
Cranfield University

Pau Segúı-Gascó

Decentralised Multi-Robot Task

Allocation Algorithms

Institute of Aerospace Sciences
School of Aerospace Transport and Manufacturing

2017

Supervisors:
Dr. Hyo-Sang Shin

Prof. Antonios Tsourdos

Submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy.

c©Cranfield University, 2017. All rights reserved. No part of this publication may be
reproduced without the written permission of the copyright holder.

A l’alegria de ma vida.
Dic Isabel i segueisc el camı́.

Abstract

Multi Robot Systems (MRS) are gaining increasing popularity both in the
research community and in industry. A fundamental problem that underpins
the effective coordinated operation of these systems is Task Allocation. To solve
this problem, the MRS should be able to find an answer quickly, reliably, and
effectively to the question: “given the robots available in the system and the
tasks that ought to be carried out, what is the best allocation of these tasks
among us?”. In this thesis we focus on solving this problem in the decentralised
setting, that is, when each agent only has access to its own utility function and
does not have any knowledge of the functions corresponding to other agents, i.e.
the utility function is local or private.

Our algorithms are based on improved versions of the measured continu-
ous greedy algorithm for general matroid-constrained submodular maximisa-
tion. The first improvement is a new and smoother increment rule that enables
us to reduce the number of steps required to solve the relaxation. The sec-
ond improvement is to adapt the Decreasing-Threshold procedure for monotone
submodular functions to work with non-monotone submodular functions.

Then, we present the first decentralised algorithm with constant-factor ap-
proximation guarantees for general submodular task allocation. Our algorithm
provides an approximation factor of 1− 1

e − 4ε (≈ 63%) for monotone submod-
ular utilities, and a factor of

(
1
e − 3ε

)
(≈ 37%) for non-monotone submodular

functions. To illustrate the possibilities enabled by non-monotone submodular
task allocation, we present a submodular task allocation model for a multi-UAV
surveillance mission. Our model features the allocation of heterogeneous surveil-
lance tasks to a heterogeneous multi-UAV team under risk of enemy detection.
We develop the model and present proofs to show that it is non-monotone sub-
modular. Then, we run numerical experiments to study the effect of different
parameters of our algorithm and compare its performance against the state-of-
the-art.

To conclude the thesis, we take a completely different approach, the key
idea is to trade constant-factor approximation guarantees in exchange for flex-
ibility. We present a preliminary framework based on combinatorial auctions
that can transfer centralised solution method to the decentralised Task Alloca-
tion domain while requiring a polynomial number of communication rounds. In
other words, our framework provides a way to transfer successful methods to
solve NP-Hard problems such as Metaheuristics, Mixed-Integer Programming,
Constraint Programming, etc. to the decentralised setting.

iv

Keywords: Algorithms, Combinatorial Optimization, Submodularity, Task
Allocation, Decentralised Task Allocation, Distributed Task Allocation, Discrete
Optimization, Submodular Maximization, Matroid, Non-Monotone Submodu-
lar.

Acknowledgements

I would like express my gratitude to my supervisors, Sang and Antonios, for
their guidance and support during all these years, and for their generosity during
difficult times. Sang has been a great mentor, he has given me confidence when
forces faltered, encouraged me in my research, and allowed me to grow as a
researcher.

Thanks to all the ImSim family: Robin, Didac, Carl, Vittoria, David, Shampa,
Gayathri, Gary, Raymond, Dan, Leo, and Stephen, for their generosity and pa-
tience during this last year. I would like to specially thank Robin and Didac
for their insightful comments and constant encouragement, they were a great
support that helped me cross the line. And yes Carl, it is finished!

All these years would not have been the same without all the amazing people
I met. Thanks to my fellow PhD students Dario, Quintain, Sang-Jun, and Inmo,
for the good company and all the laughter. Thanks to all the Cranfielders:
Vicente, Mirian, Octavio, Viktoria, Yazan, Tonia... for the great times we had
inside this little countryside island.

I would like to thank my family, my father Jesus, my mother Ana and my
sister Mireia. I will be forever indebted with them for all their love, support and
encouragement throughout my life, they have always been there when I most
needed. I have been very fortunate that my father enthused me with his love
and passion for engineering and who, with his infinite patience, spent countless
hours sharing his wisdom. I would not be what I am today without them. I
know I don’t say this very often, in fact I never do, but I’d like to say that I
love you all very much.

Last but not least, I am hugely grateful to my wife Isabel, the joy of my life.
Her immense love, encouragement, and quiet patience were the bedrock upon
which the past years of my life have been built. Without her generosity and
unwavering support I would not have been able to finish this thesis. “Tendrem
la mida de totes les coses només en dir-mos que ens seguim amant.”

The support of the National PhD Programme of the Defence Science and
Technology Laboratory (UK MoD) is gratefully acknowledged.

Contents

1 Introduction 1
1.1 Background and Motivation . 1

1.1.1 Multi-Robot Systems . 1
1.1.2 Task Allocation and Submodularity 3

1.2 Aims and Objectives . 6
1.3 Contributions and Layout . 6
1.4 Publication List . 8

2 Literature Survey 9
2.1 The Task Allocation Problem . 9

2.1.1 Problem Definition . 9
2.1.2 Tractability . 11

2.2 Decentralised Task Allocation Literature 13
2.3 Discussion . 17

3 Continuous GA for Submodular Maximization 18
3.1 Introduction . 18

3.1.1 Preliminaries and the Continuous Greedy Process 21
3.2 Smooth Measured Continuous Greedy 27

3.2.1 Algorithm Definition . 27
3.2.2 Analysis . 29
3.2.3 Numerical Experiments 36
3.2.4 Discussion . 37

3.3 Accelerated Measured Continuous Greedy 39
3.3.1 Algorithm . 39
3.3.2 Algorithm Analysis . 41
3.3.3 Discussion and Future Work 45

4 Decentralised Submodular Task Allocatiton 47
4.1 Introduction . 47
4.2 Equivalent Centralised Algorithm 50

4.2.1 Preliminary Concepts . 50
4.2.2 Algorithm Definition . 52
4.2.3 Algorithm Analysis . 54

4.3 Decentralised Algorithm . 64
4.3.1 Algorithm Definition . 64
4.3.2 Algorithm Analysis . 69

4.4 Summary . 75

vii

5 Application of Submodular Task Allocation: a Multi-UAV Surveil-
lance Mission 77
5.1 Introduction . 77
5.2 A Multi-UAV Surveillance Mission 78

5.2.1 Elements of the Problem 78
5.2.2 Submodularity Analysis 81

5.3 Numerical Experiments . 84
5.3.1 Synthetic Instance Generation 85
5.3.2 Results . 85

5.4 Discussion . 88

6 A Combinatorial Auction Framework For Decentralised Task
Allocation 92
6.1 Problem Definition . 93

6.1.1 Background . 94
6.2 Decentralised Task Allocation Framework 95
6.3 Discussion . 97

6.3.1 Communication Complexity 99
6.3.2 Computational Complexity 99
6.3.3 Numerical Results . 100
6.3.4 Conclusions and Future Work 101

7 Conclusions and Future Work 104
7.1 Submodular Maximisation . 104
7.2 Decentralised Submodular Task Allocation 105
7.3 A Combinatorial Auction Framework For Decentralised Task Al-

location . 107
References . 109

viii

List of Figures

3.1 Comparison of the error reduction with stepsize δ for the different
functions and methods. Euler refers to the integration scheme
proposed by Feldman et al. in [32], while RK3 and RK4 refers to
Runge-Kutta schemes of 3rd and 4th order. 38

5.1 Normalised relaxation values of the solutions of Algorithm 10 for
a sweep of the parameter ε. Each + represents a problem instance
and the dashed line joins the means for the same ε. Note: y∗ is the

relaxation obtained with the smallest ε, i.e. with ε = 0.001. 86
5.2 Comparison of the solution values. 87
5.3 Comparison of running times. 88

6.1 Comparison of the distribution of the costs of CBBA using warp-
ing functions with the proposed algorithm for the MinSum metric.102

6.2 Comparison of the distribution of the costs of CBBA using warp-
ing functions with the proposed algorithm for the MinMax metric.102

6.3 Comparison of the distribution of the costs of CBBA using warp-
ing functions with the proposed algorithm for the MinAve metric. 103

ix

List of Tables

4.1 Comparison of performance between CBBA and our algorithm . 76

6.1 Mean Relative Scores (%) of our framework and CBBA wrt the
optimal. 102

x

Nomenclature

A Set of Agents.

CBBA Consensus-Based Bundle Algorithm.

CGA Continuous Greedy Algorithm.

¯
d Minimum marginal value.

∆Fi Marginal value of the Multilinear Extension of f , wrt element i.

∆Faj Marginal value of the Multilinear Extension of fa, wrt to task j.

d̄ Maximum marginal value.

E Ground set.

F Multilinear Extension of f , F : [0, 1]E → R+

f Utility function f : 2E → R+.

Fa Multilinear Extension of fa, F : [0, 1]E → R+

fa Utility function of agent a ∈ A f : 2E → R+.

fS Marginal value function wrt the set S, fS(i) , f(S ∪ {i} − f(S).

GA Greedy Algorithms.

I Independence set of a matroid.

K The relaxation polytope of the task allocation problem.

M Matroid.

MRS Multi-Robot Systems.

OPT Optimal discrete solution to a problem.

P(M) The relaxation polytope of the matroid M.

r Rank of a matroid.

S∗ Discrete solution of an algorithm S∗ ⊆ A× T .

T Set of Tasks.

UAV Unmanned Aerial Vehicle.

y A point in the relaxation.

ya A fractional allocation relaxation corresponding to agent a ∈ A.

xi

Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Multi-Robot Systems

Multi-robot systems (MRS) are gaining increasing popularity as an alternative
to single asset solutions due to its versatility, resilience and its distributed nature
[7, 82]. This is a paradigm shift from few but very capable, expensive, and
complex systems towards systems of relatively low-tech hardware coupled with
sophisticated cooperation. A good example of this trend is the new space sector
[3]. Traditionally, space companies built constellations of a handful of large and
complex satellites weighting hundreds of kilograms, costing hundreds of millions
each and with decades-long service lives. Nowadays companies such as Planet
Labs [103] are starting to build viable business models based on constellations of
numerous but smaller and simpler satellites. Their Flock-1 satellite constellation
is composed of tens of cubesat-based satellites weighting less than 10kg apiece.
These satellites are launched in groups, which bring down the cost of each
satellite to the tens of thousands, and are designed for service lives of less than
a year or two. The large number of cooperating satellites enables Planet Labs to
have updated footage of virtually every point in the surface of the Earth almost
weekly, whilst they can cope with the loss of one or multiple satellites because
their cost is a fraction of that of a traditional system.

Another area where this trend is gaining traction is Defence. Current oper-
ational Unmanned Aerial Vehicles (UAVs), such as the Global Hawk, are very
sophisticated and provide a lot of capability but the loss of such a key strate-
gic asset could put an entire mission in jeopardy. In contrast, new multi-robot
system models of operations are emerging as a complementary solution. In Oc-
tober 2016 the Strategic Capabilities Office of the US Department of Defense
carried out a real flight test [2] where they launched, from fighter planes, one
hundred small Perdix drones executing a cooperative mission. The coordination
of the Perdix drone system is entirely based on decentralised communication
between the drones themselves without a central entity. This makes the whole
system resilient to the loss of several team members, and provides capabilities
that simply would be unavailable with a single-asset solution.

Multi-robot systems have some fundamental strengths that are not possible
with single-robot systems, let us mention a few of them: increased flexibility,

1

provided by a variety of payloads available in different team members; simul-
taneous broad area coverage, enabled by different robots in different spatial
locations at the same time; reliability and resilience, inherent due to the
large number of low-cost robots which can take over each other in case of fault;
and the capability to operate outside the communications range of their
base stations, as team members can also act as communication relays for each
other.

However, for their successful operation, a key enabling technology is au-
tonomous cooperation. Consider the Global Hawk UAV, a currently operational
state-of-the-art system, it requires both a crew of at least four and continuous
data links back to its command centre. This is because pilots, sensor oper-
ators, communications officers, etc. need to micromanage every aspect of its
operation. This is clearly not scalable for a team of tens or hundreds of vehi-
cles that are cooperating in the same mission. Therefore, a key step towards
fully operational multi-robot systems is the transition from remote operators
that micromanage the robots towards network operators who can inject tasks
into a multi-robot network and supervise their execution. The effective au-
tonomous assignment of the available resources is the key enabler of successful
cooperation. The robots should be able to find an answer quickly, reliably, and
effectively to the question: “given the resources available in the network and
the tasks that ought to be carried out, what is the best allocation of these tasks
among us?”. This is known as the task allocation problem, and it is central to
the coordination of maritime multi-robot systems [57], satellite constellations
[95], ground robot teams [24], and multi-UAV missions [61]. There are several
features of task allocation problem that is worthwhile remarking. We are deal-
ing, primarily, with heterogeneous multi-robot systems, that is, the robots can
have different mobility characteristics (fixed-wing vs rotary, underwater vs sur-
face vessels, etc.). Robots that can carry different payloads or sensors (visual,
radar, signal intelligence, etc.). Robots that have different information avail-
able to them, depending on what they have received from neighbours or sensed
from the environment. Robots that are geographically distributed. Robots that
are in challenging communication environments where they may be able to link
with some of their neighbours, but not with their base, or the whole team. In
summary, a multi-robot team can be very diverse, have different levels of infor-
mation, and have different communication links. These characteristics are what
make a multi-robot system very capable but, at the same time, they make the
task allocation problem very difficult to solve. More formally, the general task
allocation problem can be defined as follows:

Given a set of tasks T , a set of agents A, and a function for each agent
a ∈ A specifying the utility of completing each subset of tasks fa : 2T → R+,
find a non-overlapping allocation, S∗ ∈ AT , that minimises/maximises a global
objective function J : AT → R+. (Adapted from the classical definition in [27])

The centralised solution of the task allocation problem involves having to
communicate all the agents (i.e. robots) and environment data to a centralised
entity. This may not be possible in some realistic scenarios because relying on
a central entity removes resilience (by introducing single point of failure), or
the bandwidth to communicate all the information to it may not be available.
Increasingly, new hybrid control architectures are being proposed. Where a hi-

2

erarchical architecture for high level control (such as task creation) is combined
with a decentralised decision making architecture for lower level control (task
execution). Therefore, decentralised task allocation algorithms might become
essential building blocks to enable these new architectural ideas. In light of
this, we focus on developing algorithms that work on the scenario where the
agents are not required to have access to a central planning entity, or a common
understanding of the environment, and are only required to have access to their
own individual utility functions, not that of their peers. This is known as the
decentralised task allocation problem, and it is the focus of this thesis.

1.1.2 Task Allocation and Submodularity

The general task allocation problem is very hard to solve efficiently: it is both
NP-Hard [35] and inapproximable within a constant factor [78]. This implies
that it is very unlikely that efficient algorithms that, for the general case, find
an optimal solution or a good approximate solution will ever be found. Faced
with this bleak outlook, most of the decentralised algorithms presented to date
have taken two qualitatively different approaches: either they target a trivial in-
stance by assuming linearity of the utility function, enabling optimal algorithms
[8, 19, 42, 66, 73, 105]; or they settle for algorithms without any guaranteed per-
formance that, nevertheless, show good empirical results for the tested objective
functions [25–27, 36, 49, 79, 104]. A great breakthrough was the introduction
of a new and distinct approach: an algorithm that used non-trivial properties
on the objective function to enable decentralised constant-factor approximation
algorithms. In [19] Choi et al presented the Consensus-Based Bundle Auction
(CBBA) Algorithm, which was the first decentralised algorithm that provided
a solution guaranteed to be within a constant factor of the optimal. By as-
suming that the utility functions of the agents were monotone non-decreasing
and submodular (i.e. exhibiting diminishing marginal returns), Choi et al were
able to prove that their algorithm produces a solution that guarantees at least
50% of the value of the optimal one: it does not find an optimal solution but it
finds a provably-good one. There are deep theoretical reasons why they chose
submodularity, and they are intimately connected with the tractability of the
task allocation problem. Indeed, much like convexity in continuous optimisa-
tion, submodularity seems to be the crucial non-trivial property that enables us
to achieve ‘good’ solutions.

Submodularity is quite an intuitive notion. It simply requires that the
marginal value that an agent obtains by executing an extra task diminishes
as the tasks that ought to be carried out by that agent increases. It is quite
natural, consider for example a surveillance mission: as a given agent is assigned
more points to monitor, the time that it will be able to monitor an additional
point decreases. Another example is sensor placement, as we deploy more sen-
sors the coverage provided by adding an additional sensor keeps decreasing,
until, eventually, the whole area of interest is covered, providing no extra cov-
erage. We remark that there may be scenarios of practical interest that do
not seem to have an obviously submodular model. However, due to the good
tractability properties that it induces (as we shall see), it is a good model to
aim for when designing utility functions. Indeed, something similar happens
with convexity: many problems in control, estimation, signal processing, ma-

3

chine learning, etc. are not obviously convex; but scientists and engineers have
devised useful models to “convexify” the problem, in order to enable fast algo-
rithms that result in immensely useful applications. A concrete, and obvious,
example is the Extended Kalman Filter (EKF), which imposes severe assump-
tions (linearity, non-correlation, gaussian noise, etc.) in order to find an optimal
estimator. These assumptions are often violated in practice but, nevertheless,
it still delivers such great performance that it has become the standard tool to
use in its field. We think submodularity should be seen from that perspective: a
useful model that, while it may not be 100% faithful to the application at hand,
it can be leveraged to induce the desired behaviour in a multi-robot system.
In the Machine Learning community there has been a great effort spearhead-
ing this idea: finding suitable submodular models to solve inherently discrete
tasks, such as summarising documents, scene segmentation, or pattern discov-
ery [10, 23, 45, 64, 72, 89, 94]. We think that this is an idea worth pursuing:
task allocation is an inherently discrete problem (a task is either executed by an
agent or not, it cannot be split), and so we should aim to build models that yield
inherently good algorithms for discrete problems. That is, we think that “sub-
modularising” interesting task allocation problems can yield immensely useful
applications.

The task allocation problem can be formulated in terms of a more general
problem: the optimisation of a set function subject to a matroid constraint. Un-
derstanding the tractability of this more general problem is key to appreciate
the boundaries of what is possible to achieve with polynomial-time algorithms
for the task allocation problem. Let us give a quick summary. The optimisation
of a set function subject to a matroid constraint can take two forms: maximisa-
tion, and minimisation. In both cases, submodularity plays a key role defining
the tractability boundaries. Indeed, unconstrained submodular minimisation is
a tractable problem, and efficient algorithms have been developed [69]. How-
ever, somewhat counter-intuitively, the matroid-constrained problem is both
NP-Hard and inapproximable [91]. On the other hand, when the problem takes
the maximisation form the problem still remains NP-Hard [98], however, it be-
comes approximable if submodularity is assumed. In the late 1970s a seminal
paper by Nemhauser, Wolsey, and Fisher [77] showed that the greedy algorithm
achieves a 1

2 approximation guarantee with monotone submodular functions.
Sure enough, this fact lies at the core of why CBBA gives a constant factor
approximation because, essentially, CBBA is a decentralised implementation of
the greedy algorithm. In light of this, two questions arise: is 1

2 the best we
can do for monotone submodular functions?; and, what about non-monotone
submodular functions?. Nemhauser et al [77] also proved that the best possi-
ble factor that one can achieve for matroid-constrained monotone submodular
maximisation is 1 − 1

e , and in [15, 96] Vondrak et al provided an algorithm to
achieve it. More recently, Feldman et al [32] presented a unifying algorithm:
the measured continuous greedy algorithm. This algorithm obtains a 1 − 1

e ap-
proximation for matroid-constrained monotone submodular maximisation and,
more importantly, a 1

e factor for matroid-constrained non-monotone submodu-
lar maximisation. However, it is known that the 1

e factor is not optimal for the
non-monotone case [30, 96]. Finding the optimal factor is an important open
problem, currently all that is known is that it must be less than 0.478 [37].
To summarise: it is possible to devise task allocation algorithms that achieve
a 63% (i.e., 1 − 1

e) approximation for the task allocation problem maximising

4

monotone submodular utilities, as well as a 37% (i.e., 1
e) approximation for the

non-monotone case. In contrast, it is not possible to find any polynomial-time
constant approximation factor algorithm for the the task allocation problem
minimising submodular utilities.

In view of this, we can see that there is a gap in the decentralised task
allocation allocation literature between the algorithms that have been proposed,
and what is possible to achieve from a theoretical perspective. In particular, the
current state-of-the art in decentralised task allocation, CBBA [19], can only
solve task allocation problems with monotone submodular utilities with a 50%
approximation, while it provides no guarantees for non-monotone submodular
utilities.

We believe that developing an algorithm that works with non-monotone
submodular utilities is very important, because non-monotonicity is a feature
that arises naturally in many practical scenarios. For example, in a multi-robot
surveillance mission, if a robot is assigned too many targets to track it is possible
that it ends up spending its time travelling between targets and not gathering
enough useful information at the targets’ locations. Therefore, adding tasks to a
robot’s assignment could, indeed, reduce the utility obtained. Another example
is with a multi-robot team executing complicated manipulation functions, say
in rough terrain, where completing each task is risky because the robot may
suffer some difficulty, such as getting stuck, and thus fail the mission. In this
situation, a single robot may well be the best suited to carry out all the required
tasks, but a solution where an individual robot carries all the tasks would be
undesirable because of the high risk of failure that it would involve. Mono-
tone submodular functions are structurally ill-suited to model such scenarios,
because, by definition, they do not contemplate a reduction in value due to an
excessively large number of tasks. This ubiquitous situation cannot be modelled
by monotone utility functions, and therefore, CBBA could perform arbitrarily
poorly.

However, the continuous greedy algorithms that achieve the aforementioned
approximation factors were devised, initially, as a theoretical tools to prove the
existence of polynomial-time approximations, and were not geared towards effi-
ciency. Essentially they solve a relaxation based on the multilinear extension, a
continuous extension of submodular functions, and subsequently they round the
solution. This resulted in impractically slow algorithms: Vondrak’s algorithm
[15] required Θ(n8) value oracle calls, while Feldman’s Measured Continuous
Greedy [32] requires O(n6) assuming oracle access to the multilinear extension,
which, in general, needs to be sampled, creating additional overhead, possi-
bly in the order of O(n3) or O(n2). To remedy this, in [6] Badanidiyuru and
Vondrak proposed an efficient

(
1− 1

e − ε
)
-approximation algorithm that uses

O
(
nr
ε4 log2 n

ε

)
value oracle calls, for non-negative monotone submodular func-

tion maximisation subject to a matroid constraint. (Here n is the cardinality
of the ground set and r is the matroid rank) They achieve this by using a
Decreasing-Threshold procedure that enables them to reduce both the num-
ber of steps and the number of samples needed at each step of the continuous
greedy process. Nevertheless, their algorithm does not apply to non-monotone
submodular functions.

5

1.2 Aims and Objectives

In the last twenty years many great results in the Sciences and Engineering
have been produced by following a convexification recipe: given an important
problem, find a convex formulation, and apply efficient convex optimisation al-
gorithms. We believe the analogous is possible in the Task Allocation domain:
formulate important problems in terms of submodular utility models, and use
guaranteed-approximation algorithms to solve them. Our vision is that the
greatest leap in the Task Allocation field will come by submodularising util-
ity models. This thesis aims to enable this vision by providing approximation
algorithms for monotone and non-monotone submodular utility functions. In
other words, in this thesis we bring decentralised task allocation approximation
algorithms to the edge of what is currently known to be possible. That is, we
develop the first decentralised task allocation algorithm that achieves a con-
stant factor approximation with non-monotone submodular utilities, obtaining
a 1
e (≈ 37%) approximation guarantee. In addition, we improve the ratio for

monotone submodular utilities up to the maximum that is possible to achieve:
1 − 1

e (≈ 63%). Finally, we present a preliminary framework that enables the
decentralisation of a broad range of centralised algorithms.

Therefore, the objectives set up to achieve the aim of this study are as
follows:

• Design a faster continuous greedy algorithm for matroid-constrained sub-
modular maximisation, while keeping the same approximation factors.

• Perform theoretical analysis of our continuous greedy algorithm focusing
on two aspects: approximation factor and computational complexity.

• Decentralise the aforementioned continuous greedy algorithm to solve the
task allocation problem in a setting where agents can only access their
own utility functions.

• Investigate properties of the proposed decentralised task allocation algo-
rithm.

• Develop a realistic submodular model for a multi-UAV mission.

• Validate the task allocation algorithm developed using the submodular
model developed.

• Present a preliminary framework to enable the use of centralised algo-
rithms using polynomial-time communication.

1.3 Contributions and Layout

We start in Chapter 2 where we present a Literature Survey of the Task
Allocation field. In the first part we present an a summary of the key features
of the Task Allocation problem, and review key tractability results for the Task
Allocation problem and for matroid-constrained submodular optimisation. To
conclude, in the second part we present a review of decentralised Task Allocation
algorithms.

6

In Chapter 3 we present two improvements to make continuous
greedy algorithms for general matroid-constrained submodular max-
imisation more practical. Continuous greedy algorithms solve a relaxation
of the problem by building the solution is small increments. The first improve-
ment that we present is a new and smoother increment rule that enables us
to use to use order of magnitude larger increments, reducing the number of
steps required to solve the relaxation. The second improvement is to adapt the
Decreasing-Threshold procedure of Badanidiyuru and Vondrak [6] to work with
non-monotone submodular functions. In combination, these two modifications
enable us to obtain achieve a

(
1
e − 2ε

)
approximation factor in the solution of

the relaxation for matroid-constrained maximisation non-monotone submodu-
lar functions in O(nr

2

ε4

(d̄+
¯
d

d̄

)2
log2(nε)) calls to the value oracle (where n is the

cardinality of the ground set, r the rank of the matroid, and d̄ and
¯
d bounds on

the absolute values of the marginal values of the objective function).

Then, in Chapter 4 we present the first decentralised algorithm
with constant-factor approximation guarantees for submodular task
allocation. The algorithms that we presented in chapter 3 are developed for
maximising a general non-negative submodular function subject to a matroid
constraint. In this chapter, we take these algorithms and adapt them to solve
the Submodular Task Allocation problem, defined as follows:

Given a set of tasks T , a set of agents A, and a non-negative submodular
function for each agent a ∈ A specifying the utility of completing each subset of
tasks fa : 2T → R+, find a non-overlapping allocation, S∗ ∈ AT , that maximises
a global objective function F : AT → R+ defined as F(S) =

∑
a∈A fa(Sa).

(adapted from [27])

Our algorithms solve this problem in the decentralised setting, that is, when
each agent only has access to its own utility function and does not have any
knowledge of the functions corresponding to other agents. In that sense, we refer
to the utility functions of each agent as being local or private. Our algorithms
achieve an approximation factor of 1− 1

e−4ε (≈ 63 %) for monotone submodular
utilities, and a factor of

(
1
e − 3ε

)
for non-monotone submodular functions. This

is the first decentralised algorithm that achieves a constant-factor approximation
for task allocation with non-monotone submodular utilities, and it improves the
current state-of-the-art for monotone utilities, CBBA [19], which achieves a 1

2
(50%) factor. With this, we lay the theoretical bedrock upon which researchers
and practitioners can build general non-negative submodular utility models for
task allocation in a decentralised application.

In Chapter 5 we present a submodular task allocation model for
a multi-UAV surveillance mission. Here, we lay out a model that features
the allocation of heterogeneous surveillance tasks to a heterogeneous multi-UAV
team under risk of enemy detection. We develop the model and present proofs
to show that it is non-monotone submodular. Then, we run numerical experi-
ments to study the effect of different parameters of our algorithm and compare
its performance against the state-of-the-art. These experiments show that our
algorithm’s performance is superior to that of the current state-of-the-art CBBA
[19], which is unsurprising because CBBA offers no guarantees for non-monotone
submodular functions.

7

Finally, we take a completely different approach, the key idea is to trade
constant-factor approximation guarantees in exchange for flexibility. There has
been a huge amount of work in the Operations Research literature that enables
the solution of NP-Hard problems very efficiently. For example, Vehicle Routing
Problems with hundreds of tasks are solved daily by delivery businesses [93],
even when the simplest instances (such as the Traveling Salesman Provlem) are
NP-Hard. Recognising this, in Chapter 6 we present a framework based
on combinatorial auctions that can transfer almost any centralised
solution method to the decentralised Task Allocation domain. In other
words, this framework provides a way to transfer successful methods to solve NP-
Hard problems such as Metaheuristics, Mixed-Integer Programming, Constraint
Programming, etc. to the decentralised setting. To illustrate our framework, we
present preliminary results of numerical experiments with a multi-robot routing
application using the commercial MIP Solver Gurobi [39].

1.4 Publication List

This thesis contains partially or in full material from the following publications
by the author:

• UAV Swarms: Decision-Making Paradigms. HS Shin and P Segui-Gasco.
Chapter in Encyclopaedia of Aerospace Engineering. John Wiley & Sons
2014.

• A combinatorial auction framework for decentralised task allocation. P
Segui-Gasco, HS Shin, A Tsourdos, and VJ Segui. Wi-UAV: Globe-
com 2014 workshop - Wireless networking and control for unmanned au-
tonomous vehicles; pages 1445-1450.

• Decentralised Submodular Multi-Robot Task Allocation. P Segui-Gasco,
HS Shin, A Tsourdos, and VJ Segu. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS); pages 2829-2834.

• Fast Non-Monotone Submodular Maximisation Subject to a Matroid Con-
straint. P Segui-Gasco and HS Shin. arXiv preprint arXiv:1703.06053.

8

Chapter 2

Literature Survey

In this chapter we provide a formal definition of the task allocation problem,
followed by a review on its tractability, and a survey of the different decentralised
methods that have been proposed to solve it.

2.1 The Task Allocation Problem

2.1.1 Problem Definition

Let us start by providing a formal definition of the general task allocation prob-
lem:

Given a set of tasks T , a set of agents A, and a set function for each agent
a ∈ A specifying the utility of completing each subset of tasks fa : 2T → R+,
find a non-overlapping allocation, S∗ ∈ AT , that optimises a global objective
function J : AT → R+. (Adapted from [27])

Taxonomy

In recent years there has been a wealth of literature published studying different
but closely related applications. The issue is that each application looks at its
own particularisation of the problem with little or no reference to a more general
framework or its relations with other works that might be reduced to the same
abstract problem. To resolve this situation, a very important contribution to
the field was made in the form a domain independent taxonomy to classify,
interpret, and abstract the different versions of task allocation problems. In
2004 Gerkey and Mataric published what is now the standard taxonomy of
the field [35], which provided a unifying theory to the task allocation family of
problems, mapping instances of the task allocation problem to corresponding
combinatorial optimisation problems. This taxonomy proposes three axes to
characterise an instance of the task allocation problem:

• Single-Task (ST) vs Multi-Task (MT).
Distinguishing whether the robots are able to execute a single or multiple
tasks at the same time.

9

• Single-Robot (SR) vs Multi-Robot (MR).
Distinguishing whether the tasks require one or multiple robots to be
executed.

• Instantaneous Assignment (IA) vs Time-Extended Assignment
(IA).
Distinguishing whether the robots construct a plan to be executed immi-
nently or they can construct a more elaborate plan to be executed over a
given horizon of time.

A particular instance of the task allocation problem is, therefore, classified by
the triple ({ST or MT},{SR or MR},{IA or TA}), for a detailed explanation
of each instance the reader is referred to [35]. This taxonomy by Gerkey and
Mataric [35] provided a common reference frame to describe task allocation
problems, however, there was a fundamental limitation: it did not explicitly
cover dependencies between the tasks. Recently this gap was filled by the work
of Korsah, Stentz and Dias [52]. Based on the taxonomy by Gerkey and Mataric,
Korsah et al [52] provided the theoretical framework to extend the taxonomy
to cover situations with task dependencies such as related utilities and task-
coupling constraints. This provided a mapping of instances of the task allocation
problem with dependencies to well studied combinatorial optimisation problems.
The types of dependencies considered by this taxonomy are:

• No Dependencies (ND). Simplest case. Occurs when all the tasks are
fully decoupled and, hence, the agent’s utilities of the tasks are indepen-
dent.

• In-Schedule Dependencies (ID). The assessments of an agent depend
on what other tasks are being executed by that same agent. These de-
pendencies could be in the utility function or constrains within the tasks
schedule for each agent. Consequently its valuations are independent of
the allocations of other agents.

• Cross-Schedule Dependencies (XD). Occurs when the tasks valua-
tions depend not only of the executing agent’s schedule but also on the
other agents scheduled tasks. This can happen, for example, when mul-
tiple vehicles are needed to execute a given set of tasks, when temporal
or precedence constraint are imposed in the tasks etc. Nevertheless these
dependencies are simple, in the sense that they are known to the agents
before the actual allocation.

• Complex Dependencies (CD). Occurs in the same case as cross-schedule
dependencies but with the added compilation that these dependencies do
not have a simple structure. They have a complex structure in the sense
that the tasks that are being allocated have multiple decompositions into
subtasks that are coupled on the allocation. Hence the dependencies can
only be resolved simultaneously with the allocation, this coupling of the
task decomposition problem and the task allocation problems create a
more complicated set of dependencies than Cross-Schedule.

With this classification of the dependencies the problem instances are de-
fined by combining a dependency type with an instance of the triple ({ST or

10

MT},{SR or MR},{IA or TA}). This expands the type of situations that can be
modelled significantly, for a detailed discussion of each of the cases the reader
is referred to [52]. The most studied cases involve either no dependencies or in-
schedule dependencies, with some works devoted to cross-schedule and complex
dependencies.

2.1.2 Tractability

General Formulation

To explain the tractability of the task allocation we need to cast it in terms of a
general and well studied combinatorial optimisation problem: the optimisation
of a set function subject to a matroid constraint. The task allocation problem
optimises a set function subject to the constraint that no two agents can be
allocated the same task, this constraint can be reformulated as a partition ma-
troid. Matroids are an incredibly powerful abstraction of independence. They
capture seemingly disconnected notions such as linear independence, forests in
graphs, or traversals, among many others. They provide a flexible framework
to characterise a variety of relevant constraints, such as: partitions, schedules,
cardinality, or even rigidity. Of interest to us is a particular class of matroid,
known as a partition matroid, which captures the non-overlapping allocation
constraint in a task allocation problem. Let us state a formal definition of a
matroid [85]:
A pair (E, I) is called a matroid if E is a finite set and I is a nonempty collec-
tion of subsets of E satisfying:

• ∅ ∈ I;

• if A ∈ I and B ⊆ A, then B ∈ I; and

• if A,B ∈ I and |A| < |B|, then A+ z ∈ I for some z ∈ B \A.

Let us now define a partition matroid, which captures the task allocation
problem. A partition matroid is defined as follows: Given the set E, and a
partition of E into l disjoint sets E = E1 ∪E2 ∪ ... ∪El, the set of independent
sets I is defined as : I , {S ⊆ E|1 ≥ |X ∩ Ei|,∀i = 1, ..., l}. One can easily
verify that this definition indeed satisfies the conditions of a matroid definition
above. Let us now show how can it capture the non-overlapping allocation
constraint. First we define the ground set E = A × T , that is we have one
‘copy’ of each task for each agent, i.e. (a, j) ∈ E for all a ∈ A and j ∈ T .
Then, we define the partition as follows: for each task j ∈ T we define a set
Aj = {(a, i) ∈ E|i = j} that contains all task-agent pairs that contain the task
j, that is, Aj = {(a, j)|∀a ∈ A}. Therefore, we have disjoint sets that satisfy
E = A1 ∪ A2 ∪ ... ∪ Al. Then, the set of feasible allocations (i.e. independent
sets) is I , {S ⊆ E|1 ≥ |S ∩ Aj |,∀j ∈ T }, that is an allocation S is feasible if
it at most contains one task-agent pair per task. Now that we have defined the
non-overlapping allocation constraint as a matroid, we can readily formulate
the task allocation problem as:

optimise
S∈I

J (S). (2.1)

This is equivalent to the definition that we gave in the previous section, because
J : AT → R+ is the same function, and the constraint that S ∈ I simply states

11

that the allocation must be non-overlapping, i.e. it must be an independent set
in the partition matroid defined above. Let us now look at the tractability of
the task allocation problem.

