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Robust State/Output Feedback Linearization of Direct
Drive Robot Manipulators: A Controllability and

Observability Analysis

Adolfo Perrusqúıa

School of Aerospace, Transport and Manufacturing, Cranfield University, MK43 0AL, UK

Abstract

In this research, a robust feedback linearization technique is analysed for robot

manipulators control. A complete first-order Taylor series expansion is used to

linearize the robot dynamics which takes into account initial conditions and the

Taylor-series remainder. A modified PD control law with Taylor-series compen-

sation is used to guarantee robust reference tracking. Whilst classic feedback

linearization controllers guarantee asymptotic convergence to zero, the proposed

approach shows that, for real applications, if the linearized robot dynamics is

stable then the nonlinear robot states are also stable and remain bounded. This

premise is assessed via Lyapunov stability theory under a controllability and

observability analysis; and hence, exponential convergence to a bounded set is

concluded. Experiments are carried out using a 1-degree of freedom robot and

a 4-degree of freedom exoskeleton robot to validate the proposed approach.

Keywords: Robust feedback linearization, Robot Manipulators, Exponential

convergence, Controllability, Observability, Lyapunov and Riccati equations.

1. Introduction

Feedback linearization is a popular technique for real-time applications and

industrial prototypes [1, 2]. It gives an interesting tool for nonlinear systems

control based on its linearized approximation for small deviations of its states.

The linearization procedure needs that the nonlinear system is written in the
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standard form [3, 4],

ẋ = f(x) + g(x)u, (1)

where x are the states, u the control inputs and f(x) and g(x) are the nonlinear

dynamics of the system. If the system is written as in (1), then the linearization

procedure can be done. However, there a class of nonlinear systems which are

the exception of this rule: robot manipulators [5].

Robot manipulators [6] are a class of nonlinear systems which seems to have

no problem writing its dynamics as in (1) [7]. This is true, however when the lin-

earization procedure is applied, the final linear model could be an oversimplified

model due to the inertia matrix of the robot [8]. In other words, the presence

of the inertia matrix in f(x) and g(x) can make zero some relevant terms when

the linearization technique is applied at the desired operating point.

Typically, direct drive robot manipulators (which are the main concern of

this paper) are controlled by linear or nonlinear controllers whose gains are tuned

manually until an acceptable response is obtained, e.g., PID control, sliding

mode control (SMC) [9], and fuzzy control [10]. In the case of PID control,

there exists some rules to set its gains in accordance to the lower and upper

bounds of the robot matrices [11]. However, it is not possible to establish a

desired performance as in the linear case and hence, a manual tuning procedure

is required. It is mandatory, to compensate the nonlinear terms of the robot

manipulator in order to establish a desired performance [12].

There are some investigations of robot manipulators linearization. The clas-

sical approach is known as computed torque controller [5] which assumes com-

plete knowledge of the robot dynamics such that the nonlinear terms are com-

pensated and establish a desired performance given by an inner controller which

is typically a proportional-derivative (PD) controller. However, two main draw-

backs has this controller: (i) in most cases, only an approximate model of the

nonlinear dynamics can be constructed and hence, modeling error is raised, (ii)

the computational complexity of this controller is high [13] and can cause delays

in the real-time implementation due to hardware and software limitations.
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One of the easiest method for robot manipulators’ linearization is to consider

that the manipulator is endowed with a gearbox with high gear ratio (typical

values are 200-500) such that the nonlinear terms are practically neglected which

yields in a linear system with an approximate constant disturbance [6]. Never-

theless, this method cannot be used for direct-drive manipulators.

For direct-drive robots linearization, some methods neglects the Coriolis and

gravitational torques vector [8]. However, this method yields a double integrator

system [1] which is an oversimplified model of the robot dynamics. Other tech-

niques takes into account the gravitational torques [14] and the Coriolis matrix

[15] with satisfactory results. Nevertheless, some information can be lost at the

linearization point because the above methods do not consider adequately the

Taylor series expansion.

The final linear model obtained from the linearization procedure is used to

compute a feedback controller [16] which can guarantee asymptotic stability

[17, 18] of the linear dynamics and uniform stability [19] of the nonlinear robot

dynamics. For this reason, this technique is known as feedback linearization.

Most of industrial applications assume that if the linear model is asymptotic

stable, then the states of the nonlinear model are uniformly stable and therefore,

they should converge to zero [19]. However, in most cases this is false because

modelling uncertainties hinder accurate realization of the task and hence, the

states do not converge to zero.

