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OAST: Obstacle Avoidance System for
Teleoperation of UAVs

Hugo Courtois∗‡, Nabil Aouf†, Kenan Ahiska∗ and Marco Cecotti§

Abstract—This paper presents a novel flight assistance system,
OAST (Obstacle Avoidance System for Teleoperation), whose
main role is to make teleoperation of small multirotor UAVs safer
and more efficient in closed spaces. OAST allows the operator to
avoid obstacles while keeping a liberty of movement. The UAV is
controlled through a 3D haptic controller and OAST amends the
user input to increase safety and efficiency of the teleoperation.
The design of OAST is verified in computerized experiments.
Moreover, a simulation involving 20 participants is carried out
to validate the proposed scheme. This experiment shows that
OAST improves the completion time of the scenarios by 41%
on average while reducing the workload of the operator from 57
to 27 points on the NASA Task Load Index test. The number
of collisions with the environment is all but eliminated in these
scenarios.

Index Terms—Obstacle Avoidance, Unmanned Aerial Vehicle,
Teleoperation, Human-Robot Interaction

I. INTRODUCTION

T
ELEOPERATION of UAVs is an important subject since
some tasks cannot be automated easily and require a

human operator to fly the UAV. It is thus important to improve
teleoperation capabilities [1]. A critical challenge of teleop-
eration for small drones in closed environments is obstacle
avoidance, mostly because the sensory information available
to the operator is limited. On the other hand, the nature of
teleoperation makes global path planning unnecessary, since
the operator determines the trajectory of the UAV.

The objective of this paper is to propose a system that
facilitates teleoperation of the UAV by avoiding obstacles
while keeping a liberty of movement. Multirotor UAVs are
considered because their agility allows them to be used in
closed spaces. There are two ways to achieve obstacle avoid-
ance during teleoperation of a UAV: if a haptic controller is
used to operate the UAV, the haptic feedback can be used to
help the operator avoid obstacle. The second option is to filter
the input of the user to achieve a collision free trajectory. The
haptic feedback can then be used to inform the operator about
this filtering.
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In order to perform obstacle avoidance through the haptic
feedback of a compatible controller, artificial force fields have
been used (e.g., the distance between the obstacle and a robot
arm is used to create the field [2]). These artificial fields for
UAVs have been studied extensively, notably the Parametric
Risk Field (PRF) [3]. A comparison using force and stiffness
feedback with these force fields took place using 2D joysticks
[4]. A force feedback was directly applied to the end effector
which was actively deflected. On the other hand, a stiffness
feedback modifies the spring constant of the spring that links
the end effector to the centre of the controller workspace. The
work of Lam, Mulder, Van Paassen, et al. concluded that haptic
feedback is able to improve safety and with proper tuning can
also reduce workload for the operator [4]. Even though the
aforementioned work took place in 3D, the obstacle detection
and haptic feedback were limited to 2D only. In the work
of Courtois and Aouf, the PRF was extended to 3D with the
addition of a scheme to reduce the effect of false positives
created by obstacles of symmetric shapes [5].

A comparison of four force feedback algorithms [6] has
found the most efficient to be the “Time To Impact” (TTI).
The TTI algorithm computes the time before an impact by
considering the distance between the UAV and the obstacle,
and the current velocity of the UAV. The haptic force is then
inversely proportional to the the time to impact. In a following
study, a pure stiffness algorithm was introduced [7]. The
authors showed that this algorithm both reduces the number of
collisions and the workload of the operator. A limitation of this
method is that the obstacles are only detected in 6 directions,
which means that obstacles not along the x, y, or z axes do
not generate any feedback. Moreover, this is a pure stiffness
feedback, thus if the displacement of the controller is small,
the feedback will also be small. A pure stiffness approach is
also vulnerable to moving obstacles for the same reason: if the
controller is not deflected, and a moving obstacle gets close,
then the user does not feel any feedback.

To summarize the results of the experiments conducted in
those studies, the haptic feedback generally improves safety,
meaning it reduces the collisions with the environment [4]–[7].
However, a reduction of the workload of the operator depends
on the algorithm used and its tuning. The scenario completion
time is either increased [4] or unchanged compared to the no
feedback case [5]–[7]. While the safety is generally improved
with the help of the haptic feedback, none of those methods
has managed to eliminate collisions, which is a problem for
small UAVs due to their fragility. A hypothesis is that, since
a haptic feedback reduces the position of all obstacles to a
single vector with three components, it is difficult to obtain
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a feedback that is precisely adapted to the location of the
obstacles. Moreover, the tuning of the haptic feedback is
delicate to achieve a good balance between safety of the UAV
and ease of use for the operator: more ease of use might reduce
safety while stronger feedback might reduce ease of use [4],
[5], [8].

The methods presented above are not tied to a particular
detection system. Some methods linking obstacle detection and
haptic feedback exist (e.g., the haptic force can be directly
derived from the optical flow through the concept of optical
impedance [9]).

The second option for achieving obstacle avoidance is to
override the input of the user to achieve a collision free trajec-
tory. The method proposed in this paper falls in this category.
In the work of Hua and Rifaï [10], the desired velocity of
the UAV was adapted so that it does not collide with a single
obstacle. This method was extended to several obstacles by
Omari, Hua, Ducard, et al. [11]. The method requires distance
to the obstacles, thus lidar sensors are suitable to implement it,
as well as cameras. This work relies on a specific control law
being applied to the UAV and assumes a velocity controller.

