
Expert Systems With Applications 197 (2022) 116718

Available online 25 February 2022
0957-4174/© 2022 Elsevier Ltd. All rights reserved.

Application of advanced tree search and proximal policy optimization on
formula-E race strategy development

Xuze Liu *, Abbas Fotouhi, Daniel Auger
Advanced Vehicle Engineering Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK

A R T I C L E I N F O

Keywords:
Energy management
Formula-E race strategy
Monte Carlo Tree search
Proximal policy optimization

A B S T R A C T

Energy and thermal management is a crucial element in Formula-E race strategy development. Most published
literature focuses on the optimal management strategy for a single lap and results in sub-optimal solutions to the
larger multi-lap problem. In this study, two Monte Carlo Tree Search (MCTS) enhancement techniques are
proposed for multi-lap Formula-E racing strategy development. It is shown that using the bivariate Gaussian
distribution enhancement, race finishing time improves by at least 0.25% and its variance reduces by more than
26%. Compared to the published conventional MCTS technique used in multi-lap problems, this proposed
technique is proved to bring a remarkable enhancement with no additional computational time cost. By further
enhancing the MCTS using proximal policy optimization, the final product is capable of generating more than
0.5% quicker race time solutions and improving the consistency by over 90% which makes it a very suitable
method particularly when enough training time is guaranteed

1. Introduction

In recent years, electric vehicles have become more and more pop-
ular with powertrain and battery technologies developing rapidly. En-
ergy management has been one of the most popular topics on electric
cars, both hybrid and full electric. Top-level motorsport series have
continuously introduced stricter boundaries for energy consumptions to
encourage more high-efficiency powertrain technology development.
Specifically, in Formula One (F1), the total fuel usage during a full race
is limited along with restricted usage of the electric energy in the hybrid
system (FIA, 2021a). In World Endurance Championships (WEC), the
concept is similar but refuelling during a race is allowed (FIA, 2021c)
due to the much longer duration of the race. While race strategy
development for these two series also needs to account for other factors
such as tire management, in Formula–E (FE) championships, the race
strategy is more concentrated on powertrain, specifically the energy and
thermal management.

The technical regulation (FIA, 2021b) of FE states that for a complete
race, the total amount of energy that can be delivered from the
Rechargeable Energy Storage System (RESS) to the Motor Generator
Unit (MGU) is limited to 52 kWh. The maximum power is limited to 200
kW in race mode settings. Beyond that, teams are given options of
activating attack mode for a certain amount of time which gives an extra

power of 50 kW during this power mode. In addition to the energy-wise
restrictions by the regulation, thermal management is another major
concern when races are held in hot climates such as those present in
Marrakesh and Santiago. Teams have to avoid battery overheating
which leads to de-rated power and potentially a Did Not Finish (DNF).
Heat is generated both during propulsion (vital for speed) and regen-
eration (vital for energy efficiency and endurance). In general, the
problem of FE race strategy development can be described as making
decisions for each race such as how much energy to use for a lap (i.e.
Energy per lap) and choice of power mode; the objective is the quickest
race time, and the problem must be solved within present energy and
thermal constraints.

The energy management problems in published research fall into two
main categories: (1) real-time applications, which are the majority
(Peng, He, & Xiong, 2017; Wang, Huang, Khajepour, & Song, 2016;
Wieczorek & Lewandowski, 2017; Zhang & Xiong, 2015); and (2) trip-
oriented off-line optimizations for a pre-specified route (Brayshaw &
Harrison, 2005; Zhang & Vahidi, 2012; Du, Zhao, Wang, Zhang, & Xia,
2016; Gong, Li, & Peng, 2008). In the first category, various control
strategies have been used to manage the power flow among multiple
energy resources. These researches targeted to achieve the maximum
overall powertrain efficiency at each timeframe or a certain optimiza-
tion horizon given a specific power demand from the diver input. In the

* Corresponding author.
E-mail address: xuze.liu@cranfield.ac.uk (X. Liu).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2022.116718
Received 14 April 2021; Received in revised form 6 January 2022; Accepted 21 February 2022

mailto:xuze.liu@cranfield.ac.uk
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.116718
https://doi.org/10.1016/j.eswa.2022.116718
https://doi.org/10.1016/j.eswa.2022.116718
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.116718&domain=pdf

Expert Systems With Applications 197 (2022) 116718

2

second category, the total energy consumption along the route is opti-
mized based on the information of the route, vehicle and powertrain. In
motorsport applications, the energy is usually treated as a constraint and
the target is to achieve minimal lap time which is computed by lap time
simulations (LTS). For LTSs, quasi-steady-state (QSS) technique (Bray-
shaw & Harrison, 2005; Heilmeier, Geisslinger, & Betz, 2019) is a widely
used method which has the advantage of less computational time
(typically taking seconds). However, the weakness of QSS methods is
that computational efficiency comes at the expense of reduced
complexity of the internal models, which may mean that the optimal
solutions to the approximated problem vary significantly from the
optimal solution to the true real-world problem. Also, the short opti-
mization windows of QSS techniques make it very difficult to generate
an optimal management problem solution for an entire lap (Heilmeier
et al., 2019). To overcome this, the energy management problem is
usually formulated as an optimal control problem (OCP), where the
internal model can be detailed and more complex objectives can be
applied. For example, Giacomo, et al. (Limebeer & Perantoni, 2015;
Perantoni & Limebeer, 2015) used an optimal control technique to
model a track in a 3D ribbon way with banking and elevation features
and studied the effects of aero-suspension interaction. Vehicle param-
eter optimizations such as differential settings are studied in (Perantoni
& Limebeer, 2014; Tremlett et al., 2015). In terms of management
problems, Tremlett et al. (Tremlett & Limebeer, 2016) optimized the tire
usage by including a thermal-dynamic model in the OCP. Limebeer et al.
(Limebeer, Perantoni, & Rao, 2014) studied the energy management
strategy for an F1 hybrid system.

Optimal control methods perform very reliably for solving minimum
time manoeuvre problems with various constraints. However, compared
to QSS methods, optimal control has a high time cost (dozens of minutes
for a single lap calculation). To be useful to race engineers, a ‘strategic
tool’ requires special features such as: (1) have prediction models that
predict performances with acceptable accuracy; (2) be able to perform a
long optimization horizon or deep depth (e.g. length of a race, multiple
laps) of decision makings; and (3) be able to generate a solution quickly.
Solving multi-lap management problems using optimal control methods
would easily cost hours of computational time, not to mention for the
full length of a race. The third point – speed – is crucial because
motorsport is a highly dynamic environment and teams have to be able
to make fast decisions in reaction to unexpected changes during a race
(e.g. environmental or race conditions)

There are very few publications targeting such strategy problems.
Most of these focus on building race simulation discussing how to dis-
cretize a race and what influence factors to include. Bekker (Bekker &

Lotz, 2009) discretized a race into sectors of approximately 150 m in
length. The time for each sector was calculated by penalties representing
adding air resistance and fuel load to a baseline time. (Sulsters & Bekker,
2018) and (Choo, 2015) both discretized a race into laps. While Chris-
topher mainly focused on studying historical data patterns, Claudia used
more specific formulas to calculate lap times, adding tire age effect and
random variability. Meanwhile in (Choo, 2015), overtaking bonuses and
penalties were accounted for with fixed numbers and the probability of
DNFs is introduced. Alexander, et al. (Heilmeier, Graf, & Lienkamp,
2018) introduced a more detailed discretization in which based on a lap
level discretization, a pitstop is described into sub-sectors to capture
overtake opportunities during pitstops. Additionally, Alexander intro-
duced more factors such as driver interaction and car/driver abilities
into lap time calculations. In terms of race strategy decision making, (Liu
& Fotouhi, 2020) is the latest publication focusing on a relevant problem
in which a race is discretized into laps and Monte Carlo Tree Search
(MCTS) was proposed as the decision-making algorithm.

