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A B S T R A C T   

Energy and thermal management is a crucial element in Formula-E race strategy development. Most published 
literature focuses on the optimal management strategy for a single lap and results in sub-optimal solutions to the 
larger multi-lap problem. In this study, two Monte Carlo Tree Search (MCTS) enhancement techniques are 
proposed for multi-lap Formula-E racing strategy development. It is shown that using the bivariate Gaussian 
distribution enhancement, race finishing time improves by at least 0.25% and its variance reduces by more than 
26%. Compared to the published conventional MCTS technique used in multi-lap problems, this proposed 
technique is proved to bring a remarkable enhancement with no additional computational time cost. By further 
enhancing the MCTS using proximal policy optimization, the final product is capable of generating more than 
0.5% quicker race time solutions and improving the consistency by over 90% which makes it a very suitable 
method particularly when enough training time is guaranteed   

1. Introduction 

In recent years, electric vehicles have become more and more pop
ular with powertrain and battery technologies developing rapidly. En
ergy management has been one of the most popular topics on electric 
cars, both hybrid and full electric. Top-level motorsport series have 
continuously introduced stricter boundaries for energy consumptions to 
encourage more high-efficiency powertrain technology development. 
Specifically, in Formula One (F1), the total fuel usage during a full race 
is limited along with restricted usage of the electric energy in the hybrid 
system (FIA, 2021a). In World Endurance Championships (WEC), the 
concept is similar but refuelling during a race is allowed (FIA, 2021c) 
due to the much longer duration of the race. While race strategy 
development for these two series also needs to account for other factors 
such as tire management, in Formula–E (FE) championships, the race 
strategy is more concentrated on powertrain, specifically the energy and 
thermal management. 

The technical regulation (FIA, 2021b) of FE states that for a complete 
race, the total amount of energy that can be delivered from the 
Rechargeable Energy Storage System (RESS) to the Motor Generator 
Unit (MGU) is limited to 52 kWh. The maximum power is limited to 200 
kW in race mode settings. Beyond that, teams are given options of 
activating attack mode for a certain amount of time which gives an extra 

power of 50 kW during this power mode. In addition to the energy-wise 
restrictions by the regulation, thermal management is another major 
concern when races are held in hot climates such as those present in 
Marrakesh and Santiago. Teams have to avoid battery overheating 
which leads to de-rated power and potentially a Did Not Finish (DNF). 
Heat is generated both during propulsion (vital for speed) and regen
eration (vital for energy efficiency and endurance). In general, the 
problem of FE race strategy development can be described as making 
decisions for each race such as how much energy to use for a lap (i.e. 
Energy per lap) and choice of power mode; the objective is the quickest 
race time, and the problem must be solved within present energy and 
thermal constraints. 

The energy management problems in published research fall into two 
main categories: (1) real-time applications, which are the majority 
(Peng, He, & Xiong, 2017; Wang, Huang, Khajepour, & Song, 2016; 
Wieczorek & Lewandowski, 2017; Zhang & Xiong, 2015); and (2) trip- 
oriented off-line optimizations for a pre-specified route (Brayshaw & 
Harrison, 2005; Zhang & Vahidi, 2012; Du, Zhao, Wang, Zhang, & Xia, 
2016; Gong, Li, & Peng, 2008). In the first category, various control 
strategies have been used to manage the power flow among multiple 
energy resources. These researches targeted to achieve the maximum 
overall powertrain efficiency at each timeframe or a certain optimiza
tion horizon given a specific power demand from the diver input. In the 
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second category, the total energy consumption along the route is opti
mized based on the information of the route, vehicle and powertrain. In 
motorsport applications, the energy is usually treated as a constraint and 
the target is to achieve minimal lap time which is computed by lap time 
simulations (LTS). For LTSs, quasi-steady-state (QSS) technique (Bray
shaw & Harrison, 2005; Heilmeier, Geisslinger, & Betz, 2019) is a widely 
used method which has the advantage of less computational time 
(typically taking seconds). However, the weakness of QSS methods is 
that computational efficiency comes at the expense of reduced 
complexity of the internal models, which may mean that the optimal 
solutions to the approximated problem vary significantly from the 
optimal solution to the true real-world problem. Also, the short opti
mization windows of QSS techniques make it very difficult to generate 
an optimal management problem solution for an entire lap (Heilmeier 
et al., 2019). To overcome this, the energy management problem is 
usually formulated as an optimal control problem (OCP), where the 
internal model can be detailed and more complex objectives can be 
applied. For example, Giacomo, et al. (Limebeer & Perantoni, 2015; 
Perantoni & Limebeer, 2015) used an optimal control technique to 
model a track in a 3D ribbon way with banking and elevation features 
and studied the effects of aero-suspension interaction. Vehicle param
eter optimizations such as differential settings are studied in (Perantoni 
& Limebeer, 2014; Tremlett et al., 2015). In terms of management 
problems, Tremlett et al. (Tremlett & Limebeer, 2016) optimized the tire 
usage by including a thermal-dynamic model in the OCP. Limebeer et al. 
(Limebeer, Perantoni, & Rao, 2014) studied the energy management 
strategy for an F1 hybrid system. 

Optimal control methods perform very reliably for solving minimum 
time manoeuvre problems with various constraints. However, compared 
to QSS methods, optimal control has a high time cost (dozens of minutes 
for a single lap calculation). To be useful to race engineers, a ‘strategic 
tool’ requires special features such as: (1) have prediction models that 
predict performances with acceptable accuracy; (2) be able to perform a 
long optimization horizon or deep depth (e.g. length of a race, multiple 
laps) of decision makings; and (3) be able to generate a solution quickly. 
Solving multi-lap management problems using optimal control methods 
would easily cost hours of computational time, not to mention for the 
full length of a race. The third point – speed – is crucial because 
motorsport is a highly dynamic environment and teams have to be able 
to make fast decisions in reaction to unexpected changes during a race 
(e.g. environmental or race conditions) 

There are very few publications targeting such strategy problems. 
Most of these focus on building race simulation discussing how to dis
cretize a race and what influence factors to include. Bekker (Bekker & 

Lotz, 2009) discretized a race into sectors of approximately 150 m in 
length. The time for each sector was calculated by penalties representing 
adding air resistance and fuel load to a baseline time. (Sulsters & Bekker, 
2018) and (Choo, 2015) both discretized a race into laps. While Chris
topher mainly focused on studying historical data patterns, Claudia used 
more specific formulas to calculate lap times, adding tire age effect and 
random variability. Meanwhile in (Choo, 2015), overtaking bonuses and 
penalties were accounted for with fixed numbers and the probability of 
DNFs is introduced. Alexander, et al. (Heilmeier, Graf, & Lienkamp, 
2018) introduced a more detailed discretization in which based on a lap 
level discretization, a pitstop is described into sub-sectors to capture 
overtake opportunities during pitstops. Additionally, Alexander intro
duced more factors such as driver interaction and car/driver abilities 
into lap time calculations. In terms of race strategy decision making, (Liu 
& Fotouhi, 2020) is the latest publication focusing on a relevant problem 
in which a race is discretized into laps and Monte Carlo Tree Search 
(MCTS) was proposed as the decision-making algorithm. 