The general task allocation problem is NP-Hard and inapproximable [35].
However, there are subclasses of the objective function for which there exist
polynomial-time algorithms that provide optimal solutions or constant-factor
approximation solutions. The first simplification that one can think of is to
assume that the objective function J is the sum of the objectives of the utility
functions of each of the agents, that is: J (S) =

∑
a∈A fa(Sa), where Sa is the

set of tasks allocated to agent a. This, however, does not take us very far because
the problem becomes an instance of the Set Packing Problem which happens
to be both NP-Hard and impossible to approximate within a constant factor
[80]. We can go one step further, and assume that the agents’ set functions are
linear. In this case the problem becomes the optimisation of a modular (i.e.
linear) function subject to a matroid constraint, which, famously, can be solved
optimally with a simple greedy algorithm [85]. However, a linear sum of linear
(i.e. modular) utility functions is quite a limiting assumption. Indeed, in the
taxonomy above, it only allows for ST-SR problems. To find more interesting
objective functions we need to introduce the notion of submodularity.

Submodularity

A submodular function is simply a set function that exhibits diminishing marginal
returns. More formally, a set function f : 2E → R is submodular if for all
Y,X ⊆ E satisfying X ⊆ Y and x ∈ E \ Y , then

f(X + x)− f(X) ≥ f(Y + x)− f(Y). (2.2)

An intuitive way of thinking about submodular functions is to think of them
as somewhat discrete analogous to convex functions. Convexity plays a central
role in continuous optimisation. In the words of R.T. Rockafellar [84] -one of the
great mathematicians in the field-: “In fact, the great watershed in optimization
isn’t between linearity and nonlinearity, but convexity and nonconvexity.” Bor-
wein and Vanderwerff [11] put it in other words: “In a computational setting,
since the interior-point revolution in linear optimization, it is now more or less
agreed that ‘convex’=‘easy’ and ‘nonconvex’=‘hard’ -both theoretically and com-
putationally.”. We believe that convexity and submdodularity are analogous in
the following sense: the presence or absence of submodularity appears to be the
key nontrivial property that determines whether one can find ‘good’ algorithms
for the optimisation of a set function. This analogy should not be taken literally,
indeed, diminishing returns are, in some sense, the discrete analogous of con-
cavity too. Therefore, we think is best to view submodularity as a frontier that
delineates the qualitative complexity in combinatorial optimisation problems.

There are qualitative differences between maximising and minimising a sub-
modular function. Let us look at both of them. The minimisation of a sub-
modular function without constraints is a tractable problem [69], and efficient
algorithms have been devised for it. However, when one introduces constraints
the problem becomes not only NP-Hard, but also inapproximable. In [91] Svitk-
ina and Fleischer show that cardinality-constrained submodular minimisation
is not approximable within a polynomial factor of Ω (n). Furthermore, the min-
imisation of a submodular function subject to a cardinality constraint can be

12

reduced to a more general problem: the minimisation of a submodular function
subject to a matroid constraint, which consequently, is also inapproximable.
Unfortunately for us, this implies that the approximability of task allocation
problem is not tractable.

In contrast, submodular maximisation problems are NP-Hard to solve ex-
actly [98]. There are, however, very practical constant-factor approximation
algorithms. To explain them we need to introduce the concept of monotonicity
of a set function: a set function is said to be monotone if the value of a set
does not decrease as more elements are added to it, i.e. f(A) ≤ f(B) if A ⊆ B.
In the monotone case, a classic result by Nemhauser, Wolsey, and Fisher [77]
shows that the Greedy Algorithm yields a 1 − 1

e constant-factor approxima-
tion for a cardinality constraint, and a 1

2 factor for a matroid constraint. More
recently, a fruitful avenue of research was spurred by Vondrak [15, 96] by show-
ing that solving a relaxation of the problem based on the multilinear extension
using the Continuous Greedy Algorithm and then rounding the result yields
good approximation algorithms. They present their result in the context of
non-negative monotone submodular functions to yield a (1− 1

e)-approximation.
Shortly after, Feldman et al. [32] modified Vondrak’s algorithm to develop the
Measured Continuous Greedy Algorithm which supported both non-negative
non-monotone and monotone submodular functions. Their algorithm was the
first to achieve a 1

e -approximation for general non-negative submodular func-
tions subject to a matroid constraint. Both continuous greedy algorithms can
find the aforementioned approximation bounds for solving relaxation problems
subject to the more general constraint class of down-closed polytopes. Let us
now look at what are the limits of approximation factors that can be achieved
in polynomial time. For matroid constrained monotone submodular maximi-
sation Feige [31] showed that improving over the 1 − 1

e threshold is NP-Hard,
and so the continuous greedy guarantees are tight. In the non-monotone case,
[37] showed that no polynomial time algorithm can achieve an approximation
better than 0.478. Closing the gap between 1

e and 0.478 remains an important
open problem where recent advances have been made: Ene and Nguyen in [30]
give a 0.372-approximation, while Feldman et al in [12] improve it to a 0.385-
approximation. These improvements are relatively small, recall that 1

e ≈ 0.368,
but show that there is room for future improvement. Both algorithms are based
on the measured continuous greedy. All these results apply to the task alloca-
tion problem because, as we have seen, it can be reduced to the optimisation
of a set function subject to a matroid constraint. The current state-of-the-art
in decentralised task allocation only scratches the surface of these results. One
of our contributions is to present decentralised task allocation approximation
algorithms that match the 1 − 1

e factor for the monotone case, and 1
e for the

non-monotone case. Now we review the current literature in decentralised task
allocation.

2.2 Decentralised Task Allocation Literature

Linear Utilities

The earliest decentralised task allocation algorithms were proposed as solutions
to the Assignment Problem. This is a slightly different problem to the version

13

that we have presented above. In this instance we have n tasks to assign to
n agents, that is: each agent must have a task and each task must have an
agent. Therefore, there is no notion of an agent utility function, instead, there
is a weight or value for each task and agent. This, in the taxonomy described
above, is an SR-ST task allocation problem without dependencies. The assign-
ment problem can be solved optimally in polynomial time, the classic approach
is the Hungarian Algorithm [56]. (For the most detailed and current treatise on
the centralised approaches to this problem, the reader is referred to the book by
Burkard et al [14].) Due to the tractability of these problems, there have been a
number of algorithms proposed that do guarantee optimal performance in a de-
centralised setting. The first distributed task allocation strategy was proposed
by Bertsekas [8], where an auction algorithm was developed based on a shared
memory model. However, the shared memory model required a topology of the
networked system that is not always achievable in real scenarios. To address this
issue Zavlanos et al [105] proposed an auction-based algorithm to handle a net-
worked system in which agents interact with its neighbours, rather than having
access to a shared database. More recently, [42] presented a decentralised version
of the Hungarian method which improved the performance of the auction-based
methods, such as those above. An extension of the assignment problem is the
Generalised Assignment Problem, where the utilities are linear, and addition-
ally each task consumes a ‘resource’ when executed by a robot, and each robot
has a linear resource constraint which must be satisfied. The addition of the
resource constraint makes the Generalised Assignment Problem NP-Hard [62],
but admits constant-factor approximation algorithms [86]. Indeed, Luo et al
in [67] proposed the first decentralised task allocation algorithm with constant
factor approximation guarantees by leveraging decentralised auction which, in
essence, implements a greedy algorithm.

When we remove the constraint on allocating a task for each agent, the
problem becomes the optimisation of a modular (i.e. linear) function subject to
a matroid constraint, which, as we have seen, is solved optimally using the greedy
algorithm. Several works have implemented versions of the greedy algorithm in a
decentralised setting. In [19] the Choi et al present the Consensus-Based Auction
Algorithm CBAA, this algorithm uses the concept of maximum consensus to
distribute a series of single task auctions across the network, which in effect,
implement a distributed version of the greedy algorithm. Liu and Shell [66]
present another approach to implement a decentralised greedy algorithm based
on on local task swaps. While in [73] Moon et al present an application of
a qualitatively similar algorithm for multi-UAV task allocation in a dynamic
environment, including an account of its performance in real flights.

Submodular Utilities

As we have seen, submodularity is the key property that enables tractability.
A very important breakthrough in the decentralised task allocation field was
the Consensus-Based Bundle Auction Algorithm (CBBA), presented by Choi,
Brunet, and How in [19] which, for the first time, used the notion of submodu-
larity to provide a decentralised approximation algorithm. Their target instance
is a maximisation with a monotone submodular function, a problem that, as we
have seen in the previous section, the greedy algorithm can approximate to a
factor of 1

2 [77]. Their algorithm is based on a decentralised auction and has two

14

phases: bundle construction and conflict resolution (consensus). In the bundle
construction phase, each agent creates a bundle by greedily adding tasks based
on their marginal values, until there are no tasks left or its bids are inferior
than the current highest bidder. Once each agent has built their own bundle of
tasks, the conflict resolution (or consensus) phase starts. In this phase, agents
exchange with each other the marginal values (bids) that they have for each
task and the agent with the highest marginal value for each task is assigned to
it, and the outbid agents drop their subsequent bids. CBBA has spurred a lot
of interest, as of mid-2017 it has more than 250 citations, and is already cited
in industrial patents such as [16] for practical use in the coordination of hetero-
geneous vehicle missions. This has instigated a significant amount of work to
extend its capabilities further, we discuss some of the extensions in the following
paragraph. However, almost all these extensions surrender the approximation
guarantees. Nevertheless, we remark that CBBA targets a monotone submodu-
lar function, and that it could perform arbitrarily poorly with a non-monotone
submodular function, and so far there is no decentralised constant-factor, ap-
proximation task-allocation algorithm that exploits the favourable tractability
of non-monotone submodular functions.

As we shall see in the following section, the greedy algorithm has been ex-
tensively used for general utility functions despite its lack of guarantees. This
is because empirically, the greedy algorithm behaves well with many practical
objective functions. However, CBBA can have convergence problems when the
functions are not submodular. To address this, Johnson et al [47, 48] present
a task scoring scheme that uses warping functions so that the bids from non-
submodular utilities appear ‘as if they were submodular (sic)’ in the consensus
phase while they are handled as non-submodular in the agent’s own domain,
consequently allowing for improved synergies within the bundles, and improving
convergence. This lifts the requirement for convergence of the submodularity
condition but, albeit, surrendering all the performance guarantees. Recently
there has been a significant amount of work trying to find submodular surro-
gates, that is: submodular functions that are used to drive the decisions of the
algorithms to optimise non-submodular functions. A good example is [18], where
submodular surrogates are used to model the value of information. We believe
these two ideas to be complementary, and in light of the good behaviour of the
greedy algorithm in practice, believe that a great avenue for future research lies
in the use of submodular models to optimise non-submodular utilities.

Several authors have extended CBBA so as to perform better in dynamic
environments. In [9] the authors adapt CBBA for a realistic scenario with ob-
stacles and measurement noise. In [81] the authors introduce tasks with time
windows by using a exponentially decaying reward function, handling changing
communication networks, and fuel cost reward awareness. Ponda et al [83] pro-
pose a framework to handle stochastic environments through chance-constrained
reward functions. Johnson et al [46] propose a new set of consensus rules for
CBBA so that it allows local agreement within asynchronous networks. Cas-
beer et al [70] propose another approach to overcome these problems in dynamic
environments by the introduction of local interaction rules to handle “pop up”
tasks within local agents, speeding up the convergence. In another work, Das
et al. [22] exploit the same principle to speed up convergence, by the accom-
plishment of two phases, first: the execution of bids within neighbour robots in
parallel; and second: the performance of a consensus operation to resolve the

15

conflicts. This accelerates the convergence and allows to parallelise allocation
and execution. In [20] a CBBA-based mechanism to allocate tasks involving
two agents is presented. Later, the same group, Choi et al [102], introduced
an extension to handle the following task dependencies: unilateral dependency,
mutual dependency, mutual exclusion, and timing constraints; all involving pos-
sibly more than two agents. With the purpose of adequate human supervision
of large UAV autonomous networks, Casbeer et al [5] extended CBBA with the
notion of teams, each team allocates tasks independently using CBBA and then,
through an outer loop, teams exchange unassigned tasks. In another work Hunt
et al [41] introduced group-dependent tasks by modifying the score functions
and the conflict resolution strategy of CBBA at the expense of higher communi-
cation overhead. In summary one can say that these CBBA extensions mostly
do one of two things: extending the applicability of CBBA to more difficult envi-
ronments (communication, dynamic, etc); or enabling CBBA to converge when
solving a more general or more constrained problem, at the expense, however,
of the approximation guarantees.

General Utilities

Now we focus on works that take a qualitatively different approach: rather
than relying on assumptions on the objective function -like, e.g. CBBA with
submodularity, to obtain provably-good solutions- these works rely on the decen-
tralisation of metaheuristic approaches that show good performance in practice.
This is perhaps the area of work that has produced the most publications in
decentralised task allocation, and the field is very diverse, so here we review
only a selection of them. Given the good theoretical guarantees that we have
seen that the greedy algorithm provides, it is no surprise that it is at the centre
of many heuristic approaches even if the guarantee-enabling assumptions are
not satisfied. Indeed, in the early 2000s there was a push for mechanisms that
used market-based mechanisms based on a common approach: find an initial
allocation using some sort of greedy heuristic, and then improve the solution via
dynamic re-allocations using different methods. Among these, the most promi-
nent are: Alliance [79], Traderbots [25, 26], Murdoch [36], and Hoplites [49].
Which had huge success and laid the foundation for many of the algorithms
that were proposed later.

Another interesting idea is to take a given objective function and to de-
centralise successful centralised algorithms. Routing is one example, in [58]
the authors use a approximation algorithms for the Traveling Salesman Prob-
lem based on Minimum Spanning Forests to provide decentralised routing for a
team of robots with constant-factor approximation guarantees. And, in [75] this
approach was extended to support limited communication capability. However,
these are approaches, by their very nature, are ad-hoc for the problem. And
we are not aware of any general framework that allows the decentralisation of
a wide variety of centralised algorithms.

Finally, we would like to mention another compelling approach presented
recently by Zhang et al in [107] and [106]. They proposed a series of Stohastic
Clustering Auction algorithms (SCA) that are conceptually similar to the classic
Simulated Annealing metaheuristic, because allow the designer to choose the
rate at which the stochastic exploration of the solution space takes place. As
with Simulated Annealing, a global optimal solution can be obtained if the

16

cooling rate (in SA terms), or the rate of the proportion of stochastic steps in
the search is reduced, is slow enough. However, we need to keep in mind that
the problem is NP-Hard, and hence if global optimal results are desired, the
cooling rate will have to be very slow, and an exponential convergence time
should be expected. Nevertheless, the notion of what a satisfactory solution is
depends on each specific problem and, consequently, allowing direct control on
the speed-optimality trade off, empowers the designer with the tools to adjust
the convergence speed to his/her specific notion of what a satisfactory solution
is in each situation.

The main conclusion that we can extract for the general problem is that there
are a good number of decentralised algorithms but, in essence, these implement
rather simple heuristics. There are, however, centralised tools in the Opera-
tions Research literature that solve instances of practical interest very well. For
example, Vehicle Routing problems with hundreds of tasks are solved daily by
delivery businesses [93]. This is because there are a host of techniques, e.g.
Metaheuristics, Mixed Integer Programming, or Constraint Programming, that
over many decades of algorithmic research and engineering have been adapted
and tailored for specific problems, reaching the point where they can solve large
instances efficiently. There is not, nevertheless, a framework that enables the
use of these centralised methods directly in the decentralised task allocation
domain.

2.3 Discussion

The main conclusion that we can extract from the tractability survey and decen-
tralised task allocation survey is that there is a gap between what is theoretically
possible, and what has been carried over to decentralised task allocation domain.
In different forms and shapes, the backbone of most decentralised task alloca-
tion methods is the greedy algorithm. This is a direct consequence of its good
theoretical guarantees: it is optimal with linear objective functions, and gives a
1
2 approximation for the maximisation monotone submodular functions. How-
ever, these theoretical results on the greedy algorithm were first presented in the
late 1970s, and the discrete optimisation field has progressed a lot since then.
For us, there are two key relevant developments that motivate the contributions
of this thesis. The first, and most important, is that there are polynomial-time
algorithms to approximate the maximisation of a non-monotone submodular
function subject to a matroid constraint within a factor (i.e. 1

e). The second, is
that the monotone case approximation factor can be improved from 1

2 to 1− 1
e .

Therefore, in this thesis we aim to bridge this gap and bring the decentralised
task allocation state of the art to the edge of what is known to be possible.

There is, however, a less positive corollary of our review of the tractabil-
ity of the submodular task allocation problem: the minimisation version of a
submodular task allocation problem is intractable and, worse, inapproximable.

Finally, we would like to point out another conclusion from our review of the
decentralised task allocation literature: there is a myriad of methods that are
tailored to specific instances that work well. But there is no general framework
that given a good centralised algorithm that works well in practice can translate
it into a decentralised algorithm.

17

Chapter 3

Continuous Greedy
Algorithms for Submodular
Maximization

3.1 Introduction

Our aim in this dissertation is obtaining useful ways to solve Task Allocation
problems. We have seen that in general we cannot find the optimal solution
efficiently, but that does not mean that we cannot find an approximate solution
that is provably good. In other words, we do not know how to find the optimal
solution, but we do know how to find something that is not far off. This kind of
algorithms are known as constant-factor approximation algorithms because they
produce a solution S such that, for a constant-factor α ≤ 1, f(S) ≥ αf(OPT),
where f is the objective function. The price to pay for this guarantees, in
our case, is that we have to restrict the objective functions to be non-negative
submodular. On the other hand, we can abstract the constraint that no task
can be allocated to more than one agent to a more general one: a matroid.
That is, the algorithms that we present in this chapter work not only for the
Submodular Task Allocation problem, but rather for a more general problem
class: the maximisation of a general non-negative submodular function subject
to a matroid constraint. Moreover, they provide the theory underpinning the
decentralised algorithms in the following chapter. Let us now explain more
about submodularity and matroids.

Submodular maximisation problems have drawn a lot of attention recently
[54]. This interest is due to a good confluence of theoretical results and practical
applicability. Intuitively, a submodular set function is said to be so because it
exhibits diminishing marginals returns, i.e.: the marginal value that an element
adds to a set decreases as the size of the set increases. This simple property arises
naturally in many applications and is what enables us to obtain constant-factor
approximation algorithms. It has been used in a variety of application domains,
to name but a few: markets [29, 60], influence in networks [51], document
summarisation [23, 64, 94], and sensor placement [55, 63].

Matroids are an incredibly powerful abstraction of independence. They

18

capture seemingly disconnected notions such as linear independence, forests
in graphs, or traversals, among many others. Interestingly, with linear sum
objectives (modular functions), they are inextricably linked with the greedy
algorithm. If the greedy algorithm is optimal, then there is an implicit ma-
troid; if there is a matroid, then the greedy algorithm is optimal [85]. They
provide a flexible framework to characterise a variety of relevant constraints,
such as: partitions, schedules, cardinality, or even rigidity. Indeed, a particular
class of matroid, known as partition matroid, captures the constraints in a Task
Allocation problem that no one task is allocated to more than one agent.

Importantly, the combination of a submodular function and a matroid con-
straint, not only captures the Submodular Task Allocation problem (also known
as Submodular Welfare), it actually plays a unifying role for many well-known
combinatorial optimisation problems, such as: Max k-Cover, Max Generalised
Assignment, Max Facility Location, and Constrained Max Cut (e.g. Max Bi-
section) among many others.

However, maximising a submodular function subject to a matroid constraint
is NP-Hard. Hence much of the research effort has focused on obtaining good
approximation algorithms. A classic result by Nemhauser, Wolsey, and Fisher
[77] shows that the Greedy Algorithm is a 1

2 -approximation for non-negative
monotone submodular functions. More recently, a fruitful avenue of research
was spurred by Vondrak [15, 96] by showing that solving a relaxation of the
problem based on the multilinear extension using the Continuous Greedy Al-
gorithm and then rounding the result yields good approximation algorithms.
They present their result in the context of non-negative monotone submodular
functions to yield a (1 − 1

e)-approximation. Shortly after, Feldman et al. [32]
modified Vondrak’s algorithm to develop the Measured Continuous Greedy Al-
gorithm which supported both non-negative non-monotone and monotone sub-
modular functions. Their algorithm was the first to achieve a 1

e -approximation
for general non-negative submodular functions subject to a matroid constraint.
Both continuous greedy algorithms can find the aforementioned approximation
bounds for solving relaxation problems subject to the more general constraint
class of down-closed polytopes. An important breakthrough in this field are
Contention Resolution Schemes, a rounding framework proposed in [99], because
they provide a paradigm for developing rounding schemes for a combination of
useful constraints including matroids and knapsacks. Thus the combination
of continuous greedy relaxations and Contention Resolution schemes enabled
approximation algorithms for many important submodular maximisation prob-
lems.

However, continuous greedy algorithms were devised initially as a tool to
show the existence of polynomial-time approximations, and thus were not geared
towards efficiency. This resulted in impractically slow algorithms: Vondrak’s al-
gorithm required Θ(n8) [15] value oracle calls, while Feldman’s Measured Con-
tinuous Greedy requires O(n6) [32] assuming oracle access to the multilinear
extension, which needs to be sampled in general, creating additional overhead,
possibly more than around O(n3) or O(n2).

To remedy this, in [6] Badanidiyuru and Vondrak proposed an efficient(
1− 1

e − ε
)
-approximation algorithm that uses O

(
nr
ε4 log2 n

ε

)
value oracle calls,

for non-negative monotone submodular function maximisation subject to a ma-
troid constraint. They achieve this by using a Decreasing-Threshold procedure
that enables them to reduce both the number of steps and the number of samples

19

needed at each step of the continuous greedy process.
In the inapproximability front, for matroid constrained non-negative mono-

tone submodular maximisation Feige [31] showed that improving over the 1− 1
e

threshold is NP-Hard, and so the continuous greedy guarantees are tight. In the
non-monotone case, [37] showed that no polynomial time algorithm can achieve
an approximation better than 0.478. Closing the gap between 1

e and 0.478
remains an important open problem where recent advances have been made:
Ene and Nguyen in [30] give a 0.372-approximation, while Feldman et al in [12]
improve it to a 0.385-approximation. This improvements are relatively small,
recall that 1

e ≈ 0.368, but show that there is room for future improvement. Both
algorithms are based on the measured continuous greedy, and would therefore
benefit from the techniques presented here.

Contribution

In this chapter we present a smoother version of the measured continuous greedy
algorithm of [32] with the same approximation ratio, i.e. 1

e for non-monotone
and 1 − 1

e for monotone, while using orders of magnitude fewer function eval-
uations than the current state of the art method described in [32]. Then, we
take this algorithm and accelerate it even further to create the first practical
algorithm for the maximisation of a general non-negative submodular function
subject to a matroid constraint.

In section 3.2 we present a smoother version of the measured continuous
greedy is based on a more continuous-like integration rule than that of [32],
which allows us to use an orders of magnitude larger step-size. This makes the
proposed method faster because the number of value oracle calls to f scales
with the number of steps, hence the bigger the step-size δ, the fewer function
evaluations that need to be performed. The critical observation for developing
the proposed method is that, around a small region, the subset Sv∗ (i.e., the
subset that maximises the marginal value) does not change. Hence, if Sv∗ is
given, we can find an analytical solution to the target differential equation to
use as the update step of the integration method. Therefore, the error of the
proposed scheme depends on whether δ is small enough to capture the changes
in Sv∗ . This, in practice, allows us to use orders of magnitude larger δ to obtain
the same accuracy as the Euler-like method of Feldman [32]. An improvement
that can be consistently observed for a variety of different submodular functions,
as we show in the numerical experiments section. Indeed, in contrast with the
algorithm in [32] which required O(n6) in the multilinear oracle i.e. O(n7) or
O(n8) in the value oracle, our smooth measured continuous greedy requires

O

(
r4

ε3 n log(n)
(
d̄+

¯
d

d̄

)3
)

value oracle calls, and O
(
r2n
ε

(
d̄+

¯
d

d̄

))
independence

oracle calls. That is we obtain a speed-up of at least O(n2). Note that
¯
d, d̄ ∈ R+

are bounds on the absolute value of the minimum and maximum marginal values
that the function f can take, i.e. −

¯
d ≤ f(S + i) − f(S) ≤ d̄, for all i ∈ E and

S ⊆ E.
But this can still be improved, in section 3.3 we present a 1

e−ε-approximation
algorithm for the non-monotone case that reduces the number of value oracle
calls by O(r2). We achieve this acceleration by combining the decreasing-
threshold procedure of [6] with our smoother version of the measured con-
tinuous greedy. This enables us to obtain an algorithm that requires just

20

O
(
nr2

ε4 log2(nε)
(d̄+

¯
d

d̄

)2)
value oracle calls. To our knowledge, this is the first to

achieve a practical efficiency for matroid-constrained general non-negative sub-
modular function maximisation. Our algorithm is slower than the one proposed

by Badanidiyuru and Vondrak [6] by O
((d̄+

¯
d

d̄

)2)
, but their algorithm only works

for monotone submodular functions. Here we trade-off some computational time
in exchange of approximation guarantees for non-monotone submodular func-
tions.

3.1.1 Preliminaries and the Continuous Greedy Process

Before we proceed to explain our algorithm we need to lay out some preliminary
concepts that will be used in this chapter and throughout the thesis. First we
present the definitions of a submodular function and a matroid in order to define
formally the our target problem and model of computation. Then we describe
in detail the relaxation that continuous greedy algorithms use. This involves
the definition of the matroid polytope and of the multilinear extension. Later
we define in more detail important aspects of the multilinear extension, which is
central to continuous greedy algorithms. Subsequently we define the notions of
marginal value and maximum marginal improvement which allow us to present
formally the continuous greedy process.

Submodularity A function f : 2E → R+ on a set E is said to be submodular
if:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), for all A,B ⊆ E. (3.1)

A more intuitive, but equivalent, definition can be formulated in terms of the
marginal value added by an element: given Y,X ⊆ E satisfying X ⊆ Y and
x ∈ E \ Y , then f(X + x)− f(X) ≥ f(Y + x)− f(Y). Herein we overload the
symbol + (−) to use it as shorthand notation for the addition (subtraction) of
an element to a set, i.e. S + i = S ∪ {i} (S − i = S \ {i}). We also use the
common subscript notation to denote the discrete derivative a function, that is
fS(x) , f(S + x)− f(S), this is also known as the marginal value.

Matroids A matroid can be defined as follows [85]:
A pair (E, I) is called a matroid if E is a finite set and I is a nonempty collection
of subsets of E satisfying:

• ∅ ∈ I;

• if A ∈ I and B ⊆ A, then B ∈ I; and

• if A,B ∈ I and |A| < |B|, then A+ z ∈ I for some z ∈ B \A.

A matroid base B ⊆ E is a maximally independent set B ∈ I, that becomes
dependent by adding an additional element e ∈ E \ B, i.e. B + e /∈ I. A key
property of matroids is that we can exchange elements between bases, this is
formalised as follows:

Lemma 3.1.1. (Corollary 39.12A in [85]) Let M = (N, I) be a matroid, and
B1, B2 ∈ B be two bases. Then there is a bijection φ : B1 → B2 such that for
every b ∈ B1 we have B1 − b+ φ(b) ∈ B.

21

Problem Definition Now we can formally define our target problem:
Given a ground set E, a matroid defined upon it M = (E, I), and a general
non-negative submodular function f : 2E → R+, find:

max
S∈I

f(S). (3.2)

Model of Computation As it is common in the submodular maximisation
literature, here we assume that f and I are given as oracles, and we quantify
the complexity of our algorithms in terms of number of calls to a value oracle
and an independence oracle respectively.

Now we can proceed to describe in detail the relaxation that continuous
greedy algorithms use. This has two parts: the domain, which is the matroid
polytope; and the function used to evaluate fractional solutions, the multilinear
extension. We describe both in detail and present relevant facts and lemmas
that will be used later on.

Relaxation A common approach to solve combinatorial optimisation prob-
lems is by using relaxation and rounding. This involves solving a continuous
problem, in which we allow fractional solutions, and a rounding procedure which
transforms the fractional output back to a discrete solution. Now let us explain
the relaxation that is used in continuous greedy algorithms. There are two key
elements needed to define the relaxation: the domain that contains fractional
solutions, and a function to evaluate fractional solutions. In our problem, the
most natural representation for the domain is the matroid polytope. And the
function that we use to evaluate fractional solutions is the multilinear extension.
Both the matroid polytope P (M) and the multilinear extension F have some
nice properties worth noting let us present them now.

Matroid Polytope The matroid polytope P (M) is the convex hull of the in-
cidence vectors of the independent sets in the matroid, i.e.: P (M) = Conv({1S :
∀S ∈ I}) [85]. Where 1S denotes the incidence vector of a set S ⊆ E, which
contains a 1 for each element in S and 0 elsewhere, thus 1S ∈ [0, 1]E . P (M) is
down-closed, which means that, given v ∈ P (M), if we reduce any coordinate of
v, v still remains inside P (M)[85]. Another advantage is that, in general, given
a matroid polytope, linear programs on it with arbitrary real objective vectors
have integral solutions [85]. Furthermore, they can be obtained using a sim-
ple greedy algorithm [85] provided independence oracle access to the matroid.
This implies that, given any objective vector c ∈ RE , the linear programming
problem:

max
v∈P (M)

cᵀv (3.3)

can be solved using a simple polynomial-time greedy algorithm. Fortunately,
this means that we can solve quickly such linear programs even when P (M) is
defined by an exponential number of linear constraints, as it is sometimes the
case.

The Multilinear Extension Now let us examine the properties of the mul-
tilinear extension. Given a set E and a submodular set function f : 2E → R+

22

defined on it, let y ∈ [0, 1]E represent a fractional solution, and let R(y) ⊆ E
be a random set containing each element i ∈ E with probability yi. Then, the
multilinear extension of f is:

F (y) , E[f(R(y))] =
∑

S⊆E
f(S)

∏

i∈S
yi
∏

j /∈S
(1− yj). (3.4)

The multilinear extension holds the following useful properties (mostly from
[15]):

• F has second partial derivatives everywhere in its definition unit hyper-
cube, i.e. F ∈ C2([0, 1]E)

• F is multilinear, i.e., ∂
2F
∂y2
i

= 0,

hence, ∂F
∂yi

= F (y+1i∆y)−F (y)
∆y ,∀i ∈ E,∀∆y ∈ (0, 1− yi].

• F has negative second partial derivatives ∂2F
∂yi∂yj

≤ 0.

• ∂F (y)
∂yi

= E[f(R(y) + i)− f(R(y)− i)] ≤ f(i) ≤ d̄. Due to submodularity.

• If f is monotone: ∂F
∂yi
≥ 0,∀i ∈ E.

• If f is non-monotone: ∂F
∂yi

= E[f(R(y) + i)− f(R(y)− i)] ≥ −
¯
d,∀i ∈ E.

• If f is monotone: ∂2F
∂yi∂yj

=

E[f(R(y)+i+j)−f(R(y)−i+j)−(f(R(y) + i− j)− f(R(y)− i− j))] ≥
−d̄.

• If f is non-monotone: ∂2F
∂yi∂yj

=

E[f(R(y)+i+j)−f(R(y)−i+j)−(f(R(y) + i− j)− f(R(y)− i− j))] ≥
−(d̄+

¯
d).

• If f is normalised, then we have that F (0) = 0.

• F can be lower bounded in terms of f (from [32]):

Lemma 3.1.2. Let f : 2E → R+ be a submodular function; let F :
[0, 1]E → R+ be the multilinear extension of f ; and let y ∈ [0, 1]E be a
vector whose components are bounded by a, i.e. yi ≤ a,∀i ∈ E. Then, for
every S ⊆ E, we have that

F (y ∨ 1S) ≥ (1− a)f(S). (3.5)

Where
¯
d, d̄ ∈ R+ are bounds on the absolute value of the minimum and

maximum marginal values that the function f can take, i.e. −
¯
d ≤ fS(i) ≤ d̄,

for all i ∈ E and S ⊆ E. Also, note that by a ∨ b we denote the vector c with
coordinates ci = max(ai, bi), i.e. the coordinate-wise maximum. Similarly, ∧
denotes the coordinate-wise minimum.

A drawback of this approach is that, in general, given an arbitrary non-
negative submodular function there is no closed form of multilinear extension
that enables us to evaluate it efficiently. The usual way to deal with this is to
sample it, and so we need the following concentration inequality to quantify the
sampling error:

23

Lemma 3.1.3. (Hoeffding Bound, Theorem 2 in [40]) Let X1, ..., Xm be inde-
pendent random variables such that for each i, a ≤ Xi ≤ b, with a, b ∈ R. Let
X̃ = 1

m

∑m
i=1Xi. Then

Pr[|X̃ − E(X)| > t] ≤ 2e
− 2t2

(b−a)2
m
.

At this point we are ready to introduce the notion of marginal value of the
multilinear extension, which is critical for the definition of the continuous greedy
process. First, we define it more formally and provide bounds on the error that
we incur when we approximate it by sampling the multilinear extension. Then,
we define the notion of maximal marginal improvement which is the direction
that the integration of the continuous greedy process follows. This is a central
notion because we can establish a lower bound on the maximum marginal im-
provement in terms of the optimal solution. We will use these lower bounds
later to prove the approximation factors.

Marginal Value A key magnitude used in the Continuous Greedy Algorithm
is the marginal value of an element i ∈ E given a fractional solution y ∈ P (M),
we refer to it by ∆Fi(y), defined as follows:

∆Fi(y) = F (y ∨ 1i)− F (y). (3.6)

In other words, it is the value that would be created by adding the full
element i to the fractional solution y. Due to the multilinearity of the extension,
the marginal value is very closely related to the derivative of the multilinear
extension:

∂F

∂yi
=
F (y ∨ 1i)− F (y)

1− yi
=

∆Fi(y)

1− yi
, ∀i ∈ E (3.7)

or, using vector notation:

∆F(y) = ∇F � (1− y), (3.8)

where � represents element by element multiplication.
In our algorithm we need to estimate the marginal values of each element

by sampling, let us bound the error introduced:

Corollary 3.1.4. Given a non-negative submodular function f : 2E → R+,
and a point y ∈ [0, 1]E; Let

¯
d, d̄ ∈ R+ be upper and lower bounds on the

marginal values of f , such that −
¯
d ≤ fS(j) ≤ d̄ for all S ⊆ E and j ∈ E;

let R1, R2, ..., Rm be iid samples drawn from R(y), let wj(y) = 1
m

∑m
i=1 fRi(j);

and let f(OPT) = maxS∈I f(S). Then,

Pr
(
|wj(y)−∆Fj(y)| ≥ β

(
d̄+

¯
d
))
≤ 2e−2mβ2

.

Proof. Immediate application from the Hoeffding bound in Lemma 3.1.3.

24

Maximal marginal improvement: µ∗(y), v∗(y), and Sv∗(y) Given a
fractional solution y ∈ P (M), a key part of the continuous greedy process is
to find the elements that provide the maximum marginal improvement µ∗(y).
This can be formalised by the following linear program:

µ∗(y) = max
v∈P (M)

∆F(y)
ᵀ
v. (3.9)

We will refer to the solution of this linear program by v∗(y). Note that by
definition v∗(y) ∈ P (M), moreover, given that P (M) is a matroid polytope,
v∗(y) is integral, which implies that its coordinates will be either 0 or 1. This
allows for v∗(y) to be casted as the set of elements whose coordinate is 1, we
denote such set by Sv∗(y), observe that, naturally, Sv∗(y) ⊆ E and 1Sv∗(y)

=
v∗(y). Note that due to the structure of P (M), v∗(y) will only contain r
elements with value 1, where r = maxS∈I |S| is the rank of the matroid M,
thus |Sv∗(y)| ≤ r [85]. Intuitively, Sv∗(y) is the the set of elements that yield
the most marginal value given the current y.

Crucially, we can relate µ∗(y) with f(OPT) using the following theorem and
its corollaries, which, ultimately, is why the process finds a bounded approxi-
mation.

Theorem 3.1.5. Let OPT = argmaxS∈E f(S) be the optimal solution. Then,
for any point y ∈ P (M),

µ∗(y) ≥ F (y ∨ 1OPT)− F (y) (3.10)

Proof. By definition, the solution represented by OPT = argmaxS∈I f(S) is
feasible, hence, 1OPT ∈ P (M). Then, by definition of µ∗(y), we have that
µ∗(y) ≥ ∑i∈OPT ∆Fi(y). Using the definition of ∆Fi(y),

∑
i∈OPT ∆Fi(y) =∑

i∈OPT F (y ∨ 1i) − F (y). Now, from the submodularity condition, for any
element i ∈ E and any subset of elements S ⊆ E, we have that

∑
i∈S(F (y ∨

1i) − F (y)) ≥ F (y ∨ 1S) − F (y). Hence,
∑
i∈OPT F (y ∨ 1i) − F (y) ≥ F (y ∨

1OPT)− F (y). This yields immediately that µ∗(y) ≥ F (y ∨ 1OPT)− F (y).

