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Abstract—Simultaneous trajectory prediction for multiple het-
erogeneous traffic participants is essential for safe and efficient
operation of connected automated vehicles under complex driving
situations. Two main challenges for this task are to handle
the varying number of heterogeneous target agents and jointly
consider multiple factors that would affect their future motions.
This is because different kinds of agents have different motion
patterns, and their behaviors are jointly affected by their indi-
vidual dynamics, their interactions with surrounding agents, as
well as the traffic infrastructures. A trajectory prediction method
handling these challenges will benefit the downstream decision-
making and planning modules of autonomous vehicles.

To meet these challenges, we propose a three-channel frame-
work together with a novel Heterogeneous Edge-enhanced graph
ATtention network (HEAT). Our framework is able to deal
with the heterogeneity of the target agents and traffic par-
ticipants involved. Specifically, agents’ dynamics are extracted
from their historical states using type-specific encoders. The
inter-agent interactions are represented with a directed edge-
featured heterogeneous graph and processed by the designed
HEAT network to extract interaction features. Besides, the map
features are shared across all agents by introducing a selective
gate-mechanism. And finally, the trajectories of multiple agents
are predicted simultaneously. Validations using both urban and
highway driving datasets show that the proposed model can
realize simultaneous trajectory predictions for multiple agents
under complex traffic situations, and achieve state-of-the-art
performance with respect to prediction accuracy. The achieved
final displacement error (FDE@3sec) is 0.66 meter under urban
driving, demonstrating the feasibility and effectiveness of the
proposed approach.

Index Terms—Trajectory prediction, connected vehicles, graph
neural networks, heterogeneous interactions.

I. INTRODUCTION

INTELLIGENT transportation systems (ITS) leveraging

connected autonomous vehicles [1] are expected to im-

prove the safety, security, and efficiency of our daily trans-

portation [2]–[5]. Among the technologies of ITS, accurate

trajectory prediction of moving objects, e.g., pedestrians [6],

[7] and vehicles [8], [9] that share the road with autonomous

vehicles, is an important task in this field. With predicted

trajectories of surrounding agents, autonomous vehicles can

make informed decisions in advance and avoid possible ac-

cidents. This increases the safety, efficiency, and comfort
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of autonomous driving. However, Trajectory prediction is

challenging especially in urban driving scenarios since the

motion of an agent is affected by many factors, e.g., its

own dynamics, its interaction with neighboring agents, and

the road structure. Researchers in the field of autonomous

driving have proposed many works for trajectory prediction

and these methods fall into three categories: physics-based,

maneuver-based, and interaction-aware methods [10]. Physics-

based methods consider the object’s individual dynamics to

predict its motion ignoring possible maneuvers restricted by

the road structure and neighboring agents’ impacts [11].

Maneuver-based methods consider maneuver options and pre-

dict trajectory conditioned on maneuvers ignoring the impact

of surrounding vehicles [12]. Interaction-aware methods have

attracted more and more interests recently in that they: 1)

naturally treat driving as an interactive activity; 2) show better

performance compared to pure physics-based and maneuver-

based methods; 3) can be extended to take physics and

maneuvers into account [13]–[16]. Most existing interaction-

aware methods represent the motion of all agents in a shared

coordinate system, which is sensitive to translation and ro-

tation, and only aim at predicting the trajectory of a single

agent [13], [15]–[18]. However, autonomous vehicles should

simultaneously predict future states of multiple surrounding

agents, e.g., vehicles and pedestrians, to navigate in complex

and highly dynamic urban driving scenarios.

This work focuses on simultaneously predicting future

trajectories of multiple heterogeneous agents for both urban

and highway driving by jointly considering agents’ individual

dynamics, their interactions, and the road structure. Agents’

past states and a top view image of the interested area is

assumed to be available leveraging the vehicle-to-vehicle and

vehicle-to-infrastructure communications [19].

Since a moving agent’s future motion is affected by many

factors, including but not limited to its own dynamics, so-

cial interactions, and the road structure, ideally a trajectory

predictor should consider as many of these associated factors

as possible. Considering the availability of the datasets, we

propose a three-channel framework for multi-agent trajectory

prediction to handle these factors accordingly, enabling the

modularized design and analysis. For agents’ dynamics, we

place each agent in its exclusive coordinate system to eliminate

the impacts of coordinate shifting. This is because an agent’s

recorded states, no matter placed in which coordinate system,

can be always converted to its own coordinate system without
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affecting other agents. For inter-agent interaction, we represent

the interaction among agents as an edge-featured heteroge-

neous graph and designs a novel heterogeneous edge-enhanced

graph attention network to model the interaction among agents

of different types. For the road structure, a pictorial map is

shared across all agents with a gated map selector. Please see

Fig. 1 for an overview of the proposed framework.

The main contributions of this work can be summarised as:

• A three-channel framework is proposed for multi-agent

trajectory prediction. It jointly considers agents’ individ-

ual dynamics, their interactions, and the road structure

for trajectory prediction.

• A comprehensive and transformation-insensitive interac-

tion representation is proposed based on the edge-featured

heterogeneous graph, where the nodes and edges fall into

different categories and contain corresponding attributes.

• A novel heterogeneous edge-enhanced graph attention

network (HEAT) is designed to model the inter-agent

interaction for multi-agent trajectory prediction.

• A gate-based map selector is proposed to allow sharing

the map information across all target agents in a selective

manner rather than store a local map for each agent or

share the same map across all agents.

The remainder of this work is structured as follows: Sec. II

introduces existing works most related to this work. Sec. III

provides an overview of the proposed method. Sec. IV elab-

orates the proposed method and its key components. Sec. V

validates the proposed method on real-world driving datasets

collected from both urban and highway scenarios. Sec. VI con-

cludes this work and outlines possible future improvements.

II. RELATED WORKS

This section reviews interaction representation for

interaction-aware trajectory prediction, various graph neural

networks (GNNs) proposed for graph-based tasks, and

how GNNs can be applied to trajectory prediction tasks.

The distinction and advantage of the proposed interaction

representation, graph neural network, trajectory prediction

framework are illustrated following each group of related

works.

A. Interaction Representation

Interaction-aware trajectory prediction methods have em-

ployed many ways to represent inter-agent interactions re-

cently. Convolutional social pooling designs an occupancy

grid, where each cell contains the feature of the agent that falls

in it, to model the interaction among agents in the grid [13].

The grid representation is modified in [17] to observe only the

eight agents that mostly affect the target vehicle’s behavior.