One main issue of feedback linearization is concerned with robust perfor-

mance and stability of the closed-loop system [20]. Robust feedback linearization

is nowadays an interesting control issue for real-time and industrial applications

[21, 22] such as power systems [23, 24], fuel-engine [25] and nonlinear systems

[19, 26, 27]; which aims to ensure robust performance against model uncertain-

ties with good precision results [28, 29]. Robust feedback linearization is directly

related to the controller design, that is, if the linearized model is poor, then the

control gains will be also poor and hence the controller will lacks of robustness.

So, in this work a robust feedback linearization controller for direct drive

robot manipulators is proposed to solve the following problems:

3



1. Computed torque control has high computational complexity which can

cause time-delays and instability of the closed-loop system.

2. It is not possible to define a desired performance in linear and nonlinear

controllers for direct-drive manipulators without first applying a lineariza-

tion procedure.

3. Standard Taylor-series linearization procedure of direct-drive robots can

give as output an oversimplified model which cannot guarantee robust

performances.

4. Correct the feedback linearization assumption, that is, if the linear model

is stable, then the states of the nonlinear dynamics are asymptotic stable

and converges to zero.

This paper assesses the aforementioned problems by providing the following

solutions and contributions:

• A complete Taylor-series linearization procedure for direct-drive robot ma-

nipulators which takes into account the robot initial conditions and the

Taylor series remainder to avoid oversimplified models and improve the

control design.

• A simple robust feedback-linearization controller with Taylor-series com-

pensation which reduces the transient time, tracking error, and the com-

putational complexity is considerably reduced.

• Two different theorems that prove exponential stability of the linearized

system dynamics to a bounded zone using a controllability and observ-

ability analysis. This is a stronger result than traditional results which

only shows asymptotic stability and uniform stability [19].

Throughout this paper, N, R, Rn, Rn×m denote the spaces of natural num-

bers, real n-vectors, and real n × m-matrices, respectively; λ(A) denotes the

eigenvalues of matrix A; λmin(A) and λmax(A) denotes the minimum and maxi-

mum eigenvalues of matrix A, respectively; the norms ‖A‖ =
√

λmax(A⊤A) and
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‖x‖ stand for the induced Frobenius and vector Euclidean norms, respectively;

where x ∈ R
n, A ∈ R

n×n and n,m ∈ N.

2. Robot Dynamics and Robust Feedback Linearization

The dynamic model of a n degree of freedom (DOF) direct-drive robot ma-

nipulator is ,

M(q)q̈ + C(q, q̇)q̇ + F q̇ +G(q) = u, (2)

where M(q) ∈ R
n×n is a positive definite inertia matrix, C(q, q̇) ∈ R

n×n denotes

the centripetal and Coriolis forces matrix, F ∈ R
n is the friction vector, G(q) ∈

R
n is the gravitational torques vector, u ∈ R

n denotes the control torque and

q, q̇, q̈ ∈ R
n are the joint position, velocity and acceleration vectors, respectively.

Linearization is performed with respect to an operating point O(ul, ql, q̇l, q̈l);

where ul is a nominal torque and ql, q̇l, q̈l are nominal joint position, velocity

and acceleration vectors. Define qr = q−ql as the deviation between the current

joint position q and the nominal value ql. The linearization method lies in a

first-order Taylor expansion as,

f(x) = f(x0) +
∂f(x)

∂x

∣
∣
∣
x=x0

(x− x0) + ε,

where f(x) is a smooth nonlinear function, x0 denotes an operating point and

ε denotes a residual error of the Taylor expansion.

There exists several linearization methods for direct-drive robot manipula-

tors. The most simple method neglects the Coriolis, friction and gravitational

terms, that is, C(q, q̇)q̇ = F q̇ = G(q) = 0. The resulting model is a double

integrator system of the form,

Aq̈r = u, (3)

where A = M(q)|O. The system (3) is an oversimplified model which is unstable

but controllable and cannot guarantee reference tracking because the gravita-

tional, friction and Coriolis terms should be taken into account [15]. Other
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linearization methods neglects the Coriolis and friction terms for small joint

velocities obtaining the next linear model,

Aq̈r +Bqr = u, (4)

where A = M(q)
∣
∣
O

and B = ∂G(q)
∂q

∣
∣
O
. Model (4) has good results for control

purposes since the gravity loading is a dominant component of the robot dy-

namics. In [8] it has been shown that the Coriolis and friction terms should

be taken into account even at low joint speeds; hence the next linear model is

obtained,

Aq̈r +Dq̇r +Bqr = u, (5)

where A = M(q)
∣
∣
O
, B = ∂(C(q,q̇)q̇+G(q))