Race strategy development for FE competitions features several
challenges to tackle: (1) a big action space comprising many choices for
driving style and power mode; (2) the decision problem is a long-
sequential in nature (due to the number of laps in a race); (3) De-
cisions made in the early stages have profound effects in later stages (e.g.
decisions on energy consumption and battery temperature); (4) During a
race, conditions may change; so one has to properly adapt to the
changes.

MCTS has several fundamental concepts which make it a very suit-
able algorithm for such race strategic planning application: (1) It pro-
gressively builds a partial tree instead of a full game tree which is way
beyond the realm of computation; (2) It allows tuning of the dilemma
between exploration and exploitation; (3) It takes reward only from the
terminal state (race end) which teams ultimately care about; (4) The
quality of an action is approximated through random simulations; (5)
The quality values can be used to adjust the searching policy toward
more promising solutions.

As proposed in (Liu & Fotouhi, 2020), MCTS managed to tackle the
race strategy development problem. And it has been proved that MCTS
can generate a decent solution for both pre-race planning and in-race
condition changing scenarios. However, it has also been pointed that
the solution given by MCTS is sub-optimal which isn’t favourable for
motorsport where a one-second difference in solution will hugely affect
the race outcome. The reason for such a result is that the MCTS used in
(Liu & Fotouhi, 2020) is a very ordinary type without further tailoring
for this application. In this study, the aim is to apply different modifi-
cations to the solution proposed in (Liu & Fotouhi, 2020) in order to

Fig. 1. Monte Carlo Tree Search iteration.

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

3

enhance its performance.
MCTS is an iterative tree searching algorithm where each iteration

comprises four steps as follows (shown in Fig. 1):

1) Selection: The agent starts from the root node, moves to the child
with the highest priority and progressively descend through the
branches until reaching an expandable leaf node. The priority is
defined by the tree policy. A node is expandable if it is neither a
terminal state nor its action space is null.

2) Expansion: A node is expanded by adding child nodes under it based
on its action space.

3) Simulation: A simulation, governed by the simulation policy, is
performed from the newly added node to a terminal state and a
reward is calculated.

4) Backpropagation: The simulation reward is backpropagated through
the branches toward the root node and the information of the passed
node is updated.

The enhancement techniques of MCTS proposed in the literature
mainly focused on the four steps of MCTS iteration. For the selection
step, the most popular selection algorithm is the Upper Confidence
Bounds for Trees (UCT) proposed by (Kocsis, Szepesvári, & Willemson,
2006) stating that the agent follows the child with the highest UCT value
given by:

UCT =
Q(v’)
N(v’)

+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√

(1)

where v denotes the root node and v’ is the node where the agent locates.
Q(v’) is the sum of simulation reward under node v’ and N denotes the
visit count of a node. c is a balancing parameter that balances the
exploration and exploitation of the search. The majority of enhancement
on the selection step is to ensure higher reliability of a node. This in-
cludes replacing the second term (Auer, Cesa-Bianchi, & Fischer, 2002;
van den Broeck, Driessens, & Ramon, 2009) or adding a third term
(CHASLOT, WINANDS, HERIK, UITERWIJK, & BOUZY, 2008; Schadd,
Winands, van den Herik, Chaslot, & Uiterwijk, 2008) to the equation to
assess the variance and reliability of the rewards.

For the expansion step, there is no specific enhancement method.
One thing is the decision to use single child node expansion per step or to
add multiple child nodes per step. This depends largely on the compu-
tational budget.

The simulation step is another area of improvement as stated in the
literature. The default simulation policy is to randomly choose an action

from the action space. This is a very general starting point that no
domain-specific knowledge is required. However, the main issue that
this policy will lead to is the aforementioned high level of uncertainty or
variance in the simulation rewards which might compromise the selec-
tion step. And the randomness cannot guarantee a realistic approxima-
tion of the quality of action because some poor actions may be taken
equally likely as the promising ones. There are two main categories of
simulation enhancement. First, simulation can be governed or evalu-
ated. Silver (Silver & Tesauro, 2009) proposed ruled based simulation
which includes domain-specific knowledge in the simulation sequence.
Rimmel (Rimmel & Teytaud, 2010) introduced a domain-independent
contextual concept into the simulation which uses statistics from pre-
vious simulations to guide the future ones. The second category includes
those whose simulation actions are evaluated. Winands, et al. (Winands
& Björnsson, 2010) used the evaluation function to avoid bad moves in
the simulation. Some literature combined learning features such as
Temporal Difference Learning (TDL) (Silver, Sutton, & Müller, 2008) in
the simulation step. Actions are taken based on their values (Q) and the
Q-tables are updated during each backpropagation step (Finnsson &
Björnsson, 2010; Finnsson, 2007).

The enhancement for the backpropagation step mainly aims to
favour the selection step by updating additional information such as
those in the aforementioned selection equations. Other modifications on
backpropagation mainly focus on weighting different simulation results.
Xie, et al. (Xie & Liu, 2009) allocate heavier weight to the later simu-
lation results which are believed to be more accurate than earlier per-
formed ones. Decaying reward is another method to weigh earlier wins
to later wins by multiplying a factor 0 < γ < 1 recursively while the
agent backpropagates from leaf node to root node.

A big breakthrough in recent years is the success of AlphaGo-Zero
(Silver et al., 2017) which used a variant of MCTS with an Actor-Critic
(A2C)-like-frame to enhance self-learning performance. It introduced a
prior probability value P(v’) to the selection equation Q(v’)+ P(v’)

1+N(v’)
and

used the policy head of A2C to guide the simulation. One of the most
popular A2C like algorithms recently is the Proximal policy optimization
(PPO) [Proximal Policy Optimization Algorithms]. Previous policy
gradient methods may easily suffer from their sensitivities to hyper-
parameters such as learning rate, update period, etc. hence poor
convergence performance. The introduction of a clipped objective PPO
policy update ensures the deviation from the previous policy is relatively
small. This makes PPO a very stable and easy-to-implement method in
finding an optimal policy.

Based on the previous weakness pointed out in (Liu & Fotouhi,
2020), this study aims to improve the quality of the FE race strategy
solution by investigating different methods to enhance the tree search.
The first section introduces the problem background and previous re-
searches. The second section demonstrates the formulation of the
strategy development problem. In the third section, different enhance-
ment methods used in this study are presented. The results and discus-
sion are demonstrated in section 4. Finally, the conclusion is presented
in section 5.

2. Problem formulation

The decision making for race strategy is a sequential decision-making
problem whose environment is fully observable. To formulate such a
problem in this paper, some symbols are defined as stated in Table 1.

2.1. States and actions

A state s contains the information accessible during a race including
variables that have a significant influence on decision making. Such
variables which are contained in a state are stated in Table 2.

In this study, the Marrakesh ePrix track is used. For a 45-minute race,
the total number of laps is 34 thus the Nlap is 34 at most. The Nlap will

Table 1
Symbol definition.

Symbol Description

S A set of states where s0 and sT are the initial and terminal state
respectively

A(s) Action space under the state s
T(s,a,

s’)
Transition model which describes the transition from state s to s’ when
action a is taken

Q(s) Reward function
πd(a|s) Probability of action a being taken under state s

Table 2
State description

State variable Description

Nlap Remaining number of laps
Er Remaining usable energy
Tamb Ambient temperature
Natt Available number of Attack Mode(AM) activation
NRattlap Current remaining number of AM laps
Tbat Battery temperature

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

4

later determine the depth of searching. The FE technical regulation
states that the amount of energy that can be delivered to the MGUs by
the RESS is limited to 52 kWh. Therefore Er is 52kWh at most. The
ambient temperature is another important element that affects the
cooling of the battery. Overheating the battery (Tamb reaching above an
upper limit) will lead to a DNF or other forms of unfavourable results
hence must be avoided. Both Er and Tbat will be accounted for in the
reward function. Natt gives how many times a team can activate attack
mode during a race. Each activation lasts a number of laps and NRattlap

gives how many attack mode laps remains during one activation. Natt
and NRattlap will mainly affect the size of the action space.