A similar approach, called DKB, was adopted by Hou and
Mahony [12], where the distance to an obstacle was used to
alter the desired velocity of the UAV so that it stops before
hitting an obstacle. The authors showed that, if perfect velocity
tracking is assumed, then obstacle avoidance is guaranteed. In
the same paper, the authors provided a comparison between
their method and two other algorithms using haptic feedback
for performing obstacle avoidance. This experiment showed
that the DKB outperformed the two other algorithms when
considering the total time to complete the task and the number
of collisions, among others metrics. The decrease in workload
observed on average was however not statistically significant.
Contrary to the algorithm proposed in this paper, the DKB
involves a 3D haptic controller in the admittance framework.

In the work of Odelga, Stegagno, and Bülthoff [13], an
RGB-D camera is used to create a robot centric, circular
grid map of obstacles around the robot. Obstacles are tracked
using a bin-occupancy filter. A discrete set of options for
the movement of the UAV is defined and model predictive
control with a fixed time horizon is used to perform the
obstacle avoidance. Similar to the last method, the velocity
of the UAV is altered to avoid the obstacles. This method is
interesting since the use of model predictive control means
that we expect the obstacle avoidance to behave well with
more complex obstacles, however this is not tested in the
paper, where a single obstacle with simple shape is used. The
work of Odelga, Stegagno, and Bülthoff [13], similar to the
method proposed in this paper, involves a probabilistic map,
meaning that obstacles are updated continuously through the
flight. Moreover, an experimental validation with a real UAV
is proposed by the author [13]. However, the evolution of
both the obstacle avoidance performances and the computation
load in more complex scenarios are not specified. The impact
of the method on the workload of the operator is also not
evaluated: it would be interesting to see if or how the value of
the time horizon would affect the behaviour of the operator.
The runtime of the method is not specified. In particular, the

change of runtime with the number of tracked obstacles is
absent.

Several conclusions can be drawn from the existing liter-
ature. Firstly, overriding the input from the user to a safer
value might be more efficient than relying exclusively on
haptic feedback. This is the approach that is chosen in this
work. The user input can be the velocity of the UAV [10],
[12], [13]; however, the sensors often provide the positions
of the surrounding obstacles. Thus, the question that needs
to be answered is: given an obstacle position, what velocity
should the UAV adopt to not collide with this obstacle? A
solution to this problem involves some sort of planning ahead
while considering the dynamics of the UAV. Model Predictive
Control can be used [13], or other specific control schemes
can be adopted [10]. It is argued that this problem can be
separated in two different issues: finding a safe position for
the UAV and navigating to this safe position. The navigation
part of the problem, meaning the transformation of a desired
position into UAV rotors commands, can be solved by a
position controller for which a large body of literature exist
(e.g., backstepping [14] or based on geometric methods [15]).
It is proposed to decouple those two issues, and focus on the
first part of the problem: finding a safe position for the UAV.
This way, the obstacle avoidance method is not attached to
a specific controller, making the scheme more flexible. The
problem of ensuring that the safe position is fully reachable
when taking the dynamics of the UAV into account is not
explicitly tackled in this paper. However, the context of UAV
teleoperation means that a trajectory is rarely followed to its
end and the position controller constantly reevaluates the rotors
commands to reach the safe position.

To summarize, our algorithm aims to compute a safe posi-
tion by filtering the position command from the operator.

The drawback of achieving a safer operation this way is that
the operator does not have an absolute control over the UAV
anymore. The degree of the problem is difficult to evaluate
theoretically, which is why it is necessary to perform an
experiment involving human operators. In this paper, we will
present an experiment to test if OAST imposes too many
restrictions on the UAV movements.

The contribution of this paper is twofold. First, we propose
an integrated solution to improve the remote operation of
UAVs: Obstacle Avoidance System for Teleoperation (OAST).
This approach takes advantage of a compact probabilistic
representation of the environment, the Normal Distribution
Transform Occupancy Map (NDT OM), to compute a collision
free command consistent with the original command so that
both the workload of the operator and the task completion time
are reduced. Second, an experimental validation of OAST is
carried out in simulated environments, including a quantitative
and qualitative analysis of the influence of our algorithm on
the performance of 20 participants working on representative
tasks.

The general setting of this paper is described in Section II.
The components of the proposed system are described in
Section III-A. In Section IV, our scheme is tested in comput-
erized experiments. The proposed method is then evaluated in
an experiment involving 20 untrained operators, analyzed in
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Section V.

II. PROBLEM SETTINGS

In the context of this paper, the teleoperation of a UAV using
a haptic controller is considered. An algorithm that computes
a safe position objective by filtering the position command
from the operator is proposed.

For clarity, in the rest of the paper, the world reference
frame is denoted w, while the haptic controller reference frame
is denoted j. A superscript is used to indicate that a variable
belongs to a given reference frame.

The human pilot operates the UAV using a 3D haptic
controller, by specifying a position objective xw

r (t) for the
UAV. In order to compute the position objective, the position
of the end effector of the haptic controller is rotated around
the z axis in accordance with the desired yaw. The resulting
vector is then added to the position of the UAV.

This position objective is filtered by OAST, creating a
safe desired position xw

rf (t). The UAV controller is used to
reach this position. In practice, xw

r (t) may change quickly.
OAST does not wait to reach the safe position xw

rf (t) before
considering a new position. The system always uses, as soon
as it is available, the filtered desired position. Note that, if the
target position can be safely reached, OAST does not modify
the position objective. Also, if the user does not indicate a
desired direction of movement by keeping the end effector of
the haptic controller at the centre of the workspace, OAST
does not calculate a safe position regardless of the presence
of moving obstacles. This was a choice to ensure that the user
is always in control of the movements of the robot.

A UAV equipped with a realistic 3D lidar scanner and a
camera is considered in this paper. Only the lidar is used by
OAST, while the camera is used exclusively to provide a visual
feedback to the human operator. No a priori knowledge of the
world is assumed. OAST uses the point clouds from the lidar
and the odometry to build an internal map. Note that a realistic
3D lidar is used, meaning a limited vertical field of view (30◦)
is assumed in the experiments.

