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Abstract—The fundamental understanding of the core 

aspects of prognostics and health management (PHM) as a 

field of practice is somewhat fully established. However, the 

various approaches used in the field have continuously 

evolved. With the recent surge in the adoption of artificial 

intelligence (AI) algorithms for predictive analytics, data-

driven PHM is now more prominent. Notwithstanding the 

popularity of AI approaches, actual adoption and 

implementation in fielded systems has been minimal. One of 

the reasons for this is the lag in an ancillary area, which is the 

development of corresponding standards and regulations to 

guide the practice. This paper aims to synthesize various 

studies in the literature regarding standards and regulations 

in data-driven PHM and then sets out the necessary 

requirements for a standards and regulations regime to 

support the full adoption of AI-enabled PHM. An 

acceptability criterion is proposed, which incorporates the 

various factors that must be considered for verification, 

validation, and certification of AI-enabled PHM 

technologies. The use of the acceptability criterion is 

demonstrated, which will potentially be very useful to 

certification bodies and regulatory agencies in the process of 

approving AI-enabled PHM for use in safety-critical assets. 

Keywords—artificial intelligence (AI); prognostics and 

health management (PHM); standards and regulations; data-
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I.  INTRODUCTION  

Prognostics and health management (PHM) involves 
the key tasks of diagnostics, prognostics, and decision-
support, each of which can be further sub-divided, as will 
be shown later in Section II of this paper. Of the three key 
tasks, diagnostics is an area that is well established, along 
with the decision support derived therefrom. Prognostics, 
on the other hand, is still an evolving area due to the 
inherent difficulty of making predictions. A major 
endeavor in prognostics is the prediction of the remaining 
useful life (RUL) of an asset. Approaches used for RUL 
prediction include model-based methods which use the 
physics of failure for the physical system as a basis, data-
driven methods which use operations, inspections and 
sensor data from the system, or hybrid/fusion approaches 
which combine both physics-based and data-driven 
methods [1]. In recent time, the increased complexity of 
physical systems means that it is impossible to model them 
using a simple physics-of-failure approach. Fortunately, 
advances in sensor technology mean that lots of data can be 
gathered from such systems, and when combined with now 
readily available high computing power and artificial 

intelligence (AI) algorithms, meaningful insights can be 
gained. 

Since the diagnostics aspect of PHM is well established, 
most of the existing standards guiding the practice of PHM 
have been adapted from diagnostics applications. Some of 
these standards have been reviewed in detail in different 
papers [2]–[6]. Some of the referenced papers contain quite 
detailed treatises on standards issued by the International 
Organization for Standardization (ISO), the Society of 
Automotive Engineers (SAE), the Institution of Electrical 
and Electronics Engineers (IEEE) and the Machinery 
Information Management Open System Alliance 
(MIMOSA), which will not be repeated in this paper. 
However, all the mentioned standards tend to be agnostic 
to the approach used. In this regard, this work will highlight 
standards specific to the use of AI algorithms, and to data-
driven prognostics, in general. Although some of the 
proposals presented in this paper may be applied directly to 
AI-enabled diagnostics, not much attention is paid to 
diagnostics as it has been covered by existing standards. 

Practically all the existing versions of AI algorithms 
have been used for prognostics [1]. The algorithms are 
rapidly unraveling, and so are their applications for 
prognostics. Consequently, regulating the use of AI- 
enabled prognostics for fielded systems must incorporate 
enough flexibility to adapt to the rapidly evolving 
advancements in the field. Regulations, while ensuring 
safety, must at the same time not pose insurmountable 
bottlenecks or stifle growth. The development of standards 
and regulations for a particular technology inherently lags 
the technology itself. However, beyond proof of concept 
and actual deployment of some test facilities, standards and 
regulations should typically converge with advances in the 
technology. The focus of the discourse around regulating 
AI has been on ethical, legal and data privacy issues, and 
this is reflected in the national strategies for AI which are 
being adopted by different countries in Europe [7]. With 
regards to prognostics, this paper proposes a semi-
quantitative approach to verification and validation, that 
draws of practices form safety and reliability engineering. 
The outcome of such an approach can then be used as a 
basis for certification of the PHM technology and serve as 
baseline for regulatory monitoring and compliance. 

