majority class (healthy state). Hence, cost-

sensitive learning is used to mitigate such problems [30]. Cost-Sensitive in Decision Tree algorithm 

(CS-DT) involves introducing cost into the decision tree algorithm for the algorithm to respond 

favourably to all classes during training [31]. Cost-sensitive learning is effective in classifying 

datasets with different imbalance distributions [30]. The changing misclassification costs are best 

understood using the idea of a cost matrix. As seen in Table 1, a Cost sensitives learning can be binary 

or multi-class; in either case, it associates different misclassification costs to every prediction.    

Table 1 Cost or Confusion Matrix 

 Actual Positives  Actual Negatives TP: True Positive  

TN: True Negative 

FP: False Positives 

FN: False Negative  

Predicted Positives TP (𝐶1,1) FP (𝐶1,−1) 

Predicted Negatives FN (𝐶−1,1) TN (𝐶−1,−1) 

 

Using the confusion matrix as shown in Table 1, the value (𝐶𝑖,𝑗 ) represents the cost of misclassifying 

a data point from its actual class (j) to a predicted class (i), 1 represents positive class, while -1 

represents the negative class. Usually, the cost of correct prediction that is TP and TN should always 

be lower than the cost of misclassification error that is FN and FP, usually is set to zero. (𝐶𝑖,𝑖 ) is 
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regarded as a negated error since the data point is predicted correctly. Cost-sensitive learning has 

widely been applied in imbalanced learning [28]; the challenge is learning the cost matrix. In some 

domains, it might be obvious because the consequence of misclassification can just be based on 

monetary value. However, in areas such as predictive maintenance for aircraft, the consequence of 

the misclassification of faults can be grave.  

The easiest way of defining the misclassification cost is to input it manually according to the domain 

expert advice or inversely calculate it based on class distribution [32–34]. The challenge of using a 

manual approach for calculating the cost of misclassification is that it is time-consuming and 

sometimes impractical. Another approach can be to fit the importance of features to adaptive 

equations [35], which involves incorporating second-order information to enhance the prediction of 

the minority class. However, because of the peculiarity of the dataset used in this study, neither 

method is suitable. Hence, we define the misclassification cost from cost-sensitive algorithms' 

evaluation functions, using weighted Platt calibration to measure the cost sensitivity of the 

classification algorithm.  

The imbalanced learning hybrid approach involves combining more than one method, either 

from data levels or algorithm-level techniques, to enhance prediction [36]. An example of the hybrid 

approach is ensemble learning. Ensemble learning involves enhancing prediction by using a 

combination of weak learners to form a strong learner. The major course of error in machine learning 

is the presence of noise, variance, and bias in the dataset. Ensemble classifiers are built to minimize 

these factors, which improves the stability and learning performance of machine learning algorithms. 

A study by Zhou et al. [37] shows a broad overview of why and how ensemble learning improves 

prediction performance. Diverse ensemble learning strategies that focus on imbalanced learning have 

been proposed in the literature.  For instance, Galar et al. [38] provide a broad overview of different 

combinations of multiple classifiers to improve predictive accuracy. The ensemble approach can 

either be constructed using boosting or bagging learning structures to optimize accuracy. The 

implementation of boosting learning can be found in AdaBoost [39], SMOTEBoost [40]. The bagging 

implementation that is bootstrap aggregating [41]  can be seen in SMOTEBagging [42].  

Combining ensemble learning with data level approach (under-sampling or over-sampling) to solve 

the imbalanced classification problem has led to several proposals in the literature, with positive 

results [43]. Although ensemble learning is known to enhance machine learning model performance 

[44], the arrangement of classifiers alone cannot solve the class imbalance problem. Hence, the 
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ensemble approach needs to be explicitly designed for imbalanced learning to deal with imbalanced 

classification challenges. For example, The balance-cascading and easy-ensemble algorithms 

presented in the study by Liu et al. [14,45] uses the under-sampling technique with an ensemble 

approach to train the weak learners and then combine the result to form a robust classifier. These 

algorithms use the under-sampling method because of its advantage of less training time.  They then 

focus on tackling its disadvantage, which is a reduction of informative samples. Easy-ensemble 

involves resampling the majority class into several subsets, then training each subset using weak 

learners (such as AdaBoost [46]) while keeping the minority class constant. 

The result of each data subset will then be combined using majority voting. This approach has 

recoded positive results, which has led to more advances in this direction. An easy-synthetic minority 

over-sampling technique (easy-SMT) developed by Wu et al. [4]. Easy-SMT is an integrated 

ensemble-based method that uses a SMOTE-based over-sampling and under-sampling strategy to 

transfer imbalanced problems into an ensemble-based balance sub-problem. Using an easy-ensemble 

or balance-cascade algorithm to resampled the dataset involves exploring the data samples ignored 

by the random under-sampling technique. However, both methods keep the minority class constant 

while training the subsets, which creates computational cost if the data is large. Wankhade et al. [45] 

proposed a hybrid method to deal with an imbalance classification problem that addresses the above 

challenge. Their technique uses a combination of classification and clustering to enhance recognition 

of the rare class during learning. Likewise, Vluymnas et al. [47] proposed a hybrid method for solving 

the imbalanced problem, which combines a preprocessing and classification model. The results of 

both approaches show an improvement in predicting minority class. Another hybrid approach was 

developed by Le et al. [48] to predict bankruptcy. Their algorithm uses an over-sampling technique 

and cost-sensitive learning to handle imbalanced classification problems. The results show that the 

approach outperforms other existing methods in predicting bankruptcy, which is rare in the dataset 

used. Application of Imbalance learning has also been seen in rotating machinery; Yuyah et al. [7] 

show oversampling and future-leaning to handle imbalanced data in fault diagnosis. Different studies 

have also demonstrated how imbalanced data problems can be handled using deep learning [49,50].  