The grid representation is applicable to highway driving since

the highway is almost straight and can be easily divided into

a grid. But this is not the case for urban driving. Therefore,

to model interaction beyond highway driving, multi-agent

tensor fusion (MATF) models the interaction by aligning

agents’ individual features to a top-view image of the driving

scene [18]. However, it still ignores the relationships among

agents. More and more recent works represent interactions as

a graph, where each node represents an agent and the edge

represents the inter-agent relationship. Authors of [20] propose

to represent the inter-vehicle interaction as a homogeneous

directed graph for highway driving, where each vehicle is

connected to its up to eight neighbors. GRIP also uses a ho-

mogeneous graph to model the interaction [14]. The drawback

of this kind of method is that the homogeneous graph ignores

the type of agents. On the other hand, ReCoG proposes to

represent the interaction as a heterogeneous graph, where a

node represents either an agent or a map and an agent is

connected to other agents within a neighborhood [15]. ReCoG

ignores the edge attributes between nodes. VectorNet [21]

and TNT [22] both use a hierarchical heterogeneous graph to

represent the interaction, where each object is represented by a

sub-graph, and all the objects are then represented by a fully-

connected graph. Nonetheless, these methods fail to consider

the edge attributes between nodes. SCALE-Net considers edge

attributes and proposes to represent the interaction with an

edge-featured homogeneous graph, where the edge feature

contains relative states between two connected agents [23].

It ignores the heterogeneity of traffic participants. Social-

WaGDAT proposes to generate a dynamic pair of history and

future graphs for each time step, yet the nodes are assumed to

be homogeneous and with a fixed number [16]. EvolveGraph

learns an interaction graph that considers the heterogeneity of

nodes and edges’ types and directions [24]. However, the edge

attribute is not considered.

Representing inter-agent interaction as a graph is more

natural than using an image or grid. However, most existing

graph representations place all the agents on the same target-

centered coordinate system, which is suitable for single-agent

trajectory prediction but can hardly generalize to multi-agent

situations because of the effects of coordinate translation and

rotation. SCALE-Net places all agents in their own exclusive

coordinates system for generalization and uses edge attributes

to preserve spatial relationships among agents [23]. However,

the graph representation in SCALE-Net is not comprehensive

to cover the heterogeneity of agents and their relationships for

trajectory prediction. In this work, we propose to represent

the inter-agent interaction in exclusive coordinate systems as

a directed heterogeneous edge-featured graph, where different

agents are represented by different nodes and the edge between

two agents is assigned with both attribute and type.

B. Graph Neural Networks

Neural networks have proven their powerful expression

ability on tasks with well-structured data, e.g., image classi-

fication [25] with grid-like data and machine translation [26]

with chain-like data. However, there are many interesting tasks

with data represented in the form of graph [27]. More and

more recent works are proposed to generalize neural networks

to the graph domain. These works are either spectral [28]–[30]

or non-spectral approaches [31]–[33]. Spectral methods, e.g.,

graph convolutional network (GCN) [30], depend on Laplacian

eigenbasis of the graph, which is hard to calculate for a

large graph, while non-spectral methods, e.g., graph attention

network (GAT) [33], perform information aggregation only on
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Fig. 1. Proposed multi-agent trajectory prediction framework. Historical states of agents are encoded with type-specific history encoders to get their
individual dynamics features. Inter-agent interaction is represented by an edge-featured heterogeneous graph with each node contains the dynamics feature of
its corresponding agent. Then the proposed HEAT is applied to the interaction graph to extract interaction features for all agents in parallel. Map feature for
an agent is processed with a gate-mechanism by considering its dynamics on the map. Then features from these three channels are concatenated and fed to
the agent-type-specific trajectory predictor to predict future trajectories of all target agents.

the local neighborhood, avoiding heavy calculation of Lapla-

cian eigenbasis. However, GAT is designed for homogeneous

graph [33]. Although it introduces an attention mechanism to

aggregate features from neighboring nodes according to edge

connections, the edge attribute is not considered. To address

this issue, edge enhanced graph neural network (EGNN)

considers continuous multi-dimensional edge feature by using

each dimension to guide an individual attention operation [34].

Convolution with Edge-Node Switching graph neural network

(CensNet) utilizes the line graph of the original undirected

graph and designs convolution operations on both graphs to

explore edge features [35]. NENN incorporates node-level and

edge-level attentions in a hierarchical manner and learns the

node and edge embeddings in the corresponding level [36].

EGAT extends GAT with edge embedding to handle contin-

uous edge features of undirected homogeneous graphs [37].

Nonetheless, the heterogeneity of nodes and edges in a graph is

ignored in the above-mentioned works. Heterogeneous graph

attention network (HAN) proposes to handle heterogeneous

nodes in a graph with a hierarchical attention mechanism,

where the node-level attends over meta-path-based neighbors

and the semantic-level attends over different meta-paths [38].

Heterogeneous Graph Transformer (HGT) proposes node- and

edge-type dependent attention mechanism to handle both node

and edge heterogeneity in a graph followed by heterogeneous

message passing mechanism and target-specific aggregation

for feature updating [39]. These GNNs can handle hetero-

geneity in a graph but ignore the edge features. For more

information about graph neural networks, please refer to recent

review articles [40], [41].

Most existing graph neural networks handle heterogeneity

and edge features separately and cannot be directly used to

model the interaction represented by a directed edge-featured

heterogeneous graph. In this work, we extend GAT [33] to

handle both heterogeneity and edge features for interaction

modeling in multi-agent trajectory prediction.

C. Trajectory Prediction With GNNs

Graph-based interaction representation has attracted more

and more interests in the field of trajectory prediction, which

gives rise to the application of graph neural networks. Authors

of [20] test two widely used GNNs (GCN [30] and GAT [33])

and their adaptions on the trajectory prediction task and find

that adaptions of GNNs, which discern between the target and

surrounding agents, outperforms the GNNs that treat them

without distinction. They conceptually prove the effective-

ness of graph-based interaction representation but the agents’

dynamics are not considered in their work. GRIP proposes

a graph convolutional model, which comprises convolutional

and graph operation layers alternatively, to summarize the

temporal and spatial features of interactive agents [14]. The

convolutional layer is applied to the temporal dimension and

the graph operation is applied to spatial relationships, and then

an LSTM-based encoder-decoder is used for final prediction.