The remaining part of this paper is structured as 
follows. Section II provides a brief update of extant 
standards and regulations that intersect with some aspects 
of the use of AI algorithms. Section III presents an analysis 
of the various factors that feed into the decision to 
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ultimately adopt any AI-enabled PHM solution, 
culminating in the proposal of an acceptability criterion. 
Section IV considers the hardware and software issues to 
enable seamless application of AI-enabled PHM solutions 
to legacy assets from a standards and regulations 
perspective and with a view towards life extension for such 
legacy facilities. Section V concludes the paper. 

II. EXTANT STANDARDS AND REGULATIONS  

Engineering practice is typically guided by standards, 
while the products of engineering endeavors are regulated 
by government statutes and regulations. Standards embody 
guidelines, approaches and concepts and must not be 
mistaken for strict procedures [8]. Nonetheless, using 
standards as guides help with the process of verification and 
certification, and is therefore crucial to the process of 
regulatory compliance. Some other obvious reasons for 
standardization include minimizing repeated designs of 
similar systems, enhancing compatibility and 
interoperability [9], harmonizing the lexicon of 
professional practice in a particular field [10] and ensuring 
that best practices are maintained, across board, within the 
profession. Furthermore, standards and regulations help to 
increase trustworthiness, and hence adoption of 
technology. The intersections between standardization and 
the need for regulations, in the context of AI-enabled PHM, 
are the aspects of trustworthiness, safety, and legal liability 
in case of failure. These factors, amongst others, will form 
the bedrock of the AI-enabled PHM acceptability criterion 
proposed in this paper. 

A. Standards 

This section briefly discusses the existing standards that 
overlap with AI-enabled PHM, especially as regards data 
management and cross-platform compatibility in terms of 
information exchange. To provide a uniform platform for 
design, development, and deployment of PHM 
technologies, the need for uniform terminologies was 
identified early. A good attempt at defining the boundaries 
and establishing uniformity in PHM lexicon was put forth 
in reference [10]. Further, issues around data formats, ease 
of interconnection, integration and other cross-platform 
issues were addressed in MIMOSA OSA-CBM [11], 
MIMOSA OSA-EAI [12], the ISO-13374 series and the 
IEEE Std 1232 Artificial Intelligence Exchange and 

Service Tie to All Test Environments (AI-ESTATE). In 
general, AI-enabled PHM involves four stages: data 
acquisition and processing, health stage detection and 
division, RUL prediction, and maintenance decision-
making [13]. Fig. 1 shows how the OSA-CBM maps to 
each of these four stages while Table I provides a list of 
some extant standards and how they map to the layers of 
AI-enabled PHM within the OSA-CBM architecture. 

TABLE I.  STANDARDS FOR DIFFERENT STAGES IN AI-BASED PHM 

Issuer Standard Name /Title Applicable Layer 

ISO 13374 Series: Condition monitoring and 

diagnostics of machines—Data processing, 

communication and presentation—  

Part 1:2003 General guidelines 

Part 2:2007 Data processing 

Part 3:2012 Communication 

Part 4:2015 Presentation 

13379-2:2015 Condition monitoring and 

diagnostics of machines—Data interpretation and 

diagnostics techniques—Part 2: Data-driven 

applications 

13381-1:2015 Condition monitoring and 

diagnostics of machines—Prognostics—Part 1: 

General guidelines. 

 

 

 

DA, DM, & AG 

DA, DM, & AG 

DA, DM, & AG 

AG 

DA, DM, SD & 

HA 

 

 

DA, DM, PA & 

AG 

  MIMOSA OSA-EAI, OSA-CBM Defines entire 

architecture 

IEEE Std 1232 Artificial Intelligence Exchange and 

Service Tie to All Test Environments 

(AIESTATE). 

Std 1636.2-2018 Software Interface for 
Maintenance Information Collection and Analysis 
(SIMICA): Exchanging Maintenance Action 
Information via the Extensible Markup Language 
(XML) 

Std 1636.99-2013 Software Interface for 

Maintenance Information Collection and Analysis 

(SIMICA): Common Information Elements 

Std 1856-2017 IEEE Standard Framework for 

Prognostics and Health Management of 

Electronic Systems 

DA and DM 

 

 

DA and DM 

 

 

 

 

DA and DM 

 

 

DA, DM, SD, 

HA, PA and AG 

SAE HM-1 Committee Standards Series: Integrated 

Vehicle Health Management (IVHM) 

E-32 Committee Standards Series: Aerospace 

Propulsion Systems Health Management 

DA, DM, SD, 

HA, PA and AG 

DA, DM, SD, 

HA, PA and AG 
 

An important observation from Table I is that the listed 
standards mostly apply to data acquisition, data processing, 
and advisory generation or information presentation to help 
with decision-support. Other existing standards are United 
States Military Handbooks, which address similar areas 
like those addressed by the ISO (with some in collaboration 
with the International Electrotechnical Commission, IEC) 
and the SAE [14].  Other standards, not cited here, but duly 
discussed in [2]–[6], as stated earlier, dwell on the various 
stages of conventional PHM process, but not particularly 
on AI-based methods. 