In a previous study presented in (Liu & Fotouhi, 2020), the action
space has been defined by the combinations of four inputs, namely the
drive power, regeneration power, lift and coasting (LaC) distance and
LaC torque. They have their different impacts on energy consumption,
lap time and battery temperature changes. In this study, these are
replaced by three more representative parameters which are more
closed to real-life applications (explained below). The reason for
choosing these more macroscopic parameters is that on such race
(multiple laps) strategy level, capturing what changes lap after lap is
more important than understanding what happens during a single lap.

The first parameter is called Energy per Lap (EPL). With total usable
energy being a limited resource during a race, this is a very directly
energy-related parameter teams use to decide how much energy to use
for a certain number of laps. The second parameter is defined to indicate
which power mode (PM) to be used. For example, normal race mode
(PM = 1) and attack mode (PM = 3) are the choices whose upper limits
for driving power are 200 kW and 250 kW respectively. Additionally,
considering that the attack mode is activated at a certain point in the
middle of a lap instead of at the start/finish line, and the extra 50 kW of
power are only allowed afterwards, a new power mode (PM = 2, attack
mode activation lap) is introduced between those two modes to describe
the performance in the activation lap. The third action parameter is
called the Heat Generation Mode which later in this paper will be
referred to as Q-mode (QM). More specifically, with the same amount of

available energy, different settings of thermal boundaries may
compromise the lap time but offer a more efficient way to manage the
temperature rise compared to brutally decreasing the ELP. In this study,
QM has four options from 0 to 3. QM of 0 indicates no temperature
constraint is applied while the following choices from 1 to 3 each re-
stricts the temperature rise to 95% of the former one (i.e. if QM0 has a
battery Tbat rise of 4 ℃, then for QM1 Tbat will rise by 3.8 ℃). To
summarize, the complete action space is made of 120 actions as shown
in Table 3.

In this study of race strategy development, the action space varies as
the race goes on. For example, if PM = 2 (attack mode activation lap) is
chosen at a certain lap, the action space for the next lap will only contain
actions under PM = 3. The action space following a PM = 1 lap will
either contain actions for both PM = 1 and 2 or only for PM = 1 when
there’s no available attack mode left. Therefore, as the MCTS agent
descends into different layers, the action space changes. However, it
should be noted that the action space doesn’t shrink gradually in the
later phases like in board games or delivery problems where there will
be fewer choices as the problem progresses. The vast searching space
would make the problem difficult to solve which will be addressed later.

2.2. Transition model

The transition model here in this study should provide information
on the effect of an action on the lap time, battery temperature and en-
ergy consumption during a single lap. In previous research (Liu &
Fotouhi, 2020), neural networks were proposed to be trained as tran-
sition models providing decent accuracy. While a commercial simula-
tion software was used to generate training data in (Liu & Fotouhi,
2020), in this study, the training datasets are collected by formulating
each case into an OCP. The reason for doing so is to guarantee the
optimality of lap time performance of a given input while commercial
simulation software failed to do so with their empirical driver model. An
OCP is formulated to minimize a Lagrange cost function of

J =

∫ tf

t0
l(t, x(t), u(t), p)dt (2)

which is subject to the constraints of

Table 3
Action space

PM EPL(kWh) QM

1 1.2,1.3,…,1.9,2.0 0,1,2,3
2 1.2,1.3,…,2.0,2.1 0,1,2,3
3 1.2,1.3,…,2.1,2.2 0,1,2,3

Fig. 2. Data collection process through the OCP.

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

5

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

− f (t, x(t), u(t)) = 0

g(t, x(t), u(t)) = 0

h(t, x(t), u(t)) ≤ 0

gb(x(t0), x(tf),u(t0),u(tf)) = 0

(3)

In this problem, x(t) ∈ Rn is the state vector made of vehicle dy-
namics information and u(t) ∈ Rm is the control vector of steering and
paddles. The system dynamics is described in the vector f(t, x(t), u(t)) ∈
Rn . Vector g ∈ Rng and gb ∈ Rngb are the quality constraints and boundary
constraints. The inequality constraints are defined in h ∈ Rnh where the
aforementioned EPL and QM are included.

This approach has been thoroughly explained in (Liu, Fotouhi, &
Auger, 2020) therefore won’t be detailed in this paper. The data
collection process through the OCP is shown in Fig. 2.

The initial usable energy represents the state of charge (SOC) of the
battery which influences the thermal dynamics model inside the prob-
lem. It should be noted that the energy element appears on both input
and output sides as the filled arrow showed in Fig. 2. The reason for
doing so will be explained later. The input ranges for data collection are
defined in Table 4. The input variables are picked randomly from their
range. A total number of 129,000 datasets are collected to train the
neural network transition model. An example of the collected data is
shown in Fig. 3 including the effects of Q mode and EPL on the lap time.
The blocked area in the figure explains why ‘energy’ has to be on both
the input and output sides. That is because, in situations of high EPL and
QM combinations, the requested energy isn’t fully consumed due to the
strict thermal boundaries. Therefore, there will be a nonlinear mapping
between each side and the transition model have to be able to capture
this feature.

As a result, three individual networks are trained to model the energy
consumption, battery temperature rise and lap time separately. This
procedure is inherited from (Liu & Fotouhi, 2020) thus is not

demonstrated here. The structure of the networks and accuracies are
shown in appendix A.

2.3. Tree structure and reward function

As previously introduced, a Monte Carlo tree is made of a root node,
branches and layers of nodes. In this study, the root node is defined as
the initial state of an event. Typically for a full race at Marrakesh, this
means the root node state vector (defined in section 2.1) is assigned as:
[
Nlap,Er,Tbat,Tamb,Natt,NRattlap

]
= [34, 52, 20, 20, 2, 2] (4)

The race is discretized into laps. Each time the searching agent de-
scends into a deeper layer, it means that the race progresses into another
lap. The neural network transition model acts when the branches con-
necting a parent node to its child nodes updates the state information of
the child nodes. In the simulation step performed from a leaf node, the
transition model is also used to simulate from the leaf node state to the
terminal state that is when Nlap becomes zero. The simulation reward is
backpropagated from the leaf node all the way to the root node in the
backpropagation step. The reward is defined as:

Q(sT) =

{
3000 − tT , if Tbat < 60andEr > 0

0, else (5)

which means that a successful finish with faster time tT , gets a higher
reward and a DNF (due to either overheated battery or over-consumed
energy) gets a reward of zero. In this way, the MCTS is expected to
generate a successful fast race finishing strategy solution

3. Enhancement methods OF MCTS

In this section, different methods of MCTS enhancement are
demonstrated. This includes applying UCT enhancement techniques
from the literature, a new simulation and expansion method using
bivariate Gaussian distribution (BGD) proposed by the authors and a
reinforcement learning method for further enhancing both expansion
and simulation steps.

3.1. UCT modification

The most commonly used UCT algorithm is proposed by Kocsis and
Szepesvári (Kocsis et al., 2006).

UCT AveR =
Q(v’)
N(v’)

+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√

(6)

Table 4
Input variables’ range

Input Range

Energy per lap(kWh) 1.2 ~ 2.2
Power mode 1,2,3
Q mode 0,1,2,3
Initial usable energy(kWh) 0 ~ 52
Initial battery temperature(℃) 20 ~ 60
Ambient temperature(℃) 15 ~ 40

Fig. 3. Lap time of different EPL and Q modes (Power mode = 1).

