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Abstract: The population of biological species in the ecosystem is known sensitive to the periodic
fluctuations of seasonal change, food resources and climatic conditions. Research in the ecological
management discipline conventionally models the behavior of such dynamic systems through specific
impulsive response functions, but the results of such research are applicable only when the environ-
ments conform exactly to the conditions as defined by the specific response functions that have been
implemented for specific scenarios. This means that the application of previous work may be some-
what limited. Moreover, the intra and inter competitions among species have been seldom studied for
modelling the prey-predator ecosystem. To fill in the gaps this paper models the delicate balance of
two-prey and one-predator system by addressing three main areas of: i) instead of using the specific
impulse response this work models the ecosystem through a more general response function; ii) to
include the effects due to the competition between species and iii) the system is subjected to the influ-
ences of seasonal factors. The seasonal factor has been implemented here in terms of periodic functions
to represent the growth rates of predators. The sufficient condition for the local and global asymptotic
stability of the prey-free periodic solution and the permanence of the system have been subsequently
obtained by using the Comparison techniques and the Floquet theorems. Finally, the correctness of
developed theories is verified by numerical simulation, and the corresponding biological explanation
is given.
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1. Introduction

The modelling of the dynamics in the predator-prey ecosystem research has been by large concern-
ing with two species system, without much consideration on the effects due to the intra and inter species
competitions [1–4]. Other factors that may affect the delicate balance between the predator-prey and
system, such as the species’ population and the recycling of nutrients, have not been studied in great
depth over the past couple decades of ecosystem research [5–8]. In the ecosystem of the real-world, it
often involves the co-existence of three or more species competing each other even when short range
(small) geographical surrounding is concerned. To model the rich dynamics of situations like this
will need to include the competitions between species, so to understand the balance of the biological
community better even for small local geographical areas of ecosystem. For example in the case of
domestic farmlands where eagles prey on mice and snakes, eagles and foxes prey on rabbit; spiders
and frogs prey on insects, frogs prey on spiders, and snakes prey on frogs and so on; a very complex
food chain network is common even for a domestic farmland scenario. Thus this paper models the case
of a three species system by including the intra- and inter-species prey-predator competitions. The
present work reveals that the dynamic system of the model is more complex than the one without tak-
ing the intra- and inter-species competition into consideration. The more realistic of the present model
to the real world ecosystem suggests that the result of this work may offer a better scope for practical
application.

The change of environment due to natural disasters, climate and seasonal variations imposes direct
impacts to the delicate balance of biological systems [9–12]. The environmental change affects the
survival and development of biological species, their relationships such as their predator-prey habitats,
mutual cooperation, competition and parasitism [13–15]. Due to the complex and diverse configura-
tions in the ecosystems, the evolution of biological species in the natural environment has routinely
been considered as an example of dynamic systems [16–19], which can then be modelled mathemat-
ically [20–23]. One objective of the present work is to extend previous research by including envi-
ronmental factors through the modulation of the preys’ intrinsic growth rate by periodically varying
functions [24–27]. It is known that the seasonal effects vary periodically in time [28], thus one can
include the periodical time function into the dynamic system for a more realistic modelling. In this
paper, a periodic function sin(ωt) is incorporated into the intrinsic growth rate to describe the change
of the population of the system due to the seasonal variation, that is: r + λ sin (ω t), in which r > 0
represents the prey’s population intrinsic birth rate, λ > 0 denotes the magnitude of the fluctuation, λ

r
is the degree of the seasonality, ω > 0 is the forcing term’s angular frequency.

Furthermore, the inclusion of the environmental factors for modelling the evolution of two-prey
and one-predator mutually competitive system by using a general functional response, has not been
reported in the literature as far as the authors’ knowledge [1, 29]. Traditionally, most researchers in
the field have implemented specific functional responses for modelling the prey and predator densi-
ties and most of them only consider two species in their models, i.e. the one-prey and one-predator
system [22–25]. Some of them have reported the study of three species system [26–29], including
the two-prey one-predator, and also the one-prey and two-predator systems. However, all of them has
adopted specific response functions, such as the Holling-type, Ivlev-type, Beddington-DeAngelies-
type, Hassell-Varley-type, Watt-type, Square-Root-type, Monod-Haldance-type, ratio-dependent-type
together with many others [13, 14, 26, 30], for modelling the time evolution of the predator and prey
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biological species under specific environmental configurations. One critic in these studies has been
the limitation to apply these modelling results for solving real world problem, because of the scenario
specific response functions that have been adopted in the previous work. Only a handful of work have
modelled the density of the prey in the prey-predator system through general response functions, i.e.
in the forms of g(u(t)) which have been widely reported in the literature [1, 29]. The gaps in these
preliminary studies are necessary to follow up in order to enhance the effectiveness of the ecosystem
modelling: i) the reported work in Ref. [1] has adopted too many hypotheses thereby its practical use-
fulness for real world applications may be somewhat restricted. ii) The use of the general functional
response only for the prey density alone (i.e. in the form of g(u(t))) may not be sufficient enough to
model the evolution of the prey-predator system in the real environment. iii)The existing work only
concerns with the two species system, i.e. the one-prey and one-predator system which may be still far
away from being realistic to the situations in the real environment. Hence, a more general functional
response which is specifically designed for a three species ecosystem has been chosen as the main
core of the present work, i.e. the general functional response is in the form of : gi(u1(t), u2(t), v(t)).
The notion of using general functional responses for modelling the prey-predator system has been
shown [1, 19, 29] to be an effective way for implementing the modelling results for practical applica-
tions. Previous work [19] has indicated that the periodic solutions of the modelling that utilized general
functional response of g(u(t), v(t)), is capable to reproduce the results of those which employed spe-
cific response functions for the modelling [25–28]. This may indicate the validity of using generalized
functional responses for modelling the evolution of the prey-predator system [19]. The use of the func-
tional response in the generalized form may be regarded as one of the promising future directions of
research in the area of ecosystem modelling.