Now we can use lemma 3.1.2, to bound µ∗(y) in terms of f(OPT), i.e., the
optimal solution of the discrete problem.

Corollary 3.1.6. Let f be a non-negative subomdular function and F be its
multilinear extension. And let ȳ be an upper bound on the coordinates of y, i.e.
yi ≤ ȳ,∀i ∈ E. Then, for any point y ∈ P (M),

µ∗(y) ≥ (1− ȳ)f(OPT)− F (y) (3.11)

Proof. From theorem 3.1.5 we have that µ∗(y) ≥ F (y ∨ 1OPT) − F (y). Now,
using lemma 3.1.2, it follows that

∑
i∈E F (y ∨ 1OPT) − F (y) ≥ ∑

i∈E(1 −
ȳ)f(OPT)− F (y). Hence, we can rearrange to yield µ∗(y) ≥ (1− ȳ)f(OPT)−
F (y).

Furthermore, if f is monotone, we can establish a tighter bound:

25

Corollary 3.1.7. Let f be a non-negative monotone subomdular function and
F be its multilinear extension. Then, for any point y ∈ P (M),

µ∗(y) ≥ f(OPT)− F (y) (3.12)

Proof. From the monotonicity condition and the definition of the multilinear
extension we have: F (y ∨ 1OPT) ≥ F (1OPT) = f(OPT). Thus from Theorem
3.1.5 the result is immediate.

Now we have all the tools to present the continuous greedy process, and to
explain why it yields a good solution to the relaxation of our problem.

The Continuous Greedy Process The objective is to find a good solution
to the relaxation problem maxy∈P (M) F (y) that can be rounded. The main
issue is that F is neither convex nor concave, and an efficient algorithm to solve
it does not exist. However, the Continuous Greedy Process can find a point
that is within a constant factor of the optimal. We are now equipped with all
the concepts needed to describe the Continuous Greedy Process. Initially, the
process was presented by Jan Vondrak [15, 96] in the following form: consider
a particle starting at t = 0 at the point y(0) = 0, and integrate the process

dy

dt
= v∗(y(t)) (3.13)

until t = 1. This yields a point y∗ = y(1), such that F (y∗) ≥ (1− 1
e)f(OPT).

This process works only when f is monotone. In light of this, Feldman [32]
proposed an algorithm that integrated a modified version that could find a
constant-factor approximation for both the monotone and non-monotone case.
This was called the Measured Continuous Greedy Process, and it is the one we
will focus on for the remainder of the chapter. It can be defined as follows:
consider a particle starting at t = 0 at point y(0) = 0, and integrate the process

dy

dt
= (1− y(t))� v∗(y(t)), (3.14)

where � represents element by element multiplication, until t = 1. This gives
us a point y∗ = y(1), such that F (y∗) ≥ (1− 1

e)f(OPT) when f is monotone,
but also, crucially, it yields a point such that F (y∗) ≥ 1

ef(OPT) when f is
non-monotone.

To understand why it yields these approximations, first, keep in mind that
f is normalised, i.e. f(∅) = 0, hence F (0) = 0. Second, let us look at the
derivative of F (y(t)) with respect to t. Using the chain rule we have

dF

dt
= ∇F · dy

dt
(3.15)

which, noting that ∇F · dydt = ∇F · ((1− y)� v∗(y)) = ∆F(y) · v∗(y) = µ∗(y)
due to the multilinearity of F , implies

dF

dt
= µ∗(y(t)). (3.16)

26

This rate of increase is the reason why it yields the approximation guarantees,
let us study first the monotone case.

In the monotone case, from Corollary 3.1.7, we have that dF
dt = µ∗(y(t)) ≥

f(OPT)−F (y(t)). By making the inequality tight, we can define a function η(t)
which satisfies dη

dt = f(OPT) − η(t), that lower bounds F , i.e. F (y(t)) ≥ η(t).
Solving it, with η(0) = 0, yields η(t) = (1 − e−t)f(OPT). Hence, F (y(1)) ≥
η(1) = (1− 1

e)f(OPT).
Let us now investigate the non-monotone case. From Corollary 3.1.6, case

we have that dF
dt = µ∗(y(t)) ≥ (1− ȳ(t))f(OPT)− F (y(t)). First, we establish

the upper bound on the coordinates of y(t), i.e. ȳ(t). Since P (M) is a matroid
polytope any v∗(y(t)) coordinate can take at most value 1, the equation dȳ

dt =
1 − ȳ(t) gives such upper bound, and by integrating with ȳ(0) = 0, we get
ȳ(t) = 1−e−t. Now, we can write dF

dt ≥ e−tf(OPT)−F (y(t)). Again, as in the
monotone analysis, we can establish a function ζ(t) as a lower bound of F by
making the inequality tight: dζ

dt = e−tf(OPT) − ζ(t), which integrating, with
ζ(0) = 0, yields ζ(t) = f(OPT)e−tt. Hence, F (y(1)) ≥ ζ(1) = 1

ef(OPT).

Rounding This is the step that takes a fractional solution to the relaxation
problem and produces a discrete solution while keeping the approximation ra-
tios. In this work we shall not dwell on the rounding step. Suffice it to say that
there exist algorithms, such as Contention Resolution Schemes [17], Pipage-
Rounding [4, 15, 98], or Swap-Rounding [99], that given a general non-negative
submodular function, and a point y ∈ P (M), can find a set S ∈ I, such that
f(S) ≥ F (y). The most efficient technique for a general matroid constraint is
Swap-Rounding, and its results are used in [6]. However, the swap-rounding re-
sults in [99] hinge around Chernoff-like concentration bounds for monotone sub-
modular functions, but in light of the concentration bounds for non-monotone
submodular functions in [97], we believe that this technique can be adapted to
work with non-monotone functions. In the case of the Task Allocation problem,
we have a partition matroid which can be rounded very efficiently (O(E), better
than Swap-Rounding) for both monotone and non-monotone cases via a simple
randomised rounding procedure, see [15].

3.2 Smooth Measured Continuous Greedy

After all the necessary preliminaries, we can now explain our first improvement
to the measured continuous greedy algorithm. First, we motivate it by describ-
ing the key observation that underpins its rationale. And then, we proceed to
describe and analyse it in detail.

3.2.1 Algorithm Definition

Key Observation

In essence, Vondrak’s [15] and Feldman’s [32] algorithms are a simple Euler inte-
gration of Equations 3.13 and 3.14 respectively. It is well known that the Euler
method is not the most computationally efficient way to integrate a differential
equation. To investigate which method to use instead, let us look at the integral
that needs to accrue for the increment of y in a single step:

27

y(t+ δ)− y(t) =

∫ δ

0

(1− y(t+ τ))� v∗(y(t+ τ))dτ. (3.17)

The classic approach to integrate the above equation is by using a formula of
the kind y(t + δ) = y(t) + qδ, where q is an estimate of the average gradient
(i.e., the integrand above) along the interval. There are two common methods
used to estimate q. The first option is to use integration strategies that sample
intermediate points along the interval between t and t + δ, such as the classic
Runge-Kutta methods, to find an estimate of q. However, for Equation 3.14
these methods would not be efficient because v∗ is very expensive to compute.
This is because to compute v∗ we need to estimate ∆Fi for each element i, and
this can only be computed in practice by sampling, which is time consuming.
The second option would be to use linear multistep methods that use previous
points in the integration to refine the estimate of the gradient q, such as Adams
methods or Backward Differentiation Formula (BDF) methods. This, however,
would be inadequate for Equation 3.14 because the coordinates of v∗ are either
0 or 1, thus, with this discontinuity, knowledge of the previous steps would not
inform the next value.

What we propose, instead, is to use the intrinsic characteristics of the terms
in the integrand to find an increment rule that remains accurate even with
large steps. The integrand has two terms that vary with τ : y and v∗. The
key to our algorithm is the observation that, in practice, v∗ changes only with
relatively large stepsizes, while it remains constant around a small region. This
is because it is the solution to a linear program and its solution can still be valid
even when the objective weights ∆F change slightly. Now, if v∗ is assumed to
remain constant during the integration step, an exact solution to the integral
can be found. Such an increment rule is given by the solution of the differential
equation:

dy

dτ
= (1− y(t+ τ))� v∗(y(t)), (3.18)

where t is a constant, hence v∗(y(t)) is a constant, and the solution of the
equation can be readily obtained as:

yi(t+ τ) = 1 + e−v
∗
i (y(t))τ (yi(t)− 1) (3.19)

which we use as the update step. The correctness of this approach depends on
whether δ is small enough for v∗(y(t)) = v∗(y(t + δ)) to be true. This, as we
shall see in the numerical experiments section, is extremely effective in practice
because it obtains the same solution that [32], but with orders of magnitude
larger step sizes, and thus, orders of magnitude less evaluations of the costly
magnitude v∗(y(t)).

Algorithm

Let us now define our main result in Algorithm 1. Its inputs are: the ground
set E; a facility to evaluate the multilinear extension of the utility function
F : [0, 1]E → R+; and finally, the stepsize δ � 1, which is a small scalar that
defines the size of the step taken in each iteration. Note that since the multilinear
extension cannot be evaluated exactly, it is evaluated by taking the expected

28

value of a given number of samples. Also, δ must be an exact divisor of 1. The
main loop begins after the initialisation of the relaxation y to 0. The main
iteration evaluates F (y(t)∨1i)−F (y(t)), i.e. ∆Fi(y(t)), which is the marginal
value that the element i ∈ E would add given the current fractional solution

y. We do this averaging O(log(|E|)
δ2r2) samples of fRy(t)(i). (This is to achieve an

additive error δ(d̄+
¯
d)r2). Next, the algorithm finds the elements that achieve

the most marginal value, v∗. This linear program can be solved using a simple
greedy algorithm because P (M) is a matroid polytope. The last step in the
iteration is to increment the coordinates of the elements that were found to yield
the largest marginal values, v∗, using the rule yi(t+τ) = 1+e−v

∗
i (y(t))τ (yi(t)−1)

as we have previously explained. The algorithm keeps iterating until t reaches
1, and return y(1) which satisfies: F (y(1)) ≥ (1 − 1

e)f(OPT) for a monotone
f ; and F (y(1)) ≥ 1

ef(OPT) for a non-monotone f .

Algorithm 1: Smooth Measured Continuous Greedy Algorithm

Input : f : 2E → R+, ε ∈ [0, 1], I ⊆ 2E .
Output: A point y ∈ P (M)

y(0)← 0 // initialisation

for t = {0, δ, 2δ, 3δ, . . . , 1− δ} do
for i ∈ E do

∆̃F i(t)← F (y(t) ∨ 1i)− F (y(t))
// Sampling up to an additive error of δ(d̄+

¯
d)r2 using

Corollary 3.1.4.

ṽ∗(y(t))← argmaxv∈P (M) ∆̃F(y(t))Tv

for i ∈ E do

yi(t+ δ)← 1 + e−ṽ
∗
i (y(t))δ(yi(t)− 1)

Return: y(1)

3.2.2 Analysis

In this section we carry out the analysis that proves that our algorithm yields
the stated guarantees. First, we show that the algorithm produces a feasible
point, i.e., a point inside the matroid polytope P (M). Then, we prove the
approximation ratio for the non-monotone and the monotone cases. Finally we
study the complexity of the algorithms.

Feasibility

First, we need to show that our algorithm produces a feasible point, i.e. y(1) ∈
P (M).

Theorem 3.2.1. The proposed algorithm produces a feasible fractional solution,
i.e., y(1) ∈ P (M).

Proof. We follow the approach used by [32]. We first define a vector x that
coordinate wise upper-bounds y(1). Then, given that P (M) is down-monotone,
we only need to show that x is in P (M) to show that y(1) ∈ P (M). Consider

29

the vector x = δ
∑ 1

δ−1

l=0 ṽ∗(y(lδ)). This is a coordinate-wise upper bound of
y(1) because when i ∈ Sṽ∗ , we have that yi(t + δ) − yi(t) = 1 + e−δ(yi(t) −
1) − yi(t) = (1 − e−δ)(1 − yi(t)) ≤ 1 − e−δ ≤ δ, for all δ ∈ [0, 1]; and when
i /∈ Sṽ∗ yi(t+ δ)− yi(t) = 0. We now show that x is in P (M). First, note that
by definition ṽ∗ ∈ P (M). Then, observe that x/δ is the sum of 1

δ points in
P (M), thus (x/δ)/(1/δ) = x is a convex combination of points in P (M), hence
x ∈ P (M), and consequently y(1) ∈ P (M).

In fact, it is possible to find a point that still lies in P (M) even with a t > 1,
specifically stopping at a value depending on a magnitude called the density of
the matroid. This yields tighter approximation bounds that match those found
for particular matroids, such as partition matroids. Asymptotically, however,
these bounds are the same than those presented here. Therefore, in the aim of
simplicity, the analysis is carried out with a stopping time of 1. The interested
reader is referred to [32].

Now let us establish a bound to the coordinates of y(t) that will become
useful.

Lemma 3.2.2. At time 0 ≤ t ≤ 1, we have that:

yi(t) ≤ 1− e−t, ∀i ∈ E. (3.20)

Proof. Consider the recurrence g(n+1) = 1+e−δ(g(n)−1), with g(0) = 0. This
recurrence has the following solution: g(n) = 1 − e−nδ. Now, in our algorithm
t is incremented linearly, so the number of iteration, n, and t are related by
t = nδ. At t, all the coordinates of y follow y(t+ δ) = 1 + e−δṽ

∗
(y(t)− 1), thus,

they stay constant for ṽ∗ = 0, or increase for ṽ∗ = 1. Hence, the recurrence
g is an upper bound because it corresponds to incrementing in each and every
iteration. Consequently, at t, y(t) ≤ g(tδ) = g(n) = 1− e−t.

Approximation Ratio: The Non-Monotone Case

Now, we shall carry out the derivation of the approximation bounds. In our
analysis we first develop bounds in the derivatives of the multilinear extension
and the marginal values with respect to the increment taken. Then, we use
these to bound the improvement achieved in a given iteration. Once we know
the improvement in a given iteration, we can pose a recurrence relation whose
solution yields the approximation ratios.

Let us now find a bound for the derivative of the marginal values.

Lemma 3.2.3. Let
¯
d, d̄ ∈ R+ be bounds on the absolute value of the minimum

and maximum marginal values that the function f can take, i.e. −
¯
d ≤ fS(i) ≤ d̄,

for all i ∈ E and S ⊆ E. Then, for 0 ≤ t ≤ 1 the following condition holds:

d

dτ

∑

i∈Sṽ∗(y(t))

∆Fi(y(t+ τ)) ≥ −r2(
¯
d+ d̄) (3.21)

where r is the matroid rank.

30

Proof. First we bound the derivative of the marginal value of a single element:

d

dτ
∆Fi(y(t+ τ)) =

=
d

dτ

(
∂F (y(t+ τ))

∂yi
(1− yi(t+ τ))

)

=
d

dτ

(
∂F (y(t+ τ))

∂yi

)
(1− yi(t+ τ)) +

(
∂F (y(t+ τ))

∂yi

)
d

dτ
(1− yi(t+ τ))

= (1− yi(t+ τ))
∑

k∈Sṽ∗(y(t))

(
∂2F (y(t+ τ))

∂yi∂yk

dyk(t+ τ)

dτ

)
−
(
∂F (y(t+ τ))

∂yi

)
(1− yi(t+ τ))

= (1− yi(t+ τ))
∑

k∈Sṽ∗(y(t))

(
∂2F (y(t+ τ))

∂yi∂yk
(1− yk(t+ τ))

)
−∆Fi(y(t+ τ))

= (1− yi(t+ τ))
∑

k∈Sṽ∗(y(t))\i

(
∂2F (y(t+ τ))

∂yi∂yk
(1− yk(t+ τ))

)
−∆Fi(y(t+ τ))

≥ (1− yi(t+ τ))
∑

k∈Sṽ∗(y(t))\i

(
−(d̄+

¯
d)(1− yk(t+ τ))

)
−

¯
d

≥ (r − 1)(−(d̄+
¯
d))−

¯
d

≥ −r(d̄+
¯
d).

Now we can bound the derivative of the sum of marginal values of all selected
elements:

d

dτ

∑

i∈Sṽ∗(y(t))

∆Fi(y(t+ τ)) ≥ −r2(d̄+
¯
d).

At this point, the bounds derived earlier can be combined to relate the slope
of the value of our solution to the increment made.

Lemma 3.2.4. At time 0 ≤ t ≤ 1, and with 0 ≤ τ ≤ δ, we have that:

dF (y(t+ τ))

dτ
≥ µ∗(y(t))− 2r2(d̄+

¯
d)δ (3.22)

Proof. We have that:

dF (y(t+ τ))

dτ
=

∑

i∈Sṽ∗(y(t))

(
∂F (y(t+ τ))

∂yi

dyi(t+ τ)

dτ

)

=
∑

i∈Sṽ∗(y(t))

(
∂F (y(t+ τ))

∂yi
(1− yi(t+ τ))

)

=
∑

i∈Sṽ∗(y(t))

∆Fi(y(t+ τ)).

31

The first equality comes from applying the chain rule, noting that the only
element that change are those whose component in v∗; the second is by the

update rule derivative, dyi(t+τ)
dτ = (1− yi(t+ τ)); and the third equality comes

from the definition of the marginal value.
Now, due to the C2 continuity of the multilinear extension, ∆Fi will also

have first order derivatives, so we can use Taylor’s theorem to expand:

∑

i∈Sṽ∗(y(t))

∆Fi(y(t+τ)) =
∑

i∈Sṽ∗(y(t))

∆Fi(y(t))+

∫ τ

0

d

ds

∑

i∈Sṽ∗(y(t))

∆Fi(y(t+s))ds.

(3.23)
And, with Lemma 3.2.3, we can lower bound the value of the integral:

∫ τ

0

d

ds

∑

i∈Sṽ∗(y(t))

∆Fi(y(t+ s))ds ≥ −r2(
¯
d+ d̄)τ. (3.24)

Now, in our algorithm we are assuming that we do not have access directly to
the multilinear extension, this is the most general, and pessimistic, case (though
for many interesting functions such a closed form does exist). Therefore, we need
to sample it, and account for the error that the sampling introduces. That is,
instead of having access to ∆Fi(y(t)) we have access to ∆̃F i(y(t)) which is a
sampled version. We need to subtract an upper bound on the error introduced
by sampling using Corollary 3.1.4, that is: ∆̃F i(y(t)) ≥ ∆Fi(y(t))− δr(d̄+

¯
d).

And, therefore, we can bound the value of maximal set that our algorithm
selects with respect to the optimal accounting for the degradation introduced
by sampling :

max
v∈P (M)

∆̃F(y(t))Tv ≥ max
v∈P (M)

(
∆F(y(t))Tv

)
−δr2(d̄+

¯
d) = µ∗(y(t))−r2(d̄+

¯
d)δ

hence: ∑

i∈Sṽ∗(y(t))

∆Fi(y(t)) ≥ µ∗(y(t))− r2(d̄+
¯
d)δ. (3.25)

Now we can plug into Equation 3.23 the bounds in Equations 3.24 and 3.25
to yield:

dF (y(t+ τ))

dτ
≥ µ∗(y(t))− r2(d̄+

¯
d)δ − r2(d̄+

¯
d)τ. (3.26)

Which, given that 0 ≤ τ ≤ δ, yields the result:

dF (y(t+ τ))

dτ
≥ µ∗(y(t))− 2r2(d̄+

¯
d)δ. (3.27)

Given the slope with respect to the increment, the value gained between
iterations can be bounded.

Corollary 3.2.5. At time 0 ≤ t ≤ 1, the following inequality holds:

F (y(t+ δ))− F (y(t)) ≥ δ
(
µ∗(y(t))− 2r2δ(d̄+

¯
d)
)

(3.28)

32

Proof. Similarly as we did in the Corollary 3.2.4 above, C2 continuity allows

us to write: F (y(t + δ)) = F (y(t)) +
∫ δ

0
dF (y(t+τ))

dτ dτ . And we can bound the

integral term with corollary 3.2.4:
∫ δ

0
dF (y(t+τ))

dτ dτ ≥ δ
(
µ∗(y(t))− 2r2(d̄+

¯
d)δ
)
.

Finally, rearranging yields the result.

This can further refined using the bounds on the value of µ∗(y(t)).

Corollary 3.2.6. At time 0 ≤ t ≤ 1, we have that:

F (y(t+ δ))− F (y(t)) ≥ δ(e−tf(OPT)− F (y(t))− 2r2(d̄+
¯
d)δ) (3.29)

Proof. Combining Lemma 3.2.5, Corollary 3.1.6, and Lemma 3.2.2, it is trivial
that the result holds.

So far we have a bound on the improvement on F at every iteration provided
by corollary 3.2.6. Now we use it to form a recurrence whose solution describes
the evolution in the accumulated value of F (y).

Lemma 3.2.7. At time 0 ≤ t ≤ 1, we have that:

F (y(t)) ≥ δeδ(e−t − (1− δ)t/δ)
eδ(δ − 1) + 1

f(OPT)− (1− (1− δ)t/δ)δr22(d̄+
¯
d) (3.30)

Proof. Consider the recurrence a(n+ 1) = k1a(n) + k2e
−nδ − k3, with a(0) = 0.

This recurrence has the following solution: a(n) =
eδ(kn1−e−δn)
eδk1−1

k2 − kn1−1
k1−1 k3.

Given Corollary 3.2.6, we can see that with t = nδ, k1 = 1− δ, k2 = δf(OPT),
and k3 = 2δ2r2(d̄+

¯
d), this recurrence is equivalent to the increment made by our

algorithm in every step. Then, substituting all these coefficients and simplifying

yields: F (y(t)) ≥ δeδ(e−t−(1−δ)t/δ)
eδ(δ−1)+1

f(OPT)− (1− (1− δ)t/δ)δr22(d̄+
¯
d).

This can be simplified to:

Corollary 3.2.8. With a non-monotone non-negative submodular function, Al-
gorithm 1 returns a point y∗ such that y∗ ∈ P (M) and:

F (y∗) ≥
(

1

e
− ε
)
f(OPT) (3.31)

Proof. From Lemma 3.2.7, at time t = 1, we have that F (y(1)) ≥
δeδ(e−1−(1−δ)1/δ)

eδ(δ−1)+1
f(OPT)−(1−(1−δ)1/δ)δr22(d̄+

¯
d). The term with f(OPT) can

be simplified by observing that for 0 ≤ δ ≤ 1 we have that δeδ(e−1−(1−δ)1/δ)
eδ(δ−1)+1

≥ 1
e .

The second term can be also be simplified by observing that (1−(1−δ)1/δ) ≤ 1.

Now, we can set ε = 2r2 d̄+
¯
d

d̄
δ, and since by definition f(OPT) ≥ d̄, we have

that ε = 2r2 d̄+
¯
d

d̄
δ ≥ 2r2 d̄+

¯
d

f(OPT)δ, which yields the result. Finally, from Theorem

3.2.1 we have that y∗ ∈ P (M).

33

Approximation Ratio: The Monotone Case

Let us now prove the tighter bounds achievable if the function f is assumed to
be monotone. The first thing to note is that all the theorems and facts from
the non-monotone case are still valid in the monotone case. The main difference
lies in the lower bound that can be imposed on µ∗(y) using the monotonicity
condition. This has implications for the value gained in each step, which is used
to form a recurrence whose solution yields the approximation result.

First we use Theorem 3.2.5 with the bound for µ(y) for the monotone case
to bound the improvement on a given step.

Corollary 3.2.9. At 0 ≤ t ≤ 1, with monotone objective functions, the follow-
ing inequality holds:

F (y(t+ δ))− F (y(t)) ≥ δ(f(OPT)− F (y(t))− 2r2d̄δ) (3.32)

Proof. Inmediate from Theorem 3.2.5 and Corollary 3.1.7. Noting that for a
monotone function

¯
d = 0.

Now the recurrence that bounds the value can be simplified:

Lemma 3.2.10. At 0 ≤ t ≤ 1, with monotone objective functions, we have
that:

F (y(t)) ≥ (1− (1− δ)t/δ)(f(OPT)− 2δr2d̄) (3.33)

Proof. Consider the recurrence a(n + 1) = k1a(n) + k2, with a(0) = 0. This

recurrence has the following solution: a(n) =
k2(kn1−1)
k1−1 . Given Corollary 3.2.9,

we can see that with t = nδ, k1 = 1−δ, k2 = δf(OPT)−2δ2r2d̄, this recurrence
is equivalent to the increment made by our algorithm in every step. Then,
substituting all these coefficients and simplifying yields: F (y(t)) ≥ (1 − (1 −
δ)t/δ)(f(OPT)− 2δr2d̄).

Now the recurrence that bounds the value can be solved:

Corollary 3.2.11. With a monotone non-negative submodular function, Algo-
rithm 1 returns a point y∗ such that y∗ ∈ P (M) and:

F (y∗) ≥
(

1− 1

e
− ε
)
f(OPT) (3.34)

Proof. From Lemma 3.2.10, we have that at the end of the algorithm, i.e. t = 1,
F (y(1)) ≥ (1− (1− δ)1/δ)(f(OPT)− 2δr2d̄). Now, note that (1− (1− δ)1/δ) ≥
1 − 1

e . Thus we have: F (y(1)) ≥
(
1− 1

e

)
(f(OPT) − 2δr2d̄). Further, we have

that f(OPT) ≥ d̄, therefore: F (y(1)) ≥
(
1− 1

e − 2δr2
)
f(OPT). Thus, we

set ε = 2δr2 to have the result. Finally, from Theorem 3.2.1 we have that
y∗ ∈ P (M).

34

Time Complexity

Here we quantify the running time in terms of value oracle calls to the submod-
ular function and matroid independence oracle calls. First we quantify the cost
of the most expensive step in a single iteration: finding ṽ∗. Then, we estimate
the number of steps in the integration to quantify the total cost.

Lemma 3.2.12. Finding ṽ∗ requires O
(
r2

ε2 |E| log(|E|)
(d̄+

¯
d

d̄

)2)
value oracle

calls, and O (|E|) independence oracle calls.

Proof. With Lemma 3.1.4, estimating each ∆̃F i up to a additive error of δr(d̄+

¯
d) with high probability takes O(log(|E|)

δ2r2) value oracle calls. We have to estimate

∆̃F i for each i ∈ E, hence estimating all the marginal values takes:

O

(
1

δ2r2
|E| log(|E|)

)
(3.35)

value oracle calls. Now let’s study the cost of solving maxv∈P (M) ∆̃F(y(t))Tv.
Given that P (M) is a matroid polytope, we can solve it using the greedy algo-
rithm [85]. This costs O(|E| log(|E|)) steps to sort all the ∆̃F i for i ∈ E and
O(|E|) independence oracle calls to pass over them in sorted order to select the
solution.

Now we express the cost in terms of the factor ε. Recall that in Corollary

3.2.8 we set ε = 2r2 d̄+
¯
d

d̄
δ, hence δ = 1

2r2
d̄
d̄+

¯
d
ε. Which we can plug into Equation

3.35 above to obtain the total number of value oracle calls:

O

(
r2

ε2
|E| log(|E|)

(
d̄+

¯
d

d̄

)2
)
. (3.36)

Now that we have the cost of a single iteration of the main loop of Algorithm
1, we can quantify the total cost of the algorithm:

Lemma 3.2.13. Algorithm 1 requires O

(
r4

ε3 |E| log(|E|)
(
d̄+

¯
d

d̄

)3
)

value oracle

calls, and O
(
r2|E|
ε

(
d̄+

¯
d

d̄

))
independence oracle calls.

Proof. The total cost of the algorithm is simply the cost of a single iteration

(Lemma 3.2.12) multiplied by the number of iterations (1
δ), i.e.: O

(
1

δ3r2 |E| log(E)
(
d̄+

¯
d

d̄

))

value oracle calls; and O
(
|E|
δ

)
independence oracle calls. Which with we can

now reformulate in terms of ε. Recall that in Corollary 3.2.8 we set ε = 2r2 d̄+
¯
d

d̄
δ,

hence δ = 1
2r2

d̄
d̄+

¯
d
ε. Hence we have

O

(
r4

ε3
|E| log(|E|)

(
d̄+

¯
d

d̄

)3
)

(3.37)

value oracle calls, and

O

(
r2|E|
ε

(
d̄+

¯
d

d̄

))
(3.38)

independence oracle calls.

35

These results hold both for the monotone and non-monotone cases, but in

the monotone case we can dispense with the
(
d̄+

¯
d

d̄

)
terms noting that for a

monotone function
¯
d = 0.

3.2.3 Numerical Experiments

In this section we show several numerical experiments that illustrate how our
algorithm outperforms the existing methods. The methods we compare against
are the Euler-like approach by [32], and two simple Runge-Kutta methods of
3rd and 4th order.

Le us now describe the experiment setup. We will solve instances of the
Submodular Welfare Problem (SWP) [96], which is equivalent to the Task Al-
location Problem. In this problem we have a set of agents, each with their
own submodular utility function, and a set of tasks. The goal is to find a set
of non-overlapping allocation of tasks to agents that maximises the sum of the
utilities. The problem can be formulated as a maximisation of a submodular
function over a matroid. The submodular function is the sum of the utilities of
the agents, and the matroid is a partition matroid that enforces that each task
is allocated to no more than one agent.

To generate instances of the problems we used several utility functions for
each agent, both monotone and non-monotone. The way we have constructed
these functions is by composing a modular function with a concave function,
which yields a submodular function. For each agent i and item j, we have defined
a weight wij drawn uniformly at random between 0 and 1, and we normalise so
that the sums of all the weights for each agent is 1. Then, we define agent’s i
utility as f i(S) , g

(∑
j∈S wij

)
where g is a concave function. We have used a

variety of concave functions, each of them is shown in the corresponding figure to
produce a variety of submodular functions. In each instance we solve a problem
with 67 tasks and 17 agents.

To illustrate the performance of our algorithm against the other methods we
have carried out experiments with different values for the stepsize δ. For each
instance we compute a baseline solution by running each method with two orders
of magnitude smaller δ than the smallest point plotted and we take the average
among all the four methods. Then, we compare the result of each method to the

baseline, by computing the absolute relative error given by |F (y)−F (ybaseline)
F (ybaseline) |.

The results of the experiments are shown in Figure 3.1. We can see three
noteworthy features. The first is that for all methods that we used, as it would
be expected, the error reduces monotonically with the step size. Further, in the
classic RK methods we can observe how increasing the order of the integration
scheme results in steeper slopes. The second is that first is that while Euler
and RK methods show a constant slope of error reduction, our method shows
markedly two clear slopes. An initial steep slope followed by a shallower one.
The transition happens around before δ = 0.01. To understand the reasons
behind this, we need to consider that the only source of error in our algorithm
comes from propagating too far a given ṽ∗ solution. That is, when we increase
the coordinates beyond the point where the solution to the linear program that
determines the maximal marginal improvement changes. Considering this, the
initial steep slope is the phase where a reduction in δ removes error because
the ṽ∗ would have been propagated beyond validity. The second shallow slope

36

phase, occurs when most of the steps happen within the boundaries of validity
of ṽ∗, and hence, further reductions do not change significantly the solution.
The third noteworthy feature is that our algorithm starts with about an order
of magnitude smaller error. Since the y′(t) is concave, the propagation of Euler
and RK methods tend to overestimate the gradient used in the increment, more
so than the solution than our method. We believe that this incurs in larger
errors when δ is too large and hence our proposed method outperforms both
the Euler and RK methods.

In summary, we can see that our method generates a solution that is orders
of magnitude closer to the baseline solution with orders of magnitude less steps.
This is the case with both monotone and non-monotone submodular functions,
and for the modular linear function. In practice this means that we should aim
to use the δ that lies close to the steep-to-shallow transition, because using a
larger delta would incur in a relatively large error, while reducing it further
would not bring significant benefits.

3.2.4 Discussion

In this section we have presented a modified continuous greedy algorithm that
reduces the steps required to solve submodular maximization problems sub-
ject to a matroid constraint. The algorithm has an approximation of 1 − 1

e
for monotone submodular functions and 1

e for non-monotone submodular func-
tions. Compared with the current 1

e -approximation of Feldman et a. [32], our
algorithm achieves a reduction in the computational burden of several orders
of magnitude. The reduction in the computational expense is achieved by us-
ing a bespoke integration step that makes the algorithm more continuous-like,
leveraging a local analytical solution of the continuous greedy process. This
analytical solution remains valid in a small region around a given point, allow-
ing us to use orders of magnitude larger stepsizes. We provide formal proofs
of the approximation guarantees and running times, as well as abundant ev-
idence of the speed-up in the form of numerical experiments for a variety of
submodular functions. Indeed, the original measured continuous greedy of [32]
was not meant to be efficient, but rather an instrument to prove the existence
of 1

e polynomial time approximations, and therefore did not provide with an
estimate of the complexity. From their results we deduce that the complexity of
their algorithm is in the order of O(n6) in the multilinear oracle model, which
would mean an O(n7) or O(n8) in the value oracle model. This contrasts with

our algorithm’s O

(
r4

ε3 n log(n)
(
d̄+

¯
d

d̄

)3
)

also in the value oracle model. Which

implies a minimum speed-up of O(n2). But we can do much better than this, in
the next section we adapt the ideas in the decreasing threshold of [6] to achieve
a further O(r2) speedup. This results in the first 1

e -approximation algorithm
that is tailored for efficiency and can enable many new applications for which
the original measured continuous greedy was impractical.

Before moving on to the next section, we would like to remark that the proofs
presented here are based on a matroid polytope, but they can be adapted to
work for a more general constraint class of down-closed solvable polytopes.

37

10−4 10−3 10−2 10−1 100

Stepsize δ

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

|F
−F

∗

F
∗
|

Euler
Proposed
RK3
RK4

10−4 10−3 10−2 10−1 100

Stepsize δ

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

|F
−F

∗

F
∗
|

Euler
Proposed
RK3
RK4

10−4 10−3 10−2 10−1 100

Stepsize δ

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

|F
−F

∗

F
∗
|

Euler
Proposed
RK3
RK4

10−4 10−3 10−2 10−1 100

Stepsize δ

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

|F
−F

∗

F
∗
|

Euler
Proposed
RK3
RK4

10−4 10−3 10−2 10−1 100

Stepsize δ

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

|F
−F

∗

F
∗
|

Euler
Proposed
RK3
RK4

10−4 10−3 10−2 10−1 100

Stepsize δ

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

|F
−F

∗

F
∗
|

Euler
Proposed
RK3
RK4

10−4 10−3 10−2 10−1 100

Stepsize δ

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

|F
−F

∗

F
∗
|

Euler
Proposed
RK3
RK4

10−4 10−3 10−2 10−1 100

Stepsize δ

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

|F
−F

∗

F
∗
|

Euler
Proposed
RK3
RK4

10−4 10−3 10−2 10−1 100

Stepsize δ

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

|F
−F

∗

F
∗
|

Euler
Proposed
RK3
RK4

10−4 10−3 10−2 10−1 100

Stepsize δ

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
E

rr
or

|F
−F

∗

F
∗
|

Euler
Proposed
RK3
RK4

0.0 0.5 1.0
0

1

g(
x
)

g(x) =
√
x

0.0 0.5 1.0
0

1

g(
x
)

g(x) =
√

1− (x− 1)2

0.0 0.5 1.0
0

1

g(
x
)

g(x) = min (2x, 1)

0.0 0.5 1.0
0

1

g(
x
)

g(x) =
√

1− (2x− 1)2

0.0 0.5 1.0
0

1

g(
x
)

g(x) = 1− e−5x

0.0 0.5 1.0
0

1

g(
x
)

g(x) = x

0.0 0.5 1.0
0

1

g(
x
)

g(x) = 1− |x− 1
2|

0.0 0.5 1.0
0

1

g(
x
)

g(x) =

{
2x if x ≤ 1

2

0 else

0.0 0.5 1.0
0

1

g(
x
)

g(x) = sin(πx)

0.0 0.5 1.0
0

1

g(
x
)

g(x) = sin(π2x)

Figure 3.1: Comparison of the error reduction with stepsize δ for the different
functions and methods. Euler refers to the integration scheme proposed by
Feldman et al. in [32], while RK3 and RK4 refers to Runge-Kutta schemes of
3rd and 4th order.