As highlighted above, most of the methods are validated on diverse individual datasets, making them 

domain-specific. Thus, the peculiarities of our dataset make it challenging to apply off-shelf 

techniques. Among the different approaches, the hybrid methods show effectiveness and robustness 

in handling the imbalance problem compared to other single methods. Also, the open literature lacks 

an extensive study that uses ensemble learning to address extreme rarity, class overlapping, and class 
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disjunct especially using a system log dataset. Therefore, the arising research question is, how can an 

architecture of ensemble classifiers be constructed for tackling extremely imbalanced datasets taking 

into account class overlapping and small disjunct problems. Usually, the number of weak learners is 

selected arbitrarily, which can result in redundancy for similar classifies [51].  For example, relating 

the size of weak learners to the data complexities such as reducing bias and variance in the extremely 

imbalanced dataset.  

Therefore, this study aims to advance the ensemble and hybrid approach by considering the challenge 

of extremely imbalanced classification problems combined with class overlapping. Also, our 

proposed method is inspired by two observations: first, the possibility of convergence of different 

boosting algorithms for an optimal solution heading to the direction of the gradient of 

the objective function, and the cost-insensitive predictor can then asymptotically minimize. Second, 

ensemble algorithms can perform shift decision threshold and calibration of probability estimation, 

which accounts for class imbalance [52].  

3 Methodology 

This section describes the methodology for this study which covers the proposed approach. 

This study aims to enhance the learning algorithm's performance to reduce False Positive Rate (TPR) 

and False Negative Rate (FNR) while learning from the extremely imbalanced system log dataset. 

The reduction in false-negative and false-positive can translate to a reduction in the unplanned 

maintenance check, which can reduce the overall cost of maintenance.  
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Figure 4 The Methodology of Imbalance learning using BACHE Algorithm 

The three approaches that form the BACHE algorithm's key building blocks are the data level (under-

sampling), ensemble learning, and cost-sensitive learning. In the under-sampling phase, a balance-

cascading algorithm is used to reduce data from the majority class. The major course of error in 

machine learning algorithms is the presence of noise, variance, and bias in the dataset [37][53]. 

Ensemble classifiers are built to minimise these factors, which improves machine learning algorithms' 

stability and learning performance. A study by Zhou et al. [37] shows a broad overview of why and 

how ensemble learning improves prediction performance. The two most basic qualities expected of 

a model are a low bias and a low variance, which frequently fluctuate in opposite ways. Indeed, the 

model is required to have enough degrees of freedom to resolve the underlying Complexity of the 

data it is working with, but not too many degrees of freedom to avoid high variance and be more 

robust.  This is the well-known tradeoff between bias and variance. Most of the time, in ensemble 
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learning, the weak learners do not perform well by themselves either because they have a high bias 

or high variance. Therefore, the idea of the ensemble is to try reducing the variance and bias at the 

same time by combining multiple weak classifies to create a strong one for enhancing performance. 

The ensemble learner approach is chosen because it combines multiple weak learners to produce a 

robust classifier, as seen in Figure 4. The choice of the balance-cascading approach for the BACHE 

is because of its low computation cost and its effectiveness in utilizing the majority class samples 

ignored by random under-sampling techniques. The calibrated cost-sensitive is used to define 

the misclassification cost in each weak learner's prediction, which tackles problems where the costs 

of different types of erroneous predictions are not equal.  In the ensemble boosting phase, instead of 

using a standard decision tree, a cost of classification using a calibrated probability estimate is 

considered at each iteration by modifying the updating rule with regards to the modified loss function. 

Likewise, instead of finding the best classifier, the problem is directed to focus on finding the best 

learning rate γ [54–56].  

Therefore, what makes a difference here is the tree structure and the model weight updating rule.  The 

BACHE algorithm works as follows; first, data preprocessing and feature engineering is conducted. 

To improve the quality of the predictive model, new features from the existing variables are created 

using integer encoding and one-hot encoding methods. The choice of the method is based on the 

nature of the dataset because the data is heterogeneous with categorical features. Developing a 

machine learning model directly can not produce an optimal result for most of the traditional machine 

learning algorithms. In variables where ordinal relationships exist, an integer encoding was used, and 

where such a relationship does not exist, one-hot encoding was used; Therefore, creating new features 

was necessary for this project. After preprocessing the dataset and selecting the right features, the 

data is divided into two.  80% of the data is kept for model training and 20% for model testing. Then 

the dataset is divided into several subsets using a cascading balanced approach [57]. At every 

boosting integration step (selection with replacement), the samples of each subset are balanced to 

form Balanced Data (𝐷𝑖′𝑠). After the dividing and balancing process, each subset is trained using 

weak learners. The process continues for the number of defined iterations. At each iteration, the 

subset learns using a weak learner (𝐻𝑖𝑠) at the end of the ensemble process, the result of all the weak 

learners, is combined to get a hybrid ensemble classifier. The final model is then evaluated using new 

hold-out datasets. 

As seen in Figure 4, the proposed BACHE methodology explores both the majority class ( 𝑵) and 

Minority class (𝑷) in a supervised learning manner. The weak learners 𝐻𝑖𝑠 are trained in sequence 
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on a weighted version of the dataset using a cost-sensitive boosting algorithm. Considering N in the 

under-sampling process, if data point example say 𝒙𝒊̇ ∈ 𝑵 is correctly classified to be in 𝑵 it easier 

to infer that 𝒙𝒊 is reasonably redundant in 𝑁, given that we already have the outcome as 𝐻1 [58]. 