Motivated by previous work in [1,29] and [19], this paper attempts to establish the modelling of the
three species ecosystem by deploying impulsive control strategies at different instances of time period
through a generalize functional response of gi(u1(t), u2(t), v(t)), and to compound the effects due to
the periodic variation of the prey’s intrinsic growth rate, here we mainly talk about the two-prey and
one-predator ecosystem:

du1(t)
dt = u1(t)(r1 −

r1
K1

u1(t) + a1u2(t) + λ1 sin(ω1t) − g1(u1(t), u2(t), v(t))v(t))
du2(t)

dt = u2(t)(r2 −
r2
K2

u2(t) + a2u1(t) + λ2 sin(ω2t) − g2(u1(t), u2(t), v(t))v(t))
dv(t)

dt = v(t)(−D + k1g1(u1(t), u2(t), v(t))u1(t) + k2g2(u1(t), u2(t), v(t))u2(t))


t , (m + q − 1)T, t , mT

∆u1(t) = −l1u1(t)
∆u2(t) = −l2u2(t)
∆v(t) = −l3v(t)

 t=(m + q − 1)T

∆u1(t) = 0
∆u2(t) = 0
∆v(t) = µ

 t=mT

(1.1)

in which ui (t) denotes the densities of the two preys’ species and v (t) represents the densities of the
predator species. ri > 0 is the two preys population’s intrinsic birth rate and T > 0 is the impulsive
time interval. Ki > 0 denotes the environmental capacities of the prey population, ri

Ki
is the effects of
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intraspecific competition on species. ai > 0 represents the effects of interspecific competition among
different species. ωi > 0 represents the angular frequency of the perturbation caused by the environ-
mental periodicity on species ui (t), λi > 0 denotes the magnitude of the fluctuation on species ui (t),
ki > 0 represents the rate of transforming the prey species ui (t) into the newborn predator species,
D > 0 denotes the natural mortality of the predator species. gi(u1(t), u2(t), v(t)) is the general func-
tional response. ∆ui (t) = ui (t+) − ui (t) , ui (t+) = lim

t→t+
ui (t) ,∆v (t) = v (t+) − v (t) , v (t+) = lim

t→t+
v (t).

µ > 0 is the density of the predator species which is released at time t = mT,m ∈ Z+, and Z+ is the
set of all positive integers. l1, l2, l3 is the fixed death rate of the prey population species ui (t) and the
predator population at time (m + q − 1) T due to the spraying pesticides, respectively, where q and all i
appeared in the paper are expressed as i = 1, 2. All the above parameters are positive, 0 ≤ l1, l2, l3 < 1
and 0 ≤ q < 1 and the range of these parameters are to be determined by practical significance, which
conforms to the natural events that can be observed from the real ecosystem.

In model (1) the following conditions have been assumed: (i) All predators have the ability to hunt
and they consume only the prey; (ii) All prey is assumed to be actively work around the ecosystem
without refuging; (iii) In this work the impulsive control strategies is deployed at different instances
of time period, so suppose T is the impulsive time interval and the natural enemies are released at
time t = mT , then the pesticides are sprayed at time (m + q − 1)T , where m = 1, 2, 3, 4 · ··; (iv)The
general functional response gi(u1(t), u2(t), v(t)) satisfies the monotonous decreasing about species ui (t)
and v(t), respectively, and v (t) gi(u1(t), u2(t), v(t)) is monotonously increasing about species v(t), which
conforms to the natural events that can be observed from the actual ecosystem. The above assumptions
are based on the following biological justifications: Both (i) and (ii) are the general conditions for
modelling the interactions of prey-predator system and there is no special case has been considered.
(iii) One contribution of this work is to consider the side effects of pesticides on natural enemies,
hence the impulsive control is deployed at different instances of time period. (iv) The assumptions for
modelling using the general functional response conforms to the complicated natural habitat of real
ecosystem, which, cannot be fulfilled by using one specific functional response to model the activities
of animals in such vast variety of environments.