38

3.3 Accelerated Measured Continuous Greedy

In the previous section we have presented a more a smoother measured continu-

ous greedy algorithm. The algorithm we presented requiredO

(
r4

ε3 n log(n)
(
d̄+

¯
d

d̄

)3
)

value oracle calls. In this algorithm from Lemma 3.2.6 we have that the improve-
ment in each step is F (y(t+δ))−F (y(t)) ≥ δ(e−tf(OPT)−F (y(t))−2r2(d̄+

¯
d)δ).

That is, we incur in a loss that scales with O(r2), which forces us to use a
smaller δ driving up the number of steps required and the accuracy of the
sampling of the multilinear extension. In this section we use the ideas in the
Decreasing-Threshold procedure of [6] to remove the O(r2) dependency of the
loss in each step. Which enables us to reduce the number of steps accelerat-
ing further the algorithm. This accelerated measured greedy algorithm requires

O

(
nr2

ε4 log2(nε)
(
d̄+

¯
d

d̄

)2
)

value oracle calls. We believe it is the first practical

1
e -approximation algorithm for the maximisation of a general non-negative sub-
modular function subject to a matroid constraint. Let us now explain it in more
detail.

3.3.1 Algorithm

Algorithm 2: Accelerated Measured Continuous Greedy

Input : f : 2E → R+, ε ∈ [0, 1], I ⊆ 2E .
Output: A point y ∈ P (M), such that F (y) ≥ (1

e − 2ε)f(OPT).

// Initialisation

y(0)← 0
δ ← ε

// Main Loop

for t = {0, δ, 2δ, 3δ, . . . , 1− δ} do
B(t)← Decreasing-Threshold(f,y(t), ε, δ, I)
for i ∈ E do

if i ∈ B(t) then
yi(t+ δ)← 1 + e−δ(yi(t)− 1)

else
yi(t+ δ)← yi(t)

Return: y(1)

The accelerated measured greedy is presented in Algorithm 2, it is essentially
the same as the smooth measured continuous greedy in Algorithm 1 with a dif-
ferent procedure to find the elements whose coordinates are updated. Instead
of finding the maximal marginal improvement set v∗ we use the Decreasing-
Threshold procedure that enabled Badanidiyuru and Vondrak [6] to achieve a
efficient algorithm, O(nrε4 log2 n

ε), for the monotone case. In our previous algo-
rithm we found v∗ by estimating the value of each element at a given point, and
then finding the maximum independent set. In contrast, the decreasing thresh-
old procedure works like a greedy algorithm, it selects each item according to its
marginal value computed considering the elements already selected, this saves

39

Algorithm 3: Decreasing-Threshold

Input : f : 2E → R+, y ∈ [0, 1]E , ε ∈ [0, 1], δ ∈ [0, 1], I ⊆ 2E .
Output: A set B ⊆ E, such that B ∈ I.

// Initialisation

B ← ∅;
d̄← maxi∈E f(i);

ȳ′ ← maxi∈E(1 + e−δ(yi − 1));

// Main Loop

for (w = d̄; w ≥ ε d̄r (1− ȳ′); w ← w(1− ε)) do
for e ∈ E do

we(B,y)← ∆Fe(y(B, δ)),

// averaging O

(
r2

ε2

(d̄+
¯
d

d̄

)2
log(|E|)

)
iid random samples.

if we(B,y) ≥ w and B + e ∈ I then
B ← B + e

Return: B
*Note that the notation y(B, δ) means yi(B, δ) = yi(t) for i /∈ B, and

yi(B, δ) = 1 + e−δ(yi − 1) for i ∈ B.

us the losses from having to propagate the marginal values -i.e. the derivatives
of the multilinear extension- in parallel without regard for what the other ele-
ments coordinate is. This saves us, an order of O(r). On top of this, instead
of using a standard greedy algorithm, it uses a Decreasing-Threshold variant
procedure which further accelerates the running time of the greedy algorithm,
achieving another O(r) speed-up. The key insight from [6] is that, instead of se-
lecting the maximal element each time - and consequently, having to loop each
time over all elements r times- it keeps a geometrically decreasing threshold,
and selects the first item that happens to be above threshold level. This way,
while the classic greedy requires O(nr) steps, it removes the dependency on the
rank of the matroid O(r), to achieve a running time of O(nε log(nε)), where ε is
the fraction by which the threshold is reduced in each iteration.

In their version of the Decreasing-Threshold Badanidiyuru and Vondrak [6]
sampled the multilinear extension up to an additive and multiplicative error
bound, which enabled them to use only O(1

ε2 r log(n)) samples. However, since
our algorithm is meant to work with non-monotone functions, we may have
negative marginal values, this increases the number of samples that we require
for two reasons: first, it prevents us from using a multiplicative-additive error
bound; and second the marginal values, when sampled, have inherently more
spread. To quantify our error we use Hoeffding’s concentration inequality, which

forces us to use O
(
r2

ε2

(d̄+
¯
d

d̄

)2
log(n)

)
. (recall that

¯
d, d̄ ∈ R+ are the absolute

values of the minimum and maximum marginal values that the function f can
take, i.e. −

¯
d ≤ fS(i) ≤ d̄, for all i ∈ E and S ⊆ E; if f were to be monotone we

would have
¯
d = 0.) The resulting Decreasing-Threshold procedure is presented

in Algorithm 3, and it takes an additional O(r
(d̄+

¯
d

d̄

)2
) value oracle calls. Using

only an additive bound instead of an additive and multiplicative introduces
an extra O(r) factor in the number of samples required per evaluation of the

40

multilinear extension. While we also incur the additional O
((d̄+

¯
d

d̄

)2)
term to

cope with the larger spread that is introduced by the possibility of negative
marginal values. This results in an algorithm that finds an 1

e − ε approximation

with a number of value oracle calls of O(nr
2

ε4

(d̄+
¯
d

d̄

)2
log2(nε)). It is not as efficient

as the algorithm for the monotone case, but we believe this constitutes the first
practical 1

e − ε approximation algorithm for general non-negative submodular
function subject to a matroid constraint.

3.3.2 Algorithm Analysis

We split the analysis of the accelerated measured continuous greedy algorithm
in three parts: first we show that the solution produced is feasible, i.e. y(1) ∈
P (M); then we prove the 1

e − ε approximation; and finally we study its running
time.

Feasibility

Theorem 3.3.1. The accelerated measured continuous greedy algorithm pro-
duces a feasible fractional solution, i.e., y(1) ∈ P (M).

Proof. We follow the approach used by [32]. Indeed, this proof is identical to
that of Lemma 3.2.1. We first define a vector x that coordinate wise upper-
bounds y(1). Then, given that P (M) is down-monotone, we only need to
show that x is in P (M) to show that y(1) ∈ P (M). Consider the vector

x = δ
∑ 1

δ−1

l=0 1B(y(lδ)). This is a coordinate-wise upper bound of y(1) because

when i ∈ B, we have that yi(t + δ) − yi(t) = 1 + e−δ(yi(t) − 1) − yi(t) = (1 −
e−δ)(1−yi(t)) ≤ 1−e−δ ≤ δ, for all δ ∈ [0, 1]; and when i /∈ B yi(t+δ)−yi(t) = 0.
We now show that x is in P (M). First, note that by definition 1B ∈ P (M).
Then, observe that x/δ is the sum of 1

δ points in P (M), thus (x/δ)/(1/δ) = x
is a convex combination of points in P (M), hence x ∈ P (M), and consequently
y(1) ∈ P (M).

Approximation Ratio

First we show the gain that the algorithm makes in a single step, and then
use this to build a recurrence relation that yields the approximation ratio. But
before we do that, we bound the error introduced by sampling:

Corollary 3.3.2. Given a non-negative submodular function f : 2E → R+, and
a point y ∈ [0, 1]E; let

¯
d, d̄ ∈ R+ be the minimum and maximum marginal values

of f , such that −
¯
d ≤ fS(j) ≤ d̄ for all S ⊆ E and j ∈ E; let R1, R2, ..., Rm be

iid samples drawn from R(y), let wj(y) = 1
m

∑m
i=1 fRi(j); and let f(OPT) =

maxS∈I f(S). Then,

Pr(|wj(y)−∆Fj(y)| ≥ βf(OPT)) ≤ 2e
−2mβ2

(
d̄
d̄+

¯
d

)2

.

Proof. Immediate application from the Hoeffding bound in Lemma 3.1.3, noting
that f(OPT) = maxS∈I f(S) ≥ maxe∈E f({e}) = d̄.

41

Now we can present the improvement made by the algorithm in a single step:

Lemma 3.3.3. Let OPT be an optimal solution. Given a fractional solution
y, the Decreasing-Threshold produces a set B such that, with y′ = 1 + e−1Bδ �
(y − 1), we have:

F (y′)− F (y) ≥ (1− e−δ)
(

(1− 4ε)(1− ȳ′)f(OPT)− F (y′)

)
(3.39)

Proof. This proof follows closely the proof of Claim 4.1 in [6] but with several
modifications to avoid assuming monotonicity, namely: the stopping threshold,
the sampling error, and the increment bound. Assume that the Decreasing-
Threshold procedure returns a sequence of r elements B = {b1, b2, . . . , br},
indexed in the order in which they were chosen. Let O = {o1, o2, . . . , or} be
an optimal solution indexed as per the exchange property of the matroids in
Lemma 3.1.1 such that φ(bi) = oi. Additionally, let Bi and Oi denote the first i
elements of B and O respectively, i.e. Bi is the sequence in which the elements
have been added to B in algorithm 3 up until the ith element was added. If
the procedure returns fewer than r elements or the optimal solution contained
fewer than r elements, formally we just add dummy elements with value 0, so
that |B| = r and |O| = r.

Now let us bound the marginal values of the elements selected by the Decreasing-
Threshold procedure with respect to those in the optimal solution. Recall that
y(S, δ) is the notation that we use to refer to the point such that yk(S, δ) = yk
if k /∈ S and yk(S, δ) = 1 + e−δ(yk − 1) if k ∈ S. When bi is selected, let
w be the current threshold, hence wbi(y(Bi−1, δ)) ≥ w. At this point oi is a
candidate element, thus we have one of two situations depending on whether
the procedure has finished: if the threshold has not dropped below ε

rd(1− ȳ′),
the value of woi(y(Bi−1, δ)) must be below the threshold in the previous it-
eration, i.e. woi(y(Bi−1, δ)) ≤ w

(1−ε) (otherwise it would have been chosen

already); conversely, if the procedure has terminated, bi is a dummy element
with value 0, and the value of woi(y(Bi−1, δ)) is below the stopping threshold,

i.e. woi(y(Bi−1, δ)) ≤ ε d̄r (1 − ȳ′). Consequently, we can relate the marginal
value estimate of bi to that of oi:

wbi(y(Bi−1, δ)) ≥ (1− ε)woi(y(Bi−1, δ))− ε
d̄

r
(1− ȳ′).

Note that when bi is selected we have that Bi−1+bi ∈ I, and by the definition
of oi (i.e. the matroid exchange property) Bi−1 + oi ∈ I.

Now we need to bound the error incurred by sampling. From Lemma 3.3.2 we
can sample the marginal values up to an additive error of β = ε

rf(OPT)(1− ȳ′)
by taking the average of O

(
r2

ε2

(d̄+
¯
d

d̄

)2
log(|E|)

)
samples with high probability

(i.e. with a bad estimate probability decreasing with 1
|E|). (We do not have a

term O(1
1−ȳ′) in the number of samples because our stopping time, t = 1, and

the update rule enforce (see Lemma 3.2.2) that (1 − ȳ′) ≥ 1
e). Thus, we can

write:
wbi(y(Bi−1, δ)) ≤ ∆Fbi(y(Bi−1, δ)) +

ε

r
f(OPT)(1− ȳ′)

woi(y(Bi−1, δ)) ≥ ∆Foi(y(Bi−1, δ))−
ε

r
f(OPT)(1− ȳ′)

42

which, with d̄ ≤ f(OPT), can be combined with the prior bound to yield:

∆Fbi(y(Bi−1, δ)) ≥ (1− ε)∆Foi(y(Bi−1, δ))− 3
ε

r
f(OPT)(1− ȳ′). (3.40)

Then, we can bound the improvement that the Decreasing-Threshold pro-
cedure obtains:

F (y′)− F (y)

=

r∑

i=1

(F (y(Bi, δ))− F (y(Bi−1, δ))

=

r∑

i=1

(y′bi − ybi)
∂F

∂ybi

∣∣∣∣
y=y(Bi−1,δ)

=

r∑

i=1

(1− e−δ)(1− ybi)
∂F

∂ybi

∣∣∣∣
y=y(Bi−1,δ)

= (1− e−δ)
r∑

i=1

∆Fbi(y(Bi−1, δ))

≥ (1− e−δ)
r∑

i=1

(
(1− ε)∆Foi(y(Bi−1, δ))− 3

ε

r
f(OPT)(1− ȳ′)

)

= (1− e−δ)
(

(1− ε)
r∑

i=1

(
∆Foi(y(Bi−1, δ))

)
− 3εf(OPT)(1− ȳ′)

)

≥ (1− e−δ)
(

(1− ε)
(
F (y′ ∨ 1OPT)− F (y′)

)
− 3εf(OPT)(1− ȳ′)

)

≥ (1− e−δ)
(

(1− 4ε)(1− ȳ′)f(OPT)− F (y′)

)
.

The second equality comes from the the multilinearity of F . With the update
step y′ = 1+e−δ(y−1), we have that the increment is y′−y = (1−e−δ)(1−y),
which gives the third inequality. The fourth equality is by definition of ∆Fe.
The fifth inequality is by the bound in equation 3.40, the sixth by submodularity,
and the last one by Lemma 3.1.2.

Finally, we can use the above result to build a recurrence relation that yields
the 1

e − ε approximation ratio.

Theorem 3.3.4. The accelerated measured continuous greedy algorithm returns
a point y∗ ∈ P (M), such that:

F (y∗) ≥
(

1

e
− 2ε

)
f(OPT). (3.41)

Proof. From Lemma 3.3.3 we have that:

F (y(t+ δ))−F (y(t)) ≥ (1− e−δ)
(

(1− 4ε)(1− ȳ(t+ δ))f(OPT)−F (y(t+ δ))

)

43

We can now use the bound on the value of the coordinates of y in Lemma
3.2.2, we have that yi(t) ≤ 1− e−t ∀i ∈ E, hence we can write:

F (y(t+δ))−F (y(t)) ≥ (1−e−δ)
(

(1−4ε)e−(δ+t)f(OPT)−F (y(t+δ))

)
. (3.42)

Consider the recurrence relation a(n + 1) − a(n) = k1(k2 exp(−(n + 1)ε) −
a(n+ 1)), which, with a(0) = a0, has the following solution

a(n) =
(1
k1+1)n(a0(−k1 + eε − 1) + k1k2)− k1k2e

−nε

−k1 + eε − 1
. (3.43)

This recurrence is equivalent to equation 3.3.2 if we set k1 = (1 − e−δ), k2 =
(1 − 4ε), n = t

δ , and δ = ε. Thus, substituting and simplifying assuming that
F (0) ≥ 0 (due to the non-negativity of f), we have the following lower bound
on the value of the solution y(t) for any time t ∈ [0, 1]:

F (y(t)) ≥
(1− e−ε)(1− 4ε)eε(−(tε+1))(eε(

t
ε+1)(1

2−e−ε)t/ε − eε)
e−ε + eε − 2

f(OPT).

So, when the algorithm ends at t = 1, we have:

F (y(1)) ≥
(1− e−ε)(1− 4ε)eε(−(1

ε+1))(eε(
1
ε+1)(1

2−e−ε)1/ε − eε)
e−ε + eε − 2

f(OPT).

We can find a more intuitive version of this bound by observing that, clearly,
for 0 ≤ ε ≤ 1:

1

e
−

(1− e−ε)(1− 4ε)eε(−(1
ε+1))(eε(

1
ε+1)(1

2−e−ε)1/ε − eε)
e−ε + eε − 2

≤ 5

e
ε ≤ 2ε (3.44)

Hence:

F (y(1)) ≥
(

1

e
− 2ε

)
f(OPT). (3.45)

Finally, from Lemma 3.2.2 we have that y(1) ∈ P (M).

Running Time

We quantify the running time in terms of value oracle calls to the submodular
function and matroid independence oracle calls. We analyse the running time
of the algorithm in two steps: first we study the running time of the Decreasing-
Threshold procedure, and then that of the the continuous greedy.

Lemma 3.3.5. The Decreasing-Threshold procedure makes

O

(
|E|r2

ε3 log(|E|) log(rε)
(
d̄+

¯
d

d̄

)2
)

value oracle calls, and O
(|E|
ε log r

ε

)
indepen-

dence oracle calls.

Proof. First, the number of values that the threshold takes in the Decreasing-
Threshold procedure to reach the stopping threshold is, considering that the

term (1− ȳ) ≥ 1
e due to Lemma 3.2.2, O(

log ε
r

log (1−ε)). Second, for each threshold

44

value, the algorithm performs O(|E|) estimates of ∆Fe, and O(|E|) calls to the
independence oracle. Therefore, the number of independence oracle calls is the
number of calls per threshold step multiplied by the number of threshold steps,
i.e.:

O

(|E|
ε

log
r

ε

)
, (3.46)

which has been simplified noting that
log ε

r

log 1−ε ≤ 1
ε log(rε).

Now, each estimate of ∆Fe requires O

(
r2

ε2

(d̄+
¯
d

d̄

)2
log(|E|)

)
samples. Hence, we

can conclude that the number of value oracle calls is

O

(
|E|r2

ε3
log(|E|) log

(r
ε

)(d̄+
¯
d

d̄

)2
)
.

We can now quantify the running time of the whole algorithm.

Theorem 3.3.6. The accelerated measured continuous greedy algorithm makes

O

(
|E|r2

ε4 log(|E|) log(rε)
(
d̄+

¯
d

d̄

)2
)

value oracle calls, and O
(|E|
ε2 log r

ε

)
indepen-

dence oracle calls.

Proof. Considering that the number of steps of the procedure, with δ = ε, is
1
ε . The number of calls to boths oracles is simply the number of calls by the
Decreasing-Threshold procedure (Algorithm 3) in Lemma 4.2.9 multiplied by
the number of steps in the continuous greedy algorithm (Algorithm 2).

3.3.3 Discussion and Future Work

In this section we have presented a 1
e − ε-approximation algorithm for general

non-negative submodular function maximisation that requiresO(nr
2

ε4

(d̄+
¯
d

d̄

)2
log2(nε))

value oracle calls. This is the fastest 1
e -approximation algorithm currently avail-

able, which enables the use of general (non-monotone) matroid-constrained sub-
modular maximisation for many applications for which existing algorithms were
implausibly slow. We think this is of significance, even beyond Task Allocation
problems, because there has been a recent surge of interest for applying sub-
modular maximisation in fields where large problem instances are paramount,
such as Machine Learning [10, 64, 72], particularly in the field of summarisation
where non-monotone submodular functions are natural [23, 94]. However, the
ability to solve problems with non-monotone submodular functions comes at a
cost. Our algorithm trades-off computational cost in exchange for a broader set
of objective functions (non-monotone submodular). This means that it is slower

than the one presented for the monotone case in [6] by O
(
r
(d̄+

¯
d

d̄

)2)
. This is be-

cause when the function is assumed to be non-monotone, we can only sample
the marginal values of the multilinear extension up to an additive bound, com-
pared with an additive and multiplicative in [6]. If this idea is feasible, then we
could reduce the additional value oracle calls required to achieve an algorithm
with the same running time as [6].

45

A future avenue of research would be to combine our work with the very
interesting results in [13], where an efficient algorithm is proposed to allow the
trade-off of value oracle calls and matroid independence calls for non-negative
monotone submodular functions, to enable query trade-off for general non-
negative submodular functions. Another interesting path is to combine the
more continuous-like measured continuous greedy update step that we present
here with the acceleration techniques for strong submodular functions presented
in [101] to produce an adaptive step algorithm. This way, in each step we could
use a large δ that extended to the boundary of the region of validity of the set
B, instead of taking a δ that is small enough to satisfy the worst case. Another
obvious improvement on the algorithms presented here would be to combine the
ideas from the Lazy Greedy Algorithm [71] to adaptively change the decrement
of the threshold in the Decreasing-Threshold procedure. Finally, in the next
chapter we build on the theoretical foundations laid in the algorithms of this
chapter to enable efficient constant-factor approximation algorithms for decen-
tralised Task Allocation.

46

Chapter 4

Decentralised Submodular
Task Allocatiton

4.1 Introduction

In this chapter we adapt the algorithms presented in the previous chapter to
solve the task allocation problem. Our algorithm is the first decentralised task
allocation algorithm that finds a guaranteed approximation with non-monotone
submodular utilities, and it is also the first that gives an approximation factor
for monotone submodular that is optimal, i.e. an algorithm with a better factor
would require an exponential number of calls to the value oracle.

Multi Robot Systems (MRS) are gaining increasing popularity both in the
research community and in industry. A fundamental problem that underpins
the effective coordinate operation of these systems is Task Allocation. The MRS
should be able to find an answer quickly, reliably, and effectively to the question:
“given the robots available in the system and the tasks that ought to be carried
out, what is the best allocation of these tasks among us?”. In general, the task
allocation problem is NP-Hard in all but its simplest incarnations [35], [52].
There exist tools in the Operations Research and Combinatorial Optimisation
literature that enable the centralised solution of instances of practical interest.
However, the centralised solution of the problem involves having to communi-
cate all the agent and environment data to a centralised entity. This may not be
the most appropriate approach for some scenarios. Obvious examples of these
situations are when relying on a central entity removes resilience by introducing
a single point of failure; or when, in some communication environments, the
bandwidth to communicate all the information to the central entity from every
agent is not available. Thus, there is a need for decentralised solution strategies
that only rely on each robot knowing their own utility function and communi-
cating with neighbours rather than with a central planning entity. Let us start
our introduction by stating more formally the problem that our algorithm solves
and discussing some of its features.

47

Problem Definition

Adapting the classical definition, from [27], we can define the general Task
Allocation Problem as follows:

Given a set of tasks T , a set of agents A, and a function for each agent
a ∈ A specifying the utility of completing each subset of tasks fa : 2T → R+,
find a non-overlapping allocation, S∗ ∈ AT , that minimises/maximises a global
objective function J : AT → R+.

In its full generality this problem can be reduced, for example, to the well
studied Set Packing Problem which, unfortunately, not only happens to be NP-
Hard, but it is also inapproximable within a constant factor [80]. If we define
the sense of the optimisation as a maximisation, and the objective function, J ,
as the sum of the utilities of each robot the problem is reduced to the Social
Welfare Problem [78], also known as the Winner Determination Problem in
combinatorial auctions [100]. Even in this restricted case, both problems still
remain NP-Hard and known to be inapproximable within a constant factor. We
can, however, further restrict the utility functions to satisfy the submodularity
condition, and the problem can be reduced to a maximisation of a submodular
function subject to a partition matroid constraint. This problem is still NP-
Hard, nevertheles, as we have seen in Chapter 3, there are polynomial time
algorithms that can guarantee a constant-factor approximation. In this chapter
we will leverage the results that we have presented in the previous chapter
to design decentralised, constant-factor approximation algorithms for the task
allocation problem where the agent’s utilities are monotone or non-monotone
submodular.

Let us now place our problem in context. A widely accepted taxonomy that
maps the nature of each problem to a well known combinatorial problem was
introduced in [35] and was extended to support task dependencies in [52]. These
two works provide a map of the task allocation problem space. In the taxonomy
of [35] the algorithm we present in this chapter aims to tackle problems with:
both Single-Task robots (ST) and Multi-Task robots (MT); Single-Robot tasks
(SR); and both Instantaneous Assignment (IA) and Time Extended Assignment
(TA). With respect to the task dependencies taxonomy in [52] our algorithm
can accommodate: No Dependencies (ND) and In-Schedule Dependencies (ID).
Following general definition from [27], let us now define the particular instance
of the task allocation problem that our algorithm solves:

Given a set of tasks T , a set of agents A, and a non-negative submodular
function for each agent a ∈ A specifying the utility of completing each subset of
tasks fa : 2T → R+, find a non-overlapping allocation, S∗ ∈ AT , that maximises
a global objective function F : AT → R+ defined as F(S) =

∑
a∈A fa(Sa).

We focus on solving this problem in the decentralised setting, that is, when
each agent only has access to its own utility function and does not have any
knowledge of the functions corresponding to other agents. In that sense, we
refer to the local objective functions of each agent as being local or private. We
now review some of the previous approaches to solve task allocation problems
in a decentralised setting.

48

Decentralised Solution Approaches

The earliest decentralised task allocation algorithms were proposed as solutions
to the Assignment Problem. This is a slightly different problem to the version
we have presented above, instead of having a different number of tasks and
agents. In the assignment problem we are restricted to have n tasks to assign to
n agents, that is: each agent must have a task and each task must have an agent.
The assignment problem can be solved optimally in polynomial time, the classic
approach is the Hungarian Algorithm [14, 56]. Due to the good tractability
of these problems there have been a number of algorithms proposed that do
guarantee optimal performance in a decentralised setup. The first distributed
task allocation strategy was that proposed by [8] where an auction algorithm
based on the idea of a shared memory model was presented. However, the
shared memory model required a topology of the networked system that is not
always achievable in real scenarios. To address this issue in [105] Zavlanos et
al give an algorithm is to handle a networked system in which agents interact
with its neighbours, rather than having access to a shared database.

When we remove the constraint on allocating a task for each agent, and an
agent for each task, we need to consider how to value bundles of tasks that are
assigned to the same agent. The simplest model is adding the values of each task,
this is a modular (i.e. linear) set function. In this case, the problem becomes
the optimisation of a modular function subject to a matroid constraint which,
as we have seen, is solved optimally using the greedy algorithm. Several works
have implemented versions of the greedy algorithm in a decentralised setting.
In [19] the authors present the Consensus-Based Auction Algorithm CBAA,
this algorithm uses the concept of maximum consensus to distribute a series of
single task auctions across the network which, in effect, implements a distributed
version of the greedy algorithm. Liu and Shell [66] present another approach to
implement a decentralised greedy algorithm based on on local task swaps. While
in [73] Moon et al present an application of a qualitatively similar algorithm
for UAV task allocation in a dynamic environment alongside an account of its
performance in real flight.

The problem becomes significantly harder when the utility functions are not
linear, such as when inter-task dependencies appear, because agents must evalu-
ate bundles of tasks instead of individual tasks. Indeed, we have seen that when
the utilities are general functions and the global objective is a simple sum, the
problem is NP-Hard. As a consequence, most of the algorithms presented in
this case are heuristic in their nature, see for example [27] for a classic review
on market based algorithms, or [104] for a recent survey. A great breakthrough
occurred when Choi et al [19] presented a decentralised algorithm for the max-
imisation of monotone submodular utilities that had rigorous approximation
guarantees: the Consensus Based Bundle Algorithm (CBBA), spurring a lot of
interest in the research community. This was achieved through a decentralisa-
tion of the greedy algorithm, that brought the approximation guarantee, 1

2 , of
the classic result of Nemhauser et al. [77] to the decentralised Task Allocation
domain. However, this only applies to the non-negative monotone submodular
functions. This can be limiting because it cannot model situations of practi-
cal interest where non-monotonicity is a feature. For example, in a multi-robot
surveillance mission, if a robot is assigned too many targets to track it is possible
that it ends up spending its time traveling between targets and not gathering

49

enough useful information at the targets’ locations. Therefore, adding tasks to
a robot’s assignment could, indeed, reduce the utility obtained. This ubiqui-
tous situation cannot be modelled by monotone utility functions, and therefore,
CBBA could perform arbitrarily poorly in this case. In fact, we are not aware of
any constant factor approximation algorithm that can solve the task allocation
problem with the maximisation of non-monotone submodular utilities in a de-
centralised setting. The algorithms that we present in this chapter address this
issue by solving problems with both monotone and non-monotone submodular
utility functions.

Contributions

In this chapter we extend the state of the art in decentralised task allocation in
two ways. First, we present the first decentralised task allocation algorithm with
approximation guarantees for general non-negative submodular utility functions,
more specifically we guarantee 1

e w.r.t. the optimal. Second, we improve the
approximation ratio of Choi et al. [19] for monotone non-negative submodular
utility functions from 1

2 to 1− 1
e , which is asymptotically optimal.

Chapter Structure

The chapter has two main parts. First we give a detailed exposition of the cen-
tralised version of our main algorithm and prove its approximation guarantees.
Then we present the decentralised version, and show how it is equivalent to the
centralised version.

4.2 Equivalent Centralised Algorithm

In this section we give a detailed account of how the centralised algorithm
works and why it works. To design our algorithm we will leverage a relaxation-
rounding approach that we have developed in Chapter 3. This strategy is com-
posed of two steps. The first step is to relax the problem by allowing variables
to attain a fractional value. This continuous optimisation problem, called the
relaxed problem or relaxation, can be solved either optimally or with a certain
approximation. The second step is to bring back to the discrete domain the frac-
tional solution of the relaxed problem without losing the stablished guarantees
on the relaxation solution. This second step is often referred to as rounding.
In this chapter we solve the relaxation using an algorithm based on the accel-
erated measured continuous greedy from chapter 3. Our relaxation domain is
the polytope of the partition matroid, which encapsulates the task allocation
problem, and we use the multilinear extension to evaluate fractional allocations.
To round the solution we leverage the special structure of the partition matroid
using randomised rounding.

4.2.1 Preliminary Concepts

Before we proceed to the description of the algorithm we need to review some
key concepts and establish some notation definitions used in its development.

A function f : 2T → R+ on a set T is said to be submodular if, given
subsets Y,X ⊆ T satisfying X ⊆ Y and |X| ≤ |Y |, then f(X ∪ {x})− f(X) ≥

50

f(Y ∪{x})− f(Y) ,∀x ∈ T . Similarly, it is said to be monotone if for every two
sets X,Y such that X ⊆ Y ⊆ T then f(X) ≤ f(Y).

Let us now introduce some notational quirks. Recall from the previous
chapter that

¯
d, d̄ ∈ R+ are the absolute values of the minimum and maximum

marginal values that the agent’s utility functions, fa, can take i.e.: −
¯
d ≤ fa(S+

{i})−f(S) ≤ d̄, for all i ∈ T , S ⊆ T and a ∈ A. Naturally, for monotone utility
functions we have that

¯
d = 0. For clarity during our exposition of the algorithm

and its analysis, we use the subscript notation to describe allocations of tasks to
agents. For example, Sa ⊆ T represents the subset of the tasks of agent a ∈ A.
While S denotes the set of allocations of all agents, that is S = {Sa|a ∈ A}.
Note that an allocation is feasible if for each pair of agents a, b ∈ A, such that
a 6= b, we have that Sa ∩ Sb = ∅. We usually denote an allocation by a capital
letter: e.g. Ba is the set of tasks allocated to agent a, and B represents the
set of all agents’ allocations. A special case is OPT , which denotes an optimal
allocation, and OPTa denotes the set of tasks allocated to agent a ∈ A in an
optimal solution. Finally, we refer to the number of agents by nA, i.e. nA = |A|
and the number of tasks by nT , i.e. nT = |T |. We will refer to the number of
randomly rounded solutions that we will produce by m.

Let us describe the fractional allocation domain and its objective function in
more detail. The fractional allocation (or relaxation) contains a value between
0 and 1 for each task and agent. Thus, this continuous allocation space is in
[0, 1]A×T . We use y ∈ [0, 1]A×T to refer to a fractional allocation. Similar to
our discrete allocation notation, we use ya ∈ [0, 1]T to refer to the fractional
allocation of agent a ∈ A, and we use yaj ∈ [0, 1] to denote the fraction of task
j ∈ T allocated to agent a ∈ A. Now, we constrain this space to prevent the
allocation of more than one unit of each task among the agents. These are the
packing constraints of the partition matroid, whose polytope is defined by:

K = {ya ∈ [0, 1]A×T |
∑

a∈A
yaj ≤ 1∀j ∈ T }. (4.1)

To evaluate fractional allocations we will use the multilinear extension intro-
duced in section 3.1.1. In our problem, each agent a ∈ A has its own utility
function fa : T → R+ and we define its multilinear extension, Fa : [0, 1]T → R+,
as:

Fa(y) , E[fa(R(ya))] =
∑

S⊆E
fa(S)

∏

i∈S
yai
∏

j /∈S
(1− yaj) (4.2)

where R(ya) is a random set that contains each task j ∈ T independently with
probability yaj .

Given our global objective function F(S) =
∑
a∈A fa(Sa) we denote its

multilinear extension by F : [0, 1]A×T → R+ and is defined as:

F (y) =
∑

a∈A
Fa(ya). (4.3)

Finally, we will use ∆Faj(y) to denote the marginal value of task j ∈ T to agent
a ∈ A, given the fraction allocation ya ∈ [0, 1]T , defined as:

∆Faj(ya) = Fa(ya ∨ 1j)− Fa(ya). (4.4)

51

4.2.2 Algorithm Definition

We can now describe the structure of our algorithm. The main algorithm is
presented in Algorithm 4, and it has two main steps: relaxation, and rounding.
To solve the relaxation we use a variant of the accelerated smoothed measured
continuous greedy algorithm introduced in section 3.3. Once we have the relax-
ation result, the special structure of the partition matroid enables us to round
the fractional solution using a simple randomised rounding procedure. Let us
now describe the relaxation and the rounding algorithms in more detail.

Algorithm 4: Centralised Task Allocation

Input : T ,A, fa : 2T → R+ ∀a ∈ A, ε ∈ [0, 1], and m ∈ Z+

Output: B∗a ⊆ T for all a ∈ A, s.t. Bi ∩Bj = ∅ for all j, i ∈ A with i 6= j
y∗ ← Solve-Relaxation(T ,A, fa∀a ∈ A, ε)
B∗ ←Round-Relaxation(y∗, T ,A, fa∀a ∈ A, m)

Return: B∗a for all a ∈ A

Relaxation Solution

As we have seen in chapter 3, the smooth measured greedy algorithm finds an ap-
proximate solution to the relaxation, y∗ ∈ K, by integrating between t = 0 to t =

1 the differential equation dy(t)
dt = (1−y(t))�argmaxv∈K

∑
a∈A

∑
j∈T ∆Faj(ya)vaj

(here, � represents element by element multiplication). This integration is ap-

proximated by incrementing at a rate of dy(t)
dt = 1 − y(t) in small steps the

coordinates of the elements (in this case task-agent pairs) that provide the
maximum marginal value. The integration algorithm is presented in Algorithm
5, and it is essentially the same as Algorithm 5. Basically, this algorithm in
each iteration finds the maximal improvement set and then increments it, see
Section 3.2 where we provide a detailed rationale behind it. However, in this
chapter we propose a different algorithm, called Threshold-Greedy, to find the
maximal improvement set, i.e. the task-agent pairs with the maximum marginal
value. The Threshold-Greedy algorithm is presented in Algorithm 6, and differs
from what we presented in Section 3.2 in that it is designed specifically such
that all computations that involve information from more than one agent are
performed using only max operations to make allocation decisions. This enables
us to decentralise it efficiently using max-consensus protocols. Let us explain
the Threshold-Greedy algorithm in more detail. It is called threshold-greedy
because it is essentially a greedy algorithm that, in addition to selecting the
task with the highest marginal value, includes any task whose marginal value is
within a factor (1− ε) of the highest. Let us now describe it in more detail.

The Threshold-Greedy algorithm starts by initialising the remaining task
set R, the allocation sets Ba for each agent a ∈ A, the maximum value of a
propagated coordinate ȳ′, and the maximum marginal value d̄. Then, the algo-
rithm proceeds to the while loop. This is the main loop of the algorithm and
is constituted by two main parts: the pre-allocation stage, and the allocation
stage. In the pre-allocation stage each agent finds the task which has the maxi-
mum marginal value and pre-allocates it alongside all the tasks whose marginal
value is within a factor of (1− ε) of the maximum. This is done is two steps. In

52

the first step the agent, say a, finds which task, given its current allocation Ba
has the maximum marginal value. The agent a then sets the value of the best
task as its threshold, and initialises its pre-allocation bundle B′a to contain the
tasks previously allocated to it, Ba, and the best task. In the second step the
agent scans through all the remaining tasks, and adds them if their marginal
value, given the current pre-allocation set B′a, is within a factor of (1 − ε) of
the maximum computed in the first step. The order in which the agent scans
through the remaining tasks is not important, but each time that the agent
checks a task it must compute its marginal value considering the tasks in the
pre-allocated bundle B′a at that point. Crucially, each agents’ pre-allocation so-
lution only considers its own allocation set and utility function, this facilitates
the decentralisation of the algorithm.