∂q

∣
∣
O

and D = ∂C(q,q̇)q̇+F q̇
∂q̇

∣
∣
∣
O
. Model

(5) has better results than (4) and has been used to obtain tuning techniques

for PID controllers [15, 30]. Notice that models (3),(4) and (5) do not use

adequately the Taylor series expansion since the operating point O can make

zero the terms B and D. Our first contribution modifies the definitions of (5)

using the first-order Taylor series expansion as,

Aq̈r +Dq̇r +Bqr +B0 = u+ εf , (6)

with B0 = [G(q) + (C(q, q̇) + F )q̇]
∣
∣
∣
O

∈ R
n. εf ∈ R

n is the remainder of the

Taylor series. Notice that: (i) B0 serves as a compensation term, especially

of the gravitational torques vector, (ii) the Taylor series remainder εf gives a

correct formulation of the linearization procedure. Classic approaches [8] do not

consider εf which is a strong and wrong assumption for the design of robust-

feedback controllers and uniform stability conclusion.

3. Control design and gains setting

A standard choice at industry and real-time applications for the feedback

control torque u is a Proportional-Derivative (PD) control law [31, 32] as,

u = Kpe+Kdė, (7)
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where Kp,Kd > 0 ∈ R
n×n are the proportional and derivative gain matrices,

e = qd − qr ∈ R
n defines the position error, ė = q̇d − q̇r ∈ R

n the velocity error

and qd ∈ R
n is a desired reference. Other advance controllers such as PID [21],

or sliding-mode control (SMC) [29, 33, 34] can also be used. However in this

paper a PD control law is used for simplicity and to avoid biased conclusions of

the proposed method.

The PD control (7) is slightly modified by adding a compensation of the

Taylor-series components as

u = Kpe+Kdė+B0 +Bqd +Dq̇d +Aq̈d. (8)

The above controller is in fact a feedback linearization controller [28] in terms

of Taylor-series components. The closed-loop system between (6) and (8) is,

ë+A−1(D +Kd)ė+A−1(B +Kp)e+ η = 0 (9)

where η = A−1εf . Then (9) can be expressed as a linear system with desired

performance as,

ë+ Λ1ė+ Λ2e+ η = 0, (10)

where Λ1,Λ2 > 0 ∈ R
n×n define a desired closed-loop performance, similarly to

a pole-placement control problem.

Remark 1. Let η = 0. Then, the desired response of the tracking error e is

defined in how we choose Λ1 and Λ2. If the roots of the characteristic polyno-

mial s2I + sΛ1 + Λ2 have negative real part then the trajectories will converge

exponentially to zero. Conversely, if the roots have positive real part, then the

trajectories of e will diverge. In this work, Λ1 and Λ2 are chosen to satisfy a

perfect square trinomial and therefore, the roots have a negative real part.

Remark 2. Matrix A amplifies or attenuates the performance matrices Λ1 and

Λ2. This linear transformation is directly reflected in the final control gains Kp

and Kd and provides a first approximation in the possible range of values for

Λ1 and Λ2 that we can use for the gain tuning.
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From (10), the PD gains are tuned as: Kp = AΛ2 −B and Kd = AΛ1 −D.

Notice that if the linearized model does not consider matrices B and D, then the

control gains Kp and Kd will be larger which can cause oscillations, overdamped

responses or even instability of the robot trajectories.

The state-space representation of (9) is,

ẋ =




0 I

−A−1(B +Kp) −A−1(D +Kd)





︸ ︷︷ ︸

AK∈R2n×2n

x+




0

−η





︸ ︷︷ ︸

ξ∈R2n

(11)

where x = [e⊤, ė⊤]⊤ ∈ R
2n. The eigenvalues λ(Ak) of matrix Ak have negative

real part Reλi(Ak) < 0 and verifies the model (10), that is, det(λI − AK) =

λ2 + Λ1λ+ Λ2. Since εf is bounded, then ‖ξ‖ ≤ ξ̄ is also bounded.

Remark 3. The dynamics of the manipulator is linearized in an operating point

O such that the linearized model behaves as the nonlinear dynamics valuated in

the operating point. It is well known that the remainder of the Taylor formula

decreases as we take more terms in the series. Moreover, high order terms

are very small in comparison to the first order terms as it is stated by the

Lagrange error bound [35]. Therefore, if the linear system is stabilizable by the

PD control law, then the nonlinear system will be also stabilizable. Furthermore,

the remainder of the Taylor formula can be modelled as the disturbance caused

by the robot nonlinear dynamics which can be attenuated by the PD gains and

Taylor series compensation.