Therefore,  𝑥𝑖 will be removed from 𝑁. (That shows 𝑁 will be reduced after training each  𝐻𝑖 ).  Every 𝐻𝑖 deals with balanced sub-set  |𝑁𝑖| = |𝑃𝑖|, after processing all the subsets of the cascaded dataset, 

the outcome of  𝐻𝑖𝑠 is combined using a weighted majority vote.  

Elaborately, considering the majority class 𝑁 and minority class 𝑃, the length of iteration is  𝑆𝑖 and 

the length of each 𝑛 ∈ 𝑁 subset is defined as  𝑴  (we use an under-sampling technique to split 𝑁 

into random subsets 𝑛1, 𝑛2, 𝑛3…𝑛𝑇  ∈  𝑁).  Then a subset of 𝑝 ∈ 𝑃  is combined with each 𝑛 ∈ 𝑁 

to form a balanced sub-dataset (𝐷𝑖). These 𝐷𝑖𝑠  are trained using weak classifiers, which are later 

combined using boosting approach to form an optimized classifier. In each weak classifier, a cost-

sensitive calibrating boosting algorithm is used.  Such as adaMEC [52], a score of the form (𝑥) ∈[𝑃, 𝑁] is generated. A cost marix for false negatives, false postive, true postives and true negatives is 

contructed as follows.  

A probability of x belonging to a positive class P is given as 𝑝𝑟𝑏(𝑦 = (1|𝑥)), 𝑥 will be assigned to 

a class with a minimized expected cost.  In other words, a data point 𝑥𝑖 will be assign to positive class 𝑃 if and only if  𝑝𝑟𝑏(𝑦 = (1|𝑥))𝑐𝑣 >   𝑝𝑟𝑏(𝑦 = (−1|𝑥)) ↔  𝑝𝑟𝑏(𝑦 = (1|𝑥)) >  11+𝑐. For example, 

using the imbalance learning cost matrix (see Table 1)   

 𝑐 = [0 1𝑐 0], c (𝑦𝑖) = { 𝑐   𝑖𝑓 𝑦𝑖 = 10  𝑖𝑓 𝑦𝑖 = −1           (1)   

Where  𝑝𝑟𝑏(𝑦 = (−1|𝑥)) = 1 − 𝑝𝑟𝑏(𝑦 = (1|𝑥)).  

Otherwise data point 𝑥𝑖  is assigned to the negative class N.  It is important to note that probability 

estimates are not always straightforward to obtain from a classifier's outputs [59]. Therefore, a 

generated score of the form (𝑥) is calibrated using platt scaling. The classification of the extreme 

minority is  accounted for in the calibration step as detailed in [59]. In the Platt calibration, it uses  𝑃+1𝑃+2  for positive class and  1𝑁 +2  for negative class, rather than 1 and 0 as the target probability 

estimation of the 𝑃 and N.  Therefore, in BACHE we aim to reduce the ensemble error rate by 

focusing on different positive class 𝑃, as we want to model 𝑃 better to enhance detection of the 
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extreme minority and also avoiding accuracy degradation for the negative class 𝑁.  The BACHE 

algorithm pseudocode is presented in algorithm 2. 

In the proposed approach BACHE algorithm, the cost-sensitive decision tree algorithm is used as a 

weak classifier expressed as follows.  In machine learning, classification involves predicting the class 

of a given data point, say 𝑦𝑖  of a dataset Ds, given their k features 𝑥𝑖   ∈   𝑅𝑘. Classification in 

predictive modelling is about approximating a mapping function f (·) that minimizes the expected 

value of some specified loss function 𝐿 (𝑦𝑖, 𝐹(𝑥)), to makes a prediction 𝑐𝑖 of the class of each 

example using its input variables 𝑥𝑖 .  𝐹̂ =   𝑎𝑟𝑔𝑚𝑎𝑥 𝛾 𝐸𝑥,𝑦[𝐿(𝑦, 𝑓(𝑥))] ,                  (2) 

   

where γ is the learning rate  

Similarly, as described by Hastie et al. [60], the gradient boosting methods uses a real value of  𝑦𝑖   ∈   𝑅𝑦  and then seek an approximation of 𝐹̂(𝑥)  that minimize the average value of loss function 

on the training dataset, this is achieved by starting with a constant function 𝐹0 (𝑥) and increment it 

greedily. 𝐹0 (𝑥) =  𝑎𝑟𝑔𝑚𝑎𝑥 𝐹 ∑ (𝐿(𝑦𝑖, 𝛾))𝑛𝑖=1                                          (3) 

𝐹𝑚 (𝑥) =  𝐹(𝑥)𝑚−1 (𝑥) +  𝑎𝑟𝑔𝑚𝑎𝑥 ℎ𝑚 ∈𝐻 [∑ (𝐿(𝑦𝑖, 𝐹(𝑥)𝑚−1 +  ℎ𝑚 (𝑥𝑖) )𝑛𝑖=1 ]          (4) 

ℎ𝑚 ∈ 𝐻 is the base learner function. 

