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ABSTRACT 

Climate change will affect worldwide weather and crop development. Agriculture 

is a major concern around Groot Letaba catchment (South Africa), and future 

irrigation supply for avocado crops is at risk but remains unclear. This research 

focused on the impact of climate change on future irrigation demand of 

avocados, with a case study in Limpopo province, South Africa. The objective 

was to compare water demand between the baseline data (1982-2010) and 

projections for 2050 and 2080 and determine the potential effect of climate 

change on avocados’ irrigation requirements in the future. First, a weather 

generator was used to create 1000 future daily time-series of rainfall and 

temperature, following nineteen different General Climate Models, for two 

emissions scenarios. The outputs were used in a soil-water balance model to 

simulate irrigation requirements of avocados according to the different 

scenarios and years studied. Models’ average irrigation demand was found to 

increase by at least 8.7% by 2050, and up to 17.4% by 2080, with a notable 

dispersion of values and few models predicting a decrease. The frequency of 

exceeding annual irrigation capacity could reach 45% with mitigation and 58% 

without mitigation by 2080. Farmers are expected to have more difficulties 

providing sufficient irrigation to avocados trees and facing possible multi-year 

droughts. Mitigation appeared as essential to ensure the sustainability of 

avocado business. 
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1 INTRODUCTION 

1.1 Background 

The Limpopo province is known in South Africa for agriculture. A big variety of 

products (fruits, vegetables, cereals…) can grow there thanks to different 

climates (arid, semi-arid, and humid). Limpopo is producing tropical fruits such 

as mangoes and avocados, because of warm subtropical conditions. The 

southern regions of South Africa have cooler climate not ideal for this industry. 

Figure 1: Map of South Africa with Limpopo (Source: INR (Pers. Com.)) 

Avocado has worldwide become a very popular product, especially in Europe 

and North America. The value of a ton of South African avocados has been 

multiplied by nearly 3 in the last decade as a consequence of its attractiveness 

(FAOSTAT, 2021).  
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Avocado crops, highly water-demanding (Hoffman and Du Plessis, 1999; 

Moreno-Ortega et al., 2019; Silber et al., 2019), are particularly vulnerable to 

irrigation changes. They can not only be rain-fed: a part from the water used by 

crops comes from rain, and rainfall variability affect the amount of water brought 

artificially by irrigation. The total water volume dedicated to agriculture is 

defined each year by authorities considering recharge of the Groot Letaba 

catchment area. 

Important shortage in water can lead to diseases and death of avocados, 

smaller deficits can affect the number of fruits, and their size/weight (Silber et 

al., 2019). It is a challenge to maintain high yields, while being constrained on 

water availability. Trees respond better to a constant regulated hydric stress 

than a partial water deficit on a defined period of time (Silber et al., 2019). 

Modification of climate is likely to have an effect on avocados. The Climate 

Convention established requirements for every country to realise a climate 

change risk assessment (IPCC, 2018). Following this guidance, multiple reports 

have been written by South African government to adapt to climate change 

consequences (DEA, 2016; DEFF, 2019). As the first effects of climate change 

already appeared during the last decades (drought likelihood increase and 

water related issues), it is a major concern for the country and national 

strategies are essential to face it. In addition, several studies realised general 

risk assessments for the country (Van Jaarsveld and Chown, 2001), suggested 

adaptation responses (Mwenge Kahinda, Taigbenu and Boroto, 2010; Vogel 

and van Zyl, 2016), others focused more deeply on climate change impact on 

water management (Mukheibir and Sparks, 2003), and agriculture (Gbetibouo 

and Hassan, 2005; Calzadilla et al., 2014). 

In South Africa, water scarcity due to climate change could disturb numerous 

sectors, and mostly water availability for people, agriculture (and by the same 

mean food production and security), and industry. Drought periods combined 

with rainfall diminution can cause multiple problems for water catchment areas, 

making difficult the allocation of sufficient amount of water for all human activity 

when water availability diminishes. The Groot Letaba catchment area in 
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Limpopo province is notably affected by water availability issues (Kanjere, 

Thaba and Lekoana, 2014).  

When doing a climate change impact assessment, it is essential to consider 

local conditions and parameters. Studies were made in other parts of the world 

(Howden, Newett and Deuter, 2005) or on larger scales (Tubiello and Fischer, 

2007), but their use is not recommended for a study in a specific location. It is 

imperative to work with models and scenarios that can be locally used for the 

region concerned. 

Climate change scenarios have been realised for decades, with the will to 

predict climate evolution considering the extent of mitigation efforts worldwide 

(McGinnis et al., 1973; Hulme et al., 1999). It is not possible anymore to rely on 

historical data only for future climate projections, as the current and expected 

changes have never been seen in such proportions. Thus, developing strong 

models, to help understand what to expect and plan future actions, is decisive.  

Nowadays, four different mitigation scenarios are generally accepted by the 

scientific community and form the baseline of any climate-related study. These 

scenarios are the RCPs (Representative Concentration Pathway) representing 

worldwide efforts to stabilize or not radiating forcing to sustainable rates by 

2100: they range from 2.6 W/m2 (intense mitigation) to 8.5 W/m2 (no mitigation) 

(The Core Writing Team IPCC, 2015). For the best-case scenario, temperature 

increase in Tzaneen, Limpopo would be limited below 1.6°C by 2100 (Pearce 

and Hausfather, 2018). If no mitigation is planned, the average temperature rise 

could reach 5.5°C by 2100 there (Pearce and Hausfather, 2018). 

