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Abstract 

The use of aircraft operational logs to predict potential failure that may lead to disruption poses many 

challenges and has yet to be fully explored. Given that aircraft are high-integrity assets, failures are 

extremely rare, and hence the distribution of relevant log data containing prior indicators will be 

highly skewed to the normal (healthy) case. This will present a significant challenge in using data-

driven techniques because the model will be biased to the heavily weighted no-fault outcomes.  This 

paper presents a novel approach for predicting unscheduled aircraft maintenance action based on 

deep reinforcement learning techniques using aircraft central maintenance system logs. The 

algorithm transforms the rare failure prediction problem into a sequential decision-making process 

that is optimised using a reward system that penalises proposed predictions that result in a false 

diagnosis and preferentially favours predictions that result in the right diagnosis. The validation data 

is directly associated with the physical health aspects of the aircraft components. The influence of 

extremely rare failure prediction on the proposed method is analysed.  The effectiveness of the new 

approach is verified by comparison with previous studies, cost-sensitive and oversampling methods. 

Performance was evaluated based on G-mean and false-positives rates. The proposed approach shows 

the superior performance of 20.3% improvement in G-mean and 97% reduction in false-positive rate.  

Keywords: Extremely rare event, deep reinforcement learning, imbalance classification, aircraft 

maintenance. 
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Nomenclature 

Aircraft Central Maintenance System  ACMS 

Air traffic service 1TX1 

Autoencoder Bidirectional Gated Recurrent Unit  AE-BGRU 

Avionics equipment ventilation computer 10HQ 

Convolutional Neural Network CNN 

Deep Reinforcement Learning  DRL 

Deep Q-Network DQN 

Double Deep Q-Network DDQN 

Double Deep State Action Reward State Action DDSARSA 

Extreme Value Analysis EVE 

Electronic Control Unit/ Electronic Engine Unit 400KS 

False Positive Rate  FPR 

False Negative Rete FNR 

Functional Identification Number  FIN 

Feature engineering  FE 

Flow control valve 11HB 

Gated Recurrent Unit GRU 

Geometric Mean  G-Mean 

High-Pressure Bleed Valve 4000HA 

Long Shot-Term Memory  LSTM 

Markov Decision Process MDP 

No-fault found  NFF 

Peak Over Threshold POT 

Performance Report  PR 

Prioritized Experience Replay Memory PER 

Random Forest RF 

Reinforcement Learning RL 

Satellite Data unit 5RV1 

State Action Reward State Action SARSA 

Synthetic Minority Oversampling Technique SMOTE 

Quick Access Recorder  QAR 
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1. Introduction 

In recent times, the concept of predictive maintenance has continued to advance, especially in a 

complex system such as an aircraft. Predictive maintenance is designed to monitor the health 

condition of in-service equipment and to forecast maintenance needs. It provides a cost-benefit 

compared to time-based approaches such as preventive maintenance because maintenance is carried 

out only when needed [1]. As the popularity of predictive maintenance models increases in the 

aviation industry, one of the critical challenges is dealing with unplanned failures, i.e. rarely reported 

events. In other words, the challenge of learning from an extremely imbalanced dataset using standard 

machine learning algorithms.  

Furthermore, using the data from operational equipment logs to develop predictive models poses 

many challenges that have not yet been fully explored, as logs are mainly used for anomaly detection 

and debugging failure. The logs generated in complex systems such as aircraft are mostly multivariate 

time series (multiple interrelated streams of data are recorded simultaneously). This type of data is 

commonly recorded from several monitoring systems, such as the condition-based or sensors, 

collected over time. They may, therefore, be regarded as complex multivariate time-series data. Given 

that aircraft are high-integrity assets, failures are extremely rare, and hence the distribution of relevant 

data containing prior indicators will be highly skewed to the normal (healthy) case. This will present 

a significant challenge in using data-driven techniques to ‘learning’ relationships/patterns that depict 

fault scenarios since the model will be biased to the heavily weighted no-fault outcomes. 

Some of the characteristics of a system log that cause a challenge in predictive modelling are: 

(i) Heterogeneous in nature containing symbolic sequences, numeric time-series, 

categorical variables, and unstructured text. It is a non-trivial task to translate free-

text log messages into meaningful features.  

(ii) System log volume can be large in complex systems, which poses computational 

challenges.  

(iii) Having a rare occurrence of failure results in a lack of enough information to 

anticipate certain specific families of faults.  

Thus, this study investigates the use of aircraft operational log-based data to develop a predictive 

model for rare failure prediction in aircraft. Also, to determine which variables are likely to indicate 

the target failures. An issue of predictive maintenance lies in the rigid nature of data (data changing 

over time). If correct parameters are not built-in, it can risk incorrect forecasts and erroneous ‘fault’ 

messages. For instance, based on historical behaviour, if a maintenance operator forecasts that a 

component will fail within 100 flights, they might schedule removal to prevent operation failure. 
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However, upon removal, the part may test as no fault found (NFF), costing the operator unnecessary 

time and money. Therefore, developing a robust predictive model is necessary, especially for safety-

critical equipment such as aircraft. 

In order to make use of log-based data to develop a robust predictive maintenance model, generally, 

the first step is to interpret the logs, filter out a large amount of noise (that is, data irrelevant to the 

set goal), and extract predictive features. Also, the known failure cases need to be collected for 

learning and evaluation. The problem needs to be transformed into an appropriate learning scenario, 

and a performance measure that reflects real-world needs must be determined. Figure 1 shows the 

proposed process of discovering knowledge from raw data. The raw heterogeneous and multivariate 

data collected from different sources is stored in a database. The raw data usually contains many 

analytical challenges requiring pre-processing, such as data incompleteness, lack of example 

behaviours and trends, missing or null values, lack of exact features of interest, and noise. Data pre-

processing and transformation (into a suitable format for machine learning) occurs in Stage 2  of 

Figure 1. A feature engineering (FE) process is carried out at stage three; it helps collect relevant 

features related to the desired goal. FE is the integral and critical step of the machine learning process 

because the quality of data and the right features contribute majorly to a predictive model’s 

performance.  After the pre-processing and FE phase, the data is divided into training and validation. 

Stage four is where the machine learning algorithm for pattern recognition or classification is trained 

using the training data. The model is then evaluated at stage five. The outcome can then give 

insightful knowledge for more informed decision-making.  

Figure 1. Basic  Data Knowledge Discovery Process

In a rare failure prediction problem, the pre-processed dataset usually has a skewed distribution. For 

example, in the ACMS dataset, the non-failure represent negatively labelled samples, and the failure 

represent positively labelled samples. The negative samples far outnumber the positively labelled, 

causing the data to be highly imbalanced.  The disproportion between classes can be very low (e.g. 
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5% or less). Various solutions for the slight rare failure problem (say proportions of 40:60 to 30:70) 

have been suggested in the literature. However, in a situation where the imbalance ratio is extreme, 

say less than or equal to 5%,  the problem becomes more challenging to handle [2][3]. In such a 

scenario, the standard approaches for normal failure prediction (such as statistical approaches, 

traditional machine learning algorithms and associated rules) become limited [4–6]. The reason is 

that most normal failure patterns are similar to each other and are substantially represented. 

In contrast, rare failure is typically one-of-a-kind, and hence it becomes difficult to learn temporal 

patterns using traditional machine learning approaches. That is why many aircraft predictive 

maintenance models are based on simple “threshold” monitoring rules capable of detecting only 

simple faults and, consequently, having high false-positive rates (FPR)[7]. Hence, it is vital to provide 

an accurate prediction of failures and, at the same time, have a very low FPR. That can improve the 

effectiveness of the aircraft health monitoring systems and, in turn, enhance the availability of the 

aircraft. 

This study considers the case of developing a model to predict unplanned failure and replacement of 

aircraft components. The dataset used contains extremely rare failures of the target component. The 

imbalance ratio for each target component is less than 3% of the total dataset, making it difficult to 

develop a predictive model effectively using the existing traditional machine learning approaches. 

Therefore, this study aims to show the applicability of deep reinforcement learning for training an 

extremely rare failure predictive model instead of the widely used machine learning or deep learning 

methods for slightly rare failure predictions. The proposed model is trained using a real-world aircraft 

central maintenance system (ACMS) dataset. 