4. Stability

In this section, the stability of the closed-loop performance (11) is analyzed

using two methods: controllability and observability [36] approaches. Both

methods are used to obtain the compact set in which the states will converge.

In other words, the main goal is to demonstrate that the trajectories of the

linearized robot dynamics converges exponentially to zero only if the residual

term ξ = 0, otherwise the trajectories will converge exponentially to a compact

set centered in zero [37].
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4.1. Controllability approach

For the controllability approach [38], the closed-loop dynamics (11) can be

written as,

ẋ = A2x+B2u+ ξ

u = −Kx,
(12)

where A2 ∈ R
2n×2n, B2 ∈ R

2n×n and K ∈ R
n×2n are defined as,

A2 =




0 I

−A−1B −A−1D



 , B2 =




0

A−1





K =
[

Kp Kd

]

.

The controllability matrix of (12) is,

C =
[

B2 A2B2 A2
2B2 . . . A2n−1

2 B2

]

. (13)

It is known that the system states of (12) are controllable if rank C = 2n

[39, 40]. Equivalently, the controllability of system (12) implies that the matrix

Wc =

∫ t

t0

eA2(τ−t0)B2B
⊤
2 eA

⊤

2
(τ−t0)dτ, (14)

is nonsingular for any t > 0 [41]. The following theorem establishes the expo-

nential convergence to zero of (12) under the PD control law (8) with ξ = 0.

Theorem 1. Consider the robot dynamics (12) under the PD control law (8),

the desired performance specified by (10) and set ξ = 0. Then there exists

positive definite matrices Q,P ∈ R
2n×2n which are solution of the Lyapunov

equation,

A⊤
KP + PAK = −Q. (15)

Hence, the states of (12) converge exponentially to zero with a decay rate of 1
2γ1.

Proof 1. Consider the Lyapunov function,

V = x⊤Px. (16)
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The time derivative of V along the system trajectories (12) is

V̇ = x⊤(PAK +A⊤
KP )x = −x⊤Qx. (17)

From (17) global asymptotic stability can be concluded. To prove exponential

stability let multiply (17) by the identity matrix PP−1 = I as,

V̇ = −x⊤PP−1Qx ≤ −γ1V,

where γ1 = λmin(P
−1Q). The solution of the above differential equation is,

V (t) ≤ e−γ1(t−t0)V (t0). (18)

So

λmin(P )‖x(t)‖2 ≤ x⊤(t)Px(t) = V (t)

≤ e−γ1(t−t0)V (t0)

= e−γ1(t−t0)x⊤(t0)Px(t0)

≤ λmax(P )e−γ1(t−t0)‖x(t0)‖2

Hence, the states of (12) converges exponentially to zero and satisfies

‖x(t)‖ ≤
√

λmax(P )

λmin(P )
e−

1

2
γ1(t−t0)‖x(t0)‖. (19)

This completes the proof. �

Remark 4. If the eigenvalues of matrix A2 have negative real part, that is,

Reλi(A2) < 0, then the solution P of the Lyapunov equation (15) can be ex-

pressed in terms of (14) with Q = B2B
⊤
2 and its called controllability Gramian.

The next theorem establishes the uniform ultimate boundedness (UUB) [42]

of the trajectories of (12) with exponential convergence to a small compact set.

Theorem 2. Consider the robot dynamics (12) under the PD control law (8)

and the desired performance specified by (10). Then there exists positive definite

matrices Q, P, R ∈ R
2n×2n which satisfy the Riccati equation [43],

A⊤
KP + PAK + PRP = −Q. (20)
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Then, the states trajectories of (12) are UUB with a practical bound given

by µ =
√

1
λmin(Q)λmin(R)‖ξ‖, and converges exponentially to a bounded set Sξ of

radius µ with a decay factor 1
2γ1 as in (19).