As part of climate change, drought episodes and rainfall diminution could put in 

danger crop irrigation and create water deficit, as already observed over the last 

years (Wiid and Ziervogel, 2012). Temperature variability can modify crop 

development, by reducing the fruits’ final size, causing an early or late maturity 

(Howden, Newett and Deuter, 2005), and increase crop evapotranspiration 

(ET), which implies bigger irrigation requirements. Rainfall diminution would 

increase irrigation requirements, but water allocation is already constrained. In 

addition, carbon dioxide rates in the atmosphere can also affect ET, as air 
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composition has a role in water exchanges between air and crop (Kimball and 

Idso, 1983; Pan et al., 2015).  

South African agriculture is at risk with climate change (Muller et al., 2011; 

Calzadilla et al., 2014), but the impact on avocados’ future water demand 

remains unclear. Therefore, it is important for everyone, especially farmers to 

understand how avocado crops and their irrigation requirements could be 

affected. Many farmers understood the risk, expect changes for crop irrigation, 

but don’t know yet the scale of these changes (Wiid and Ziervogel, 2012).  

Climate change impact assessments require the use of climate models as tools 

for the generation of future data. Climate models, also called General / Regional 

Circulation Models (GCMs / RCMs) are based on physics and equations to 

simulate interactions defining Earth’s climate at large spatial and temporal 

scales. They are used as an interpretation of energy and matter exchanges 

between and inside the different layers of the planet. Each climate model 

interprets the RCPs to develop a range of predictions on future climate. 

Using raw climate data directly from GCMs for local analysis is not encouraged 

because these models reflect large spatial or time scale variation, and local 

data generated would rely on a lot of assumptions, that are unclear and not 

always defined or explained to the user, limiting the results. It is advised to 

extract large-scale data, with high reliability, and then treat the data with 

adapted techniques (Trzaska and Schnarr, 2014). Dynamic and statistical 

downscaling are two different ways to realise this: these techniques increase 

precision and reduce uncertainty. They enable to obtain a better resolution than 

the GCMs for which “the spatial scale can’t be finer than 100km*100km” 

(Trzaska and Schnarr, 2014).  

Both methods require reliable GCMs simulations and data. Dynamic 

downscaling is often used for regional or national applications, which is not the 

case in this study. Even though it is a very precise technique, dynamic 

downscaling requires significant resources (computing, data) and a high level of 

expertise and is not implementable at this level. Statistical downscaling appears 

as a more adapted method for local climate modelling, as it is easy to do, it 
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requires medium to low data amount and can be used at very local scales 

(further comparison in Table A-1 of Appendix A). 

3 main statistical downscaling solutions exist: linear methods, weather 

classification, and weather generators. Linear methods such as the change 

factor are interesting when a proportionality relationship can be established 

between past and future data but is not usable when it comes to non-normally 

distributed variables such as daily rainfall. The second one, weather 

classification, can deal with normally and non-normally distributed data. 

Nevertheless, it requires a better computation capacity and big data amount 

and is not able to predict new values outside of the historical data intervals. The 

last one, the weather generator, can provide large numbers of daily time-series 

(which helps reducing uncertainty), with a decent amount of data, for every type 

of variable. The main disadvantage is the sensitivity to inaccurate historical 

data. 

1.2 Area of study 

This study focuses on a commercial avocado farm in Tzaneen, Limpopo, South 

Africa (23° 45’ 15’’ S, 30° 07’ 43’’ E). Limpopo province is the leading avocado 

producer in the country, accounting for 58% of the national business (The South 

African Avocado Growers’ Association, 2020).  

The focus is made on the Hass variety of avocado, as it is the predominant one 

(80% of the area planted among avocado varieties). 

The avocado business in Limpopo relies partly on the Groot Letaba catchment 

area, providing water for irrigation. This catchment area suffered from hydric 

stress during the last few years, and as a consequence, could not entirely 

supply all water demanding human activities, as avocado growth. Recently, 

river dams in South Africa experienced all-time lows, the likelihood of dry years 

has increased (Mahlalela et al., 2020), and climate change is expected to 

amplify drought risk and hydric stress on agriculture (Pascale et al., 2020). 
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1.3 Aim and Objectives 

The aim of this thesis is to assess the impact of climate change on avocados’ 

future irrigation demand in the Groot Letaba catchment following 2 major 

predictive scenarios, in order to inform adaptation strategies. 

The different objectives are: 

1. To generate the possible scenarios for the future climate in the Groot 

Letaba catchment, especially rainfall and temperature.  

2. To model the current and future irrigation water demand of avocados in 

the Groot Letaba catchment for all scenarios studied.  

3. To establish a probabilistic model of future irrigation water demand of 

avocados. 
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2 METHODOLOGY 

Figure 2 summarizes the methodology of this study. 

Figure 2: Diagram summarizing the methodology chosen and its different steps 

2.1 Climate data 

2.1.1 Production of a baseline climate dataset  

The first step was to obtain a baseline climate set of data, as historical daily 

weather information (rainfall, minimum and maximum temperature) was 

required as input in the modelling part (between 20 and 30 years of data for 

calibration). The primary data source was Westfalia Fruits: one of the biggest 

South-African avocado producing companies located in Tzaneen, contributing 

information on crops, irrigation techniques, and local climate. Westfalia Fruits 

has provided monthly rainfall data in Tzaneen since 1978. As daily datasets are 

required, the NASA database was used to complete it (LaRC Power Project, 

2021). It provided daily historical information on rainfall, minimum and maximum 

temperature since 1982. The Groot Letaba region has a strong rainfall gradient. 

Annual rainfall values can go from 200mm to 1400mm between the low and 
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high-altitude sites. NASA rainfall information is average values of a grid-cell  

(0.5° latitude by 0.5° longitude), and can’t guarantee high precision, but it is 

possible to know the monthly average difference from Tzaneen thanks to 

Westfalia Fruits.  

