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Abstract 

This study proposes a mixed-integer multi-objective integrated mathematical model solving facility 

location and order allocation optimization problems simultaneously in a two-echelon supply chain network. 

The proposed problem is motivated by a factoyless concept and, by providing a dynamic decision-making 

solution under a multi-period time horizon. Within the model, we also determine the optimal replenishment 

amounts of production facilities by the multi-objective functions. The multi-objective functions include 

minimization of the total cost, rejected and late delivery units and, maximization of the assessment score 

of the selected suppliers. The studied dynamic decision model is significant for the cost-efficient 

management of companies’ supply chain networks. The mixed-integer mathematical model is developed 

by the LP-metric method and it is solved by the GAMS optimization software. Due to the NP-hard structure 

of the problem, for large-scale instances, we utilize the Multi-Objective Particle Swarm Optimization 

(MOPSO) and Multi-Objective Vibration Damping Optimization (MOVDO) heuristic solution approaches. 

Numerical results show that for large-scale problems, the MOPSO method performs better in Pareto 

solutions and decrease run times. However, the MOVDO method performs better regarding the Mean Ideal 

Distance and the Number of Solutions Cover surface criterion. The developed solution approach by this 

paper is a generic model which can be applied for any two-level network for simultaneous optimization of 

supplier selection, location determination of facilities and their replenishment amounts. 
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1. Introduction 

A supply chain involves all activities related to the production and information flow, from raw materials to 

the final products. Supply chain management involves efficient management of all those processes starting 

from the design of a product or service until its final delivery to customers (Weng, 1999). Some of the 

significant goals in supply chain management are empowerment, evaluation, and selection of suppliers 

(Seifbarghy and Esfandiari, 2013). 

Factoryless manufacturing is the strategic decision by businesses to contract out part or all of 

their production. It is a way of operation with the least amount of equipment, facilities and infrastructure 

(Nazemi, 2013). Factoryless manufacturing strategy is in fact the development and application of a system 

that can be used to produce a variety of products to complete the product portfolio by using the potential 

capacity of other production units without dealing with factory manufacturing. In other words, it can be 

declared that factoryless operation considers producing the products by using the empty capacities of the 

other producers with fixed costs and low lateral overhead.  

A business that incorporates a factoryless manufacturing strategy into its business process, registers a 

brand in its own name, creates a unique marketing and branding system for itself, and focuses its efforts on 

that. In this strategy, because the business uses other resources and it just plays a complementary role, the 

concerns are minimized (Cortinhal et al., 2019). This is a two-pronged game where there is no initial 

investment in the factoryless manufacturing strategy and the business without the factory can complete the 

production process and offer the product to the market at the lowest cost. The main issue in this concept is 

a well-optimized supply chain management issue of those outsourced manufacturers within the supply chain 

network. As factoryless manufacturing concept is gaining popularity, we also focus on an integrated 

optimization procedure for a well-planned supply chain network management. 

Since supplier selection covers all activities from the procurement of raw materials to the final product 

delivery, it plays a significant role in supply chain performance. Supplier selection can be considered as the 

first stage of decision making in supply chain management that might also affect the other decisions in the 

network (Kilic, 2013). For instance, because the cost and quality of the purchased products, as well as their 

delivery and response time in the network are strongly related to the selected suppliers, supplier selection 

becomes a significant decision in a network. Namely, correct supplier selection can reduce the cost of 

purchasing and increase the competitiveness of the organization significantly. 

Besides supplier selection, capacity allocation decisions for those suppliers is also very important. An 

optimized quota allocated to suppliers as well as time period-based location determination of production 

facilities would help to increase the efficiency of the business supply network significantly. In this work, 

we consider all those issues in our optimization procedure. Besides, in the selected problem, we also 

consider a location optimization decision, in the integrated model.  



  
 

3 

 

The location problem is generally engaged with finding a set of appropriate local options for a particular 

application. The purpose of the location problem is to locate facilities in the supply chain by identifying the 

best locations from different alternatives (i.e., nodes) (Arabzad et al., 2015). Facility location decision plays 

a significant role in the strategic design of the supply chain network. For instance, generally, a supply 

network design project starts with identifying potential sites and required capacities for the facilities to be 

located (Melo et al., 2009). In this paper, the location of facilities along with their availability during each 

period is also studied. 

For effective supply chain management, suppliers and manufacturing centres must work together in a 

coordinated manner, through partnerships, communication, and dialogue. The purpose of this study is to 

achieve the best supply chain planning decisions also including the location of production facilities and the 

amount of orders of factories from each supplier such that the total cost of the whole chain is minimized. 

The proposed approach combines two types of planning: production planning for each production facility 

and planning for allocation of quotas to suppliers for each production facility. The proposed model can be 

utilized by businesses following factoryless strategy as well as involving any supply chain network 

management. For instance, factoryless manufacturers would seek ways to optimize their production 

resources with minimal investment cost and personnel. Hence, the purpose of this research can also be 

considered to provide a decision support model to determine the optimal location of given production 

facilities and allocation of suppliers to those facilities with the optimal quotas. while minimizing the total 

supply chain network cost. The proposed model is a generic solution approach that can be applied to any 

supply chain network where facilities purchase their materials from a set of suppliers and replenish them 

within a multi-period planning horizon. The proposed model includes (1) dynamic locating, (2) transaction 

cost changes for suppliers under multi-period conditions, (3) facility capacity constraint in the network, and 

(4) safety stocks for production facilities to reduce the shortage risk. 

To the best of our knowledge, there is no such integrated model in literature optimizing several objective 

functions simultaneously for a supply network. The difference between our work from the existing literature 

is detailed in the following section. To evaluate the proposed mathematical model, first, it is coded in the 

GAMS software with a small size instance based on the LP-metric method with the norms L_1, L_2, and 

L_∞. Later, it is solved for large-scale cases by using multi-objective particle swarm optimization and 

multi-objective vibration-damping optimization techniques. 

The rest of this paper is organized as follows. Section 2 presents a literature review for appropriate 

supplier selection works as well as facility location problems in the supply chain. Section 3 explains the 

developed mathematical model, its assumptions, and all the related details. Section 4 describes the solution 

approach. Section 5 shows the results to evaluate the validity of the model and its computational complexity 
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as well as a sensitivity analysis. The last section provides the conclusion and some recommendations for 

future works. 

 

2. Literature review 

In the last decade, supplier selection problem has become strategic decision making in supply chain 

management. That decision might be affected by some other critical decisions such as facility location, 

capacity allocation, inventory decisions, etc. causing the increase of complexity of the problem. Further, 

many quantitative and qualitative criteria such as quality, price, flexibility, and delivery decisions could 

also be involved in those decisions. In the following, researches on this category of the subject are briefly 

mentioned. 

The supplier selection problem has been studied well in several ways. Seifbarghy and Esfandiari (2013) 

study the quota allocation for suppliers by considering a multi-objective optimization model. In their model, 

five objective functions are optimized. They use a simple weighing method to convert the multi-objective 

model into a single-objective one and then apply two meta-heuristic algorithms (genetic algorithm and 

simulated annealing algorithm) to solve the model.  

Hamdan and Cheaitou (2017) introduce a multi-objective method to solve a multi-period supplier 

selection and order allocation problem based on green factors. This approach consists of three tools. First, 

fuzzy TOPSIS is applied to allocate a weighted priority to each supplier based on two separate traditional 

and green sets. Then, an analytical hierarchy process is applied to assign a weight to each of the two sets of 

criteria based on the company's strategies and suppliers. Finally, the fuzzy TOPSIS weighting priority is 

derived from the traditional criteria for each supplier. Keshavarz Ghorabaee et al. (2017) propose an 

integrated model for multi-objective supplier selection problems by taking into account economic and 

environmental considerations. To solve the problem, they develop a fuzzy logic solution approach. The 

results show that the proposed approach is effective in solving such problems. Feng et al. (2011) investigate 

a decision method for supplier selection in multi-service outsourcing and solve a multi-objective model 

based on the Tabu search algorithm. Li et al. (2018) introduce a multi-objective model for outsourcing 

supplier selection problems considering the price, quality, delivery time, reliability and availability. It is 

solved by using a particle swarm algorithm. Amin-Tahmasbi and Alfi (2018) study a multi-criteria decision-

making model based on a fuzzy optimization approach for suppliers selection and order allocation in the 

green supply chain. They present a bi-objective mixed-integer linear programming model to minimize total 

cost and maximize the purchasing value.  