GRIP can predict trajectories of multiple agents but it ignores

edge attributes. SCALE-Net constructs edge attributes with
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the relative measurements between two agents and employs

Edge-enhanced Graph Convolutional Neural Network [34] to

summarize interactions considering edge attributes [23]. One

common issue of the above-mentioned models is that they ig-

nore the heterogeneity of traffic participants. Social-WaGDAT

designs Wasserstein Graph Double-Attention Network to learn

the structure of the interaction graph dynamically and applies

kinematic constraints on the predicted trajectory [16]. Vec-

torNet applies GNN to a fully-connected hierarchical graph,

where a sub-graph contains the feature of an object (either

an agent or map component) represented by a sequence of

vectors [21]. Heterogeneity is considered in the constructed

graph, but the fully-connected graph ignores the spatial struc-

ture of interaction and the number of edges increases expo-

nentially with the number of nodes. TNT adopts VectorNet

as an interaction feature extractor and further considers the

multi-modality of driving by predicting multiple trajectories

conditional on selected target points in the map [22]. It shares

the drawbacks of VectorNet. ReCoG constructs a heteroge-

neous graph to represent agent-agent and agent-infrastructure

relationships, where the infrastructure (a top-view map) is

a node in the graph, and applies GAT and GCN to extract

interaction features [15]. However, edge attribute and type are

ignored in ReCoG.

Existing trajectory prediction methods are proposed for

specific interaction representations and they can hardly be

applied to new representations. In this work, we propose

our three-channel framework for simultaneous multi-agent

trajectory prediction along with our interaction representation

and HEAT network.

III. STRUCTURE OVERVIEW

This section introduces the high-level structure of the

proposed framework for heterogeneous multi-agent trajectory

prediction and its key components, namely, agent-type-specific

history encoder, HEAT-based heterogeneous interaction en-

coder, adaptive map selector, and agent-type-specific trajectory

predictor. The proposed framework has three channels for

dynamics, interaction, and map features, respectively, then

jointly considers these features to predict future trajectories

of heterogeneous agents. See Fig. 1 for an illustration of the

three-channel framework.

Input and output. The task (see Fig. 2 for an illustration) of

this work is to simultaneously predict multi-agent trajectories

of a group of heterogeneous interactive agents considering

their inter-agent interactions and the scene context (shown in

the left of Fig. 2). At a time t, the input Xt contains each

agent’s historical states and the map of the scene (shown in

left of Fig. 2).

Xt = [Ht,M], (1)

where Ht = {h1t , h
2
t , · · · , h

n
t } contains the historical states

of n agents at time t, M is the scene context. Agent

i’s historical states at time t is represented by hit =
[sit−Th+1, s

i
t−Th+2, · · · , s

i
t], with Th as the traceback horizon.

The state sit, for instance, can be agent i’s position and velocity

at t. The number of observed agents n is variable from case

to case. The map M is to be shared by all the agents. The

output contains predicted trajectories of m ≤ n heterogeneous

agents (shown in right of Fig. 2):

Ft = {f1t , f
2
t , · · · , f

m
t }, (2)

where f it = [(xit+1, y
i
t+1), · · · , (x

i
t+Tf

, yit+Tf
)] is a sequence

of the predicted 2D coordinates of agent i over a prediction

horizon Tf , Ft is the set of predicted trajectories of m agents.

Please note that the number of target agents m is not necessary

to be equal to n and can vary from case to case. This is a

typical situation in which an autonomous vehicle would need

to predict trajectories of the agents it is interacting with (the

target agents) considering other non-target agents’ information.

Agent-type-specific history encoder. To handle the hetero-

geneity of traffic participants, we propose to share a history

encoder over a specific type of traffic participants. In this

work, we assume that there are two types of traffic participants

(i.e. vehicle and pedestrian/bicyclist), such that there will be

two type-specific history encoders, one for each (see Fig. 1).

History encoders are applied to individual agents’ historical

states to extract their dynamics features. The dynamics features

are also used in the interaction channel as node features.

HEAT-based heterogeneous interaction encoder. In this

work, we represent the interaction among heterogeneous traffic

participants with a directed edge-featured heterogeneous graph

(see the middle of Fig. 2 for an illustration and Sub.Sec. IV-B

for details) and propose a novel heterogeneous edge-enhanced

graph attention network (HEAT) to extract interaction features

(see Fig. 1). Nodes in the graph contain dynamics features of

corresponding agents out from their history encoders.

Adaptive map selector. We design a CNN to extract road

feature from a bird’s eye view map of the driving scene

and selectively share the map feature across all target agents

according to their current positions, velocities, and yaw angles,

by introducing a gate-mechanism (see Fig. 1).

Agent-type-specific trajectory predictor. Similar to the

history encoder, a trajectory predictor is shared over a specific

type of target agents. The target agents in this work also

fall into two categories (i.e. vehicle and pedestrian/bicyclist).

To simultaneously predict trajectories, the predictor jointly

considers the target vehicles’ dynamic features extracted from

the history encoder, their interaction features obtained from

the interaction encoder, and their corresponding map features

received from the map selector. Please note that the input

features of the trajectory predictors are hidden features (rep-

resented by high-dimensional vectors) from neural networks.

See Fig. 1.

IV. METHOD

This section first provides the architecture of the proposed

multi-agent trajectory prediction framework (IV-A), then elab-

orates on the proposed interaction representation (IV-B), the

proposed heterogeneous edge-enhanced graph attention net-

work: HEAT (IV-C), and gated map selector (IV-D) for the

framework.

A. Heterogeneous Multi-Agent Trajectory Prediction Scheme

The framework shown in Fig. 1 is proposed for multi-agent

trajectory prediction, where there are two types of agents,
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Fig. 2. Input, graph, and output. Left, the one-second historical tracks of multiple agents of different types navigating in a roundabout scene. Middle,
The structure of the constructed directed heterogeneous graph with neighboring connections. Self-loop is masked out for clarity. Right, the three-second
future trajectories of multiple heterogeneous agents in the scene. The pink and blue dots show the current positions of vehicle and pedestrian/bicyclist agents,
respectively. The red solid lines in the left figure are the historical trajectories of the agents over the last one second. The green solid lines in the right
figure are the corresponding future trajectories in three seconds. This figure is sampled from a roundabout scenario named DR USA Roundabout FT in the
INTERACTION dataset.

leveraging both historical states of agents and the infrastructure

information. To handle the heterogeneity of agents, we design

specific encoders (IV-A1) and decoders (IV-A4) for each type

of agent. Considered agents are placed in their own exclu-

sive coordinate system and their interactions are represented

by a directed edge-featured heterogeneous graph (IV-B). A

novel heterogeneous edge-enhanced graph attention network

is proposed to extract interaction features from the constructed

graph (IV-A2). To utilize the road structure and share it across

all considered agents, we propose an adaptive map selector

(IV-A3).

