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Robust Satellite Antenna Fingerprinting under
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Abstract—Antenna fingerprinting is critical for a range of
physical-layer wireless security protocols to prevent elevated iden-
tity attacks and authenticate legitimate users. However, many an-
tennas suffer degradation especially in adversarial environments
such as satellite antennas in outer-space. This is particularly a
problem for nano-satellites, which are designed to operate for
a short time span and are not currently afforded expensive
protective coating. Current fingerprinting techniques only use
convolution neural networks to take a snap-shot fingerprint at
manufacturing, but fail to capture long term temporal variations.
Here, we show how we can perform robust antenna fingerprinting
(99.34% accuracy) up to 198 days under intense degradation
damage using recurrent neural networks (RNNs). We are certain
this can be improved and has real world impact on physical
layer security of short-term nano-satellite antennas in adverse
environments.

Index Terms—RF Fingerprinting, deep learning

I. INTRODUCTION

Physical security using RF fingerprinting has attracted sig-

nificant attention. This is important especially in high value

radio asset systems such as military and space applications.

One of the critical issues currently facing wireless data is that

most higher layer protocols are vulnerable to misuse and a

variety of spoofing and denial of service attacks. For exam-

ple, even though cryptographic digital signatures can achieve

spoofing detection, they might be uneconomical due to the

excessive cryptography overhead or inefficient for large-scale

networks or challenging to reach transmitters (e.g. satellites)

are involved. Replay attacks depend on protocol defects and

are consequently even more challenging to detect.

Physical security in the form of RF fingerprinting can

prevent attacks such as impersonation for elevated access

status and forensic identification of malicious users [1]–[3].

In recent years, the development of Software-Defined Radios

(SDRs) has facilitated the high-resolution exposure and extrac-

tion of features by providing high resolution bandwidth and

Signal-To-Noise ratio. However, the discrimination between

the noise of the radio signal and the required features is still a

challenging factor for wireless radio fingerprinting, and this

has led to the implementation of effective Deep Learning

classification algorithms using the physical layer features.

A. State-of-the-Art

A key research objective is improving the distinctiveness of

features rises from imperfections in the transmitter physical el-

ements generated during the manufacturing process. Generally
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speaking, a variety of features can be leveraged: (1) location

independent features (e.g., transient phase at the transmission

onset, frequency and phase offsets, Radio Signal Strength RSS

or Chanel State Information CSI) and (2) Location dependent

features (e.g., position coordinates). Different features can be

combined in order to perform accurate identification, however

they should be characterised by uniqueness, universality and

collectability, permanence and robustness.

Classification algorithms can be either unsupervised or

supervised, depending on whether prior fingerprint information

is available. Unsupervised Learning algorithms such as K-

Means clustering and PCA are used when a labelled training

dataset is not available, and the device fingerprints are similar.

On the other hand, supervised methods such as Support Vector

Machines are used for fingerprinting classification, but they are

significantly less effective than Neural Networks that exhibit

remarkable performance on noisy RF fingerprinting data.

Convolutional Neural Networks (CNNs) [4] have been used to

classify mobile devices using Differential Constellation Trace

Figure (DCTF) features, achieving exceptional accuracy of 97-

99%. There has also been work that exploit the spatiotemporal

pattern of RSS features for mobile transmitters [5]–[8], but this

does not consider antenna degradation.

In more realistic settings, the authors of [9] evaluate the

accuracy of CNNs under several environmental conditions

(in the wild and in an anechoic chamber) inspecting both

ADS broadcast and WiFi, revealing that the wireless channel

severely impacts the radio fingerprinting in low SNR, de-

creasing the fingerprinting quality by up to 85%. This limited

performance of CNNs in low SNR and the risk of antenna

material degradation over time [10], confirms the need for

more effective classification methods.

B. Open Challenges in Satellite Fingerprinting

Among many volatile factors in space, the relatively high

energy of the atomic oxygen (AO) [11] that exists at Low-

Earth Orbit (LEO) altitude allows molecular bonds in materials

to break. This can cause surface degradation to nano-satellite

or CubeSat satellites [12] and their commercial off-shelf parts,

such as their antennas. Current nano-satellites or CubeSats

are not afforded expensive coating protection and are only

designed to serve 300 days. However, even during this time

the antenna parameters can decay and as the in-orbit time of

satellites increases, this prolonged exposure to AO entails a

high risk that, it could slowly alter the RF fingerprint over

time to an extent that it cannot be identified. Therefore, the

parameter of antenna decaying makes fingerprinting an even

more challenging scenario that is currently unexplored.
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a)

b)

Fig. 1. Antenna Fingerprinting for Satellites: a) system model of LEO
satellite and handshake window, b) typical patch antenna model, c) antenna
radiation pattern, frequency dependent performance, and IQ maps, d) Space
Atomic Oxygen (AO) impact on satellite antenna power gain as a function
of Fluence (atoms/cm2) and Flux density (atoms/cm2/s), and e) satellite to
ground downlink communication system.