Mirzaee et al. (2018) propose a mixed-integer linear model for a bi-objective supplier selection problem. 

They use a preemptive fuzzy goal programming approach to solve the model. Three different methods: 

max-min, weighted fuzzy goal programming, and classical goal programming are applied to solve the 
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problem and their results are compared. Cheraghalipour and Farsad (2018) present a sustainable supplier 

selection and order allocation problem with the objectives of minimizing total costs and maximizing the 

total score of suppliers. The problem is formulated as a mixed-integer linear programming model and it is 

solved by using a revised multi-choice goal programming method. A hybrid multi-criteria decision making 

by fuzzy multi-objective optimization (FMOO) method is proposed by Mohammed et al. (2019). They 

aimed to solve the issues of sustainable supplier selection as well as order allocation problems. They 

consider environmental, economic, and social criteria and propose an integrated Fuzzy AHP-Fuzzy TOPSIS 

in which suppliers are assessed and ranked according to conventional, green, and social criteria. To address 

the data input uncertainties, they formulate a multi-objective optimization model by integrating a fuzzy 

logic approach. Besides, according to the FMOO model, two sets of Pareto solutions are proposed by using 

the ε-constraint and LP-metrics approaches. They use TOPSIS to find a Pareto solution having the best 

compliance with the ideal solution. In the case of uncertain environments, Seyed Haeri and Rezaei (2019) 

propose a grey-based model for green supplier selection. The proposed model includes economic as well 

as environmental criteria. They combine the best-worst method and fuzzy grey cognitive maps to show the 

criteria interdependencies. An improved version of the grey relational analysis is proposed to use the grey 

weights of criteria evaluating the green suppliers. Later, they are ranked by an interval analysis method. 

Mohammed (2020) investigates a possible multi-objective method of fuzzy TOPSIS to evaluate green 

suppliers. The author presents an environmental assessment method, poor supplier setting and suppliers' 

weak areas are then defined by using a novel interval-valued intuitionistic fuzzy numbers-based reference-

neighbourhood rough set approach. 

One of the other important issues in supply chain decisions is to determine the optimal number of 

facilities and the allocation of suppliers for those facilities (Kim et al., 2005). A facility location problem 

can be defined as selecting the location of one or more centres, regarding other facilities and constraints, to 

optimize a special goal. Production facility locations have a significant impact on supplier selection 

decisions also because that they also affect transportation and distribution planning decisions. Not only 

decisions on facility location problems but also the physical structure of supply chain network designs are 

important factors to consider. We examine the related researches in the literature on these topics and provide 

some of the recent ones here. 

Mousavi et al. (2015) study the optimization of distributor-retailer network design for location 

allocation-inventory problems to minimize the total supply chain cost. In that paper, several seasonal 

products in the planning multiple horizons are modelled. The problem is formulated as a mixed binary-

integer programming model and it is solved by using a modified fruit fly optimization (MFOA) algorithm. 

Two different methods including particle swarm optimization and simulated annealing algorithms are used 

to solve and validate the results. Computational experiments show that the MFOA performs better than the 



  
 

6 

 

other two algorithms. Yu et al. (2015) introduce a single objective for a location, production, and 

distribution planning problem in a multi-period and multi-echelon environment. The purpose of the model 

is to determine the appropriate locations to build a new plant and a distribution centre. In that work, a multi-

echelon supply chain network including suppliers, factories, and distribution centres is investigated. A 

mathematical model minimizing the total cost of the studied supply chain network is proposed. They 

describe a pure integer linear programming (PILP) model for that network. To solve the problem, a branch 

and bound algorithm is applied. The results show that the proposed model is applicable for solving such 

problems. Atabaki et al. (2017) study a hybrid method based on Genetic Algorithm and Invasive Weed 

Optimization (i.e., GAIWO) to determine the plants and distribution centres to be opened in the supply 

chain. They present a single-objective mixed-integer linear programming model intending to minimize total 

costs under capacity constraints. Four different methods including genetic, invasive weed optimization, 

Teaching–Learning-Based optimization, and GAIWO algorithms are used to compare their performances 

with the GAIWO. The proposed algorithms are evaluated and ranked with the Wilcoxon test and a chess 

rating system. Rohaninejad et al. (2017) provide a mathematical model for facility location problems to 

maximize investor utility. They convert the multi-objective model into a single-objective one and then apply 

a new approximation meta-heuristic algorithm called APHAL, to solve it. The problem is formulated as a 

mixed-integer nonlinear programming model. They use the relative percentage deviation criterion to 

evaluate the effectiveness of APHAL. Correia and Melo (2017) study an integrated single-objective multi-

period optimization model to redesign a facility network problem and to optimize facility location and 

allocation decisions for retailers. The objective function considers the minimization of the total cost. 

Dai et al. (2018) introduce a simultaneous location and inventory optimization model in a three-echelon 

supply chain network for perishable products. They present a mixed-integer nonlinear programming model 

intending to minimize total cost under fuzzy constraints. Two meta-heuristic algorithms, hybrid genetic 

algorithms, and hybrid harmony search methods are used to solve the model. Numerical experiments show 

that the hybrid harmony search algorithm produces better results regarding the quality of the solution. 

Rohaninejad et al. (2018) propose a Benders Decomposition algorithm for a multi-echelon supply chain 

network to design a reliable network minimizing total fixed and service costs. They use a scenario-based 

approach for the formulation of the problem. Another meta-heuristic approach (a sample average 

approximation algorithm) is also used to solve the single-objective programming model. Biajoli et al. 

(2019) study a two-stage capacitated facility location problem. They formulate the problem by using a 

single objective optimization model minimizing the total network cost. To solve the proposed models, a 

biased random-key genetic algorithm is utilized. Brahami et al. (2020) examine an integrated problem of 

sustainable supply chain network design, facility location decisions and transportation network design 
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under limited capacity, and environmental protection constraints by applying a multi-objective model. They 

implement a non-dominated Sorting Genetic Algorithm to solve the problem. 

A limited number of articles has been examined in the subjects of supplier selection and facility location 

jointly. Ranjbar Tezenji et al. (2016) propose a bi-objective model for the location and order allocation of 

suppliers in an uncertain environment. The objective function of the proposed model is considered to be 

the optimization of the mean and variance of the total cost. The problem is formulated by a mixed-integer 

nonlinear programming model and it is solved by two heuristic algorithms: genetic and simulated annealing. 

Arabzad et al. (2017) discuss a case study for location-allocation in a steel supply chain to determine the 

level of capacity of factories, selection of suppliers, and order allocation for suppliers. A multi-objective 

model with the objectives of minimizing total supply chain costs and deterioration rate are proposed. They 

also use fuzzy goal programming to convert the multi-objective model into a single-objective model. Saidi-

Mehrabad et al. (2017) examine a four-level location-allocation problem with the aim of minimization of 

total cost and maximization of customer satisfaction, simultaneously. They introduce a multi-objective 

hybrid particle swarm algorithm (MOHPSO) to solve the model. The results are compared with the results 

of the NSGA-II algorithm. The comparison results show that the proposed algorithm performs better 

regarding time and solution quality. By considering multiple quantitative and qualitative objectives, Lai et 

al. (2019) propose a novel non-dominated sorting simplified swarm optimization for multi-stage capacitated 

facility location  (CFL) problem. Feasible solutions are obtained by random repair, cost-based, and utility-

based repair mechanisms. Those mechanisms enhance the efficiency of search and diversity of populations. 

Weight for the qualitative objectives is calculated by using a fuzzy analytic hierarchy process. To evaluate 

the efficiency and effectiveness of the proposed algorithms, several experiments are conducted based on 

benchmark and experimentally generated instances from four stages of CFL problems. The obtained results 

are compared with the results of the non-dominated sorting genetic algorithm-II, multi-objective simplified 

swarm optimization, and multi-objective particle swarm optimization from the literature. According to the 

computational results, the solution quality and time competitiveness of the proposed algorithm is very high. 