1) Agent-Type-Specific History Encoder: For an agent of

type κ, κ ∈ {vehicle, pedestrian/bicyclist}, its historical

states hit is represented by a temporal sequence that can

be passed to a type-specific encoder to extract its dynamics

feature. RNNs, e.g., Long short-term memory (LSTM) and

gated recurrent unit (GRU), are widely used for sequence

modeling in machine translation [42], [43] and trajectory

prediction [13], [15]. We adopt GRUs as history encoders in

this work (Eq. 3) because of its effectiveness and simplicity:

rit = GRUκ
hist(h

i
t), (3)

where GRUκ
hist is the historical encoder of agent type κ

implemented using GRU and rit is the dynamics feature of

vehicle i at time t. The output of this module is the dynamics

features of all the agents:

Rt = {r1t , r
2
t , · · · , r

n
t }, (4)

where the dynamics features Rt also serve as the node features

in the graph-based interaction representation.

2) Heterogeneous Interaction Modeling With HEAT: To

comprehensively model the inter-agent interaction among het-

erogeneous agents, we represent the interaction as a directed

edge-featured heterogeneous graph and propose a novel Het-

erogeneous Edge-enhanced graph ATtention network (HEAT)

to extract interaction features from the graph representation.

Details of the interaction representation and the proposed

HEAT can be found in Sub.Sec. IV-B and Sub.Sec. IV-C,

respectively.

Agents’ dynamics features Rt are put into their correspond-

ing node in the graph. Then the proposed HEAT is applied

to the graph to model the interaction features for all agents

simultaneously.

Gt = {g0t , g
1
t , · · · , g

n
t } = HEATenc(Rt, Et), (5)

where Et is the edge set containing edge indexes, edge

attributes, and edge types, git is the interaction feature of agent

i at time t, and Gt contains interaction features of all agents.

3) Map Selection With Gate Mechanism: Road structure

shapes the motion of agents navigating within an urban scene,

so it is necessary to take into consideration the road structure

for trajectory prediction. Previous single trajectory prediction

methods use a fixed-size local map centered at the target

vehicle’s current position. But for simultaneous multi-agent

trajectory prediction, this map representation has at least two

drawbacks: 1) It needs to save multiple maps for multiple

agents; 2) The fixed-size map can be either too large for a

slow agent or too small for a fast agent. To handle the above-

mentioned drawbacks, we propose an adaptive map selection

method that allows sharing a global map across all the agents

according to their current positions, velocities, and yaw angles:

mi
t = Selectormap

(

M, (xit, y
i
t, vx

i
t, vy

i
t
, ϕit)

)

, (6)

where M is the global map and (xit, y
i
t, vx

i
t, vy

i
t
, ϕit) is the

current position, velocity, and yaw angle of agent i in the

map. The selector allows the method to selectively consider

the global map and focus on the most relevant areas. The

selected map feature of agent i is conditioned on its states.

4) Agent-Type-Specific Future Decoder: For an agent of

type κ, κ ∈ {vehicle, pedestrian/bicyclist}, its future trajec-

tory is predicted using an agent-type-specific future trajectory

decoder by jointly considering its individual dynamics rit, its

interaction with other agents git, and the map feature regarding

its current states mi
t.

f it = LSTMκ
fut([r

i
t∥g

i
t∥m

i
t]), (7)

where LSTMκ
fut is the future decoder shared across agents of

type κ, [rit∥g
i
t∥m

i
t] is the concatenation of features, and f it is

the predicted future trajectory of agent i.
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: historical trajectory: vehicle : pedestrian/bicyclist

Shared coordinate system Exclusive coordinate system

Fig. 3. Shared and exclusive coordinate systems. Left, Heterogeneous
agents in a shared coordinate system. Right, Heterogeneous agents with
exclusive coordinate systems. An agent’s exclusive coordinate system is with
its origin fixed at the vehicle’s current position and its horizontal axis pointing
to the vehicle’s moving direction.

B. Interaction Representation With Directed Edge-featured

Heterogeneous Graph.

In this work, we place all agents in their own exclusive

coordinate systems and represent their interaction as a directed

edge-featured heterogeneous graph.

1) Exclusive Coordinate System: Most existing interaction-

aware trajectory prediction methods use either a shared coor-

dinate system for all agents or an exclusive coordinate system

for each to represent trajectories. A shared coordinate system

preserves the spatial relationship among agents, however, it is

sensitive to translation and rotation. The input to the model

becomes totally different when a new shared coordinate system

is applied. But in the case of the exclusive coordinate system,

agents’ states are represented locally and independent of other

agents. The localized exclusive coordinate system standardises

the states of agents but omits spatial relationships among

agents, which should be reserved with edge features to take

advantage of the exclusive coordinate system.

2) Graph Represented Interaction: In this work, we pro-

pose to represent inter-agent interaction as a directed edge-

featured heterogeneous graph for multi-agent trajectory pre-

diction. Each node represents a traffic participant with a

specific type and contains its feature extracted from a sequence

recorded in its exclusive coordinate system. An edge from

node j to node i means that node i’s behavior is influenced

by node j and the edge attribute is relative measurements of

node j to node i, e.g., position, velocity, and yaw angle. The

edge type is a concatenation of the type of node j and node i.
For details of the edge construction in this work, please refer

to Sub.Sec. V-A, and the code will be released soon.

Definition 1 (Directed Edge-Featured Heterogeneous Graph).

A directed edge-featured heterogeneous graph can be repre-

sented by G = (V,E), where V = {v1, · · · , vn} is the set of

n nodes, and E ⊂ V × V is the set of directed edges. Each

node contains its node feature and belongs to a specific type.

Each directed edge contains an edge attribute and falls into

a specific edge type.

Compared to previous works that represent interaction

as a homogeneous graph [20], edge-featured homoge-

neous graph [23], or heterogeneous graph without edge at-

tributes [24], the proposed representation is more compre-

hensive. It covers the heterogeneity of traffic participants

with heterogeneous nodes; preserves their individuality with

exclusive coordinate systems; considers the difference of the

mutual influence between two agents with directed edges;

maintains the spatial relationship of all the agents using edge

attributes.