 The proposed approach considers the problem of extremely rare event prediction from a 

reinforcement learning point of view. The problem is formulated as a Markov sequential decision-

making process and solved by combining reinforcement learning with deep neural networks. The 

approach enables the model to remember a long sequence of failure patterns. The reward function is 

specifically constructed to counter agent bias towards the majority class during model training. Figure 

2 shows the interaction between the elements of reinforcement learning. Here, the agent-classifier 

takes action in an environment; transition through the time series ACMS dataset is considered an 

environment in the proposed approach. A reward is returned based on the action taken (classify 

pattern as fault or non-fault) at a given state.  
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Figure 2 Visual representation of iterative feedback loop of actions, states, and rewards in reinforcement learning  

Rationale: DRL algorithms were traditionally designed for performance optimisation with very large 

input space [8]. Therefore, exploring the application of DRL approaches for complex systems large 

log-based datasets can significantly benefit the predictive maintenance, especially that data is 

continually increasing in dimension [9]. The rationale for the proposed method is to explore the 

applicability of deep reinforcement learning for extremely rare prediction problems, purposely for 

performance optimisation in complex systems predictive maintenance models, to minimize downtime 

and increase the utilization rate of the vehicles or components. The motivation for the possible 

performance improvement in the proposed algorithm is the combination of the convolutions in deep 

neural networks that enhance learning relationships between variables in the dataset. Also,  the reward 

function, which helps to counter bias during model training and prioritised experience replay 

memory, which instead of uniformly sampling transactions from replay memory, employs a 

prioritised approach that also entails replaying the important transactions more frequently. Hence, 

optimising the learning process. Also, DRL uses a reward function to optimise future rewards, in 

contrast to a machine learning (regression or classification) model that predicts the probability of 

future outcomes. Therefore, it can be assumed that deep reinforcement learning methods are ideally 

best for imbalanced classification problems because of its learning mechanism and specific learning 

environment and reward function. 

This paper presents a novel approach using deep reinforcement learning techniques to predict 

unplanned aircraft maintenance actions using data from operational flight logs and maintenance 

report information. The approach first identifies relevant temporal patterns that correspond to each 

component failure. It then transforms the problem into a sequential decision-making process that is 

optimized using deep reinforcement learning algorithms utilizing a reward system that penalizes 

proposed predictions leading to a false diagnosis and preferentially favours predictions that lead to a 

correct diagnosis. The failure messages in the ACMS data is directly associated with physical health 

aspects of the vehicle, asset or component (such as pressure, vibration, temperature, acoustics, 

viscosity, flow rate data). The patterns that are input to the algorithm represent the history state of the 

components, and they are labelled as failure or non-failures. The reward function is specifically 
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constructed to counter agent bias towards the majority class during model training. The strategy 

allows adequate handling of extremely imbalanced problems in predictive maintenance modelling. 

The influence of extremely rare failure prediction on the proposed deep reinforcement learning 

models is analyzed. 

The main contributions of this paper are as follows:   

1. To show a novel application of deep reinforcement learning to predict extremely rare failure 

problems in complex aircraft systems. The new deep reinforcement learning approach is 

designed to capture the patterns of extremely rare component failures adequately.  The model 

is trained to predict aircraft component replacement well in advance of failure. The technique 

includes designing and developing an environment for the state-action, a reward function for 

rewarding agent-classifier actions, and the unique arrangement of a deep neural network 

architecture for policy optimization.  

2.  The new method is validated using a real-world aircraft central maintenance system dataset. 

Exploring the ACMS dataset for developing a predictive maintenance model is a significant 

contribution because of its heterogeneous nature, challenging to analyse.  

The rest of this paper is organized as follows. Section two provides related work. Section three 

presents the proposed new method and its implementation. Section four presents the case study. 

Section five shows the results and discussion, and the conclusion is presented in section six.  

2. Related Work 

One of the design goals of predictive maintenance is to avoid unexpected failures by monitoring the 

vehicle condition and providing failure alerts well in advance. Predictive maintenance models are 

developed to forecast when likely the vehicle will fail, so that maintenance can be systematically 

scheduled to occur way in advance before the failure point. Predictive maintenance can be modelled 

in three ways: physics-based, knowledge-based, and data-driven-based [10]. Physics-based 

modelling can be defined as a simplified mathematical description of a system or process to assist 

calculations and predictions [11]. The prediction is based on a mathematical equation inside the 

mode; therefore, it uses a limited amount of data compared to other methods. However, the physics-

based model is challenging to create and implement, especially for complex systems, because it is 

sensitive to the system's design and material properties. Also, enough component information and a 

good knowledge of the failure mechanism is highly required to formulate the model.   

The knowledge-based model, also known as the expert system, uses defined rules or fuzzy logic to 

solve complex problems. The rules are set based on the knowledge of a domain expert. Converting 
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domain knowledge to a set of rules is challenging, which requires another technique for prognostics. 

Also, the set of rules needs to be updated anytime there is any system update. This process can be 

cumbersome and sometimes impractical, especially in a complex system with many components and 

processes.  

 The data-driven approach involves training machine learning algorithms using large historical 

datasets to learn a system behaviour model automatically. A data-driven approach is easy to 

implement, flexible, adaptable with a low cost of implementation. However, large historical data 

representing failure is needed, and getting such data is always challenging. However, the 

advancement in technology data is increasingly available, making it more appealing to use a data-

driven approach for developing predictive maintenance models in complex systems. For performance 

optimization a hybrid of the two or three approaches can be investigated [12], which is one of the 

study's main objectives.  

2.1 Rare Event prediction  

The challenge of predicting rare events has been around for some time and is still an ongoing research 

area [1]. Many solutions have been proposed in the literature, especially related to the maintenance 

of heavy industrial equipment and other domains that require rare event prediction. The existing 

solutions are primarily found in two groups: statistical methods and machine learning methods. 

Examples of statistical methods are the extreme value theory or extreme value analysis (EVA) [13,14] 

and the peak over threshold (POT) methods [15]. These methods deal with extreme deviation from 

the mean of a probability distribution in a dataset [16,17]. Statistical methods draw population 

inferences from a sample, whereas machine learning finds generalizable predictive patterns [18]. 

Machine learning approaches are desirable in this study because they are particularly helpful when 

harnessing knowledge from large heterogeneous datasets. They are more effective and efficient 

compared to other data mining and analysis methods.  

Machine learning approaches are divided basically into supervised, unsupervised, and reinforcement 

learning. Other hybrid learnings are semi-supervised, self-supervised and multi-instance learning. 

Supervised learning techniques involve learning or inferring using labelled training datasets. An 

example of supervised learning is seen in building a model for rare event prediction based on labelled 

data (the training set) [19]. One of the strongest advantages of supervised methods is that they can 

easily be validated, but the training data must be labelled. 

On the other hand, unsupervised learning involves developing models using unlabelled datasets; this 

is mainly used for problems such as anomaly detection, deviation detection, outlier analysis, and 

exception mining. These methods analyse each event one after another to determine how similar or 



9 

dissimilar they are to the majority. Their success depends on the choice of parameters, such as 

similarity measures and dimension weighting. Therefore, because the dataset used in this study has 

defined labels, the supervised machine learning approach is considered. 

Furthermore, rare event prediction can also be modelled using association rules (knowledge-based).

However, this approach is more effective for a small and simple system [20], not the large 

heterogeneous datasets studied here. The use of associative rules for a large and complex system is 

quite challenging and, in some cases, impractical because domain experts need to continually update 

the rules in the event of any upgrades or changes, which is time-consuming and cumbersome 

[21][22]. Another potential approach is reinforcement learning which can be considered from a 

sequential learning point of view. In this type of learning, an agent takes the best actions sequentially 

in a particular environment in order to maximise cumulative rewards [23]. The current study focuses 

on the deep reinforcement learning approach. 

Why is deep reinforcement learning considered for extremely rare event prediction instead of the 

standard deep learning or machine learning approach? It is a legitimate question, and the answer is 

subjective. Existing machine learning algorithms can handle the data imbalance problem in diverse 

dimensions depending on the type of dataset. However, considering that a situation where the target 

events are extremely rare, those methods become limited [3,4,24]. For instance, an imbalanced 

classification problem can be handled at the data level either by under-sampling the majority 

(negatively labelled) samples to balance with the minority class (positively labelled) or over-sample 

the minority class by creating more synthetic samples. Then the model can be trained using any 

existing machine learning algorithm. In this case of under-sampling, if the imbalance ratio is 

say1:200, in a total of a million records, about 0.5% will remain in the positively labelled dataset. 

After under-sampling, a total of approximately 1% of the original dataset will be left. The standard 

machine learning algorithms (such as Support Vector Machine, Decision Tree or Random Forest) 

can be used to train the model with data of this size. However, the potential information in the 

remaining ~99% of data left out will not be utilized, producing a low-sensitivity model [25].  

Another approach could be to over-sample the minority class, then use machine learning to train the 

model. This approach has the drawback of increasing the likelihood of overfitting since it replicates 

the minority class examples. The Synthetic Minority Oversampling Technique (SMOTE) [26] has 

been developed to mitigate overfitting in random oversampling by taking a subset of data from the 

minority class as an example and then creating new synthetic similar instances. However, SMOTE 

has the drawback of not considering neighbouring examples from other classes when generating 

synthetic samples. That can cause overlapping of classes and can also introduce additional noise into 

the training data. SMOTE is also ineffective in high dimensional data, as argued by Lusa et al. [27]. 



10 

In recent times, many solutions have been proposed to correct the drawbacks of SMOTE[28–30] and 

other novel solutions which are specific to either the application domain or dataset in question, as 

presented by Alberto et al. [25].   