The annual rainfall distribution provided by NASA was combined with monthly 

rainfall values given by Westfalia Fruits to generate daily time-series of rainfall 

from 01/01/1982 to 31/12/2010 (29 years), to have enough historical data as 

input for the modelling part. This step was not necessary for minimum and 

maximum temperature, as temperature gradient is less important than the 

rainfall one within a grid-cell, and temperature data from NASA can be used. 

2.1.2 Use of LARS WG to generate baseline climate datasets 

In this study, a weather generator was chosen for several reasons. First, the 

mix of local (Westfalia Fruits) and global (NASA) data sources increases the 

confidence in data quality. Then, as explained in section 1.1, among statistical 

downscaling methods, linear ones are not adapted to non-linear variables such 

as rainfall, and a weather classification is not capable of predicting values out of 

the historical range, limiting its relevance regarding climate change. A weather 

generator is able to generate a large amount of daily time-series, required in 

this study. The purpose is to generate a thousand years of daily time-series of 

rainfall, minimum and maximum temperature, as it is necessary for the second 

modelling part (section 2.2). 

The stochastic weather generator chosen here is Long Ashton Research 

Station Weather Generator (LARS WG) (SEMENOV and BARROW, 1997). 

LARS WG uses climate models and historical data to simulate multiple single-

year time series of local daily weather representing 20-year periods, from 2011-

2030 to 2081-2100. 

LARS WG has been widely used to obtain time series of rainfall and 

temperature (Chen et al., 2013; Hassan, Shamsudin and Harun, 2014; Sha, Li 

and Wang, 2019), because it can work with as little as a single year of historical 
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data. 20 to 30-year record data is still advised to better calibrate LARS WG, and 

for this study, the baseline was 1982-2010. 

Before any result generation, LARS WG realised a calibration by performing a 

site analysis of the data record given as input. Then, to ensure that the 

differences observed between the results are only due to climate change, a 

thousand years of time-series of baseline data were generated and considered 

as the baseline for the results. The baseline data was used on the one hand, for 

comparison with generated future climate data and on the other hand, as input 

for the second modelling part. It was important to work only with LARS WG 

outputs, to give more confidence on the hypothesis that the evolutions observed 

are due to climate change and not a systematic software error. It relied on the 

hypothesis that the systematic error due to LARS WG is the same for historical 

and future data. 

2.1.3 Analysis of LARS WG performances 

Then, LARS WG realised statistical analysis of generated rainfall, minimum and 

maximum temperature historical data. For each of them, observed and LARS 

WG generated monthly means were compared, with 2 statistical tests: the t-test 

(to show any significant difference between mean values) and the f-test 

(differences in standard deviation). Each test result was given with an 

associated p-value, “the probability that the observed and synthetic mean 

values are derived from the same population” (Semenov and Barrow, 2002). P-

values would then validate or not the hypothesis that LARS WG generated 

historical data reflects the observed historical data. To be significant, p-values 

have to be above 0.05 according to Semenov and Barrow (2002). 

It is important to notice here that LARS WG is not a predictive tool, but a way to 

produce daily time-series likely to happen in the future.  

2.1.4 Future climate: years, RCPs and models 

19 General Circulation Models, from the CMIP5 ensemble of the IPCC Fifth 

Assessment Report (2018), are included in LARS WG, helping models 

uncertainty management, and work for multiple RCP scenarios (2.6 to 8.5) (list 
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of models in Table B-1 of Appendix B). All models cover RCP 4.5 and 8.5, only 

6 of them for RCP 2.6, and none for RCP 6.5. In addition, it would not have 

been relevant to focus on the four of them, because of the uncertainty existing 

on each model. For example, the uncertainty on RCP 6.5 overlaps both RCPs 

4.5 and 8.5. The choice was made to focus on RCPs 4.5 and 8.5, with a 

thousand years of simulated weather per model and per RCP.  

Two years were chosen: 2050 (period 2041-2060), which corresponds to the 

middle of the century and is often used in climate change projections, and 2080 

(period 2071-2090), which is close to the end of the century.   

In addition to the baseline, the four scenarios mentioned in the results are: 

- Scenario n°1: RCP 4.5, by 2050 

- Scenario n°2: RCP 8.5, by 2050 

- Scenario n°3: RCP 4.5, by 2080 

- Scenario n°4: RCP 8.5, by 2080 

2.1.5 Generation of future climate datasets and analysis 

For the 19 models and the two RCPs chosen, a thousand years of daily time-

series of rainfall, minimum and maximum temperatures were generated using 

LARS WG. This data was used as an input for the second modelling part 

(section 112.2). LARS WG outputs were also analysed using a python code, to 

summarize weather information (rainfall and temperature) from LARS WG, for 

future and LARS WG-generated historical data. The python files results were 

then interpreted to observe trends and magnitude of changes and distribution of 

extreme values. 

The first analysis was a general comparison between future and historical 

weather conditions, realised looking at the average rainfall and temperature 

differences between each model and baseline, for all four scenarios. The 

averages for baseline and each model were made on the 1000 years of 

simulated climate. 
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In a second time, precipitation distribution per trimester was studied, to highlight 

any modification in rainfall dispersion throughout the year, in addition to the 

focus on the average values before. 

The third part focused on dry years. Dry year occurrences are critical because 

they require careful management and bigger irrigation supply, and water 

availability can become a problem. In this study, a year was considered dry if its 

precipitation amount was below the 20th percentile of baseline rainfall. The 

objective was to calculate the frequency of dry years expected in the future 

according to the four scenarios, doing an average with each model’s dry years 

frequency (19 values, one per model). 

2.2 Wasim model 

According to Hess and Counsell, (2000), Wasim model is a “one-dimensional 

daily soil water balance model”, able to replicate modifications between soil 

layers. It was used in previous studies for its capacity to model groundwater 

table (Hirekhan, Gupta and Mishra, 2007), roots interactions with soil (Uprety et 

al., 2019) and soil water recharge (Holman, Tascone and Hess, 2009). It helps 

multi-years planning. 