B. Regulations 

Typically, for any technology to be approved for use, 
vital areas of concern to governments and regulatory 
agencies include safety, security, benefits and costs, public 
trust, and ethical concerns, all of which must be addressed 
through a comprehensive risk assessment and management 
plan. As such, regulatory agencies over time, vest the 
responsibility for demonstrating safety of facilities on asset 
managers. Standard risk assessment and management 
procedures can be developed to critically assess AI- 
enabled PHM systems, which may be modelled in a similar 

 
Figure 1.  Various stages and subdivisions of AI-enabled PHM 



fashion to the ISO/IEC/IEEE International Standard 16085-
2020 for systems and software engineering life cycle 
processes [15]. Fundamentally, a regulations regime for AI-
enabled PHM must address the following areas. 

a) Safety – an approach similar to safety case 

development can be extended to the use of AI in PHM 

systems. For this to be effective, the areas of explainability 

and interpretability of AI must be adequately addressed. At 

a minimum, AI-enabled PHM solutions must attain or beat 

the level of safety and reliability achievable by 

conventional systems, usually assigned as Safety Integrity 

Levels (SIL). As early as 2001, the UK’s Health and Safety 

Executive (HSE) identified the need for safety in industrial 

use of artificial neural networks [16]. The HSE report 

highlighted that, from a safety perspective, there is the need 

to minimize over-complexity of models (thus aiding 

explainability), and for predictions to be interpretable. 

Furthermore, since data for high consequence, low 

probability scenarios are scarce, it should be required that 

the optimization process for AI-based algorithms heavily 

penalize erroneous predictions around such regions, since 

they are mostly safety-critical [17]. To be meaningful and 

therefore increase confidence, predictions must also 

necessarily incorporate uncertainty quantification.  

b) Cyber-security – the interconnectedness achieved 

by cyber-physical systems, of which AI-enabled PHM 

systems are a part, implicitly introduces cyber-security 

challenges. So, from a safety, security and legitimacy 

standpoint, overall cyber-security issues must be 

adequately addressed before any credit can be taken for the 

validity of predictions. Data security must be foolproof, 

since prognostics results ultimately depend on the 

legitimacy of the data used for training and updating of 

predictive models. 

c) Costs and benefits – at the core of deploying new 

technologies in fielded systems is the demonstration of 

overriding costs and benefits, when compared to existing 

systems. This may appear to be a major concern for only 

the asset owners. However, all government directives or 

regulations can indeed render innovation unviable because 

compliance to such regulations can potentially raise costs 

disproportionately. Regulations must therefore be drawn up 

to not only address safety, but also ensure that the cost-

benefit implications are duly assessed. 

d) Flexibility – AI is still evolving, and regulations 

must be flexible enough to adapt to rapid changes in 

development in the technologies deploying AI, like PHM 

systems. Governments across the world have recognized 

the huge potentials of AI in relation to the Industrial 

Internet of Things (IIoT) and smart manufacturing, and the 

attempt to regulate AI must be carefully measured so that 

innovation is not inadvertently stifled. A workable proposal 

around this is the use of regulatory sandboxes to allow for 

the mutual growth of both AI-enabled technologies and the 

corresponding regulations. 

e) Ethical perspective – due to the fact that major 

concerns are usually about public-facing AI products, most 

of the approaches towards the regulation of AI-enabled 

technologies have so far been from an ethical perspective. 