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

6

The second term of the formula is called the exploration term. The
first term is called the exploitation term which is the average reward
gained at node v’ . In dual player games or zero-sum game theory, this

usually means the UCT value leads the agent toward higher winning
odds. However, in this race strategy problem, the aim is to have the
fastest finishing time instead of the odds of faster times. This average
reward exploitation term may diverge the agent from the optimal so-
lution because the fastest time can easily be compromised by its weak
siblings. So, to tailor the selection algorithm in this study, the first term
is replaced with the highest reward ever propagated through the node v’

. That is:

UCT MaxR = Qmax(v’)+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√

(7)

In MCTS, as its name suggests, the quality of an action is approxi-
mated through randomly guided simulation steps. The randomness in-
troduces noises into the approximation. Simulations starting from upper
layers are longer than those from the lower layers hence the variance is
more severe. Most previous researches have been focused on accounting
for the reward variance in the selection criterion.

Auer et al. (Auer et al., 2002) proposed a variant called the UCB1-
Tuned method by replacing the second term in equation (6) with:
̅̅
2lnN(v)

N(v’)
min
{

1
4
,B(N(v’))

}√

where B(N(v’)) is given by:

B(N(v’)) =
1

N(v’)

∑N(v’)

τ=1
Q(v’)2

−Xv’
2
+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√

(8)

This term gives the upper confidence bound a value that is the

sample variance plus the exploration term of
̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√
. In this study, we

also replace the exploitation term with the max reward value:

Fig. 4. Example of an action probability distribution A) Probability distribution over action space B) Enlarged distribution of Power mode 1 actions.

Table 5
Abbreviations of methods

No. Abbreviation Selection Simulation Expansion(Max
number)

1 UCT_AR Eq. (6) Random Full(-)
2 UCT_MR Eq. (7) Random Full(-)
3 UCB1_T Eq. (9) Random Full(-)
4 UCT_SP Eq. (10) Random Full(-)
5 UCT_AR_Gau Eq. (6) Guided by BGD Full(-)
6 UCT_MR_Gau Eq. (7) Guided by BGD Full(-)
7 UCB1_T_Gau Eq. (9) Guided by BGD Full(-)
8 UCT_SP_Gau Eq. (10) Guided by BGD Full(-)
9 Gau_Gau Eq. (7) Guided by BGD Guided by BGD(10)
10 PPO Eq. (7) Guided by PPO

actor
Guided by PPO actor
(10)

Fig. 5. The policy network layout.

Table 6
Initial state

State parameter Value

Nlap 34
Er (kWh) 52
Tbat (℃) 20
Tamb (℃) 25
Natt 2
NRattlap 2

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

7

Fig. 6. Average race time results and variance of different methods.

Fig. 7. Number of MTCS iterations at termination.

Fig. 8. Performance improvement through PPO progress.

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

8

Instead of replacing the second term, literature has also proposed
adding a third term to the original UCT formula. Schadd et al. (Schadd
et al., 2008) introduced a third term written as
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ(v’)
2
+

D
N(v’)

√

where D is a constant and σ(v’)
2 is the variance of the simulation results.

This term describes the reward uncertainty level of a given node and is
designed for a single player application. This gives the selection formula
of:

UCT SPMaxR = Qmax(v’)+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)

N(v’)

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ(v’)
2
+

D
N(v’)

√

(10)

The aforementioned methods are tested and discussed in Section 4.

3.2. Bivariate Gaussian distribution enhancement

Conventional full expansions and pure random simulations might
introduce a large number of irrational actions and diverge the searching
occasionally into relatively useless searching spaces. In terms of action
space in the race strategy development problem, the size of the action
space does not significantly reduce as the race progresses because the
EPLs and QMs are independent of the states. This results in a large
searching space of approximately 4034 to 8034 starting from the early
stages of a race. While MCTS method has an advantage in solving such
planning problems, given such a vast searching space, the computational
time remains an issue because in real life strategic decision has to be
made in seconds. To overcome this limitation, a fundamental solution is
to reduce the size of the problem action space.

In terms of reward variance, the aforementioned UCT modifications

mainly account for the variance of the rewards which originally comes
from random simulation steps. Therefore, the simulation step also needs
to be enhanced. There are two main reasons for doing so. First, the
calculation of variance in the UCT will become a computational burden
as searching progresses. Considering the number of MCTS iteration will
easily reach above several hundreds of thousands, the variance calcu-
lation will slow down the searching performance while the searching
tries to converge in the ending phase. Second, it would be irrational to
have random actions all over the action space. From the real-life point of
view, big changes in action sequence rarely happen unless something
unexpected happens such as system failure or any form of race suspen-
sion. Mathematically, it is also not favourable for performance. While
battery thermal dynamics is strongly nonlinear and difficult to conclude,
the lap time sensitivity can provide a simpler insight into the issue. From
the result presented in Fig. 3, it can be seen that the lap time as a
function to ELP is concave. For multiple lap races with limited energy, to

minimize the sum of lap times, choices of ELP are preferred to concen-
trate on the middle range instead of being split up on the two ends.

Therefore, the authors propose the use of bivariate Gaussian distri-
bution (BGD) to guide the expansion step and simulation action
sequence. The probability of action (EPLC,QMc) being taken at parent
state s is:

where σ1 , σ2 and ρ are shaping factors of bivariate Gaussian distribu-
tion. The subscripts of C and P indicate the variable is from child state
and parent state respectively. This equation assigns every action in the
action space with probability values according to which action was
previously picked. Fig. 4 shows a visualized example of this probability
distribution with parent action of EPLP = 1.6 and QMP = 1 . Fig. 4b
shows the probability distribution on the Power mode 1(200 kW) ac-
tions which are shown by blocks numbered 0,1,2,3 in Fig. 4a indicating
the Q mode. To clarify Fig. 4a, in the 120 total actions, 0–29 are for Q
mode 0; 30–59 are for Q mode 1; 60–89 are under Q mode 2 and 90–119
are for Q mode 3. The tripling curves in each Q mode demonstrate ac-
tions for different power modes which are 1,2,3 from left to right. The
distribution among different power modes is identical because the
bivariate Gaussian distribution does not influence when to activate the
attack mode.

This simulation enhancement will be integrated with the selection
methods (introduced in the previous section) and the results will be
discussed later in Section 4. Also, the BGD technique will be used to
guide the expansion step where only a predefined number of new nodes
will be added instead of a full expansion leading to 40–80 child nodes.

3.3. Proximal policy Optimization(PPO)

As previously discussed, it would be beneficial if the expansion and
simulation steps can be only focused on more promising actions by
neglecting the irrational ones. However, it is difficult to determine

Table 7
Performance improvement

Metrics Base
method

BGD simulation
enhancement

Gau_Gau PGRL

Race finishing
time

UCT_AR −2.964 ‰ −4.953
‰

−7.337
‰

UCT_MR −1.973 ‰ −2.482
‰

−4.872
‰

UCB1_T −1.997 ‰ −2.889
‰

−5.279
‰

UCT_SP −3.500 ‰ −4.311
‰

−6.697
‰

Variance UCT_AR −9.27 % −53.4 % −95.3 %
UCT_MR −65.6 % −58.4 % −95.8 %
UCB1_T −65.2 % −64.7 % −96.5 %
UCT_SP −19.6 % −26.1 % −92.6 %

UCB1 Tuned = Qmax(v’)+ c

̅̅

2lnN(v)
N(v’)

min

{
1
4
,

1
N(v’)

∑N(v’)

τ=1
Q(v’)2

− Xv’
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√ }
√
√
√
√ (9)

P((EPLC,QMc)|s) = (2πσ1σ2)
−1exp

(

−
1

1 − ρ2

(
(EPLC − EPLP)

2

σ2
1

−
2ρ(EPLC − EPLP)(QMc − QMP)

σ1σ2
+
(QMc − QMP)

2

σ2
2

))

(11)

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

9

which actions are more promising in various scenarios (i.e. energy
limited, thermal limited or both). Although the BGD technique helps to
shrink the size of the solution space, there is a chance that BGD hides
some potentially promising actions too. So, in this study, PPO is

implemented as an on-policy model-free learning algorithm to develop
policy used in MCTS expansion and simulation steps.