The second part of the main loop is where tasks are allocated. Each iteration
the algorithm finds which is the maximum threshold among the agents and
adds the tasks whose marginal values are within a factor of (1 − ε). This is
done is two steps. In the first step the algorithm finds which is the maximum
threshold among the agents, w∗, we refer to this as the global threshold. In
the second step the algorithm loops over all the tasks that are unallocated and
allocates them to the agent with the highest marginal value if this value is above
(1 − ε)w∗, adding them the to agent’s allocation set Ba. Once the algorithm
has checked all the pre-allocated tasks and updated the remaining task set, R,
a new iteration starts. The algorithm ends when either all the tasks have been
allocated, or the global threshold value has dropped below ε d̄

nT
(1− ȳ′). We call

this value the stopping threshold. The tasks that remain unallocated, if any,
have a value below the stopping threshold and can therefore safely be ignored
because they do not make a significant contribution to the solution value. The
result of the algorithm is a group of non-overlapping sets Ba for each agent
a ∈ A that contain the tasks allocated to each agent. These sets are used
to propagate their coordinates in the measured continuous greedy integration
(Algorithm 5). Critically, observe that all the exchange of information between
agents is based around computing the maximum among magnitudes, which can
readily be decentralised efficiently using max-consensus. Let us now describe
the rounding procedure.

Rounding

Once we have a solution to the relaxation, the rounding procedure takes the
fractional allocation and produces a feasible discrete solution that maintains
the approximation ratio. The procedure is presented in Algorithm 7 and it is
based on the randomised rounding strategy for the Submodular Welfare Prob-
lem of [15, 96]. The essence of the algorithm is to generate random allocations
where each task j ∈ T is allocated independently to agent a ∈ A with prob-
ability yaj . This makes the expected value of a random allocation have the
same value as the multilinear extension of the relaxation result. Therefore, by
generating m random allocations and then selecting the one with the highest
value among them, we can guarantee that the best discrete allocation will have
a value close or above the relaxation result with a probability that converges to
1 exponentially with m. Note that by the design of the relaxation procedure we
do not necessarily have that

∑
a∈A

yaj = 1, this implies that some tasks will not

53

Algorithm 5: Centralised Solve-Relaxation

Input : fa : 2T → R+ ∀a ∈ A, ε ∈ [0, 1].
Output: A fractional allocation y ∈ K.

// Initialisation

y(0)← 0
δ ← ε

// Main Loop

for t = {0, δ, 2δ, 3δ, . . . , 1− δ} do
Ba
∀a∈A

← Threshold-Greedy(T ,A, f,y(t), ε, δ)

for a ∈ A do
if j ∈ Ba then

yaj(t+ δ)← 1 + e−δ(yaj(t)− 1)
else

yaj(t+ δ)← yaj(t)

Return: y(1)

necessarily be allocated. To emphasise this fact, in the RandomRound subroutine
(Algorithm 8) we break the rounding procedure of each task in two steps, first,
we decide if a task will be allocated at all with probability

∑
a∈A

yaj . Then, once

a task has been decided to be allocated, we randomly chose among the agents
with probability proportional to their value in the relaxation, i.e.

yaj∑
a∈A

yaj
.

4.2.3 Algorithm Analysis

Let us now analyse the algorithm, we first show that the algorithm produces a
feasible solution to the relaxation. Then, we prove the approximation ratios of
the relaxation for the monotone and non-monotone cases. And, finally, we show
that these ratios are preserved in the rounding procedure.

Relaxation Feasibility

Let us show that the algorithm produces a feasible solution.

Theorem 4.2.1. The accelerated measured continuous greedy algorithm pro-
duces a feasible fractional solution, i.e., y(1) ∈ K.

Proof. We follow the approach used by [32]. Indeed, this proof is identical
to that of Lemma 3.2.1 and of Lemma 4.2.1. We first define a vector x that
coordinate wise upper-bounds y(1). Then, given that K is down-monotone,
we only need to show that x is in K to show that y(1) ∈ K. Let x be the

vector s.t. x = δ
∑ 1

δ−1

l=0 1B(y(lδ)). This is a coordinate-wise upper bound of

y(1) because for all a ∈ A when j ∈ Ba, we have that yaj(t + δ) − yaj(t) ,
1+e−δ(yaj(t)−1)−yaj(t) = (1−e−δ)(1−yaj(t)) ≤ 1−e−δ ≤ δ, for all δ ∈ [0, 1];
and when j /∈ Ba yaj(t + δ) − yaj(t) = 0. We now show that x is in K. First,
note that because, by the design of the algorithm, there can only be at most one

54

Algorithm 6: Centralised Threshold-Greedy Algorithm

Input : T , A, fa : 2T → R+ ∀a ∈ A, y ∈ [0, 1]A×T , ε ∈ [0, 1], δ ∈ [0, 1].
Output: Sets Ba for all a ∈ A, such that

∑
a∈A
|Ba∩{j}| ≤ 1 for all j ∈ T .

// Initialisation

Ba ← ∅, for all a ∈ A
R ← T
d̄← maxa∈A

j∈T
fa(j)

ȳ′ ← maxa∈A
j∈T

(1 + e−δ(yaj − 1))

w∗ ← d̄

// main loop

while R 6= ∅ and w∗ ≥ ε d̄
nT

(1− ȳ′) do

for a ∈ A do
// agent’s loop initialisation

for j ∈ R do
waj ← ∆Faj(ya(Ba, δ))

// averaging O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
iid random samples.

j∗ ← argmax
j∈R

waj

w∗a ← waj∗

B′a ← Ba + j∗

// agent’s pre-allocation loop

for j ∈ R− j∗ do
waj ← ∆Faj(ya(B′a, δ))

// averaging O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
iid random samples.

if waj ≥ (1− ε)w∗a then
B′a ← B′a + j

W∗ ← ∅
for j ∈ R do

wa∗j ← maxa∈A waj
W∗ ←W∗ + wa∗j

// task allocation loop

w∗ ← max
wa∗j∈W∗

wa∗j

if w∗ ≥ ε d̄
nT

(1− ȳ′) then

for wa∗j ∈ W∗ do
if wa∗j ≥ (1− ε)w∗ then

Ba∗ ← Ba∗ + j
R ← R− j

Return: Ba for all a ∈ A
*The notation ya(Ba, δ) means yaj(Ba, δ) = yaj(t) for j /∈ Baj , and

yaj(Ba, δ) = 1 + e−δ(yaj − 1) for j ∈ Baj .

55

Algorithm 7: Centralised Round-Relaxation

Input : y ∈ K, T , A, fa : 2T → R+ ∀a ∈ A, m
Output: Sets B∗a for all a ∈ A, s.t.

∑
a∈A
|B∗a ∩ {j}| ≤ 1 for all j ∈ T .

for i ∈ {1, 2, ...m } do
Bi ← RandomRound(y, A, T)

i∗ ← argmax
i

∑
a∈A

fa(Bia)

B∗ ← Bi
∗

Return: B∗a for all a ∈ A

Algorithm 8: Random-Round

Input : T , A, y ∈ K
Output: Sets B∗a for all a ∈ A, s.t.

∑
a∈A
|B∗a ∩ {j}| ≤ 1 for all j ∈ T .

for a ∈ A do
Ba ← ∅

// main loop

for j ∈ T do
α← Uniform-Random(0,1)
if α ≤ ∑

a∈A
yaj then

choose a ∈ A, at random with probability
yaj∑

a∈A
yaj

Ba ← Ba + j

Return: Ba for all a ∈ A

56

agent per task, hence 1B ∈ K. Then, observe that x/δ is the sum of 1
δ points in

K, thus (x/δ)/(1/δ) = x is a convex combination of points in K, hence x ∈ K,
and consequently y(1) ∈ K.

Now let us establish a bound to the coordinates of y(t) that will become
useful later on in the analysis of the approximation ratio.

Lemma 4.2.2. At time 0 ≤ t ≤ 1, we have that:

yaj(t) ≤ 1− e−t, for all a ∈ A, j ∈ T . (4.5)

Proof. Consider the recurrence g(n + 1) = 1 + e−δ(1 − g(n)), with g(0) = 0.
This recurrence has the following solution: g(n) = 1 − e−nδ. Now, in our
algorithm t is incremented linearly, so the number of iteration, n, and t are
related by t = nδ. At t, all the coordinates of y either, they stay constant, i.e.
yaj(t+δ) = yaj(t), when j /∈ Ba, or increase, i.e. yaj(t+δ) = 1+e−δ(yaj(t)−1),
when j ∈ Ba. Hence, given that g(n) is non-decreasing, the recurrence g is an
upper bound because it corresponds to incrementing in each and every iteration.
Consequently, at t, y(t) ≤ g(tδ) = 1− e−t.

Relaxation Approximation Ratios

Now we prove the approximation ratios of the algorithm. First we show the
gain made in a single step, and then we build a recurrence relation to show the
approximation ratios for the monotone and non-monotone cases.

Lemma 4.2.3. Let OPT be an optimal solution. Given a fractional solution
y, algorithm 6 produces a collection of sets Ba for all a ∈ A, such that, with
y′a = 1 + e−1Baδ � (ya − 1) for all a ∈ A, we have:

F (y′)−F (y) ≥ (1− e−δ)
(

(1− ε)
(
F (y′ ∨1OPT)−F (y′)

)
− 3εF(OPT)(1− ȳ′)

)

(4.6)

Proof. It is very similar to the one we present for the general matroid constraint
in Lemma 3.3.3, (which in turn follows closely the proof of Claim 4.1 in [6]) but
takes into account the different logic to update the threshold and the tasks that
are allocated. The proof sketch is as follows: first, we find a lower bound on the
marginal value of an allocated task with respect to the threshold; second, we
find an upper bound of the marginal value of that task in the optimal solution
with respect to the threshold; third, we combine this two relations to find a lower
bound on the marginal value of the allocated task with respect to its marginal
value in the optimal solution; finally, given this lower bound, we derive the
result, i.e. a lower bound on the increment in terms of the optimal solution.

For simplicity, we will refer to the tasks by the order in which they were
added to agents’ sets, hence j1, j2, ..., jnT is the ordered sequence of tasks, where
ji ∈ T is the ith task that was added to an agent’s set. Let a1, a2, ..., anT be
the agent sequence in order in which they received a task, that is, ai ∈ A is
the agent that received the task ji, which was the ith allocated. Naturally, if

57

say the third and the fifth tasks are allocated to the same agent, we have that
a3 and a5 are the same agent. Now, let o1, o2, ..., onT be the agents that have
tasks j1, j2, ..., jnT in an optimal solution. If the number of tasks allocated by
the algorithm, or the number of tasks in the optimal solution, were fewer than
nT , as part of the formal analysis we add dummy tasks and agents with value
0. Finally, let Bai(i) denote the set of tasks allocated to agent ai before the
ith task, ji, was allocated to it, and similarly let B′ai(i) denote the set of tasks
pre-allocated to agent ai before the ith task was pre-allocated to it.

Recall that ya(S, δ) is the notation that we use to refer to the fractional
allocation of agent a ∈ A such that yk(S, δ) = yk if k /∈ S and yk(S, δ) = 1 +
e−δ(yk−1) if k ∈ S. By submodularity, for any task j ∈ T and agent a ∈ A, and
any two sets S1 ⊆ S2 ⊆ T we have that: ∆Faj(ya(S1, δ)) ≥ ∆Faj(ya(S2, δ)).
Therefore, since the algorithm design enforces that Bai(i) ⊆ B′ai(i), we have
that:

∆Faiji(yai(Bai(i), δ)) ≥ ∆Faiji(yai(B
′
ai(i), δ)). (4.7)

Let us now account for the error incurred by sampling. From Lemma 3.3.2 we
can sample we to an additive error of ε

rF(OPT)(1− ȳ′) by taking the average of

O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
samples with high probability, i.e. with a bad estimate

probability decreasing with 1
nT

. (We do not have a term O(1
1−ȳ′) in the number

of samples because our stopping time, t = 1, and the update rule enforce (see
Lemma 4.2.2) that (1− ȳ′) ≥ 1

e).
We can now combine the sampling errors with the relations that the al-

gorithm’s design enforces with respect to the threshold w∗, to obtain a lower
bound on the marginal values of task ji at the point when it was allocated.
First we look at the bound on the marginal values that the task ji added to the
agent that won it, ai, we have that:

w∗(1− ε) ≤ wjiai ≤ ∆Faiji(yai(B
′
ai(i), δ)) +

ε

nT
F(OPT)(1− ȳ′). (4.8)

The first inequality is because ji was allocated to ai, and the second due to the
sampling error.

Now, we can bound the marginal value, given the current allocation, that
task ji adds to the agent oi, i.e. the agent that got it in the optimal solution.
We have that:

w∗ ≥ wjioi ≥ ∆Foiji(yoi(Boi(i), δ))−
ε

nT
F(OPT)(1− ȳ′). (4.9)

The first inequality is because w∗ is the maximum marginal value given the
allocation state in the previous iteration, and the second is because of the error
introduced by sampling.

At this point we can establish a lower bound on the marginal value of task
ji in agent ai in terms of the marginal value of ji in the agent that had it in the
optimal solution oi. When combining the two results above in equations 4.8 and
4.9 by means of w∗, we need to subtract an additional ε d̄

nT
(1 − ȳ′) term from

the right side to account for the case when ji is a dummy task with waiji = 0,

and woiji ≤ ε d̄
nT

(1− ȳ′). Hence, we have

waiji ≥ (1− ε)woiji − ε
d̄

nT
(1− ȳ′), (4.10)

58

and using the right hand side of equations 4.8 and 4.9

∆Faiji(yai(B
′
ai(i), δ)) ≥ (1− ε)∆Foiji(yoi(Boi(i), δ))− 3

ε

nT
F(OPT)(1− ȳ′),

which with Equation 4.7 above, yields the desired lower bound:

∆Fai(yai(Bai(i), δ)) ≥ (1− ε)∆Foi(yoi(Boi(i), δ))− 3
ε

nT
F(OPT)(1− ȳ′).

(4.11)
Note that here we have used the fact that d̄ ≤ F(OPT). Now, based on

this, we can derive a lower bound on the value gained between y and y′:

F (y′)− F (y)

=
∑

a∈A
(Fa(ya(Ba, δ))− Fa(ya)) definition of F

=

nT∑

i=1

(Fai(yai(Bai(i) + ji, δ))− Fai(yai(Ba(i), δ)) telescoping sum

=

nT∑

i=1

(
(y′aiji − yaiji)

∂Fai
∂yaiji

∣∣∣∣
y=yai (Bai (i),δ)

)
multilinearity

=

nT∑

i=1

(1− e−δ)(1− yaiji)
∂Fai
∂yaiji

∣∣∣∣
y=yai (Bai (i),δ)

update step: y′ = 1 + e−δ(y − 1)

= (1− e−δ)
nT∑

i=1

∆Faiji(y(Bai , δ)) definition of ∆F

≥ (1− e−δ)
nT∑

i=1

(
(1− ε)∆Foi(yoi(Boi(i), δ))− 3

ε

nT
F(OPT)(1− ȳ′)

)
equation 4.11

= (1− e−δ)
(

(1− ε)
nT∑

i=1

(
∆Foi(y(Bi, δ))

)
− 3εF(OPT)(1− ȳ′)

)
re-arranging

≥ (1− e−δ)
(

(1− ε)
(
F (y′ ∨ 1OPT)− F (y′)

)
− 3εF(OPT)(1− ȳ′)

)
submodularity

Now we can use the bound on the gain made in a single iteration to derive
the approximation ratio for the non-monotone case:

Lemma 4.2.4. If fa : 2T for all a ∈ A are non-negative submodular functions,
then Algorithm 5 returns a point y∗ ∈ K, such that:

F (y∗) ≥
(

1

e
− 2ε

)
F(OPT). (4.12)

59

Proof. The gain in a single step is:

F (y(t+ δ))− F (y(t))

≥ (1− e−δ)
(

(1− ε)
(
F (y(t+ δ)) ∨ 1OPT)− F (y(t+ δ)))

)
− 3εF(OPT)(1− ȳ(t+ δ))

)

≥ (1− e−δ)
(

(1− 4ε)(1− ȳ(t+ δ))F(OPT)− F (y(t+ δ)))

)
.

The first inequality is by Lemma 4.2.3, and the second by Lemma 3.1.2. We
can see that this result is identical to Theorem 3.3.3. Therefore, given that
Algorithm 2 is equivalent to Algorithm 5, the proof of the ratio is exactly the
same as in Theorem 3.3.4 and we shall not repeat it here.

Similarly, we can now prove the ratio for the monotone case.

Lemma 4.2.5. If fa : 2T → R+ for all a ∈ A are non-negative monotone
submodular functions, then Algorithm 5 returns a point y∗ ∈ K, such that:

F (y∗) ≥
(

1− 1

e
− 3ε

)
F(OPT). (4.13)

Proof. The gain in a single step is:

F (y(t+ δ))− F (y(t))

≥ (1− e−δ)
(

(1− ε)
(
F (y(t+ δ) ∨ 1OPT)− F (y(t+ δ))

)
− 3εF(OPT)(1− ȳ(t+ δ))

)

≥ (1− e−δ)
(

(1− 4ε)F(OPT)− F (y(t+ δ))

)
.

The first inequality is by Lemma 4.2.3, and the second by monotoninicy. There-
fore, the improvement in a given step is:

F (y(t+ δ))− F (y(t)) ≥ (1− e−δ)
(

(1− 4ε)F(OPT)− F (y′)

)
. (4.14)

Now consider the recurrence relation, a(n + 1) − a(n) = k1(k2 − a(n + 1)),
with a(0) = a0, which has the following solution:

a(n) = a0

(
1

k1 + 1

)n
+

(
1−

(
1

k1 + 1

)n)
k2. (4.15)

This recurrence is equivalent to Equation 4.14 if we set k1 = 1 − e−δ, k2 =
(1− 4ε)F(OPT), n = t

δ , and a0 = F (0). Therefore, we can write:

F (y(t)) ≥ F (0)

(
1

2− e−δ
)t/δ

+

(
1 +

(
1

2− e−δ
)t/δ)

(1−4ε)F(OPT), (4.16)

60

which noting that F (0) ≥ 0, by non-negativity of f , yields:

F (y(t)) ≥
(

1 +

(
1

2− e−δ
)t/δ)

(1− 4ε)F(OPT). (4.17)

So with δ = ε, when the algorithm finishes at t = 1, we have:

F (y(1)) ≥
(

1 +

(
1

2− e−ε
)1/ε

)
(1− 4ε)F(OPT). (4.18)

This we can be simplified noting that, for 0 ≤ ε ≤ 1, the following holds:

(
1 +

(
1

2− e−ε
)1/ε

)
(1− 4ε) ≥ 1− 1

e
−
(

3

e
− 4

)
ε ≥ 1− 1

e
− 3ε. (4.19)

Therefore

F (y(1)) ≥
(

1− 1

e
− 3ε

)
F(OPT). (4.20)

Finally, our solution is feasible because from Theorem 4.2.1, y(1) ∈ K.

Rounding Analysis

Let us now analyse the rounding procedure. Its aim is to find a discrete solution
given a relaxation value (i.e. a fractional solution) without loosing too much
on the appximation ratios. The procedure is presented in Algorithm 7 and
it is based on the randomised rounding strategy for the Submodular Welfare
Problem of [15, 96]. The essence of the algorithm is to generate allocation
sets whose expected value is the same as the value of the relaxation. Then,
if we generate enough sets we can guarantee with the desired probability that
their sample mean will be close to the true mean. Therefore the best randomly
generated allocation with the maximum value will also be close (or above) to
the value of the relaxation, which we have already bounded with respect to
the optimal. Let us now proceed to the formal analysis. First, we show that
the expected value of a randomly rounded set using algorithm 7 is precisely
the value of the multilinear extension of the solution. Finally, we combine this
result with a Chernoff bound to show that the discrete solution found is close
to the guarantee of the relaxation.

Lemma 4.2.6. Given a point y ∈ K and the sets of agents A and tasks T , the
subroutine RandomRound (Algorithm 8), generates a feasible random allocation
B such that:

E[F(B)] = F (y). (4.21)

Proof. The random allocation sets that each agent a ∈ A receives are not inde-
pendent of each other, but the tasks j ∈ T in each set Ba do appear indepen-
dently with probability yaj . This is because each task is allocated separately, and

61

the probability that a task j ∈ T is allocated to a given agent a ∈ A is the proba-
bility that the task is allocated,

∑
a∈A

yaj , multiplied by the probability of it being

subsequently allocated to agent a,
yaj∑

a∈A
yaj

, that is:

(∑
a∈A

yaj

)
yaj∑

a∈A
yaj

= yaj .

Now, recall that the definition of the multilinear extension stated that Fa(ya) ,
E[fa(R(ya))], where R(ya) is defined as the random set that contains each task
in T independently with probability yaj . Hence we have that E[fa(Ba)] =
E[fa(R(ya))] = Fa(ya). Thus,

∑
a∈A E[fa(Ba)] =

∑
a∈A Fa(ya) = F (y).

Therefore, by linearity of the expectation
∑
a∈A E[fa(Ba)] = E[

∑
a∈A fa(Ba)] =

E[F(B)] = F (y).
Finally, the solution is feasible because by the design of the RandomRound

subroutine each task is allocated to only one agent, if any.

To bound the value of the best solution found we need the following Chernoff
bound:

Lemma 4.2.7. (Theorem 1.1 in [28]) Let X1, ..., Xm be independent random
variables such that for each i, Xi ∈ [0, 1]. Let X =

∑m
i=1Xi. Then

Pr[X ≥ (1 + δ)E[X]] ≤ e− δ
2

3 E[X],

Pr[X ≤ (1− δ)E[X]] ≤ e− δ
2

2 E[X].

We can now show that our rounded solution keeps the guarantees established
for the relaxation with a probability that we can set arbitrarily high. Indeed,
this probability converges exponentially to one with the number of solutions
randomly rounded (recall that m is the number of rounded solutions).

Theorem 4.2.8. The Centralised Task Allocation Algorithm, Algorithm 4, re-

turns a feasible set B∗ such that, with probability at least 1− e− ε
2

2 (1
e−2ε)m, the

following bounds hold:

• If fa : 2T → R+ for all a ∈ A are non-negative monotone submodular
functions then:

F(B∗) ≥
(

1− 1

e
− 4ε

)
F(OPT). (4.22)

• If fa : 2T → R+ for all a ∈ A are general (possibly non-monotone) non-
negative submodular functions then:

F(B∗) ≥
(

1

e
− 3ε

)
F(OPT). (4.23)

Proof. Let y∗ be the solution of the relaxation provided by Algorithm 5. Now we
show that the randomised rounding procedure in Algorithm 7 returns a feasible
allocation solution B∗ that satisfies the above bounds.

62

We apply the Chernoff bound from Lemma 4.2.7 to bound the lower tail of
the sample mean value of the random allocations. Let B1, B2, ..., Bm be the ran-
dom allocations resulting from the repeated execution of the RandomRound sub-
routine (Algorithm 8). From Lemma 4.2.6 we have that for each i, E[F(Bi)] =
F (y∗). Let F̃ (y∗) = 1

m

∑m
i=1 F(Bi). Now, in order to apply Lemma 4.2.7, we

need to normalise by F(OPT) to ensure that the values lie in [0, 1]. Therefore
we have:

Pr[F̃ (y∗) ≤ (1− ε)F (y∗)] ≤ e− ε
2

2
F (y∗)
F(OPT)

m. (4.24)

Now, from Lemma 4.2.4 for a general non-negative submodular function we have
that F (y∗) ≥

(
1
e − 2ε

)
F(OPT). Hence, we can write:

Pr[F̃ (y∗) ≤ (1− ε)F (y∗)] ≤ e− ε
2

2 (1
e−2ε)m. (4.25)

Therefore, we have with probability at least 1− e− ε
2

2 (1
e−2ε)m that:

F̃ (y∗) ≥ (1− ε)F (y∗). (4.26)

And since F̃ (y∗) = 1
m

∑m
i=1 F(Bi) = 1

m

∑m
i=1

∑
a∈A

fa(Bia) ≤ max
i

∑
a∈A

fa(Bia) =

F(Bi
∗
), we have that the allocation returned, Bi

∗
, satisfies that:

F(Bi
∗
) ≥ (1− ε)F (y∗). (4.27)

At this point we use the relaxation approximation ratios to bound the value
of the rounded solution. First we look at the monotone case, and then at the
non-monotone. If fa for all a ∈ A are non-negative monotone submodular
functions, from Lemma 4.2.5 and equation 4.27, we have that:

F(Bi
∗
) ≥ (1− ε)

(
1− 1

e
− 3ε

)
F(OPT) ≥

(
1− 1

e
− 4ε

)
F(OPT). (4.28)

Now if fa for all a ∈ A are general (possibly non-monotone) non-negative
submodular functions, from Lemma 4.2.4 and equation 4.27, we have that:

F(Bi
∗
) ≥ (1− ε)

(
1

e
− 2ε

)
F(OPT) ≥

(
1

e
− 3ε

)
F(OPT). (4.29)

Finally, the solution is feasible by the design of the RandomRound subroutine,
as stated by Lemma 4.2.6.

Hence, if we set m = O(1
ε2) we can make the probability of a good solution

as large as desired, e.g. setting m = 100
ε2 would make the probability of a good

solution greater than 0.999998 for 0 < ε ≤ 0.05.
We would like to make a clarifying remark on the bounds that relate the

value of the rounded (discrete) solution, and the relaxation solution. In a clas-
sical Mixed Integer Program algorithm, the strategy is to solve the relaxation
optimally, using for example Linear Programming, and this is used as an upper
bound of the discrete solution. Then the solution is progressively discretised and
the integrality gap keeps closing, with the relaxation solution offering always an
upper bound. Our approach here contrasts with this. Since the multilinear ex-
tension is neither convex nor concave we cannot solve the relaxation optimally,

63

we can only approximate it. The continuous greedy process gives a relaxation
solution that is within a constant factor of the optimal discrete solution (not the
optimal continuous solution). And, to carry over this approximation guarantees
to the discrete solution we show that the rounding procedure does not loose too
much, only a factor of ε.

Finally, as we shall see later, the number of communication rounds per step
that our algorithm will require is precisely the number of iterations of the outer
while loop in Algorithm 6. Therefore, we now derive an upper bound on their
number.

Lemma 4.2.9. The while loop in the Threshold-Greedy (Algorithm 6) procedure
makes at most O (nT) iterations.

Proof. First, note one of the invariants of that the design of the algorithm en-
forces: no tasks are de-allocated, and submodularity enforces that the marginal
value cannot increase, hence once the threshold drops to a certain level, it can
only decrease from there. Second, note that by the design of the algorithm, at
each iteration of the while loop at least one task is allocated, the one with the
highest marginal value that sets w∗. Therefore the total number of iterations of
the while loop will be at most the number of tasks, because the threshold can
only force it to stop earlier.

Thus far we have presented a centralised algorithm that has constant factor
approximation ratios for monotone and non-monotone submodular functions.
We have designed this algorithm carefully such that the comparison logic to
allocate tasks relies solely in max operations. In the next section we will see that
we can take this algorithm and decentralise it using max-consensus protocols.

4.3 Decentralised Algorithm

In this section we take the centralised algorithm presented above and decen-
tralise it so that it can run based on max-consensus exchanges among the agents,
with each agent having only access to its own private utility function.

4.3.1 Algorithm Definition

Main Algorithm

The main decentralised algorithm that each agent runs is presented in Algorithm
9. This is a decentralised version of Algorithm 4, and has two main parts, first
the agents run a max-consensus-based version of the Threshold-Greedy algo-
rithm to obtain a fractional solution y∗ and then the agents round the solution
using a rounding procedure based on combining the Random-Round procedure
with a wave protocol to exchange valuations. In the following we describe, in
more detail, how the relaxation and rounding algorithm work. By design, we
present the decentralisation protocols, max-consensus and wave, as a concep-
tual abstractions and we do not describe a specific algorithm or protocol for
them. This is because there are many different alternatives that could be used
to implement each of them, each with its own advantages and disadvantages

64

depending on what the specific network topology is and what the communi-
cation setup is. In this sense, our algorithm network-agnostic because it does
not carry any implicit assumptions about what form of communication is most
beneficial in different settings, enabling trade-offs between convergence speed
and communication costs.

Algorithm 9: Decentralised Task Allocation

Input : T ,A, fa : 2T → R+, ε ∈ [0, 1], and m ∈ Z+

Output: B∗a ⊆ T for all a ∈ A, s.t. Bi ∩Bj = ∅ for all j, i ∈ A with i 6= j
y∗ ← Consensus-Solve-Relaxation(T ,A, fa, ε)
B∗ ← Decentralised-Round-Relaxation(y∗, T ,A, fa, m)

Return: B∗a for all a ∈ A

Relaxation

To solve the relaxation, the agents run a local algorithm (Algorithm 10), which
incrementally builds the fractional solution based on the Threshold-Greedy al-
gorithm that we introduced before. The coordination between agents happens
in the selection of the task-agent pairs that are incremented. We call this de-
centralised version of the Threshold-Greedy, the Consensus Threshold-Greedy
Algorithm (Algorithm 11) which is essentially the Threshold-Greedy algorithm
introduced in the previous section (Algorithm 6) but we replace the max oper-
ations with a max-consensus protocol.

Broadly speaking the algorithm works as follows. Each iteration the agents
find which, among the unallocated tasks, provides the maximum marginal value,
w∗a, and pre-allocates that task alongside the set of remaining tasks that, if
selected, have a marginal value above (1− ε)w∗a given the current pre-allocation
set B′a. This step is exactly the same as in the centralised version. Then, a
max-consensus round is carried out in which agents exchange their marginal
values for each remaining task to find which is the best marginal value for
each remaining task among all the agents. For the max-consensus exchange,
the tasks that are the pre-allocated bundles B′a get their exchange values set
to their waj values, and those that are not in the pre-allocated bundles get
their values set to −∞. Consequently, the result of the max-consensus round
is that all the agents have the same set W∗ which contains for each remaining
task j ∈ R the maximum valuation wa∗j and the agent responsible for it a∗ ∈ A
(we break ties deterministically e.g. using the agents’s ID lexicographical order).
Subsequently, each agent locally finds which is the task with the highest marginal
value and sets it as the global threshold, w∗, and then it allocates all the tasks
which have a marginal value within a factor of 1 − ε of it to their respective
agents. Since all the agents have the same setW∗, the local copy of the allocation
sets Ba for all a ∈ A that each agent has is the same between agents. Finally,
since the agents converge to the same Ba for all a ∈ A, the relaxation solution
is updated each time in exactly the same manner across agents, (see Algorithm
5 and 10), therefore the relaxation solution obtained is the same too.

The the algorithm is decentralised, in the sense that it runs locally with only
access to each agent’s own utility function, while the coordination is carried out
by means of the max-consensus protocol. The advantage of this approach is
allows the use of our algorithm in any network/communication setting where
a max-consensus protocol is available (which, for example, can include asyn-

65

chronous networks and/or time delays.) We do not describe the max-consensus
protocol here because it has been extensively studied in the literature, see for
example [21, 38, 43]. Nor we describe which specific flavour of max-consensus to
use, since these depend on the specifics of the network model to which it applies
and we want keep our algorithm general. Broadly speaking in terms the num-
ber of rounds required depends on whether the network is synchronous or asyn-
chronous. In a synchronous network without delays max-consensus takes O(D)
time steps. While in asynchronous networks with time delays, max-consensus
protocols have been devised that run in O(T ·D) time steps [38] (Where D is
the network diameter and T is an asynchronism measure defined as the maxi-
mum time between updates of a node.) Naturally, these results only apply to
connected networks, since no consensus is possible on a disconnected network.

Algorithm 10: Decentralised Solve-Relaxation

Input : fa : 2T → R+ ∀a ∈ A, ε ∈ [0, 1].
Output: A fractional allocation y ∈ K.

// Initialisation

y(0)← 0
δ ← ε

// Main Loop

for t = {0, δ, 2δ, 3δ, . . . , 1− δ} do
Ba
∀a∈A

← Consensus-Threshold-Greedy(T ,A, f,y(t), ε, δ)

for a ∈ A do
if j ∈ Ba then

yaj(t+ δ)← 1 + e−δ(yaj(t)− 1)
else

yaj(t+ δ)← yaj(t)

Return: y(1)

66

Algorithm 11: Consensus Threshold-Greedy Algorithm

Input : T , A, fa : 2T → R+, y ∈ [0, 1]A×T , ε ∈ [0, 1], δ ∈ [0, 1].
Output: Sets Ba for all a ∈ A, such that

∑
a∈A
|Ba∩{j}| ≤ 1 for all j ∈ T .

// Initialisation

Ba ← ∅, for all a ∈ A
R ← T
ȳ′ ← max

a∈A
j∈T

(1 + e−δ(yaj − 1))

// compute local maximum

d̄a ← max
j∈T

fa(j)

// find global maximum

d̄← Max-Consensus(d̄a)
w∗ ← d̄

// main Loop

while R 6= ∅ and w∗ ≥ ε d̄
nT

(1− ȳ′) do

// agent’s loop initialisation

for j ∈ R do
waj ← ∆Faj(ya(Ba, δ))

// averaging O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
iid random samples.

j∗ ← argmax
j∈R

waj

w∗a ← waj∗

B′a ← Ba + j∗

// agent’s pre-allocation loop

for j ∈ R− j∗ do
waj ← ∆Faj(ya(B′a, δ))

// averaging O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
iid random samples.

if waj ≥ (1− ε)w∗a then
B′a ← B′a + j

else
waj ← −∞

// find the best marginal values

W∗ ← Max-Consensus(waj for each j ∈ R)
// task allocation loop

w∗ ← max
wa∗j∈W∗

wa∗j

if w∗ ≥ ε d̄
nT

(1− ȳ′) then

for wa∗j ∈ W∗ do
if wa∗j ≥ (1− ε)w∗ then

Ba∗ ← Ba∗ + j
R ← R− j

Return: Ba for all a ∈ A
*The notation ya(Ba, δ) means yaj(Ba, δ) = yaj(t) for j /∈ Baj , and

yaj(Ba, δ) = 1 + e−δ(yaj − 1) for j ∈ Baj .67

Rounding

The decentralised rounding procedure is presented in Algorithm 12. It takes
the relaxation solution y∗ produced by Algorithm 11 and produces a feasible
allocation that maintains the approximation ratio. This algorithm is essentially
the same as the centralised rounding procedure presented in Algorithm 7. The
differences stem from the fact that in a decentralised setting we do not have
access to the utility functions of other agents. Let us now describe in more
detail how an agent a ∈ A runs the algorithm. First, the agent generates d mnA e
random allocations Bi using the RandomRound subroutine (Algorithm 8), which
randomly allocates each task j ∈ T to an agent a ∈ A with probability yij . Sec-
ond, it requests from each agent k ∈ A−a its valuation for all the allocation sets
Bik for all i ∈ [1, 2, ..., d mnA e] calling the subroutine Wave-Valuation-Request.
This subroutine works using a distributed wave protocol, in which agents relay
the requests for valuations among them until the target agent (requestee) re-
ceives it and responds with its valuations, subsequently its reply is relayed in
the same manner until it reaches the originating agent (requester). After all the
requests have been sent, the agent waits until it receives the responses with the
valuations for each agent k ∈ A − a for all the d mnA e random allocations. Once

all the responses have been received, for each random allocation Bi, the agent
retrieves the valuation sent by all the other agents V(Bi). Therefore, the agent
is now able to obtain the total value F(Bi) for each of the random allocation
i ∈ {1, ..., d mnA e}. Once the value of each allocation Bi has been computed, the
algorithm finds which is the allocation with the highest value and exchanges it
with the other agents using a max-consensus protocol. In the max-consensus
round, each agent exchanges its best valuation to find which is the allocation
with the best score among all the agents.