A mixed-integer mathematical model is proposed by Emirhüseyinoğlu and Ekici (2019) for the dynamic 

facility location problem where supplier selection is completed under a quantity discount. They analyze the 

decision of a multi-period facility location problem for a retailer and estimate those facilities’ demands. 

They assume that the retailer obtains the products from multiple suppliers under an incremental quantity 

discount scheme. The decisions of the retailer include: when and where to deploy the facilities, how big the 

number of orders should be from each supplier in each time period, and which facility locations will be 

assigned to which retailers to fulfil the demands. They develop a decomposition-based solution method to 

solve large instances. Table 1 summarizes the research studies in these fields. 
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Differently, in this paper, we study an integrated model for facility location, supplier selection, and order 

allocation problem, under a multi-period time horizon in the supply chain network having multi-products. 

We optimize those decisions simultaneously by considering minimization of total cost and number of 

rejected and late delivered products, and maximization of evaluated scores of the selected suppliers. 

Mainly, no research is found considering all those features simultaneously under a multi-objective 

optimization perspective. By reviewing the literature on the subject and according to Table 1, we summarize 

our work’s contributions as follows.  

1) Major researches in this subject mostly focus on solely economical objectives (e.g., profit 

maximization or cost minimization). However, in this research, in addition to minimizing total 

network cost, we also aim to maximize the reliability of the network by maximizing the total score 

of the suppliers in the network. 

2) To involve more real-life practices in the model, the transaction costs are considered to be changing 

based on the suppliers under multi-period time assumptions. 

3) We consider capacity constraints for suppliers and production facilities. 

4) We also allow dynamic location decisions based on different time periods. 

5) We consider a safety stock policy for production facilities to reduce shortage risk. 

6) We also consider the problem of factoryless manufacturing and using the empty capacity of existing 

factories in the conditions of sanctions and its effects. 

To the best of our knowledge, these considered objectives have been disregarded entirely in the previous 

studies. However, in this work, we optimize them simultaneously by a comprehensive multi-objective 

model. We provide several exact solution methods based on various norms of LP-metric and multi-objective 

particle swarm optimization and multi-objective vibration-damping optimization methods by also 

introducing some criteria to compare the results. 
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Table 1. A summary of key research studies  

 

                

Seifbarghy, Esfandiari                

Hamdan, Cheaitou                

Keshavarz et al.                

Feng et al.                

Li et al.                

Amin-Tahmasbi, Alfi                

Mirzaee et al.                

Cheraghalipour, Farsad                

Mohammed et al.                

Seyed Haeri, Rezaei                

Mohammed                

Mousavi et al.                

Yu et al.                

Atabaki et al.                

Rohaninejad et al.                

Correia, Melo                

Dai et al.                

Rohaninejad et al.                

Biajoli et al.                

Brahami et al.                

Ranjbar Tezenji et al.                

Arabzad et al.                

Saidi-Mehrabad et al.                

Lai et al.                

Emirhüseyinoğlu, Ekici                

This study                
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3. Problem Definition 

As mentioned, factoryless manufacturing is a strategy aiming to make better use of existing production 

facilities. In industries such as textiles, sheds, elevators, etc., for instance, due to the current situation in 

Iran, like sanctions, the barriers of trade with the world countries and decline in purchasing power of people, 

many manufacturers encounter with a large amount of unutilized capacities. Those unutilized capacities 

might range betwen 10% to 20%. However, with the recent conditions, it has been reaching around 50%, 

hence, factories are willing to sell those capacities. For example, the Guilan province has about ten numbers 

of towel and carpet weaving factories working with a capacity of 40% to 50% resulting with high unutilized 

capacities. So, in an effort to use those unutilized capacities, we develop the integrated model under 

consideration of factoryless manufacturing concept. The capacity constraint of the production candidate 

site is one of the significant constraints in that problem,. Note that, factoryless manufacturing businesses 

already know their suppliers and the available unutilized capacities of the producers. These are the 

constraints and opportunities of factoryless manufacturing. The main problem in such a manufacturing 

environment is managing and optimizing the connected supply chain network effectively by integrating 

several issues and objectives in the solution approach. 

In this section, we present a two-level model for facility location and supplier selection in the form 

of a multi-objective optimization model. It is assumed that the company in question consists of several 

production facilities and these facilities purchase their required materials from several suppliers. We seek 

to provide an analytical plan to determine the location of production facilities and their order quantities 

from an optimal manner. The proposed model simultaneously seeks to reduce economic objectives and 

increase the reliability of the product supply network and maximize the amount of purchases from top 

suppliers with higher evaluation scores. This model is used in almost all companies that procure some 

materials (parts) from a number of selected suppliers in different time periods to supply the materials they 

need. First, we introduce the model assumptions, the notations, parameters, related variables and finally the 

multi-objective mathematical model. 

 

3.1. Problem assumptions 

The assumptions of the problem are as follows: 

• The supply chain is considered to be a connected network for all production facilities and suppliers 

where information flow is visible. 

• The production facilities supply their required materials from a set of pre-defined suppliers. 

• A facility is assumed to produce a specific product type that might be different from the other 

factories’ product types. 
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• Because that, some product types might not be demanded by a production facility at a period of h. 

Then, facilities may become inactive in those time periods. 

• Demand for each factory is known in each period. In different time periods, based on the existing 

demand, we may use the unutilized capacities of the existing factories (i.e., capacities of those are 

already pre-defined). 

• The safety stock of each facility at each period is considered to be 5% of the demand in period h. 

• There is an upper bound for not delivered and late delivered units for each supplier. 

• Based on multi-attribute decision-making methods, the assessment scores of suppliers are considered 

(details are explained in Section 3.3).  

 

3.2. Notations 

The indices, parameters, and variables used in the proposed model are shown in Tables 2, 3, and  4, 

respectively. 

 

 

Table 2. The indices 

Set Definition 

s Set of the suppliers {1, 2, …, S} 

i Candidate site set for production facility location {1, 2, …, I} 

p Set of product types {1, 2, …, P} 

h Set of periods {1, 2, …, H} 

 

 

Table 3. The parameters 

Parameter Definition 

sphPi Price of product p at period h offered by supplier s 

spig The unit cost of transferring product p from the supplier s to production site i 

shW Assessment score of supplier s at period h 

spq Percentage of the rejected units of product p delivered by supplier s 

spt Percentage of the late delivered units of product p by supplier s 

pQ' Maximum acceptable percentage of the rejected units of product p during the planning horizon 

'pT Maximum acceptable percentage of the late delivered units of product p during the planning horizon 

phD The demand of product p at period h 

sphC The maximum production capacity of supplier s for product p at period h 

sphα The transaction cost of purchasing product p from supplier s at period h 

ihH Cost of activating a production facility at candidate site i at period h 
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sphb A binary parameter, which is set to one if supplier s can provide product p at the period h, otherwise set to zero 

ihMax C Maximum capacity of production facility i at period h 

M A very large number 

n Maximum number of production facilities that can be activated at any period 

ihMH Maximum budget to activate the production facilities at the period h 

phZe Safety stock of the product p at period h 

 

 

 Table 4. The variables 

Variable Definition 

spihX order quantity of product p sent by the supplier s to the production site i at period h 

spihY 
Binary variable, set to one if product p is sent by the supplier s to the production site i at period h, otherwise set to 

zero 

ihZ 
Binary variable, set to one if production facility is activated in the candidate production site i at period h, 

otherwise set to zero  

 

3.3. Mathematical model 

In this subsection, we propose a multi-objective mathematical model for the problem. According to that, 

the objective function (1) minimizes the total transaction costs of purchasing from suppliers. The objective 

function (2) minimizes the total purchasing costs of materials and the cost of transporting them to facilities. 

The objective function (3) represents the minimization of total rejected units to diminish the cost of 

unqualified returned products. The objective function (4) minimizes the total amount of late delivered units. 