Fig. 9. Pre-race planning solutions in Case 1: (a) Energy per lap (EPL); (b) Power mode; (c) Q mode.

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

10

3.3.1. Actor and critic network layout
PPO method requires two networks, namely a critic network for

evaluating a state and an actor network mapping a state into a proba-
bility distribution over the action space. In this study, both networks are
implemented with fully connected layers with the same input size (i.e.
state vector of [Nlap,Er,Tbat ,Tamb,Natt ,NRattlap]). The critic network has one
output neuron and the actor has an output size of 120. Details of actor
and critic networks and hyperparameters used in this study are listed in
appendix B.

3.3.2. PPO algorithm with MCT
PPO algorithm aims to maximize the objective of:

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ∊, 1 + ∊)Ât)] (12)

where rt(θ) denotes the probability ratio
(

πθ(at |st)
πθold(at |st)

)

, ∊ is a hyper-

parameter of clipping ratio. Clipping the probability ratio is an effective
method to stabilize the policy updating process by removing the
incentive for moving rt(θ) outside of the interval [1−∊, 1+∊]. This
ensures the new policy does not deviate too much from the old policy
which creates instability. Ât is an estimator of the advantage function at
timestep t . For a length-T trajectory, Ât can be calculated by:

Ât = δt +(γλ)δt+1 +⋯+⋯+(γλ)T−t+1δT−1 (13)

where δt = rt +γV(st+1)−V(st) , γ is the discount factor and λ is the
generalized advantage estimation (GAE) factor. For the PPO critic
network, the aim is to minimize the prediction error which is a simple
squared-error loss LVF

t = (Vθ(st) − Vtarg
t)

2 .
There are two main reasons why PPO is used in this study. First, it is

an on-policy which in general converges faster than off-policy algo-
rithms(Labao, Martija, & Naval, 2021; Lapan, 2018). In this study, the
experiences used for training are collected from tree searches. Compared
to the RL training process, the data collection is a much more time-
consuming process which would potentially cause data shortage in a
replay buffer. With an off-policy agent constantly sampling from an
impoverished replay buffer, the learning process could easily be unsta-
ble and make hyperparameter tuning tricky. The on-policy PPO allow
the policy to be updated based on an adequate amount of the latest
policy experiences. Furthermore, with the clipping feature in PPO, the
policy update and convergence can be decently stabilized and requires
less hyperparameter tuning than other on-policy algorithms. Second,
PPO is arguably one of the most popular model-free RL algorithms that
have been extensively developed. In reality, a race could be extremely
complicated being influenced by more unpredictable factors such as
track conditions (wet or dusty), incidents during a race and more
importantly multiple opponents. This makes model-learning for a race
environment very infeasible. Therefore, a model-free RL algorithm
would build a solid foundation if more complex scenarios are to be
investigated.

Theoretically, PPO is able to learn the policy on itself. However, in
this study, we choose to use PPO together with MCTS. This leads to two
major advantages: (1) Although PPO as an on-policy method, in general,
converges faster than off-policy ones, it still cost quite an amount of time
in exploration especially at the very beginning when the PPO networks
are less intelligent and trying to find a feasible solution from a poor

policy. On contrary, MCTS can generate a feasible solution even though
with a poor policy. Using MCTS can guarantee the data generation
quality at each policy update iteration therefore the convergence can be
further accelerated; (2) Finding the precise PPO terminating time is a
very difficult task because is very hard to determine if the PPO reaches
the optima or is still on its way and over-running the PPO will very likely
to cause a ‘catastrophic forgetting’ scenario. In this case, MCTS provides
additional robustness to the process. Due to its own explor-
ation–exploitation feature, MCTS is still capable of finding the optimal
solution given a sub-optimal policy. This means the PPO process does
not have to be terminated precisely at the perfect time. MCTS can
compensate for the sub-optimality thus the robustness and optimality of
the entire process is guaranteed.

3.3.3. Algorithms implementation
In general, for each PPO iteration, a number of solutions will be

generated by MCTS. The generated sequence will be used for policy
updates of the PPO. After each update, MCTS will use the new policy in
its expansion and simulation steps and generate new solution sequences.
The complete PPO process and MCTS algorithm used in this study can be
described in the following pseudocode.

Algorithm 1 PPO
Initialize PPO actor and critic network parameter θμ , θQ

For PPO iteration = 1, M do
Initialize replay buffer R
Repeat episode

Initialize s0 = [Nlap ,Er,Tbat ,Tamb ,Natt ,NRattlap]

Store result sequence Q(A, S),A, S←MCTS(s0 , θμ) in R
Compute advantage estimates Â1,⋯, ÂT for the sequence

Until episode number reached
for epoch = 1, K do
Sample a random minibatch of N transitions (S, A, Q(A,S)) from R
Update actor and critic network using LCLIP(θμ) and LVF

t
End for

End for

Algorithm 2 Monte Carlo tree search

Function MCTS(s0,θμ)

Create root node v0 with state s0

while within computational budget do
vl← TreePolicy (v0,θμ)
Δ ← Simulation(s(vl),θμ)

Backup (vl , Δ)
return highest-reward sequence Q(A,S),A,S

Function TreePolicy(v,θμ)
while v is not terminal do

ifvis not expanded then
v ← Expansion(v,θμ)

Else
ν ← Bestchild(v) based on UCT-MaxR(v)

Return ν
Function Expansion(v,θμ)

For i = 1,Max Expansion Number do
choose a ∈ untried actions from A(s(v)) based on policy πθμ (a|s)
add a new child v’ to v

with s(v’) = Transition(s(v) ,a)
end for

v ← first child v’(1)
return v
Function Simulation (s,θμ)
while s is not terminal do

choose a ∈ A(s(v)) based on policy πθμ (a|s)
s← Transition(s ,a)

return reward for terminal state s

3.3.4. Result collection
In this section, the methods used to collect the result is clarified. The

stopping criteria of the MCTS algorithm is usually defined according to a
computational budget (Browne et al., 2012) such as computation time,

Table 8
Terminal states using different methods in Case 1

Method Remaining energy
(kWh)

Battery temperature
(℃)

Race finishing
time(s)

UCT_MR 0.1 55.18 2724.6
UCT_MR_Gaus 0.3 55.08 2720.7
Gau_Gau 0 57.19 2716.2
PG 0 57.5 2711.6

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

11

Fig. 10. Pre-race planning solutions in Case 2: (a) Energy per lap (EPL); (b) Power mode; (c) Q mode.

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

12

memory and/or the number of iterations. Without defining stopping
criteria, the iteration can go on forever, keeping growing the tree.
Because decision making time is crucial in strategy development espe-
cially when trying to adapt to changes during a race, in this study, the
stopping criteria is set to be 30 s of computation time.

Björnsson and Finnsson (Bjornsson & Finnsson, 2009) pointed out
that an optimal solution might be hidden due to its weak siblings. This is
one of the biggest concerns in applications of such a race strategy
development where the fastest race time is desirable instead of an
average faster time. Moreover, given a vast searching space and a
stopping criteria of time, it is very likely that the search is terminated
prematurely while the agent is tending to explore and grow the tree and

lands on a poor branch. Therefore, in this study, every simulation
reward is tracked and the best one is returned when the search is
terminated.

To avoid confusion in the result analysis section, the abbreviations
used for each method are presented in Table 5.

Overall, the methods used in this study can be categorized into three
groups. The first group (methods 1–4 in Table 5 comprises different
formulas (eq. (6), 7, 9, 10) used in the selection process of MCTS while
the simulation and expansion processes remain the same as an ordinary
MCTS. The modifications in this group essentially aim to improve the
MCTS search quality by accounting for more information on the back-
propagated rewards. Based on the first group, methods with a suffix of

Table 9
Terminal states using different methods in Case 2

Method Remaining energy
(kWh)

Battery temperature
(℃)

Race finishing
time(s)

UCT_MR 0.05 57.82 2726.8
UCT_MR_Gaus 0.1 57.79 2723.4
Gau_Gau 0.3 57.86 2722.2
PG 0 57.98 2716.8

Fig. 11. In-race scenario solutions: (a) Energy data, (b) Battery temperature, (c) EPL, (d) Q mode.