We do not describe which is the specific algorithm used to implement the
wave protocol for the same reasons that we did not specify a max-consensus
protocol: because this depends on the specific network topology and/or com-
munication mechanism used. Broadly speaking wave protocols, also known as
information distribution protocols, can be split into three categories: flooding
algorithms; echo algorithms; and virtual ring algorithms. Let E denote the
number of edges in the network, D be the diameter, and, as usual, let nA be
the number of agents. The complexity of these algorithm ranges from O(E ·D)
messages and O(D) for flooding algorithms to O(E) messages and O(nA) time
in echo and ring algorithms [92]. The interested reader is referred to any stan-
dard distributed algorithms references [34, 68, 92] for further insight into the
topic. Our algorithm remains agnostic to which exact flavour of wave proto-
col is implemented. Hence, it provides flexibility to perform message vs time
trade-offs depending on the specific situation. Nevertheless, our algorithm does
require that the network is connected.

68

Algorithm 12: Decentralised Round-Relaxation

Input : y ∈ K, T , A, fa, m
Output: Sets B∗a for all a ∈ A, s.t.

∑
a∈A
|B∗a ∩ {j}| ≤ 1 for all j ∈ T .

for i ∈ {1, 2, ...d mnA e } do

Bi ← RandomRound(y, A, T)

Wave-Valuation-Request(Bi for each i ∈ [1, 2, ..., d mnA e])
Wait-Valuation-Response()

for i ∈ {1, 2, ...d mnA e } do

V(Bi)← Wave-Valuation-Response(Bi)
F(Bi)← V(Bi) + fa(Bia)

i∗ ← argmax
i
F(Bi)

B∗ ← Max-Consensus(F(Bi
∗
))

Return: B∗a for all a ∈ A

4.3.2 Algorithm Analysis

The analysis of the decentralised algorithm has two sides, one is the quality of the
solution, i.e. the approximation ratios; and the other is the computational cost.
In the decentralised setting the computational cost has in turn two sides: the
communication cost; and the number of calls to the value oracle. Here we analyse
each of these. First we show that the decentralised algorithm is equivalent to
the centralised version that we presented in the first part of the chapter, in order
to conclude that the decentralised algorithm has the same approximation ratio.
Second, we quantify the communication cost of the algorithm. And finally, we
quantify the number of calls to the submodular value oracle that each agent
needs.

Equivalence and Approximation Ratio

In order to analyse the performance of Algorithm 9 we only need to show that
it is equivalent the centralised version, Algorithm 4. Therefore, all the results
for the centralised algorithm would apply to it. By equivalent, we mean that
both algorithms behave in the same way, that is, that they produce solution
with the same probability distribution. First we show that the equivalence
of the relaxation solution, then we investigate the rounding procedure. Both
algorithms are very similar. The only differences come from the fact that the
centralised version does have access to every agent utility function while in the
decentralised version each agent has access only to its own utility function, and
exchanges information using max-consensus procedures.

Lemma 4.3.1. Given the same inputs, the Consensus Decreasing Threshold
Algorithm (Algorithm 11) provides an equivalent solution to that provided by
the Centralised Threshold Greedy Algorithm (Algorithm 6).

Proof. The algorithms have an inherent random component due to the errors
introduced by the sampling of the multilinear extension. Both algorithms follow

69

the same sampling approach, therefore the errors in both algorithms have the
same distribution. Given this, in order to show that both algorithms are equiv-
alent, we need to show that when the random errors are the same, they provide
the same solution. That is, we show that when we assume that the estimates
of the marginal values, given a common allocation state Bcent

a = Bdec
a for all

a ∈ A, are the same in both algorithms, i.e. w̄cent
aj = w̄dec

aj for all a ∈ A for all
j ∈ T ; then both algorithms return the same allocation sets.

It is easy to see that the both algorithms are equivalent if the following three
facts hold: first, they start with with the same allocation set state, Ba = ∅ for
all a ∈ A; second in each iteration both algorithms select the same tasks-agent
pairs; and third, both have the same termination logic. The first fact is trivially
true because both algorithms are initialised in the same way. In the following
we prove prove the second and third facts.

Let us now show that both algorithms add the same task-agent pairs. Be-
cause the algorithms have the same allocation logic, given the same input set
W∗, both algorithms produce the same allocation sets. Therefore, to show that
both algorithms add the same task-agent pairs we need to show that, given the
same allocation state Ba for all a ∈ A, the setW∗ is the same in both algorithms.
This is true for two reasons. First, both the centralised and decentralised algo-
rithms follow the same pre-allocation logic to compute the marginal values waj
for the unallocated tasks. Second, the max-consensus protocol, by definition,
finds the agent with the maximum marginal value for each task, hence:

wa∗jdec
= max

a∈A
waj = wa∗jcent (4.30)

for each j ∈ R. Thus, the set W∗ is the same in both algorithms.
Now, since both algorithms start with the same state, and add the same

task-agent pairs at each iteration, we can conclude that both have the same
allocation state in any given iteration before termination.

Finally, we show that both algorithms terminate in the same iteration, and
hence, in the same state. In the centralised version, we have that d̄cent =
maxa∈A

j∈T
fa(j); whereas in the decentralised algorithm we have that the max-

consensus protocol finds d̄dec = maxa∈A d̄a, where d̄a = maxj∈T fa(j) for all
a ∈ A. Therefore:

d̄dec = max
a∈A

(
max
j∈T

fa(j)

)
= max

a∈A
j∈T

fa(j) = d̄cent, (4.31)

hence, both algorithms have the same global maximum marginal value, and
as a consequence, they have the same stopping thresholds ε d̄

nT
(1 − ȳ′). The

algorithms have the same termination logic, satisfied in two situations: if all
the tasks are allocated; or if the threshold drops bellow the stopping threshold.
Observe that because both select the same task-agent pairs each round, the set
R is the same in both algorithms in any given round, and would stop at the
same round if the allocation of all tasks was the termination event. Similarly,
we have also seen that both algorithms, at each iteration, have the same setW∗
and, thus, the same threshold w∗. This implies that if the termination event
was the threshold dropping below the stopping threshold, both would stop in
the same iteration. Consequently, in both algorithms both termination events

70

(allocation of all tasks or threshold below the stop level) would occur in the
same iteration with the same allocation state.

We can now that the solution of the relaxation is equivalent in both algo-
rithms.

Lemma 4.3.2. Given the same inputs, the Decentralised Solve-Relaxation Al-
gorithm (Algorithm 10) returns an equivalent solution to that returned by the
Centralised Solve-Relaxation Algorithm (Algorithm 5).

Proof. Each agent runs locally Algorithm 10, which is exactly the same as the
centralised version, Algorithm 5, with the exception of the threshold-greedy al-
gorithm used to select the set of task-agent pairs that are incremented, B(t). But
from Lemma 4.3.1 the centralised and decentralised version of the Threshold-
Greedy algorithm, Algorithms 6 and 11, are equivalent. Hence, the solution
provided by the centralised and decentralised versions of the measured contin-
uous greedy, Algorithms 5 and 10 respectively, are equivalent.

We now look at the rounding step. Both algorithms use the same rounding
routine, with the only difference that the since the decentralised algorithm does
not have access to all the agents utility functions it needs to use the a wave-
valuation protocol and use max-consensus to find the best rounded solution.

Lemma 4.3.3. Given the same inputs, and if nA is an exact divisor of m, the
Decentralised Round-Relaxation (Algorithm 12) returns a solution equivalent to
that returned by the Centralised Round-Relaxation (Algorithm 7).

Proof. When nA is an exact divisor of m, both algorithms generate the same
number of random allocations. This is because in the decentralised algorithm
each of the nA agents produces m

nA
random allocations. Note that both use the

same routine, Algorithm 8, to produce the random allocations. Further, both
algorithms estimate the value of each allocation in the same way, because the
decentralised version does not continue until it has gathered all the valuations
from all the agents. Therefore, given that the max operation in the centralised
version is equivalent to the decentralised max-consensus over the maxima of
each agent, both algorithms obtain random solutions with the same distribution.
Therefore, both algorithms produce equivalent rounded solutions.

Note that in the case when nA is not an exact divisor of m, the solution
obtained by the decentralised version will be based on d mnA enA random alloca-
tions, and hence we know from Theorem 4.2.8 that the probability of a good
answer can only be higher than that of the centralised equivalent that used only
m random allocations.

At this point we have established that both the relaxation and the rounding
are equivalent in the centralised and the decentralised setting. Hence, we can
now state the main result of this chapter.

Theorem 4.3.4. The decentralised task allocation procedure, Algorithm 9, re-
turns a feasible allocation solution B∗ such that, with probability at least 1 −
e−

ε2

2 (1
e−2ε)m, the following bounds hold:

71

• If fa : 2T → R+ for all a ∈ A are non-negative monotone submodular
functions then:

F(B∗) ≥
(

1− 1

e
− 4ε

)
F(OPT). (4.32)

• If fa : 2T → R+ for all a ∈ A are general (possibly non-monotone) non-
negative submodular functions then:

F(B∗) ≥
(

1

e
− 3ε

)
F(OPT). (4.33)

Proof. This result is immediate from the equivalence relations derived above
and Theorem 4.2.8. From Lemma 4.3.2, the relaxation solution is equivalent to
the centralised solution. And from Lemma 4.3.3 the rounded solution is equiva-
lent, in the case when nA is a exact divisor of m; if it is not, then d mnA ena > m,
which implies that the probability of a solution is higher than the centralised so-
lution. Therefore, Theorem 4.2.8 readily applies to the decentralised algorithm,
Algorithm 9.

Communication Complexity

Let us now quantify the number of communication rounds that our algorithm
requires. We do so in terms of rounds of the max-consensus protocols and wave
requests. This is because our algorithm is presented using these protocols as
an abstraction layer to maintain generality and enable its applicability to dif-
ferent communication setups. First, we quantify the number of communication
rounds needed to solve the relaxation and second we look at the number of
communication round required by the rounding step.

Lemma 4.3.5. The relaxation solution requires O(nTε) max-consensus rounds.

Proof. The number of max-consensus rounds is determined by the number of
iterations of the while loop in Algorithm 11 multiplied by the number of times
that Algorithm 10 calls Algorithm 11. In each run of Algorithm 10 there are at
mostO(nT) iterations of the while loop (because in each of them at least one task
is allocated), and Algorithm 10 performs 1

ε iterations, calling once Algorithm
10 in each iteration. Thus the total number of max-consensus rounds needed to
solve the relaxation is at most O

(
nT
ε

)
.

Let us now quantify the number of communication rounds needed in the
rounding step.

Lemma 4.3.6. The rounding solution requires 1 max-consensus round and
d mnA enA wave-valuation rounds.

Proof. Max-consensus is only called once at the end of the rounding solution
in Algorithm 12. Each of the nA agent triggers d mnA e wave-valuation requests,
that is, one per random allocation produced. Hence the total number of wave-
valuation rounds is d mnA enA.

72

Local Computational Cost

Now we quantify the number of calls that each agent has to perform to its local
utility function. As it is typical in the submodular optimisation literature, we
quantify it in terms of the number of calls to a value oracle. We first quantify
the number of calls required by to solve the relaxation and then by the rounding.

In order to bound the number of calls required by the relaxation we need to
quantify the number of calls that the decreasing threshold subroutine needs in
each time it is called.

Lemma 4.3.7. Each agent’s call to the Consensus Threshold-Greedy Algorithm

(Algorithm 11) requires O

(
n4
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
calls to the value oracle.

Proof. There are at most O (nT) iterations of the while loop (from Lemma
4.2.9). In each of those iterations there are at most O(nT) calls to estimate
the marginal value, i.e. ∆Faj(ya(Ba, δ)). Hence, there is at most O(n2

T) es-
timates of the marginal value. And each approximation by sampling of the

marginal value requires O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
. Therefore, each iteration re-

quires O

(
n4
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
calls to the value oracle.

Note that this bounds are assuming a general submodular function for which
we do not have a closed form to evaluate the marginal values of the multilinear
extension. However, Iyer [44] showed that there exist a closed form which would
eliminate the burden due to sampling for many submodular functions of prac-
tical interest such as: graph cuts, weighted sums of matroid ranks, set coverage
functions, facility location, and concave compositions over cardinality, among

others. Hence, instead of doing O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
calls in each iteration

we would do just 1. And, the total number of calls to the multilinear oracle
would be O(n2

T).
Now we can quantify the number of calls needed to solve the relaxation.

Lemma 4.3.8. Solving the relaxation using the decentralised continuous greedy

algorithm 10 requires that each agent calls the value oracle O

(
n4
T
ε3

(d̄+
¯
d

d̄

)2
log(nT)

)

times.

Proof. There are 1
ε calls to the Consensus Threshold-Greedy Algorithm (Al-

gorithm 11), and from Lemma 4.3.7 each call requires O

(
n4
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
,

thus the total calls required is O

(
n4
T
ε3

(d̄+
¯
d

d̄

)2
log(nT)

)
.

Note that in the monotone case the lower bound on the marginal value
¯
d is,

by definition, zero, hence with
¯
d = 0, the term

(d̄+
¯
d

d̄

)2
vanishes. And if we have

access to a multilinear oracle, the total number of calls is only O
(
n2
T
ε

)
.

Finally we quantify the number of calls to round the relaxation.

73

Lemma 4.3.9. The Decentralised Round-Relaxation Algorithm (Algorithm 12)
requires nAd mnA e calls to the value oracle function.

Proof. Each of the nA agent produces d mnA e random allocations. Hence, to
respond to the corresponding wave valuation requests each agent must make
nAd mnA e calls to the value oracle function.

Note that, since in practical cases tipically m � O

(
n4
T
ε3

(d̄+
¯
d

d̄

)2
log(nT)

)
,

most of the computational effort is spent on solving the relaxation.

The local running time is not very good at O

(
n4
T
ε3

(d̄+
¯
d

d̄

)2
log(nT)

)
however,

we believe that this is a very loose upper bound for two reasons. First the
number of samples required to estimate the marginal value has potential to
be reduced by using more intelligent sampling strategies. Such as for example
adaptively sampling only those tasks that have potential to be selected in a given
round. That is, rather than starting from scratch at each iteration, information
from previous rounds could be used to inform which tasks to sample. The
second reason why we believe the number of samples can be reduced is because
we have used an overly pessimistic upper bound in the number of iterations of
the while loop, O(nT), inside the decreasing threshold procedure. We estimate
this number will be in the order of O

(
min

(
nA 1

ε log
(
nT
ε

)
, nT

))
due to the speed

at which the threshold decreases, but we have been unable to prove it and so it
remains a conjecture. Therefore we think that the most immediate work would
be to prove or disprove it.

Furthermore, in our work we have set the number of samples in each iter-

ation to be O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
this is a consequence of Lemma 3.3.2 and

it supports the analysis for general non-negative submodular functions. How-
ever, as shown in the work of [6] to use a decreasing-threshold approach in the
monotone case we only need to sample O(nT lognT

ε). Which if combined with
the conjecture on the tighter analysis on the number of iterations of the while

loop above, would yield a local complexity of O

(
nAnT
ε3 log(nT)2

)
value oracle

calls which is asymptotically better than CBBA’s O(n2
T) when nA � nT . It is

also interesting to point out that for monotone functions
¯
d = 0, and so the term

d̄+
¯
d

d̄
cancels out.

Moreover, this analysis has been conducted quantifying the computational
cost on the value oracle model because for general submodular functions no
closed form of the multilinear extension exists. However, for many submodular
functions of practical interest such a closed form does exist. Iyer [44] shows
how to calculate the multilinear extensions efficiently of the following functions:
graph cuts, weighted sums of matroid ranks, set coverage functions, and facility
location, among others. When we have access to a closed form of the multilinear
extension we say we have access to a mulitlinear oracle rather than to a value
oracle, and it would reduce the local computational burden in each iteration

from O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
value oracle calls to just 1 multilinear oracle call.

Therefore, if the conjecture above were to be true and we were to have access
to a multilinear oracle, then our algorithm could be proven to be much more
efficient than CBBA when nA � nT .

74

Another option to reduce the computational burden of our approach is to
implement less naive sampling strategies. As we have defined the algorithm we
sample up to an additive error, and then make decisions based on the result of
the sampling. That is, we sample until we have the highest accuracy required
by the theorems, even when we may not need it. A more efficient strategy would
be to keep online confidence bounds on the estimates of the marginal values and
only sample until we have satisfactory confidence to make a given decision. For
example, to tell whether a marginal value is above or below the threshold, we
would only have to sample until we have enough confidence that the value is
below, or above, w(1− ε). This will require a number of samples that is less or
equal that the number required by the analysis here. If we have confidence that
a given task-agent pair has a negative value, there is no point in finding this
value to the accuracy required, we already know what the decision to be made
by the algorithm is, and hence, we can safely skip it, and move on to the next
task. Another example would be at the beginning of an iteration, here each
agent needs to find which is the task that provides the highest marginal value.
In our algorithm we state that all marginal values are sampled up to a certain
level, and then we chose the highest. A more efficient strategy would be to
use an adapted version of the Upper Confidence Bound (UCB) Algorithm [90],
where the agent would sample the task with the highest confidence bound on the
marginal value. We believe this could yield reduction in the number of samples
required to O(1

nT
). Similarly, we could re-use information between iterations,

since our utilities are submodular, the marginal values cannot increase from one
iteration to the next (because the fractional allocations can either increase or
stay constant). Therefore, if we have confidence from a previous iteration that
the marginal value of a task-agent pair is below certain level, in the following
iterations we can safely assume that the marginal value of that task-agent pair
is below that certain level.

4.4 Summary

We have presented a decentralised Task Allocation algorithm that provides ap-
proximation guarantees for non-negative monotone (1 − 1

e ≈ 63%) and non-
monotone (1

e ≈ 37%) submodular functions whilst relying, only, on local utility
function calls and neighbour to neighbour communications. We have given a full
formal analysis on the approximation guarantees, communications and compu-
tational complexity. This is the first decentralised algorithm, i.e. that assumes
only local or private access to each agent’s utility function, that is able to pro-
vide a constant factor approximation for the non-monotone case. We believe
this to be of relevance as it enables the use of non-monotone functions that are
characteristic of many practical situations. This is because non-monotonicity
captures the natural situation when agents “bite off more than they can chew”
and allocating too many tasks to a given agent ends up destroying utility. This
is a situation in which previous decentralised algorithms, such as CBBA [19],
could not offer approximation guarantees. In Table 4.1 we present a summary
of the performance of our algorithm compared with CBBA.

75

Non-Negative Submodular
Monotone

Non-Negative Submodular
Non-Monotone

Approx.
Ratio

Comms.
Cost

Local
Cost

Approx.
Ratio

Comms.
Cost

Local
Cost

CBBA [19] 1
2 O (nT) O

(
n2
T
)

NA NA NA

This Chapter 1− 1
e − 4ε O

(
nT
ε +m

)
Õ

(
n4
T
ε2

)
* 1

e − 3ε O
(
nT
ε +m

)
Õ

(
n4
T
ε2

)
*

Table 4.1: Comparison of the performance of the state of the art decentralised
task allocation algorithm with the algorithm presented here. The communica-
tion cost is quantified in terms of Max-Consensus rounds, while the local cost
is quantified in number of calls to the value oracle. (*The notation Õ encapsulates

a logarithmic dependency on the number of tasks: lognT ; and in the square of the ratio of

marginal values:
(
d̄+d

d̄

)2
; that is: Õ(x) = O

(
x
(
d̄+d

d̄

)2
log(nT)

)
. Note that for monotone

functions d = 0, and so the term d̄+d

d̄
cancels out. Also note that if we have an analytical

form of the multilinear extension, we do not need to sample. Hence, the local cost would be

reduced to O

(
n2
T
ε

)
calls to the multilinear oracle)

76

Chapter 5

Application of Submodular
Task Allocation: a
Multi-UAV Surveillance
Mission

5.1 Introduction

In the previous chapter we have presented our decentralised task allocation
algorithm alongside a formal analysis of the approximation bounds. In this
chapter we present a preliminary illustration of the performance of our algorithm
with a Multi-UAV Surveillance mission. In this scenario, we have to carry out
a variety of tasks, e.g.: visual-spectrum imaging, data harvesting from ground
sensors, radio signal intelligence collection, infra-red imaging, etc. To execute
them, we have a team of UAVs with different capabilities. For example, one
UAV may have capability to harvest information from a ground based sensor
network, while another may have the sensor required for an imaging task, etc.
Additionally, we assume that this is a covert mission in which a hostile enemy
is trying to detect our UAVs. Therefore, we need to factor in the chance of
detection, and ensure that important tasks are spread among the team, so that
the detection of any individual UAV does not compromise the success of the
mission. In this context, we present a function that comprises three elements.
First, the task-agent value: which is a combination of the task requirements,
the UAV skills, and the task importance. Second, the probability of survival,
which quantifies the chance of avoiding detection by the enemy. And third,
the cross-task penalties which prevent the concentration of important tasks in
a single UAV, encouraging the spread of tasks among the team.

To asses the quality of the solutions obtained by our algorithm, we compare
it against the state of the art in decentralised task allocation, the Consensus-
Based Bundle Auction (CBBA) algorithm [19]. We run experiments with a
range of problem sizes: from 30 tasks and 5 UAVs to 100 tasks and 20 UAVs.
These experiments show that our algorithm performs significantly better than
CBBA, both in absolute terms and in the implicit asymptotic trends. Further,

77

these trends are observed consistently across a variety of problem sizes. More
importantly, the experiments show that our algorithm performs well even with
relatively large ε values.

The chapter is structured as follows. First, we describe in detail the elements
of the problem that we use to build our utility function model. Second, we
carry out a formal analysis to prove that our value function is non-negative
submodular. Finally, we conclude with the results of the numerical experiments
and a discussion of the kind of multi-robot missions that our algorithm enables.

5.2 A Multi-UAV Surveillance Mission

We aim to solve a surveillance mission problem in which a group of UAVs need
to explore an enemy area. The tasks have distinct requirements and importance,
and the UAVs have different capabilities to execute them. Since the mission is
carried out in hostile territory, we also model the probability of enemy detection,
and inter-task penalties to prevent accumulation of tasks in a single agent.
Finally, we combine all these elements to formulate a Non-Negative Submodular
Task Allocation Problem. Let us now formalise all these concepts.

5.2.1 Elements of the Problem

We have a set A of heterogeneous UAVs, and a set T of heterogeneous tasks
that need to be carried out. We need to allocate to each UAV a ∈ A a mission
Sa ⊆ T , such that we maximise the value in the team. But what is the value of
every possible mission? we know that each task has a different importance, and
a set of requirements to be carried out, also, each UAV has different abilities to
satisfy those requirements. Naively, we might aim to maximise the total value
obtained, however, we need to consider that we are working in an adversarial
scenario in which an enemy is capable of detecting our UAVs and put their
mission to an end. Therefore, we design an utility function that contemplates
this situation, and thus favours missions that are neither too risky (i.e. resulting
in a low survival probability) nor are too fragile (i.e. concentrating too many
important tasks in a single UAV). In the following we quantify and formalise
these matters.

Values

In our problem we have a heterogeneous set of tasks with different importances
and that require different abilities or resources for its execution. We distill this
in two key magnitudes: the importance of the task qj ∈ R+, and the task-agent
match fitness maj ∈ R+. We formalise this as follows. For each task j ∈ T
we define its importance qj ∈ R+, and a unit vector of requirements for its
execution, vj , the vector is defined such that vij ≥ 0 and ‖vj‖ = 1. Similarly,
for each UAV a ∈ A we define a unit vector of attributes ua, which also satisfies
that via ≥ 0 and ‖ua‖ = 1. Now, the match fitness for task j ∈ T and UAV
a ∈ A is defined as maj , u>a · vj . With these definitions we can state how the
value that an UAV a can obtain from doing task j is calculated:

waj , qjmaj = qj
(
u>a · vj

)
(5.1)

78

Essentially, we calculate the value of UAV a ∈ T executing task j as the
importance of j discounted by the misalignment of attributes and requirements
between UAV and task. We remark that we have defined the fitness match maj

as the cross product of unit vectors, but it can be defined arbitrarily as long as
it is a positive real. For example, in a real-world scenario, this value could be
set by an operator or domain expert.

Thus, in a mission S ⊆ T the agent a can obtain a value of:

va(S) ,
∑

j∈S
waj . (5.2)

This is the value that the agent would obtain if it were not detected. However
the enemy may detect our UAV. Let us formalise this further.

Probability of a Successful Mission

Each time an UAV carries out a task there is a chance that it is detected by the
enemy and thus fail the mission. The probability of detection while executing
a task increases as the enemy is given more and more opportunities to become
aware about the presence of an UAV. We assume that if an UAV has been
detected the mission has failed, and thus produced a zero value. Further, the
probability of detection by the enemy also varies depending on the kind UAV
being used. To model this, we give the parameters P0a , and αa to each UAV
a ∈ A. P0a is the probability of detection of an UAV by the enemy when
executing a single task without having executed any previous tasks before, i.e.:

Pr(detection of a at the 1st task|0) , P0a . (5.3)

Naturally we have that 1 > P0 > 0. Now, to model the increasing awareness
of the enemy of an UAV’s presence, we define the probability of being detected
at the n+ 1th task given that the UAV has executed previously n tasks as:

Pr(detection of a at the n+ 1th task|n) ,
P0a

1− αanP0a

(5.4)

where αa ≥ 1 is a parameter that governs how fast does the probability
of detection increases. That is, we assume that the probability of detection
increases dramatically (hyperbolically) as we give more chances to the enemy to
detect the UAV. Naturally, we need to set up αa such that P0

1−αa(|T |−1)P0
< 1.

Now, we can quantify the probability of detection during the execution of n
tasks, Prdetect : {0, 1, ..., |T |} → [0, 1), as:

Pr
detect,a

(n) = Pr
detect,a

(n− 1) +

(
1− Pr

detect,a
(n− 1)

)
P0

1− αa(n− 1)P0
(5.5)

This recurrence does not have a nice closed-form analytical solution, but it
allows for efficient, linear-time, pre-computation. Note that the base case is
simply:

Pr
detect,a

(0) = P0a . (5.6)

79

At this point, we can are ready to define the dual of the probability of
detection, the probability of surviving the mission, Prsrv,a : 2T → (0, 1], as:

Pr
srv,a

(S) , 1− Pr
detect,a

(|S|). (5.7)

This is the probability of the UAV a ∈ A not being detected during the
execution of a mission involving the tasks in S ⊆ T . Please note that we
have defined the probability of survival as a set function while the probability
of detection has been defined as a function on the integers between 0 of the
cardinality of the task set T . We have done this to clarify the exposition later
on, but we remind the reader that both of them can be defined in either of the
two ways.

Inter-Task Dependencies

In our model, we are assuming an adversarial scenario in which a hostile enemy
is able and willing to the detect our UAVs. This introduces a further subtlety:
consider the situation when an UAV is very efficient at executing many impor-
tant tasks while other UAVs have a comparable but worse performance. In this
situation, the solution might concentrate many important tasks in a single UAV,
and leave other UAVs underused. This would couple the completion of many
important tasks to survival of a single UAV. To remove this inherent fragility
from our utility function, we introduce inter-task penalties.

We denote by caij ∈ R+ the penalty of UAV a ∈ A when executing each pair
i, j ∈ T of distinct tasks in its mission. Therefore, we define the total penalty
function, ga : 2T → R+, for a given mission S ⊆ T as:

ga(S) ,
∑

i,j∈S
i6=j

caij (5.8)

We use caij = eqiqj as penalty for each pair of tasks i, j ∈ T . This is to
discourage concentration of important tasks in a single UAV. With this, impor-
tant tasks will have high penalties when combined with other important tasks,
while when combined with comparatively less important tasks, they will have
effectively no penalty. Note that the absolute value of the total penalty is not
relevant, what matters is the relative value of penalties, because of a scaling
factor λa, that we will introduce next.

Utility Function

Let us now combine all the terms that have been introduced above to obtain
the utility function for our scenario. Intuitively, we define the value of a mission
S ⊆ T of agent a ∈ A to be the expected value obtained (considering that the
agent might be detected and thus obtain a value of zero) minus by inter-task
penalties:

fa(S) = Esrv[va(S)]− λaga(S). (5.9)

Where λa ∈ R+ is a scaling factor that is used to ensure that the total

penalty is never higher than the value of the tasks, i.e. Esrv[va(S)]
ga(S) ≥ λa for all

S ⊆ T . This ensures that the resulting function remains non-negative.

80

Now, we can plug in all the definitions from above to yield the final utility
function:

fa(S) = Pr
srv,a

(S)
∑

j∈S
waj − λa

∑

i,j∈S
i6=j

caij . (5.10)

5.2.2 Submodularity Analysis

Before we proceed any further, we need to show that the utility function is
indeed non-negative submodular. To do so, first we show that the functions
that constitute our utility function are submodular.

Let us start by showing that the probability of survival is submodular.

Lemma 5.2.1. The probability of survival, Prsrv,a : 2T → (0, 1], is submodular,
non-negative, and non-increasing.

Proof. We will show that Prsrv,a is submodular and non-increasing by lever-
aging its definition, Prsrv,a(S) = 1 − Prdetect,a(|S|), showing that Prdetect,a(n)
is supermodular and non-decreasing. For notational compactness during the
derivation, let p : {0, 1, ..., |T |} → R+ be the probability of detection after ex-
ecuting n ∈ {0, 1, ..., |T |} tasks, i.e. p(n) , Prdetect(n). Now, by definition we
have:

p(n+ 1) = p(n) + (1− p(n))
P0

1− αnP0
, (5.11)

with p(0) = P0.
First, since by assumption on the values of α and P0 we have that P0

1−α(|T |−1)P0
<

1, this implies that p(|T |) < 1.
Second, let us show that p(n) is non-decreasing. For all n ∈ {0, 1, ..., |T |},

we have that:

p(n) ≤ p(n+ 1) hypothesis

p(n) ≤ p(n) + (1− p(n))
P0

1− αnP0
definition

0 ≤ (1− p(n))
P0

1− αnP0
.

(5.12)

and since (1−p(n)) ≥ 0 and P0

1−αnP0
≥ P0, the last inequality holds. This implies

that Prdetect,a is non-decreasing, and hence Prsrv,a(S) = 1 − Prdetect,a(|S|) is
non-increasing. Further, from above we have that Prdetect,a(|T |) < 1, therefore
Prsrv,a(|T |) > 0, which, given that Prsrv,a is non-increasing, implies that Prsrv,a

is non-negative.
Finally, we show that the probability of detection is supermodular, by show-

ing that for 0 ≤ n ≤ |T | − 2, we have:

p(n+ 1)− p(n) ≤ p(n+ 2)− p(n+ 1) (5.13)

81

We prove this by reducing it to the assumption that α ≥ 1 as follows:

p(n+ 1)− p(n) ≤ p(n+ 2)− p(n+ 1) hypothesis

(1− p(n))
P0

1− αnP0
≤ (1− p(n+ 1))

P0

1− (n+ 1)αP0
definition of p

(1− p(n))
P0

1− αnP0
≤
(

1−
(
p(n) + (1− p(n))

P0

1− αnP0

))
P0

1− (n+ 1)αP0
definition of p

(1− p(n))
P0

1− αnP0
≤ (1− p(n))

(
1− P0

1− αnP0

)
P0

1− (n+ 1)αP0
extracting factors

P0

1− αnP0
≤
(

1− P0

1− αnP0

)
P0

1− (n+ 1)αP0
0 < (1− p(n)) ≤ 1

1
1−αnP0

1− P0

1−αnP0

≤ 1

1− (n+ 1)αP0
rearranging

1

1− αnP0 − P0
≤ 1

1− (n+ 1)αP0
rearranging

1− (n+ 1)αP0 ≤ 1− αnP0 − P0 rearranging

P0 ≤ αP0 α ≥ 1

which holds due to the assumption that α ≥ 1, and the hypothesis is proven.
Now, equation 5.13 directly implies that for any two x, y ∈ 0, 1, ..., |T | such

that x ≥ y we have that:

p(x+ 1)− p(x) ≤ p(y + 1)− p(y) (5.14)

hence proving that the probability of detection is supermodular. Now, re-
call that any negated supermodular function is submodular, therefore, the
probability of survival is submodular because it is defined as Prsrv,a(S) =
1− Prdetect,a(|S|).

Now, let us show that the value of mission discounted by the probability of
survival (the expected value of a mission) is submodular.

Lemma 5.2.2. The function h(S) , Prsrv,a(S)va(S) is submodular and non-
negative.

Proof. We will prove the submodularity property by showing diminishing marginal
values. Let A,B, and x be such that x ∈ T and A ⊆ B ⊆ T \ {x}, then:

h(x+A)− h(A) ≥ h(x+B)− h(B) hypothesis

Pr
srv,a

(A+ x)
∑

j∈A+x

waj − Pr
srv,a

(A)
∑

j∈A
waj ≥ Pr

srv,a
(B + x)

∑

j∈B+x

waj − Pr
srv,a

(B)
∑

j∈B
waj definition

wax Pr
srv,a

(A+ x) +

(
Pr

srv,a
(A+ x)− Pr

srv,a
(A)

)∑

j∈A
waj ≥ re-arranging

wax Pr
srv,a

(B + x) +

(
Pr

srv,a
(B + x)− Pr

srv,a
(B)

)
∑

j∈A
waj +

∑

j∈B\A
waj

 .

(5.15)

82

Now from Lemma 5.2.1 we have that Prsrv,a is submodular, therefore, we
have:

Pr
srv,a

(B + x)− Pr
srv,a

(B) ≤ Pr
srv,a

(A+ x)− Pr
srv,a

(A). (5.16)

But Prsrv is also non-increasing, therefore:

Pr
srv,a

(B + x)− Pr
srv,a

(B) ≤ 0

Pr
srv,a

(A+ x)− Pr
srv,a

(A) ≤ 0.

Since waj ≥ 0 for all j ∈ T and a ∈ A, we have that:

(
Pr

srv,a
(A+ x)− Pr

srv,a
(A)

)∑

j∈A
waj ≥

(
Pr

srv,a
(B + x)− Pr

srv,a
(B)

)
∑

j∈A
waj +

∑

j∈B\A
waj

 ,

(5.17)
and consequently, the inequality in 5.15, can be simplified to:

wax Pr
srv,a

(A+ x) ≥ wax Pr
srv,a

(B + x). (5.18)

Which holds because we have from Lemma 5.2.1 that Prsrv is non-increasing
and A ⊆ B, and wax ≥ 0. Therefore, h is submodular.

Finally, since Prsrv is non-negative and waj ≥ 0 for all a ∈ A and j ∈ T ,
Prsrv,a(S)va(S) is non-negative for all missions S ⊆ T .

Now, we show that the sum of the penalties in a mission is supermodular.

Lemma 5.2.3. The penalty function g(S) ,
∑
i,j∈S
i 6=j

cij is supermodular, and

non-negative.

Proof. It is trivial to show that g is non-negative because by definition g(S) =∑
i,j∈S cij and cij ≥ 0 for all i, j ∈ T .
Now we can easily prove supermodularity by showing increasing marginal

values. Given any task x ∈ T , let A and B be any such that A ⊆ B ⊆ T \ x,

83

we have:

g(B + x)− g(B) ≥ g(A+ x)− g(A) hypothesis
∑

i,j∈B+x
i 6=j

cij −
∑

i,j∈B
i6=j

cij ≥
∑

i,j∈A+x
i6=j

cij −
∑

i,j∈A
i 6=j

cij definition

∑

j∈B
j 6=x

cxj +
∑

i,j∈B
i 6=j

cij −
∑

i,j∈B
i 6=j

cij ≥
∑

j∈A
j 6=x

cxj +
∑

i,j∈A
i 6=j

cij −
∑

i,j∈A
i 6=j

cij expanding sums

∑

j∈B
x6=j

cxj ≥
∑

j∈A
x 6=j

cxj simplifying

∑

j∈B\A
x 6=j

cxj +
∑

j∈A
x6=j

cxj ≥
∑

j∈A
x 6=j

cxj A ⊆ B

∑

j∈B\A
x 6=j

cxj ≥ 0

which holds because, by definition, cij ≥ 0 for all i, j ∈ T , A ⊆ B ⊆ T \ x, and
x ∈ T .

Finally, we can combine the previous three lemmata to show that our utility
function is submodular and non-negative.

Theorem 5.2.4. The utility function fa : 2T → R+ for each of our UAVs
a ∈ A, defined as: fa(S) , Prsrv,a(S)

∑
j∈S waj − λa

∑
i,j∈S
i6=j

caij is submodular

and non-negative.