III. DESCRIPTION OF THE SYSTEM

A. System architecture

The system architecture is composed of five parts and is
illustrated in Fig. 1. The map update, the obstacle avoidance
module, and the command interpreter run in parallel at the
specified frequencies, meaning that in between the reception
of two consecutive desired positions from the 3D haptic
controller, OAST can compute several safe positions to adapt
to quick changes in the map and in the UAV position. This
means that the system continuously responds to the commands
of the operator. In this section, the different parts of OAST are
described.

B. The map

The map is used to store the location of the obstacles
surrounding the UAV. The map is based on the NDT OM
framework [16], extended to allow unlimited movement of the
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Fig. 1. Complete system for UAV obstacle avoidance

robot by recentering the map when the robot gets too far from
the center. NDT OM provides a compact representation of
the environment: each point cloud is merged into the current
map, in a manner by which the map size has a fixed upper
bound that does not depend on the number of point clouds
received nor their sizes. This upper bound only depends on
the maximum number of Gaussians that are located in a fixed
size cuboid, which constitutes the map. Notably, the maximum
memory footprint does not change with time. Moreover, NDT
OM does not require a static environment. The fusion process
between two NDT representations, once odometry is available,
operates around 100Hz. Note that the NDT OM algorithm
can allow odometry to be computed directly from the point
cloud acquisition [17]. As a result of this process, a set
of Gaussian distributions describing the obstacles around the
UAV is obtained.

The cells containing those Gaussians are relatively small
compared to the environment: their length is 0.3m for the
experiments done in this work. This means that complex
obstacles would be represented using many different ellipsoids,
allowing a detailed representation of the environment. More-
over, it is possible to increase the map resolution by reducing
the cell size, with the downside of a higher computational
burden.

C. The UAV controller

The controller used is a bespoke implementation of the work
from [15] used as a position controller.

Odometry computation is a widely studied field using cam-
eras [18], [19] or lidars [20], with multiple implementations
available [21]–[26]. While the map module would be able to
compute the odometry of the robot as mentioned above, in
a real setting, odometry would be computed using different
available sources (IMU, camera, lidar). In order to separate
evaluation of the odometry from the evaluation of the obstacle
avoidance system, the ground truth odometry will be used in
the simulations of this paper.

D. The 3D haptic controller

The user operates the UAV through the 3D haptic controller
in impedance mode by setting a position objective. The control
scheme used by OAST is inspired from the work of Omari,
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Hua, Ducard, et al. [11]: the workspace of the manipulator is
divided in two, an inner cuboid part, where the UAV stays still
to allow for hovering, and an outer part, where the scheme is
a position controller with the position target moving with the
UAV, which is similar to a velocity controller as presented in
the work of Lam, Mulder, Van Paassen, et al. [4].

The desired displacement of the UAV is proportional to
the displacement of the end effector of the haptic controller
aligned in yaw to the UAV. The position of the UAV is taken
as a reference to allow unlimited movement, meaning that
the UAV will effectively follow the yaw-adjusted direction
pointed to by the joystick when the end effector is outside
of the virtual cuboid. Let pj(t) = [pjx(t), p

j
y(t), p

j
z(t)] be

the normalized position of the end effector such that each
component is between −1 and 1, r∗ be the normalized edge
length of the inner cuboid relative to the workspace size and
hj be the function:

hj
r∗(x

j) =

{

0, if |xj | < r∗,

xj − sign(xj)r∗, if |xj | ≥ r∗,
(1)

with xj ∈ R, r∗ ∈ [0, 1] and sign a function returning the
sign of its argument. Then, assuming that the desired yaw is
θy , the desired position is given by:

xw
r (t) = xw

UAV(t) +Rz (θy)Ks





hj
r∗

(

pjx (t)
)

hj
r∗

(

pjy (t)
)

hj
r∗

(

pjz (t)
)



 , (2)

where xw
r (t) is the desired position for the UAV, xw

UAV(t)
is the current position of the UAV, Ks is a positive definite
scaling matrix and Rz (θy) is a rotation matrix of θy radians
around the zw axis. This desired position is then provided to
the position controller described in the section above.

In order to avoid a wind up effect, the distance between
xw
r (t) and xw

UAV(t) is limited to a maximum of 1m. This is
not a limitation in practice since OAST is supposed be used
as a mixed system, during which the operator continuously
operates the UAV. Thus, desired positions far from the UAV
do not make sense in this context.

There are two forces acting on the end effector:

1) A spring links the end effector to the center of the
workspace. The spring coefficient of this spring is
12.5Nm−1.

2) A force gives a haptic cue to the operator about the
trajectory adjustment performed by OAST.

Those two forces are described in more details in Section III-F.
Moreover, automatic gravity compensation is performed by the
manipulator. This means that the UAV can hover when the
operator releases the end effector.

E. The obstacle avoidance module

1) General description: The obstacle avoidance module is
the core of the proposed system. Given a position of the UAV
xw
UAV(t), a desired position xw

r (t) generated by the command
interpreter and a map, the objective of the obstacle avoidance
module is to find a collision free desired position xw

rf (t) for the
UAV. Let G denote the set of Gaussian distributions associated

UAV

Original desired

Alternative path 1

Alternative path 2

position

Fig. 2. Illustration of different possibility of trajectories for avoiding the
obstacles. The proposed approach selects the path according to Algorithm 2

to the dangerous obstacles: G = [N (µw

i ,Σi)]i∈J1,nK. In order
to define ellipsoids to represent the obstacles, a probability
threshold is set for the cumulative distribution function of
the Gaussian distribution. From this threshold, a length rL is
computed using the chi-square inverse cumulative distribution
function so that the normal distribution of mean µ

w and
covariance Σ is represented by the ellipsoid defined by the
points xw obeying:

r2L ≥ (xw − µ
w)

t
Σ−1 (xw − µ

w) . (3)