The organization of this article is outlined as follows: The main lemmas and definitions are sum-
marized in the section 2, which will be used in the later sections. In Section 3, the prey-free periodic
solution’s global asymptotically stability and local asymptotically stability are derived. Subsequently
the sufficient conditions and the boundedness of their solutions for the ecosystem’s permanence in
equation (1.1) (thereafter abbreviated it as system (1.1) in the rest of the paper) are then investigated.
Subsequently the theoretical results that obtained from section 4 are validated by numerical simulations
and then the paper is concluded in Section 5 and the theoretical results are discussed from a biological
viewpoint.
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2. Preliminaries

Let u1(t) = u2(t) = 0, then the system (1.1) becomes:


dv(t)

dt = −Dv (t) t , (m + q − 1) T, t , mT

v (t+) = (1 − l3) v (t) t = (m + q − 1) T

v (t+) = v (t) + µ t = mT

v0 = v (0+) .

(2.1)

By using the fixed-point theorem and the stroboscopic mapping of the impulsive differential equations,
we can get the following ecosystem (2.1)’s positive periodic solution:

ṽ (t) =

µ exp{−D[t−(m−1)T ]}
1−(1−l3) exp(−DT ) (m − 1) T < t ≤ (m + q − 1) T
µ(1−p3) exp{−D[t−(m−1)T ]}

1−(1−l3) exp(−DT ) (m + q − 1) T < t ≤ mT
(2.2)

and ṽ (0+) = ṽ (mT +) =
µ

1−(1−l3) exp(−DT ) , ṽ (qT +) = ṽ ((m + q − 1) T +) =
µ(1−l3) exp(−DqT )
1−(1−l3) exp(−DT ) . When the initial

value is v0 ≥ 0, through the expansion of the above we can obtain the solution of ecosystem (2.1):

v (t) =


(1 − l3)m−1

(
v (0+) − µ

1−(1−l3) exp(−DT )

)
exp (−Dt) + ṽ (t) ,

(m − 1) T < t ≤ (m + q − 1) T,
(1 − l3)m

(
v (0+) − µ

1−(1−l3) exp(−DT )

)
exp (−Dt) + ṽ (t) ,

(m + q − 1) T < t ≤ mT.

(2.3)

Lemma 2.1. Suppose v(t) is the ecosystem (2.1)’s positive solution, and the initial value is v0 ≥ 0,
when t → ∞, then the following result is established: |v (t) − ṽ (t)| → 0.

Thus we obtain the ecosystem (1.1)’s positive periodic solution about prey-free (0, 0, ṽ (t)).

3. Main results

Theorem 3.1. Provided that both of the following inequalities are established at the same time,

ln (1 − l1) + (r1 + λ1)T −
∫ T

0
g1 (0, 0, ṽ (s)) ṽ (s) ds < 0,

ln (1 − l2) + (r2 + λ2)T −
∫ T

0
g2 (0, 0, ṽ (s)) ṽ (s) ds < 0.

(3.1)

then we get the locally asymptotically stable periodic solution about prey-free (0, 0, ṽ (t)).
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Proof. Firstly, let’s consider the following impulsive different equations:

du11(t)
dt = u11(t)(r1 −

r1
K1

u11(t) + a1u12(t) + λ1 − g1(u11(t), u12(t), v1(t))v1(t))
du12(t)

dt = u12(t)(r2 −
r2
K2

u12(t) + a2u11(t) + λ2 − g2(u11(t), u12(t), v1(t))v1(t))
dv1(t)

dt = v1 (t) (−D + k1g1(u11(t), u12(t), v1(t))u11(t) + k2g2(u11(t), u12(t), v1(t))u12(t))


t , (m + q − 1) T, t , mT

∆u11(t) = −l1u11(t)
∆u12(t) = −l2u12(t)
∆v1(t) = −l3v1(t)

 t=(m + q − 1)T

∆u11(t) = 0
∆u12(t) = 0
∆v1(t) = µ

 t=mT

(3.2)

Since the system (1.1) and system (3.2) have the same prey-free periodic solution (0, 0, ṽ (t)) and
u11 (t) ≥ u1 (t), u12 (t) ≥ u2 (t), v1 (t) ≥ v (t), thus the system (3.2)’s prey-free periodic solution is
needed to be proved that it is locally asymptotically stable.

Let us denote z1 (t) = u11 (t), z2 (t) = u12 (t), w (t) = v1 (t) − ṽ (t). By taking the linear part of the
Taylor expansion and the form of the system (3.2) can be written as:

dz1(t)
dt = z1 (t) (r1 + λ1 − g1 (0, 0, ṽ(t)) ṽ(t))

dz2(t)
dt = z2 (t) (r2 + λ2 − g2 (0, 0, ṽ(t)) ṽ(t))

dw(t)
dt = −Dw (t) + k1g1 (0, 0, ṽ(t)) ṽ(t)z1 (t) + k2g2 (0, 0, ṽ(t)) ṽ(t)z2 (t)


t , (m + q − 1) T, t , mT

z1 ((m + q − 1) T +) = (1 − l1) z1 ((m + q − 1) T )

z2 ((m + q − 1) T +) = (1 − l2) z2 ((m + q − 1) T )

w ((m + q − 1) T +) = (1 − l3) w ((m + q − 1) T )

 t= (m + q − 1) T

z1 (mT +) = z1 (mT )

z2 (mT +) = z2 (mT )

w (mT +) = w (mT )

 t= mT

(3.3)