The objective function (5) minimizes the cost of activating the facilities at candidate sites. Here, note that 

the activating cost is defined to be a period-based cost which can be assumed to be a termly contract or 

renting cost for the facility which might change period to period. Finally, the objective function (6) 

maximizes the total score of suppliers (e.g., suppliers having environmental considerations in the 

production process have higher scores). It is assumed that the assessment score of each supplier in different 

time periods is obtained by evaluating pre-specified numbers of suppliers by utilizing multi-objective 

decision making methods such as AHP and TOPSIS as in Kang et al. (2012) and Kubat and Yuce (2012) 

works. For example, in sample problem No. 4 in Table 8, there are five suppliers with different evaluation 

scores where we set them as w1 = 90, w2 = 85, w3 = 80, w4 = 75,  w5 = 70, from out of 100. 

 

(1) 𝑀𝑖𝑛  𝑍1′ = ∑ ∑ ∑ ∑ 𝑎𝑠𝑝ℎ𝑦𝑠𝑝𝑖ℎ  𝐻
ℎ=1  𝐼

𝑖=1
𝑃

𝑝=1
𝑆

𝑠=1  
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(2) 𝑀𝑖𝑛  𝑍2′ = ∑ ∑ ∑ ∑(𝑃𝑖𝑠𝑝ℎ + 𝑔𝑠𝑝𝑖) 𝑥𝑠𝑝𝑖ℎ  𝐻
ℎ=1  𝐼

𝑖=1
𝑃

𝑝=1
𝑆

𝑠=1  

(3) 𝑀𝑖𝑛  𝑍3′ = ∑ ∑ ∑ ∑ 𝑞𝑠𝑝𝑥𝑠𝑝𝑖ℎ  𝐻
ℎ=1  𝐼

𝑖=1
𝑃

𝑝=1
𝑆

𝑠=1  

(4) 𝑀𝑖𝑛  𝑍4′ = ∑ ∑ ∑ ∑ 𝑡𝑠𝑝𝑥𝑠𝑝𝑖ℎ  𝐻
ℎ=1  𝐼

𝑖=1
𝑃

𝑝=1
𝑆

𝑠=1  

(5) 𝑀𝑖𝑛  𝑍5′ = ∑ ∑ 𝐻𝑖ℎ𝑧𝑖ℎ𝐻
ℎ=1

𝐼
𝑖=1  

(6) 𝑀𝑎𝑥  𝑍6′ = ∑ ∑ ∑ ∑ 𝑤𝑠ℎ𝑥𝑠𝑝𝑖ℎ  𝐻
ℎ=1  𝐼

𝑖=1
𝑃

𝑝=1
𝑆

𝑠=1  

 subject to 

(7) 𝐷𝑝ℎ + 𝑍𝑒𝑝ℎ = ∑ ∑  𝑥𝑠𝑝𝑖ℎ𝐼
𝑖=1

𝑆
𝑠=1           ∀ 𝑝, ℎ 

(8) ∑ ∑ 𝑞𝑠𝑝 𝑥𝑠𝑝𝑖ℎ𝐼
𝑖=1

𝑆
𝑠=1 ≤  𝑄𝑝′  𝐷𝑝ℎ             ∀ 𝑝, ℎ 

(9) ∑ ∑ 𝑡𝑠𝑝 𝑥𝑠𝑝𝑖ℎ𝐼
𝑖=1

𝑆
𝑠=1 ≤  𝑇𝑝′𝐷𝑝ℎ               ∀ 𝑝, ℎ 

(10) ∑  𝑥𝑠𝑝𝑖ℎ𝐼
𝑖=1 ≤ 𝐶𝑠𝑝ℎ      ∀ 𝑝, 𝑠, ℎ 

(11)  𝑥𝑠𝑝𝑖ℎ ≤  𝑀 𝑦𝑠𝑝𝑖ℎ      ∀ 𝑝, ℎ, 𝑠, 𝑖 
(12) ∑ ∑ 𝑦𝑠𝑝𝑖ℎ𝑃

𝑝=1
𝑆

𝑠=1 ≤ 𝑀 𝑧𝑖ℎ             ∀ 𝑖, ℎ 

(13) ∑ 𝑧𝑖ℎ𝐼
𝑖=1 ≤ 𝑛            ∀ ℎ 

(14) ∑ ∑ 𝑥𝑠𝑝𝑖ℎ𝑆
𝑠=1

𝑃
𝑝=1 + 𝑀(𝑧𝑖ℎ − 1) ≤ 𝑀𝑎𝑥𝐶𝑖ℎ   ∀ 𝑖, ℎ 

(15) ∑  𝑦𝑠𝑝𝑖ℎ𝐼
𝑖=1 ≤   𝑀 𝑏𝑠𝑝ℎ        ∀ 𝑝, ℎ, 𝑠 
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(16) ∑ 𝐻𝑖ℎ𝑧𝑖ℎ𝐼
𝑖=1 ≤ 𝑀𝐻𝑖ℎ            ∀ ℎ 

(17) 𝑥𝑠𝑝𝑖ℎ , 𝑍𝑒𝑝ℎ ∈ {0,1,2,3, … . }   𝑎𝑛𝑑    𝑦𝑠𝑝𝑖ℎ  , 𝑧𝑖ℎ ∈ {0,1}        ∀ 𝑝, ℎ, 𝑠, 𝑖 
 

Constraint (7) ensures that the supply network meets the demand for each product type. Constraint (8) 

satisfies that total rejected units of each product type are less than the allowed maximum level whereas 

constraint (9) ensures that total late delivered units of each product are less than the permitted maximum 

level. Constraints (8) and (9) impose upper bounds for the amount of returned products and total late 

delivered units for each supplier. Constraint (10) indicates that the order quantity of each product type 

ordered from a supplier cannot exceed the supplier's capacity. Constraint (11) shows the logical relationship 

between the decision variables. Constraint (12) satisfies that the products can only be sent to active facilities. 

Constraint (13) imposes the upper bound for the maximum number of production facilities. By constraint 

(14), the total capacity of the production facilities is considered. According to the definition of the problem, 

for instance in factoryless manufacturing, by identifying the candidate production sites, these facilities are 

practically active for a certain amount of capacities, where their capacities may change over time and their 

empty capacities can be utilized by any facilities. Constraint (15) is defined to ensure that the order of 

product p is assigned to supplier s within the period h, only if the corresponding supplier produces that 

product in the corresponding period. Because the company has a budget constraint, (16) considers the 

budget ceiling to activate a production facility at each period. Finally, (17) shows the decision variables of 

the model. 

 

4. Solution method 

As mentioned previously, the objective functions, 𝑍1′ , 𝑍2′  and 𝑍5′  are related with each other. Therefore, 

these three objectives are merged (𝑍1′  + 𝑍2′  + 𝑍5′ ) and they are considered as the economic objective function 

of the problem to be minimized. The objectives 𝑍3′  and 𝑍4′  are the number of returned products and the 

number of late deliveries, respectively. Hence, RT is defined to be the sum of 𝑍3′ + 𝑍4′  to be minimized. 

Finally, 𝑍6′  is the total supplier score and it is considered as the third objective function to be maximized. 

As a result, three-objective functions are proposed and solved by using the Lp-metric method based on the 

distances mentioned above (p = 1, 2, ∞). Because of the complexity and large-scale size of the problem, 

we use Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Vibration Damping 

Optimization (MOVDO) methods to solve the proposed model. 

 

4.1. Multi-objective optimization and Lp-metric method 
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In some cases, the optimal value of those multi-objectives i = 1, 2, …, n may exist. For instance, let us 

assume that it is equal to 𝑓𝑖∗.  In reality in most multi-objective decision making (MODM) problems, due 

to the conflict between the objectives, there is usually no exact answer 𝑥∗∈ X that is optimal for all 

objectives (∄ 𝑥∗∈ X: 𝑓𝑖∗ = 𝑓𝑖∗ (𝑥∗)). For instance, if A is a solution method and the answer 𝑥𝐴 is an output, 

then A is more efficient when 𝑓𝑖 (𝑥𝐴) has less distance from 𝑓𝑖∗. In other words, based on the Mean Ideal 

Distance (MID), if the solution 𝐹∗ = (𝑓1∗, 𝑓2∗, ..., 𝑓𝑛∗) is considered as the ideal solution, the closer the solution 𝐹𝐴 = (𝑓1(𝑥𝐴), 𝑓2(𝑥𝐴), ..., 𝑓𝑛(𝑥𝐴))) is to F*, the better the performance of method A is, and its solution is 

more appropriate. The distance between 𝐹𝐴 and 𝐹∗ is defined as the basis of the Lp-metric method in the 

definition. If the objectives have different degrees of importance, the distance is defined by (18) as norm p. 