In relation to AI-enabled PHM, there is an intersection as 

regards automated decision-making technologies, which 

has led to attempts by professional societies like the IEEE 

to address these concerns by drafting the Ethically Aligned 

Design Standard IEEE P7000 [18]. Again, the recurring 

points about explainability and interpretability can help 

improve transparency and allay any concerns regarding the 

ethical aspects of AI-based PHM systems. 

f) Legal perspective – legal frameworks need to be 

set up to determine culpability and compensation issues 

that may arise from accidents due to failures attributable to 

AI-enabled PHM systems. The European Union (EU) has 

updated its Product Liability Directive to account for IIoT 

and intelligent autonomous systems [19]. Also, the 

regulatory implications for the safety of AI-based modules 

in original equipment manufacturer (OEM) packages or 

machinery are now being addressed. For example, the EU 

Machinery Directive is now updated to address IIoT issues 

[20]. There is also the need for predictions and performance 

logging and recording, to help during audits and root cause 

analysis as parts of incident investigations. 

g) Trustworthiness – for an AI-enabled PHM system 

to be trustworthy, it must have a clearly defined purpose; 

be legitimate in terms of data quality, governance and risk 

management; be able to verifiably perform its intended 

functions; provide decision-support capabilities that ensure 

increased human-machine interdependence; and have a 

transparent impact on stakeholders [21]. Different 

approaches to achieve trustworthiness of AI systems by 

demonstrating safety, security, reliability, resiliency, and 

availability are specified in ISO/IEC TR 24028:2020 [22]. 

All the key areas discussed in (a)-(g) will underpin the 
verification, validation, assurance, and certification that 
should form the core of a regulations regime for AI-enabled 
PHM systems. In addition, post-deployment runtime 
monitoring and regulation enforcement should be similar to 
subsisting requirements for reporting and compliance. 

C. Best Practices 

Similar to the process of developing new technology 
and qualifying it for use, a strict process of technology 
qualification needs to be followed. The technology 
qualification process is well established for conventional 
systems, using well-known reliability methods to ensure 
that all failure modes and physics of failures are addressed. 
Also, software engineering practices such as audit trails, 
workflows, bias testing, verification and validation testing 
and explainable user interfaces are well established [23]. 
An amalgam of both practices, streamlined for AI-based 
workflows, can be adopted for AI-enabled PHM. 
Furthermore, safety engineering practices which help 
explore physical systems and the understanding of how 
they fail can be employed as an additional layer of check to 
guide decision-making [24]. Such relevant tools may 
include fault tree analysis (FTA), failure modes, effects and 
(criticality) analysis (FME(C)A), or Event Trees (Attack 
Trees in cybersecurity). 

Training an AI-enabled PHM model on specific 
training data introduces bias which must be offset through 
sensitivity analysis, uncertainty quantification and testing 
on out-of-sample data to ascertain true performance. This 



must be a minimum requirement for assurance and eventual 
certification. In addition, the various plans on how to 
integrate AI-based prognostics systems into asset, data and 
organizational management structures must be vetted and 
assured, preferably by independent third-party to eliminate 
potential familiarity bias by in-house engineers. DNVGL-
RP-0510 provides a framework for assurance of data-
driven algorithms and models [25]. 

From a regulatory standpoint, it must be further 
emphasized that independent third-party testing, 
verification, and validation remain vital. For AI-based 
systems, verification should probe the key concerns of 
repeatability, explainability and interpretability. Methods 
for explaining AI-based predictions include the use of 
counterfactuals or post hoc (retrospective) methods, causal 
methods incorporating expert knowledge, and the use of 
interactive/exploratory user interfaces [23], [26]. On the 
basis of independent third-party verification, AI-based 
PHM systems can then be certified in compliance with 
subsisting regulatory requirements, as is typically the 
practice. Post-certification, and after deployment in fielded 
systems, continuous monitoring and feedback is important. 
Conventional ways of maintaining the overall safety culture 
in organizations through personnel training, competency 
development, detailed failure reporting and incident 
investigations must be adhered to. 

III. FULFILLING REGULATORY COMPLIANCE  

A. Further Requirements 

In addition to the previously discussed areas which 
should be considered for an effective regulation regime, 
this section sets out basic requirements for safety-critical 
assets, culminating in the proposal of a flexible, robust, and 
user-definable acceptability criterion for AI-enabled PHM. 
Safety-critical assets or systems are those whose failure can 
lead to serious injury, loss of life or significant economic 
consequences. Some critical infrastructure where AI-based 
PHM are being deployed include electric power systems, 
oil and gas generation and distribution, water supply 
systems, road, rail and air transportation systems [27]. 
Clearly, most of these systems are public-facing and must 
be regulated to ensure public as well as industrial safety. To 
attain high confidence in the decision support derived from 
AI-enabled PHM for such critical infrastructure, the 
following considerations should be made. 