Furthermore, another approach is to transform the dataset and then uses deep learning methods to 

train the model. Recent examples of time-series-based deep learning models have been proved to 

provide state-of-the-art performance in handling slightly rare event prediction problems. For 

example, the combination of an Auto-encoder with LSTM or GRU deep neural networks has been 

shown in Maren et al. [31]  and Di et al.[32]. Although these models have continued to improve over 

time, the challenge of handling an extremely imbalanced dataset, or extremely rare event prediction, 

remains an area that requires continuous improvement. For instance, model performance degradation 

is seen in training deep neural networks with an imbalanced dataset. Deep learning methods are 

affected by a highly imbalanced dataset because the overall total error cost representing the majority 

samples impacts the minority class samples by overwhelming the gradient responsible for updating 

the model’s weights. Hence creating a biased model that will produce a high FPR [31,33].  Therefore, 

the open literature lacks a unified solution to handling extreme imbalance classification problems, 

especially for large heterogeneous ACMS datasets. Hence, this study seeks to provide a solution to 

an extreme imbalance problem using a deep reinforcement learning (DRL) approach.  The solution 

aims to optimise the data-driven model's performance by avoiding biases and reducing the false 

positive rate.  

2.2 Deep reinforcement learning for predictive model 

The integration of deep learning with reinforcement learning, known as  DRL, to optimise model 

performance is gaining more research attention, and it is producing state-of-the-art solutions [34]. 

For instance, the integration of deep learning and reinforcement learning has led to the emergence of 

a novel technique called the deep Q-network (DQN)[3,23,35]. DRL has made the application of 

reinforcement learning attractive in different domains. One such domain is in developing predictive 

maintenance models for complex systems. A detailed survey on deep reinforcement learning and its 

applications can be found in a study by Kia et al. [23]. The DRL application can be seen in robotics 

and gaming [30][31], where different techniques are used to achieve the desired results. Also, in 

communication and networking [36], detecting and predicting failure notes in the network and cyber 

security [37] for detecting fraudulent events in the system. In the financial sector, DRL is used for 

solving complex business problems [38][39] and for inventory management and resource allocation 

[40]. Others are in medicine [41],  engineering and manufacturing [42][43].  
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Recently, the application of DRL for equipment maintenance is gaining more research attention. A 

study by Knowles et al. [44] has shown how to integrate reinforcement learning into condition-based 

maintenance. Rocchetta et al. [45] developed a framework based on DQN to optimise power grid 

equipment's operation and maintenance. Both approaches are based on Markov Decision Process 

(MDP) and DRL. The applicability of deep reinforcement learning for equipment health indicator 

learning is also shown in a study by Chi Zhang et al. [46]. However, the open literature lacks any 

exhaustive study that shows how extremely rare event prediction in complex systems can be modelled 

using deep reinforcement learning approaches, which our study seeks to fill.   

The current study is motivated by the fact that exploring the application of  DRL methods for real-

world problems, such as rare equipment failure prediction, for potential performance optimization 

opportunities. In data classification problems, DRL has served better in removing noise from data 

and learning hard temporal features, improving predictive models' performance [16]. Lin et al. [3]  

pointed out that deep reinforcement learning methods are ideal for imbalanced classification 

problems because of their learning mechanism and specific training environment and the control of 

the learning process using reward function. DRL uses a reward function to optimize future rewards, 

in contrast to a machine learning (regression or classification) model that predicts future outcomes 

probability.  

The DRL framework can be constructed by combining a deep neural network and reinforcement 

learning. That can be seen in  Q(λ)-learning [47], where the reward function can give a high reward 

or a penalty for an action taken by the agent-classifier on a positively labelled class (minority). With 

more attention given to the minority class, the algorithm can respond favourably to both classes 

during learning, hence enhancing the resulting model's effectiveness.  

As demonstrated by this review of the open literature, research on the application of deep 

reinforcement learning for extreme rare event prediction in complex systems is limited.  Thus, this 

paper demonstrates the application of deep reinforcement learning in aircraft predictive maintenance 

modelling, focusing on developing a model to predict extremely rare failure using a heterogeneous 

log-based ACMS dataset.  

3. Methodology 

3.1 Description of reinforcement learning based on the Markov Decision Process  

In reinforcement learning and Markov Decision Process (MDP), the agent interacts with an 

environment ℰ  sequentially over a discrete-time step �. The agent takes action �� at time � after 

observing the state ��. Based on the agent’s action ��, reward �� is returned. The process can be 
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represented as a 7-tuple of� = (�,�,�,�, ��,�,�), where S is the set of states. A is the set of 

actions. P is the transition probability distribution represented as (�: ��� → ��).  R is the reward 

function, represented as  �: �� → � and �� a returned immediate reward received after transitioning 

from state � to next state ��, due to action a. �� is the initial state distribution defined as ��: � → ��.  

γ is the discount factor � ∈ [0,1], a lower discount factor motivates the decision-maker to favour 

taking actions early rather than postponing them indefinitely. T is the transitional probability 

distribution.  

Once the MDP is defined, the target is to have an agent that can determine, at state ��, which best 

next action to take in order to maximize the reward ��. A gradient descent function can be used to 

maximize the reward based on a defined policy ��. For example, the agent takes an action ��� ∈ �
with respect to the optimal policy �(���|��): �� → ��  and observed reward �� for that action. The 

cumulative discount sum of the rewards is the objective function optimized by the policy �� . The 

optimal policy is created using a value function, which is a defined estimated value related to each 

state. The value function can either be a V-function [48], which estimates the value for each state, or 

the Q-function [48], which estimates the value for each pair of state-action �(�, �). The basic 

transaction of Q-learning keep a lookup table, in contrast to the deep Q-networks which leverages 

the use of replay memory to store trajectory transactions and the stored interaction are fetched from 

the replay memory in mini-batches to train the deep neural networks [8]. In other words, deep Q-

learning fits the Q-function with deep neural networks.   

MDP based models are used for planning future action and rewards. Methods of solving 

reinforcement problems based on planning are either model-based or model-free. The model-based 

technique is when transitional probability  � and reward  � are known. In this case, the optimization 

process can learn from T and R. The model-free approach is when T and R are unknown. In that case, 

the optimization process will directly learn the best policy without knowing T and R using trial-and-

errors learners [49]. In our implementation, we adapt a State Action Reward State Action (SARSA) 

learning and Deep Q-network (DQN) methods [50][47] which are based on a model-based 

reinforcement learning approach. SARSA is an on-policy model meaning the agent gets the optimal 

policy and uses it to act, while Q-learning is off-policy because it estimates the reward for future 

action and appends a value to the new state without using any greedy policy [50]. 

3.2 Formulation of Rare Failure Prediction Framework Based on Markov Decision Process 

To formulate the DRL-based rare failure prediction approach using the log-based ACMS dataset. The 

problem is considered as a sequence-to-sequence learning process, where the agent serves as a 

classifier. The agent receives patterns proceeding with each failure sequentially and classifies each 
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pattern as either failure or non-failure. The environment then returns a reward based on the agent's 

action. A positive reward is returned if the agent makes a correct classification; otherwise, a negative 

reward is returned. In the process, the agent will learn optimal behaviour from the environment and 

subsequently improve the agent classification accuracy.  

Assume the training dataset is  � =  �����,�,��,� … ��,��, (��)�, �����,�,��,� … ��,��, (��)�� , … , �����,�, ��,� … ��,��, (��)�� � ,  
Where ��,� is the failure pattern and ��s the labels. 

Table 1 shows the sample of the data and the interaction. The training dataset contains n-number of 

features and their corresponding labels. To transform the data for the DRL application pattern related 

to each target event with its corresponding labels is considered as state �. At every given state, the 

agent-classifier takes action by considering patterns related to each event as inputs and then 

performing a classification action � at time �. Based on the action taken, a reward �� is returned. At 

the end of each trajectory, a cumulative reward �� is returned, and the transaction is recorded in a 

replay buffer.  

Table 1. Representation of interaction of the agent with the environment 

n-Features Labels Agent classifier 

x1 x2 x3 xn yi - 

The pattern of event 1 St at ← �t

The pattern of event 2 St+1 at+1 ←rt+1

… … … … 

The pattern of event n St+n at+n ←Rn

A window is defined using the flight leg, and the end of each window is considered a trajectory. The 

agent-classifier can learn which action is favourable at a future given state by taking action and 

receiving a returned reward. During the training, because of the rarity of target events, the trained Q-

network will favour the majority class more than the minority (also referred to as the data imbalance 

problem). A reward function is defined to control the biases during learning by assigning different 

rewards for various classes present. That will handle the challenge of the extreme imbalance in the 

dataset. 
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In order to train the model on the ACMS dataset, the following DRL model parameters are defined 

as follows. 

Observation Space (S): contains all variables the agent-classifier needs to consider before 

classifying a data point as either positive or negative.  For the problem under consideration, the agent 

is expected to see all the pattern variables before making a decision. The intuition here is at each 

given time-step, the agent-classifier is expected to consider the previous, present and future patterns 

before updating its weight. At the start of the training, the agent-classifier receives the first pattern as 

a sequence of failure/warning messages. The order of sequence is maintained so as not to alter the 

pattern leading to equipment maintenance. The input is in the form of a 3D array (Samples, Time 

Steps, and Features) 

Action Space (A): The agent classifier takes action once it has assessed the environment. In our case, 

the action is binary � = {1, −1} classified as positive or negative corresponding to the labels in the 

training dataset.  