The less the value of |𝐹∗ − 𝐹𝐴|𝑝 is, the more valuable method A is. 

 

𝑁𝑜𝑟𝑚𝑝(𝐹∗, 𝐹𝐴) = |𝐹∗ − 𝐹𝐴|𝑝 = (∑ 𝑤𝑖(𝑓𝑖∗ − 𝑓𝑖(𝑥𝐴))𝑝  𝑛
𝑖=1 )1𝑝           (18) 

                                           𝑤𝑖 indicates the weight or relative importance of each objective, usually determined by the decision-maker. 

In the Lp-metric method, for some of the p's, the known models are obtained: 

• In the Lp-metric method, if p = 1, a linear model is known as the Weighted Sum Method (WSM) is 

obtained by (19). 

 

|𝐹∗ − 𝐹𝐴|𝑝=1 = ∑ 𝑤𝑖(𝑓𝑖(𝑥𝐴) − 𝑓𝑖∗) 𝑛
𝑖=1  (19) 

 

• In the Lp-metric method, if p = 2 the Euclidean distance is obtained by considering (20). Finally, a 

convex quadratic model is obtained which has a globally optimal solution. Note that the distance for p 

= 2 emphasizes more on the deviation of each objective from its optimal value compared to p = 1.  

 |𝐹∗ − 𝐹𝐴|𝑝=22 = ∑ 𝑤𝑖(𝑓𝑖∗ − 𝑓𝑖(𝑥𝐴))2 𝑛
𝑖=1  (20) 

 

• Another important distance measure is obtained with p → ∞. This case results in (21) which shows the 

maximum deviation from the optimal value across the objectives. In other words, this model is called 

the Minimax model showing that the greatest deviation from the optimal value for all objectives is 
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minimized. Although this case provides the least deviation from the optimal value across the objectives, 

the sum of deviations is usually more than that of the two previous cases. 

 |𝐹∗ − 𝐹𝐴|𝑝=∞ = 𝑚𝑎𝑥{ 𝑖 |𝑤𝑖(𝑓𝑖(𝑥𝐴) − 𝑓𝑖∗)} (21) 

 

In this study, we utilize the Lp-metric method with all three values p = 1, p = 2, and p → ∞ to solve the 

defined MODM problem. 

4.2. Multi-Objective Particle Swarm Optimization Algorithm 

The MOPSO algorithm is proposed by Coello and Lechuga (2002). This algorithm generalizes the particle 

swarm optimization (PSO) algorithm to solve multi-objective problems. This algorithm is a population-

based stochastic optimization algorithm based on the group movement rules of birds and fishes. In that 

group movement, each particle tries to create a distance from other particles and improve it gradually. The 

main difference between the MOPSO and the PSO is based on the choice of the best particle in the 

population and the best personal memory of each particle as well as the concept of the archive or repository. 

There is no reservoir in PSO. Namely, there are only one objective and one particle that are the best ones. 

However, in MOPSO, a few particles are non-dominated, and they belong to the solution set. In the MOPSO 

algorithm, first, the initial population is created, and the initial value of the speed vectors and particle 

locations are determined (i.e., the particle speed vector is set to the zero vector, and the location vector is 

randomly generated). Then, cost functions for particles are calculated, and non-dominated members of the 

population are found that are saved in the archive. In the next stage, some super-cubes in the objective space 

are produced, and the particles are placed in these super-cubes. Finally, each particle selects a leader from 

the archive randomly and moves toward it. Like a single-objective PSO, the motion of each particle requires 

updating the speed and the particle position. However, the concept is exceptional in that the best particle in 

the total population and the best personal memories of each particle are different from those of single-

objective mode. 

 

4.3. Multi-Objective Vibration Damping Optimization (MOVDO) Algorithm 

MOVDO is one of the meta-heuristic algorithms developed by the use of the vibration damping concept in 

vibration theory. The vibration damping optimization algorithm is first proposed by Mehdizadeh and 

Tavakkoli-Moghaddam (2008). This algorithm is derived from the damping mechanical vibration process. 

There is a proper and useful relationship between vibration that is the behaviour of the oscillator system in 

the damping mode and hybrid optimization (finding the minimum of a given function with a large number 

of parameters). When the energy source of an oscillator is cut off, the oscillation range is decreased and 

interrupted, gradually (e.g., it is damped). MOVDO algorithm produces a solution and uses the rules of 

https://www.sciencedirect.com/science/article/pii/S0307904X15001134#!
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probability based on neighbourhood search in each iteration based on the nature of objects having elastic 

properties.  

After developing a vibration-damping optimization algorithm, to solve multi-objective optimization 

problems, a new version of this algorithm, MOVDO, is introduced by Hajipour et al. (2014). The MOVDO 

algorithm includes two important concepts, Fast Non-Dominated Sorting (FNDS) and Crowding Distance 

(CD). R individuals belong to initial populations and they are compared and categorized in FNDS. For this 

purpose, primarily all chromosomes from the first non-dominated front are found. It is assumed that all 

objective functions are minimization type, chromosomes are chosen by using the concept of domination. 

Then, by finding chromosomes in the next non-dominated front, the previous front solutions are disregarded 

temporarily. This process is repeated until all solutions are set into fronts. After individual classification, a 

CD measure is defined to evaluate population solutions in terms of the relative density of individual 

solutions (Deb et al., 2002). The tournament is applied to select the results of progeny. For this purpose, n 

individuals are selected from the population, randomly. The non-dominated rank of each individual is 

obtained. Then, CD solutions are calculated for the same non-dominated grade. The lowest-ranked solutions 

are selected. Moreover, if more than one case shares the least rank, the highest CD should be selected. 

By using the aforementioned concepts and operations, the population of parents and progenies should 

be combined to ensure elitism. While the combined population is naturally greater than the original N, 

another non-domination sorting is performed again. Higher rank chromosomes are selected and added to 

the populations until reaching the size N. The last front is also included in the population-based on crowding 

distance. The algorithm stops when a predetermined number of iterations, computational time (or any 

stopping criterion) is reached and feasible solutions remained in Pareto front.  

By initializing the preliminary population of the solution vectors, Pj, the process starts. Later, new 

operators are implemented on Pj to make a novel population, Qj. The combination of Pj and Qj result in Rj 

to maintain elitism in the algorithm. In this stage, Rj vectors are sorted in several fronts based on FNDS and 

CD. Applying the proposed selection method, the next iteration Pj+1 population is selected to have a 

predetermined size. The evolution process of the MOVDO algorithm is summarized in Figure 1. 
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Figure 1. The evolution process of the MOVDO algorithm (Hajipour et al. 2016) 

 

 

 

4.4. The Proposed MOPSO and MOVDO algorithms 

In the two previous sections, we present a general description of the MOPSO and MOVDO algorithms to 

solve an MODM problem. In this section, to solve the MODM problem defined in Section 4, we explain 

the usage of these two algorithms simultaneously. For this purpose, first, we aim to present the 

representation of the solution. Second, we explain the update process of the solutions based on 

neighbourhood functions as well as the general process of the algorithm. Third,  we explain the conducted 

experimental design. Fourth, we discuss the evaluation functions. Last, we describe the stopping condition. 