Race strategy development for FE competitions features several 
challenges to tackle: (1) a big action space comprising many choices for 
driving style and power mode; (2) the decision problem is a long- 
sequential in nature (due to the number of laps in a race); (3) De
cisions made in the early stages have profound effects in later stages (e.g. 
decisions on energy consumption and battery temperature); (4) During a 
race, conditions may change; so one has to properly adapt to the 
changes. 

MCTS has several fundamental concepts which make it a very suit
able algorithm for such race strategic planning application: (1) It pro
gressively builds a partial tree instead of a full game tree which is way 
beyond the realm of computation; (2) It allows tuning of the dilemma 
between exploration and exploitation; (3) It takes reward only from the 
terminal state (race end) which teams ultimately care about; (4) The 
quality of an action is approximated through random simulations; (5) 
The quality values can be used to adjust the searching policy toward 
more promising solutions. 

As proposed in (Liu & Fotouhi, 2020), MCTS managed to tackle the 
race strategy development problem. And it has been proved that MCTS 
can generate a decent solution for both pre-race planning and in-race 
condition changing scenarios. However, it has also been pointed that 
the solution given by MCTS is sub-optimal which isn’t favourable for 
motorsport where a one-second difference in solution will hugely affect 
the race outcome. The reason for such a result is that the MCTS used in 
(Liu & Fotouhi, 2020) is a very ordinary type without further tailoring 
for this application. In this study, the aim is to apply different modifi
cations to the solution proposed in (Liu & Fotouhi, 2020) in order to 

Fig. 1. Monte Carlo Tree Search iteration.  
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enhance its performance. 
MCTS is an iterative tree searching algorithm where each iteration 

comprises four steps as follows (shown in Fig. 1):  

1) Selection: The agent starts from the root node, moves to the child 
with the highest priority and progressively descend through the 
branches until reaching an expandable leaf node. The priority is 
defined by the tree policy. A node is expandable if it is neither a 
terminal state nor its action space is null.  

2) Expansion: A node is expanded by adding child nodes under it based 
on its action space.  

3) Simulation: A simulation, governed by the simulation policy, is 
performed from the newly added node to a terminal state and a 
reward is calculated.  

4) Backpropagation: The simulation reward is backpropagated through 
the branches toward the root node and the information of the passed 
node is updated. 

The enhancement techniques of MCTS proposed in the literature 
mainly focused on the four steps of MCTS iteration. For the selection 
step, the most popular selection algorithm is the Upper Confidence 
Bounds for Trees (UCT) proposed by (Kocsis, Szepesvári, & Willemson, 
2006) stating that the agent follows the child with the highest UCT value 
given by: 

UCT =
Q(v’)
N(v’)

+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√

(1)  

where v denotes the root node and v’ is the node where the agent locates. 
Q(v’) is the sum of simulation reward under node v’ and N denotes the 
visit count of a node. c is a balancing parameter that balances the 
exploration and exploitation of the search. The majority of enhancement 
on the selection step is to ensure higher reliability of a node. This in
cludes replacing the second term (Auer, Cesa-Bianchi, & Fischer, 2002; 
van den Broeck, Driessens, & Ramon, 2009) or adding a third term 
(CHASLOT, WINANDS, HERIK, UITERWIJK, & BOUZY, 2008; Schadd, 
Winands, van den Herik, Chaslot, & Uiterwijk, 2008) to the equation to 
assess the variance and reliability of the rewards. 

For the expansion step, there is no specific enhancement method. 
One thing is the decision to use single child node expansion per step or to 
add multiple child nodes per step. This depends largely on the compu
tational budget. 

The simulation step is another area of improvement as stated in the 
literature. The default simulation policy is to randomly choose an action 

from the action space. This is a very general starting point that no 
domain-specific knowledge is required. However, the main issue that 
this policy will lead to is the aforementioned high level of uncertainty or 
variance in the simulation rewards which might compromise the selec
tion step. And the randomness cannot guarantee a realistic approxima
tion of the quality of action because some poor actions may be taken 
equally likely as the promising ones. There are two main categories of 
simulation enhancement. First, simulation can be governed or evalu
ated. Silver (Silver & Tesauro, 2009) proposed ruled based simulation 
which includes domain-specific knowledge in the simulation sequence. 
Rimmel (Rimmel & Teytaud, 2010) introduced a domain-independent 
contextual concept into the simulation which uses statistics from pre
vious simulations to guide the future ones. The second category includes 
those whose simulation actions are evaluated. Winands, et al. (Winands 
& Björnsson, 2010) used the evaluation function to avoid bad moves in 
the simulation. Some literature combined learning features such as 
Temporal Difference Learning (TDL) (Silver, Sutton, & Müller, 2008) in 
the simulation step. Actions are taken based on their values (Q) and the 
Q-tables are updated during each backpropagation step (Finnsson & 
Björnsson, 2010; Finnsson, 2007). 

The enhancement for the backpropagation step mainly aims to 
favour the selection step by updating additional information such as 
those in the aforementioned selection equations. Other modifications on 
backpropagation mainly focus on weighting different simulation results. 
Xie, et al. (Xie & Liu, 2009) allocate heavier weight to the later simu
lation results which are believed to be more accurate than earlier per
formed ones. Decaying reward is another method to weigh earlier wins 
to later wins by multiplying a factor 0 < γ < 1 recursively while the 
agent backpropagates from leaf node to root node. 

A big breakthrough in recent years is the success of AlphaGo-Zero 
(Silver et al., 2017) which used a variant of MCTS with an Actor-Critic 
(A2C)-like-frame to enhance self-learning performance. It introduced a 
prior probability value P(v’) to the selection equation Q(v’)+ P(v’)

1+N(v’)
and 

used the policy head of A2C to guide the simulation. One of the most 
popular A2C like algorithms recently is the Proximal policy optimization 
(PPO) [Proximal Policy Optimization Algorithms]. Previous policy 
gradient methods may easily suffer from their sensitivities to hyper- 
parameters such as learning rate, update period, etc. hence poor 
convergence performance. The introduction of a clipped objective PPO 
policy update ensures the deviation from the previous policy is relatively 
small. This makes PPO a very stable and easy-to-implement method in 
finding an optimal policy. 