Transformation-insensitive interaction graph. To model

the interaction among agents of different types, we construct

a directed heterogeneous graph to represent these inter-agent

relationships. An edge eij pointing from agent j to agent i is

constructed if agent j is within a predefined neighborhood of

agent i. Each valid edge eij is assigned with edge attribute

and edge type. Then the edge set is:

E = {eij}(j∈Ni), i = 1, · · · , n, (8)

where i and j is the indexes of agents and Ni is the neigh-

borhood of agent i. Self-loop eii is included in the edge set.

An example of the constructed graph is shown in middle of

Fig. 2

C. HEAT Layer

The above-mentioned interaction representation should be

treated with a graph neural network that can handle the

heterogeneity of nodes, directed edges, and continuous edge

attributes. However, as shown in related works, existing GNNs

do not handle this in one fell swoop. In this work, we

design a heterogeneous edge-featured graph attention network

(HEAT), an extension of GAT, for the proposed comprehen-

sive interaction representation. HEAT can be constructed by

stacking HEAT layers. A HEAT layer updates node features

by aggregating information from neighborhoods. It first trans-

forms node and edge features accordingly then aggregates

node features via edge-enhanced masked attention (or optional

multi-head attention) mechanism.

1) Input and Output: The input to the HEAT layer contains

a set of node features: h = {h⃗i|i ∈ [1, n]}, where h⃗i ∈ R
Fh

is the feature vector of node i; and a set of edge attributes:

e
attr = {eattrij |i, j ∈ [1, n]}, where eattrij ∈ R

Fattr
e is the

attribute of the edge pointing from node j to node i. A set

of edge types is represented as e
type = {etypeij |i, j ∈ [1, n]},

where etypeij ∈ R
F type

e is the type of the edge pointing from

node j to node i. The output of the HEAT layer is a new set

of node features: h′ = {h⃗′i|i ∈ [1, n]}, h⃗′i ∈ R
F ′

h .

2) Heterogeneous Transformation: Different kinds of nodes

in a heterogeneous graph have different feature spaces

and should be projected to a shared feature space. We

adopt the node-type-specific transformation matrix Mκi(κ ∈
{vehicle, pedestrian/bicyclist}) introduced in [38] to handle

two kinds of nodes in this work. The transformation can

be expressed as h⃗i = Mκi · h⃗i. Please note that we will

simply re-use symbols including h⃗i, e
attr, etype to indicate the

transformed feature in the attention ( IV-C3) and aggregation

( IV-C4) parts.

Existing works either consider edge attributes or edge types

as edge features, whereas this is not the case for multi-agent

trajectory prediction. We argue that, for trajectory prediction,
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edge feature and type are two different attributes. The edge

features are usually some measurements in a continuous

space, such as the distance between two nodes. However, the

edge type is always a discrete indicator. Thus, we separately

consider the edge features and types by introducing the edge

attribute transformation: e
attr = Mφ · eattr, where Mφ is

the edge attribute transformation matrix, and the edge type

transformation is: etype = Mχ · etype, where Mχ is the edge

type transformation matrix.

3) Edge-Enhanced Masked Attention: For an edge pointing

from node j to node i, its edge feature: eij = [eattrij ∥etypeij ], is

a concatenation of its transformed edge attribute and type. For

node i, a concatenated feature vector e+ij = [eij∥h⃗j ] represents

the feature of node j from node i’s point of view considering

the edge attribute and type. e+ij is then sent to a shared

attention mechanism [26], which is a single-layer feed-forward

neural network, a⃗, followed by LeakyReLU non-linearity and

softmax normalization. The attention coefficient αij indicates

the importance of the node j to node i jointly considering

node and edge features. GAT layer performs masked attention,

which attends over the neighborhood of node i only, to utilize

the structural information of the graph while casting away the

edges’ feature and type [33]. In this work, an edge-enhanced

masked attention in Eq. 9 is performed to fully consider the

graph attributes:

αij =
exp

(

LeakeyReLU
(

a⃗
T [⃗hi∥e

+
ij ]
))

∑

k∈Ni
exp

(

LeakeyReLU
(

a⃗T [⃗hi∥e
+
ik]

)) , (9)

where Ni is the neighborhood of node i in the graph. The

attention coefficients are then used to update the feature of

node i with a linear combination over its neighborhood.

4) Node Feature Aggregation: The feature of node i is

updated by calculating a weighted sum of edge-integrated

node features over its neighborhood, followed by a sigmoid

function:

h⃗′i = σ





∑

j∈Ni

αijWh[e
attr
ij ∥h⃗j ]



 . (10)

Edge types are not included in the edge-integrated feature

since it is discrete and already considered in the previous

attention mechanism (Eq. 9). Similar to GAT [33], HEAT

allows running of several independent attention mechanisms

to stabilize the self-attention mechanism.

The elements of the proposed HEAT layer are listed in Tab. I

for convenience.

D. Gated Map Selection

The road structure highly affects the motions of traffic

participants, so trajectory prediction cannot ignore this in-

formation. Single-agent trajectory prediction methods, such

as ReCoG [15], use a fixed-size local map centered at the

target vehicle’s current position. However, a fixed-size local

map ignores the dynamics of agents. A small map is enough

to predict a slow agent, while a larger map is needed for a

fast-moving agent. Multi-agent prediction methods, such as

TABLE I
NOTATIONS OF HEAT LAYER

h⃗i Feature vector of node i

h The set of node features in a graph

eattrij attribute of edge from j to i

e
attr The set of edge attributes in a graph

e
type
ij

type of edge from j to i

e
type The set of edge types in a graph

eij concatenation of projected attribute and type

e+
ij

concatenation of eij and h⃗j

αij node j’s attention coefficient for node i

Ni Neighborhood of node i

∥ concatenation

a⃗
T Attention mechanism

σ Sigmoid function

h
′ The set of updated node features in a graph

MATF [18], share the same map feature across all target

vehicles ignoring the fact that different target agents are

affected by different parts of the map. To enable selective

map sharing, we propose to apply the gate mechanism on the

CNN-extracted map feature for map selection, which has been

widely used in sequence modeling [44]–[46]. For example,

LSTM has three gates (input gate, forget gate, and output gate)

to manage the information flows along the sequence data [46].