 

A) Representation of the solution: The representation of the solution (i.e., location of production 

facilities at each period) has I*H dimensions and its row entries are defined by random numbers 0 or 1. An 

example of this matrix is shown in Table 5 when I = 2 and H = 3. This matrix is used to determine which 

sites to be candidates for activating production facilities in each period. The second part of the 

representation of the solution (i.e., product flow from supplier to an activated facility) has P*I rows and 

H*S columns. This matrix is shown in Table 6 when I = 2 and S = 2 and H = 3 and P = 2. It is used to 

show the flow of product p from the supplier s to the activated site I at period h for product P. Hence, each 

entry of this matrix is either the value of 0 or 𝐷𝑝ℎ + 𝑍𝑒𝑝ℎ. Note that in this matrix, the flow rate from all 

suppliers to all activated facilities at each period will be equal to 𝐷𝑝ℎ + 𝑍𝑒𝑝ℎ. This point is considered for 

producing the initial solution.  
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3H 2H 1H  

0 1 1 1I 

1 0 0 2I 

 

 

Table 6. The sample of the solution matrix (Products flow from suppliers to activated facilities) 

3H 2H 1H 
 

2S 1S 2S 1S 2S 1S 

0 0 9/5 12 12 10 1I 
1P 

33/5 1/5 0 0 0 0 2I 

0 0 28/5 11/5 20 22 1I 
2P 

18 12 0 0 0 0 2I 

 

According to Table 6, during period 1, the flow rates from suppliers 1 and 2 to facility 1 for Product 1 are 

10 and 12, respectively. Note that, no production facility is activated in candidate site 2 during period 1 

since the entry is zero. Thus, no product is sent by any supplier to site 2, in period 1. 

 

B) Neighbourhood structure (update the solution): 

Neighbourhood structure of the MOPSO algorithm: In this structure, a certain percentage of two parts of 

the representation solution is selected randomly. Then, the previous ones are replaced by the newly and 

randomly generated values. This structure is based on the following relationships (i.e., movement of each 

particle towards the leader selected from the archive). First, the speed of each particle is updated by (22). 

 𝑣𝑖𝑡+1 = 𝑤𝑣𝑖𝑡 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖𝑡 − 𝑥𝑖𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖𝑡 − 𝑥𝑖𝑡) (22) 

 

Then, the location of each particle is updated by (23) that is a new solution.   

 𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + 𝑣𝑖𝑡+1 (23) 

 

C) Design of experiment (DOE): 

Experimental design or design of experiment (DOE) is a design tool analyzing the relation between 

independent (i.e., parameters) and dependent (i.e., outputs) variables in order to identify the significant 

factors affecting the dependent variables. By utilizing the DOE method, the level of parameters/factors 

influencing the result of a process can be adjusted optimally (or at least close to optimal). 

 

Table 5. A sample of the solution matrix (Location of production facilities in each period)
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D) Evaluation function in solution algorithms:  

In the proposed MOPSO and MOVDO algorithms, the evaluation function is the same as the objective 

function. However, a penalty method is used for capacity constraints of non-renewable resources. Penalty 

methods are special classes of algorithms used to solve constrained optimization problems. In the penalty 

method, a constrained optimization problem is changed to a set of unconstrained problems. An 

unconstrained problem is created by adding a condition to an objective function consisting of a penalty 

parameter and a degree of violation of conditions and constraints. If a constraint is violated, the violation 

rate turns out to be non-zero; otherwise, it is zero. 

 

E) Stopping criterion in MOPSO and MOVDO algorithms: 

Various criteria can be considered to stop the algorithm. One of them could be that the algorithm is stopped 

when the result cannot be improved anymore after a certain number of iterations. Another one could be that 

the fitness average of the solutions in the current population is the same as the fitness of the best solution 

(or very close to it), the algorithm is stopped.  Another example for stopping conditions is assigning a limit 

on the number of iterations (e.g., the most widely used stopping criterion). In the proposed MOPSO and 

MOVDO method, a limit on the number of iterations is considered as the stopping criterion. Since, the 

computational time of the algorithm is also an important issue in reaching the optimal solution, in the 

proposed MOPSO and MOVDO algorithms, the computational time limit is considered as the stopping 

criterion. 

 

5. Computational Results 

In this study, to test the performance of the proposed models, we utilize previous studies’ cases. We generate 

ten cases for small, medium and large-scale numerical problems. The small and medium-size problems are 

solved by the GAMS software by considering the Lp-metric method, MOPSO, and MOVDO meta-heuristic 

algorithms. Due to the size and complexity of the problem, we apply the proposed meta-heuristic algorithms 

to solve the large-scale instances.  

To generate random data and parameters for numerical problems, appropriate domains from uniform 

and Bernoulli distributions are considered by using the DOE method. Remember that, DOE deals with the 

determination of a relationship between factors affecting an output of a process.  The primary purpose is to 

find cause-and-effect relationships between the process inputs and outputs. Table 7 shows the framework 

for data and parameters with their descriptions. Later, the data is randomly picked from the corresponding 

interval. Tables 8 and 9 show the studied parameter values generated randomly. For instance, a schematic 

representation of the network for sample problem No 4 from Table 8 is shown in Figure 2. In the next 
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section, sensitivity analysis is performed to examine the impact of model parameters on the optimal 

solution. 

 

 

Figure 2. Product supply network in sample problem number 4 

 

 

Table 7. The random generation framework and parameters 

Description Generation method Parameter 

--- 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(10,30) 𝑃𝑖𝑠𝑝ℎ  

--- 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1,5) 𝑔𝑠𝑝𝑖 
--- 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,100) 𝑤𝑠ℎ 

A maximum of 10% of the products may be defective. 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,0.1) 𝑞𝑠𝑝 

A maximum of 20% of products may be delivered with a delay. 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,0.2) 𝑡𝑠𝑝 

The capacity of facilities depends on the defined demand. 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(500,1000) 𝐷𝑝ℎ 

Based on products demand and the total number of suppliers 
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1,2)𝐷𝑝ℎ|𝑆|  𝐶𝑠𝑝ℎ  

--- 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1000,1500) 𝑎𝑠𝑝ℎ 

The network development budget depends on the fixed cost of activating 

each facility. 
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1000,2000) 𝐻𝑖ℎ  

Product sales market 

Flow to the market 

Potential location for 

production facilities 
Flow from suppliers to 

production centers Suppliers 
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In each period, a flow can be created from any supplier to the facilities 

with a probability of 0.8. For simplicity, this parameter is set to 1. 
𝑏𝑒𝑟(0.8) 𝑏𝑠𝑝ℎ  

Based on product demand and the total number of potential facilities 
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1,2) ∑ 𝐷𝑝ℎ𝑝|𝐼|  𝑀𝑎𝑥𝐶𝑖ℎ  

In problems with an increase in the number of potential sites, we 

increase the budget so that we can develop the network. 
|𝐼|𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1000,2000) 𝑀𝐻𝑖ℎ 

 

 

Table 8. The dimensions of the small and medium numerical problems 

Number of products Planning periods 
Number of  

potential sites 
Number of suppliers 

Sample problem 

No. 

2 2 4 2 1 

3 2 5 3 2 

3 3 7 4 3 

4 4 10 5 4 

4 4 12 6 5 

4 4 15 10 6 

5 5 18 12 7 

5 5 20 13 8 

5 5 22 14 9 

5 5 25 15 10 

 

 

Table 9. The dimensions of the large numerical problems 

Number of products Planning periods 
Number of  

potential sites 

Number of 

suppliers 

Sample  

problem No. 

6 6 30 20 1 

7 6 35 22 2 

8 7 35 24 3 

9 7 40 24 4 

9 8 40 26 5 

9 8 45 26 6 

10 8 45 29 7 

10 10 50 29 8 

10 12 50 30 9 

10 12 50 35 10 

 

To solve the problem, we utilize the CPLEX Solver of GAMS software version 25.1.2. The Lp-metric 

method guarantees the global optimal solution of the problem in small-scale cases.  MOPSO and MOVDO 
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meta-heuristic algorithms are coded in MATLAB software version R 2017b for solving large-scale 

problems. To run those codes of GAMS and MATLAB, a personal computer with a 5-core CPU and 6 GB 

RAM has been used. To evaluate the MODM solutions, Pareto optimal solutions had less diversion of 

objectives from their optimal state and the solutions that are non-dominated is produced. For that, the 

following four indicators are presented to evaluate the performance of the multi-objective meta-heuristic 

algorithms. These indicators are: 

 

5.1 Cover Surface Criterion (CS) 

In this criterion, the number of non-dominated solutions of each method is compared to that of the other 

method. For instance, when there are two solution methods A and B for an MODM problem in which F(A) 

denotes the Pareto front of the method A, and F(B) represents the Pareto front of B, for each pa ∈ F(A) and 

pb ∈ F(B), the domination of pb by pa is represented as paDompb (Coello Coello et al., 2007). By using those 

definitions, the CS criterion to compare the two solution methods A and B is expressed by (24). 