Reward (R): Represented as �� , the reward is returned based on the action taken by the agent 

classifier on the environment. If the agent predicts the given pattern correctly as positive, a high 

reward will be returned. If it misclassifies, a penalty is given in the form of a negative value. To 

improve the prediction of the minority class, at each time step, a reward function is defined so that a 

higher reward is returned for the correct classification of the minority class and larger penalties for 

misclassification. This helps the agent-classifiers to become less biased towards the majority class. 

The reward values are chosen using the imbalance ratio defined in equation 1. 

�� =  ⎩⎨
⎧ �� ,           �� = �� �ℎ��� �� ∈  ��− �� ,          �� ≠ �� �ℎ��� �� ∈   ��

1 ,             �� = �� �ℎ��� ��  ∈  ��−1,       �� ≠  �� �ℎ��� ��   ∈  �� (1) 

where � =
����, �� is the given number of majority class elements and �� the given number of 

minority class elements. � is a trade-off parameter that allows the control of the composite to be 

between speed and accuracy. Where � ∈ [0,1]. The range of the grid search for the parameter lambda 

(λ) is define in the range [0,1]. The dynamic adjustment of the reward function hyperparameters is 

achieved by the use of a defined function. The function is designed as part of the reward, it allows a 

user to specify the upper and lower values for the lambda (λ)  for the model to test. The model iterate 

and measures the best value of lambda (λ). 



15 

Transition probability distribution dynamics (T): is the probability of transitioning from one state 

St to another state ���� in a single step, �(����|�� , ��). In our case, it is deterministic the agent 

classifier moves from a current state �� to the next state ���� in the sequence of patterns in the dataset. 

Discount factor (�) : The factor � ∈ [0,1], is the weight of importance of future rewards. The 

discount factor needs to be defined carefully since we are considering a sequence to sequence 

approach where a successive pattern can be related. 

Exploration rate: The rate � = [0,1]. It is important to explore as much of the state-action space as 

possible to achieve optimal policy. Therefore, we choose the e-greedy approach [51]. 

Episode (�): is the transaction trajectory of all the states that came from the initial state to the terminal 

state. In this solution, an episode defines as when an agent classifier reaches the end of the window. 

Policy (��): is a function that receives a sample as input and then returns the probabilities of the 

label, represented as the mapping function �: � → � where ��(��) denotes the action �� performed 

by an agent at state ��. In an MDP, the sequence of (s, a, r) in an episode forms a policy trajectory. 

End of every episode, a total cumulative reward is returned from the environment.  ��  =  ∑ ������������ (2) 

The goal of every RL algorithm is to find an optimal policy �∗ Which attains the maximum expected 

return from all states. A policy is an agent-classifier behaviour action, and it specifies what action to 

take at each step. The stochastic policy is expressed as  �(�|�) = �(�� = �, �� = �)            (3) 

Where π(a│s) is the probability of taking action � in a state � under a policy �
Experience replay memory:  replay memory is used in moderating the effect of the imbalance 

problem. The replay memory is split equally into sub-memories between classes. After the split, then 

each corresponding class will be appended in its memory instead of overwriting the minority sample 

with the overwhelming majority. This approach will ensure that when samples are randomly fetched 

from memory to train the agent, it will balance all the training dataset classes.  

3.3. Implementation of reinforcement learning for extremely rare failure prediction. 

As seen in Figure 3, a defined reward function (equation1) is used to provide a known reward for 

each action at every step. The dataset represents the environment where the agent-classifier takes an 

action � at a given state � (see Table 1), and based on the action taken, a reward is returned. The 

DQN addresses the fundamental instability problem of using a functional approximation in 



16 

reinforcement learning (RL) by using two techniques: experience replay memory and target 

networks(�). Experience replay memory stores transitions of the form Q(st, at, st+1, rt+1) in a replay 

buffer. This enables the agent-classifier to sample from and train on previously observed data. Not 

only does this massively reduce the number of interactions needed with the environment, but batches 

of experience can be sampled, reducing the variance of learning updates. Furthermore, the temporal 

correlations that can adversely affect RL algorithms are avoided by sampling uniformly from a large 

memory. Finally, from a practical perspective, batches of data can be efficiently processed in parallel 

by modern hardware, increasing throughput.  

The original DQN algorithm used uniform sampling [52]. However, a later study shows that 

prioritizing samples based on eligibility trace [53] is more effective for learning. Q-learning seeks to 

find the best action to take for any finite MDP, given the current state. The Q-learning algorithm 

learns a policy that maximises a cumulative reward under a specific state-action pair Q(s, a). 

Therefore, within a given trajectory, the algorithm will perform a series of actions to obtain a 

maximum total reward.  

Figure 3. Deep Reinforcement Learning for rare event prediction

I. Deep Reinforcement Learning optimal policy: An optimal policy is an integral part of the 

proposed DRL algorithm. Basically, in reinforcement learning, a policy is responsible for choosing 

an action from a given state. Therefore, an optimal policy chooses the best action from a state. 

Choosing the best policy is the goal of every reinforcement learning algorithm. In the proposed 

approach, unlike normal reinforcement learning, the agent-classifier receives an environment state as 

input represented by a training sample and then performs an action (classification) under the control 

of a policy. DRL-based classification policymaking aims to learn the classification policy that 

maximizes the total reward during the entire training period.
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Finding an optimal policy in Q-learning, a value function is needed, and to calculate the value 

function a total cumulative reward (��) is required. To find �� a sum of rewards for every action is 

needed that is ���� + ����  +  ���� … =  ∑�� = ��  =  ∑ ������������ (4) 

Where T is the Trajectory.  

A value function is a function that follows a policy for each step to estimate the expected future 

reward, expressed as  �(�) = �[��|�� = �]   (5) 

There are two types of value functions; the state-value function (see equation 6) determines an agent's 

goodness in a given state. The action-value function (equation 7) determines how good it is to perform 

a given action in a given state.   ��(�) =  ��[��|�� = �] , the state-value function                              (6) �(�,�)  = ��[��|�� = �,����]   , the action-value function                                                (7)    

An optimal policy  �∗ is the maximum expected reward for each state express as  �∗(�|�) = max� ��(�,�)  (8) 

The next step is to find a method to predict possible future rewards, but the challenge is that possible 

actions at future time-steps are unknown. Since the Bellman equation helps in calculating Q* at each 

time step, it gives a way to determine the optimal policy.  Therefore, the Bellman equation[54] is 

used to drive the optimal policy, which incorporates the possible actions' probability at future time-

steps.  �(�)= �[�� + ��(��)|�� = �]  (9) 

Where ���� �� �� �� �ℎ� ���� �����  and  �� �� � �� �ℎ� ������� �����. Equation 9 is the Value 

Function of current state = Immediate reward + value function of the next state. The Bellman for the 

action-value function becomes.  ��(�,�) =  ��� + �∑ �������∈� ���� (10) 

More detail on Bellman's expression for state-value and action-value function is explained by David 

Silver[55]. 

Substituting equation (8) in (9) to get  
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��(�,�)     =  ��� + �∑ �������∈� ∑ �(��|�)��((��,�′))��∈� (11) 

As we can infer from equation 11, the optimal policy π* is to take the best action at each given state 

defined by �(�,�). Therefore, the optimal Q-function becomes  ��∗
(�,�) =   ���� +  �∑ �(��|�,�)��∗

(��,��)�� ����� (12) 

Where �∗ is the optimal policy mapping sequence of states to action,  ��∗
 is the optimal Q-function 

of the optimal policy.  

In Q-learning, the Q-function is implemented as a table of states and actions pair, and then the values 

are updated iteratively as the agent accumulates knowledge. A linear approximation function for 

updating the weight can be sufficient if the simple environment to work with is relatively small. 

However, if the action space is of high dimension, the number of transactions to store gets more 

complex, then the use of a non-linear approximation approach such as deep neural networks becomes 

an option. 

 Deep neural network function-approximation with respect to its weights �, is referred to as a deep 

Q-network. The weights ��� are used to approximate the value function across the whole state-action 

space. The interaction data ( �,�, �, ��) are stored in a priority experience replay buffer (PER). The 

classifier agent will then randomly sample a mini-batch from the PER and perform stochastic gradient 

descent on the Q-network by minimizing a loss function. ��(��) =  ∑   (�� − �(�,�, ��))�(�,�,�, ��)∈(���) (13) 

Where  �� =  

⎩⎪⎨
⎪⎧ � �ℎ�� ������� �� ����

.

.

.

.� +  ������ �(��,��;����) �ℎ�� ������� �� �����
Differentiating the loss function (equation 13) with respect to the weights �� we get   ∇����(��) = ∑ [�� − �(�,�;��)∇���(�,�;��)](�,�,�,��,)∈��� (14) 

A Q(λ)-learning [43] is used to improve the algorithm learning process. In the process, SARSA 

learning is combined with eligibility trace [53] and incorporated into Q-learning to give a more 

general method that learns efficiently using time-series data. The eligibility trace considers a temporal 

history of the transaction (�,�, �), since we are using function approximation instead of a Q lookup 

table to estimate Q-values, a trace is considered for each component of the weight �. The update is 

done as follows. 
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���� =  ��(�,�) + �Δ���(�, �;�) (15) �� =  ���� + �∆�� (16) 

Where ∆�=  �� − �(�,�;��) is the SARSA error,  and �� =  
�������(�,�;��)���   is the eligibility value. 