Through the simple calculation it can be shown that the fundamental solution matrix:

ϕ (t) =


A1(t) 0 0

0 A2(t) 0
∗ ∗ exp (−Dt)

 ,
in which Ai(t) = exp

(∫ t

0
(ri + λ1 − gi (0, 0, ṽ(t)) ṽ(t)) ds

)
(i = 1, 2) and ϕ (t) satisfies:

dϕ (t)
dt

=


r1 + λ1 − g1 (0, 0, ṽ(t)) ṽ(t) 0 0

0 r2 + λ2 − g2 (0, 0, ṽ(t)) ṽ(t) 0
k1g1 (0, 0, ṽ(t)) ṽ(t) k2g2 (0, 0, ṽ(t)) ṽ(t) −D

ϕ (t) .
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The ecosystem (7)’s resetting impulsive conditions can then be written as:
z1 ((m + q − 1) T +)
z2 ((m + q − 1) T +)
w ((m + q − 1) T +)

 =


1 − l1 0 0

0 1 − l2 0
0 0 1 − l3




z1 ((m + q − 1) T )
z2 ((m + q − 1) T )
w ((m + q − 1) T )

 ,


z1 (mT +)
z2 (mT +)
w (mT +)

 =


1 0 0
0 1 0
0 0 1




z1 (mT )
z2 (mT )
w (mT )

 .
Let λ1, λ2 be the monodromy matrix’s eigenvalues

M =


1 − l1 0 0

0 1 − l2 0
0 0 1 − l3




1 0 0
0 1 0
0 0 1

ϕ (T ) ,

where
λi = (1 − li) exp

(∫ T

0
ri + λi − gi (0, 0, ṽ(t)) ṽ(t)ds

)
(i = 1, 2),

λ3 = (1 − l3) exp (−DT ) < 1 .

As |λ3| < 1, and by applying the Floquent theory on the impulsive different equation, and when |λ i| <

1(i = 1, 2), we can obtain the following inequality which holds at the same time:

(1 − li) exp
(∫ T

0
ri + λi − gi (0, 0, ṽ(t)) ṽ(t)ds

)
< 0(i = 1, 2).

By taking logarithms on both sides at the same time, then the inequality (5) is established. �

Corollary 3.2. When the general functional response becomes u(t)g(u(t)), then we can get the similar
result as Theorem 3.1, namely the following inequality is established:

ln (1 − l1) + (r + λ)T − g(0)
∫ T

0
ṽ (s) ds < 0, (3.4)

which is the theorem 3.1 in the reference [15].

Theorem 3.3. Provided that both of the following inequalities are established at the same time,ln (1 − l1) + (r1 + λ1)T −
∫ T

0
g1 (K1,K2, ṽ (s)) ṽ (s) ds < 0,

ln (1 − l2) + (r2 + λ2)T −
∫ T

0
g2 (K1,K2, ṽ (s)) ṽ (s) ds < 0.

(3.5)

then we get the globally asymptotically stable periodic solution about prey-free (0, 0, ṽ (t)).

Proof. From the system (3.2) we found that: du1i(t)
dt ≤ u1i (t)

(
ri + λi −

ri
Ki

u1i (t)
)
, t , (m + q − 1) T, t , mT ,

u1i (t+) = (1 − li) u1i (t) ≤ u1i (t) , t = (m + q − 1) T, t = mT .
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By employing the Comparison theorem of the impulsive different equation, u1i (t) ≤ ũi (t) (i = 1, 2) can
be obtained. Then

ũi (t) =
Kix0

(Ki − x0) e−(ri+λi) t + x0
→ Ki (t → ∞) , (3.6)

where ũi(t) satisfies the following equation: dũi(t)
dt = ũi (t)

(
ri + λi −

ri
Ki

ũi (t)
)
,

ũi (0+) = x0.

Thus for all sufficiently large t and for any εi > 0, we can obtain u1i (t) ≤ Ki + εi.
By Choosing δi > 0, it satisfies

ηi= (1 − li) exp
(∫ T

0
ri + λi − gi (K1 + ε1,K2 + ε2, ṽ (s) − δi) (ṽ (s) − δi) ds

)
∈ (0, 1) .

where i = 1, 2. In the same way, we can see that dv1(t)
dt ≥ −Dv1 (t), therefore v1 (t) ≥ ṽ (t). By employing

the Lemma 2.1, v1 (t)→ ṽ (t) can be obtained when t → ∞, then

v1 (t) ≥ ṽ (t) > ṽ (t) − δ (3.7)

holds when all t is large enough. Without loss of generality, we can assume (3.7) holds for all t > 0.
Notice that:

du1i

dt
≤ u1i (ri + λi − gi (K1 + ε1,K2 + ε2, ṽ (s) − δi) (ṽ (s) − δi)) .