C. Novelty & Contributions

The aim of this paper is to design the authentication

framework that can support RF fingerprinting using RSS of

CubeSat communication link with the ground station. We

will implement effective Deep Neural Network classifiers that

can address the challenge of the relative motion between the

satellite and the Earth, whilst taking into account the following

novel aspects:

• incorporate the satellites’ antenna performance decay due

to atomic oxygen (AO) impact

• robust classification of the long-term degradation fin-

gerprint of satellite antennas using a Recurrent Neural

Network (RNN)

• compare the performance of different deep learning algo-

rithms on robust antenna classification under AO degra-

dation in space

These are novel advances because it captures the limitations

of current fingerprinting techniques that only use a CNN [4],

[13] to take a snap-shot fingerprint at manufacturing, but fail

to capture long term temporal variations.

TABLE I
SYSTEM MODEL PARAMETERS

Parameter Value

LEO Orbit Altitude d 1804km (max)

Satellite Velocity 28,000km/h

Handshake Window 2s

Antenna Type Patch 6x7.8x0.125cm

Polarization Loss Laml 4.5dB

Polarization Loss Lpol 3dBi

Atmospheric Abs. Loss La 0.001dB/km

Tx Power & Gain 30dBm & 15 dBi

Frequency S-Band 2.4-2.45GHz

Defect Tolerance Impedance 0.04Ω

Data Samples 500 per Antenna

II. SYSTEM MODEL

A. Model Assumptions

As shown in Fig.1a-b, we consider LEO satellites orbiting

at a slant range of 1804km, with a patch antenna gain of 15dBi

and a transmit power of 30dBm. The pathloss model used is

[14]:

L = La

(

4πd

λ

)2

LamlLpolLAO, (1)

where Laml is the loss due to antenna misalignment, Lpol is

the polarization loss due to misalignment between satellite and

ground antennas, and La is atmospheric absorption loss. The

AO degradation to antenna power LAO is given empirically

in [11], which we extrapolate to vary proportional to the

predominantly Fluence (typical values of 0.2e22 atoms/cm2))

under a fixed flux rate of 9.5e15 atoms/cm2/s:

LAO ≈ a+ b1Fluence + b2Fluence2, (2)

with a adjusted R2 of 0.995 fit to empirical data in [11], where

the fit parameters are: a = −8.2, b1 = 1e−20, b2 = −2.8e−42.

The rest of the system parameters are given in Table I,

where the patch antenna designed operates at 2.4-2.45GHz

(S-Band) and is attached to a ground panel of 12.5x12.5cm

with air substrate of 0.0012491. Each cubesat antenna has

slightly different input impedance to mimic the manufacturing

defects within a tolerance window of 0.04Ω. Each antenna in

a sample of N = 21 antenna variations has 500 RSS samples

for training and out-of-sample validation split 70-30.

B. Atomic Oxygen Degradation to Antenna Fingerprint

Of primary novelty and concern is the modeling of erosion

due to atomic oxygen (AO), which is formed by a photo

dissociation process of oxygen molecules by ultraviolet (UV)

radiation [11] - a particular problem for the Low-Earth Orbit

environment. Thus, traditional satellite antennas are coated

with a layer of geranium (expensive practice) to prevent any

serious functional damages on their outer surface. AO expo-

sure was not a designing constraint for a CubeSat mission, as it

would stop functioning before the corrosive effect could cause

any serious issues on its system [11]. However, the increase of

CubeSat missions, and the advances of technology that enable
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Fig. 2. Antenna Feature Input Tensor and LSTM RNN Structure: top)
each antenna has 310 power and time samples related to degradation state,
and bottom) LSTM structure.

them to stay longer on-orbit, means longer exposure in the

harsh space environment.

The AO that exists in the LEO environment has a relatively

high energy (at about 4.5 eV), which forces molecular bonds

in materials of the satellite surface to break [11]. Even though,

it may not limit the antenna performance, it could alter its RF

Fingerprint over time to an extent that is not recognisable.

A recent experimental research [11] has examined how AO

erosion affects the performance of patch antennas for CubeSat

applications. They exposed twenty-six S-Band patch antennas

to AO in their laboratory equipment for 24 hours which

correspond to roughly three months of on-orbit exposure and

they quantified the erosion (mass loss) in Fluence and Flux -

see Fig.1c. We use their data to drive the degradation model

for our antennas.