  II. Deep Q -learning with Prioritized Experience Replay (PER): In the normal Q-learning or 

DQN, the max operator uses the same value for both action selection and action evaluation[35]. This 

is likely to result in the selections that lead to over-optimistic estimation. Hado et al.[35] proposed 

double deep reinforcement learning (DDQN). The DDQN is designed to reduce over-estimation by 

decomposing the max operator in the target network into action selection and action evaluation. 

DDQN reduces the problem of over-estimation using two value functions by randomly assigning 

each experience to update one of the two value functions. That there are two sets of weight � ��� ��
for every update, one set of weights is used to determine its value.  ��(�,�) =  �� + �����,   �,�;������ �;�� (17) 

Similarly, SARSA learning is a stochastic way of using the value of the action elected by an agent in 

the next step instead of using max as in Q-learning. �(�,�) ← �(�,�) + �[� + ��(��,��) − �(�,�)] (18) 

Therefore, double deep SARSA can be derived by substituting equations (15) in (17)   to get ����(�,�) = ��(�,�) +  �[Δ���(�,�;�);��]              (19) 

The use of experience replay memory to store observed transactions provides capabilities for 

reinforcement learning agent-classifier to remember past transaction experiences [56]. In the normal 

experience replay approach, the transactions are from time-to-time uniformly sampled from the 

buffer to update the network without considering any significance of the weight � with respect to the 

policy �∗(in the DQN method, the policy is obtained implicitly by calculating a � �(�,�) function, 

where the parameter � measures the goodness of the given state-action with respect to policy). 

However, in a prioritized experience replay (PER) approach, the algorithm weighs the samples so 

that “important” ones are drawn more frequently for training [57]. The important samples are then 

played more frequently, which neglects the problem with strong correlations between consecutive 

samples. This technique improves the performance of the algorithm.  Therefore, we adopted PER 

with double deep SARSA learning and DDQN learning as a building block for our proposed 

framework for predicting rare failures in the aircraft maintenance system, as seen in (algorithm 1) 

and  (algorithm 2). 
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Algorithm 1: Double Deep SARSA- Learning 

Input: Training Data   � = �����,�,��,� …��,��, (��)�, … , �����,�,��,� …��,��, (��)�� �
(Episode Number k, step-size n, replay period K, Size N and exponents �,� ��� budget T, 

PER =H) 

Initialize replay memory � (H=�, Δ = 0,�� = 1) 

 Initialize action-value Function Q with random weight �, e= 0

Initialize Environment  � (observe ��, ��� �ℎ���� ��~��(��)) 

For k=1 to K do  

 Training data d 

Initialize state �� = ��
For t=1 to T do 

Observe (��,��, ��),  �� = ��(��)
Store transaction (��,��, ��, ���) in H with maximal priority �� = ���� < ���
IF � ≡ 0 ��� � �ℎ��
 For j=1 to k do 

Sample transaction � ~�(�) =
��∝∑ ��∝�

Compute importance: sampling weight �� =
��.�(�)���������

Set �� = � �� , ������ = ������ + ��∆� �� (�,�;�);���, ��� ������ = �����
Perform gradient descent on L(�) w.r.t �:������ =  � ��� − ���� ,�� , ���;  ���;�����

(�,�,�, ��)∈�
Update the transaction priority �� ← �Δ��
Accumulate weight change and traces. 

 End For loop 

Update weights ��
Copy weight into the target network ������� ← �

End IF 

Choose Action ��~��(��)
 End For loop 

 If window size = w, break  

End For Loop 
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Algorithm 2: Double Deep Q-Network

Input: Training Data  � = �����,�,��,� …��,��, (��)�, … , �����,�,��,� …��,��, (��)�� �
(Episode Number k, step-size n, replay period K, Size N and exponents �,� ��� budget T, 

PER =H) 

Initialize replay memory � (H=�, Δ = 0,�� = 1) 

 Initialize action-value Function Q with random weight �, e= 0

Initialize Environment  � (observe ��, ��� �ℎ���� ��~��(��)) 

For k=1 to K do  

 Training data d 

Initialize state �� = ��
For t=1 to T do 

Observe (��,��, ��),  �� = ��(��)
Store transaction (��,��, ��, ���) in H with maximal priority �� = ���� < ���
IF � ≡ 0 ��� � �ℎ��
 For j=1 to k do 

Sample transaction � ~�(�) =
��∝∑ ��∝�

Compute importance: sampling weight �� =
��.�(�)���������

Set �� = � ��, ������ = ������ + � ������,��;������ , ��� ������ = �����
Perform gradient descent on L(�) w.r.t �:������ =  � ��� − ���� ,�� , ���;  ���;�����

(�,�,�, ��)∈�
Update the transaction priority �� ← �Δ��
Accumulate weight change and traces. 

 End For loop 

Update weights ��
Copy weight into the target network ������� ← �

End IF 

Choose Action ��~��(��)
 End For loop 

 If window size = w, break  

End For Loop 
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4. Case Study 

The application of this novel technique is validated using a real-world ACMS dataset. The dataset is 

obtained from a fleet of aircraft. There are two families of aircraft in the long-range (A330) and the 

short aisle aircraft (A320).  The first data is the data generated from the central maintenance system 

(log-based ACMS data), and the second data is the record of maintenance activities. The datasets are 

obtained from a fleet of long-range (A330) aircraft and A320 families. According to families, aircraft 

grouping is necessary because the data generated differ in properties and structure.  The designation 

routes were different for each family; some were mainly used for long-distance routes, while some 

were primarily used for short distances. From the A330 aircraft family, the total number of 

failure/warning messages after pre-processing is 389902, and the A320 family has a total of 890120. 

The main objective is to develop a predictive model to predict failure resulting in aircraft's unplanned 

repairs or components' replacement. Therefore, we choose target components, identified by 

Functional Item Number (FIN). The representation of these components is extremely rare. The basic 

idea is to detect both the extreme minority class samples and the majority class samples correctly 

during model classification. In each family, we target three components or functional items that are 

replaced due to unscheduled maintenance and study their failure behaviours. The behavioural patterns 

are then used to build a predictive model to predict their replacement. Data from the year 2011 to 

2016 is used for training and testing (80% used for training and 20% used for testing), while the 

reaming from 2016 to 2018 is used for validation. The datasets are obtained from a fleet of long-

range (A330) aircraft and A320 families. According to families, aircraft grouping is necessary 

because the data generated differ in properties and structure.  The designation routes were different 

for each family; some were mainly used for long-distance routes, while some were primarily used for 

short distances.  

Figure 4. An example of a real ACMS 
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A proper and exhaustive analysis the ACMS data was carried out with close interaction with the 

domain expert to identify relationships among attributes and the "decision" variables of interest, 

cause-effect of failure. The ACMS data does not contain any description accompanying it, so our 

initial task was to understand the data characteristic and subsequently identify pre-processing and 

modelling requirements. As seen in Figure 4, columns (variables) available in the ACMS dataset are:  

1. Event date: Date the failure message occurs 

2. Aircraft Tail Number: Uniquely identified aircraft in the fleet data  

3. FIN Removals: Identify the components removals  

4. Failure Source: This Shows the sub-system that the failure message belongs to 

5. Failure Message: Show the description of the failure message which relates to the physics of each 

components. 

6. Leg of occurrence: Indicates the flight where the failure message occurs  

7. TSI(FH):  It shows time Since the installation of the component replaced  

8. CSI (FC) : Cycles Since Installation (cycles) 

9. Date Install (DT_INST): This shows the date the component/LRU was installed  

10. DT_REM: Component/LRU Removal Date  

11. RAZAO_REMO: Reason for Removal either as Scheduled or Unscheduled. 

12. SIT: Situation at Removal either Serviceable or Unserviceable 

13. Flight Phase: This shows the exact flight phase when the failure message was generated (e.g. 

take-off, cruise, and landing) 

14. Departure Airport: Show the take-off airport   

15. Arrival Airport: Destination Airport  

16. Flight Number: show the flight number assigned to the particular aircraft. The dataset has a data 

imbalance problem, which the proposed technique seeks to address.      

Among the several possible components identified by their Functional Identification Numbers (FIN), 

This thesis focused on the ones having a higher economic impact in operation according to the airline 

that provided the dataset. 
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Table 2. Selected Component to be considered in this study 

Selected Components 

A330  A320 

4000KS – Electronic Control Unit/ 

Electronic Engine Unit 

11HB - Flow control valve 

4001HA/4000HA – High-Pressure Bleed 

Valve  

10HQ - Avionics equipment 

ventilation computer 

5RV1- Satellite Data unit 1TX1 - Air traffic service 

438HC -- Trim Air Valve 8HB - Flow control valve 2 

The analysis of maintenance records and considering the ACMS aircraft family shows that the total 

number of failure/warning messages after pre-processing for A330 is approximately 389902 in about 

4023 flight legs. The A320 family has a total of roughly 890120 failure messages in about 10874 

flight legs. The information indicated that the occurrence of unscheduled replacement for the targeted 

components occurs on averagely two to three times every thousand flights. 