It is easy to figure out:
u1i ((m + q) T ) ≤ u1i ((m + q − 1) T +) Ai

= u1i ((m + q − 1) T ) (1 − li) Ai

= u1i ((m + q − 1) T ) ηi,

where Ai = exp
(∫ (m+q)T

(m+q−1)T
ri + λi − gi (K1 + ε1,K2 + ε2, ṽ (s) − δi) (ṽ (s) − δi) ds

)
. Therefore we have:

u1i ((m + q) T ) ≤ u1i (qT ) ηm
i → 0 (m→ ∞) .

As
0 ≤ u1i (t) ≤ u1i ((m + q − 1) T ) (1 − li) erT

holds for t ∈
[
(m + q − 1) T, (m + q) T

]
, thus u1i (t)→ 0(i = 1, 2) as t → ∞.

Next we will prove the claim that when lim
t→∞

u1i (t) = 0, where i = 1, 2, then lim
t→∞

v1 (t) = ṽ (t). For
any positive and small enough number ε3, ε4 > 0, by using the monotonicity of the general functional
response function, we can obtain:

−Dv1 (t) ≤
dv1 (t)

dt
≤ v1 (t) (−D + k1ε3g1(0, 0, ṽ (s) − δ1) + k2ε4g2(0, 0, ṽ (s) − δ2)) ,

and

ṽ1 (t) ≤ v1 (t) ≤ ṽ2 (t) , (3.8)
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in which ṽ1 (t) is the positive periodic solutions of the system (2.1) and ṽ2 (t) is the positive periodic
solutions of the system (2.1)with D changes into −D + k1ε3g1(0, 0, ṽ (s) − δ1) + k2ε4g2(0, 0, ṽ (s) − δ2).
By employing the Lemma 2.1, for all sufficiently large t, we can get

ṽ1 (t)→ ṽ (t) , ṽ2 (t)→ ṽ (t) .

From inequality (3.8) we can get that lim
t→∞

v1 (t)→ ṽ (t). �

Corollary 3.4. When the general response function becomes u(t)g(u(t)), then we can get the similar
result as Theorem 3.3, namely the following inequalities holds:

ln (1 − l1) + (r + λ)T − K ∗
∫ T

0
ṽ (s) ds < 0, (3.9)

where K = g(K1), u(t) ≤ K1, as g(u(t)) only depends on the prey density u(t), which is the theorem 3.2
in the reference [15].

Theorem 3.5. Provided that both of the following inequalities hold at the same time,ln (1 − l1) + (r1 − λ1)T −
∫ T

0
g1 (0, 0, ṽ (s)) ṽ (s) ds > 0,

ln (1 − l2) + (r2 − λ2)T −
∫ T

0
g2 (0, 0, ṽ (s)) ṽ (s) ds > 0,

(3.10)

then the system (1.1) is permanent.

Proof. There exists a positive constant number M, we can get that u1 (t) ≤ M , u2 (t) ≤ M , v (t) ≤ M as
t → ∞, which can be found in the literature [31], and it holds for all t > 0 as according to theorem 3.3.
Let m̃ = ṽ− ε > 0, and according to the Lemma 2.1, v (t) > m̃ can be obtained. In the following, for all
large enough t, we only need to find m0 > 0, such that u (t) > m0 .

Similarly, let’s also consider the following impulsive differential equations:

du21(t)
dt = u21(t)(r1 −

r1
K1

u21(t) + a1u22(t) − λ1 − g1(u21(t), u22(t), v2(t))v2(t))
du22(t)

dt = u22(t)(r2 −
r2
K2

u22(t) + a2u21(t) − λ2 − g2(u21(t), u22(t), v2(t))v2(t))
dv2(t)

dt = v2 (t) (−D + k1g1(u21(t), u22(t), v2(t))u21(t) + k2g2(u21(t), u22(t), v2(t))u22(t))


t , (m + q − 1) T, t , mT

∆u21(t) = −l1u21(t)
∆u22(t) = −l2u22(t)
∆v2(t) = −l3v2(t)

 t=(m + q − 1)T

∆u21(t) = 0
∆u22(t) = 0
∆v2(t) = µ

 t=mT

(3.11)

Since u21 (t) ≤ u1 (t) , u22 (t) ≤ u2 (t) and v2 (t) ≤ v (t) and they hold for any t > 0, thus we only need to
prove that u2i (t) > mi0(i = 1, 2) as t → ∞. Next we will only need to prove that u21 (t) > m10 because
we can obtain that u22 (t) > m20 in the same way. So the following process is divided into two steps:
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1. Let m1 to be small enough such that

0 < m1 <
D − k2Mg2 (0, 0, m̃)

k1g1 (0, 0, m̃)
,

σ= ln (1 − l1) +

(
r − λ −

r
K

m1

)
T −

∫ T

0
g (0, ω̃ (t) + ε1) (ω̃ (t) + ε1) dt > 0.

Now we can claim that u21 (t1) > m1 and it holds for some t1 > 0. Otherwise, for any t > 0 we can
obtain that u21 (t1) ≤ m1. It can be seen from system (3.11) that

dv2 (t)
dt

≤ v2 (t) (−D + k1m1g1 (0, 0, m̃) + k2Mg2 (0, 0, m̃)) .