Wasim was used in this study to simulate net irrigation requirements for 

baseline and the 19 models for the four scenarios. The objective was to 

compare results of future scenarios to the baseline 1982-2010 following the 

same irrigation scheme. Irrigation requirements are likely to be affected by 

external variables such as temperature, ET and rainfall, and water management 

made by farmers. 

2.2.1 Parameterisation of Wasim  

2.2.1.1 Soil and crop parameterisation 

Wasim was not by default parameterised for avocado. Parameterisation was 

realised using data from Westfalia and external sources. It was assumed that 

soil, cultivar, and crop management remained the same for all the simulations. 

Table 1 summarises all the values chosen for Wasim parameterisation. 
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Table 1: Parameterisation of Wasim 

Variable Value(s) chosen Comments 

Soil type Clay Loam The soil type of Westfalia Fruits’ farms  

Curve Number 82  (USACE Hydrologic Engineering Center, 2021) 

Value corresponding to agricultural lands in a fair 

hydrologic condition, for clay soil 

Depth of soil 6m  With Wasim, the depth of soil is not important if the value 

is bigger than max root depth, it is only useful for Wasim 

salinity modules. 

Hydraulic conductivity 0.2 m/d Default value for clay loam soil 

Planting date Jan 1st 

The crop calendar was not realised considering the fruit, 

but the avocado tree, which is here all year long. 

Emergence date Jan 1st  

20% cover Jan 1st 

Full cover Jan 1st 

Maturity Dec 31st  

Harvest Dec 31st 

Max root depth Jan 1st 

Max cover (%) 100%  

Mulch cover (%) 0%  

Reference 

evapotranspiration ET0 

 

Equation 1 

 

Crop evapotranspiration 

ET 

ET = ET0 * Kc Seasonal values of Kc (crop factor) from Mazhawu et al. 

(2018) 
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Crop coefficient at full 

cover (%) 

100%  

Max root depth 3m  

Planting depth 0.1m  

Max ponding depth (cm) 0 No ponding happening. 

 

Equation 1: Calculation of daily reference evapotranspiration 

𝐸𝑇0 = 0.0135 ∗ 𝐾𝑟𝑠 ∗ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) . ∗ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 + 17.8) ∗
𝑅𝑎

𝜆
 

With Krs = 0.17 °C−0.5 and λ = 2.45 M.J/kg  (Paredes et al., 2020); Tmax and Tmin 

from LARS WG outputs; Ra from Allen, R. G., Pereira, L. S., Raes, D. and 

Smith (1998) 

2.2.1.2 Irrigation scheduling 

Irrigation was realised at fixed depletion (50% of Total Available Moisture), with 

a fixed amount of 10mm. According to Allen, R. G. et al., (1998), the depletion 

fraction (i.e. the fraction of water deficit a crop can allow without any impact on 

its growth) for avocados is 70%, nevertheless, it was safer to set the depletion 

fraction at 50% to avoid any water lack. The fixed amount was set to favour 

regular irrigation of small quantities rather than big quantities at one time, and 

this for two reasons. First, it matched the irrigation systems and it is easier for 

farmers to provide small water volumes to the entire orchard at the same time. 

Second, if precipitations occurred the following days, rainfall water was lost as 

big volumes of water were already brought the days before. Small quantities 

help reducing water depletion and optimise rainfall use. 

2.2.2 Simulation of irrigation requirements for baseline and climate 
change scenarios, and analysis 

Once Wasim was parameterised, irrigation simulation was performed for 

generated historical data and all models for the four future scenarios. 
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A python code was also used to summarise irrigation results from Wasim 

outputs, for future and baseline data.  

The first results were a comparison of the evolution between baseline and the 

four scenarios on annual irrigation average (trends and magnitude). For each 

scenario, the irrigation average was calculated considering the 19 models and 

their 1000 instances each, and model uncertainty is given as a 95% confidence 

interval on the average values of the 19 models. Then, a further analysis was 

made looking at the trimestral distribution of irrigation (calculated with the 

monthly averages of the 19 models).  

Finally, the likelihood of years exceeding design irrigation was studied in more 

depth. The frequency of ‘design years’ is an indicator representing the 

probability that irrigation demand in any year exceeds the design value of 

irrigation systems. Irrigation systems are often designed for a 20% probability of 

exceedance (Knox et al., 2010), meaning that in 1 year in 5, farmers won’t be 

able to fully supply irrigation demand. This analysis was realised focusing on 

the expected frequency of exceeding design value for the four future scenarios. 

Box diagrams were chosen to represent models’ uncertainty and variability, and 

include the value of the variable studied of each model. 
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3 RESULTS 

3.1 Analysis of LARS WG generated historical and future 
climate datasets 

3.1.1 P-values of t-test and f-test realised on LARS WG generated 
baseline climate data 

Table 2 compiles results of the t-tests and f-tests performed on the three output 

variables from LARS WG calibration: rainfall, minimum and maximum 

temperature. The green boxes are values greater than 0.05 (successful test), 

the red boxes are values below 0.05 (unsuccessful test). 