Proof 2. Consider the same Lyapunov equation (16). The time derivative of

(16) along the closed loop trajectories of (12) is

V̇ = x⊤(PAK +A⊤
KP )x+ 2x⊤Pξ

The following inequality is used,

2x⊤Pξ ≤ x⊤PRPx+ ξ⊤R−1ξ,

for some normalizing matrix R ∈ R
2n×2n. So,

V̇ ≤ x⊤(PAK +A⊤
KP + PRP )x+ ξ⊤R−1ξ

= −x⊤Qx+ ξ⊤R−1ξ. (21)

The time-derivative of the Lyapunov function (21) is negative if

‖x‖ ≥
√

1

λmin(Q)λmin(R)
‖ξ‖ ≡ µ. (22)

Selecting the matrices Q and R such that (22) is satisfied ensures that the

trajectories of (12) converge to a compact set Sξ of radius µ, that is, ‖x‖ ≤ µ

and hence the trajectories of (12) are UUB. Then following a similar procedure

to Theorem 1 is obtained the next inequality,

V̇ ≤ −γ1V + λmax(R
−1)‖ξ‖2

V (t) ≤ e−γ1(t−t0)V (t0) +
1

γ1λmin(R)
‖ξ‖2.

Recall that λmax(R
−1) = 1

λmin(R) . Finally, the states are bounded by

‖x(t)‖ ≤
√

λmax(P )

λmin(P )
e−

1

2
γ1(t−t0)‖x(t0)‖

+

√

1

γ1λmin(P )λmin(R)
‖ξ‖,

(23)

and hence the states trajectories of (12) converge exponentially to the compact

set Sξ in (22). This completes the proof. �

11



4.2. Observability approach

For the observability approach [44], the closed-loop dynamics (11) can be

written as,

ẋ = A2x+B2u+ ξ

y = Cx

u = −Ky,

(24)

where C ∈ R
2n×2n is the output dynamics which for this paper is equal to a

2n× 2n identity matrix. Equivalently, (24) can be rewritten as,

ẋ = AKx+ ξ

y = Cx
(25)

The observability matrix of (25) is

O =
[

C⊤ (CAK)⊤ . . . (CA2n−1
K )⊤

]⊤

. (26)

It is known that the system states of (25) are observable if rankO = 2n.

Equivalently, the observability of system (25) implies that the matrix,

WO =

∫ t

t0

eA
⊤

K
(τ−t0)C⊤CeAK(τ−t0)dτ, (27)

is nonsingular for any t > 0 and its called observability Gramian. In contrast

with the controllability matrix, the observability matrix can use either A2 or AK

because it does not depend on the input dynamics B2. The following theorem

establishes the exponential convergence to zero of system trajectories (25) with

ξ = 0.

Theorem 3. Consider the robot dynamics (24) under the PD control law (8),

the desired performance specified by (10) and expressed as in (25) with ξ = 0.

Then there exists positive definite matrices Q, P ∈ R
2n×2n which are solution

of the Lyapunov equation (15). Hence, the states of (25) converge exponentially

to zero with a decay rate of γ2.

Proof 3. The procedure is similar to the presented in Theorem 1 until the equa-

tion (17) is found. Then integrating both sides of (17) in a time interval [t, t+T ],

12



where T > 0, gives,

V (t+ T ) = V (t)−
∫ t+T

t

x⊤(τ)Qx(τ)dτ.

Let Q = C⊤C. Then

V (t+ T ) =V (t)

− x⊤(t)

∫ t+T

t

eA
⊤

k
(τ−t)QeAk(τ−t)dτx(t).

Notice that the second term of the right-hand side is equivalent to the ob-

servability Gramian (27) which is also known as uniform complete observability

(UCO) and satisfies the following bounds,

β1I ≤ WO =

∫ t+T

t

eA
⊤

K
(τ−t)QeAK(τ−t)dτ ≤ β2I, (28)

for some scalars β1, β2 > 0. Then multiplying the observability Gramian by

PP−1 = I gives,

V (t+ T ) = V (t)− x⊤(t)PP−1WOx(t)

V (t+ T ) ≤
(

1− 1

λmax(P )
β2

)

V (t).

Let α =
√

λmax(P )−β2

λmin(P ) . Then,

λmin(P )‖x(t+ T )‖2 ≤ x⊤(t+ T )Px(t+ T ) = V (t+ T )

≤ (λmax(P )− β2)‖x(t)‖2

‖x(t+ T )‖ ≤ α‖x(t)‖. (29)

Notice that,

‖x(t0 + T )‖ ≤ α‖x(t0)‖

‖x(t0 + 2T )‖ ≤ α‖x(t0 + T )‖ = α2‖x(t0)‖
...

...