It is easy to deduce from the comparison theorem that v2 (t) ≤ ω (t) , ω (t) → ω̃ (t), where ω (t) is the
positive solution of the following system:

dω(t)
dt = (−D + k1m1g1 (0, 0, m̃) + k2Mg2 (0, 0, m̃))ω (t) ,

t , (m + q − 1) T, t , mT

ω (t+) = (1 − l3)ω (t) , t = (m + q − 1) T

ω (t+) = ω (t) + µ, t = mT

ω0 = v (0+) .

(3.12)

and we can also get the positive periodic solution:

ω̃ (t) =



µ exp{(−D+k1m 1g1(0,0,m̃)+k2 Mg2(0,0,m̃))[t−(m−1)T ]}
1−(1−l2) exp[(−D+k1m 1g1(0,0,m̃)+k2 Mg2(0,0,m̃))T] ,

(m − 1) T < t ≤ (m + q − 1) T ,
µ(1−l2) exp{(−D+k1m 1g1(0,0,m̃)+k2 Mg2(0,0,m̃))[t−(m−1)T ]}

1−(1−l2) exp[(−D+k1m 1g1(0,0,m̃)+k2 Mg2(0,0,m̃))T] ,

(m + q − 1) T < t ≤ mT .

So we can get that there exists T1 > 0 such that v2 (t) ≤ ω (t) ≤ ω̃ (t) + ε1, and

du21 (t)
dt

≥ u21 (t)
(
r1 − λ1 −

r1

K1
m1 − g1 (0, 0, ω̃ (t) + ε1) (ω̃ (t) + ε1)

)
. (3.13)

By integrating the inequality (3.13) over
[
(m + q − 1) T, (m + q) T

]
, we can obtain:

u21 ((m + q) T ) ≥ u21 ((m + q − 1) T +) B
= u21 ((m + q − 1) T ) (1 − l1) B
= u21 ((m + q − 1) T ) exp (σ) ,

where B = exp
(∫ (m+q)T

(m+q−1)T
r1 − λ1 −

r1
K1

m1 − g1 (0, 0, ω̃ (t) + ε1) (ω̃ (t) + ε1) ds
)
. Therefor

u21 ((m + q) T ) ≥ u21 (qT ) exp (mσ)→ ∞ (m→ ∞) ,

which contradicts to u21 (t) ≤ M.
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2. Next, we will prove the claim that when t > t1, then u21 (t1) > m1 holds. Otherwise, for some
t > t1, we can obtain that u21 (t) ≤ m1. Define t̃ = inf

t≥t1
{u21 (t) < m1}, we can get u21 (t1) ≥ m1 for

t ∈
[
t1 , t̃

)
and t̃ ∈

[
p1T, (p1 + 1) T

]
, p1 ∈ N. It is easy to deduce from the continuity of the u21(t) that

u21(̃t) = m1. For p2, p3 ∈ N, such that

p2T >
1

(−D + k1m1g1 (0, 0, m̃) + k2Mg2 (0, 0, m̃))
ln

ε1

M + µ
,

exp (δ (p2 + 1) T ) exp (p3σ) > 1 ,

where δ ∆
= r1 − λ1 −

r1
K1

m1 − g1 (0, 0,M) M < 0.
Let T ′ = (p2 + p3) T , we can obtain the claim that there exists t2 ∈

[
(p1 + 1) T, (p1 + 1) T + T ′

]
which implies that u21 (t1) ≥ m1. Otherwise u21 (t1) < m1 and as according to system (3.11) when
ω ((p1 + 1) T +) = v ((p1 + 1) T +) we can get:

ω (t) =



(1 − l3)m−1
(
ω ((p1 + 1) T +) − µ

1−(1−l3) exp[(−D+k1m 1g1(0,0,m̃)+k2 Mg2(0,0,m̃))T]

)
∗

exp
[
(−D + k1m1g1 (0, 0, m̃) + k2Mg2 (0, 0, m̃)) (t − (p1 + 1) T )

]
+ ω̃ (t) ,

(1 − l3)m
(
ω ((p1 + 1) T +) − µ

1−(1−l3) exp[(−D+k1m 1g1(0,0,m̃)+k2 Mg2(0,0,m̃))T]

)
∗

exp
[
(−D + k1m1g1 (0, 0, m̃) + k2Mg2 (0, 0, m̃)) (t − (p1 + 1) T )

]
+ ω̃ (t) .

Thus

|ω (t) − ω̃ (t)| < (M + µ) exp
[
(−D + k1m1g1 (0, 0, m̃) + k2Mg2 (0, 0, m̃)) (t − (p1 + 1) T )

]
< ε1,

and when t satisfies the condition of (p1 + p2 + 1) T ≤ t ≤ (p1 + 1) T + T ′, we can obtain:

v (t) ≤ ω (t) ≤ ω̃ (t) + ε1.

So when t satisfies the condition of (p1 + p2 + 1) T ≤ t ≤ (p1 + 1) T + T ′, in the same way, we can
also obtain the inequality (3.13), then

u21 ((p1 + p2 + p3 + 1) T ) ≥ u21 ((p1 + p2 + 1) T ) exp (p3σ) . (3.14)

It is observed that when t ∈
(̃
t, (p1 + 1) T

]
there are two possible cases .