1) Besides standards and regulations, policies are 
another important layer in the overall drive towards 
effective PHM implementation. While standards are driven 
at the level of professional or standardization organizations 
and regulations are driven at the level of the government, 
policies are driven at the level of the organization or asset 
operator [28]. For each of the important factors highlighted 
in this paper, organizational policies should be updated or 
formulated to address successful implementation and 
continuous monitoring of AI-enabled PHM systems. E.g., 
data governance policy, cyber-security policy, safety 
policy, legal and ethical policy, etc. 

2) Since data for high consequence and low probability 
events are typically scarce, AI algorithms should be 
adapted to such tail events by generating data around tail 
events based on causal knowledge of the physical system, 

thus enabling the infusion of some learning data points 
within the low-probability region [29]. For such scenarios, 
moreover, constraints can be imposed on predictions from 
the AI algorithm so as to lie within known limits of 
operations of such physical systems. 

3) Fail-safe operations should be derived by exploiting 
ensemble learning such that, in the scenario that there is no 
consensus from the multiple predictors within the 
ensemble, intelligent agents may make decisions regarding 
the optimal prediction while also prompting human agents 
for decision-making [27]. 

4) There should be a clear delineation of the conditions 
or assumptions under which prognostics were made and the 
boundaries of validity must accompany any predictions. 

5) Concepts of explainable AI (XAI) should be 
incorporated, with the provision of interactive and 
exploratory user interfaces that ensure that the user 
understands the accuracy of predictions and can interpret 
them using the associated uncertainty bounds. The user 
should also understand when the failure will occur, what 
the likely failure mode will be and when to take proactive 
action to avert failure. 

B. Acceptability Criterion 

In this section, all the critical factors for the effective 
implementation of a regulatory regime are harnessed and 
consolidated to propose a unifying criterion for accepting 
an AI-enabled PHM system or module. For consideration 
during certification or as part of the regulatory approval 
process, all the important factors mentioned should be 
checked off as either satisfactory or unsatisfactory. If the 
results from such a process are collated as an array, F, we 
propose an acceptability criterion, Ac, as given in (1): 

 Ac = βF, (1) 

where β is a normalizing array of 1 × n dimension, which 
indicates the importance or weight assigned to each of the 
factors considered, while F is an array of n × 1 dimension, 
whose elements are either one or zero, representing whether 
each factor is satisfactory or unsatisfactory, respectively. 
The values of Ac lie in the range [0,1]. The matrix product 
can be expressed as a sum, given in (2) as: 

 Ac = ∑ �� × ��
�
���  (2) 

Where i is an index representing the number of factors 
considered, ranging from 1 to n; βi is the importance weight 
for the ith factor; and Fi represents whether the requirement 
for the ith factor is satisfied or not. The sum of the weights 
must be equal to one, as given in (3): 

 ∑ 	�
�
���  = 1. (3) 

The criterion is formulated to provide both robustness 
and flexibility, allowing adjustment to the factors which are 
considered important, depending on the use case and 
context. Fig. 2 shows an illustration of the entire AI- 
enabled PHM process, from design and algorithm 
development using standards all the way to the application 



of the acceptability criterion and then to subsequent 
certification, implementation, and continuous monitoring. 

IV. DEMONSTRATION AND DISCUSSION  

A. Typical Application of Acceptability Criterion 

The use of the acceptability criterion is succinctly 
demonstrated in this section. It requires a list of all the 
factors that need to be satisfied to assure regulators that due 
diligence has been carried out. As stated earlier, such a list 
of factors and the corresponding importance weighting 
would typically be context-specific. A team of engineers 
from regulatory agencies, certification bodies and the asset 
team should determine the suitable importance weighting 
for each factor. For demonstration purposes, Table II shows 
a list of factors and the importance weighting assigned to 
each of them for a given AI-enabled PHM solution. 

From the somewhat arbitrary assignments in Table II, 
the acceptability criterion is computed using the formula in 
(2) to obtain Ac = 0.75. A suitable acceptance threshold is 
then set by the certification body, say Ac ≥ 0.9, depending 
on how safety-critical the monitored system or unit is. To 
achieve certification, the value of Ac must be increased by 
at least satisfying any two of cyber-security, explainability, 
and having a legal and ethical policy, which will raise the 
Ac score to ≥ 0.9. This demonstration shows how flexibly 
the acceptability criterion can be applied and 
contextualized. Furthermore, its robustness property stems 
from its amenability to different levels of scrutiny, which 
may be very high level, or very detailed, depending on 
industry-specific requirements. 