There are two constraints on the filtered position xw
rf (t):

the path between xw
UAV(t) and xw

rf (t) should be collision free
and xw

rf (t) should be as similar to the original desired position
xw
r (t) as possible. This second criterion is explained below.
The problem is illustrated in Fig. 2. The filled ellipsoids

represent the obstacles and the solid circle is the UAV. The
best direction to get closer to the desired position depends on
the criterion that is optimized: minimizing the proximity to the
original objective results in the first path, while maximizing
the length of the free path would lead to the second path. A
third strategy is to pass below the obstacle, which provides
the shortest path. However, this would imply traveling in
a direction that is very different from the one specified
originally: the UAV would modify its direction by more than
90◦. This illustrates the trade-off between optimal path and the
will of the user. Given the teleoperation context, we argue that
it makes more sense to produce a command consistent with
the input of the user rather than the absolute shortest path. It is
hypothesized that an algorithm providing an intuitive position
objective might reduce the workload of the user while reducing
the task completion time. In particular, this means that the
search for an alternative path is limited to a zone reasonably
close from the original direction specified by the user.

Note that the safe position computed by OAST is based on
a local analysis of the environment of the UAV, meaning that
it is possible to inspect dead ends or corners: the operator has
fine control over the trajectory of the UAV.

The proposed algorithm aims to find a trade-off between
minimizing the angle between the current travel direction
and the new one, and maximizing the obstacle free distance
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Fig. 3. Illustration of the alternative directions considered for θmax = 30◦

and θs = 15◦

along the new direction of travel. It is important to note that
only a change of norm and direction is considered for the
direction of travel. In other words, only paths along a straight
line are investigated. The main reason for this is the context
of teleoperation. Given the high rate of incoming desired
positions, more complex trajectories would only be followed
for a very short time, until the next user input, which limits
their usefulness. For this same reason, the next position cannot
be visualized by the operator since the pilot is supposed to
continuously lead the UAV.

The proposed method is divided in three main steps:

1) Directions of interest are chosen using a regular grid in
spherical coordinates.

2) For each direction, the distance to the closest obstacle
in this direction is computed.

3) The direction that maximizes the distance to the closest
obstacle while minimizing the angle with the original
direction is chosen as the new direction of travel.

In the following, the UAV is represented as a sphere of
radius rUAV. Let d = xw

r −xw
UAV be the desired direction of

travel.
Let θmax < 90◦ represent the maximum angle between d

and the new direction that this algorithm aims to compute.
The extreme directions defined by d rotated by ±θmax are
called du and dl, respectively. An angular step θs is chosen
to discretize the directions between du and dl. The resulting
set of normalized directions is called Sd.

For each element di of Sd, the maximum distance λi that
the UAV can cross before being in collision with an obstacle
is computed. This step is illustrated in Fig. 3. In this drawing,
the limit angle θmax is 30◦ and the step θs is 15◦. Note that
d3 is aligned with d in this figure.

The distance λi,i∈J1,5K is computed for each direction
di,i∈J1,5K so that λi is the distance available to the UAV
along di before a collision occurs. Computing this distance
efficiently is not trivial and is the subject of the next section.

2) Computation of the obstacle free distance in a direction:

Let de(xw,µw,Σ) be the distance between a point x and an
ellipsoid of mean µ

w and covariance Σ. The line describing
the trajectory of the UAV can be described by xw

UAV + λd
for a real λ. In order to find the distance before a collision
between the obstacle and the UAV, the following equation has

to be solved for λ:

rUAV = de(x
w
UAV + λd,µw,Σ). (4)

As noted in the work of Hart [27], solving de involves
solving a polynomial of degree 6 which cannot be done
analytically. Iterative methods are however available, as a
Newton approximation can be used [27]. In order to solve
the problem in real time, the proposed algorithm instead
increases each ellipsoid by the radius of the UAV. The result
is not an ellipsoid, but it is nonetheless approximated by the
closest ellipsoid, with has the same mean and eigenvectors
of the original one, but different eigenvalues. This allows an
analytical solution to be found.

The new eigenvalues are computed from the enlarged ellip-
soid using 3 points on the original ellipsoid, called ellipsoid
fitting parameters. In the rest of this paper, each of those
points is described by the two corresponding parametric angles
θ ∈ [0, π] and ϕ ∈ [0, 2π] in the coordinate frame of the
ellipsoid. The complete algorithm to compute the new eigen-
values b1, b2, b3 of the covariance matrix of the approximated
increased ellipsoid using the eigenvalues a1, a2, a3 of the
initial covariance matrix and the ellipsoid fitting parameters
(i.e. three pairs of angles (θj , ϕj)j∈J1,3K) is presented in
Algorithm 1.

Algorithm 1: Algorithm to compute the eigenvalues
of an increased ellipsoid

1 Function incEl(
[

a1, a2, a3
]t

, rUAV,(θj , ϕj)j∈J1,3K):

2 D =





1/a1 0 0
0 1/a2 0
0 0 1/a3



;

3 for i← 1 to 3 do

4 li =





cos(θi) cos(ϕi)
cos(θi) sin(ϕi)

cos(θi)



;

5 pc
i =

√

r2Lai ◦ li;

6 pi = pc
i + rUAV

Dpc

i

‖Dpc

i
‖ ;

7 qi = pi ◦ pi ; // The Hadamard

product is noted ◦
8 end

9 A =
[

q1,q2,q3

]t
;

10 k =
[

r2L, r
2
L, r

2
L

]t
;

11 Solve the linear system Av = k;

12 return
[

1/v(1), 1/v(2), 1/v(3)
]t

;

Those new eigenvalues combined with the eigenvectors
from the covariance matrix Σ of the original Gaussian dis-
tribution provide a new covariance Σ∗ matrix representing
an ellipsoid that approximates the original ellipsoid increased
by the radius of the UAV. The initial problem of finding the
distance before a collision in a given direction d, can now be
solved by finding the intersection between the trajectory of the
UAV and the increased ellipsoid. In other words, (4) can be
replaced by:

r2L = (xw
UAV + λdi − µ

w)
t
Σ∗−1 (xw

UAV + λdi − µ
w) .