To further minimize the problem, the steepest descent approach is used to transform (eq. 2) as the 

gradient descent and taking the derivatives with respect to 𝐹𝑖 for 𝑖 ∈ {1, … 𝑚}  

 𝐹̂𝑚 (𝑥) =  𝐹̂(𝑥)𝑚−1 (𝑥) +  𝛾𝑚[∑ ∇𝐹(𝑥)𝑚−1 (𝐿(𝑦𝑖, 𝐹(𝑥)𝑚−1 +  𝐹(𝑥)𝑚−1 (𝑥𝑖) )𝑛𝑖=1 ]   

𝛾𝑚 =  𝑎𝑟𝑔𝑚𝑎𝑥 𝛾 [∑ (𝐿(𝑦𝑖, 𝐹(𝑥)𝑚−1 −  ∇𝐹(𝑥)𝑚−1 𝐿(𝑦𝑖, 𝐹(𝑥)𝑚−1 )𝑛𝑖=1 ]                   (5) 

To improve the quality of fit of each base learner function, we use the Friedman approach [61], 

considering 𝑚𝑡ℎ steps to fit a decision tree ℎ𝑚 (𝑥𝑖), and 𝑗𝑚 are the leaves nodes, we get  



Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

 

17 

 

𝐹𝑚 (𝑥) =  𝐹(𝑥)𝑚−1 +  ∑ 𝛾𝑗𝑚𝑗𝑚𝑗=1 1𝑅𝑗𝑚 (𝑥),   𝛾𝑗𝑚 =  𝑎𝑟𝑔𝑚𝑎𝑥 𝛾 ∑ 𝐿(𝑦𝑖, 𝐹(𝑥𝑖) +  𝛾 )𝑛𝑥𝑖 ∈ 𝑅𝑗𝑚    (6) 

𝑗 , denotes the number of terminal leave notes in the tree. 

Hence, the gradient boosting algorithm is expressed as 

Input: the training set {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏     𝒏 , a differentiable loss function   𝐿(𝑦𝑖, 𝐹(𝑥𝑖)) and number of 

iterations 𝑀. 

1. Initialize the model with a constant value 

 𝐹0 (𝑥) =  𝑎𝑟𝑔𝑚𝑎𝑥 𝛾 ∑ (𝐿(𝑦𝑖, 𝛾))𝑛𝑖=1         

2. For 𝑚 ∈ {1, … 𝑀}:  

 a. compute  𝛾𝑚 =  −[𝛿𝐿(𝑦𝑖,𝐹(𝑥𝑖)) 𝜕 𝐹(𝑥𝑖) ]; for i= 1,…M 

 b. Fit a base learner ℎ𝑚 (using CS-DT) 𝜕𝑚 𝑡𝑜 (𝑥𝑖,   𝛾𝑚𝑖) for i =1,…n 

 c. compute multiplier 𝛾𝑚 using the following optimization function. 

 𝐹𝑚 (𝑥) =  𝐹(𝑥)𝑚−1 +  ∑ 𝛾𝑗𝑚𝑗𝑚𝑗=1 1𝑅𝑗𝑚 (𝑥),   𝛾𝑗𝑚 =  𝑎𝑟𝑔𝑚𝑎𝑥 𝛾 ∑ 𝐿(𝑦𝑖, 𝐹(𝑥𝑖) +  𝛾 )𝑛𝑥𝑖 ∈ 𝑅𝑗𝑚   
 d. update the model 𝐹𝑚 (𝑥) =  𝐹(𝑥)𝑚−1 +  𝛾𝑚∇𝑚(𝑥) 

3. Output 𝐹𝑀 (𝑥) = 0 

Gradient Boosting Tree Algorithm forms the core component of the BACHE algorithm. It is used as 

a weak classifier. 
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Algorithm 1: The  Balanced Calibrated Hybrid Ensemble Technique (BACHE) Algorithm  

INPUT:     

                    Dataset: 𝐃 = {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏      𝒏 with minority class 𝑷, majority class  𝑵  

                     and  𝑷 <  𝑵 .      

                    The number iteration or the number of subsets to be sampled from  

                     N: 𝑴 ,   Whwre the length of each n ∈N subset is defined as  M 

                     Imbalance Ratio 𝑰𝑹 =  𝑷𝑵 ∗ 100  
                    The number of iterations to train the calibrating ensemble   𝑯𝒊: 𝒔𝒊    
                     K= is constant, it define the number of subset  𝒇𝒐𝒓 𝒊 =  𝟏 𝒕𝒐 𝑲 𝑫𝒐 ∶  
 

 
  𝒇 ←  √ 𝒏+        𝒏−        𝑴−𝟏  ,    𝒇  is the FP-rate that 𝑯𝒊 should achieve. 

 Randomly sample a subset 𝑵𝒊 of 𝒏+ with replacement. 

   𝑵′ =  (𝑰𝑹 > 𝟏. 𝟐𝟓 (𝑴𝟐  − 𝟏), 𝑲);   𝑷 = 𝑷 +  𝑷′ 
 𝒇𝒐𝒓 𝒊 =  𝟏 𝒕𝒐 𝒋 𝑫𝒐 ∶  
  Training Phase: 

 Split the data in training set 𝐷𝑡 and calibration set 𝐷𝑐 (for correcting distortion) 

  On 𝑫𝒕: 
   Train 𝑯𝒊 using   𝑷′  U  𝑵𝒊  .  

 𝑯𝒊  is obtained using Algorithm 1 with 𝑺𝒊 as weak classifier  

 𝒉𝒊,𝒋 and corresponding weight  𝜶𝒊,𝒋 .  
The ensemble shifted decision threshold is 𝜽𝒊    

  On  𝑫𝒄- calibrated boosting: 

   a. calculate score 𝑠(𝑥𝑖)= 
∑ ℎ𝑖,𝑗(𝑥𝑖)𝜏: =1∑ 𝑎𝑖,𝑗𝑠𝑖𝜏=1  ∈ [1,0]∀𝑥𝑖 ∈ 𝐷𝑐 

   b. calculate the number of P and N in  𝐷𝑐; 

    find A,B s.t ∑ 𝑝𝑟𝑏(𝑦 = (1|𝑥𝑖) − 𝑦𝑖)2𝑖∈𝐷𝑐  is minimized. 