 𝐶𝑆(𝐴, 𝐵) =  ||{𝑝𝑏 ∊ 𝐹(𝐵)|∃ 𝑝𝑏 ∊ 𝐹(𝐴): 𝑝𝑎 𝐷𝑜𝑚 𝑝𝑏}||||𝐹(𝐵)||  
(24) 

 

CS(A, B) shows the proportion of total Pareto solutions of method B in which at least one of the Pareto 

solutions of method A dominates. It is clear that 0≤ CS (A, B) ≤ 1. If CS (A, B) is close to 0, method B would 

have a better performance, and most of its solutions would be efficient. However, if CS (A, B) is close to 1, 

method A would have a better performance, and most of its solutions would be inefficient. The smaller the 

CS(A, B) is, the better the performance of method B is. 

 

5.2 Mean Ideal Distance (MID) criterion 

This criterion is one of the most important criteria to evaluate MODM solution methods. It represents 

the average deviation of the Pareto solutions from the ideal solution. The ideal solution shown by the Isol is 

a point whose components are the optimal values of the objectives (Isol=(min(z1), min (z2))). In the 

minimization problems, we can consider the origin as the ideal solution (Isol=(0,0)). If F(A) represents the 

Pareto front of the solution method A, then the MID criterion is calculated by (25) (Behnamian et al., 2009).   

 𝑀𝐼𝐷 (𝐴) = ∑ ||𝑝𝑎 − 𝐼𝑠𝑜𝑙||2𝑝𝑎𝜖𝐹(𝐴)||𝐹(𝐴)||  
(25) 
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where ||𝐼𝑠𝑜𝑙 −  𝑝𝑎||2 represents the Euclidean distance of 𝑝𝑎 ∈ 𝐹(𝐴) from the ideal solution. Clearly, the 

smaller MID is more desirable. 

 

5.3 Number of Solutions (NOS) or quantity of solutions 

This criterion shows the number of Pareto solutions. A higher NOS value is desirable. For each solution 

method A, NOS(A)= |F(A)| (Zitzler, 1999). Although this criterion may be useful to measure the diversity of 

the solutions, it does not show the quality of the solutions. This weakness is resolved in the next proposed 

criterion. 

 

5.4 Number of Solutions Cover Surface (NS_CS) or quality of solutions 

One of the weaknesses of the NOS criterion is when NOS(B) > NOS(A), while CS(A, B) has a large 

value. In this case, although most of the solutions of method B are dominated by the solutions of method 

A, a better situation is reported for method B by the NOS criterion. To overcome this weakness, we propose 

the following criterion by (26). 

 

NS_CS (A, B) = [NOS (B)(1- CS (A, B))] (26) 

 

NS_ CS (A, B) shows the number of Pareto solutions of method B that are not dominated by the solutions 

of method A. Clearly, the higher value of this criterion means that method B performs better than A. 

The proper performance of each metaheuristic algorithm is significantly affected by the values of the 

parameters set up. The main parameters of the MOPSO algorithm include coefficients w, c1, c2 and number 

of population. The parameter w is called the inertia coefficient and expresses the tendency of the particle to 

maintain its original motion. Parameters c1 and c2 are individual and collective learning coefficients. These 

parameters determine the extent to which the available answer moves towards the best answers found in 

the population. Also, MOVDO includes parameters like number of populations, damping coefficient (γ), 

initial amplitude (A0), maximum iteration at each amplitude (L), and standard deviation (σ).  

We follow those steps in DOE application: design of experiments, perform experiments, analysis of 

results and validation of experiments. After defining the parameters, first, the order of experiments and the 

number of their replications are determined. In the second step, according to the selected order, the 

experiments are performed and the system response is measured. It should be noted that in order to reduce 

possible errors, random selection for the test numbers as well as repetition is important. In the third step, 

the factors’ main effects as well their interactions are determined separately. In the last step, additional tests 

are performed to validate the findings and repeat the tests to confirm the results.  
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In the proposed meta-heuristic algorithms, parameter setting up plays an important role. The Taguchi 

method is one of the fractional factorial experiments used in DOE for setting up the parameters (controlling 

the optimal level of the factors). In the Taguchi method, the factors affecting the results are divided into 

two: uncontrollable (called noisy factors, N) and controllable (the signal S). Then, the S/N ratio is defined 

to maximize it. Namely, while performing the proposed set of experiments in the Taguchi method, in order 

to determine the optimal level of each factor, the S/N ratio is first evaluated. Factor levels providing large 

S/N values than others are considered to be the optimal levels. However, if there is no significant difference 

between the ratios, then the second evaluation criterion that is the runtime of the algorithm is considered. 

Table 10 shows the parameter values set in the Taguchi method to solve the problems by MOPSO and 

MOVDO algorithms . 

 

 

Table 10. Parameter values for MOPSO and MOVDO algorithms 

MOVDO MOPSO 
Problem size 

L 𝝈 𝜸 𝑨𝟎 pop c2 c1 w pop 

10 1.5 0.5 6 180 2 1 0.5 150 Small and medium 

12 1.6 0.4 9 250 2.5 0.85 0.5 200 Large 

 

After setting the parameters of the proposed algorithms, in the Lp-metric method (of all three norm p = 

1,2, inf), N = 100 different weights that are produced randomly and implemented. By observing the average 

output results, Pareto solutions are obtained. Remember that, we define, small, medium and large size 

numerical problems and solve them by the proposed solution methods. Results are analyzed based on the 

defined criteria. The comparison between the performance and response level of MOPSO and MOVDO 

algorithms and the Lp-metric method in the small and medium-scale problems is shown in Tables 11 and 

12. 

 

 

Table 11. Evaluation of MOPSO in comparison with Lp-metric method in small and medium numerical problems 

NS_CS 

(Lp, MOPSO) 

NOS 

(MOPSO) 

NOS 

(Lp) 

MID 

(MOPSO) 

MID 

(Lp) 

CS 

(Lp, MOPSO) 

Sample 

problem No. 

4 4 4 151/14 150/83 0 1 

4 4 4 135/07 134/60 0 2 

4 6 5 204/11 221/89 0.33 3 

8 8 7 288/04 304/05 0 4 

8 10 11 276/12 278/51 0.20 5 

13 13 13 391/19 351/43  0 6 
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12 14 16 431/22 400/85 0.14 7 

14 15 17 495/27 531/15 0.07 8 

15 15 17 560/02 560/13 0 9 

17 17 19 605/09 587/42 0 10 

 

 

Table 12. Evaluation of MOVDO in comparison with Lp-metric method in small and medium numerical problems 

NS_CS 

(Lp, MOVDO) 

NOS 

(MOVDO) 

NOS 

(Lp) 

MID 

(MOVDO) 

MID 

(Lp) 

CS 

(Lp, MOVDO) 

Sample 

problem 

No. 

4 4 4 133/15 150.83 0 1 

4 4 4 135/07 134.60 0 2 

5 5 5 202/07 221.89 0 3 

7 8 7 281/31 304.05 0.10 4 

8 10 11 272/43 278.51 0.20 5 

13 13 13 391/18 351.43 0 6 

12 14 16 404/61 400.85 0.20 7 

14 15 17 481/49 531.15 0.07 8 

17 17 17 560/02 560.13 0 9 

17 17 19 659/74 587.42 0 10 

 

In order to validate the proposed models, one of the sample problems (i.e., Design No. 4 in Table 8) is 

examined. Figure 3 shows the Pareto front diagram of the proposed meta-heuristic algorithm results by 

comparing the method results with each other and with the three selected Lp metric solutions. The results 

show that the proposed meta-heuristic algorithms to solve the numerical models are providing acceptable 

performance (Figure 3). Both algorithms resulted in a diverse number of Pareto solutions and the quality of 

the results are generally good because both methods provide small errors. However, for the three selected 

solutions of the exact Lp metric method, the performance of the MOVDO is better than the MOPSO because 

that MOVDO’s deviations are less than MOPSO’s method. Because it is hard to solve large-scale problems, 

the proposed algorithms can be used for such problems. Note that, according to the obtained values, the 

Pareto fronts in both meta-heuristic algorithms are close to the global front (front of the Lp-metric method) 

in small and medium-scale problems. Although in these problems, the diversity and quality of the proposed 

meta-heuristic algorithms are acceptable, the MOVDO algorithm has better results than MOPSO regarding 

the MID criteria. Table 13 presents the results of large-scale problems solved by the proposed algorithms. 