Based on the previous weakness pointed out in (Liu & Fotouhi, 
2020), this study aims to improve the quality of the FE race strategy 
solution by investigating different methods to enhance the tree search. 
The first section introduces the problem background and previous re
searches. The second section demonstrates the formulation of the 
strategy development problem. In the third section, different enhance
ment methods used in this study are presented. The results and discus
sion are demonstrated in section 4. Finally, the conclusion is presented 
in section 5. 

2. Problem formulation 

The decision making for race strategy is a sequential decision-making 
problem whose environment is fully observable. To formulate such a 
problem in this paper, some symbols are defined as stated in Table 1. 

2.1. States and actions 

A state s contains the information accessible during a race including 
variables that have a significant influence on decision making. Such 
variables which are contained in a state are stated in Table 2. 

In this study, the Marrakesh ePrix track is used. For a 45-minute race, 
the total number of laps is 34 thus the Nlap is 34 at most. The Nlap will 

Table 1 
Symbol definition.  

Symbol Description 

S A set of states where s0 and sT are the initial and terminal state 
respectively 

A(s) Action space under the state s 
T(s,a, 

s’) 
Transition model which describes the transition from state s to s’ when 
action a is taken 

Q(s) Reward function 
πd(a|s) Probability of action a being taken under state s  

Table 2 
State description  

State variable Description 

Nlap Remaining number of laps 
Er Remaining usable energy 
Tamb Ambient temperature 
Natt Available number of Attack Mode(AM) activation 
NRattlap Current remaining number of AM laps 
Tbat Battery temperature  
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later determine the depth of searching. The FE technical regulation 
states that the amount of energy that can be delivered to the MGUs by 
the RESS is limited to 52 kWh. Therefore Er is 52kWh at most. The 
ambient temperature is another important element that affects the 
cooling of the battery. Overheating the battery (Tamb reaching above an 
upper limit) will lead to a DNF or other forms of unfavourable results 
hence must be avoided. Both Er and Tbat will be accounted for in the 
reward function. Natt gives how many times a team can activate attack 
mode during a race. Each activation lasts a number of laps and NRattlap 

gives how many attack mode laps remains during one activation. Natt 
and NRattlap will mainly affect the size of the action space. 

In a previous study presented in (Liu & Fotouhi, 2020), the action 
space has been defined by the combinations of four inputs, namely the 
drive power, regeneration power, lift and coasting (LaC) distance and 
LaC torque. They have their different impacts on energy consumption, 
lap time and battery temperature changes. In this study, these are 
replaced by three more representative parameters which are more 
closed to real-life applications (explained below). The reason for 
choosing these more macroscopic parameters is that on such race 
(multiple laps) strategy level, capturing what changes lap after lap is 
more important than understanding what happens during a single lap. 

The first parameter is called Energy per Lap (EPL). With total usable 
energy being a limited resource during a race, this is a very directly 
energy-related parameter teams use to decide how much energy to use 
for a certain number of laps. The second parameter is defined to indicate 
which power mode (PM) to be used. For example, normal race mode 
(PM = 1) and attack mode (PM = 3) are the choices whose upper limits 
for driving power are 200 kW and 250 kW respectively. Additionally, 
considering that the attack mode is activated at a certain point in the 
middle of a lap instead of at the start/finish line, and the extra 50 kW of 
power are only allowed afterwards, a new power mode (PM = 2, attack 
mode activation lap) is introduced between those two modes to describe 
the performance in the activation lap. The third action parameter is 
called the Heat Generation Mode which later in this paper will be 
referred to as Q-mode (QM). More specifically, with the same amount of 

available energy, different settings of thermal boundaries may 
compromise the lap time but offer a more efficient way to manage the 
temperature rise compared to brutally decreasing the ELP. In this study, 
QM has four options from 0 to 3. QM of 0 indicates no temperature 
constraint is applied while the following choices from 1 to 3 each re
stricts the temperature rise to 95% of the former one (i.e. if QM0 has a 
battery Tbat rise of 4 ℃, then for QM1 Tbat will rise by 3.8 ℃). To 
summarize, the complete action space is made of 120 actions as shown 
in Table 3. 

In this study of race strategy development, the action space varies as 
the race goes on. For example, if PM = 2 (attack mode activation lap) is 
chosen at a certain lap, the action space for the next lap will only contain 
actions under PM = 3. The action space following a PM = 1 lap will 
either contain actions for both PM = 1 and 2 or only for PM = 1 when 
there’s no available attack mode left. Therefore, as the MCTS agent 
descends into different layers, the action space changes. However, it 
should be noted that the action space doesn’t shrink gradually in the 
later phases like in board games or delivery problems where there will 
be fewer choices as the problem progresses. The vast searching space 
would make the problem difficult to solve which will be addressed later. 

2.2. Transition model 

The transition model here in this study should provide information 
on the effect of an action on the lap time, battery temperature and en
ergy consumption during a single lap. In previous research (Liu & 
Fotouhi, 2020), neural networks were proposed to be trained as tran
sition models providing decent accuracy. While a commercial simula
tion software was used to generate training data in (Liu & Fotouhi, 
2020), in this study, the training datasets are collected by formulating 
each case into an OCP. The reason for doing so is to guarantee the 
optimality of lap time performance of a given input while commercial 
simulation software failed to do so with their empirical driver model. An 
OCP is formulated to minimize a Lagrange cost function of 

J =

∫ tf

t0
l(t, x(t), u(t), p)dt (2) 

which is subject to the constraints of 

Table 3 
Action space  

PM EPL(kWh) QM 

1 1.2,1.3,…,1.9,2.0 0,1,2,3 
2 1.2,1.3,…,2.0,2.1 0,1,2,3 
3 1.2,1.3,…,2.1,2.2 0,1,2,3  

Fig. 2. Data collection process through the OCP.  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

− f (t, x(t), u(t) ) = 0

g(t, x(t), u(t) ) = 0

h(t, x(t), u(t)) ≤ 0

gb(x(t0), x(tf ),u(t0),u(tf )) = 0

(3) 

In this problem, x(t) ∈ Rn is the state vector made of vehicle dy
namics information and u(t) ∈ Rm is the control vector of steering and 
paddles. The system dynamics is described in the vector f(t, x(t), u(t) ) ∈
Rn . Vector g ∈ Rng and gb ∈ Rngb are the quality constraints and boundary 
constraints. The inequality constraints are defined in h ∈ Rnh where the 
aforementioned EPL and QM are included. 