    

Where 𝑝𝑟𝑏(𝑦 =  (1|𝑥) =  11+𝑒𝐴𝑠(𝑥)+𝐵  and 𝑦𝑖 =   { 𝑃+1𝑃+2  𝑖𝑓 𝑦𝑖=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 1𝑁+1   𝑖𝑓 𝑦𝑖=𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  
  Prediction Phase: 

   On new data-point (𝑥): 
    Calculate prior weight score 𝑠(𝑥) 

    Obtain prior weight probability estimate 𝑝𝑟𝑏𝑤 (𝑦 =  (1|𝑥) = 11+𝑒𝐴𝑠(𝑥)+𝐵 ) 
    

Predict class H(𝑥𝑗) = 
𝑠𝑖𝑔𝑛𝛾  [𝑝𝑟𝑏𝑤 (𝑦 =  (1|𝑥) > 𝜽𝒋] 

    Adjust 𝜽𝒋 such that 𝑯𝒊𝒋𝒔 the false positive rate is 𝒇  
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4 Experiment 

To validate the effectiveness of the proposed approach, we use the following datasets as input.  The 

first data is the data generated from the central maintenance system (log-based CMS data), and the 

second data is the record of maintenance activities. The datasets are obtained from a fleet of long-

range (A330) aircraft and A320 families. According to families, aircraft grouping is necessary 

because the data generated differ in properties and structure.  The designation routes were different 

for each family; some were mainly used for long-distance routes, while some were primarily used for 

short distances. From the A330 aircraft family, the total number of failure/warning messages after 

preprocessing is 389902, and the A320 family has a total of 890120. 

The main objective is to develop a predictive model to predict failure resulting in aircraft's unplanned 

repairs or components' replacement. Therefore, we choose target components identified by 

Functional Item Number (FIN). The representation of these components is extremely rare. The basic 

idea is to tackle class overlapping, which will enable us to correctly detect the extreme minority class 

samples and the majority class samples during model classification.  

Apart from the high skewness and class overlapping problem in the dataset, the raw data has many 

challenges that require preprocessing, such as data incompleteness, lack of behaviours and trends, 

containing null values, lacking the features of interest, and containing noise. Therefore, the data 

knowledge discovery approach [62] is followed. The data is preprocessed and transformed into a 

suitable format for machine learning. After that, a Feature Engineering (FE) process is carried out. 

FE is the integral and critical step of the machine learning process because the model's performance 

output depends on the quality of data and the right features selected.  After the preprocessing and 

feature engineering phase. The data is divided into two: For training and for testing the model. The 

    Remove from 𝑵 all samples that are correctly classified by 𝑯𝒋 . 
 

         End   

End     

OUTPUT ENSEMBLE: 

 
Return    𝑯𝒊(𝒙) = 𝒔𝒊𝒈𝒏𝜸  (∑ ∑ 𝜶𝑺𝒊𝒋=𝟏 𝒊,𝒋𝑴𝒊=𝟏 𝒉𝒊,𝒋 (𝒙) −  ∑ 𝜽𝑴𝒊=𝟏 𝒊 ) 
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data was split into training and testing divided into 70/30 (from January 2011 to September 2016) 

and validation data from October 2016 to April 2018 (without known label).  

 The following requirements are considered in the design and develop the imbalance-learning 

framework.  

1. Features obtained from the raw CMS dataset should adequately represent the component replaced.  

2. The baseline learning algorithm and classifier should be suitable for large imbalanced datasets.  

3. The model performance evaluation metrics should be suitable for an imbalance scenario.  

4. Prognostic alert requirements: - Predictive model should flag up alerts for maintenance needs 

(component replacement), not more than ten and not less than two flight cycles before failure point. 

The window period is to avoid early replacement of a component, which will mean underutilizing 

resources and not too close to failure to give adequate room to prepare for maintenance.  

5. Model should achieve more than 60% precision, recall more than 50%, or G-mean of greater than 

50%. 

From the dataset, a few aircraft components were selected for validation. The components are the 

Electronic control unit/ Electronic engine unit (4000KS), High-pressure bleed valve (4000HA), 

pressure regulating valve (4001HA), Satellite data unit (5RV1), Flow control valve (11HB), Avionics 

equipment ventilation computer(10HQ), Air traffic service unit (1TX1) and Flow control valve 

(8HB). The selection is based on descriptive analysis, which shows the percentage of each component 

replaced over the period under consideration. Components with the highest number of replacements 

are selected, containing enough patterns to train the machine learning model. The dataset (failure/ 

warning message) is clustered according to every specific component. Then, in each cluster, patterns 

that lead to component replacement are labelled as a positive class (representing the minority class-

P), while patterns that did not lead to component replacement are are labelled as the negative class 

(representing the majority class-N).  In each cluster, since the data is sequential in terms of date-time 

and flight circles, we group the data into windows using date-time and flight cycles; a window size 

of 30 aircraft flight cycles was used. The choice of window size is based on the domain of expert 

advice.  
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Our experiment compares the performance of existing ensemble boosting methods for imbalanced 

learning with the proposed approach. Therefore, the following experiment was set up to evaluate the 

proposed BACHE algorithm's performance on aircraft rare unplanned failure prediction problems.  

Balance Bagging (BB): This is an ensemble learning method. It uses a bagging approach with an 

additional capability to balance the training dataset at the fitting time. During training, the parameter 

can be turned for the best results. Therefore, BB is considered our baseline method since our 

algorithm is based on the ensemble learning approach and focuses on tackling extremely rare failure 

problems in aircraft systems. The hyper-parameters are 

Base_estimator=None,n_estimators=10,max_samples=1.0,max_features=1.0,bootstrap=True,bootst

rap_features=False,oob_score=False,warm_start=False,n_jobs=None,random_state=None,verbose=

0. 