The results show that each meta-heuristic method can solve large-scale problems in a reasonable time and 

obtain a set of Pareto solutions, in contrast to the exact LP-metric method. The results indicate that the 

MOPSO algorithm solves the problem faster than the others. This algorithm usually has a good state in 
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terms of the qualitative criteria such as the number of Pareto solutions. Although the MOVDO algorithm 

solves the problem in a longer time than MOPSO, the quality of its solutions (especially in terms of MID 

and the Number of Solutions Cover Surface) are better than that of the MOPSO algorithm. These are shown 

in Figures 4 and 5, respectively. For example, as shown in the results of the sample problem (4) in Table 

13, the values of MID and NOS, for the MOVDO algorithm are 2855 and 25, respectively. Also, the 

corresponding values for the MOPSO algorithm are 3107 and 24, respectively. These results show the 

superiority of the MOVDO algorithm over the MOPSO algorithm in these two criteria in large-scale 

problems. 

 

 
Figure 3. Pareto front diagram of MOVDO and MOPSO methods versus three selected answers in Lp metric method 

 

Table 13. The performance of MOPSO and MOVDO in the large-scale problems  

Table 13. The performance of MOPSO and MOVDO in the large-scale problems 

runtime (min) NS_CS 

(MOVDO, 

MOPSO) 

NS_CS 

(MOPSO, 

MOVDO) 

NOS 

(MOVDO) 
NOS 

(MOPSO) 

MID 

(MOVDO) 

MID 

(MOPSO) 

CS 

(MOPSO, 

MOVDO) 

Sample 

problem 

No. 
MOVDO MOPSO 

30/21 36/15 17 18 17 20 1075 1314 0 1 

41/37 44/59 14 15 15 17 1401 1945 0 2 

57/09 51/72 23 23 22 25 2077 2519 0 3 

82/52 74/81 24 25 25 30 2855 3107 0 4 

92/45 90/62 14 15 15 22 4622 5184 0 5 

125/58 101/27 17 20 20 27 6814 7936 0 6 

155/19 142/41 22 29 28 35 6063 8009 0 7 

193/42 179/32 20 24 23 27 8102 9038 0 8 
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225/65 205/77 30 33 32 40 9819 10078 0 9 

336/24 301/59 35 40 40 45 16842 20915 0 10 

 

 

Figure 4. Comparison of the MIDs of MOPSO and MOVDO algorithms in large-scale problems 

 

 

Figure 5. Comparison of non-dominated solutions of MOPSO and MOVDO algorithms in large-scale problems 

 

5.5 Sensitivity Analysis 

In this section, a sensitivity analysis is presented for some parameters. The results based on those are 

reported and explained. For this purpose, one of the sample numerical problems (i.e. design no. 4 of Table 

8) is considered. The sensitivity analysis is performed on the fixed cost of facility activation and the capacity 

of facilities. To do a sensitivity analysis on the fixed cost of facilities activation, the data values of this 

parameter have been increased and decreased by 10%. It is observed that the length of the step is 2% for 

the changes. 
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Figure 6 shows the chart of variations in the objective functions with the changes applied. It is observed 

that increase in the fixed cost of facility activation causes total cost (i.e., the first objective function) to 

increase; the customer-orientation rate (i.e., the second objective function) to increase, and the value of 

product supply (i.e., the third objective value) to decrease. Conversely, if that fixed cost parameter 

decreases, then all those three objective values are improved. Namely, the first and second objectives would 

decrease while the third one would increase. 

To perform a sensitivity analysis for the facility capacity parameter, the value of this parameter is 

increased and decreased by 10% in the sample problem. The length of the step is 2% for the changes. The 

results are shown in Figure 7. According to that, increasing the facility capacity improves the objective 

functions. However, when we decrease the capacity, it affects the objective function values negatively. 

From Figure 7, it is observed that facility capacity change does not always cause a change in the objective 

function values. For example, if capacity is reduced up to 4%, the optimal solution remains unchanged. 

Also, increasing the facility capacity does not necessarily improve the objective function values. In general, 

increasing the facility capacity causes the total cost (the first objective function) not to increase. Also, it 

does not cause any change in the customer orientation rate (the second objective function) and the value of 

products supplied (the third objective function). Conversely, in the case of the negative change in that 

parameter, the first and second objectives would be non-decreasing while the third one is non-increasing.  

 

 

Figure 6. Sensitivity analysis on the fixed cost of facilities activation 
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 Figure 7. Sensitivity analysis of the facilities capacity 

 

6. Conclusion  

In this work, we study an integrated model for supplier selection and production facility location problems 

by motivating from a factoryless manufacturing problem in a multi-product supply chain network where 

non-activation of facilities is also allowed in a multi-horizon time period. Factoryless manufacturing is a 

strategy aiming to make better use of existing production facilities. One of the significant features of this 

method is decreased investment cost to produce a particular product. Therefore, in general, the product is 

produced at a lower cost. However, supply chain management issues may become complicated and require 

integrated models taking into consideration several parameters simultaneously. 

In this paper, we study, an integrated supply chain model involving production facilities location (i.e., 

identifying candidate points for production centres), the best supplier selection, order amount determination 

from each supplier, etc. decisions. We develop a multi-objective optimization model for the solution of the 

problem where three objectives are defined. The objectives are defined to be the minimization of the total 

cost (e.g., an economic objective), minimization of the number of products delayed or defectively delivered 

(e.g., a customer-oriented objective increasing the network reliability), and maximization of the total score 

of selected suppliers (e.g., the value of environmental considerations). Due to the NP-hard property of the 

problem, we utilize heuristic algorithms to solve the model. To evaluate the performance of the proposed 

meta-heuristic algorithms, several small and large-scale numerical problems are developed. We introduce 

several criteria for the performance validation of the methods that might be categorized into two categories 

based on quality and quantity. The results show that in small and medium-scale problems, the Lp-metric 

method performs better in terms of performance criteria. For large-scale problems, results show that the 

MOPSO algorithm solves the problem faster, and usually has a good state for parameters such as the number 

of Pareto solutions. Although the running time of the MOVDO algorithm is longer compared to that of the 
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MOPSO algorithm, the quality of the solution is usually better than that of MOPSO, especially in terms of 

MID criterion and the Number of Solutions Cover Surface. After comparing the results, a sensitivity 

analysis is performed on parameters of one of the designed problems and the results are reported and 

explained.  

This work is proposed to be an initial work for a multi-objective optimization model in a two-echelon 

supply network whose objective functions include multi-objective which are: minimization of total network 

cost (i.e., maximization of total profit), maximization of the total score of suppliers in the network, 

simultaneously. Besides, it is the first time, we develop a model under a dynamic location problem concept 

as well as transaction value change policy under a multi-horizon time period in the network. 

For further development of this research, one may focus specifically on inventory control models, 

including dynamic product pricing in different time periods as well as uncertainty for parameters. Safety 

stock levels can also be considered as separate decision variables. Besides, the use of uncertainty 

approaches such as robust optimization and fuzzy or random planning, etc. can also be utilized in the 

modelling approach. Use of exact solution methods to solve large-scale problems such as parser-based 

methods (Benders’ decomposition or Lagrangian algorithms), incorporating the competition of firms in the 

supply chain using Game theory approaches or using two-level planning models to apply the current 

research to real problems can also be some other future work suggestions. 
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