(5)



6

As mentioned above, (5) cannot be used directly because
the original ellipsoid that is enlarged is not an ellipsoid.

(5) is a second degree polynomial in λ, which can be solved
to get the distance before a collision would occur in the
direction of di. To summarize, for each element di of Sd, the
maximum distance λi that the UAV can cross before being in
collision with an obstacle is calculated by solving (5).

3) Computation of the filtered position objective: Using the
distances before collision in each direction di, the filtered
position objective can now be computed. The final suitable
direction, named d∗, is chosen among the di.

An upper bound λu
i is introduced on the distance along a

direction di:

λu
i = di · d. (6)

Should the length λi in a direction be large, this upper limit
prevents the UAV from going too far in a given direction,
depending on how different this direction is from d. This
upper limit has been drawn in black in Fig. 3 for all possible
directions. On this figure, λ1 is higher than the upper limit,
meaning the UAV will be limited in direction d1, even though
the obstacle would allow the UAV to go further.

For all directions di, the ratio ri is computed so that:

ri = min

(

1,
λi

λu
i

)

. (7)

If this ratio is equal to 1, it means that the space available in
the considered direction has reached the limit. In contrast, if
this ratio is less than 1, then an obstacle is putting a constraint
on the movement in this direction. Since the objective is to
search for free paths, the considered directions are all di whose
ratio ri is equal to 1. If there is none, the direction with the
highest ratio ri is chosen. If there are several directions di so
that ri is equal to 1, then d∗ is the one that is the closest to
d (i.e. the one that maximizes λu

i ).
In other words, d∗ is the direction that:

1) leads to enough space for its λi to reach the projection
of d on itself,

2) has the smallest angle with d.

Given an initial set of directions and norms (di, λi)i∈J1,nK,
the computation of the alternative direction d∗ and the length
λ∗ is summarized in Algorithm 2.

Once λ∗ and d∗ are computed, the new filtered position
objective xw

rf (t) is computed as:

xw
rf (t) = xw

UAV(t) + λ∗d∗ (8)

F. The haptic feedback module

The objective of the haptic feedback is to facilitate the inter-
action between the operator and the obstacle avoidance system.
Since the proposed obstacle avoidance algorithm modifies the
desired position provided by the user, the feedback provides
a haptic representation of this modification. As such, the role
of the haptic feedback is purely informational.

More precisely, the feedback is a force proportional to the
difference between the desired position xw

r and the filtered
position xw

rf . The user can then feel how the algorithm

Algorithm 2: Algorithm to compute an alternative
direction given a set of directions and the maximal
distance before collision along each of them

1 p∗ = 0 ; // The best projection

2 r∗ = 0 ; // The highest ratio

3 for i← 1 to q do

4 λu
i = di · d;

5 if λu
i is too small then continue;

6 ri = min
(

1, λi

λu

i

)

;

7 if ri ≥ r∗ then

8 if r∗ ≥ 1 then

9 if λu
i > p∗ then

10 p∗ = λu
i ,λ∗ = λu

i ,d∗ = di;
11 end

12 else

13 r∗ = ri,λ∗ = λi,d∗ = di;
14 end

15 end

16 end

17 return λ∗d∗;

modifies the input, which in turn helps understanding the
resulting movement of the UAV.

The haptic feedback uses two tuning parameters: the maxi-
mal force that can be displayed fm and the maximal distance
lm between xw

r and xw
rf that would display this force. Let

ds = xw
rf − xw

r . The equation governing the displayed force
feedback f ju is:

f ju =

{

fm
ds

lm
, if ‖ds‖ < lm,

fm
ds

‖ds‖
, else.

(9)

G. Implementation notes

The whole system is separated in two programs. The first
one is the 3D haptic controller, which runs on the computer
of the operator and sends data to the UAV. The second
program runs on the UAV. It is composed of the command
interpreter, the UAV controller, the map and the obstacle
avoidance module. Our system receives two external types
of data: the point clouds from the lidar and the odometry.
Since this paper aims to evaluate the obstacle avoidance
scheme independently and odometry computation is outside
the scope of this paper, it is desirable to decouple the odometry
generation from the proposed architecture. For this reason,
an external source of odometry is used as a ground truth in
the following developments rather than the odometry from the
NDT OM framework.

IV. TESTING OF THE OBSTACLE AVOIDANCE MODULE

In order to demonstrate the results of the algorithm de-
scribed in Section III-A, several tests are performed in simu-
lated environments.

A. Adopted parameters, software and hardware

The obstacle are detected by a simulated lidar scanner, the
VLP-16 [28] to which Gaussian noise with zero mean and a
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TABLE I
VALUES OF THE PARAMETERS USED IN THE SIMULATION

Parameter Description Value

θmax, φmax Maximum angle for alternative path search 80◦

θs Angle step between the directions for al-
ternative path search

5◦

Ks Scaling matrix converting joystick coordi-
nates into position objective

diag(1.0)

r∗ Radius of the neutral sphere in joystick
workspace

0.2

Radius of the joystick workspace 1
rUAV Radius of the UAV with safety margin 60 cm
fm Maximal force of the haptic feedback 3.6N
lm Maximal distance between x

w
r and x

w

rf

considered in haptic feedback computation
1m

Map width and depth 15m
Map height 10m
NDT map resolution 0.3m

standard deviation of 1 cm is added. This lidar is a realistic
sensor to be embedded on the small UAVs considered, due to
its light weight and small size. Unless mentioned otherwise,
the values of all the parameters used in the simulations of this
paper are described in Table I.