The data was split into training and testing divided into 70/30 (from January 2001 to September 2016) 

and validation data from October 2016 to April 2018 (without known label).  A time-series window 

of 30 flight legs was used as a trajectory length. The choice is done based on domain expert advice. 

The leg size value is considered to be the memory size of the ACMS fault messages recording 

process. For this reason, it has been decided to analyse groups of no more than 30 consecutive legs. 

Meaning that 30 past flights are considered to identify predictive patterns. 

4.1 Experiment  

An experiment is set up to investigate the application of different deep reinforcement learning (DRL) 

architectures for the extreme rare failure prediction problem. The transformed DRL framework's 

implementation is based on the proposed DDSARSA and DDQN for extremely rare failure 

prediction. The implementation is based on the following.  

I. DQN (Baseline): This is a normal deep Q-Network that uses a neural network to approximate a 

state-value function in a Q-learning framework. The baseline uses a standard experience replay 

memory.  

II. DDQN+PER: In this implementation, we use the proposed double deep Q-learning with Prioritized 

Experience Replay memory to predict rare event failures in aircraft predictive maintenance 

modelling. The aim is to investigate the effectiveness of using DDQN+PER (see algorithm 2) by 

evaluating the effect of the overestimation problem and efficiency of the model in handling the 

extreme imbalanced data.  
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III. DDSARSA+PER: In this implementation, we use a DDSARSA with Prioritized Experience 

Replay memory to predict rare event failure in aircraft predictive maintenance modelling. The aim is 

to investigate the effectiveness of using double deep SARSA learning with PER (see algorithm 1) by 

evaluating the effects of PER and eligibility trace during learning and the model's efficiency in 

handling the extreme imbalanced problem. 

IV. To investigate the proposed deep reinforcement learning approach's performance compared to 

other existing rare failure prediction methods. Three methods were considered: the Cost-Sensitive 

method [31], SMOTE with random forest [58], and the deep learning AE-BGRU [59]. The cost-

sensitive method is an existing technique that modifies the loss function in Long Short Term Memory 

(LSTM) networks. The algorithm responds favourably to both classes during learning. The method 

is designed to handle rare failure prediction in time series datasets as implemented in previous work 

[31]. SMOTE+RF is a technique that balances the dataset using the Synthetic Minority Oversampling 

Technique (SMOTE) before presenting it as an input to the learning algorithm (Random Forests). 

The method is designed to handle extreme imbalanced classification problems [58]. AE-BGRU [59]  

is a strategy for predicting rare failure that uses a rescaled loss function in a hybrid deep network 

architecture known as the auto-encoder bidirectional gated recurrent network (AE-BGRU) model.  

4.2 Description of the network architectures

There are two core approaches to data-driven maintenance, each geared towards different connected 

capabilities of aircraft or components. The network architecture consists of convolutional layers 

(CNN) and long-short team memory (LSTM) layers, which enhances the learning of the temporal 

dependency in the sequential data. A dense layer is also used to minimize the effect of overfitting, as 

seen in Table 3. The number of hidden layers and architecture design differ depending on the aircraft 

family dataset structure. For instance, an A320 aircraft will not transmit the same operational data 

level as the A320; hence, each dataset's learning strategies are different. 
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Table 3 Deep Network Network  Architecture 

Values  Layers  

Sequential  

filters =32, kernel =3, activation = ReLU Convolution 2D 

MaxPooling 

Unit =32, dropout =0.2, activation = ReLU LSTM 

Unit = 1, activation =sigmoid Dense (Fully-connected) 

Where ReLU returns X if the value is positive else, it returns zero. Max-pooling is added after the 

convolutional layer reduces the feature map that is generated by the convolution operation. Max-

pooling also helps in selecting only important information, which removes weak activation 

information hence avoiding overfitting problems. LSTM layer is added to correlated information 

from the past with current combined with the convolutional layer helps to learn better correlations 

between variables. The dense layer, also referred to as fully connected, is added as the last layer it is 

used to make the final decision based on the input from the LSTM layer.  

4.3 Performance Metrics for the Models Validation 

The problem is considered as an imbalance learning approach. Therefore, we use performance 

metrics relevant to evaluating rare event prediction. The algorithm is evaluated using the ACMS data. 

The data is split into training and testing divided into 70/30 (from January 2001 to September 2016) 

and validation data from October 2016 to April 2018 (without known label).   

The performance metrics used are built from a definition presented by David [60]. Most machine 

learning and statistics best practise guides indicate a preference to partition available data as follows: 

I Use for the initial development of the model(s) say A, B and  C 

J Used for establishing optimum model: A or B or C (when to stop training) 

K Used as final validation on previously unknown data of selected model 
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The assumption is that I, J and K each contain representative data of the whole population and are 

independent and identically distributed with adequate coverage in each partition.  

As seen in Figure 5 for classification models, confusion matrices are often used to measure 

effectiveness in the validation of models. In this study, component failures are considered a positive 

class, while non-failure is considered a negative class.   

Definition of evaluation formulae used in this study using Figure 5. 

Patterns with component Failure = Positives  

Patterns without component Failures = Negatives 

True Positives (tp) = patterns with components failures that have been classified as a failure. 

True Negatives (tn) = patterns without component failure who have been classified as non-failure  

False Positives (fp) = patterns with components failure who have been classified as non-failure 

False Negatives (fn) = patterns without components failure who have been classified as  failures  

 Common metrics extracted from these are:    

The true-positive rate (TPR), also known as  Sensitivity, measures the proportion of components 

with failure who have been classified as component failures.  

TPR/sensitivity  = tp/(tp+fn)    (20)  

The false-negative rate (TNR), also known as  Specificity, measures the proportion of components 

without failure that has been classified as non-failure components.  

TNR/Specificity  = tn/(tn+fp)  (21)  

The false-negative (FNR) measures the proportion of patterns without components failure who have 

been classified as failures.  

FNR = fn/(tp+fn) (22) 

False Positive rate (FPR) measures the proportion of patterns with components failure that has been 

classified as non-failure. 

FPR = fp/(fp+tn) (23) 

A false-positive arises when an example (pattern) from the minority class is misclassified as an 

example from the majority class. False-negative is less serious than false-positive when patterns with 

component failures are considered positives (minority class) and patterns without component failures 
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are considered negatives. The term "false-positive" is used in this study to describe misclassifying a 

malfunctioning component as "healthy," which is particularly dangerous because it could cause 

equipment damage. Similarly, a false negative involves misclassifying a working component as 

faulty; as a result, the extra cost of maintenance checks may increase.  

The performance measurements are often used to compare several models using a ROC plot [61] (see 

Figure 5). In the case of failure prediction of an aircraft component, sensitivity is the model’s ability 

to correctly predict failure, leading to component replacement (probability of positive prediction 

given that the failure results in component replacement). Model specificity relates to the model’s 

ability to correctly predict non-failure, resulting in no replacement (probability of negative prediction 

given that no failure occurs). 

A very simple metric to measure classification performance is accuracy: 

Accuracy    = (tp + tn) /n     (24) 

Accuracy is the ratio of correct predictions to the total number of samples in the dataset. However, 

this metric can be misleading in extreme imbalanced classes, as high metric values don’t show the 

true prediction capability for the minority class. An accuracy of 99% can be achieved, but this still 

represents poor prediction capability of the class of interest. In such cases, accuracy could be 

misleading as one could predict the dominant class most of the time and still achieve a relatively high 

overall accuracy with correspondingly low precision or recall for other classes. To understand the 

current model predictive ability, the following metrics are used.  

Precision    = tp/(tp + fp) (25) 

a measure of how well the true events are classified.

Predicted

            -ve     +ve

-ve      tn        fn

+ve      fp       tp

True

=>

Figure 5. Confussion matrix and ROC curve 
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Recall = tp/(tp + fn)    (26) 

which is the fraction of instances of a class that were correctly predicted. Geometric mean (G-mean): 

G-mean =� (��������� ∗ ������)            (27) 

is commonly reported as a metric that measures the balance between classification performances on 

both the majority and minority classes. It measures the harmonic mean average between precision 

and recall.  

The metrics presented above show that accuracy and specificity are influenced by population size 

and can, therefore, distort the measure of classifier performance. Consequently, it is worth 

considering sensitivity, recall, precision, FPR, FNR and G-mean values as these aren’t distorted by 

population size, particularly where highly imbalanced datasets are involved.  

5. Results and Discussion 

Each algorithm was run five times for each target event with the same hyperparameter for 200 epochs 

using five random seeds. The Q-function is approximated using deep neural networks.  