This approach has been thoroughly explained in (Liu, Fotouhi, & 
Auger, 2020) therefore won’t be detailed in this paper. The data 
collection process through the OCP is shown in Fig. 2. 

The initial usable energy represents the state of charge (SOC) of the 
battery which influences the thermal dynamics model inside the prob
lem. It should be noted that the energy element appears on both input 
and output sides as the filled arrow showed in Fig. 2. The reason for 
doing so will be explained later. The input ranges for data collection are 
defined in Table 4. The input variables are picked randomly from their 
range. A total number of 129,000 datasets are collected to train the 
neural network transition model. An example of the collected data is 
shown in Fig. 3 including the effects of Q mode and EPL on the lap time. 
The blocked area in the figure explains why ‘energy’ has to be on both 
the input and output sides. That is because, in situations of high EPL and 
QM combinations, the requested energy isn’t fully consumed due to the 
strict thermal boundaries. Therefore, there will be a nonlinear mapping 
between each side and the transition model have to be able to capture 
this feature. 

As a result, three individual networks are trained to model the energy 
consumption, battery temperature rise and lap time separately. This 
procedure is inherited from (Liu & Fotouhi, 2020) thus is not 

demonstrated here. The structure of the networks and accuracies are 
shown in appendix A. 

2.3. Tree structure and reward function 

As previously introduced, a Monte Carlo tree is made of a root node, 
branches and layers of nodes. In this study, the root node is defined as 
the initial state of an event. Typically for a full race at Marrakesh, this 
means the root node state vector (defined in section 2.1) is assigned as: 
[
Nlap,Er,Tbat,Tamb,Natt,NRattlap

]
= [34, 52, 20, 20, 2, 2] (4) 

The race is discretized into laps. Each time the searching agent de
scends into a deeper layer, it means that the race progresses into another 
lap. The neural network transition model acts when the branches con
necting a parent node to its child nodes updates the state information of 
the child nodes. In the simulation step performed from a leaf node, the 
transition model is also used to simulate from the leaf node state to the 
terminal state that is when Nlap becomes zero. The simulation reward is 
backpropagated from the leaf node all the way to the root node in the 
backpropagation step. The reward is defined as: 

Q(sT) =

{
3000 − tT , if Tbat < 60andEr > 0

0, else (5) 

which means that a successful finish with faster time tT , gets a higher 
reward and a DNF (due to either overheated battery or over-consumed 
energy) gets a reward of zero. In this way, the MCTS is expected to 
generate a successful fast race finishing strategy solution 

3. Enhancement methods OF MCTS 

In this section, different methods of MCTS enhancement are 
demonstrated. This includes applying UCT enhancement techniques 
from the literature, a new simulation and expansion method using 
bivariate Gaussian distribution (BGD) proposed by the authors and a 
reinforcement learning method for further enhancing both expansion 
and simulation steps. 

3.1. UCT modification 

The most commonly used UCT algorithm is proposed by Kocsis and 
Szepesvári (Kocsis et al., 2006). 

UCT AveR =
Q(v’)
N(v’)

+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√

(6) 

Table 4 
Input variables’ range  

Input Range 

Energy per lap(kWh) 1.2 ~ 2.2 
Power mode 1,2,3 
Q mode 0,1,2,3 
Initial usable energy(kWh) 0 ~ 52 
Initial battery temperature(℃) 20 ~ 60 
Ambient temperature(℃) 15 ~ 40  

Fig. 3. Lap time of different EPL and Q modes (Power mode = 1).  
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The second term of the formula is called the exploration term. The 
first term is called the exploitation term which is the average reward 
gained at node v’ . In dual player games or zero-sum game theory, this 

usually means the UCT value leads the agent toward higher winning 
odds. However, in this race strategy problem, the aim is to have the 
fastest finishing time instead of the odds of faster times. This average 
reward exploitation term may diverge the agent from the optimal so
lution because the fastest time can easily be compromised by its weak 
siblings. So, to tailor the selection algorithm in this study, the first term 
is replaced with the highest reward ever propagated through the node v’ 

. That is: 

UCT MaxR = Qmax(v’)+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√

(7) 

In MCTS, as its name suggests, the quality of an action is approxi
mated through randomly guided simulation steps. The randomness in
troduces noises into the approximation. Simulations starting from upper 
layers are longer than those from the lower layers hence the variance is 
more severe. Most previous researches have been focused on accounting 
for the reward variance in the selection criterion. 

Auer et al. (Auer et al., 2002) proposed a variant called the UCB1- 
Tuned method by replacing the second term in equation (6) with: 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)

N(v’)
min
{

1
4
,B(N(v’))

}√

where B(N(v’)) is given by: 

B(N(v’) ) =
1

N(v’)

∑N(v’)

τ=1
Q(v’)2

−Xv’
2
+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√

(8) 

This term gives the upper confidence bound a value that is the 

sample variance plus the exploration term of 
̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√
. In this study, we 

also replace the exploitation term with the max reward value:  

Fig. 4. Example of an action probability distribution A) Probability distribution over action space B) Enlarged distribution of Power mode 1 actions.  

Table 5 
Abbreviations of methods  

No. Abbreviation Selection Simulation Expansion(Max 
number) 

1 UCT_AR Eq. (6) Random Full(-) 
2 UCT_MR Eq. (7) Random Full(-) 
3 UCB1_T Eq. (9) Random Full(-) 
4 UCT_SP Eq. (10) Random Full(-) 
5 UCT_AR_Gau Eq. (6) Guided by BGD Full(-) 
6 UCT_MR_Gau Eq. (7) Guided by BGD Full(-) 
7 UCB1_T_Gau Eq. (9) Guided by BGD Full(-) 
8 UCT_SP_Gau Eq. (10) Guided by BGD Full(-) 
9 Gau_Gau Eq. (7) Guided by BGD Guided by BGD(10) 
10 PPO Eq. (7) Guided by PPO 

actor 
Guided by PPO actor 
(10)  

Fig. 5. The policy network layout.  

Table 6 
Initial state  

State parameter Value 

Nlap 34 
Er (kWh) 52 
Tbat (℃) 20 
Tamb (℃) 25 
Natt 2 
NRattlap 2  
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Fig. 6. Average race time results and variance of different methods.  

Fig. 7. Number of MTCS iterations at termination.  

Fig. 8. Performance improvement through PPO progress.  

X. Liu et al.                                                                                                                                                                                                                                      



Expert Systems With Applications 197 (2022) 116718

8

Instead of replacing the second term, literature has also proposed 
adding a third term to the original UCT formula. Schadd et al. (Schadd 
et al., 2008) introduced a third term written as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ(v’)
2
+

D
N(v’)

√

where D is a constant and σ(v’)
2 is the variance of the simulation results. 