Proof. To prove submodularity we will use the fact that the sum of submod-
ular functions is also a submodular function. First, from Lemma 5.2.2 we
have that Prsrv,a(S)

∑
j∈S waj is submodular and non-negative. Second, from

Lemma 5.2.3, we have that
∑
i,j∈S
i 6=j

caij is supermodular and non-negative, hence,

−∑i,j∈S
i 6=j

caij , is submodular. Therefore, fa(S) , Prsrv,a(S)
∑
j∈S waj−λa

∑
i,j∈S
i 6=j

caij

is submodular.
Finally, fa is non-negative because Prsrv,a(S)

∑
j∈S waj is non-negative and

λa is defined such that the penalty is never higher than the value obtained dis-
counted by the probability of survival, i.e. Prsrv,a(S)

∑
j∈S waj ≥ λa

∑
i,j∈S
i 6=j

caij

for all missions S ⊆ T , which ensures that fa is non-negative.

5.3 Numerical Experiments

In this section we evaluate the performance of our algorithm with the utility
function presented above and compare it against the state of the art in decen-
tralised task allocation, Consensus-Based Bundle Algorithm (CBBA) [19]. We
first explain the procedure to generate synthetic instances and then present the
result of the numerical experiments.

84

5.3.1 Synthetic Instance Generation

In order to asses the performance of our algorithm, we needed to generate a
variety of instances of our surveillance mission problem. Here we explain how
we generate these synthetic scenarios.

For each task we need to generate an importance qj and a requirements
vector vj . To generate the importance for each task, we draw a random number
from a uniform distribution between 0 and 1. And to generate the requirements
vector for each task, we draw a uniformly random unit vector in R3

+.
Now for each UAV a ∈ A we need to generate an a priori detection prob-

ability P0a , an αa parameter, and a capability vector ua. Similarly as we do
with the tasks, to generate the capability vector we draw a uniformly random
unit vector in R3

+. To find the parameters of the probability of detection for
each UAV a ∈ A, we first start by drawing a random αa from a uniform dis-
tribution between 1.5 and 2.5. Then we draw a random number, xa, from a
uniform probability distribution between 0.3 and 0.7 and we set it to be the
total probability of detection, i.e. Prdetect,a(|T |) = xa. Subsequently, we use
a simple bisection method to find which value of the a priori detection prob-
ability P0a would satisfy Prdetect,a(|T |) = x, given αa. This ensures that in a
hypothetic mission where UAV a ∈ A would have to carry out all the tasks in
T , the chances of a being detected -and not surviving- are between 30% and
70%. This approach for the selection of αa and P0a gives us a broad spectrum
of “detection dynamics” among the UAVs.

5.3.2 Results

Let us now describe the set of experiments that we have carried out. We have
chosen the following range of problem sizes: 30 Tasks and 5 UAVs, 50 Tasks
and 9 UAVs, 67 Tasks and 17 UAVS, and, finally, 100 Tasks and 20 UAVs.
This range captures problem up to a medium sized multi-UAV system. For
each problem size we have generated 10 random synthetic instances following
the method described above. For each instance, we have run our algorithm with
10 logarithmically-spaced ε values between 0.1 and 0.001. For larger systems of
UAVs, e.g. swarms, with hundreds of vehicles our algorithms would result im-
practical, given their asymptotic complexity. Further work is definitely granted
in finding algorithms with similar approximation ratios but with a better run-
ning times.

Let us first take a look at how our at the impact of ε in the performance
of our algorithm (Algorithm 10). Naturally, different instances of the same size
have different values of F (y(1)), i.e. the relaxation solution. Therefore, to
ease the comparison between them, we have normalised it with respect to the
value of the relaxation result obtained with the smallest ε. In Figure 5.1 we
present the value of the solution obtained for each value of ε for each problem
size. In this figure we can see that the lines are almost flat, that is, the mean
of the different problems of the relaxation value is not greatly influenced by ε.
While the spread in the relaxation values among problems seems greatly affected
by ε. This seems a natural behaviour because a large ε forces the algorithm
to take large steps in directions that, by chance, can be in a favourable or
unfavourable direction, increasing the spread. Whereas with a small ε each
step in the evolution of the relaxation is closer to the validity boundaries of

85

the threshold-greedy solution, and consequently, the algorithm is more likely to
advance over the best direction, which irrespective of ε. Another noteworthy
feature is that the spread tends to be towards the larger ε values. This is in
line with the theoretical analysis, Lemma 4.2.4, which suggests that the solution
bound with respect to the optimal should reduce as ε decreases approaching the
ratio of 1

e in the limit ε→ 0. An additional trait that we would like to note is that
the spread of the solution value decreases as the size of the problem increases.
We believe this is because as number of tasks and agents increase the number of
allocation options increases. Hence, with a larger pool of candidate agents for
a given task, the difference between the best and second best alternative agent
in terms of marginal value tends to be smaller, and the large steps induced by
a large ε tend to become less punishing.

10−3 10−2 10−1

ǫ

0.00

0.25

0.50

0.75

1.00

F
(y

)
F
(y

∗)

30 Tasks

5 UAVs

30 Tasks

5 UAVs

30 Tasks

5 UAVs

30 Tasks

5 UAVs

30 Tasks

5 UAVs

30 Tasks

5 UAVs

30 Tasks

5 UAVs

30 Tasks

5 UAVs

30 Tasks

5 UAVs

30 Tasks

5 UAVs

10−3 10−2 10−1

ǫ

0.00

0.25

0.50

0.75

1.00
F
(y

)
F
(y

∗)

50 Tasks

9 UAVs

50 Tasks

9 UAVs

50 Tasks

9 UAVs

50 Tasks

9 UAVs

50 Tasks

9 UAVs

50 Tasks

9 UAVs

50 Tasks

9 UAVs

50 Tasks

9 UAVs

50 Tasks

9 UAVs

50 Tasks

9 UAVs

10−3 10−2 10−1

ǫ

0.00

0.25

0.50

0.75

1.00

F
(y

)
F
(y

∗)

67 Tasks

17 UAVs

67 Tasks

17 UAVs

67 Tasks

17 UAVs

67 Tasks

17 UAVs

67 Tasks

17 UAVs

67 Tasks

17 UAVs

67 Tasks

17 UAVs

67 Tasks

17 UAVs

67 Tasks

17 UAVs

67 Tasks

17 UAVs

10−3 10−2 10−1

ǫ

0.00

0.25

0.50

0.75

1.00

F
(y

)
F
(y

∗)

100 Tasks

20 UAVs

100 Tasks

20 UAVs

100 Tasks

20 UAVs

100 Tasks

20 UAVs

100 Tasks

20 UAVs

100 Tasks

20 UAVs

100 Tasks

20 UAVs

100 Tasks

20 UAVs

100 Tasks

20 UAVs

100 Tasks

20 UAVs

Figure 5.1: Normalised relaxation values of the solutions of Algorithm 10 for
a sweep of the parameter ε. Each + represents a problem instance and the
dashed line joins the means for the same ε. Note: y∗ is the relaxation obtained with

the smallest ε, i.e. with ε = 0.001.

Let us now compare the results of the relaxation and the rounded solution
with the state of the art in decentralised task allocation with approximation
guarantees: the Consensus-Based Bundle Algorithm (CBBA) [19]. We will
study:

• the relaxation value F (y) (Algorithm 10),

• the rounded solution value f(S∗) (Algorithm 12), and

• CBBA [19].

To do the comparison, we ran our algorithm with an ε around the middle of the
studied range, ε = 0.0078. And, to round the solution we used 1000 samples
distributed among the agents. We present the results in Figure 5.2. In this
figure we can see that the value of the rounded solution and relaxation are

86

always superior to the CBBA. In fact, we can observe that while the value of
the rounded and the relaxation solutions seem to increase with the number of
tasks, while CBBA’s solution value seems to increase only with the number of
agents. This suggests that our algorithm is able to find solutions that utilise
most of the available tasks while CBBA seems to get trapped in local optima
with a few tasks per agent. Our utility function is non-monotone, and the
value of the optimal solution -loosely speaking- scales linearly with the number
of tasks. Hence, it is only consistent that our algorithm also scales linearly
with the number of tasks, since its solution value is bounded to the optimal by
the constant factor 1

e . While CBBA is, in essence, a Greedy algorithm, which
only has constant factor guarantees for monotone submodular functions and, by
contrast, it may exhibit arbitrarily poor performance with non-monotone utility
functions. Which is possibly the reason why CBBA has a poorer performance.
Another noteworthy feature is that the gap between the rounded solution and
the relaxation seems to be remain constant around the same order of magnitude,
suggesting that will become less and less relevant as the problem size increases.
Finally, this also suggest that the value of the solution derives mostly from the
relaxation rather than by the process of rounding, as it is expected from the
theoretical analysis of the previous chapter.

30 Tasks
5 UAVs

50 Tasks
9 UAVs

67 Tasks
17 UAVs

100 Tasks
20 UAVs

0

20

40

60

80

f
(S

)

Rounded

F (y)

CBBA

Figure 5.2: Comparison of the solution values.

Finally, we present the running time of our algorithm compared with CBBA
in figure 5.3 with ε = 0.0078. These experiments have been run using a Python
2.7 implementation of both algorithms in a Mid 2013 MacBook Air with an In-
tel i7 1.7 GHz processor and 8Gb of RAM, running OSX 10.11.6, running both
algorithms sequentially in a single core without any parallelism. As we can see,
our algorithm is about three orders of magnitude slower than CBBA. On the
positive side, we see that the observed slopes of asymptotic complexity are quite
similar for both algorithms, suggesting that the main drawback is the constant.
We believe this is because, in essence, our algorithm takes O(1

ε2) more opera-

87

tions than CBBA in local computational costs. Here is where the real trade-off
our algorithm lies, we have a slower running time, in exchange for guaranteed
performance for non-montone submodular utilities. The algorithms that we
present here are a first step towards decentralised non-monotone submodular
models for multi-robot systems but there is still a long way to go in terms of
algorithmic engineering to optimise them and turn them into a practical reality
for real-world scenarios.

103
Number of UAVs Number of Tasks (i.e. nn)

10−2

10−1

100

101

102

103

Se
co
nd

s

CBBA
Proposed

Figure 5.3: Comparison of running times.

5.4 Discussion

Since the utility function model that we have presented is quite flexible and
can accommodate a wide range of scenarios. This is because there are few
restrictions imposed on the range of weights and parameters that describe the
model, and these are quite natural. Let us describe them in more detail:

• Task-Agent value, composed by:

– qj Task importance: any positive number.

It has a clear and intuitive understanding.

– maj Task-Agent match fitness: any positive number.

We have chosen the dot product between two vectors so that we
could generate a wide variety of values, but it can be any other
quantity that describes the adequacy of the UAV to carry out a
given task. For example, in a real-world application, the UAVs
could be graded for each task in discrete levels by an expert oper-
ator, e.g., Perfect, Adequate, or Inadequate, with corresponding
values -say 1, 1

2 , and 0 respectively- depending on the adequacy

88

of the sensor payloads that the UAV carries. Thus, enabling
flexibility in adapting the model we present to the real world.

• Probability of Survival, composed by:

– P0 Probability of detection: Any valid probability.

It is simply the probability of being detected at a task with-
out having conducted any tasks previously. It has a clear and
intuitive understanding.

– α Awareness paramenter: Any value α ≥ 1 s.t.
P0a

1−αanP0a
is a

valid probability.

Basically, this parameter allows us to decide how fast is the en-
emy becomes aware of the presence of our UAVs. If we set it to
1 the probability of detection increases linearly with the number
of tasks, and as we increase α, the probability of detection grows
faster than linear. The only constraints that are imposed on it
are, simply, those that keep the numbers in the range of valid
probabilities. And the choice between a linear or superlinear
increase in the detection probability spans the natural range of
behaviour that would be desirable in the real world.

• cij Cross-Task penalty: any positive number.

This parameter allows us to impose any arbitrary penalty between
pairs of tasks. We have selected the product of the tasks’ importances
to discourage concentration of important tasks in order to increase
the robustness of the solution. But we can also use it to model any
other negative interaction between tasks, for example to avoid radio
transmissions from interfering each other in the same frequency.

Therefore we believe that the utility function is flexible and can be adapted
to different scenarios where a team of heterogeneous UAVs are used to carry
out a set of heterogeneous tasks in a hostile environment.

In light of the numerical experiments that we present, we believe that the
constant factor approximation ratios of our algorithm are not just of theoretical
interest. Indeed, our algorithm is able to address scenarios that the current state
of the art CBBA [19] could not. We believe this is of great importance, because
it validates that a new family of utility functions -non-monotone submodular-
opens to use in decentralised task allocation by researchers and practitioners.
CBBA’s great success -[19] has 250+ citations as of late 2017- was largely be-
cause it enabled decentralised task allocation with constant-factor approxima-
tion for non-negative monotone submodular functions. This was in spite of the
fact that the monotonicity assumption may be too restrictive in many real world
situations -such as the simple survival probability model here.

Nevertheless our algorithm has a limitation in its computational complexity.
Hence, the most pressing future work line would be to find ways to keep its ap-
proximation guarantees while reducing the computational burden. As discussed
in the previous chapter, there are several things that could improve the local
computational cost of our algorithm. The first is to sample more selectively,

89

as we have explained in the previous chapter’s section on Local Computational
Cost, rather than naively sampling every task-agent pair we could devise more
intelligent ways that lead the algorithm to make the same decisions with lower
computational costs. The second is to remove sampling all together, by using
utility functions that have an efficient way to compute the multilinear extension.
The third and final stream would be a fundamental shift, away from relaxation
and round approaches, that rely in many small integration steps, towards more
combinatorial algorithms while keeping the approximation ratios. This, how-
ever, would require fundamentally new algorithms. We believe nevertheless,
that the algorithms that we present here prove that it is indeed possible to find
such algorithms.

On another note, we believe that a fruitful avenue for future work is to
build non-negative non-monotone submodular utility function models that are
of practical interest. Let us here briefly explain a few possibilities:

• Coverage with diversity. When trying to explore an area the notion
of information and coverage is naturally submodular, i.e. as more sen-
sors or UAVs are deployed the marginal utility of adding more diminishes.
These models have been used with success in practice: [53, 87, 88]. How-
ever, these use monotone submodular models for information gathering
that have been shown to be afflicted by excessive concentration, or lack of
diversity [65]. To remedy this several submodular models have been pro-
posed [23, 65, 94], naturally these functions are non-monotone, because
they penalise excessive concentration. These works are in the context of
document and image summarisation, and therefore, we believe that there
is a prosperous avenue of research in studying and adapting these functions
to search, surveillance, or exploration missions, now that the algorithms
presented here enable their application in decentralised task allocation.

• Tasks allocation under risk of agent failure. We believe that a
non-monotone model is only natural when considering a task allocation
scenario where the agents can fail at their execution of their tasks. One
example is the model presented here, where the agents (UAVs) can be
detected and thus fail their mission. Another example is with a multi-robot
team executing complicated manipulation functions, say in rough terrain,
where completing each task is risky because the robot may suffer some
difficulty, such as getting stuck, and thus fail the mission. In this situation,
a single robot may well be the best suited to carry out all the required
tasks, but a solution where an individual robot carries all the tasks would
be undesirable because of the high risk of failure that it would involve.
Monotone submodular functions are structurally ill-suited to model such
scenarios, because, by definition, they do not contemplate a reduction in
value of an excessively large number of tasks. Therefore, the algorithms
presented here give ability to researchers to devise more suitable non-
monotone submodular models, opening a fertile line of research.

• Enemy Network Jamming. Jamming enemy networks is an important
part of modern warfare. These operations usually require a coordinated
action a set of distributed assets behind enemy lines, and thus it is obvious
use case for a team of small UAVs or robots. The goal is usually to
partition a radio communications network [76]. Therefore, a graph cut

90

model, or a combination thereof, is a very natural way to formulate the
problem [33]. Graph cut functions are non-monotone submodular, and so,
our algorithm is well suited to solve problems that embody them. Hence,
we think that an interesting research line opens in this direction.

• Aerial Firefighting. Aerial firefighting is a vital tool to combat large
forest fires, and it is among the most dangerous missions that a civilian pi-
lot can undertake [1]. It is another area where, in the future, UAVs could
deliver immense benefits, removing humans from danger and operating
in conditions where is currently not possible with a human pilot, e.g.: at
night time, or with limited visibility. One example of such a type of UAV
is described in the patent application by J. Moore [74]. These missions are
usually carried out in groups of heterogeneous aircraft because there is an
advantage in the persistent application of firefighting chemicals and in a
geographically distributed attack. Therefore, it is an ideal application for
task allocation in a team of UAVs. When an aircraft attacks more than
one fire point the pressure in the tank drops as the chemical is delivered,
and the effectiveness is reduced. Furthermore, the attack is altogether
futile if insufficient firefighting chemical is delivered in a fire front. There-
fore, a non-monotone function with diminishing returns seems a viable
way to model the problem, providing another application area where our
algorithm could be effective.

These are only a few future research lines, but we believe they serve to
illustrate the broad range of possibilities that non-monotone submodular models
open.

91

Chapter 6

A Combinatorial Auction
Framework For
Decentralised Task
Allocation

In the previous chapters we have presented algorithms to solve the task alloca-
tion with submodular objective functions with approximation guarantees, here
we take a different point of view and surrender approximation guarantees in
exchange for a more general problem and more flexible framework. As we have
seen, the task allocation problem is NP-Hard in all but its simplest incarnations
[35], [52]. However, there are tools in the Operations Research literature that
enable the centralised solution of particular instances of practical interest. For
example, Vehicle Routing problems with hundreds of tasks are solved daily by
delivery businesses [93]. This is because there are a host of techniques, e.g.
Metaheuristics, Mixed Integer Programming, or Constraint Programming, that
over many decades of algorithmic research and engineering have been adapted
and tailored for specific problems, reaching the point where they can solve large
instances efficiently.

However, the centralised solution of the problem involves having to commu-
nicate all the agents and environment data to a centralised entity. This may not
be the most appropriate approach for some scenarios because the central entity
removes resilience by introducing single point of failure, or the bandwidth to
communicate all the information to the central entity may not be available. In
light of this, the present chapter focuses on developing a framework that enables
the transfer of successful centralised solution approaches from the Operations
Research domain to decentralised task allocation. That is, our framework en-
ables the use of Metaheuristics, Mixed Integer Programming, or any other of
the techniques that have had much practical success, in the setting where each
agent has its own utility function that is not known by the rest of the agents in
the team.

In this chapter, therefore, our contribution is a preliminary discussion of a
flexible and general decentralised task allocation framework that enables the use

92

of tailored solvers in the setting where agents do not have access to each other’s
utility functions. We do not assume that the problem is neither a maximisation
nor a minimisation, and we do not assume anything on the objective function
other than its non-negativity. Of course, this flexibility and generality comes at
a price: the formulation reduces to an NP-Hard problem. However, in practice
the flexibility in the tailoring of specific solvers can be very yield very efficient
algorithms. Thus, the computational complexity of our framework depends
on the specific solution technique used. On the other hand, we show that the
communication complexity is linear in the number of tasks and in the number of
agents. Finally, to validate our framework, we show some promising numerical
results with routing cost functions of practical interest.

6.1 Problem Definition

A widely accepted taxonomy that maps the nature of each problem to a well
known combinatorial problem was introduced in [35] and was extended to sup-
port task dependencies in [52]. These two works provide a map of the task
allocation problem space. In this taxonomy, the framework we propose aims
to tackle problems with: both Single-Task robots (ST) and Multi-Task robots
(MT); Single-Robot tasks (SR); and both Instantaneous Assignment (IA) and
Time Extended Assingnment (TA). With respect to the task dependencies tax-
onomy in [52] the framework proposed in this work can accommodate: No
Dependencies, In-Schedule Dependencies (ID) and some instances of Cross-
Schedule Dependencies (XD). Adapting the classical definition, from [27], we
can formalise the general Task Allocation Problem as follows:
Given a set of tasks T , a set of agents A, and a function for each agent a ∈ A
specifying the utility of completing each subset of tasks ca : 2T → R+, find a
spanning and non-overlapping allocation, S∗ ∈ AT , that minimises/maximises
a global objective function J : AT → R+.

This is the most general formulation of the task allocation problem, with
the only constraint that all tasks must be allocated. Note the difference with
the previous chapters, where we could have some tasks that were not allocated.
Here we require that all tasks are allocated, but without any other additional
constraints. This means that all the task allocation problems that require all
the tasks to be allocated can be reduced to our framework. However, additional
constraints, such as scheduling, or task grouping constraints, are not supported.
This problem definition is specially suitable to capture routing problems that
are important in multi-robot or multi-uav missions.

Due to the nature of our framework, it is advantageous to formulate the
problem as a Mixed Integer Programming Problem. To this end, we define the

objective function J : (R+ × {0, 1})|2T |·|A| → R+, that maps the performance
metrics of each bundle of each agent and the allocation variables to a positive
real number quantifying the allocation cost or score. Each agent a ∈ A has its
own utility function ca : 2T → R+. Different agents might have different pay-
loads and/or capabilities as well as different information about the tasks, and
there is no requirement for this information to be shared: ca is an entirely local
and it is based only on the information available to each individual agent. We
also define a binary decision variable xab , that has a value of 1 if bundle b ∈ 2T

is allocated to agent a ∈ A or 0 if otherwise. Now, we can set out the Mixed

93

Integer Formulation of our problem:

optimise
over all xab

J((ca(b), xab), ...), ∀a ∈ A, ∀b ⊆ T

subject to:

y ∩ z = ∅, ∀y, z ∈ S, y 6= z
⋃

b∈S
b = T

xab ∈ {0, 1}, ∀a ∈ A,∀b ⊆ T
S = {h|a ∈ A, h ⊆ T , xah = 1}

where S represents the set of allocated bundles, while the first constraint means
that no two allocated bundles can have overlapping tasks, and the second con-
straint means that the union of all allocated bundles must be equal to the tasks
set T . In other words, all tasks should be allocated and each exclusively to one
agent.

To illustrate this formulation, an example of a problem that could be casted
into our framework could be the Multiple Traveling Salesman Problem, mTSP,
with the tasks being cities or waypoints, the agents performance metrics being
the distance traveled to visit a given bundle of cities, the objective function as
the sum of the distances travelled in the allocated bundles, and the optimisation
being a minimisation. The advantage of our framework is that it would enable
the use of fast and efficient TSP solvers in the agents, i.e. run locally, while the
communication exchange between them is be polynomial.

6.1.1 Background

In this chapter, we aim to find task allocation framework that remove the sub-
modularity restriction on the objective function that CBBA and the Smooth
Continuous Greedy algorithm that we have presented in the previous chapters
require, while we keep the advantages of a decentralised model. To under-
stand the rationale behind our framework, let us first look at CBBA [19]. At
its essence, CBBA leverages a simple auction model: agents add tasks to their
bundles and send single task bids with the marginal value of each of the tasks to
the auctioneer. The auctioneer collects these bids, and simply awards the task
to the agent whose marginal gain is the highest. Given such simple auctioneer
mechanism, it can then be naturally translated into a set of consensus rules
and make the algorithm decentralised. The key lesson from its design is: find a
framework with a very efficient auctioneer role and then substitute it by a poly-
nomial time consensus rule to achieve natural decentralisation. Unfortunately,
combinatorial auctions are characterised, precisely, by a very hard auctioneer
role, in fact the general Winner Determination Problem is NP-Hard [100]. To
get around this, in this research we use a framework called the Progressive Adap-
tive User Selection Environment (PAUSE) conceived for government auction of
telecom licenses [50]. It was intended as a way to simplify the auctioneer role in
combinatorial auctions, with the aim that all companies involved could easily
verify the decisions being taken and could understand them, guaranteeing the
transparency and fairness of the final decision.

Naturally, the computational burden cannot be avoided. The computational
load is not removed but rather transferred from the auctioneer to the bidder,

94

i.e. the agents. This is accomplished by requiring them to submit a composite
bid that encompasses not only their own bundles but also those of other agents,
in such a way that all the tasks are assigned, and each task is assigned to only
one agent. Hence, the role of the auctioneer is simply to keep a record of the
composite bids submitted and award the tasks to those agents contained in the
composite bid whose payoff is the highest. With such an efficient role for the
auctioneer, the decentralisation of the algorithm is natural with consensus rules.

Let us now give an intuitive description of the PAUSE mechanism following
that of Land et al [59]. A PAUSE auction for m items is a multi-stage auction
of m stages. In each phase, each agent must send to the auctioneer a composite
bid that covers all the items. In the first stage, each agent submits a composite
bid composed only of single item bids of its own (it does not have access to the
other agents utility functions). In the second stage, the auctioneer broadcasts
the bids from the first round and each agent submits a composite bid based
only on a combination of the single item bids (submitted by all agents at stage
1) and two item bids of their own. In the third stage, the auctioneer broadcasts
the bids from the second round and each agent submits a composite bid based
on a combination of one item and two item bids (submitted by all agents at
stage 1 and 2) and their own three items bids. The process continues and, in
the general nth stage, each agent submits a composite bid that is a combination
of the previously (1, 2 ... n − 1)-items bids, submitted in the previous rounds
by all the agents, and the agents own nitem bid. In each round, each agent can
either submit a bid, if it improves the current best composite bid by a design
threshold, or just wait and listen to the other agents if it cannot improve it.
Note that with this mechanism, if an agent improves the bid in the final round,
it will be because it is submitting a composite bid that contains only a single
bid that spans all the items.

With this mechanism, the job of the auctioneer simply is: to record all the
bids with their bundle valuations and broadcast them to the agents, so that
the agents can use them in their following composite bids. The winners then,
are simply determined by the agents contained in the composite bid with the
highest score. This mechanism was devised to improve the sense of fairness and
transparency in government licensing by providing a very efficient auctioneer
role, i.e. one whose decisions are efficiently verified. It is this that makes the
auctioneer naturally decentralisable through consensus rules.

Leveraging the key ideas in CBBA and PAUSE, in this chapter we outline a
preliminary proposal of a decentralised framework which finds good allocations
for a broad set of unconstrained task allocation problems. We remark that we
present framework rather than a specific algorithm, because it can implemented
using many different techniques from the Operations Research arsenal.

6.2 Decentralised Task Allocation Framework

Now, we describe the proposed framework formally. But first, we shall intro-
duce some notation used in the exposition. Recall that we defined a function
ca : 2T → R+, thus ca(b) ∈ R+ is the utility (or cost) of agent a ∈ A executing
the bundle of tasks b ∈ 2T . Examples of this utility functions could be sim-
ple like flying time or more elaborate ones such as information collected, or a
combination of agent dependent rewards and costs, among other things.

95

A bid Bab is a tuple (b, a, ca(b)) ∈ 2T × A × R+ that contains, respectively,
the set of tasks involved b ⊆ T , the agent who is responsible a ∈ A, and its
score or utility ca(b) ∈ R+. The evaluation of the utility (cost) function to
create bids is fully local and is produced by each individual agent and shared
as part of a composite bid. For example, consider the simple case where the
performance index were the fligh t time and the tasks waypoints to visit. Then,
a bid (b, a, ca(b)) ∈ 2T × A × R+ would be computed locally by agent a ∈ A.
Agent a, in this case, would go about this by calculating that the time (in, say,
seconds) needed to visit each task contained in b from its position is tb (that is,
it would evaluate tb = ca(b) in our notation). Subsequently, in order to inform
other agents about its capability to perform the tasks in b ⊆ T (i.e. visit the
waypoints in b) it would aggregate this information with the task set b and its
own identifier a, producing the bid (b, a, tb). Hence, all the other agents in the
set A \ {a} would “know” about the performance of agent a visiting the tasks
in b is that it takes a time given by tb ∈ R+, rather than being able to evaluate
a’s utility function themselves.

Now, a composite bid, CBak is the solution to the bidding problem at stage
k by agent a ∈ A, and it is the set of bids that spans all the tasks and does not
contain overlapping bids. CBak is calculated optimising the objective function

J : (R+×{0, 1})|2T |·|A| → R+. That is, finding the best combination of decision
variables xab from the bids that the agent has received and its own bids of k or
fewer tasks. A composite bid is what agents exchange among themselves, and
it is the result of each agent solving the allocation problem at each stage with
the information available at that point in time to each of them.

The information that an agent a ∈ A keeps about the other agents is
kept in a set Sak that contains all the bids in the composite bids previously
exchanged by other agents in the stages 1, 2, ..., k − 1, more formally, Sak =
Sak−1 ∪ (

⋃
i∈A
i 6=a

CBik−1) with Sa0 = ∅. This set Sak is used in conjunction with the

agent’s own bids to find the subsequent solution to the allocation problem to
produce the composite bid CBak that is exchanged with fellow agents.

A set Da
k is kept by agent a ∈ A, containing the bids exchanged previously

by other agents and any of its own that have a size smaller or equal to the cor-
responding bid stage, i.e. Da

k = Sak ∪ {(b, a, ca(b))|∀b ⊆ T , |b| ≤ k}. Intuitively
Da
k is the pool from which agent a ∈ A draws bids (i.e. sets) to find the optimal

allocation resulting in the the composite bid of stage k.
With all this, the bidding problem for agent i ∈ A at stage k is: given a

set of bids Di
k find a non overlapping set of bids (i.e. a composite bid) that

contains each task in T exactly once and optimises the objective function of the
allocation. This problem can be formulated as:

optimize J((ca(b), xab), ...) ∀(b, a, ca(b)) ∈ Di
k

subject to:

y ∩ z = ∅, ∀y, z ∈ S, y 6= z
⋃

b∈S
b = T

xab ∈ {0, 1} ∀(b, a, ca(b)) ∈ Di
k

S = {h|(h, a, ca(h)) ∈ Di
k, x

a
h = 1}

96

Having defined the bidding problem, we can formally define a compos-
ite bid as a set CBik that contains all the bids that are selected in the so-
lution of the bidding problem that each agent i solves in the stage k, i.e.
CBik = {(b, a, ca(b))|(b, a, ca(b)) ∈ Di

k, x
a
b = 1}, where the xab variables are the

optimisers of the bidding problem above. We will assume that agent i ∈ A solves
the bidding problem in round k by calling the routine ComputeBid

(
Sik, c

i, k
)
. In

practice this routine must be adapted to each individual problem with its per-
formance metrics and objective function. Here is where the great advantage of
our framework lies: the solution method to the bidding problem is tailored to
a specific instance, and thus it can leverage Metaheuristics, MIP Solvers, CP
Solvers, or any other algorithmic tools that performs well for the problem at
hand.

With these definitions we can now outline the full framework. Initially the
agents have a copy of the set T containing all the tasks that must be allocated
and the set A of all the participating agents in the network. The framework
proceeds in k ∈ {1, 2, ..., |T |} stages. In the first round each agent i has not
received any information from the other agents hence Si1 is empty and since
k = 1, Di

1 contains only bids of agent i itself, thus there can only be|T | bundles
and consequently there can be only one possible solution to the bidding problem:
CBi1 contains single task bids for each of the tasks in T . At stage k = 2 agent’s
i bid-set Si2 contains all the single task bids exchanged at the end of round k = 1
for each of the tasks in T by each of the agents in A and finds the best allocation
among them and 2-task bids of its own. The process continues until k = |T |
when finally the best allocation is the composite bid with the best objective.
The routine for an agent i ∈ A is outlined in Algorithm 13.

6.3 Discussion

We have developed this algorithm bearing two main objectives in mind: to be
decentralised with a communication overhead comparable with the state of the
art; and to deal with problems that do not meet the assumptions in the objec-
tive functions, such as submodularity, that current state of the art algorithms
require. The key philosophy has been to trade constant factor approximation
guarantees in exchange for flexibility. In light of the practical success of many
centralised approaches to NP-Hard problems, we have designed our framework
in such a way that it can accommodate any solution method for the bidding
problem. In other words, our framework provides a way to transfer successful
approaches to solving NP-Hard problems to the decentralised setting.

Now, let us make some remarks on the locality of the valuation functions
and its implications. Bundle valuations by each agent do not change over the
execution of the algorithm. It is assumed that once an agent has shared a bid
(b, a, ca(b)) in a composite bid, the valuation ca(b) that agent a makes of bundle
b does not change in subsequent rounds. This is a reasonable assumption as it
only requires to have differentiated time scales for the allocation procedure and
for the mission execution. This is usually the case in practice because the task
execution implies that the agent must travel to different spatial location taking
much longer than the allocation procedure.

The valuation of the bids by each agent a ∈ A, namely, the functions ca :
2T → R+, is fully local. That is, given a bundle of tasks b ∈ 2T , only agent a can

97

Algorithm 13: Combinatorial Auction Task Allocation Framework

Input : Set of agents A; set of tasks T ; local agent i, local utility
function ci : 2T → R+; and access to comms to send and
receive bids.

Output: A non-overlapping allocation CB∗

for a ∈ A if a 6= i do
CBa0 ← ∅

Si0 ← ∅
for k ∈ {1, 2, ..., |T |} do

// receive bids from the previous round

for a ∈ A do
if a 6= i and k > 1 then

CBik−1 ← ReceivedBid(a, k − 1)

Sik ← Sik−1 ∪
⋃
∀i∈A
a6=i

CBak−1

// compute the new bid and send it

CBik ← ComputeBid
(
Sik, c

i, k
)

SendBid
(
CBik

)

// receive the bids from the last round

for a ∈ A if a 6= i do
CBa|T | ← ReceivedBid(a, |T |)

// return the best available

CB∗ ← OPTa∈ACBa|T |
Return: CB∗

98

compute the valuation ca(b) of the bundle b, all the other agents in A\{a} only
know the valuation given by agent a in the bid, not the valuation function, and
cannot infer the valuation for other bundles that have not been previously shared
by a. This locality is fundamental to enable cooperation of both heterogeneous
agents with different capabilities and different levels of situational awareness.
This is because each agent can value locally in their function ca : 2T → R+

whether they have enough information to perform a task, whether they have
the payload needed, whether they can fly fast enough to get to the task in time
etc. This enables the network controller to trade off between delaying the start
of the allocation procedure to spend more time exchanging situational awareness
in order to have more accurate valuations and tolerating some level of situational
awareness discrepancy in exchange of an earlier start of the allocation procedure.

Now, we discuss briefly the computational complexity and the communi-
cation complexity of our framework. Then, we present preliminary numerical
experiments comparing it against CBBA with three representative objective
function that are common in multi-robot routing problems: MinSum, MinMax,
and MinAve.

6.3.1 Communication Complexity

In this framwork it is assumed that all the agents are in a connected network and,
hence, are able to receive the composite bids of all the other agents. Let Dm be
the network diameter, in our framework each agent exchanges |T | composite bids
of size O (T), therefore the number of messages exchanged is O (|A| · |T | ·Dm).
Each message’s size is proportional to the number of tasks |T |. Thus, its com-
munication complexity scales asymptotically equal to that of CBBA. We do not
describe which specific protocol the agents use to exchange bids, because this is
application dependent, and the framework is open to accommodate any variant
of a wave or mesh protocol. The reader can see [34, 68, 92] for further insight
into the topic.

6.3.2 Computational Complexity

The computational complexity of the framework is determined by the bidding
problem which is, naturally, NP-Hard because it can be reduced to an instance
of the task allocation problem. And solving the task allocation problem has
been shown to be NP-Hard [35], [27]. Thus, solving this problem is what takes
most of the computational effort. In the formulation we have outlined in the pre-
vious section the problem has, because of its generality, an exponential number
of variables and constraints. In reality this is not necessarily the case because
depending on the specific utility functions it can be reformulated as an adapted
version of a well researched problem, where efficient formulations or algorithms
are available. For practical problems, there is a myriad of methods that solve
NP-Hard problems fast enough to be useful, some examples are: traveling sales-
man, set packing, or scheduling problems (to name but a few). If the methods
to solve these problems can be adapted by including an extra constraint on the
bundle (set) size to match the stage, and by incorporating the solutions of the
other agents, then our framework can perform as efficiently as them. This is
the key idea in this chapter: we have given up theoretical guarantees in ex-
change for practical flexibility. Therefore, the framework’s complexity depends

99

on the specific method used to solve the bidding problem, and we believe that,
for practical problems, there are algorithmic tools that do have a satisfactory
performance in practice.

6.3.3 Numerical Results

In order to explore the performance of our algorithm in this section we carry out
some preliminary tests with interesting objective functions. We have chosen the
widely studied field of multi-robot routing, that is, how to find optimal paths
for a group of robots. Given a set of agents and locations to visit (tasks), there
are three main objective functions that can be considered the eigenvectors of
the performance metrics used in routing problems:

• MinSum: minimises the total sum of the costs (distances) over all agents;

• MinMax: minimises the maximum cost (distance) incurred by the agents;

• MinAve: minimises the average cost (distance) incurred by the agents
from start to the visit of each location.