5.1 Results  

The first investigation performed was to verify the applicability and effectiveness of using 

DDSARSA+PER and the Deep Q-network for rare failure prediction. As seen in Table 4, these 

investigations' results are compared with a baseline method DQN (deep Q-Network). The result 

indicates that DDSARSA+PER and DDQN+PER can effectively be applied for rare failure prediction 

or data Imbalanced classification. It can generally be observed that the two novel implementations 

show significant improvement in terms of model performance. Although there is a delay in the 

training time, there is a significant reduction in both the FPR and FNR, which is very important for 

aircraft maintenance applications. The impact of eligibility trace positively impacts the new 

algorithms by reinforcing entire sequences of actions from a single experience, contributing to the 

improved performance in the proposed algorithms. 
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Table 4. Shows  DDSARSA learning with PER and DDQN with PER for rare failure prediction. 

Aircraft ACMS Dataset 

DQN (Baseline) DDQN+PER DDSARSA+PER 

LRU ρ G-

mean 

FPR FNR G-

mean

FPR FNR G-

mean

FPR FNR 

 A330-

Family 

4000KS 0.0043 0.77 0.0023 0.021 0.85 0.0015 0.004 0.94 0.00023 0.0100

4001HA 0.0047 0.79 0.0021 0.018 0.86 0.0013 0.003 0.97 0.00023 0.0800

5RV1 0.0044 0.78 0.0020 0.017 0.84 0.0017 0.004 0.95 0.00012 0.0111

A320 

Family 

11HB 0.0028 0.71 0.0025 0.023 0.82 0.0014 0.0011 0.90 0.00009 0.0000

10HQ 0.0031 0.75 0.0021 0.019 0.84 0.0011 0.0125 0.93 0.00009 0.0000

1TX1 0.0064 0.80 0.0020 0.018 0.89 0.0010 0.011 0.98 0.00002 0.0001

**  The bold results show that the DDSARSA+PER method outperforms the baseline methodology and the DDQN+PER strategy in terms of 

G-mean, FPR, and FNR. 

(a) (b)

Figure 6. Summary of the model  performance in terms of  G-Mean ( data from A330 aircraft family, for component  4001HA) 

(a) double Deep SARSA (b)  Double Deep Q_Network with prioritized experience replay memory model 
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(a)                                       (b)  

Figure 7. Summary of   model performance in terms of G-Mean data  ( A320 aircraft family for the component 1TX1) 

(a) double Deep SARSA (b)  Double Deep Q_Network with prioritized experience replay memory model 

Figures 6 and 7 show the classifier-agent performance over the validation dataset for both A330 and 

A320 aircraft, respectively. The model is trained for up to 200 epochs, rewarded with the parameter 

ρ as seen in Table 4, and a learning rate of 0.01. Figure 6(a) shows the performance of the 

DDSARSA+PER model, and it can be observed that the agent learns slowly between 0- 25 epochs 

for validation. After 25 epochs, the performance increases steadily and normalizes at 0.7g-mean for 

validation. Similar performance is seen in Figure 6(b), which shows the performance of DDQN+PER, 

the model learns slowly up to 15 epochs, and the performance increases steadily, achieving 0.65g-

mean for validation. The model's performance on A320 aircraft is seen in Figures 7(a) and 7(b); as 

observed, the DDSARSA+PER model shows better G-mean performance than DDQN+PER. 

It is important to note that the choice of hyper-parameter λ and the imbalance ratio ρ significantly 

impact the model’s overall performance because they can cause the agent to learn a sub-optimal 

policy. When the value of λ is large, the model converges quicker at the G-mean's expense, and when 

the value is small, the model converges slower with better performance. DDSARSA+PER only gives 

better performance at a certain value of λ based on the structure and complexity (i.e. the length of the 

sequence pattern for each failure) on the dataset in question. Adjusting and keeping the reward 

function’s parameter lambda (λ) static impacts the algorithm's performance. Therefore, to improve 

learning on the proposed approach, we performed a grid search in each training phase to dynamically 

adjust the hyper-parameters reward function (λ) based on the use-case imbalance ratio ρ. The

parameter lambda (λ) is define in the range [0,1] 
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5.1.1 Model sensitivity analysis  

Figures 8 and 9 illustrate model performance results based on the recall and FPR for training and 

validation on the A330 and A320 aircraft families. From each dataset family, one component was 

picked. A330's 4001HA (high-pressure bleed valve) and A320's 1TX1 (air traffic control unit).  

(a) 
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 (b) 

Figure 8. Summary of the model performance in terms of false-positive rate ( data from A330 aircraft family for the component  

4001HA) (a) double Deep SARSA (b)  Double Deep Q_Network with prioritized experience replay memory model.

The result of training the DDSARSA+PER algorithm using the A330 dataset is shown in Figure 8(a). 

the result indicates that it takes roughly 150 epochs to reach 0.85 recall for the validation data, with 

a consistent FPR of about 0.00023 (see Table 4) during the validation period. As observed, 

DDSARSA shows a more robust training capability than the DDQN+PER in 8(b) with an FPR of 

0.0013 (see table 4) and a validation recall of 0.76.  
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(a) 

(b) 

Figure 9. Summary of the model performance in terms of false-positive rate ( data from A320 aircraft family for the component  

1TX1) (a) double Deep SARSA (b) Double Deep Q_Network with prioritized experience replay memory model.            

The model validation for both the DDSARSA+PER and DDQN+PER methods utilising the A320 

aircraft family dataset is shown in Figure 9. Figure 9(a) demonstrates how the DDSARSA+PER 

model, with a validation score of 0.85 recall and an FPR of 0.00002, converges quicker after 100 

epochs and shows a better training capability than the DDQN+PER with a validation score of 0.80 



35 

recall and an FPR of 0.011. It is worth noting that the models in both implementations (DDSARSA 

and DDQN) had a low false-positive rate for all test situations. However, DDSARSA+PER, on the 

other hand, offers the advantage of faster convergence and robustness in handling extremely 

imbalanced problems, as shown in g-mean and FPR scores.  

Furthermore, false alarms in equipment predictive maintenance might result in increased 

maintenance expenditures due to unnecessary checks. It may also lower the level of trust in the 

equipment prognostics system. As a result, the goal is to keep FPR and FNR as low as possible while 

maintaining a solid G-mean. The proposed approach (DDSARSA+PER) and other existing 

imbalance learning methods (Cost-sensitive ensemble and random forest with SMOTE ) are 

compared in terms of False Positive Rate (FPR), as shown in Figure 10.  

Figure 10. Performance Analysis in terms of False Positive Rate (FPR) between the proposed algorithm other existing state-of-the-

earth imbalance learning methods

In terms of FPR, the proposed method (DDSARSA+PER) outperformed both the algorithm level 

(cost-sensitive learning) [31] and the data level (Random Forest with Synthetic oversampling) [58]  

methods. Figure 10 shows that the FPR for the DDSARSA+PER is less than 0.001 in all situations 

studied, while cost-sensitive approaches have FPRs ranging from 0.11 to 0.26, and SMOTE+RF 

methods have FPRs ranging from 0.13 to 0.3. In terms of G-mean and FPR, the overall result 

demonstrates that the Cost-Sensitive approach and the SMOTE+RF method perform similarly on 

both datasets (A330 and A320 aircraft).  

5.1.2 Model Validation in Predicting Failure Within a given Range 

Further research was conducted to establish the model's ability to anticipate aircraft component 

failure within the specified time frame, such as the ability to predict a number of flights ahead of 

failure. It is critical to make predictions within a realistic time frame, not too far ahead of the failure 
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point to prevent wasting resources, and not too near to the failure point to allow enough time to plan 

maintenance. As a result, ten to two flights prior to a failure point is considered a reasonable period 

for raising an alert.  

Figure 11 depicts a graphical picture of the timeframe that leads to failure. Point zero denotes the 

actual failure point, whereas points less than zero (negative) denote flights prior to the failure and 

points larger than zero (positive) denote flights following the failure. The following requirements 

were considered when using the DDSARSA+PER model and ACMS testing data (representing data 

from previous flights without labels) to make predictions: any failure alert that arrives earlier than -

10 is considered too early, and any failure alert that arrives later than -2 flights before the actual 

failure point (zero) is considered too late prediction.  

The following components are picked from the A330 family (4000KS,4001HA, 5RV1) and the A320 

family (11HB, 10HQ,1TX1) to test the model's effectiveness at the fleet level.  

The predicted results are displayed in Figure 12. Each point represents the difference between the 

time of actual maintenance action and its predicted time (prediction residual). The residual error 

between two and ten (shown by the red lines) are true positives; that is, the model predicted 

component replacement within the desired range. Those above ten indicate the prediction came too 

early, and those below two indicate the model predicted maintenance too late. Residual error at point 

zero naturally represents the points for which maintenance and prediction were simultaneous, and 

negative values show a very late prediction.  

It can be seen that the majority of the failure alerts for the component 4000KS (electronic engine 

unit) are within the target range. Only three alerts came too early, and one alert was predicted very 

late. For the component 4001HA (pressure regulating valve), three alerts are predicted too early, and 

two are predicted late, with two at precisely on the failure leg (zero), and two were predicted very 

late (below zero). Likewise, for the component 5RV1 (satellite data unit), the model predicted most 

of the failures within the target range.  Similar performance is seen in the A320 aircraft family, with 

Figure 11. Flight cycles before ( indicated with nagive sign)  and after failure 

Max prediction period  Alert Failure Point

-10 -2 0 2 
10 

True Positives 

Flights before failure Next flights after failure 
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the model predicting a majority of failures for 11HB (the flow control valve), 10HQ (avionics 

equipment ventilation computer), and the 1TX1 (air traffic service unit) within the target range.  