This term describes the reward uncertainty level of a given node and is 
designed for a single player application. This gives the selection formula 
of: 

UCT SPMaxR = Qmax(v’)+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)

N(v’)

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ(v’)
2
+

D
N(v’)

√

(10) 

The aforementioned methods are tested and discussed in Section 4. 

3.2. Bivariate Gaussian distribution enhancement 

Conventional full expansions and pure random simulations might 
introduce a large number of irrational actions and diverge the searching 
occasionally into relatively useless searching spaces. In terms of action 
space in the race strategy development problem, the size of the action 
space does not significantly reduce as the race progresses because the 
EPLs and QMs are independent of the states. This results in a large 
searching space of approximately 4034 to 8034 starting from the early 
stages of a race. While MCTS method has an advantage in solving such 
planning problems, given such a vast searching space, the computational 
time remains an issue because in real life strategic decision has to be 
made in seconds. To overcome this limitation, a fundamental solution is 
to reduce the size of the problem action space. 

In terms of reward variance, the aforementioned UCT modifications 

mainly account for the variance of the rewards which originally comes 
from random simulation steps. Therefore, the simulation step also needs 
to be enhanced. There are two main reasons for doing so. First, the 
calculation of variance in the UCT will become a computational burden 
as searching progresses. Considering the number of MCTS iteration will 
easily reach above several hundreds of thousands, the variance calcu
lation will slow down the searching performance while the searching 
tries to converge in the ending phase. Second, it would be irrational to 
have random actions all over the action space. From the real-life point of 
view, big changes in action sequence rarely happen unless something 
unexpected happens such as system failure or any form of race suspen
sion. Mathematically, it is also not favourable for performance. While 
battery thermal dynamics is strongly nonlinear and difficult to conclude, 
the lap time sensitivity can provide a simpler insight into the issue. From 
the result presented in Fig. 3, it can be seen that the lap time as a 
function to ELP is concave. For multiple lap races with limited energy, to 

minimize the sum of lap times, choices of ELP are preferred to concen
trate on the middle range instead of being split up on the two ends. 

Therefore, the authors propose the use of bivariate Gaussian distri
bution (BGD) to guide the expansion step and simulation action 
sequence. The probability of action (EPLC,QMc) being taken at parent 
state s is:  

where σ1 , σ2 and ρ are shaping factors of bivariate Gaussian distribu
tion. The subscripts of C and P indicate the variable is from child state 
and parent state respectively. This equation assigns every action in the 
action space with probability values according to which action was 
previously picked. Fig. 4 shows a visualized example of this probability 
distribution with parent action of EPLP = 1.6 and QMP = 1 . Fig. 4b 
shows the probability distribution on the Power mode 1(200 kW) ac
tions which are shown by blocks numbered 0,1,2,3 in Fig. 4a indicating 
the Q mode. To clarify Fig. 4a, in the 120 total actions, 0–29 are for Q 
mode 0; 30–59 are for Q mode 1; 60–89 are under Q mode 2 and 90–119 
are for Q mode 3. The tripling curves in each Q mode demonstrate ac
tions for different power modes which are 1,2,3 from left to right. The 
distribution among different power modes is identical because the 
bivariate Gaussian distribution does not influence when to activate the 
attack mode. 

This simulation enhancement will be integrated with the selection 
methods (introduced in the previous section) and the results will be 
discussed later in Section 4. Also, the BGD technique will be used to 
guide the expansion step where only a predefined number of new nodes 
will be added instead of a full expansion leading to 40–80 child nodes. 

3.3. Proximal policy Optimization(PPO) 

As previously discussed, it would be beneficial if the expansion and 
simulation steps can be only focused on more promising actions by 
neglecting the irrational ones. However, it is difficult to determine 

Table 7 
Performance improvement  

Metrics Base 
method 

BGD simulation 
enhancement 

Gau_Gau PGRL 

Race finishing 
time 

UCT_AR −2.964 ‰ −4.953 
‰ 

−7.337 
‰ 

UCT_MR −1.973 ‰ −2.482 
‰ 

−4.872 
‰ 

UCB1_T −1.997 ‰ −2.889 
‰ 

−5.279 
‰ 

UCT_SP −3.500 ‰ −4.311 
‰ 

−6.697 
‰ 

Variance UCT_AR −9.27 % −53.4 % −95.3 % 
UCT_MR −65.6 % −58.4 % −95.8 % 
UCB1_T −65.2 % −64.7 % −96.5 % 
UCT_SP −19.6 % −26.1 % −92.6 %  

UCB1 Tuned = Qmax(v’)+ c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2lnN(v)
N(v’)

min

{
1
4
,

1
N(v’)

∑N(v’)

τ=1
Q(v’)2

− Xv’
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lnN(v)
N(v’)

√ }
√
√
√
√ (9)   

P((EPLC,QMc)|s ) = (2πσ1σ2)
−1exp

(

−
1

1 − ρ2

(
(EPLC − EPLP)

2

σ2
1

−
2ρ(EPLC − EPLP)(QMc − QMP)

σ1σ2
+
(QMc − QMP)

2

σ2
2

))

(11)   
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which actions are more promising in various scenarios (i.e. energy 
limited, thermal limited or both). Although the BGD technique helps to 
shrink the size of the solution space, there is a chance that BGD hides 
some potentially promising actions too. So, in this study, PPO is 

implemented as an on-policy model-free learning algorithm to develop 
policy used in MCTS expansion and simulation steps. 

Fig. 9. Pre-race planning solutions in Case 1: (a) Energy per lap (EPL); (b) Power mode; (c) Q mode.  
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3.3.1. Actor and critic network layout 
PPO method requires two networks, namely a critic network for 

evaluating a state and an actor network mapping a state into a proba
bility distribution over the action space. In this study, both networks are 
implemented with fully connected layers with the same input size (i.e. 
state vector of [Nlap,Er,Tbat ,Tamb,Natt ,NRattlap]). The critic network has one 
output neuron and the actor has an output size of 120. Details of actor 
and critic networks and hyperparameters used in this study are listed in 
appendix B. 