As baselines to compare the performance of our algorithm, we take a global
optimal solution, to assess in relative terms how good is the solution of our
framework, and CBBA because it is the state of the art in decentralised task
allocation and has the same asymptotic communication scalability. However,
as we have seen CBBA relies on submodularity for its convergence, therefore
it may not converge when the objective function is not submodular, to prevent
this, here we use the warped extension provided by Johnson et al [47]. We
compute the optimal solutions using the commercial MIP Solver Gurobi [39].
And, to solve the bidding problem in each agent we also used Gurobi. We
conducted a Monte Carlo simulation with 400 runs for each task number and
each objective function to obtain preliminary trends in the solution performance
as the size of the problem increases. To this end, we created a random scenario
each time by placing 4 agents in uniformly random locations of a 1000m by
1000m area, and we placed the tasks uniformly at random within it. The costs
of the agents were the distances travelled by the agents. Once an scenario was
solved with the three algorithms, we normalised the objective values of CBBA
and our framework with respect to the optimal as follows:

scCBBA =
CBBA−OPT

OPT
100(%) (6.1)

scproposed =
PROPOSED −OPT

OPT
100(%) (6.2)

where OPT, PROPOSED, and CBBA represent the objective scores attained
for the optimal, our framework, and CBBA respectively.

We show a summary of the normalised results for each of the objectives in
figures 6.1, 6.2 and 6.3 and the means of the relative scores for each case is
shown in table 6.1. While the number of tasks is small only from 5 to 9, some
conclusions can be extracted regarding the underlying trends. In the MinSum
metric, the our framework gave in each and everyone of the cases a relative score
of 0%, i.e., it found the optimal solution every time, whereas for the same metric
CBBA’s performance was gradually degrading as the task number increased. In

100

the cases of the MinMax and MinAve metric, our framework most of the time
found an optimal solution, and while its performance degraded gradually as the
task number increased, it did so to a much lesser extent than CBBA. Indeed, in
all three objectives we can see that our framework provides significantly better
results. This is probably due to the fact that the agents in our framework are
able to consider a richer description synergies between the bundles by obtaining
good solutions to the bidding problem, whereas in CBBA agent only consider
the marginal values.

6.3.4 Conclusions and Future Work

We have presented a preliminary decentralised algorithm for the Multi Robot
Task Allocation Problem with communication costs comparable to those of the
state of the art such as CBBA [19]. The advantage of our framework is that
it provides a way to leverage existing algorithmic techniques in a decentralised
setting. This opens the use of a lot of the algorithmic technology available in
a centralised setting -Mixed Integer Programming, Constraint Programming,
Metaheuristics, etc- where agents can only access their own objective functions,
and not that of their peers. The numerical results that we have presented are
preliminary but demonstrate that its performance improve over the state of
the art (CBBA [19]) with representative routing objective functions: MinSum,
MinMax and MinAve. We remark that we present here a framework rather
than an individual algorithm because its key advantage lies in the flexibility in
the formulation and the solution of the bidding problem with tailored methods.
This flexibility comes at a price: we cannot establish any formal approximation
guarantees, nor a polynomial running time. However, solution methods that
have performed well in practice with other NP-Hard problems could be adapted
to provide a practical computation running time. For example, one could use an
off-the-shelf solver to solve the bidding problem with an approximation gap or
a time limit. Therefore, given that this approach has performed well for many
real-world problems and continues to be a fertile field of in the Operations
Research community, we believe that it could be viable alternative in to tackle
the decentralised solution of a problem that does not satisfy any conditions
(such as submodularity) that enables constant factor approximation algorithms.
There are two strands of future work that could yield interesting results. The
first is to explore the refinement of the solution once all the rounds have been
completed. For example, one could re-run the whole bidding process several
times after it has been completed, allowing agents to use in the solution of
their bidding problems the bids that have been exchanged in previous rounds.
Another idea is, once a whole run with stages 1, ..., |T | has been conducted,
to run rounds with a random maximum bundle size allowing agents to use all
the information exchanged previously. The second line of future work, would
be the systematic study of how different kinds of real-world problems (routing,
scheduling, etc.) perform in our framework, and how the current best centralised
methods available for their solution can be applied to our framework.

101

Task Number
5 6 7 8 9

PROPOSED
MinSum 0. 0. 0. 0. 0.
MinMax 0. 0.08 0.08 0.17 0.34
MinAve 0. 0.04 0.04 0.09 0.2

CBBA
MinSum 1.94 2.95 3.45 3.68 4.35
MinMax 9.84 9.65 12.9 12.31 13.36
MinAve 4.15 3.45 5.01 5.77 5.83

Table 6.1: Mean Relative Scores (%) of our framework and CBBA wrt the
optimal.

PROP.CBBA

5 tasks

PROP.CBBA

6 tasks

PROP.CBBA

7 tasks

PROP.CBBA

8 tasks

PROP.CBBA

9 tasks

PROP.CBBA

10 tasks

0

10

20

30

MinSum Relative Cost (%)

Figure 6.1: Comparison of the distribution of the costs of CBBA using warping
functions with the proposed algorithm for the MinSum metric.

PROP.CBBA

5 tasks

PROP.CBBA

6 tasks

PROP.CBBA

7 tasks

PROP.CBBA

8 tasks

PROP.CBBA

9 tasks

PROP.CBBA

10 tasks

0

20

40

60

80

100

MinMax Relative Cost (%)

Figure 6.2: Comparison of the distribution of the costs of CBBA using warping
functions with the proposed algorithm for the MinMax metric.

102

PROP.CBBA

5 tasks

PROP.CBBA

6 tasks

PROP.CBBA

7 tasks

PROP.CBBA

8 tasks

PROP.CBBA

9 tasks

PROP.CBBA

10 tasks

0

10

20

30

40

MinAve Relative Cost (%)

Figure 6.3: Comparison of the distribution of the costs of CBBA using warping
functions with the proposed algorithm for the MinAve metric.

103

Chapter 7

Conclusions and Future
Work

In this chapter we collect the conclusions and future research lines that we have
stated in each of the preceding chapters.

7.1 Submodular Maximisation

In Chapter 3, we have presented a 1
e−ε-approximation algorithm for general non-

negative submodular function maximisation that requires O(nr
2

ε4

(d̄+
¯
d

d̄

)2
log2(nε))

value oracle calls. This is the fastest 1
e -approximation algorithm currently avail-

able, which enables the use of general (non-monotone) matroid-constrained sub-
modular maximisation for many applications for which existing algorithms were
implausibly slow. We think this is of great significance, even beyond Task Al-
location problems, because there has been a recent surge of interest for ap-
plying submodular maximisation in fields where large problem instances are
paramount, such as Machine Learning [10, 64, 72], particularly in the field of
summarisation where non-monotone submodular functions are natural [23, 94].
Our algorithm is slower than the one presented for the monotone case in [6] by

O
(
r
(d̄+

¯
d

d̄

)2)
due to the inability to sample the marginal values of the multilin-

ear extension up to an additive and multiplicative bound. If we could, then we
would reduce the additional value oracle calls required to achieve an algorithm
with the same running time, we believe this might be possible.

A future avenue of research would be to combine our work with the very
interesting results in [13], where an efficient algorithm is proposed to allow the
trade-off of value oracle calls and matroid independence calls for non-negative
monotone submodular functions, to enable query trade-off for general non-
negative submodular functions. Another interesting path is to combine the
more continuous-like measured continuous greedy update step that we present
here with the acceleration techniques for strong submodular functions presented
in [101] to produce an adaptive step algorithm. This way, in each step we could
use a large δ that extended to the boundary of the region of validity of the set B,
instead of taking a δ that is small enough to satisfy the worst case. Finally, an
obvious improvement on the algorithms presented here would be to combine the

104

ideas from the Lazy Greedy Algorithm [71] to adaptively change the decrement
of the threshold in the Decreasing-Threshold procedure.

7.2 Decentralised Submodular Task Allocation

In Chapter 4 we have presented the a decentralised Task Allocation algorithm
that provides approximation guarantees for non-negative monotone (1 − 1

e ≈
63%) and non-monotone (1

e ≈ 37%) submodular functions whilst relying, only,
on local utility function calls and neighbour to neighbour communications. We
have given a full formal analysis on the approximation guarantees, communica-
tions and computational complexity. This is the first decentralised algorithm,
i.e. that assumes only local or private access to each agent’s utility function, that
is able to provide a constant factor approximation for the non-monotone case.
We believe this to be of relevance because it enables the use of non-monotone
functions that are characteristic of many practical situations. This is because
non-monotonicity captures the natural situation when agents bite off more than
they can chew and allocating too many tasks to a given agent ends up destroying
utility. This is a situation with which previous decentralised algorithms, such
as CBBA [19], could not cope with.

The local running time is not very good at O

(
n4
T
ε3

(d̄+
¯
d

d̄

)2
log(nT)

)
however,

we believe that this is a very loose upper bound for two reasons. First the
number of samples required to estimate the marginal value has potential to be
reduced by using more savvy sampling strategies. Such as for example adap-
tively sampling only those tasks that have potential to be selected in a given
round. That is, rather than starting from scratch at each iteration, information
from previous rounds could be used to inform which tasks to sample. The sec-
ond reason why we believe the number of samples can be reduced is because we
have used an overly pessimistic upper bound in the number of iterations of the
while loop, O(nT), inside the decreasing threshold procedure. We believe this
number will be in the order of O

(
min

(
nA 1

ε log
(
nT
ε

)
, nT

))
due to the speed at

which the threshold decreases, but we have been unable to prove it and so it
remains a conjecture. Therefore we believe that the most immediate work would
be to prove or disprove it. Furthermore, in our work we have set the number of

samples in each iteration to be O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)
this is a consequence of

Lemma 3.3.2 and it supports the analysis for general non-negative submodular
functions. However, as shown in the work of [6] to use a decreasing-threshold
approach in the monotone case we only need to sample O(nT lognT

ε). Which if
combined with the conjecture on the tighter analysis on the number of iterations

of the while loop above, would yield a local complexity of O

(
nAnT
ε3 log(nT)2

)

value oracle calls which is asymptotically better than CBBA’s O(n2
T) when

nA � nT . It is also interesting to point out that for monotone functions
¯
d = 0,

and so the term
d̄+

¯
d

d̄
cancels out.

Furthermore, this analysis has been conducted quantifying the computa-
tional cost on the value oracle model because for general submodular functions
no closed form of the multilinear extension exists. However, for many submod-
ular functions of practical interest such a closed form does exist. In his PhD

105

thesis Iyer [44] shows how to calculate the multilinear extensions efficiently of the
following functions: graph cuts, weighted sums of matroid ranks, set coverage
functions, and facility location, among others. In this situation we say we have
access to a mulitlinear oracle rather than to a value oracle, and it would reduce

the local computational burden in each iteration from O

(
n2
T
ε2

(d̄+
¯
d

d̄

)2
log(nT)

)

value oracle calls to just 1 multilinear oracle call. So if the conjecture above
were to be true, and we were to have access to a multilinear oracle, then our al-
gorithm could be proven to be much more efficient than CBBA when nA � nT .

To summarise, our algorithm is the first to provide constant factor approx-
imation guarantees for non-monotone submodular utilities. Its running time
can, and should, be improved. However, we believe that it is an important
milestone, and that it has a practical relevance. Indeed, in light of the numeri-
cal experiments that we present in Chapter 5, we believe that the constant factor
approximation ratios of our algorithm are not just of theoretical interest. Sure
enough, our algorithm is able to address scenarios of practical interest that the
current state of the art CBBA [19] could not. We believe this is of great impor-
tance, because it validates that a new family of value functions -non-monotone
sumbodular- opens to use in decentralised task allocation by researchers and
practitioners. CBBA’s great success -[19] has 250+ citations as of late 2017-
was largely because it enabled decentralised task allocation with constant fac-
tor approximation for non-negative monotone submodular functions. This was
in spite of the fact that the monotonicity assumption may be too restrictive
in many real world situations -such as the simple survival probability model
here. Therefore, we think that a fruitful avenue for future work is to build non-
negative non-monotone submodular value function models that are of practical
interest, let us explain briefly a few possibilities:

• Coverage with diversity. When trying to explore an area the notion
of information and coverage is naturally submodular, i.e. as more sen-
sors or UAVs are deployed the marginal utility of adding more diminishes.
These models have been used with success in practice: [53, 87, 88]. How-
ever, these use monotone submodular models for information gathering
that have been shown to be afflicted by excessive concentration, or lack of
diversity [65]. To remedy this several submodular models have been pro-
posed [23, 65, 94]. These functions are non-monotone submodular because
they penalise excessive concentration and reward diversity. These works
are in the context of document and image summarisation, and therefore,
we believe that there is a prosperous avenue of research in studying and
adapting these functions to search, surveillance, or exploration missions,
now that the algorithms presented here enable their application in decen-
tralised task allocation.

• Tasks allocation under risk of agent failure. We believe that a
non-monotone model is only natural when considering a task allocation
scenario where the agents can fail at their execution of their tasks. One
example is the model presented here, where the agents (UAVs) can be
detected and thus fail their mission. Another example is with a multi-robot
team executing complicated manipulation functions, say in rough terrain,
where completing each task is risky because the robot may suffer some

106

difficulty, such as getting stuck, and thus fail the mission. In this situation,
a single robot may well be the best suited to carry out all the required
tasks, but a solution where an individual robot carries all the tasks would
be undesirable because of the high risk of failure that it would involve.
Monotone submodular functions are structurally ill-suited to model such
scenarios, because, by definition, they do not contemplate a reduction in
value of an excessively large number of tasks. Therefore, the algorithms
presented here give ability to researchers to devise more suitable non-
monotone submodular models, opening a fertile line of research.

• Enemy Network Jamming. Jamming enemy networks is an important
part of modern warfare. These operations usually require a coordinated
action a set of distributed assets behind enemy lines, and thus it is obvious
use case for a team of small UAVs or robots. The goal is usually to parti-
tion a radio communications network [76]. Therefore, a graph cut model,
or a combination thereof, is a very natural way to model the problem [33].
Graph cut functions are non-monotone submodular, and so, our algorithm
is well suited to solve problems that embody them. Hence, we think that
an interesting research line opens in this direction.

• Aerial Firefighting. Aerial firefighting is a vital tool to combat large
forest fires, and it is among the most dangerous missions that a civilian
pilot can undertake [1]. It is another area where, in the future, UAVs could
deliver immense benefits, removing humans from danger and operating in
conditions where is currently not possible with a human pilot, e.g. at
night time, or with limited visibility. One example of such a type of UAV
is described in the patent application by J. Moore [74]. These missions
are usually carried out in groups of heterogeneous aircraft because there is
an advantage in the persistent application of firefighting agents and in its
geographically distributed attack. Therefore, it is an ideal application for
task allocation in a team of UAVs. When an aircraft attacks more than
one fire point the pressure in the tank drops as the agent is delivered, and
the effectiveness is reduced. Furthermore, the attack is altogether futile if
insufficient firefighting agent is delivered in a fire front. Therefore, a non-
monotone function with diminishing returns seems a viable way to model
the problem, providing another application area where our algorithm could
be effective.

7.3 A Combinatorial Auction Framework For De-
centralised Task Allocation

Finally, in chapter 6 we have presented a decentralised algorithm for the Multi
Robot Task Allocation Problem with communication costs comparable to those
of the state of the art such as CBBA [19]. The advantage of our framework
is that it provides a way to leverage existing algorithmic techniques in a de-
centralised setting. This opens the use of a lot of the algorithmic technology
available in a centralised setting -Mixed Integer Programming, Constraint Pro-
gramming, Metaheuristics, etc- where agents can only access their own objective
functions, and not that of their peers. The numerical results that we have pre-

107

sented are preliminary but demonstrate that its performance improve over the
state of the art (CBBA [19]) with representative routing objective functions:
MinSum, MinMax and MinAve. We remark that we present here a framework
rather than an individual algorithm because its key advantage lies in the flexi-
bility in the formulation and the solution of the bidding problem with tailored
methods. This flexibility comes at a price: we cannot establish any formal
approximation guarantees, nor a polynomial running time. However, solution
methods that have performed well in practice with other NP-Hard problems
could be adapted to provide a practical computation running time. For exam-
ple, one could use an off-the-shelf solver to solve the bidding problem with an
approximation gap or a time limit. Therefore, given that this approach has
performed well for many real-world problems and continues to be a fertile field
of in the Operations Research community, we believe that it could be viable
alternative in to tackle the decentralised solution of a problem that does not
satisfy any conditions (such as submodularity) that enables constant factor ap-
proximation algorithms. There are two strands of future work that could yield
interesting results. The first is to explore the refinement of the solution once
all the rounds have been completed. For example, one could re-run the whole
bidding process several times after it has been completed, allowing agents to
use in the solution of their bidding problems the bids that have been exchanged
in previous rounds. Another idea is, once a whole run with stages 1, ..., |T | has
been conducted, to run rounds with a random maximum bundle size allowing
agents to use all the information exchanged previously. The second line of fu-
ture work, would be the systematic study of how different kinds of real-world
problems (routing, scheduling, etc.) perform in our framework, and how the
current best centralised methods available for their solution can be applied to
our framework.

108

Bibliography

[1] Federal Aerial Firefighting: Assessing Safety and Effectiveness. USDA
Forest Service, and Bureau of Land Management, 2002.

[2] Perdix Fact Sheet. The Strategic Capabilities Office (US DoD), 2016.

[3] Technology Quaterly: A Sudden Light. The Economist, aug 2016.

[4] A.A. Ageev and M.I. Sviridenko. Pipage Rounding: A New Method of
Constructing Algorithms with Proven Performance Guarantee. Journal
of Combinatorial Optimization, 8(3):307–328, sep 2004.

[5] M. Argyle, D.W. Casbeer, and R. Beard. A Multi-Team Extension of
the Consensus-Based Bundle Algorithm. In Proceedings of the American
Control Conference, pages 5376–5381, 2011.

[6] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maxi-
mizing submodular functions. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1497–1514. Society
for Industrial and Applied Mathematics, 2014.

[7] Levent Bayindir and Erol Sahin. A review of studies in swarm
robotics. Turkish Journal of Electrical Engineering & Computer Sciences,
15(2):115–147, 2007.

[8] Dimitri P. Bertsekas and David A. Castañon. Parallel synchronous and
asynchronous implementations of the auction algorithm. Parallel Com-
puting, 17(6-7):707–732, sep 1991.

[9] Luca F Bertuccelli, Han-lim Choi, Peter Cho, and Jonathan P How.
Real-time Multi-UAV Task Assignment in Dynamic and Uncertain En-
vironments. In AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2009.

[10] Jeffrey Bilmes and Wenruo Bai. Deep Submodular Functions. jan 2017.

[11] Jonathan M Borwein, Jon D Vanderwerff, and Others. Convex functions:
constructions, characterizations and counterexamples, volume 109. Cam-
bridge University Press Cambridge, 2010.

[12] Niv Buchbinder and Moran Feldman. Constrained Submodular Maximiza-
tion via a Non-symmetric Technique. 2016.

109

[13] Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing Apples
and Oranges: Query Tradeoff in Submodular Maximization. oct 2014.

[14] R E Burkard, M Dell’Amico, and S Martello. Assignment Problems. SIAM
e-books. Society for Industrial and Applied Mathematics (SIAM, 3600
Market Street, Floor 6, Philadelphia, PA 19104), 2009.

[15] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Max-
imizing a Monotone Submodular Function Subject to a Matroid Con-
straint. SIAM Journal on Computing, 40(6):1740–1766, jan 2011.

[16] Glenn Michael Callow, Markus Deittert, and John Paterson Bookless.
Goal Based Planning System. WPO Patent Office, BAE SYSTEMS PLC,
page WO/2013/030538, 2013.

[17] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular Func-
tion Maximization via the Multilinear Relaxation and Contention Resolu-
tion Schemes. SIAM Journal on Computing, 43(6):1831–1879, nov 2014.

[18] Yuxin Chen, Shervin Javdani, Amin Karbasi, J Andrew Bagnell, Sid-
dhartha S Srinivasa, and Andreas Krause. Submodular Surrogates for
Value of Information. In AAAI, pages 3511–3518, 2015.

[19] Han-lim Choi, Luc Brunet, Jonathan P How, and Senior Member.
Consensus-Based Decentralized Auctions for Robust Task Allocation.
IEEE Transactions on Robotics, 25(4):912–926, 2009.

[20] Han-Lim Choi, A.K. Whitten, and J.P. How. Decentralized task alloca-
tion for heterogeneous teams with cooperation constraints. In American
Control Conference, pages 3057–3062, 2012.

[21] Jorge Cortés. Distributed algorithms for reaching consensus on general
functions. Automatica, 44(3):726–737, mar 2008.

[22] G. P. Das, T. M. McGinnity, S. A. Coleman, and L. Behera. A fast
distributed auction and consensus process using parallel task allocation
and execution. In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4716–4721. IEEE, sep 2011.

[23] Anirban Dasgupta, Ravi Kumar, and Sujith Ravi. Summarization
Through Submodularity and Dispersion. In ACL (1), pages 1014–1022,
2013.

[24] Prithviraj Dasgupta, Angélica Munoz-Meléndez, and K R Guruprasad.
Multi-robot terrain coverage and task allocation for autonomous detection
of landmines. In SPIE Defense, Security, and Sensing, pages 83590H—-
83590H. International Society for Optics and Photonics, 2012.

[25] M Bernardine Dias. Traderbots: A new paradigm for robust and effi-
cient multirobot coordination in dynamic environments. Robotics Insti-
tute, page 153, 2004.

[26] M Bernardine Dias and Anthony Stentz. A free market architecture for
distributed control of a multirobot system. In 6th International Confer-
ence on Intelligent Autonomous Systems (IAS-6), pages 115–122, 2000.

110

[27] M.B. Dias, R. Zlot, N. Kalra, and a. Stentz. Market-Based Multirobot Co-
ordination: A Survey and Analysis. Proceedings of the IEEE, 94(7):1257–
1270, jul 2006.

[28] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure
for the analysis of randomized algorithms. Cambridge University Press,
2009.

[29] Shaddin Dughmi, Tim Roughgarden, and Mukund Sundararajan. Rev-
enue submodularity. In Proceedings of the 10th ACM conference on Elec-
tronic commerce, pages 243–252. ACM, 2009.

[30] Alina Ene and Huy L Nguyen. Constrained submodular maximization:
Beyond 1/e. In Foundations of Computer Science (FOCS), 2016 IEEE
57th Annual Symposium on, pages 248–257. IEEE, 2016.

[31] Uriel Feige. A threshold of ln n for approximating set cover. Journal of
the ACM (JACM), 45(4):634–652, 1998.

[32] M. Feldman, Joseph Naor, and R. Schwartz. A Unified Continuous Greedy
Algorithm for Submodular Maximization. In 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science, pages 570–579. IEEE,
oct 2011.

[33] Jixin Feng, Warren E Dixon, and John M Shea. Fast algorithms for
jammer placement to partition a wireless network. In Communications
(ICC), 2017 IEEE International Conference on, pages 1–6. IEEE, 2017.

[34] Wan Fokkink. Distributed algorithms: an intuitive approach. MIT Press,
2013.

[35] B. P. Gerkey and Maja J Mataric. A Formal Analysis and Taxonomy of
Task Allocation in Multi-Robot Systems. The International Journal of
Robotics Research, 23(9):939–954, sep 2004.

[36] Brian P Gerkey and Maja J Mataric. Sold!: Auction methods for mul-
tirobot coordination. IEEE transactions on robotics and automation,
18(5):758–768, 2002.

[37] Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by
simulated annealing. In Proceedings of the twenty-second annual ACM-
SIAM symposium on Discrete Algorithms, pages 1098–1116. Society for
Industrial and Applied Mathematics, 2011.

[38] Silvia Giannini, Antonio Petitti, Donato Di Paola, and Alessandro Rizzo.
Asynchronous Max-Consensus Protocol With Time Delays: Convergence
Results and Applications. IEEE Transactions on Circuits and Systems I:
Regular Papers, 63(2):256–264, feb 2016.

[39] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual, 2014.

[40] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American statistical association, 58(301):13–30,
1963.

111

[41] Simon Hunt, Qinggang Meng, and CJ Hinde. An extension of the
consensus-based bundle algorithm for group dependant tasks with equip-
ment dependencies. Neural Information Processing, pages 518–527, 2012.

[42] Sarah Ismail and Liang Sun. Decentralized hungarian-based approach for
fast and scalable task allocation. In Unmanned Aircraft Systems (ICUAS),
2017 International Conference on, pages 23–28. IEEE, 2017.

[43] F. Iutzeler, P. Ciblat, and J. Jakubowicz. Analysis of Max-Consensus Al-
gorithms in Wireless Channels. IEEE Transactions on Signal Processing,
60(11):6103–6107, nov 2012.

[44] RK Iyer. Submodular Optimization and Machine Learning: Theoretical
Results, Unifying and Scalable Algorithms, and Applications. PhD Thesis,
University of Washington, 2015.

[45] Stefanie Jegelka and Jeff Bilmes. Submodularity beyond submodular en-
ergies: coupling edges in graph cuts. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pages 1897–1904. IEEE,
2011.

[46] LB Johnson, SS Ponda, HL Choi, and JP How. Asynchronous Decen-
tralized Task Allocation for Dynamic Environments. In AIAA Infotech at
Aerospace Conference, number March, 2011.

[47] Luke Johnson, Han-lim Choi, Sameera Ponda, and Jonathan P How. Al-
lowing Non-Submodular Score Functions in Distributed Task Allocation.
In Proceedings of the IEEE Conference on Decision and Control, num-
ber 1, pages 4702–4708, 2012.

[48] Luke B Johnson, Han-Lim Choi, Sameera S Ponda, and Jonathan P How.
Decentralized task allocation using local information consistency assump-
tions. Journal of Aerospace Information Systems, 2017.

[49] Nidhi Kalra, Dave Ferguson, and Anthony Stentz. Hoplites: A market-
based framework for planned tight coordination in multirobot teams. In
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, pages 1170–1177. IEEE, 2005.

[50] Frank Kelly and Richard Steinberg. A combinatorial auction with multiple
winners for universal service. Management Science, 2000.

[51] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread
of influence through a social network. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 137–146. ACM, 2003.

[52] G. a. Korsah, a. Stentz, and M. B. Dias. A comprehensive taxonomy
for multi-robot task allocation. The International Journal of Robotics
Research, 32(12):1495–1512, oct 2013.

[53] a. Krause, C. Guestrin, a. Gupta, and J. Kleinberg. Near-optimal sen-
sor placements: maximizing information while minimizing communica-
tion cost. 2006 5th International Conference on Information Processing
in Sensor Networks, 2006.

112

[54] Andreas Krause and Daniel Golovin. Submodular function maximization.
Tractability: Practical Approaches to Hard Problems, 3(19):8, 2012.

[55] Andreas Krause, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and
Christos Faloutsos. Efficient sensor placement optimization for securing
large water distribution networks. Journal of Water Resources Planning
and Management, 134(6):516–526, 2008.

[56] Harold W Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics (NRL), 2(1-2):83–97, 1955.

[57] Indraneel S Kulkarni and Dario Pompili. Task allocation for networked
autonomous underwater vehicles in critical missions. IEEE Journal on
Selected Areas in Communications, 28(5), 2010.

[58] Michail G Lagoudakis, Evangelos Markakis, David Kempe, Pinar Ke-
skinocak, Anton J Kleywegt, Sven Koenig, Craig A Tovey, Adam Meyer-
son, and Sonal Jain. Auction-Based Multi-Robot Routing. In Robotics:
Science and Systems, volume 5, page 343C350. Rome, Italy, 2005.

[59] Ailsa Land, Susan Powell, and Richard Steinberg. Chapter 6 PAUSE :
A Computationally Tractable Combinatorial Auction. In Peter Cramton,
Yoav Shoham, and Richard Steinberg, editors, Combinatorial Auctions,
chapter 6, pages 139–157. 2006.

[60] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auc-
tions with decreasing marginal utilities. In Proceedings of the 3rd ACM
conference on Electronic Commerce, pages 18–28. ACM, 2001.

[61] Thomas Lemaire, Rachid Alami, and Simon Lacroix. A distributed tasks
allocation scheme in multi-UAV context. In Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, vol-
ume 4, pages 3622–3627. IEEE, 2004.

[62] Jan Karel Lenstra, David B Shmoys, and Éva Tardos. Approximation
algorithms for scheduling unrelated parallel machines. Mathematical pro-
gramming, 46(1):259–271, 1990.

[63] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos,
Jeanne VanBriesen, and Natalie Glance. Cost-effective outbreak detection
in networks. In Proceedings of the 13th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 420–429. ACM,
2007.

[64] Hui Lin and Jeff Bilmes. Multi-document summarization via budgeted
maximization of submodular functions. In Human Language Technolo-
gies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 912–920. Association for
Computational Linguistics, 2010.

[65] Hui Lin and Jeff Bilmes. A class of submodular functions for document
summarization. In Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies-
Volume 1, pages 510–520. Association for Computational Linguistics,
2011.

113

[66] Lantao Liu and Dylan A. Shell. An anytime assignment algorithm: From
local task swapping to global optimality. Autonomous Robots, 35(4):271–
286, jul 2013.

[67] Chunbo Luo, Paul Ward, Stephen Cameron, Gerard Parr, and Sally Mc-
clean. Communication Provision for a Team of Remotely Searching UAVs
: A Mobile Relay Approach. In IEEE Globecom Workshops, pages 1544–
1549, 2012.

[68] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[69] S Thomas McCormick. Submodular function minimization. Handbooks in
operations research and management science, 12:321–391, 2005.

[70] Travis Mercker, DW Casbeer, Travis Millet, and Maruthi Akella. An
extension of consensus-based auction algorithms for decentralized, time-
constrained task assignment. American Control . . . , pages 6324–6329,
2010.

[71] Michel Minoux. Accelerated greedy algorithms for maximizing submod-
ular set functions. In Optimization Techniques, pages 234–243. Springer-
Verlag, Berlin/Heidelberg, 1978.

[72] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi.
Fast constrained submodular maximization: Personalized data summa-
rization. In ICLM’16: Proceedings of the 33rd International Conference
on Machine Learning (ICML), 2016.

[73] Sangwoo Moon, Eunmi Oh, and David Hyunchul Shim. An Integral
Framework of Task Assignment and Path Planning for Multiple Un-
manned Aerial Vehicles in Dynamic Environments. Journal of Intelligent
& Robotic Systems, 70(1-4):303–313, sep 2012.

[74] Jason Moore. UAV Fire-fighting System. US Patent Application, US
20130134254 A1, 2013.

[75] Alejandro R Mosteo, Luis Montano, and Michail G Lagoudakis.
Guaranteed-performance multi-robot routing under limited communica-
tion range. Distributed Autonomous Robotic Systems, 8:491–502, 2009.

[76] Aristides Mpitziopoulos, Damianos Gavalas, Charalampos Konstantopou-
los, and Grammati Pantziou. A survey on jamming attacks and counter-
measures in WSNs. IEEE Communications Surveys & Tutorials, 11(4),
2009.

[77] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of ap-
proximations for maximizing submodular set functionsI. Mathematical
Programming, 14(1):265–294, dec 1978.

[78] Trung Thanh Nguyen, Magnus Roos, and Jörg Rothe. A survey of ap-
proximability and inapproximability results for social welfare optimization
in multiagent resource allocation. Annals of Mathematics and Artificial
Intelligence, 68(1-3):65–90, jan 2013.

114

[79] Lynne E Parker. ALLIANCE: An architecture for fault tolerant mul-
tirobot cooperation. IEEE transactions on robotics and automation,
14(2):220–240, 1998.

[80] Vangelis T. Paschos. A survey of approximately optimal solutions to some
covering and packing problems. ACM Computing Surveys, 29(2):171–209,
jun 1997.

[81] Sameera Ponda, Josh Redding, HL Choi, Jonathan P How, M Vavrina,
and J Vian. Decentralized planning for complex missions with dynamic
communication constraints. In American Control Conference, 2010.

[82] Sameera S Ponda, Luke B Johnson, Alborz Geramifard, and Jonathan P
How. Cooperative mission planning for multi-uav teams. In Handbook of
Unmanned Aerial Vehicles, pages 1447–1490. Springer, 2015.

[83] SS Ponda, LB Johnson, and JP How. Distributed chance-constrained
task allocation for autonomous multi-agent teams. . . . Control Conference
(ACC), . . . , pages 4528–4533, 2012.

[84] R Tyrrell Rockafellar. Lagrange multipliers and optimality. SIAM review,
35(2):183–238, 1993.

[85] A Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Al-
gorithms and Combinatorics. Springer Berlin Heidelberg, 2003.

[86] David B Shmoys and Éva Tardos. An approximation algorithm for the
generalized assignment problem. Mathematical programming, 62(1-3):461–
474, 1993.

[87] A. Singh, A. Krause, C. Guestrin, and W. Kaiser. Efficient informative
sensing using multiple robots. Journal of Artificial Intelligence Research,
2009.

[88] Amarjeet Singh, Andreas Krause, Carlos Guestrin, William J Kaiser, and
Maxim A Batalin. Efficient Planning of Informative Paths for Multiple
Robots. In IJCAI, volume 7, pages 2204–2211, 2007.

[89] Hyun Oh Song, Yong Jae Lee, Stefanie Jegelka, and Trevor Darrell.
Weakly-supervised discovery of visual pattern configurations. In Advances
in Neural Information Processing Systems, pages 1637–1645, 2014.

[90] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

[91] Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-
based algorithms and lower bounds. SIAM Journal on Computing,
40(6):1715–1737, 2011.

[92] Gerard Tel. Introduction to distributed algorithms. Cambridge university
press, 2000.

[93] P Toth and D Vigo. Vehicle Routing: Problems, Methods, and Applica-
tions, Second Edition. MOS-SIAM Series on Optimization. SIAM, 2014.

115

[94] Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes.
Learning mixtures of submodular functions for image collection summa-
rization. In Advances in neural information processing systems, pages
1413–1421, 2014.

[95] Johannes Van Der Horst, Jason Noble, and Adrian Tatnall. Robustness of
market-based task allocation in a distributed satellite system. In European
Conference on Artificial Life, pages 334–341. Springer, 2009.

[96] Jan Vondrak. Optimal approximation for the submodular welfare problem
in the value oracle model. In Proceedings of the fourtieth annual ACM
symposium on Theory of computing - STOC 08, page 67, New York, New
York, USA, may 2008. ACM Press.

[97] Jan Vondrak. A note on concentration of submodular functions. may
2010.

[98] Jan Vondrák. Symmetry and approximability of submodular maximiza-
tion problems. SIAM Journal on Computing, 42(1):265–304, 2013.

[99] Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular func-
tion maximization via the multilinear relaxation and contention resolu-
tion schemes. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 783–792. ACM, 2011.

[100] S De Vries and RV Vohra. Combinatorial auctions: A survey. INFORMS
Journal on computing, 2003.

[101] Zengfu Wang, Bill Moran, Xuezhi Wang, and Quan Pan. An accelerated
continuous greedy algorithm for maximizing strong submodular functions.
Journal of Combinatorial Optimization, 30(4):1107–1124, 2015.

[102] Andrew Whitten. Decentralized Planning for Autonomous Agents Coop-
erating in Complex Missions, 2010.

[103] Wikipedia. Article on Planet Labs, Inc. Retrieved in mid 2017 from
en.wikipedia.org/wiki/Planet Labs.

[104] Zhi Yan, Nicolas Jouandeau, and Arab Ali. A Survey and Analysis of
Multi-Robot Coordination. International Journal of Advanced Robotic
Systems, 10:1, 2013.

[105] Michael M. Zavlanos, Leonid Spesivtsev, and George J. Pappas. A dis-
tributed auction algorithm for the assignment problem. 2008 47th IEEE
Conference on Decision and Control, pages 1212–1217, 2008.

[106] Kai Zhang, Emmanuel G. Collins, and Adrian Barbu. An Efficient
Stochastic Clustering Auction for Heterogeneous Robotic Collaborative
Teams. Journal of Intelligent & Robotic Systems, jan 2013.

[107] Kai Zhang, Emmanuel G. Collins, and Dongqing Shi. Centralized and
distributed task allocation in multi-robot teams via a stochastic cluster-
ing auction. ACM Transactions on Autonomous and Adaptive Systems,
7(2):1–22, jul 2012.

116