(Case 1) If u21 (t) ≤ m1 for t ∈
(̃
t, (p1 + 1) T

]
, then u21 (t) ≤ m1 for all t ∈

(̃
t, (p1 + p2 + 1) T

]
. From

system (3.11) we can observe that:

du21 (t)
dt

≥ u21 (t)
(
r1 − λ1 −

r1

K1
m1 − g1 (0, 0,M) M

)
∆
= δu21 (t) . (3.15)

We can get the following inequality by integrating the inequality (3.15) over
(̃
t, (p1 + p2 + 1) T

]
:

u21 ((p1 + p2 + 1) T ) ≥ m1 exp (δ (p2 + 1) T ) . (3.16)

Through the simple calculation of inequalities (3.14) and (3.16), we can obtain:

u21 ((p1 + p2 + p3 + 1) T ) ≥ m1 exp (δ (p2 + 1) T ) exp (p3σ) > m1,
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which is in contradiction to u21 (t) ≤ m1 for all t. Let’s define t∗ = inf
t≥̃t
{u21 (t) ≥ m1}, then u21 (t∗) = m1.

The inequality (3.15) holds for t ∈
[̃
t, t∗

)
and the integration over t ∈

[̃
t, t∗

)
to get

u21 (t) ≥ u21

(̃
t
)

exp
(
δ
(
t − t̃

))
≥ m1 exp (δ (p2 + p3 + 1) T ) ∆

= m0.

As u21 (t∗) ≥ m1, the same argument applies to t > t∗. Hence u21 (t) ≥ m0 holds for all t > t1.
(Case 2) There exists t′ ∈

(̃
t, (n1 + 1) T

]
which implies that u21 (t′) > m1. By setting t̂ =

inf
t≥̃t
{u21 (t) ≥ m1}, then u21(t) < m1 holds for t ∈

[̃
t, t̂

)
and u21

(
t̂
)

= m1. Then the inequality (3.15)

holds for t ∈
[̃
t, t̂

)
and thus we can also observe that:

u21 (t) ≥ u21

(̃
t
)

exp
(
δ
(
t − t̃

))
≥ m1 exp (δT ) ≥ m10.

By the same argument, we can proof that u21 (t) ≥ m10 for all t ≥ t1. By using the same method, we
also obtain that u22 (t) ≥ m20.

Since u21 (t) ≤ u1 (t) , u22 (t) ≤ u2 (t), therefore in both cases, we can deduce that u1 (t) ≥ m10,
u2 (t) ≥ m20 and it holds for all t ≥ t1 in both cases. �

Corollary 3.6. When the general functional response becomes u(t)g(u(t)), then we can get the similar
result as Theorem 3.5, namely the following inequalities holds:

ln (1 − l1) + (r − λ)T − g(0)
∫ T

0
ṽ (s) ds > 0, (3.17)

which is exactly identical to the theorem 3.3 in [15].

4. Numerical simulations

This section is dedicated to the validation of the theoretical results derived in section 3 by sub-
stituting the generalized function with specific functional response and to compare the output with
previously results that have been reported in [25–28].

Firstly, the Holling II functional response and the ratio-dependent functional response is
selected for the substitution into the generalized response, namely, g1(u1(t), u2(t), v(t)) =

r
a+bu1(t) , g2(u1(t), u2(t), v(t)) = c

my(t)+u2(t) . Define:

f1 (T ) = ln (1 − l1) + (r1 + λ1) T −
rB
a
,

f2 (T ) = ln (1 − l2) +

(
r2 + λ2 −

c
m

)
T,

f3 (T ) = ln (1 − l1) + (r1 − λ1) T −
rB
a
,

f4 (T ) = ln (1 − l2) +

(
r2 − λ2 −

c
m

)
T,
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where B ∆
=

∫ T

0
ṽ (s)ds =

µ[1−l3 exp(−DqT )−(1−l3) exp(−DT )]
D[1−(1−l3) exp(−DT )] . As lim

T→0
B (T ) = 0, so fi (0) = ln (1 − li) < 0(i =

1, 2, 3, 4). And due to lim
T→∞

B (T ) =
µ

D , so lim
T→∞

fi (T ) = ∞(i = 1, 2, 3, 4). And since fi(T )(i = 1, 2, 3, 4)
is monotonous increasing about T , so it can be seen that fi(T ) = 0(i = 1, 2, 3, 4) has unique positive
solutions which can be denoted by T ∗1 ,T

∗
2 ,T

∗
3 and T ∗4 , respectively. It is known that (0, 0, ṽ (t)) satisfies

the theorem 3.1 when T < min(T ∗1 ,T
∗
2) and when T > max(T ∗3 ,T

∗
4), which satisfies the theorem 3.5.

It is quite obvious that T ∗1 < T ∗3 and T ∗2 < T ∗4 . From the theorem 3.1, it is obtained that only the prey
(pest) density u1(t) is extinct when T ∈ [min(T ∗1 ,T

∗
2),max(T ∗1 ,T

∗
2)].