3.3.2. PPO algorithm with MCT 
PPO algorithm aims to maximize the objective of: 

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ∊, 1 + ∊ )Ât ) ] (12) 

where rt(θ) denotes the probability ratio 
(

πθ(at |st )
πθold(at |st )

)

, ∊ is a hyper

parameter of clipping ratio. Clipping the probability ratio is an effective 
method to stabilize the policy updating process by removing the 
incentive for moving rt(θ) outside of the interval [ 1−∊, 1+∊ ]. This 
ensures the new policy does not deviate too much from the old policy 
which creates instability. Ât is an estimator of the advantage function at 
timestep t . For a length-T trajectory, Ât can be calculated by: 

Ât = δt +(γλ)δt+1 +⋯+⋯+(γλ)T−t+1δT−1 (13) 

where δt = rt +γV(st+1)−V(st) , γ is the discount factor and λ is the 
generalized advantage estimation (GAE) factor. For the PPO critic 
network, the aim is to minimize the prediction error which is a simple 
squared-error loss LVF

t = (Vθ(st) − Vtarg
t )

2 . 
There are two main reasons why PPO is used in this study. First, it is 

an on-policy which in general converges faster than off-policy algo
rithms(Labao, Martija, & Naval, 2021; Lapan, 2018). In this study, the 
experiences used for training are collected from tree searches. Compared 
to the RL training process, the data collection is a much more time- 
consuming process which would potentially cause data shortage in a 
replay buffer. With an off-policy agent constantly sampling from an 
impoverished replay buffer, the learning process could easily be unsta
ble and make hyperparameter tuning tricky. The on-policy PPO allow 
the policy to be updated based on an adequate amount of the latest 
policy experiences. Furthermore, with the clipping feature in PPO, the 
policy update and convergence can be decently stabilized and requires 
less hyperparameter tuning than other on-policy algorithms. Second, 
PPO is arguably one of the most popular model-free RL algorithms that 
have been extensively developed. In reality, a race could be extremely 
complicated being influenced by more unpredictable factors such as 
track conditions (wet or dusty), incidents during a race and more 
importantly multiple opponents. This makes model-learning for a race 
environment very infeasible. Therefore, a model-free RL algorithm 
would build a solid foundation if more complex scenarios are to be 
investigated. 

Theoretically, PPO is able to learn the policy on itself. However, in 
this study, we choose to use PPO together with MCTS. This leads to two 
major advantages: (1) Although PPO as an on-policy method, in general, 
converges faster than off-policy ones, it still cost quite an amount of time 
in exploration especially at the very beginning when the PPO networks 
are less intelligent and trying to find a feasible solution from a poor 

policy. On contrary, MCTS can generate a feasible solution even though 
with a poor policy. Using MCTS can guarantee the data generation 
quality at each policy update iteration therefore the convergence can be 
further accelerated; (2) Finding the precise PPO terminating time is a 
very difficult task because is very hard to determine if the PPO reaches 
the optima or is still on its way and over-running the PPO will very likely 
to cause a ‘catastrophic forgetting’ scenario. In this case, MCTS provides 
additional robustness to the process. Due to its own explor
ation–exploitation feature, MCTS is still capable of finding the optimal 
solution given a sub-optimal policy. This means the PPO process does 
not have to be terminated precisely at the perfect time. MCTS can 
compensate for the sub-optimality thus the robustness and optimality of 
the entire process is guaranteed. 

3.3.3. Algorithms implementation 
In general, for each PPO iteration, a number of solutions will be 

generated by MCTS. The generated sequence will be used for policy 
updates of the PPO. After each update, MCTS will use the new policy in 
its expansion and simulation steps and generate new solution sequences. 
The complete PPO process and MCTS algorithm used in this study can be 
described in the following pseudocode. 

Algorithm 1 PPO  
Initialize PPO actor and critic network parameter θμ , θQ 

For PPO iteration = 1, M do 
Initialize replay buffer R 
Repeat episode 

Initialize s0 = [Nlap ,Er,Tbat ,Tamb ,Natt ,NRattlap ]

Store result sequence Q(A, S),A, S←MCTS(s0 , θμ) in R 
Compute advantage estimates Â1,⋯, ÂT for the sequence 

Until episode number reached 
for epoch = 1, K do 
Sample a random minibatch of N transitions (S, A, Q(A,S)) from R 
Update actor and critic network using LCLIP(θμ) and LVF

t 
End for 

End for  

Algorithm 2 Monte Carlo tree search  

Function MCTS(s0,θμ) 

Create root node v0 with state s0 

while within computational budget do 
vl← TreePolicy (v0,θμ) 
Δ ← Simulation(s(vl),θμ) 

Backup (vl , Δ) 
return highest-reward sequence Q(A,S),A,S 

Function TreePolicy(v,θμ) 
while v is not terminal do 

ifvis not expanded then 
v ← Expansion(v,θμ) 

Else 
ν ← Bestchild(v) based on UCT-MaxR(v) 

Return ν 
Function Expansion(v,θμ) 

For i = 1,Max Expansion Number do 
choose a ∈ untried actions from A(s(v)) based on policy πθμ (a|s)
add a new child v’ to v 

with s(v’) = Transition(s(v) ,a) 
end for 

v ← first child v’(1)
return v 
Function Simulation (s,θμ) 
while s is not terminal do 

choose a ∈ A(s(v)) based on policy πθμ (a|s)
s← Transition(s ,a) 

return reward for terminal state s  

3.3.4. Result collection 
In this section, the methods used to collect the result is clarified. The 

stopping criteria of the MCTS algorithm is usually defined according to a 
computational budget (Browne et al., 2012) such as computation time, 

Table 8 
Terminal states using different methods in Case 1  

Method Remaining energy 
(kWh) 

Battery temperature 
(℃) 

Race finishing 
time(s) 

UCT_MR 0.1  55.18  2724.6 
UCT_MR_Gaus 0.3  55.08  2720.7 
Gau_Gau 0  57.19  2716.2 
PG 0  57.5  2711.6  
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Fig. 10. Pre-race planning solutions in Case 2: (a) Energy per lap (EPL); (b) Power mode; (c) Q mode.  
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memory and/or the number of iterations. Without defining stopping 
criteria, the iteration can go on forever, keeping growing the tree. 
Because decision making time is crucial in strategy development espe
cially when trying to adapt to changes during a race, in this study, the 
stopping criteria is set to be 30 s of computation time. 

Björnsson and Finnsson (Bjornsson & Finnsson, 2009) pointed out 
that an optimal solution might be hidden due to its weak siblings. This is 
one of the biggest concerns in applications of such a race strategy 
development where the fastest race time is desirable instead of an 
average faster time. Moreover, given a vast searching space and a 
stopping criteria of time, it is very likely that the search is terminated 
prematurely while the agent is tending to explore and grow the tree and 

lands on a poor branch. Therefore, in this study, every simulation 
reward is tracked and the best one is returned when the search is 
terminated. 

To avoid confusion in the result analysis section, the abbreviations 
used for each method are presented in Table 5. 