The input gate is designed to select what information of the

current step to be added to the memory of the network. In this

work we design the selection gate zit to select map feature for

an agent i according to its current state in the map:

zit = σ(Wz[M⃗∥sit] + bz), (11)

where M⃗ is the map M’s feature vector extracted using a

CNN, sit is agent i’s current state in the map’s coordinates

system, Wz is a projection weight matrix, bz is a bias, σ is

a Sigmoid function. Thus, zit is a vector with each element

contains a number between 0 and 1. Then the map feature of

agent i at time t is selected with this gate:

mi
t = zit ◦ M⃗, (12)

where ◦ is element-wise production and mi
t is the selected

map feature.

V. REAL-WORLD DATASET VALIDATION

This section first compares the proposed trajectory pre-

diction method with state-of-the-art models on the recently

published INTERACTION dataset [47] for urban driving, then

on the NGSIM US-101 [48] dataset for highway driving. The

INTERACTION dataset is provided by the Mechanical Sys-

tems Control (MSC) Lab of University of California, Berkeley,

the Centre for Robotics of MINES ParisTech, and the Institute

for Measurement and Control Technology (MRT) of FZI

Research Center for Information Technology and Karlsruhe

Institute of Technology. The NGSIM dataset is provided by

the U.S. Federal Highway Administration.

A. Validation On Heterogeneous Dataset

The proposed heterogeneous multi-agent trajectory pre-

diction method is trained and validated on the INTERAC-

TION [47]. The full name of the dataset is INTERnational,
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Adversarial and Cooperative moTION Dataset. It contains

naturalistic trajectories of different traffic participants, e.g.,

vehicles and pedestrians, in highly interactive urban scenarios

world-wide. The recorded scenarios fall into three categories:

roundabout, intersection, and merging.
1) Heterogeneous Dataset: INTERACTION dataset pro-

vides states of agents at each timestamp along with a high defi-

nition (HD) map. The state of a vehicle at a timestamp includes

its position, velocity, yaw angle, and shape, while the state of

a pedestrian/bicyclist includes only its position, velocity, and

yaw angle. Since this work aims at simultaneously predicting

trajectories of multiple heterogeneous agents and proposes to

represent inter-agent interaction as a heterogeneous directed-

edge-featured graph, the raw dataset is processed accordingly.

Please see Fig. 4 for an illustration of the processed data and

the appendix for a detailed description. The processed dataset

is split to train and validation set following the split suggested

by the authors of the INTERACTION dataset. The processed

dataset contains 425, 192 data pieces for training and 104, 627
for validation.

2) Comparison With State-of-the-art Methods: In this work,

we evaluate prediction performance using average displace-

ment error (ADE) and final displacement error (FDE) in meters

adopted by previous works [15], [22]. The proposed method is

compared with the following methods on the INTERACTION

dataset.

• DESIRE: DESIRE predicts multi-modal trajectories by

jointly considering motion history, static scene context

and inter-agent interactions. It first generates diverse

hypothetical future prediction samples using a condi-

tional variational auto-encoder, then ranks and refines the

samples in an inverse optimal control framework with

regression [49].

• MultiPath: MultiPath handles driving uncertainty by hier-

archically model intent and control uncertainties. It first

produces a set of K anchor trajectories as intents, then

predicts future trajectories conditioned on anchors, where

the uncertainty is modeled as a Gaussian distribution

given an intent [50].

• TNT: TNT utilizes VectorNet [21] to encode the target

agent’s interaction with surrounding agents and the en-

vironment. It first predicts an agent’s target states within

a prediction horizon, then generates trajectories for each

target. Finally a set of predictions is selected according

to estimated likelihoods for multi-modality [22].

• ReCoG: ReCoG represents vehicle-vehicle and vehicle-

infrastructure interactions as a heterogeneous graph and

applies state-of-the-art GNNs for interaction encoding. It

predicts a single trajectory for a single target vehicle [15].

Tab. II compares the proposed three-channel model HEAT-

I-R with existing methods. It shows that: 1) The proposed

HEAT-I-R outperforms DESIRE [49] and MultiPath [50], even

though these two methods predict multi-modal (MM) trajec-

tories for a single agent and the ADE and FDE are reported

with the minimum values among the multiple predictions [22];

2) HEAT-I-R matches the performance of TNT [22] and

ReCoG [17]. Please note that TNT [22] predicts six-modal

trajectories for a single agent and reports the minimum ADE

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE

INTERACTION DATASET

Methods MM ADE@3sec (m) FDE@3sec (m)

DESIRE [49] ✓ 0.32 (min6) 0.88 (min6)
MultiPath [50] ✓ 0.30 (min6) 0.99 (min6)

TNT [22] ✓ 0.21 (min6) 0.67 (min6)
ReCoG [15] 0.19 0.65

HEAT-I-R (Ours) 0.19 0.66

TABLE III
ABLATIVE COMPARISON ON THE INTERACTION DATASET’S

DR USA ROUNDABOUT FT SCENARIO

Methods ADE@8sec (m) FDE@8sec (m)

R 3.99 11.64

GAT 3.98 11.59

GAT-R 3.5 10.62

HEAT 3.10 8.83

HEAT-R 3.09 8.84

HEAT-I-R 2.97 8.56

and FDE over all predictions and ReCoG [15], the winner

solution of the INTERPRET Challenge (NeurIPS 2020) [51],

predicts a single trajectory for a single target. Compared to

TNT [22] and ReCoG [15], the proposed HEAT-I-R is able to

predict trajectories of multiple agents (MA) simultaneously.

The inference time satisfies the real-time requirements. It uses

0.06 seconds to predict trajectories of a batch of 128 data

pieces including hundreds of target agents.

3) Ablative Study: In this work, we conduct ablative studies

on the INTERACTION dataset’s DR USA Roundabout FT

scenario for a longer prediction horizon (eight seconds). The

eight-second horizon is selected to challenge our method, since

a longer-term prediction is intrinsically more difficult than a

short-term one [52]. The following settings are trained and

validated on the same dataset.

• R: One-channel model considering the target vehicle’s

RNN-encoded dynamics feature only for future trajectory

prediction.

• GAT: One-channel model predicting the future trajectory

of the target vehicle considering its graph-modeled inter-

action feature extracted using GAT.

• GAT-R: Two-channel model jointly considering the GAT-

extracted interaction and RNN-encoded dynamics fea-

tures for trajectory prediction.

• HEAT: One-channel model predicting the future trajec-

tory of the target vehicle considering its graph-modeled

interaction feature extracted using HEAT.

• HEAT-R: Two-channel model jointly considering the

HEAT-extracted interaction and RNN-encoded dynamics

features for trajectory prediction.