SMOTE-Random Forest (SMT-RF): This method involves combining an imbalance learning with 

an ensemble algorithm. We first use the SMOTE algorithm to resample the minority class and then 

apply the ensemble-RF algorithm as the classifier. The Random Forest algorithm is implemented 

using the following hyperparameters: learning_rate = 0.1, Max_depth =10, Subsample = 50, 

Colsample = 0.3, n_estimator= 10 

XGBoost (eXtreme Gradient Boosting): XGBoost is an ensembled learning based algorithm, 

ensembled are contructed from decision trees, trees are added using boosting approach (one at a time 

to the enseble as fit for classification) [63]. XGBoost Scikit_Learn API was used with the following 

hyperparameters: learning_rate = 0.1, Max_depth =10, Subsample = 50, Colsample = 0.3, 

n_estimator= 10.  

Cost-Sensitive C4.5 Algorithm: This ensemble-based algorithm builds decision trees from a set of 

training data [64]; the trees are used for classification. C4.5 algorithm is implemented using the 

following hyperparameters: learning_rate = 0.1, Max_depth =10, Subsample = 50, Colsample = 0.3, 

n_estimator= 10. 

Balance calibrated Hybrid Ensemble Technique (BACHE): The proposed approach. 

Experiment Running Environments:  

Operating system: The experiment was performed on MacBook pro (ios 14) with GPU. 

Programing langege : Python  

Machine learning Editor: Sublime and Jupyter notebook 
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Major Packages: Pandas, Scikit-learn, Keras, TensorFlow, sciPy and more.  

Running the experiments with multiple seeds will ensure the approach is not sensitive to different 

start conditions. Some of the sensitivity to initial conditions could be that the failure distribution can 

substantially differ between the training and validation datasets, which will likely negatively affect 

model training. To mitigate that, stratified samples and random seed can be used so that the 

proportions of the dependent variable are similar in training, testing and validation dataset. In the 

implementation, each algorithm was run five times with the same hyperparameter for each target 

event using five random seeds then the average is obtained. 

 

4.1 Evaluation Criteria 

  In machine classification, accuracy is the most significant performance metric usually used. 

However, the use of accuracy to evaluate performance under extremely imbalanced classification 

problems can be misleading because classifies will be biased towards the majority class to achieve 

high overall accuracy. Therefore, to evaluate the performance of the classifiers better, some 

alternative metrics are adapted: Precision, Recall, G-mean, Area Under the Curve (AUC) are used as 

evaluation metrics, defined as follow: 

Precision: Measures how exact the model is predicting, i.e., percentage of predicted fault events that 

are correctly labelled or measure of classifier exactness.  

Precision = 
𝑇𝑃𝑇𝑃+𝐹𝑃 ,          (1) 

where TP – is true positive, FP -is false positive  

Therefore, low precision indicates a large number of False Positives. 

Recall: Measure of how complete the model is predicting, i.e., the percentage of true fault events 

which are labelled or measure of classifier completeness 

Recall =  
𝑇𝑃𝑇𝑃+𝐹𝑁 ,          (2)   

where TP – is true positive, FP -is false positive  

Therefore, low recall indicates many False Negatives. 

G-mean: is the mean average between the precision and the recall  
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𝐺 − 𝑚𝑒𝑎𝑛 = √ (𝑝𝑟𝑖𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)                          (3) 

Receiver Operating Characteristic Curve (ROC) is a comprehensive index reflecting the continuous 

variable of sensitivity and specificity. It shows the ability of the classifier as the discriminant 

threshold is varied.  

True Positive Rate - TPR:  Also known as sensitivity.  

𝑇𝑃𝑅 =  𝑇𝑃𝑇𝑃+𝐹𝑁 =  𝑅𝑒𝑐𝑎𝑙𝑙,                     (4) 

where TP  is true positive and FP is false positive     

Specificity is defined as False Negative Rate ( FNR)  

𝐹𝑁𝑅 =   (𝑇𝑃+𝑇𝑁) 𝑇𝑃+𝐹𝑁+𝑇𝑁   = 1 − 𝐹𝑃𝑅                    (5) 

4.2 The time complexity of the BACHE  algorithm 

The algorithm use of computational resources is determined by time complexity computational 

analysis. In the worse cases, running time is expressed as a function of its input using a big Omicron 

(big-O) notation[65][66]. Big-O notation gives an upper bound on Complexity or the growth rate of 

a function, and hence it signifies the worst-case performance of the algorithm. The big-O notation is 

express in the order of growth from best to worst. O(1) constant runtime < O(ogn) logarithmic < O(n) 

Liner growth < O(nlogn) log-linear growth < O(n^2) quadratic growth < O(2^n) exponential growth 

< O(n!) factorial growth. The complexity analysis retains the dominant term while the scaling factors 

and constants are ignored since the concern is only about asymptotic. For instance, if an algorithm 

needs O (3n^3 + 10n +10) operations, its order is said to be O(n^3). 

The Complexity of the BACHE algorithm is computed with respect to the data input size. The 

statements have an order of O(1); because of the nested loop, we have a runtime of O(k *j) because 

instead of j, we have to iterate on k, the Complexity becomes O(n^2). Since Algorithm 1 is invoked 

in the second loop, the Complexity of algorithm one is considered, which has a constant time loop of 

order O(1). putting it together  

0(1) + (n^2)+O(1) = O(n^2 +2) = O(n^2)  

Therefore BACHE has a time complexity of O(n^2) quadratic growth 
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5 Results and Discussion  

This experiment investigates the proposed approach's performance against the existing ensemble 

learning algorithms (Balance Bagging as baseline) and hybrid imbalance learning algorithms 

(SMOTE + Random Forest). The choice of the baseline algorithms is to enable us to assess the 

proposed method's performance, which uses a cost-sensitive decision tree as a weak classifier and 

then employs an ensemble approach to get a hybrid algorithm (BACHE) as a solution to the extremely 

imbalanced classification problem. 