Overall, the methods used in this study can be categorized into three 
groups. The first group (methods 1–4 in Table 5 comprises different 
formulas (eq. (6), 7, 9, 10) used in the selection process of MCTS while 
the simulation and expansion processes remain the same as an ordinary 
MCTS. The modifications in this group essentially aim to improve the 
MCTS search quality by accounting for more information on the back
propagated rewards. Based on the first group, methods with a suffix of 

Table 9 
Terminal states using different methods in Case 2  

Method Remaining energy 
(kWh) 

Battery temperature 
(℃) 

Race finishing 
time(s) 

UCT_MR 0.05  57.82  2726.8 
UCT_MR_Gaus 0.1  57.79  2723.4 
Gau_Gau 0.3  57.86  2722.2 
PG 0  57.98  2716.8  

Fig. 11. In-race scenario solutions: (a) Energy data, (b) Battery temperature, (c) EPL, (d) Q mode.  

Table 10 
Scenario definition.   

Originally planned Scenario 1 Scenario 2 

Number of remaining laps 10 10 10 
Available attacks 0 0 0 
Remaining energy(kWh) 14.7 16 14 
Battery temperature(℃) 44.82 43 45.2 
Ambient temperature(℃) 30 30 32  
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‘_Gau’ (methods 5–8) form the second group where the BGD technique is 
introduced in the simulation process. The concept of this modification is 
to rationalize (i.e. reduce the degree of randomness) the simulation 
process therefore the quality of the tree search solution can be better 
approximated by the collected rewards. The third group contains two 
methods (methods 9–10) whose simulation and expansion processes are 
both modified. Both methods aim to rationalize the simulation and 
shrink the expansion down on potentially more promising actions. While 
the Gau_Gau method uses knowledge-based distribution (i.e. BGD) for 
both simulation and expansion processes, the PPO-enhanced method 
uses distribution information from the actor network trained based on 
collected tree search solutions. Because the distribution in the latter 
method is not empirically restrained, it enhances exploration capability 
thus potentially become able to find better solutions (Fig. 5). 

4. Results and discussion 

4.1. Performance 

As previously pointed out in (Liu & Fotouhi, 2020), the conventional 
MCTS method tends to generate occasionally sub-optimal solutions with 
a big variance. In the race strategy development, the tool is expected to 
generate higher reward solutions with decent stability. In this section, 
different methods are compared in terms of their result quality. The 
battery temperature limit is set to 58℃ (Jowett, 2018) and the initial 
condition used in this section is as presented in Table 6. 

For comparison, each method has been deployed repetitively to 
collect 200 results of a full race (i.e. 34 laps). A comparison of average 
race time and its variance using different methods is shown in Fig. 6. The 
effect of BGD guiding simulation steps can be clearly seen. With BGD 
enhancement on the simulations, all four UCT variations generate 
significantly faster race times and much less variance (method 2, 4, 6, 8 
compared to 1, 3, 5, 7). Among the first eight methods (full expansion), 
the UCT_AR method gives the worst average race time solutions which 
conforms to the previous discussion that strong branches are very likely 
to be hidden by weak siblings. In contrast, UCT_MR_Gaus has generated 
the fastest time among the full expansion methods. However, none of 
these matched the performance of Gau_Gau which generated the best 
race times and variance among the non-PPO methods. It should be noted 
that UCB1_T(_Gaus) and UCT_SP(_Gaus) methods failed to generate 
better solutions than UCT_MR(_Gaus) methods while theoretically they 
should have, because they further account for variance in the UCT for
mula. The reason underneath can be explained by looking at other re
sults shown in Fig. 7 that includes the number of iterations completed by 
the time that searches were terminated. 

While the searching space is difficult to be visualized, the number of 
MCTS iterations provides a good alternative insight into how much 
searching has been completed. It can be seen in Fig. 7 that the UCB1_T 
(_Gaus) and UCT_SP(_Gaus) methods completed much fewer iterations 
than the UCT_AR(_Gaus) and UCT_MR(_Gaus) methods. This is mainly 
because of the added computational complexity of the variance calcu
lations. As a result, they were terminated less matured and could not yet 
find better solutions. This also explains why authors choose to use 
equation (7) for the Gau_Gau and PPO methods (Table 5). Although with 
BGD technique is applied to both the expansion and simulation steps, the 
Gau_Gau method still performs weaker than the PPO method as can be 
clearly seen in Fig. 6. 

It should be noted that the PPO result shown in Figs. 6 and 7 were 
collected using the final product after the reinforcement learning pro
cess (14 epochs). The full PPO progress is illustrated in Fig. 8. It can be 
seen that at the beginning of the reinforcement learning, the PPO 
method performed much weaker than the BGD-enhanced full-expansion 
methods. The random initialization of PPO actor network parameters 
with a partial expansion makes it very likely to neglect strong play 
branches. However, as the actor parameters update every iteration after 
another, the performance significantly improved. The average race time 

became faster and the variance decreased. As shown in Fig. 8, it takes 
only one epoch to surpass the full-expansion methods becoming very 
close to the Gau_Gau method. Then just after another iteration, its per
formance surpassed the Gau_Gau method. The improvement starts to 
flatten after 9 iterations and the variance becomes tiny which suggests a 
very stable performance. The 14 iterations of training in this study took 
about 4 h. 

In general, the Gau_Gau method appeared to be a promising one with 
decent performance. Although it is not as good as the final PPO product, 
Gau_Gau’s average result and variance are clearly better than the other 
full expansion or random methods (method 1–8). Additionally, the 
Gau_Gau method does not require training time as the PPO method. This 
makes it a preferable substitute when there is not enough time for the 
PPO learning phase. The improvement of BGD and PPO methods is 
summarized in Table 7. 

Based on the performance result, in the next section, only UCT_MR, 
UCT_MR_Gau, Gau_Gau and PPO methods are used for demonstration. 

4.2. Race strategy solutions 

This section presents the details of race strategy solutions generated 
by the MCTS methods. The results are collected for two different ap
plications. The first application is pre-race planning which tests the deep 
searching capability of the algorithms. Based on the Marrakech track 
used in this study, this calls for a full 34-layer search. Two cases with 
different ambient temperatures are presented. 

5. Pre-race planning 

5.1. Case 1: Ambient temperature of 25℃ 

In this case, the initial states are set the same as in section 4.1 with 
the ambient temperature of 25℃ which would not cause too much 
cooling issue. The solutions generated by the selected methods are 
presented in Fig. 9 and Table 8. 