The algorithms are implemented in C++ as described in
Fig. 1. The interface between sensors are managed using
the Robot Operating System (Kinetic) [29] middleware. The
operating system is Ubuntu 16.04 64 bits. The simulator used
is Gazebo [30], and the package which implements the UAV
model is RotorS [31]. The computer used has an Intel Core i7
6700 processor, an NVIDIA Quadro K2200 graphic card and
16GB of RAM.

The UAV itself is a Pelican from Asctec, with default
characteristics as defined by the RotorS package [31]. The
radius of the UAV model is approximately 32.4 cm.

B. Verification of OAST performances

In this section, note that the haptic controller is not used,
the input is being provided by the simulation directly.

The runtime of OAST mainly depends on the number of
Gaussian distribution to analyze. The worst observed runtime
in our testing was inferior to 30ms per iteration.

1) Alternative path when facing a single wall: The first
environment created in Gazebo is composed of a single wall
4m away from the starting position of the UAV. The desired
trajectory xw

r (t) is defined by (the zero y component has been
hidden to improve readability):

xw
r (t) =























[

0 2min(1, t/8)
]t

, if 0 s ≤ t < 15 s,
[

t− 15 2 + (t− 15)/10
]t

, if 15 s ≤ t < 20 s,
[

5 2.5
]t

, if 20 s ≤ t.

(10)
Note that the wall is 2.5m high and the maximum desired

height caps at 2.5m as well. This means that the UAV should
collide with the wall without any assistance (the UAV should
arrive at the wall around the 19 s mark, with an altitude of
2.4m according to (10)).

The actual trajectory of the UAV is plotted in Fig. 4 against
the desired trajectory xw

r (t) described by (10) and the filtered
trajectory xw

rf (t) computed by Algorithm 2 and (8).

0 2 4

0

1

2

3

t = 15 s

t = 15 s

t = 16.7 s

t = 16.7 s

x (m)

z
(m

)

Desired trajectory xw
r (t)

Filtered trajectory xf
r(t)

Trajectory of the UAV

Fig. 4. Behavior of the alternative path finding algorithm in a simple scenario
involving a single wall. The UAV trajectory, input and algorithm output are
plotted. The wall is plotted in green

Although the desired trajectory passes through the wall, the
UAV successfully avoids the obstacle. The UAV first starts by
advancing toward the wall. The proposed algorithm modifies
the desired trajectory when the UAV arrives too close to the
wall: since the direction of travel is upward and forward, the
closest free path is upward. The OAST architecture thus makes
the UAV go upward, and tilts the direction of travel forward
as soon as the wall does not obstruct this direction anymore.

This simple example highlights a desirable characteristic
of the proposed approach: when blocked against a planar
surface, the generated trajectories will typically slide against
the obstacle in a direction that is close to the desired direction.
This makes maneuvering around obstacles easier and allows
the user to be less precise: in a narrow corridor, even if the
user does not input a direction of travel perfectly aligned with
the walls, the UAV will still advance as if this was the case.

2) Alternative path when following a corridor: This spe-
cific case is illustrated with a second simulated environment,
involving two parallel walls separated by 1.3m, with the UAV
flying in between them. The desired position is given by:

xw
r (t) =



































[

0 0 2t/10
]t

, if 0 s ≤ t < 10 s,
[

1.2 (t− 10) −1.1 2
]t

, if 10 s ≤ t < 13 s,
[

1.2 (t− 10) 1.1 2
]t

, if 13 s ≤ t < 16 s,
[

7 0 2
]t

, if 16 s ≤ t.

(11)
In other words, the UAV takes off then goes forward, but

with a lateral component that changes direction at t = 13 s.
The trajectory of the UAV is presented in Fig. 5.

It is shown that in this case, the UAV remains in between
the two walls despite the desired position being behind the
walls. Moreover, the UAV slides along the walls as discussed
above.

3) Behavior of the algorithm with a fixed input in a complex

environment: Finally, a more complex case is examined in a
third environment. The third environment is depicted in Fig. 6.
This time, a desired position is not provided, but a simulated
joystick input is sent to the UAV. This joystick input is simply
[

1 0 0
]

after take off, meaning that the only command of
the UAV is to go forward. Note that the walls are placed in
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0 2 4 6

−1
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1
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t = 13 s

t = 13 s

t = 13 s

x (m)

y
(m

)

Desired trajectory xw
r (t)

Filtered trajectory xw
rf (t)

Trajectory of the UAV

Fig. 5. Behavior of the alternative path finding algorithm in a simulated
environment involving two walls. The walls are plotted in green

Fig. 6. Picture of the third simulated environment composed of multiple walls
and a window

the way of the UAV and the final window available in the wall
is slightly shifted compared to the position of the incoming
UAV.

The resulting trajectory of the UAV and the filtered position
are shown in Fig. 7. It is shown that the UAV is able to
successfully avoid the obstacles on its way. It is possible
to differentiate between two types of behavior from this
figure: the very first wall encountered by the UAV is exactly
perpendicular to the desired direction of travel. OAST is able
to avoid this wall since the free space on the right is inside
the cone of search (this zone is represented in Fig. 3), similar
to what is observed in Fig. 4. The second type of behavior
occurs when a solution is not directly visible, which is the
case for the second and third walls encountered by the UAV.
In those circumstances, the preferred direction computed by
Algorithm 2 is along the wall since the wall is slightly slanted
(similar to what is observed in Fig. 5). Those results illustrate
a limitation of OAST: should the walls be slanted the other
way around, the UAV might not pass the obstacle (depending
on its position when encountering the walls) and end up in
a dead end. This is however by design: since the user might
want to actually inspect those dead ends, there is a necessary
trade off between the assistance provided by the algorithm and
the liberty of movement made available to the user. The results
shown in Fig. 7 illustrate to which degree the user’s input is
amended. Recall that the input from the joystick is fixed as
going forward in the x direction. The 1.3m wide window is a
challenging obstacle with regard to the fixed input provided.