Table 2: P-values of t-test and f-test, for rainfall, minimum and maximum 

temperature of LARS WG generated baseline climate 

Month  Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

Rain t-test 0.448 0.780 0.867 0.981 0.623 0.195 0.567 0.277 0.296 0.802 0.508 0.924 

 f-test 0.000 0.000 0.058 0.000 0.211 0.423 0.745 0.029 0.542 0.942 0.004 0.005 

Min 

Temp 

t-test 0.911 0.046 0.876 0.538 0.279 0.164 0.633 0.917 0.046 0.853 0.446 0.786 

 f-test 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Max 

Temp 

t-test 0.748 0.875 0.613 0.825 0.813 0.327 0.959 0.474 0.180 0.133 0.843 0.422 

 f-test 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.006 0.540 0.044 0.077 0.000 

For nearly all t-tests on rainfall and maximum temperature and 10/12 for 

minimum temperature, p-values are above 0.05, suggesting that LARS WG 

reflects well average values of the variables. Nevertheless, it is important to 

notice that it is not proof, but only a statistical tool.  
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For rainfall f-tests, 7/12 results are greater than 0.05. Respectively 12/12 and 

10/12 of the f-tests p-values are below the limit for minimum and maximum 

temperatures. LARS WG-generated historical data is not a completely accurate 

representation of the real historical data.  

The results imply that the average values of the variables are likely to be 

correctly represented, but the statistical distributions are expected not to be the 

same. 

3.1.2 Weather conditions in the future 

Figure 3 combines four graphs, one per scenario. Each graph shows, for the 

scenario considered, annual average rainfall difference from baseline in 

percentage (horizontal axis) and annual average temperature difference from 

baseline in Celsius degrees (vertical axis) for each model. The pink cross is the 

average of all models.  
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Figure 3: Annual average temperature (°C) and rainfall (%) differences between 

LARS WG generated baseline data and each model, for the four future 

scenarios  

Temperature : 

There is a notable trend in temperature evolution: all models for all RCPs 

expect an increase of at least 1.3°C. The magnitude of changes intensifies over 

time and from RCP 4.5 to 8.5, with the fourth scenario anticipating a 

temperature increase higher than 5°C for 6 out of 19 models. This is the only 

one projecting more than 4°C difference with baseline in average. 

Rainfall : 

Rainfall evolution is unclear: there is an important disparity in the values 

obtained according to the models. A clear tendency is noticeable for RCP 8.5 

with nearly all the annual precipitation values decreasing compared to baseline 
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(18/19 models). By 2080, for both RCPs, some models predict more than 20% 

diminution compare to the historical value. The situation of RCP 4.5 is globally 

uncertain: for 2050 and 2080, the models are well spread around the vertical 

axis, without a perceptible trend. For all 4 scenarios, the average precipitation 

amount decreases. 

For Figures 4 and 6, the year is divided into four trimesters according to the 

calendar. Figure 4 represents the evolution of average annual precipitation 

distribution by trimester, considering the averages of all instances of the 19 

models for each scenario.  

 

Figure 4: Comparison of average precipitations (mm) per trimester demand 

between LARS WG generated baseline data and the four future scenarios 

There are two different trends in evolution. The first one is a small precipitation 

rise (between 19 to 36mm according to the scenario) for the four scenarios 

during the first trimester, in comparison to baseline. These increases happen 

during a wet period of the year, so are less notable. On the opposite, during the 

last trimester, there is a marked decrease for all four scenarios compared to 

baseline: at least 46mm for scenario n°1, up to 84 mm for scenario n°4. It 

occurs at the beginning of the wet season in South Africa, when rainfall is not as 

heavy as during the first trimester, so the evolution is more visible.  
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3.1.3 Extreme years likelihood evolution 

For Figures 5,7 and 8, box diagrams are realised using 19 values: each model 

average of the variable studied, calculated with its thousand instances. The 

middle line corresponds to the median of the 19 models and the cross is their 

average value. The top and bottom of the box are respectively the 25th and 75th 

percentiles, and the top and bottom lines are the extreme values. The values 

out of the boxes are outliers points according to Microsoft Excel. Future 

scenarios’ uncertainty is due to statistical distribution between the 19 models.  

Figure 5 is a box diagram showing the frequency of dry years for baseline and 

the four future scenarios. A dry year has an annual rainfall below the 20th 

percentile of LARS WG generated baseline rainfall (cf section 2.1.5).  

 

Figure 5: Frequency of dry years for LARS WG generated baseline data and the 

four future scenarios 

The frequency of dry years is predicted to be respectively 31% and 29% by 

2050 and 2080 with RCP 4.5. For RCP 8.5, the likelihoods are 30% by 2050 

and 40% by 2080. Some models anticipate up to 80% of dry years by 2080, in 

the case of RCP 8.5. 
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3.2 Irrigation requirements evolution 

3.2.1 Irrigation evolution in average  

Table 3 shows the absolute and relative difference between baseline and the 

future scenarios regarding future annual irrigation averages, with a 95% 

confidence interval corresponding to models’ variability.  

Table 3: Average annual irrigation requirements and 95% confidence 

interval for baseline and the four scenarios  

Scenario Baseline 
2050 2080 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Annual average 

irrigation demand (mm) 
518 mm 570 ± 26 mm 563 ± 27 mm 574 ± 33 mm 608  ± 21 mm 

Average difference from 

baseline (%) 
/ + 10.1% + 8.7 % + 10.8% + 17.4% 

The four future scenarios expect on average an increase in irrigation demand 

compared to baseline, but in case of RCP 8.5, models suggest a big difference 

between 2050 and 2080 (from 563mm to 608mm), whereas it is stable after 

these 30 years for RCP 4.5. The results per model are summarised in Table C-

1 and C-2 in Appendix C. The uncertainty highlights a significant dispersion of 

values, but even with a large statistical distribution, in all situations, the lower 

end of the confidence interval is greater than the baseline value. 

3.2.2 Irrigation distribution evolution 

Figure 6 represents the evolution of average irrigation distribution by trimester, 

calculated realising the average of all instances of the 19 models. 
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Figure 6: Comparison of average irrigation demand (mm) per trimester between 

LARS WG generated baseline data and the four future scenarios 

The main difference in irrigation distribution is occurring during the last 

trimester: irrigation difference from baseline is respectively 39mm, 41mm, 

45mm, and 66mm for scenarios n°1 to 4. During the other part of the year, 

average irrigation demand remains close to baseline for the first three 

scenarios. It is with RCP 8.5 by 2080 that the irrigation difference is the most 

visible throughout the year. 