 

 

Figure 5 Comparison of performance of BACHE with other Algorithms 

 

Tables 2 and Figure 5 presents the results of the experiment conducted. It can be observed that in all 

cases, the proposed BACHE algorithm outperforms the two algorithms in terms of recall and G-

mean. The G-man's superior performance indicates the tradeoff between recognition in both classes, 

which is also a good classification effect for imbalanced datasets. Similarly, the high precision 

suggests that the false positive rate is low, and the high recall score indicates that the BACHE 

algorithm is sensitive to the minority class. Furthermore, Figure 5 shows how BACHE records a 
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significant percentage reduction in false positives compared to other methods. Although, the positive 

class (the minority class) is extremely rare. However, the BACHE algorithm is robust to skewed 

distribution by achieving a better result. 
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Table 2 Experimental Result using data from a fleet of A330 and A320 Aircraft families, the proposed BACHE algorithm is compared 

with  baseline Balanced-bagging and other ensemble learning algorithms 

Dataset 

(TFIN) 

IR% Balance Bagging (baseline) SMT +RF BACHE 

XGBoost 

(eXtreme Gradient Boosting) 

C4.5 

  Precision Recall GMean 

Time 

(sec) 

Precision Recall GMean 

Time 

(sec) 

Precision Recall GMean 

Time 

(sec) 

Precision recall GMean 

Time 

(sec) 

Precision Recall Gmean 

Time 

(sec) 

A330 (Long Range) Family 

4000KS 0.0043 0.75 0.50 0.60 23 0.81 0.65 0.72 40 0.85 0.78 0.81 51 0.79 0.67 0.72 62 0.71 0.65 0.71 55 

4000HA 0.0047 0.81 0.56 0.67 20 0.85 0.73 0.79 44 0.92 0.80 0.86 55 0.82 0.77 0.79 66 0.73 0.66 0.73 53 

5RV1 0.0044 0.80 0.55 0.66 22 0.83 0.68 0.75 46 0.89 0.79 0.83 53 0.76 0.77 0.76 63 0.77 0.65 0.77 56 

A320 (Short Aisle) Family 

11HB 0.0028 0.75 0.53 0.63 26 0.77 0.70 0.73 42 0.89 0.83 0.82 50 0.81 0.71 0.75 61 0.72 0.63 0.72 55 

10HQ 0.0031 0.82 0.54 0.67 28 0.84 0.71 0.77 40 0.92 0.81 0.87 51 0.77 0.68 0.72 64 0.70 0.68 0.7 54 

1TX1 0.0021 0.78 0.50 0.62 25 0.80 0.65 0.72 41 0.84 0.80 0.81 53 0.78 0.68 0.72 66 0.77 0.66 0.77 55 

*TFIN:-Target Functional Item Number, IR:- Imbalance Ratio, SMT:- SMOTE, RF:- Random Forest, BACHE:- Balanced Calibrated Hybrid Ensemble Technique, XGBoost:- 

eXtreme Gradient Boosting 
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It is also important to note that our goal is to achieve a G-mean score of greater than 50% as part of 

the target requirement for this study, which is the mean average of detecting extremely rare failure 

from the log-based dataset. The higher G-mean score for the BACHE algorithm shows that the model 

can distinguish the failure patterns leading to unexpected component replacement.  

We also evaluate the proposed method's effectiveness in terms of false-positive and true-positive 

rates, considering the different aircraft families' datasets.  

 

(a) 

 

(b) 

Figure 6 The average overall performance of each algorithm on the two aircraft families (a) 

A330 and (b) A320 
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Figure 6 shows the average FPR and TPR for each algorithm in both A330 and A320 aircraft families. 

BACHE averagely achieved a better (low) false-positive rate compared to the closest SMOTE+RF. 

In the A330 family, a balanced bagging algorithm has a predictive performance in terms of FPR of 

69%, SMOTE+RF has 35%, while BACHE  15%. Comparing BACHE with closes SMOTE+RF, it 

is clear to see that there is a significant improvement of about 20%. Similarly, in the A320 family, 

the FPR for balance bagging is 47%, SMOTE+RF is 34%, and BACHE is 19%, showing an 

improvement of about 15%. The result validates the superior performance of BACHE in different 

aircraft families in the fleet.  

Furthermore, another evaluation is the ROC curve reading, which shows that even though there is a 

significant percentage of false-positive rate (approximately 15%), the absolute probability is 

reasonably small.  

 

(a) 
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(b) 

Figure 7 (a) is the Confusion Matric of BACHE prediction, and (b) the ROC-Curve showing 

the performance of the three algorithms considered in this study using data from the A330 

aircraft family 

 

As seen in Figure 7(a), the BACHE algorithm predicted 5 out of 8 unplanned failures, leading to the 

aircraft's pressure regulating valve replacement (FIN_4000HA). This prediction includes 10 flight 

cycles in advance. It can be observed that the model detected and predicts approximately 70% of 

extreme failure, which is a reasonable specificity, especially for aircraft maintenance. The area under 

the curve Figure 7(b) is 0.91. This shows that the BACHE algorithm can predict more than 90% of 

the probabilities of an observation belonging to each class in the A330 aircraft family.  
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(a) 

 

(b) 

Figure 8 (a) is the Confusion Matric of BACHE prediction and  (b) ROC-Curve showing the 

performance of the three algorithms considered in this study using data from the A320 

aircraft family 
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Figure 8 shows the predictive performance of BACHE on the A320 aircraft family. The result 

indicates that the BACHE algorithm predicted 12 out of 14 unplanned failures, as seen in Figure 8(a), 

leading to the aircraft flow control valve (FIN_11HB). The area under the curve is 0.87, as seen in 

8(b). The BACHE algorithm can predict more than 85% probabilities of an observation belonging to 

each class in the A320 aircraft family.  