0 2 4 6 8 10

−2

0

2

x (m)

y
(m

)

Filtered trajectory xw
rf (t)

Actual trajectory of the UAV

0
2

4
6

8
10

−2

0

2
0

2

x (m)y (m)

z
(m

)
Fig. 7. Behavior of the alternative path finding algorithm in the third simulated
environment. The trajectory of the UAV is plotted as well as the filtered
position computed by our algorithm. The walls are plotted in green except
the lateral ones. Two views are shown. The input from the joystick is constant
equal to

[

1 0 0
]

after take off

V. EXPERIMENTAL VALIDATION OF OAST WITH HUMAN

OPERATORS

The last section shows that OAST is able to avoid obstacles
on the path of the UAV. As the proposed flight assistance
system is designed for teleoperation, it is important to in-
vestigate its impact on human performances. To this end, a
computerized experiment involving human was performed.

A. Hardware and software

The software and hardware used in these experiments are
described in Section IV-A.

The haptic controller used is the omega.3 from Force
Dimension. The workspace of this device has dimensions of
11 cm, 12 cm and 7 cm along the x, y and z axes respectively.
Note that this controller only has 3 degrees of freedom, the
yaw is controlled with the keyboard. The operator has access
to two keys on the keyboard to increase or decrease the desired
yaw by 5◦. The updated yaw is then transmitted to the UAV
controller.

The library used to interface the haptic controller is HAPI
version 1.3 along with the official SDK for the omega.3
version 3.7.3.

For these experiments, a forward facing camera with a
resolution of 640 × 480 pixels and a field of view of 80◦

is placed on the UAV. The video feed from this camera is
shown to the operator.

B. Scenarios

Three scenarios were developed, called S1, S2 and S3.
These scenarios are shown in Fig. 8. The third scenario is
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(a) S1 (b) S2 (c) S3

Fig. 8. Different scenarios used in the experiment (ceiling is not visible)

longer and combines elements from the first two. It is expected
to be more challenging. Indeed, the windows of the third
scenarios are 1.3m wide while some corridors are only 1.4m
wide. This makes the teleoperation of the UAV challenging
given its diameter of around 65 cm.

C. Experimental protocol

The experiments involved 20 people from Cranfield Univer-
sity. Each participant was requested to give informed consent
before participating and this research was approved by the
Cranfield University Research Ethics System. During the brief-
ing, each participant was asked, for each scenario, to achieve
the following two objectives:

1) minimize the number of collisions between the UAV and
the environment,

2) reach the end of the scenario as fast as possible.

Should a collision occur, the UAV would be frozen for 5 s,
then brought back where it was 5 s before the collision.

Two schemes are tested: with OAST as described in Sec-
tion III-E (AS) and without this system (no AS). In other
words, in the first case, xw

rf is sent to the UAV controller
while in the second case xw

r is sent instead.
The parameters recorded to assess the performance of the

schemes are the number of collisions (Ncol), the time to
complete the run (Tc) and the average distance to the closest
lidar point over a scenario (Davg). The subjective workload is
assessed using the NASA Task Load Index (TLX) [32] with
pairwise comparison between the weights.

Each participant is first given 5min to get familiar with the
controls in a training scenario, without the obstacle avoidance
system. Then, OAST is activated in the training scenario and
the user gets 5min to get familiar with it as well. A test session
is composed of 6 runs with or without the obstacle avoidance
system: the first three are practice runs (one per scenario) and
the last three are the recorded runs. At the end of a test session
the participant fills a NASA TLX form for this session. The
runs are grouped by session for two reasons: to minimise the
learning effect of going through the same scenario back to
back, and to allow participants to have a better appreciation
of the scheme for the NASA TLX. Each participant does two

TABLE II
RESULTS OF A FULL FACTORIAL ANOVA ON THE TWO

FIXED EFFECTS: METHOD AND SCENARIO

Fixed effect Ncol Davg Tc TLX

Method ∗∗∗ · ∗∗∗ ∗∗∗

Scenario ∗∗∗ ∗∗∗ ∗∗∗ NA

Interaction
method × scenario

· ∗∗∗ ∗∗ NA

p-values are indicated by ’∗∗∗’, ’∗∗’, ’∗’ and ’·’ if
respectively p ≤ 0.001, 0.001 < p ≤ 0.01, 0.01 <
p ≤ 0.05 and p > 0.05 (not significant).

sessions, one with OAST and one without. In order to get
a full factorial experiment, the number of participants is even
and the order of the sessions changes between each participant.
This protocol yields 6 runs and 2 NASA TLX evaluations per
person.

D. Experimental results

Results were analysed with the R language [33], using
generalized linear mixed models with the lme4 [34] package.
Each parameter was modelled separately using the scenarios
and methods as fixed factors plus an intercept. The participants
were modelled as random effects. The confidence level used
for statistical significance is 0.95. The initial model was
created by including an interaction term between method and
scenario, which was dropped if its contribution to the model
was not shown to be significant with the ANOVA. If the
algorithm proves having a statistically significant influence,
post-hoc tests are carried out using package lsmeans [35] to
determine the nature of this influence per scenario. Unless
mentioned otherwise, each generalized linear mixed model is
using a family of Gaussian distribution.

The p-values from the full factorial ANOVA are presented
in Table II. For these experiments, the method factor has two
levels (with the avoidance system and without it) and the
scenario factor has three levels.