TABLE II.  APPLICATION OF THE ACCEPTABILITY CRITERION 

i Factor Satisfied? F Weight, β βF 

1 Safety Yes 1 0.20 0.20 

2 Reliability Yes 1 0.10 0.10 

3 Cyber-security No 0 0.10 0.00 

4 Explainability No 0 0.10 0.00 

5 Interpreatibility Yes 1 0.05 0.05 

6 Accurate preditions Yes 1 0.20 0.20 

7 
Follows sector-specific 

standards 
Yes 1 0.10 0.10 

8 Legal and ethical policy No 0 0.05 0.00 

9 
Third-party testing, 

verification and validation 
Yes 1 0.10 0.10 

 

B. Other Considerations 

a) Hardware considerations: sensors selection and 

placement affect the quality of data and condition 

monitoring capabilities. Optimal sensor placement 

methodologies must be explored and developed, especially 

when migrating existing or legacy systems to AI- enabled 

PHM. Also, interoperability across different OEM modules 

and data storage equipment should follow recognized 

standards. 

b) Software considerations: troubleshooting and 

debugging spurious predictions or software faults for black-

box models is potentially tricky. This relates directly to 

explainability of AI. All the core tenets on XAI, some of 

which were discussed earlier, along with software 

engineering best practices can help in this regard. 

c) Legacy assets and convergence issues: a possible 

solution that promises to provide a bridge for integration of 

new processes or solutions with existing ones is the concept 

of digital twins. Again, new technologies or concepts 

automatically trigger corresponding regulation and 

compliance issues. Digital twin technologies, which 

implicitly incorporate AI-enabled PHM, must also be 

qualified and certified for use [30]. For organization-wide 

deployment, the relevant change management issues to be 

addressed include upgrade of sensors, data management 

and documentation, personnel training and competency 

development, human factors, upgrade of user interfaces, 

and scalability across the entire asset portfolio. 

C. Potential Challenges 

Cyber-physical systems raise additional security 
challenges, which increases cost and complexity, and 
introduce additional compliance requirements, thereby 
raising the barrier to adoption. Also, legal and liability 
issues add another layer of challenges which should be 
carefully legislated to encourage innovation. 

Integration of legacy facilities and the convergence of 
old systems with new ones, both in terms of hardware and 
software, presents additional personnel and competency 
development requirements. Human factors issues must be 
addressed such that user-interfaces and system 
troubleshooting modules are easily comprehensible. 
Personnel training should incorporate the core principles 
of explainability and interpretability so that operators and 
asset managers can draw the full benefits of the decision 
support capabilities that AI-enabled PHM provides. 

As a final yet important point, to avoid an overload of 
standards and the potential confusion that it can trigger, 
professional societies should coordinate standards 
development, addressing the various stages of AI-enabled 
PHM specific to different fields. The SAE’s work in this 
regard, with different committees addressing sector-
specific PHM standards, is a good model to follow. 

 
Figure 2.  Overall flow of AI-enabled PHM process within the 

context of compliance with standards and regulations. 
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V. CONCLUSION 

There is no doubt that the recent rapid increase in the 

application of AI in engineering systems is bound to 

continue. Consequently, professionals as well as regulators 

must find creative ways of establishing a productive nesting 

ground for the successful maturation of AI-enabled 

technologies, one of which is data-driven prognostics. 

Professional organizations like the IEEE, ISO, SAE, and 

other organizations like MIMOSA, have indeed laid the 

foundation in terms of defining architectures and 

developing some associated standards. Formulation of 

ancillary regulations, however, lag standards development. 

This study proposed a flexible yet robust way of 

approaching certification and regulation of AI-enabled 

PHM, by the utilization of a user-definable acceptability 

criterion. The application of the acceptability criterion was 

demonstrated in this paper, and if fully exploited, will help 

serve as a basis for establishing regulatory sandboxes, 

which are necessary at this stage of technological readiness 

of AI-enabled PHM. Ultimately, this should be one 

amongst the many small leaps that must be made towards 

the actualization of a fully functional regulatory framework 

for AI-enabled PHM. 
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