We presented a confusion matrix and ROC for target functional items 4000HA and 11HB because 

the prediction performance is at the same range for other components in each aircraft family.  We 

considered the remaining components from the A330 family, the electronic control unit/ electronic 

engine unit (4000KS), the satellite data unit (5RV1).  The A320 family are the avionics equipment 

ventilation computer (10HQ) and the air traffic service unit (1TX1).  

Also, it can be observed that the imbalanced ratio has an impact on performance. For instance, looking 

at Table 2 in cases where the IR is low, we obtain a lower G-mean compared to the ones with higher 

IR. For instance, in the A320 family, 1TX1 has the lowest IR of 0.21% and a G-mean score of 0.81, 

Compared to 10HQ with the highest IR of 0.31% and G-mean score of 0.87. Similar performance 

can be seen in the A330 family, where 4000KS has the lowest IR of 0.43% and the G-mean score is 

0.81 compared to 400HA with the highest IR of 0.47% and G-mean score of 0.86.  Despite the 

extremely imbalanced ratio in all the cases considered, our proposed algorithm still achieved better 

performance compared to other similar algorithms. 

 Another data factor that can impact the algorithm is the class small disjunct. Small disjunct arises 

when data in the same class is represented with different clusters (within class imbalance). The less 

represented small sub-clusters can further worsen classification performance degradation in an 

extreme imbalance dataset. We handled the challenge of class small disjunct problems intrinsically 

in the BACHE algorithm by clustering each class independently to identify clusters in each class. We 

subsequently oversampled sub-clusters in each class so that clusters in each class are balanced before 

the classification step.     

One of the objectives of this study is the performance optimization of an imbalance learning 

algorithm.  Evolution of the proposed BACHE against other similar algorithm was performed, the 

result displayed in Figure 9. Running each algorithm for classification of individual component 

failure.  The result indicates that balance bagging has the fastest training time (averagely 20 seconds), 

with the XGBoost algorithm having the worst training time (averagely 60 seconds). In contrast to the 



Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

 

32 

 

Proposed BACHE algorithm, which has an average training time of 50 seconds.  Although Balance 

bagging and Random Forest (RF) show less computation time than BACHE, as observed, the 

difference is less than 20 seconds for balanced bagging and less than 10 seconds for the random 

forest. On the other hand, BACHE performed better in precision, recall, and G-mean (see table 2).  

Mis-classifying an example from the majority class as an example from the minority class is called a 

false-positive. False-positive is often not desired but less critical than classifying an instance from 

the minority class as belonging to the majority class, known as a false-negative. In the context of this 

study, false-negative means misclassifying fault as healthy, very critical as it can lead to equipment 

damage. In this study, false-positive means misclassifying a healthy component as a faulty 

component. This can result in the extra cost of maintenance checking. BACHE high precision 

indicates a less number of False Positives, and high recall means fewer False Negatives.  

  

Figure 9 Comparing BACHE algorithm with other ensemble-based methods  

G-mean is a metric that measures the balance between classification performances on both the 

majority and minority classes. G-mean measures the root of the product of class-wise sensitivity; it 

attempts to maximise each class's accuracy and keeps the accuracy balanced.  It is a performance 

metric that correlates both. A low G-Mean indicates poor performance in the classification of the 

positive cases even if the negative cases are correctly classified as such. This measure is important in 

the avoidance of overfitting the negative class and underfitting the positive class. The algorithm can 

classify samples from both minority and majority classes which is shown in higher G-mean for 

BACHE compared to others. 
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6 Conclusion 

This paper proposes and develops a novel imbalance-learning algorithm known as the Balance-

Calibrated Hybrid Ensemble Technique (BACHE). The new algorithm is designed to handle 

extremely imbalanced classification problems in predictive modelling. Also, BACHE is trained using 

real-world test cases from the log-based central maintenance system data to produce a model for 

predicting aircraft component replacement. The novel approach significantly reduced false-positive 

and false-negative rates compared to similar approaches.  The results showed that the model could 

predict aircraft component replacement within the target defined range; this contribution can enhance 

predictive maintenance in fleet reliability analysis.  The model, when validated, can be used for 

predictive aircraft maintenance to improve the efficiency of the component replacement prognostic 

model. Though having a larger dataset from a different domain would offer further insight, this work 

focus on rare event prediction in aircraft predictive maintenance. In the future, the application of  

BACHE will be explored in domains other than aircraft.  Also, the work can be developed further by 

studying the impact of class overlapping in the process of over-sampling the minority class.  
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Highlights for Review

Advanced  techniques  for  the  analysis  of  an  aircraft  central  maintenance  system  -CMS

dataset to develop reliable vehicle health predictive models is required.

 Imbalance  dataset  is  still  a  challenge  faced  in  building  reliable  data-driven  prognostic

models.

BACHE algorithm for handling extreme imbalance problems is proposed.

Important log messages that hold direct links to the causes of aircraft component failure

leading to replacement are shown.

The  result  shows  the  effective  handling  of  data  imbalanced  problem  produces  a  high-

performance model for aircraft predictive maintenance.
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