1) Safety metrics - number of collisions and average min-

imal distance to an obstacle: In order to avoid detecting
the propeller’s blades with the lidar, the minimum distance
reported by the lidar is 35 cm.

The numbers of collisions are presented in Fig. 9. The
number of collision with OAST activated is always zero,
except for one collision in scenario 1. Without OAST, the
number of collisions depends on the scenario. The third
scenario, expected to be the most difficult, contains the highest
number of collisions. Since the number of collisions is a
count, it is modeled as a Poisson distribution. The reduction in
collisions provided by the algorithm is statistically significant
(p < 0.0001) for each scenario. It is interesting to note that
while human operators are sensitive to the difficulty of the
scenario, the algorithm is not.

Moreover, it is important to remember that the simulated
sensor used to scan the environment is a lidar which could
realistically be embedded on a small UAV [28]. In particular,
this lidar has a vertical field of view of 30◦. This experiment
shows that, given perfect odometry, such a restricted field
of view still allows obstacle detection in tasks that involve
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Fig. 9. Number of collisions with and without OAST. Two outliers of 67 and
25 collisions in scenario 3 without OAST are omitted from this graph

verticality (scenarios 2 and 3 in particular). In other words,
the trajectories taken by the participants allowed a sensor with
a vertical field of view of 30◦ to capture enough volume to
successfully avoid collisions in a closed environment.

The average distance to the closest lidar point shows no
clear trend, in contrast with what would be expected if a
method based on potential fields was used, which tends to
maximize the distance to obstacles. With the obstacle avoid-
ance system, the median is lower in scenario 1 and 2 but higher
in scenario 3. The ANOVA shows no significant influence of
the algorithm on the average distance to the closest lidar point
(p = 0.82) although a significant interaction term is present
between the presence of the algorithm and the scenario. Post-
hoc test reveals a significant difference in scenario 3 by a
small margin (the lower confidence level with the obstacle
avoidance algorithm is 1.28m against an upper confidence
level of 1.27m without the algorithm). The objective is to
allow for as much liberty as possible for the operator, which
means that the average distance to the closest obstacle should
not be expected to increase because the movement pattern
of the operator should not change significantly. This distance
might decrease if the operator explicitly relies on the avoidance
scheme to steer the UAV in the right direction while keeping
as close to an obstacle as possible.

Such an analysis is difficult to perform from the averaged
distance to the closest lidar point alone, so histograms of
the distance to the closest lidar point for all participants
are shown in Fig. 10. Those histograms show that the UAV
spends slightly more time close to obstacles when OAST is
activated. This suggests that participants did not only rely on
the avoidance system to perform emergency avoidance, they
also rely on it to perform trajectory planning.

2) Efficiency metric - time elapsed: The time to complete
each scenario is presented in Fig. 11. This figure shows that the
avoidance system reduces the time needed to complete the task
in all three scenarios. This reduction is statistically significant
for the three scenarios (p-values for scenarios 1,2 and 3 are
respectively 0.0001, 0.0008 and < 0.0001) and amounts to
39%, 40% and 45% for scenarios 1, 2 and 3, respectively.
Moreover, the variance of this duration is reduced as well for
all scenarios as seen on Fig. 11. This suggests that the obstacle
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Fig. 10. Histograms of the distance to the closest lidar point for all users
with (on the left) and without (on the right) OAST
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Fig. 11. Time needed to complete the task with and without OAST. An outlier
of 794 s for S3 with no AS is omitted to improve clarity.

avoidance algorithm negates the differences in difficulty of the
scenario and skills of the user.

E. Workload : NASA TLX results

The results of the NASA TLX evaluation are provided in
Fig. 12. The full test (including pairwise comparison of the
factors) was performed. The NASA TLX score is modeled
using a linear mixed model with a family of Gaussian distri-
bution. The package and conditions for the least square mean
post-hoc test are described in Section V-D. The workload is
shown to be reduced by the obstacle avoidance algorithm and
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this reduction is statistically significant (p-value < 0.0001),
from 57 points to 27 points of NASA TLX score according
to the post-hoc test.

F. Interpretation of the results

These experiments show that OAST improves safety by
reducing collisions. OAST also reduces the time required to
complete the scenarios. Those elements are consistent with
the reduction of workload that is observed with the algorithm.
Indeed, considering some of the NASA TLX metrics: a reduc-
tion of the number of collisions is likely to reduce frustration,
a safety net might reduce mental demand and a lower time of
completion is likely to improve the performance feeling.

The reason behind those improvements is considered to
be the liberty of movement of the operator, which could
explain the faster completion of the scenarios, lower workload
and similar average distance to the closest lidar point. This
however cannot be generalized based on those experiments.

It is interesting to note that the proposed algorithm seems
to suppress the difference of skills between the participants:
the number of collisions and the time needed to complete the
scenarios have a reduced variance compared to runs performed
without the algorithm. A possible explanation is that the
advantages of OAST are greater when the skill of the operator
is lower or the situation is more difficult to handle. Considering
the number of collisions and the time elapsed, the difference
made by the algorithm is more important in scenario 3 than
in the simpler scenario 2.

VI. CONCLUSION

In this paper, an integrated flight assistance assistance
system for intelligent teleoperation, OAST, is proposed. OAST
amends the user input to prevent collisions with the environ-
ment. The new trajectory computed by OAST aims to remain
consistent with the original trajectory in order to reduce the
workload of the operator and the task completion time. The
algorithm is extensively tested in a simulated environment
through a human experiment involving inexperienced opera-
tors. In this experiment, OAST is shown to improve both the
safety of the UAV and the efficiency of the operator, while
reducing the incurred workload.

An interesting direction for future work is the implemen-
tation on a physical UAV which would fuse the odometry
coming from the map with the one computed from the onboard
sensors to allow real time operation.
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