As seen in Table 3, for all four scenarios, average irrigation is increasing, from 

8.7% to 17.4% compared to baseline. Even if annual average precipitation is 

not changing significantly from baseline in case of scenarios n°1 to 3 (between -

2% and -3.1%), and decreasing more notably for scenario n°4 (-7.3%), the main 

difference is its annual distribution: it is evolving and rainfall is spread differently 

throughout the year (Figure 4). The small precipitation augmentation observed 

during the first three months of the year for all four scenarios (between +2.7% 

and +6.2% compared to baseline) occurs during a wet period when artificial 

irrigation demand is very low and trees are mainly rainfed. But even with a small 

precipitation rise, the irrigation is not diminishing: this is probably due to 

temperature rise causing higher ET, not compensated by slightly more 

precipitation. On the opposite, the average precipitation diminution during the 
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last trimester of the year coincides with irrigation demand increasing at the 

same period of the year. During this trimester, rainfall diminution from baseline 

for the four scenarios is bigger and occurs simultaneously with a period of the 

year when significant irrigation is required for avocado trees. In the end, the 

rainfall increase at the beginning of the year does not balance the precipitation 

diminution during October-November-December in terms of water requirements 

for the avocado trees, and in total, average irrigation increases for all 4 

scenarios. 

3.2.3 Design years irrigation 

Figure 7 compares the 80th percentile value of annual irrigation demand for the 

5 cases studied.  

 

Figure 7: Box diagram of the 80th percentile of average annual irrigation 

demand (mm), for baseline and the four future scenarios 

In all situations, average irrigation requirements for the 80th percentile is 

expected to rise, of at least 49mm by 2050 and up to 194 mm annually by 2080. 

As for rainfall, some models anticipate an irrigation diminution, but the general 
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trend is an increase, and all models converge to this conclusion for RCP 8.5 by 

2080. 

Figure 8 displays the average expected frequency of design years, for baseline 

and the four scenarios. 

 

Figure 8: Frequency of exceeding design irrigation value, for baseline and the 

four future scenarios 

Figure 8 shows that the frequency of design years is on average decreasing for 

all scenarios. For the first three future scenarios, the majority of models predict 

a rise (16 out of 19 models for each of them) in comparison to baseline, and for 

scenario n°4, none of them suggest a diminution. For baseline, 590mm of water 

was enough in 80% of the cases to ensure proper irrigation all along the year. 

The same 590mm are predicted to be able to supply respectively 54%, 58%, 

55%, and 42% of the situations for scenarios n°1 to 4. Design years are likely to 

happen more often and the resilience of farmers will be challenged, as design 

years could happen in a row and impact the avocado business on a medium to 

long term basis. A future average year is likely to be close to a current design 

year regarding irrigation requirements, and current irrigation designs would not 

fit in nearly 1 year out of 2 on average.  
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4 DISCUSSION 

4.1 Implications of the results  

4.1.1 Comparison of the average irrigation results with similar 
studies 

In this study, the annual average rainfall is found to be respectively 1108mm, 

1074mm, 1084mm, 1086mm, and 1028mm for baseline and scenarios 1 to 4. 

The four future scenarios predict in average an increase in net annual irrigation 

demand compared to baseline (518mm): respectively 570, 563, 574 and 

608mm are expected for scenarios 1 to 4.  

Hoffman and Du Plessis (1999) previously studied Hass avocados’ water 

requirements and hydric stress effect on fruit development in South Africa. 

Assuming that micro-sprinkler irrigation is 80% efficient, they found an annual 

average net irrigation demand of 712mm, notably greater than all the results 

mentioned above. The differences from the values obtained in this study can be 

explained by the gap between the average precipitations of the 2 studies. 

Hoffman and Du Plessis measured 961mm of annual rainfall, significantly lower 

than the amounts obtained in this study. Lower rainfall implies more irrigation, 

and the irrigation difference between the studies (between 104mm and 194mm) 

is of the same range of values as the rainfall gap (between  66mm and 147mm). 

In Chile, Holzapfel et al. (2017) also focused on avocados and obtained an 

average of 667mm of net irrigation demand. There is a big rainfall gap between 

the two studies: at least 417mm and up to 498mm more in simulations in South 

Africa than the observations in Chile. But at the same time, the gap between 

irrigation demand is not that distinct: between 2 and 98mm greater in Chile than 

what was found in this study. The magnitude contrast between rainfall and 

irrigation differences can be explained by the variation of average temperature 

for the 2 experiments: in Chile, it was 14°C, far from 21.3°C, 23.1°C, 23.5°C, 

23.7 and 25.5 for respectively baseline and scenarios 1 to 4. Lower 

temperatures are likely to decrease notably ET, so even with considerably less 

rainfall, irrigation would not increasing a lot. 
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4.1.2 Irrigation evolution according to the RCPs 

RCP 4.5: 

Between baseline and 2050, the temperature rise is correlated to irrigation 

increase. The climate in 2080 is close to the one in 2050, with lower 

temperature rise and still uncertain rainfall evolution, with the same range of 

values. It can be explained by the definition of this scenario: important mitigation 

efforts are anticipated, limiting radiative forcing and global warming (The Core 

Writing Team IPCC, 2015). Parallelly, irrigation demand is on average very 

close:  570mm by 2050, 574mm by 2080. The equilibrium happening to climate 

between 2050 and 2080 stabilises ET and rainfall, and at the end, balance is 

also happening for water requirements of crops and irrigation is only slightly 

bigger by 2080.  