Figure 12. Validation of Proposed Model against actual maintenance record 

In conclusion, based on the prediction score in Figure 12, the proposed DDSARSA+PER model can 

forecast approximately 90% of aircraft component replacements within a specific range, i.e. not more 

than ten flights and not fewer than two flights to failure.  

 The number of failure cases classified is shown in Figures 13 (a) and 13 (b). The proposed model's 

confusion matrix was created using one component from the A330 and A320 datasets. As shown in 

Figure 13(a), the DDSARSA+PER model successfully predicted 9 out of 11 unplanned electronic 

engine unit failures (4000KS from the A330 dataset). Figure 13(b) shows the model predicted 6 out 

of 7 flow control valve failures (11HB from the A320 dataset).  
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(a)                                                                            (b) 

Figure 13 (a) 4000KS - Electronic Control Unit/ Electronic Engine Unit  (b)11HB  - Flow Contol Valve

5.1.3 Model of Comparative Analysis 

The comparative analysis between the proposed method (DDSARSA+PER ) and previous studied 

imbalance learning methods (cost-sensitive and SMOTE) and the autoencoder with bidirectional 

gated recurrent unit (AE-BGRU) network [59]. It can be observed that despite the extreme imbalance 

ratio in all the cases considered for both the A330 and A320 datasets, the proposed method performs 

much better in terms of G-mean and FPR. For example, looking at Table 5,  considering 4000KS 

with the lowest imbalance of 0.0043, it can be observed that the G-mean for DDSARSA+PER is 0. 

94 while that of cost-sensitive is 0.74, SMOTE+RF is 0.70 and 0.66. A similar performance is seen 

for other components, with a higher imbalance ratio compared to 4000KS. This clearly shows 

performance supremacy for the DDSARSA+PER model in predicting rare failure. 
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Table 5. The performance of the proposed reinforcement learning approach with other existing rare failure prediction methods 
** The bold results show that the DDSARSA+PER  method outperforms the other similar strategy in terms of G-mean, FPR, and FNR. 

The performance improvement in the deep reinforcement learning implementation, especially the 

DDSARSA+PER model, comes from a number of different factors such as the reward function, 

which optimize future rewards, in contrast to a machine learning model that predicts the probability 

of future outcomes (classification using an ensemble method and the synthetic minority oversampling 

techniques with random forest). Secondly, the use of PER, which, instead of uniformly sampling 

transactions from replay memory, employs a prioritized approach. This also entails the replay of the 

important transactions more frequently and hence learns more effectively.  

5.2 Discussion 

The main aim of this study is to investigate the applicability of deep reinforcement learning 

techniques for training an extremely rare failure predictive model instead of the widely used machine 

learning or deep learning methods for slightly imbalanced datasets. Two algorithms (the DDSARSA 

and the DDQN) are designed and implemented.  The implementation results show that the application 

of deep reinforcement learning for extremely rare failure prediction is viable, and the constructed 

algorithm shows superior performance as compared with baseline DQN. Also, it was observed that 

the proposed DDSARSA+PER algorithm shows better learning as compared to DDQN+PER. Then  

DDSARSA+PER  was compared with existing imbalanced learning methods, and performance was 

evaluated based on G-mean and false-negative rates.  As indicated in Table 5, the average prediction 

rate for all six components was calculated,  in comparison to the cost-sensitive LSTM approach with 

0.79 g-mean and 0.019 FPR, SMOTE+RF with 0.71 g-mean and 0.022 FPR, and autoencoder with a 

DDSARSA + PER Cost-Sensitive (LSTM)  SMOTE+RF   AE-BGRU 

Component ρ G-

mean 

FPR FNR G-

mean 

FPR FNR G-

mean 

FPR FNR G-

Mean 

FPR FNR 

 A330 

Family 

4000KS 0.0043 0.94 0.00023 0.0100 0.74 0.026 0.103 0.70 0.024 0.022 0.66 0.0083 0.3800 

4001HA 0.0047 0.97 0.00023 0.0800 0.80 0.014 0.111 0.74 0.021 0.024 0.63 0.0013 0.4615 

5RV1 0.0044 0.95 0.00012 0.0111 0.76 0.023 0.106 0.71 0.023 0.022 0.65 0.0008 0.4000 

(A320) 

Family 

11HB 0.0028 0.90 0.00009 0.0000 0.77 0.022 0.101 0.69 0.030 0.023 0.62 0.0019 0.5555 

10HQ 0.0031 0.93 0.00009 0.0000 0.80 0.019 0.104 0.70 0.028 0.022 0.65 0.0028 0.5454 

1TX1 0.0064 0.98 0.00002 0.0001 0.87 0.011 0.101 0.76 0.013 0.017 0.81 0.0002 0.2352 

Average prediction score 0.95 0.00013 0.0168 0.79 0.0192 0.1043 0.71 0.023 0.021 0.67 0.0025 0.4296 
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bidirectional gated unit network with 0.67 g-mean and 0.0026 FPR, the proposed DDSARSA showed 

superior performance with an overall 0.95 g-mean score and an average of 0.0005 FPR. 

Calculating the percentage increase in G-mean scores from the highest g-mean, the Cost-Sensitive 

(LSTM) model, which is 0.79, to the highest g-mean, DDSARSA+PER, which is 0.95, the result 

shows that DDSARSA exhibits a 20.3% g-mean improvement. In addition, when computing the 

percentage drop, the suggested model reduces FPR by roughly 97.3684 % by using the lowest FPR, 

which is 0.019 to 0.0005.  

The overall observation shows that the Cost-Sensitive method and the oversampling (SMOTE+RF) 

method perform relatively the same on both datasets (A330 and A320 aircraft) in terms of G-mean 

and FPR. What accounts for the significant performance improvement in DDSARSA are basically 

the combination of the convolutions in deep neural networks which enhance learning relationships 

between variables in the dataset,  the reward function which helps to counter bias during model 

training and the use of prioritised experience replay memory, instead of uniformly sampling 

transactions from replay memory, employs a prioritised approach; this also entails replaying the 

important transactions more frequently, optimising the learning process. Also, DRL uses a reward 

function to optimise future rewards, in contrast to a machine learning (regression or classification) 

model that predicts the probability of future outcomes. Therefore, it can be concluded that deep 

reinforcement learning methods are ideally best for imbalanced classification problems because of 

their learning mechanism and specific learning environment and reward function. The PER and 

eligibility trace also contributed to the performance impact. The impact of eligibility trace positively 

impacts the new algorithms by reinforcing entire sequences of actions from a single experience, 

contributing to the improved performance in the proposed algorithms.  

The impact of FNR, that is, the proportion of "healthy" components classified as failures in 

equipment’ predictive maintenance, can result in higher maintenance costs due to unnecessary 

checks. Also,  FPR - the proportion of faulty components classified as non-faulty or when the model 

fails to predict failure can result in equipment damage or huge loss.  A high FPR score or FNR score 

might potentially lower the level of trust in the equipment prognostics system. As a result, the goal 

is to bring both FNR and FPR down to an acceptable level. This implies the model should accurately 

identify fewer false alarms, lowering total operational costs and increasing vehicle availability and 

reliability. As shown in Figure 10 in comparing the proposed model to existing approaches, the 

proposed  DDSARASA+PER model shows a lower false-negative rate. The usage of a double deep 

neural network is the main disadvantage of DDSARSA+PER, which increases training time but can 

be compensated for by a high detection rate. This study will impact research towards mitigating 

unscheduled maintenance for systematic schedule maintenance. 
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6. Conclusion 

In this study, a novel technique for predicting extremely rare failure is proposed and implemented. 

The new technique is based on a deep reinforcement learning approach. Two algorithms are 

constructed, the double deep Q-Network with prioritized experience replay memory and the double 

deep state-action-reward-state-action with prioritized experience replay memory. The effectiveness 

of the new approach is validated using a real-world aircraft central maintenance log-based dataset. 

The result shows that the application of deep reinforcement learning for extremely rare failure 

prediction is viable. It also indicates that the proposed double deep state-action-reward-state-action 

with prioritized experience replay memory model can effectively predict component failure in both 

the A330 and A320 aircraft families with low false-positive and false-negative rates. The result means 

that unscheduled maintenance can be reduced in the aircraft fleet at the same time decreasing the cost 

of maintenance operations.  

The work can be extended by carrying out further experimentation to determine the impact of high 

imbalanced on other deep reinforcement learning. Parameters such as changing the network 

architecture, an additional variable can be introduced into the deep neural network to keep track of 

the physical state and check for inconsistency with the physical laws to improve accuracy. Also, 

future work can consider enhancing performance optimization using other deep reinforcement 

learning algorithms. An ablation study will be carried out to assess the impact of eligibility trace and 

prioritise experience replay memory individually. More aircraft data sources - such as quick access 

recorder (QAR) Data, Performance Reports (PR), and Maintenance Tech Logs data can be integrated 

into the analysis.   
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