C. RF Fingerprinting using Deep Learning

We use 3 deep learning frameworks premised on both

current literature’s state-of-the-art, and our own innovation on

combating long-term AO degradation effects to the antenna:

• Baseline Neural Network: feed-forward NN (FF DNN)

with 3 hidden layers comprised of N neurons in first

layer, followed by 64, 128, 256, and N in final layer. Ac-

tivation functions are ReLu in hidden layers and Softmax

at the representation layer, with 0.0001 learning rate and

a batch size of 500. The hyper-parameters were optimised

with the adaptive learning algorithm (Adam) with SGD

to be efficient in the face of noisy data.

• State-of-the-Art Convolution Neural Network (CNN):

CNN network published in 2020 [4], [9] to exploit cross-

feature feature signals in antenna: with I/Q constellation

maps used that are 125x125 in resolution and a sub-

sampling of 62x62 is followed by 2 convolution layers.

• Recurrent Neural Network (RNN) for Degradation:

LSTM network (see Fig.2) with 310 input features (31

power levels x 10 time samples across AO flurence

Fig. 3. RNN Training Performance: accuracy and loss function over training
iterations.

degradation states), 100 hidden LSTM units, 0.2 dropout

layer, and a fully connected softmax representation layer.

Initial learning rate is 0.00001, batch size is 256, and

Adam optimized with gradient decay factor is 0.9.

For this brief paper, we only show our proposed RNN train-

ing performance in Fig.3 which shows good convergence in

accuracy and loss function after 3000 iterations.

III. RESULTS

For our results in Fig. 4, we highlight the robustness of

our proposed RNN fingerprinting capability over the first 200

days. Here, we show that for the first 198 days, the accuracy

across the different antennas remain above 99%, before falling

off dramatically. This cannot be said for the state-of-the-art

CNN framework which examines a richer IQ map and sees

a steady decline in performance over time due to the lack of

recurrent training, which means the accuracy drops from 91%

after 190 days to 64% after 200 days. The feed-forward DNN

is the simplest baseline which performs very well at beginning

but rapidly loses accuracy with AO degradation onset as it

neither benefits from convolution properties of richer features

nor the longitudinal recurrent data training. These results are

reasonably robust to different frequency in S-Band and LEO

altitudes as shown in Table II, where we varied the frequency

and altitude slightly. In general, we advice against using feed-

forward DNNs with a basic RSS signal classification. IQ or

DCTF maps [4], [9] tends to be far more robust, but their

accuracy also falls off after 5-6 months into the operation due

to AO erosion. As such a RNN has more promise extending

accurate classification to 200 days with above 97% accuracy.

IV. CONCLUSIONS & FUTURE WORK

Antenna fingerprinting is critical for a range of physical-

layer wireless security protocols to prevent elevated identity

attacks and authenticate legitimate users. However, many

antennas suffer degradation especially in adversarial environ-

ments such as in outer-space. This is particularly a problem for

nano-/cute-satellites, which are designed to operate for a short

time span and are not currently afforded expensive protective

coating. Current fingerprinting techniques only use CNNs to
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a) b)

Test Results 

at 50dB

0 days 190 days 198 days 200 days

Feedforward 

DNN for RSS

99.9% 82.7% 59.2% 34.9%

CNN for 

DCTF/IQ 

Maps

99.8% 91.3% 80.0% 64.6%

RNN for AO 

Degradation

100% 93.2% 83.1% 75.2%

Test Accuracy:                  97% 95.2% 92.7%         83.1%         62.9%      32.1%

Fig. 4. RNN Validation Results over Degradation Time of 210 Days: top) RF fingerprinting performance summary, bottom) accuracy and loss function
examples for time frames of 186 days and 198 days.

TABLE II
RESULTS SUMMARY

Parameter Robust Classification Duration (97%)

2.39 GHz, 1700km

FF DNN with RSS 7 days

CNN with IQ Map 156 days

RNN with RSS 198 days

2.49 GHz, 1800km

FF DNN with RSS 7 days

CNN with IQ Map 170 days

RNN with RSS 202 days

take a snap-shot fingerprint of the I/Q map at manufacturing,

but fail to capture long term temporal variations due to

degradation.

Here, we showed how we can perform robust antenna

fingerprinting (99.34% accuracy) up to 198 days under severe

space degradation damage using RNNs. As it currently stands,

this work has the promise to improve RF fingerprinting for

nano-/cube-satellites which do not benefit from expensive anti-

degradation coating, and are expected only to operate for

a maximum of 300 days. Here, we can ensure robust RF

fingerprinting for 200 days and this can be improved by

combining RNN and CNN.
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