Next, it is assumed that r1 = 2,K1 = 10, r2 = 3,K2 = 10, a1 = 0.5, a2 = 0.8, λ1 = 0.1, ω1 =

π, λ2 = 0.1, ω2 = 2π, a = 5, b = 3, r = 3, c = 4.4,m = 2, k1 = 0.4, k2 = 0.4,D = 0.5, l1 = 0.9, l2 =

0.85, l3 = 0.9, u = 10, q = 0.2, u1(0) = 1, u2(0) = 3.5, v(0) = 10. A briefly calculation may suggest
that T ∗1 ≈ 2.79,T ∗2 ≈ 2.11,T ∗3 ≈ 2.96 and T ∗4 ≈ 2.71. It is easy to see that the prey (pest) density u1(x)
and u2(x) are rapidly decreasing to zero while the predator (natural enemy) population v(t) oscillates
in a cycle which tends to stabilize when T = 2 < min(T ∗1 ,T

∗
2), then (0, 0, ṽ (t)) is locally asymptotically

stable as according to the theorem 3.1(see Figure 1(a) and 1(b)). And when T = 2.5 ∈ [T ∗2 ,T
∗
1]

only the prey (pest) density u1(t) is extinct, the predator population v(t) and the prey population u2(t)
oscillate in a cycle which tends to stabilize(see Figure 2(a), 2(b), 2(c) and 2(d)). Similarly, when
T = 3 > max(T ∗3 ,T

∗
4) the system (1.1) is permanent according to the theorem 3.5, then the predator

population v(t), the prey population u1(t) and u2(t) can coexist in a stable limited cycle, as it is shown
in Figure 3(a) and 3(b).
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Figure 1. Dynamical behavior of system (1.1) with T = 2.(a)Time sequence diagram of prey
population u1(t) and u2(t).(b)Time sequence diagram of predator population v(t).
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Figure 2. Dynamical behavior of system (1.1) with T = 2.5.(a)Time sequence diagram
of prey population u1(t).(b)Time sequence diagram of predator population u2(t).(c)Time se-
quence diagram of prey population v(t).(d)The phase diagram of u1(t), u2(t) and v(t).
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Figure 3. Dynamical behavior of system (1.1) with T = 3.(a)Time sequence diagram of prey
population u1(t).(b)Time sequence diagram of predator population u2(t) and v(t).

Finally, the profound influence of environmental factors (the magnitudes λi(i = 1, 2) and the fre-
quencies ωi(i = 1, 2)) on the complexity of the system (1.1) is considered. let λ1 = 0.4 and it can be
figured out that T ∗1 ≈ 2.36, when T = 2 < T ∗1 and as according to Figure 4(a), the prey (pest) popula-
tion is found approaching to zero, more slowly than that of in Figure 4(b). It is easy to understand that
when λ is increased which is equivalent to the increase of the intrinsic birth rate of the prey, a shorter
cycle T ∗1 will be needed for applying pesticides and to release natural enemies in order to make the pest
to extinct. Note that when the larger is the λ, the longer time that it will take for the pests to become
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extinct. Although from the results derived in section 3, look as if the frequencies ωi(i = 1, 2) do not
affect the dynamics of the system (1.1), but they are significant ingredients of the environment(see
Figure 5(a) and 5(b)), which can cause various and complex dynamic behavior.
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Figure 4. (a)Time sequence diagram of prey population u1(t) when T = 2, λ1 = 0.4.(b)Time
sequence diagram of predator population u1(t) when T = 2, λ1 = 0.1.
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Figure 5. Dynamical behavior of system (1.1) with T = 2.5.(a)The phase diagram of
u1(t), u2(t) and v(t) when ω1 = 2π.(b)The phase diagram of u1(t), u2(t) and v(t) when ω2 = 2.

5. Conclusions and biological significance

Considering the impact of environmental factors on the prey-predator system, the paper extends
previous work [15–18] to establish the two-prey and one-predator system with a more generalized
functional response including the intra- and inter-species prey-predator competitions. The sufficient
condition for the local and global asymptotic stability of the prey-free periodic solution and the perma-
nence of the system have been subsequently derived according to the Theorem 3.1, Theorem 3.2 and
Theorem 3.5 in the section 3, which generalize the existing conclusions that have been reported in the
literature [25–28].

These results and simulations show that dynamical properties of (1) are very complex and depend
on impulsive period T, the magnitudes λi(i = 1, 2), the releasing amount of predator µ, the two preys
population’s intrinsic birth rate ri > 0(i = 1, 2), due to the spraying pesticides the fixed death rate of
the prey population species ≤ l1, l2 and more generalized functional response, look as if the rest of
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the parameters do not affect the dynamics of the system (1.1) from the results, but from simulations
we can clearly see that the profound influence of frequencies ωi(i = 1, 2) on the complexity of the
system (1.1). Therefore, we just obtain the sufficient condition for the local and global asymptotic
stability of the prey-free periodic solution and the permanence of the system, and the next step is to get
the necessary and sufficient condition bout them. As both the environmental noise [32–35]and regime
switching [36, 37]are important factors which affect the balancing of the prey-predator populations in
the ecosystem [38–40], subsequently we will consider these factors in our next stage of research work.
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