• HEAT-I-R: The proposed three-channel framework,

which combines the target vehicle’s individual dynamics

feature, its interaction feature, and the selected map

feature for trajectory prediction.

Tab. III shows the ADE@8sec and FDE@8sec of above

listed implementations. It is observed that the proposed three-

channel framework (HEAT-I-R) outperforms its two-channel
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Fig. 4. Processed data. Left, the directed edge-featured heterogeneous interaction graph (top) obtained after processing and the map (bottom). Middle, the
mask vectors. Right, the legend of this figure. The interaction graph is constructed via close connection strategy, where each node is only connected to its
neighboring nodes via directed edges. A directed edge is identified via its edge index and contains edge type and edge attribute.

Fig. 5. Box plots of the TDE of ablative models. GAT, HEAT, and HEAT-
I-R are selected for clarity of the box plots.

(HEAT-R) and one-channel (HEAT) ablations, which supports

the intuition that individual dynamics, inter-agent interactions,

and road information all benefit trajectory prediction. It is also

noticed that one-channel GAT-based method (GAT in Tab. III)

performs as poorly as the non-interaction-aware method (R in

Tab. III.), but their combination (GAT-R) improves prediction

accuracy. GAT-based methods are not suitable for trajectory

prediction with exclusive coordinate systems, where the spatial

relationships of agents are stored in edge features, because

GATs ignore edge features.

Fig. 5 shows box plots of the TDE (displacement error over

time) of three ablatives models (GAT, HEAT, and HEAT-I-

R) over an eight-second prediction horizon. The red boxes

show the results of GAT, the green boxes the results of

HEAT, and the blue boxes the result of the proposed HEAT-

I-R. Outliers and the results of other ablative models are not

plotted for clarity. It can be seen that the proposed HEAT-

based model shows more stable performance (with shorter

interquartile range (IQR)) than the GAT-based model, and

the proposed three-channel framework (HEAT-I-R) further

improves accuracy and stability.

B. Validation On Homogeneous Dataset

The proposed HEAT is an immediate extension to GAT [33]

while the GAT is designed for homogeneous graphs. To

compare the proposed HEAT with GAT on the single-agent

trajectory prediction task, we construct two homogeneous

datasets using vehicle trajectories provided by the public

accessible NGSIM US-101 dataset [48]. The trajectories in

NGSIM US-101 dataset are recorded from a segment of U.S.

Highway 101 at 10 Hz. Since most of the trajectories did

not change lanes throughout the study area, we reprocess

the dataset to build a roughly balanced dataset where lane-

keeping trajectories do not dominate the dataset. The dataset is

constructed by first selecting target vehicles that have changed

their lanes only once during recording, then selecting trajectory

segments for the target vehicle and its neighboring vehicles.

The data processing procedure is similar to that in CNN-

LSTM [17], a previous work focusing on the NGSIM dataset,

except that an arbitrary number of neighboring vehicles is

allowed in this work. After above processing, totally 63, 176
data pieces are selected for training (53, 176) and validation

(10, 000). The selected data is further processed to formulate

two different datasets, one with exclusive coordinate system,

and the other one with shared coordinate system. In the former

dataset, each agent is placed in its own coordinate system, in

which the agent’s current position and yaw angle are zeros,

while in the latter one, all the agents share the coordinate

system whose origin is fixed at the current position of the

target vehicle and horizontal axis points to the direction of the

target vehicle’s current velocity. The former dataset has edge

attributes containing the relative position of the agent in the

source node to the agent in the target node, while the latter one
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does not have edge attributes because of the shared stationary

frame of reference.

Similar to the ablative study on the heterogeneous dataset,

we implement five models, namely R, GAT, GAT-R, HEAT,

and HEAT-R, to show the the effectiveness of the proposed

HEAT layer. Descriptions of these models can be fund in

V-A3. All these models are trained and validated on the

dataset with the exclusive coordinate system, and the GAT-

based baselines are further implemented in the dataset with

shared coordinate system.

We compare the proposed model with state-of-the-art meth-

ods and report the results in Tab. IV. The prediction results

in this section are evaluated using root-mean-square error

(RMSE) in meters to compare with the existing works [13],

[17], [23].

Tab. IV compares the proposed method with existing works.

It shows that the proposed HEAT-R method outperforms

existing models at longer prediction horizons (3-5 sec) and

matches the state-of-the-art methods in short-term prediction

(1-2 sec). It can be seen that the accuracy of the proposed

HEAT-R is quite close to that of CNN-LSTM [17] which

uses a share coordinate system and accepts exactly eight close

neighboring vehicles. However, HEAT-R is able to handle an

arbitrary number of neighboring vehicles and use the exclusive

coordinate system that standardises the input sequence and

narrows down the search space for the input encoder.

Tab. V compares HEAT with GAT-based and RNN-based

methods, where the first five rows (#1-5) show the results

on the dataset with the exclusive coordinate system, and the

last two rows (#6-7) show the results of GAT-based models

on the dataset with the shared coordinate system. It can be

seen that the graph-based interaction-aware methods (#2-7)

outperform the non-interaction-aware RNN-based one (#1).

This observation is consistent with previous works [13], [17],

[18], which shows again the necessity to model interaction

for trajectory prediction. The GAT-based methods show better

performance on the second dataset (shared, #6,7) compared

to the results on the first dataset (exclusive, #2,3). This is

quite reasonable in that GAT ignores the spatial relationship

among agents contained in the edge features in the first

dataset, while the spatial relationship is preserved by the

shared coordinate system in the second dataset. The proposed

HEAT-based methods (#4-5) for the dataset with the exclusive

coordinate system outperform all GAT-based methods. This

shows the advantage of using the exclusive coordinate system

and applying HEAT for interaction extraction.

It can also be found that the results reported in this sec-

tion seem poorer than that of the previous section. But we

avoid comparing methods across datasets for the following

reasons: 1) in this section, the main model HEAT-R does

not consider road structure, since the highways are usually

relatively straight; 2) the average speed of highway driving is

usually higher than that of the urban driving, which makes

the prediction task more challenging; 3) the proposed method

is designed for heterogeneous multi-agent prediction, so it is

more suitable for multiple agents’ prediction.