RCP  8.5: 

RCP 8.5 is defined by low mitigation efforts and the radiative forcing remaining 

high (The Core Writing Team IPCC, 2015). Consequently, the temperature rise 

is not attenuated: no balance in climate appears for RCP 8.5 over time. 

Temperature increases notably twice, for baseline-2050, and 2050-2080, and 

rainfall decreases for 18 out of 19 models by 2080. The new climatic conditions 

put pressure on avocado trees: higher temperatures leading to more ET, but at 

the same time, less water is provided by rainfall. As a consequence, irrigation 

demand increases in considerable proportions: +8.7% by 2050, and +17.4% by 

2080. This is particularly happening during the last trimester of the year, which 

is the beginning of the wet season, and when the precipitations are predicted to 

decrease.  

Climate change impact on crops in the eastern part of South Africa was 

previously studied by Knox et al., (2010), and Jones, Singels and Ruane, 

(2015). Both studies focused on sugarcane irrigation and yields in Swaziland 

using a similar methodology, and following scenario A2, from previous IPCC 

reports and close to RCP 8.5. Knox et al. (2010) found a 26% average irrigation 

increase, by 2050, compared to 9% obtained for RCP 8.5 by 2050 here. 
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Similarly, Jones, Singels and Ruan (2014) calculated that average annual 

irrigation would increase by 11% by 2070-2100, which is greater than the 17% 

found in this study for scenario n°4. Both studies expect  

For both studies, the results differences with this study can be explained by the 

selection of climate models and scenarios. Scenario A2 is not exactly the same 

as RCP 8.5, and Knox et al. (2010) and Jones, Singels and Ruane (2015) 

worked respectively on one and three GCMs, whereas 19 were used in this 

study. 

Fischer et al. (2007) studied global trends in irrigation and agricultural water 

withdrawals. They compared the effect of mitigated and unmitigated climate 

change, which could correspond to a comparison between RCPs 4.5 and 8.5. 

They suggested that by 2080, in Africa, mitigation would reduce the impact of 

climate change on irrigation by 28%, close to the 37% found in this study. Even 

though Fischer et al. (2007) provided a regional trend and climate change 

effects defer within the regional scale, their study gives a trend of future 

evolution, and the range of values is the same as in this study. 

4.1.3 Design years frequency  

In this study, the frequency of design years is respectively 46%, 42%, 45% and 

58% for scenarios 1 to 4. Knox et al. (2010), in their study on climate change’s 

effect on sugarcane irrigation and yields in South Africa, and mentioned future 

irrigation requirements that ‘could well exceed current design criteria’. They 

obtained a 50% frequency of design years by 2050 for scenario A2 (similar to 

RCP 8.5), also considering the baseline value is 20%. As for irrigation 

averages, their value is greater than the one in this study (42%), the difference 

is likely to come from the use of a single climate model in their study, and small 

variations between climate scenario A2 and RCP 8.5. 

 

 

 



 

27 

4.2 Dealing with uncertainty 

In this study, there are multiple sources of uncertainty to manage: 

- Scenario uncertainty: climate and CO2 concentration evolutions depend 

on future human behaviours and activities, yet this is not predictable. The 

RCPs are solid tools developed by scientists and accepted by many 

nowadays. Using two very different robust scenarios, RCPs 4.5 

(mitigation) and 8.5 (no mitigation), enable to cover more possibilities 

and understand the potential futures. The uncertainty on their concrete 

interpretation is then dealt with by models. 

- Model uncertainty: all the models are based on the same equations and 

physic principles, but each of them has its own hypotheses and 

interpretations. General Circulation Models are very complex tools and 

need numerous years and scientists to be built. Using 19 different 

models, cited in IPCC reports, and working on the averages of these 19 

tools helps managing model uncertainty. 

- Climate uncertainty: climate evolution is uncertain. For each combination 

of one model and one RCP, the generation of a thousand instances of 

annual weather allowed having a large statistical distribution that would 

cover many possible weather scenarios (dry and wet extremes) and 

cover the aleatory aspect of weather. Considering fewer instances of 

simulation would add a risk of having non-representative climate 

samples, whichever the year. With 1000 instances, a year with outlier 

values has then less weight and doesn’t alter too much the final results. 

4.3 Limitations 

4.3.1 LARS WG performances: p-values as an indicator 

The performances of LARS WG have to be put into perspective because of the 

results of the f-tests (Table 2). Average rainfall, temperature, and irrigation 

results are not likely to be affected, as t-tests results showed good 

performances of LARS WG to reflect average values. Nevertheless, f-tests 

results suggest that the variances of variables are not correctly represented. 
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The analyses regarding the 80th percentile of irrigation, dry years and design 

years frequencies have to be considered carefully, as the calculations are 

realised on the statistical distribution of rainfall and irrigation. It is recommended 

to work with the relative trends of the results, that are likely to be more 

significant than the absolute values.  

4.3.2 Atmospheric CO2 concentration 

For all RCPs, atmospheric carbon dioxide concentration rises, and higher CO2 

rates are expected to decrease ET (Pan et al., 2015). Higher carbon dioxide 

concentrations diminish the crops’ stomatal conductance, which means less ET 

takes place. The evolution of ET is unclear because higher temperatures will 

increase ET contrary to carbon dioxide.  

Pan et al. (2015) studied the response of global terrestrial ET to climate change 

and increased CO2 concentrations, working on scenarios A2 (similar to RCP 

8.5) and B1 (close to RCP 4.5), with and without considering the CO2 effect. 

They suggested that for low-latitude countries like South Africa, a carbon 

dioxide concentration increase would not counterbalance temperature rise. It 

would still reduce the average ET increase by 46% and 66% for respectively B1 

and A2 scenarios, by 2090. The decrease of ET due only to CO2 would be 2% 

for B1 and 8% for A2 by 2090, not enough to counterbalance temperature 

increase consequences. 