In terms of power mode selections, all four methods activated attack 
mode in the first half of the race. UCT_MR and PPO methods suggested 
using the available two attacks one immediately after another while the 
other two methods chose to have normal race mode (Power mode 1) laps 
between the attacks. Fig. 9a shows that the majority of EPL selections 
suggested by the four methods lied around the 1.5kWh options. The PPO 
method used only between 1.5 and 1.7 options among which the 1.6 and 
1.7 options were used only on the attack mode laps and a few other laps. 
In contrast, variance in the sequence can be clearly observed in the other 
three methods which as previously discussed in section 3.2, is not 
favourable. Q mode choices are mainly used to manage the battery 
temperature rise. But Q mode of 1, 2 and 3 can definitely compromise 
the lap time performance according to the OCP results (section 3.2). The 
PPO method managed to find a path where no heat-saving actions have 
to be taken while the others all have in their solutions. The UCT_MR 
method had the most non-zero actions and Gau_Gau had the least among 
non-PPO methods. 

Table 8 reveals the terminal states generated by these methods. 
Gau_Gau and PPO method utilized the full available energy whereas 
UCT_MR and UCT_MR_Gaus failed to do so which means there is still a 
rather big space for better search results. Regarding the battery tem
perature constraint, the over conservative actions left a big margin be
tween the terminal battery temperature and the constraint of 58℃. In 
terms of race finishing time, the PPO method remains the best con
forming to the previous performance analysis. 

6. Case 2: Ambient temperature of 30℃ 

For this case, the ambient temperature is raised to 30℃ which is a 
common condition in Marrakech. This would potentially result in 
stricter heat-saving actions being taken. The solutions from the four 
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methods are shown in Fig. 10 and Table 9. 
Similar to the first case, the EPL actions still fall into the 1.4–1.7 

range. This is understandable that to make full use of the same amount of 
energy, the EPL range would not change too much. However, it can be 
observed in Case 2 that the actions sequence becomes more inconsistent. 
The power mode solutions have similar patterns with Case 1 showing the 
attack modes tend to be activated in the early stage of the race. The 
biggest difference between the two cases can be seen in the Q mode 
solutions. While the PPO method found a path of Q mode = 0 in Case 1, 
in Case 2 with higher ambient temperature, the PPO method starts to 
suggest higher Q modes to be taken to manage the battery temperature. 
The Q mode = 1 actions are most frequently taken with a few Q mode =
2,3 actions being taken at the finishing stage. 

Another point to mention when comparing results of Case 1 and 2 is 
the longer race finishing time when the ambient temperature increases. 
As stated in Table 9, the best performance (i.e. for PPO method) in Case 
2 is 2716.8 s for race finishing time whereas this record was 2711.6 s in 
Case 1 which means around 5 s slower finish due to 5℃ higher ambient 
temperature. 

From the terminal states information, the PPO method has pushed 
the resource usage to the absolute boundaries (Table 9) and generated 
the fastest race finishing time. Others have left a margin on both energy 
and temperature, hence a large searching to be further explored. 

One crucial element of race-level planning is to decide when to 
activate the attack mode. The regulation states that it cannot be acti
vated in the first two laps of a race. It can be seen from the result that the 
PPO method suggests that the attack mode should be activated as early 
as it is allowed. This can also be told from the policy network itself which 
is another advantage of using the policy network. Without re-running 
the cases, the policy network can tell which actions are more 
preferred by simply inputting a state of interest. Fig. 11 shows the policy 
network outputs of two different states: state 1 from the early stage and 
state 2 from the later stage of a race both with available attacks. The 
blocks in the figure denote the attack mode activation actions (Power 
mode = 2). The full description of the action space is shown in Appendix 
C. 

6.0.1. In-race scenario 

In real life Formula-E races, various incidents may happen which 
make the race progress deviated from what was originally planned. This 
would lead to either looser or tighter constraints. Two scenarios are 
defined in Table 10 assuming to emerge at the 10th to the last lap. 
Because the PPO method has been proved much more powerful than the 
rest, the results are collected using only the PPO method to see what 
actions need to be taken to adapt to these scenarios. 

Two scenarios are considered here: (1) Scenario 1 represents a 
slightly loose change which might happen in real life due to previously 
over-conservative driving giving more available energy and lower bat
tery temperature, and (2) In contrast, in the second scenario the re
sources are over-consumed which is very likely to happen due to over- 
aggressive driving. To make it more critical, the ambient temperature 
rises by 2℃. 

The solution results of both scenarios are shown in Fig. 11. The black 
dash and dot lines in Fig. 11a and 11b show the consequences of no 
action changes in these two scenarios. If sticking to the original plan, 
there would be plenty of resources left unused in scenario 1 and the 
battery will go flat and overheated in scenario 2. To adapt to scenario 1, 
the solution suggests raising the EPL level to around 1.6 kWh to fully use 
the available energy and Q mode 1 needs to be chosen initially and then 
gradually raise to 2 and 3 in the last four laps to manage the battery 
temperature rise. For scenario 2, EPL has to be lowered to save energy. 
Because lower EPL generates less heat, only Q modes of 1 and 2 need to 
be used. As a result, it can be seen from Fig. 11a and 11b that the new 
solutions made full use of the remaining energy and managed the bat
tery temperature below the limit. 

7. Conclusions 

In this study, the Formula-E race strategy was formulated into a 
multi-layer decision making problem and its solutions were proposed 
using enhanced MCTS-based algorithms. Bivariate Gaussian Distribution 
(BGD) was proposed as an enhancement technique to the MCTS and the 
result was compared against other enhancement techniques in the 
literature. According to the results, BGD proves to be a strong 
enhancement method on the simulation steps replacing the random 
action sequence. It improved the result variance and consequently the 
consistency of the MCTS. The variance was reduced by 9%-65% and the 
average race finishing time has been reduced by 2‰-3.5‰. When BGD is 
further used on the expansion step to reduce the size of the problem, it 
helped to reduce the variance by at least 26% and the average race 
finishing time was reduced by 2.5‰-5‰. The double BGD enhancement 
(Gau_Gau) method was also investigated that demonstrated much 
higher improvement than the other conventional enhancement tech
niques in this race strategy development application. 

Proximal policy optimization proved to be another powerful method 
to enhance the MCTS performance in this study. The final product after 
the self-learning process significantly reduced the result variance by 
over 95% and the average race time by 4.9‰-7.3‰. The PPO method 
outperformed the other techniques in all studied cases. It was also 
concluded that the PPO method has the best performance but would 
require aforehand training time. So, it would be the most suitable choice 
when given enough preparation time. On the other hand, the Gau_Gau 
method is suggested as a strong alternative when the time is not guar
anteed. Both methods can play a strong element in race strategy 
development in their suitable applications. 
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