Table 10
Scenario definition.

Originally planned Scenario 1 Scenario 2

Number of remaining laps 10 10 10
Available attacks 0 0 0
Remaining energy(kWh) 14.7 16 14
Battery temperature(℃) 44.82 43 45.2
Ambient temperature(℃) 30 30 32

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

13

‘_Gau’ (methods 5–8) form the second group where the BGD technique is
introduced in the simulation process. The concept of this modification is
to rationalize (i.e. reduce the degree of randomness) the simulation
process therefore the quality of the tree search solution can be better
approximated by the collected rewards. The third group contains two
methods (methods 9–10) whose simulation and expansion processes are
both modified. Both methods aim to rationalize the simulation and
shrink the expansion down on potentially more promising actions. While
the Gau_Gau method uses knowledge-based distribution (i.e. BGD) for
both simulation and expansion processes, the PPO-enhanced method
uses distribution information from the actor network trained based on
collected tree search solutions. Because the distribution in the latter
method is not empirically restrained, it enhances exploration capability
thus potentially become able to find better solutions (Fig. 5).

4. Results and discussion

4.1. Performance

As previously pointed out in (Liu & Fotouhi, 2020), the conventional
MCTS method tends to generate occasionally sub-optimal solutions with
a big variance. In the race strategy development, the tool is expected to
generate higher reward solutions with decent stability. In this section,
different methods are compared in terms of their result quality. The
battery temperature limit is set to 58℃ (Jowett, 2018) and the initial
condition used in this section is as presented in Table 6.

For comparison, each method has been deployed repetitively to
collect 200 results of a full race (i.e. 34 laps). A comparison of average
race time and its variance using different methods is shown in Fig. 6. The
effect of BGD guiding simulation steps can be clearly seen. With BGD
enhancement on the simulations, all four UCT variations generate
significantly faster race times and much less variance (method 2, 4, 6, 8
compared to 1, 3, 5, 7). Among the first eight methods (full expansion),
the UCT_AR method gives the worst average race time solutions which
conforms to the previous discussion that strong branches are very likely
to be hidden by weak siblings. In contrast, UCT_MR_Gaus has generated
the fastest time among the full expansion methods. However, none of
these matched the performance of Gau_Gau which generated the best
race times and variance among the non-PPO methods. It should be noted
that UCB1_T(_Gaus) and UCT_SP(_Gaus) methods failed to generate
better solutions than UCT_MR(_Gaus) methods while theoretically they
should have, because they further account for variance in the UCT for-
mula. The reason underneath can be explained by looking at other re-
sults shown in Fig. 7 that includes the number of iterations completed by
the time that searches were terminated.

While the searching space is difficult to be visualized, the number of
MCTS iterations provides a good alternative insight into how much
searching has been completed. It can be seen in Fig. 7 that the UCB1_T
(_Gaus) and UCT_SP(_Gaus) methods completed much fewer iterations
than the UCT_AR(_Gaus) and UCT_MR(_Gaus) methods. This is mainly
because of the added computational complexity of the variance calcu-
lations. As a result, they were terminated less matured and could not yet
find better solutions. This also explains why authors choose to use
equation (7) for the Gau_Gau and PPO methods (Table 5). Although with
BGD technique is applied to both the expansion and simulation steps, the
Gau_Gau method still performs weaker than the PPO method as can be
clearly seen in Fig. 6.

It should be noted that the PPO result shown in Figs. 6 and 7 were
collected using the final product after the reinforcement learning pro-
cess (14 epochs). The full PPO progress is illustrated in Fig. 8. It can be
seen that at the beginning of the reinforcement learning, the PPO
method performed much weaker than the BGD-enhanced full-expansion
methods. The random initialization of PPO actor network parameters
with a partial expansion makes it very likely to neglect strong play
branches. However, as the actor parameters update every iteration after
another, the performance significantly improved. The average race time

became faster and the variance decreased. As shown in Fig. 8, it takes
only one epoch to surpass the full-expansion methods becoming very
close to the Gau_Gau method. Then just after another iteration, its per-
formance surpassed the Gau_Gau method. The improvement starts to
flatten after 9 iterations and the variance becomes tiny which suggests a
very stable performance. The 14 iterations of training in this study took
about 4 h.

In general, the Gau_Gau method appeared to be a promising one with
decent performance. Although it is not as good as the final PPO product,
Gau_Gau’s average result and variance are clearly better than the other
full expansion or random methods (method 1–8). Additionally, the
Gau_Gau method does not require training time as the PPO method. This
makes it a preferable substitute when there is not enough time for the
PPO learning phase. The improvement of BGD and PPO methods is
summarized in Table 7.

Based on the performance result, in the next section, only UCT_MR,
UCT_MR_Gau, Gau_Gau and PPO methods are used for demonstration.

4.2. Race strategy solutions

This section presents the details of race strategy solutions generated
by the MCTS methods. The results are collected for two different ap-
plications. The first application is pre-race planning which tests the deep
searching capability of the algorithms. Based on the Marrakech track
used in this study, this calls for a full 34-layer search. Two cases with
different ambient temperatures are presented.

5. Pre-race planning

5.1. Case 1: Ambient temperature of 25℃

In this case, the initial states are set the same as in section 4.1 with
the ambient temperature of 25℃ which would not cause too much
cooling issue. The solutions generated by the selected methods are
presented in Fig. 9 and Table 8.

In terms of power mode selections, all four methods activated attack
mode in the first half of the race. UCT_MR and PPO methods suggested
using the available two attacks one immediately after another while the
other two methods chose to have normal race mode (Power mode 1) laps
between the attacks. Fig. 9a shows that the majority of EPL selections
suggested by the four methods lied around the 1.5kWh options. The PPO
method used only between 1.5 and 1.7 options among which the 1.6 and
1.7 options were used only on the attack mode laps and a few other laps.
In contrast, variance in the sequence can be clearly observed in the other
three methods which as previously discussed in section 3.2, is not
favourable. Q mode choices are mainly used to manage the battery
temperature rise. But Q mode of 1, 2 and 3 can definitely compromise
the lap time performance according to the OCP results (section 3.2). The
PPO method managed to find a path where no heat-saving actions have
to be taken while the others all have in their solutions. The UCT_MR
method had the most non-zero actions and Gau_Gau had the least among
non-PPO methods.

Table 8 reveals the terminal states generated by these methods.
Gau_Gau and PPO method utilized the full available energy whereas
UCT_MR and UCT_MR_Gaus failed to do so which means there is still a
rather big space for better search results. Regarding the battery tem-
perature constraint, the over conservative actions left a big margin be-
tween the terminal battery temperature and the constraint of 58℃. In
terms of race finishing time, the PPO method remains the best con-
forming to the previous performance analysis.

6. Case 2: Ambient temperature of 30℃

For this case, the ambient temperature is raised to 30℃ which is a
common condition in Marrakech. This would potentially result in
stricter heat-saving actions being taken. The solutions from the four

X. Liu et al.

Expert Systems With Applications 197 (2022) 116718

14

methods are shown in Fig. 10 and Table 9.
Similar to the first case, the EPL actions still fall into the 1.4–1.7

range. This is understandable that to make full use of the same amount of
energy, the EPL range would not change too much. However, it can be
observed in Case 2 that the actions sequence becomes more inconsistent.
The power mode solutions have similar patterns with Case 1 showing the
attack modes tend to be activated in the early stage of the race. The
biggest difference between the two cases can be seen in the Q mode
solutions. While the PPO method found a path of Q mode = 0 in Case 1,
in Case 2 with higher ambient temperature, the PPO method starts to
suggest higher Q modes to be taken to manage the battery temperature.
The Q mode = 1 actions are most frequently taken with a few Q mode =
2,3 actions being taken at the finishing stage.