Yet, even if carbon dioxide rates partly compensate temperature effects on ET, 

and reduce total water demand augmentation (rainfall and irrigation) because of 

lower ET, in this study average precipitations are expected to diminish for all 

four scenarios, so irrigation would still increase, but in reduced proportions. 

Thus, it is likely in this study that the irrigation increase was overestimated, 

especially for RCP 8.5 for which the carbon concentrations are the highest and 

the CO2 impact on ET would be the most important. Nevertheless, average 

irrigation would still have increased, in lower proportions, as well as design 

years frequency.  
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5 CONCLUSION 

Climate change impact on avocados’ future irrigation demand was assessed. A 

thousand instance of annual future climate data was generated for multiple 

models and two mitigation scenarios and then net irrigation requirements were 

simulated. Compared to baseline, the results all showed a rise in average 

temperature and an average rainfall diminution which is expected to be low in 3 

of the 4 scenarios. The scenarios chosen have all predicted an increase in the 

annual average irrigation demand of avocado trees of at least 9% by 2050 and 

up to 17% by 2080. The frequency design will rise, with direct impacts on the 

avocado business. 

Climate change will increase water requirements from crops, and put more 

hydric stress on the Groot Letaba catchment. Groot Letaba river is already 

under pressure because of ‘high demand of water and limited availability’, and 

its flow is expected to decrease by 30% by 2050 (Querner et al., 2016). Thus 

water competition will happen between the different activities. Careful 

management of water allocation and long-term planning are necessary to 

ensure the sustainability of businesses relying on irrigation water from Groot 

Letaba river.  

The general approach chosen here can be used in similar studies, for other 

regions of the world or different crops, as downscaling methods and selection of 

multiple climate models give robustness to the method.  
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APPENDICES 

Appendix A : Downscaling Methods  

Appendix A-1 summarises the positive and negative aspect of statistical and 

dynamic downscaling. 

Table A-1: Comparison between dynamic and statistical downscaling 
 

Statistical downscaling Dynamic downscaling 

Pros 

Any scale up to site-specific 

Medium to low data requirements 

Based on observations (historical trends as 

a baseline to support forecasts) 

Easy to implement, flexible methods 

Weather generator method includes daily 

time series and scenarios for extreme wet / 

dry events 
 

20 to 50km grid information 

Based on physics, no need of 

observational data (so less uncertainty 

linked to data collection) 

Daily time-series for all methods 

Includes extreme wet and dry events 

 
 

Cons 

Requires good quality historical data (about 

30 years), and sensitive to erroneous data 

Assumption that relationships between large 

and local-scale processes will remain the 

same in the future 
 

High computation capacity and 

knowledge level required 

Very big data amount as input 

Relies only on the General or Regional 

Climate Models (GCM / RCM) 

simulations 

RCMs are not available in all parts of 

the world 
 

Source: (Trzaska and Schnarr, 2014) 
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Appendix B : Methodology 

Table B-1 lists the 19 General Circulation Models, from the CMIP5 ensemble of 

the IPCC Fifth Assessment Report (2018), included in LARS WG, and their 

origin. 

Table B-1: List of General Circulation Models chosen and their country of origin 

Model Name Origin 

ACCESS1-3 Australia 

BCC-CSM1-1 China 

CanESM2 Canada 

CMCC-CM Italy 

CNRM-CM5 France 

CSIRO-MK36 Australia 

EC-EARTH Europe 

GFDL-CM3 United States of America 

GISS-E2-R-CC United States of America 

HadGEM2-ES United Kingdom 

INM-CM4 Russia 

IPSL-CM5A-MR France 

MIROC5 Japan 

MIROC-ESM Japan 

MPI-ESM-MR Germany 

MRI-CGCM3 Japan 

NCAR-CCSM4 United States of America 

NCAR-CESM1-CAM5 United States of America 

NorESM1-M Norway 
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Appendix C : Results 

Table C-1 explains the colour code used in Table C-2, which displays the 

irrigation difference from baseline for each of the 19 models 

Table C-1: Colour code for Table C-2 

X ≤ -10% -10% < X ≤ 0% 0% < X ≤ 10% 10% < X ≤  20% 20% < X 

 

Table C-2 : Average annual irrigation difference from baseline per model, for the 

four scenarios 

General 

Circulation 

Model 

Average irrigation difference from baseline (%) 

2050 2080 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

ACCESS1-3 + 11 + 1 + 5 + 20 

BCC-CSM1-1 + 5 + 18 + 7 + 17 

CanESM2 + 29 + 8 + 9 + 17 

CMCC-CM + 2 + 11 + 16 + 14 

CNRM-CM5 - 2 - 1 - 5 + 6 

CSIRO-MK36 - 3 + 7 + 8 + 5 

EC-EARTH - 6 + 8 + 2 + 8 

GFDL-CM3 + 19 + 12 + 21 + 27 

GISS-E2-R-CC + 20 - 3 + 13 + 13 

HadGEM2-ES - 14 -17 + 5 + 19 

INMCM4 + 19 + 21 + 18 + 13 

IPSL-CM5A-

MR 
+ 11 + 24 - 10 + 24 



 

39 

MIROC5 + 19 + 7 - 6 + 16 

MIROC-ESM + 23 + 27 + 55 + 41 

MPI-ESM-MR + 20 + 17 + 26 + 27 

MRI-CGCM3 + 15 + 26 + 17 + 16 

NCAR-CCSM4 + 9 - 4 + 10 + 11 

NCAR-CESM1-

CAM5 
+ 9 + 1 0 + 9 

NorESM1-M + 7 + 2 + 17 + 28 

 

 

 

 

 

 

 

 

 

 