TABLE IV
PREDICTION PERFORMANCE COMPARISON WITH EXISTING WORKS

(RMSE IN METERS)

Methods
Prediction horizon

1 sec 2 sec 3 sec 4 sec 5 sec

1 HEAT-R (Ours) 0.68 0.92 1.15 1.45 2.05

2 CS-LSTM [13] 0.61 1.27 2.09 3.10 4.37

3 GRIP [14] 0.37 0.86 1.45 2.21 3.16

4 CNN-LSTM [17] 0.64 0.96 1.22 1.53 2.09

5 CS-LSTM(M) [13] 0.62 1.29 2.13 3.20 4.52

6 GAIL-GRU [53] 0.69 1.51 2.55 3.65 4.71

7 Scale-Net [23] 0.46 1.16 1.97 2.91 -

8 MATF-GAN [18] 0.66 1.34 2.08 2.97 4.13

TABLE V
PREDICTION PERFORMANCE COMPARISON OVER ABLATIVE

IMPLEMENTATIONS (RMSE IN METERS)

Methods

Prediction horizon

1 sec 2 sec 3 sec 4 sec 5 sec

1 R-1 0.6931 1.7275 3.0850 4.7735 6.7855

2 GAT-1 0.7808 1.4916 2.3914 3.4981 4.8713

3 GAT-R-1 0.8228 1.6987 2.7385 3.9672 5.4129

4 HEAT-1 0.6590 0.8556 1.0469 1.3216 1.8894

5 HEAT-R-1 0.6794 0.9212 1.1528 1.4457, 2.0518

6 GAT-2 0.7685 1.2115 1.7343 2.4533 3.5466

7 GAT-R-2 0.6439 0.9592 1.2643 1.6489 2.3124

C. Implications And Limitations

It can be seen from the validation results that the proposed

method can simultaneously predict multiple heterogeneous

objects’ trajectories with state-of-the-art performance. The as-

sumption and concept of this method are in line with the real-

world implementation scenarios, where autonomous vehicles

interact with different types of other road users and need to

predict their future motions for better decision-making. The

prediction results can be used by the downstream decision-

making and planning modules to improve safety and efficiency.

In addition, not limited to autonomous driving, this method can

be expanded and applied to many other robotic application

domains.

Despite the performance and scalability, the proposed

method still has limitations. Currently, it can only make

deterministic predictions, while the motion of moving agents

would have inherent multi-modality. This will be our future

work for further exploration. In this work, we assume that the

input data is ready to use, but the quality and availability of

the data will be affected by the hardware settings in real-world

applications, and the integration of the proposed method with

other sub-modules and algorithms still needs to be configured

in vehicle implementations.

VI. CONCLUSION

In this work, we propose a three-channel framework for

simultaneous heterogeneous multi-agent trajectory prediction.

We represent the inter-agent interaction in traffic with a di-

rected edge-featured heterogeneous graph, design a novel het-

erogeneous edge-enhanced graph attention network for inter-

agent interaction modeling, and introduce a gate mechanism

for selective map sharing across all target agents. Validations
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on both urban (INTERACTION) and highway (NGSIM) driv-

ing datasets show that the proposed method achieves state-

of-the-art performance while is able to simultaneously predict

multi-agent trajectories of an arbitrary number of heteroge-

neous agents.

For future works, one promising direction is to handle the

multi-modality of traffic participants’ behaviors by introducing

multi-modal prediction. This will largely reduce the minimum

ADE. Another direction is to incorporate rich infrastructure

information, such as traffic lights, into our framework, to

enhance the prediction accuracy.
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APPENDIX

A. Processed Data

A processed data are stored as:

• Historical states: The historical states within a traceback

horizon of all agents. The historical states of agent i
(position, velocity, and orientation) are stored in its own

exclusive coordinate system with the origin fixed at its

current position and the horizontal axis pointing to its

current direction. See Fig. 3 for the illustration of the

exclusive coordinate system.

• Edge indexes: The graph connectivity represented as a set

of directed edges. A directed edge from node j to node i
means that agent j is within the neighborhood of agent i
and affects the behavior of agent i. In this work, if agent

j is within 30 meters to agent i, then it is treated as a

neighbor of agent i.
• Edge attributes: The attributes of all edges. The attribute

of an edge from agent j to agent i contains agent j’s
relative states to that of agent i. In this work, the relative

states contain (∆x,∆y,∆vx,∆vy,∆ψ).
• Edge types: The types of all edges. The type of an edge

from agent j to agent i contains a concatenation of the

types of agent j and agent i. In this work, the edge type

of a directed edge from node j of type [1, 0, 0] to node i
of type [0, 0, 1] is set to [1, 0, 0, 0, 0, 1].

• Target masks: The mask of the agents to be predicted. If

agent i’s future trajectory is to be predicted, its mask is

set to 1, else it’s set to 0.

• Vehicle masks: The mask of of the vehicles in a scene

with 1 represents a vehicle and 0 represents a non-vehicle.

• Pedestrian masks: The mask of the pedestrians in a scene

with 1 represents a pedestrian and 0 represents a non-

pedestrian.

• Target vehicle masks: The mask of the vehicles to be pre-

dicted with 1 means that the vehicle’s future trajectories

is to be predicted.

• Scene map: The map of the scene represented by a top-

view image. Since we propose a learned map selector to

share the map across all agents, the map can be stored

outside each piece of data for just once. That saves a

great amount of disk space. A corresponding map is saved

for each of the eleven scenarios in the INTERACTION

dataset.Examples of the scenario maps, please refer to

Fig. 6. The image map of a scenario is shared across all

the agents in this scenario via the designed map selector.

• Vehicle-to-map attributes: The states of all agents relative

to the map’s center at the current time t.
• Ground truth future trajectories: The recorded future tra-

jectories of all target agents over the prediction horizon.

B. Visualization

Prediction results of the proposed framework with the pro-

posed framework on several scenarios in the INTERACTION

dataset are shown in Fig. 6.
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Fig. 6. Visualized prediction results. This figure visualizes prediction results of the proposed HEAT-based multi-agent trajectory prediction method on
various driving scenarios in the INTERACTION dataset. Deep pink dots (vehicle in the legend) are the vehicles’ current positions. Deep sky blue dots
(pedestrian/bicyclist in the legend) are the pedestrian/bicyclist agents’ current positions. Red lines (historical track in the legend) are their one-second historical
trajectories and blue lines (prediction of HEAT-I-R in the legend) are the trajectories predicted by the proposed framework with HEAT. It shows that the
proposed method is able to simultaneously predict trajectories of a variable number of heterogeneous agents (vehicle and pedestrian/bicyclist) in different
scenarios.
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