Another point to mention when comparing results of Case 1 and 2 is
the longer race finishing time when the ambient temperature increases.
As stated in Table 9, the best performance (i.e. for PPO method) in Case
2 is 2716.8 s for race finishing time whereas this record was 2711.6 s in
Case 1 which means around 5 s slower finish due to 5℃ higher ambient
temperature.

From the terminal states information, the PPO method has pushed
the resource usage to the absolute boundaries (Table 9) and generated
the fastest race finishing time. Others have left a margin on both energy
and temperature, hence a large searching to be further explored.

One crucial element of race-level planning is to decide when to
activate the attack mode. The regulation states that it cannot be acti-
vated in the first two laps of a race. It can be seen from the result that the
PPO method suggests that the attack mode should be activated as early
as it is allowed. This can also be told from the policy network itself which
is another advantage of using the policy network. Without re-running
the cases, the policy network can tell which actions are more
preferred by simply inputting a state of interest. Fig. 11 shows the policy
network outputs of two different states: state 1 from the early stage and
state 2 from the later stage of a race both with available attacks. The
blocks in the figure denote the attack mode activation actions (Power
mode = 2). The full description of the action space is shown in Appendix
C.

6.0.1. In-race scenario

In real life Formula-E races, various incidents may happen which
make the race progress deviated from what was originally planned. This
would lead to either looser or tighter constraints. Two scenarios are
defined in Table 10 assuming to emerge at the 10th to the last lap.
Because the PPO method has been proved much more powerful than the
rest, the results are collected using only the PPO method to see what
actions need to be taken to adapt to these scenarios.

Two scenarios are considered here: (1) Scenario 1 represents a
slightly loose change which might happen in real life due to previously
over-conservative driving giving more available energy and lower bat-
tery temperature, and (2) In contrast, in the second scenario the re-
sources are over-consumed which is very likely to happen due to over-
aggressive driving. To make it more critical, the ambient temperature
rises by 2℃.

The solution results of both scenarios are shown in Fig. 11. The black
dash and dot lines in Fig. 11a and 11b show the consequences of no
action changes in these two scenarios. If sticking to the original plan,
there would be plenty of resources left unused in scenario 1 and the
battery will go flat and overheated in scenario 2. To adapt to scenario 1,
the solution suggests raising the EPL level to around 1.6 kWh to fully use
the available energy and Q mode 1 needs to be chosen initially and then
gradually raise to 2 and 3 in the last four laps to manage the battery
temperature rise. For scenario 2, EPL has to be lowered to save energy.
Because lower EPL generates less heat, only Q modes of 1 and 2 need to
be used. As a result, it can be seen from Fig. 11a and 11b that the new
solutions made full use of the remaining energy and managed the bat-
tery temperature below the limit.

7. Conclusions

In this study, the Formula-E race strategy was formulated into a
multi-layer decision making problem and its solutions were proposed
using enhanced MCTS-based algorithms. Bivariate Gaussian Distribution
(BGD) was proposed as an enhancement technique to the MCTS and the
result was compared against other enhancement techniques in the
literature. According to the results, BGD proves to be a strong
enhancement method on the simulation steps replacing the random
action sequence. It improved the result variance and consequently the
consistency of the MCTS. The variance was reduced by 9%-65% and the
average race finishing time has been reduced by 2‰-3.5‰. When BGD is
further used on the expansion step to reduce the size of the problem, it
helped to reduce the variance by at least 26% and the average race
finishing time was reduced by 2.5‰-5‰. The double BGD enhancement
(Gau_Gau) method was also investigated that demonstrated much
higher improvement than the other conventional enhancement tech-
niques in this race strategy development application.

Proximal policy optimization proved to be another powerful method
to enhance the MCTS performance in this study. The final product after
the self-learning process significantly reduced the result variance by
over 95% and the average race time by 4.9‰-7.3‰. The PPO method
outperformed the other techniques in all studied cases. It was also
concluded that the PPO method has the best performance but would
require aforehand training time. So, it would be the most suitable choice
when given enough preparation time. On the other hand, the Gau_Gau
method is suggested as a strong alternative when the time is not guar-
anteed. Both methods can play a strong element in race strategy
development in their suitable applications.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.eswa.2022.116718.

References

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time Analysis of the Multiarmed
Bandit Problem. Machine Learning, 47(2/3), 235–256. https://doi.org/10.1023/A:
1013689704352

Bekker, J., & Lotz, W. (2009). Planning Formula One race strategies using discrete-event
simulation. Journal of the Operational Research Society, 60(7), 952–961. https://doi.
org/10.1057/palgrave.jors.2602626

Bjornsson, Y., & Finnsson, H. (2009). CadiaPlayer: A Simulation-Based General Game
Player. IEEE Transactions on Computational Intelligence and AI in Games, 1(1), 4–15.
https://doi.org/10.1109/TCIAIG.2009.2018702

Brayshaw, D. L., & Harrison, M. F. (2005). A quasi steady state approach to race car lap
simulation in order to understand the effects of racing line and centre of gravity
location. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering, 219(6), 725–739. https://doi.org/10.1243/
095440705X11211

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P.,
… Colton, S. (2012). A Survey of Monte Carlo Tree Search Methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4(1), 1–43. https://doi.
org/10.1109/TCIAIG.2012.2186810

Chaslot, G. M. J.-B., Winands, M. H. M., Herik, H. J. van den, Uiterwijk, J. W. H. M., &
Bouzy, B. (2008). PROGRESSIVE STRATEGIES FOR MONTE-CARLO TREE SEARCH.
New Mathematics and Natural Computation, 04(03), 343–357. 10.1142/
S1793005708001094.

Zhang, C., & Vahidi, A. (2012). Route Preview in Energy Management of Plug-in Hybrid
Vehicles. IEEE Transactions on Control Systems Technology, 20(2), 546–553. https://
doi.org/10.1109/TCST.2011.2115242

Choo, C. L. W. (2015). Real-time decision making in motorsports: analytics for improving
professional car race strategy.

Du, Y., Zhao, Y., Wang, Q., Zhang, Y., & Xia, H. (2016). Trip-oriented stochastic optimal
energy management strategy for plug-in hybrid electric bus. Energy, 115,
1259–1271. https://doi.org/10.1016/j.energy.2016.09.056

X. Liu et al.

https://doi.org/10.1016/j.eswa.2022.116718
https://doi.org/10.1016/j.eswa.2022.116718
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1057/palgrave.jors.2602626
https://doi.org/10.1057/palgrave.jors.2602626
https://doi.org/10.1109/TCIAIG.2009.2018702
https://doi.org/10.1243/095440705X11211
https://doi.org/10.1243/095440705X11211
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCST.2011.2115242
https://doi.org/10.1109/TCST.2011.2115242
https://doi.org/10.1016/j.energy.2016.09.056

Expert Systems With Applications 197 (2022) 116718

15

FIA. (2021a). F1 Regulations.
FIA. (2021b). FE Regulations.
FIA. (2021c). WEC Regulations.
Finnsson, H., & Björnsson, Y. (2010). Learning simulation control in general game-

playing agents. Twenty-Fourth AAAI Conference on Artificial Intelligence.
Finnsson, Hilmar. (2007). CADIA-Player: A General Game Playing Agent.
Heilmeier, A., Geisslinger, M., & Betz, J. (2019). A Quasi-Steady-State Lap Time

Simulation for Electrified Race Cars. 2019 Fourteenth International Conference on
Ecological Vehicles and Renewable Energies (EVER), 1–10. IEEE. 10.1109/
EVER.2019.8813646.

Heilmeier, A., Graf, M., & Lienkamp, M. (2018). A Race Simulation for Strategy Decisions
in Circuit Motorsports. 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), 2986–2993. IEEE. 10.1109/ITSC.2018.8570012.

Jowett, R. (2018). Battery Thermal Management in Formula E.
Kocsis, L., Szepesvári, C., & Willemson, J. (2006). Improved Monte-Carlo Search.
Labao, A. B., Martija, M. A. M., & Naval, P. C. (2021). A3C-GS: Adaptive Moment

Gradient Sharing With Locks for Asynchronous Actor-Critic Agents. IEEE Transactions
on Neural Networks and Learning Systems, 32(3), 1162–1176. https://doi.org/
10.1109/TNNLS.2020.2980743

Lapan, M. (2018). Deep Reinforcement Learning Hands-On: Apply modern RL methods,
with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and
more. Packt Publishing Ltd.

Limebeer, D. J. N., & Perantoni, G. (2015). Optimal Control of a Formula One Car on a
Three-Dimensional Track—Part 2: Optimal Control. Journal of Dynamic Systems,
Measurement, and Control, 137(5). https://doi.org/10.1115/1.4029466

Limebeer, D. J. N., Perantoni, G., & Rao, A. V. (2014). Optimal control of Formula One
car energy recovery systems. International Journal of Control, 1–16. https://doi.org/
10.1080/00207179.2014.900705

Liu, X., & Fotouhi, A. (2020). Formula-E race strategy development using artificial neural
networks and Monte Carlo tree search. Neural Computing and Applications, 32(18),
15191–15207. https://doi.org/10.1007/s00521-020-04871-1

Liu, X., Fotouhi, A., & Auger, D. J. (2020). Optimal energy management for formula-E
cars with regulatory limits and thermal constraints. Applied Energy, 279, 115805.
https://doi.org/10.1016/j.apenergy.2020.115805

Peng, J., He, H., & Xiong, R. (2017). Rule based energy management strategy for a
series–parallel plug-in hybrid electric bus optimized by dynamic programming.
Applied Energy, 185, 1633–1643. https://doi.org/10.1016/j.apenergy.2015.12.031

Perantoni, G., & Limebeer, D. J. N. (2014). Optimal control for a Formula One car with
variable parameters. Vehicle System Dynamics, 52(5), 653–678. https://doi.org/
10.1080/00423114.2014.889315

Perantoni, G., & Limebeer, D. J. N. (2015). Optimal Control of a Formula One Car on a
Three-Dimensional Track—Part 1: Track Modeling and Identification. Journal of
Dynamic Systems, Measurement, and Control, 137(5). https://doi.org/10.1115/
1.4028253

Gong, Q., Li, Y., & Peng, Z.-R. (2008). Trip-Based Optimal Power Management of Plug-in
Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology, 57(6),
3393–3401. https://doi.org/10.1109/TVT.2008.921622

Rimmel, A., & Teytaud, F. (2010). Multiple Overlapping Tiles for Contextual Monte Carlo
Tree Search. Doi: 10.1007/978-3-642-12239-2_21.

Schadd, M. P. D., Winands, M. H. M., van den Herik, H. J., Chaslot, G. M. J.-B., &
Uiterwijk, J. W. H. M. (2008). Single-Player Monte-Carlo Tree Search. 10.1007/978-3-
540-87608-3_1.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., …
Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature,
550(7676), 354–359. https://doi.org/10.1038/nature24270

Silver, D., Sutton, R. S., & Müller, M. (2008). Sample-based learning and search with
permanent and transient memories. Proceedings of the 25th International Conference
on Machine Learning - ICML ’08, 968–975. New York, New York, USA: ACM Press.
10.1145/1390156.139027.

Silver, D., & Tesauro, G. (2009). Monte-Carlo simulation balancing, ICML ’09, 1–8. https://
doi.org/10.1145/1553374.1553495

Sulsters, C., & Bekker, R. (2018). Simulating Formula One Race Strategies.
Tremlett, A. J., & Limebeer, D. J. N. (2016). Optimal tyre usage for a Formula One car.

Vehicle System Dynamics, 54(10), 1448–1473. https://doi.org/10.1080/
00423114.2016.1213861

Tremlett, A. J., Massaro, M., Purdy, D. J., Velenis, E., Assadian, F., Moore, A. P., &
Halley, M. (2015). Optimal control of motorsport differentials. Vehicle System
Dynamics, 53(12), 1772–1794. https://doi.org/10.1080/00423114.2015.1093150

van den Broeck, G., Driessens, K., & Ramon, J. (2009). Monte-Carlo Tree Search in Poker
Using Expected Reward Distributions.. https://doi.org/10.1007/978-3-642-05224-8_
28

Wang, H., Huang, Y., Khajepour, A., & Song, Q. (2016). Model predictive control-based
energy management strategy for a series hybrid electric tracked vehicle. Applied
Energy, 182, 105–114. https://doi.org/10.1016/j.apenergy.2016.08.085

Wieczorek, M., & Lewandowski, M. (2017). A mathematical representation of an energy
management strategy for hybrid energy storage system in electric vehicle and real
time optimization using a genetic algorithm. Applied Energy, 192, 222–233. https://
doi.org/10.1016/j.apenergy.2017.02.022

Winands, M. H. M., & Björnsson, Y. (2010). Evaluation Function Based Monte-Carlo LOA..
https://doi.org/10.1007/978-3-642-12993-3_4

Xie, F., & Liu, Z. (2009). Backpropagation Modification in Monte-Carlo Game Tree Search.
2009 Third International Symposium on Intelligent Information Technology Application
(pp. 125–128). IEEE.

Zhang, S., & Xiong, R. (2015). Adaptive energy management of a plug-in hybrid electric
vehicle based on driving pattern recognition and dynamic programming. Applied
Energy, 155, 68–78. https://doi.org/10.1016/j.apenergy.2015.06.003

X. Liu et al.

https://doi.org/10.1109/TNNLS.2020.2980743
https://doi.org/10.1109/TNNLS.2020.2980743
https://doi.org/10.1115/1.4029466
https://doi.org/10.1080/00207179.2014.900705
https://doi.org/10.1080/00207179.2014.900705
https://doi.org/10.1007/s00521-020-04871-1
https://doi.org/10.1016/j.apenergy.2020.115805
https://doi.org/10.1016/j.apenergy.2015.12.031
https://doi.org/10.1080/00423114.2014.889315
https://doi.org/10.1080/00423114.2014.889315
https://doi.org/10.1115/1.4028253
https://doi.org/10.1115/1.4028253
https://doi.org/10.1109/TVT.2008.921622
https://doi.org/10.1038/nature24270
https://doi.org/10.1145/1553374.1553495
https://doi.org/10.1145/1553374.1553495
https://doi.org/10.1080/00423114.2016.1213861
https://doi.org/10.1080/00423114.2016.1213861
https://doi.org/10.1080/00423114.2015.1093150
https://doi.org/10.1007/978-3-642-05224-8_28
https://doi.org/10.1007/978-3-642-05224-8_28
https://doi.org/10.1016/j.apenergy.2016.08.085
https://doi.org/10.1016/j.apenergy.2017.02.022
https://doi.org/10.1016/j.apenergy.2017.02.022
https://doi.org/10.1007/978-3-642-12993-3_4
http://refhub.elsevier.com/S0957-4174(22)00193-2/h0205
http://refhub.elsevier.com/S0957-4174(22)00193-2/h0205
http://refhub.elsevier.com/S0957-4174(22)00193-2/h0205
https://doi.org/10.1016/j.apenergy.2015.06.003

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2022-02-25

Application of advanced tree search and

proximal policy optimization on

formula-E race strategy development

Liu, Xuze

Elsevier

Liu X, Fotouhi A, Auger D. (2022) Application of advanced tree search and proximal policy

optimization on formula-E race strategy development, Expert Systems with Applications,

Volume 197, July 2022, Article number 116718

https://doi.org/10.1016/j.eswa.2022.116718

Downloaded from Cranfield Library Services E-Repository