‖x(t0 + kT )‖ ≤ αk‖x(t0)‖,

13



where k ∈ N. Define t = t0 + kT , then the exponential convergence of (29) is

demonstrated and can be written as,

‖x(t)‖ ≤ α(t−t0)/T ‖x(t0)‖

‖x(t)‖ ≤ e−γ2(t−t0)‖x(t0)‖ (30)

where

γ2 = − 1

T
lnα ⇔ γ2 = − 1

T
ln

(√

λmax(P )− β2

λmin(P )

)

.

This completes the proof. �

Remark 5. Since the eigenvalues of matrix AK have negative real part, that

is, Reλ(AK) < 0, then the observability Gramian is a solution of the Lyapunov

equation (15) with Q = C⊤C. Notice that the controllability Gramian (14) does

not satisfy this good property because it uses the matrix A2 which its eigenvalues

could be positive or zero, that is, Reλ(A2) ≥ 0; and hence it cannot be solution

of the Lyapunov equation (15).

The following theorem establishes the exponential convergence to a bounded

set of system trajectories (24) in presence of the modeling error ξ 6= 0.

Theorem 4. Consider the robot dynamics (24) under the PD control law (8),

the desired performance specified by (10) and expressed as in (25). Then, there

exists positive definite matrices Q,R, P ∈ R
2n×2n which are solution of the

Riccati equation (20) and hence, the trajectories of (25) are UUB with a practical

bound µ given by (22) and converge exponentially to a bounded set Sξ of radius

µ with a decay factor γ2 as in (30).

Proof 4. Consider a similar procedure to the presented in Theorem 2 such that

the practical bound µ in (22) is obtained. The solution of (25) in a time interval

[t : t+ T ] is

x(t+ T ) = eAK(t+T−t)x(t) +

∫ t+T

t

eAK(τ−t)ξdτ

y(t) = Cx(t).

(31)
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Then,

y(t+ T ) = CeAK(t+T−t)x(t) + C

∫ t+T

t

eAK(τ−t)ξdτ.

Multiplying both sides of the above equality by eA
⊤

K
(t+T−t)C⊤ gives,

eA
⊤

K
(t+T−t)C⊤y(t+ T ) = eA

⊤

K
(t+T−t)C⊤CeAK(t+T−t)x

+ eA
⊤

K
(t+T−t)C⊤C

∫ t+T

t

eAK(τ−t)ξdτ.

Define w = t + T . Integrating both sides of the above equality in a time

interval [t : t+ T ] gives,

WOx(t) =

∫ t+T

t

eA
⊤

K
(w−t)C⊤y(w)dw

−
∫ t+T

t

eA
⊤

K
(w−t)C⊤C

∫ w

t

eAK(τ−t)ξdτdw.

Taking the norm in both sides and using the Cauchy Swartz inequality yields,

‖x(t)‖ ≤
∥
∥
∥
∥
∥
W−1

O

∫ t+T

t

eA
⊤

K
(w−t)C⊤y(w)dw

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
W−1

O

∫ t+T

t

eA
⊤

K
(w−t)C⊤

×
∫ w

t

CeAK(τ−t)ξdτdw

∥
∥
∥
∥
∥

≤
√
β2T

β1
‖y(t)‖+ β2

√
T

β1
‖ξ‖.

Since ‖y(t)‖ ≤ ‖C‖‖x(t)‖ with C = I, then from (22) the system states

satisfy the following bound

‖x(t)‖ ≤
(√

β2T

β1

√

1

λmin(Q)λmin(R)
+

β2

√
T

β1

)

‖ξ‖ ≡ µ2. (32)

So the system states of (29) converge exponentially with decay factor γ2 given

in (30) to the bounded set Sξ2 of radius (32). This completes the proof. �

Remark 6. Notice that the bound (23) of the controllability analysis depends on

the initial conditions x(t0) which fades exponentially with a decay rate of γ1. On
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the other hand, the bound (32) of the observability analysis does not depend on

the initial conditions and take advantage of the observability Gramian bounds.

Furthermore, the bound (32) does not need the solution P of the Riccati equation

(20). Therefore, the states converges at the intersection set between the sets (23)

and (32).

Remark 7. The error ‖e(t)‖ remain bounded and within the compact set Sξ or

Sξ2 by selecting large enough desired performance gains Λ1 and Λ2 respect to the

linearized matrix A. The linearized matrices D, B, and B0 play an important

role for dynamic compensation and to reduce the steady state error. The matrix

Q of the Lyapunov equation (15) and the matrices Q and R of the Riccati

equation (20) provides an easy way to compute the exponential decay factor of

the exponential solution. However, they are only theoretical parameters that do

not change the performance of the closed-loop system.

Remark 8. The controllability and observability results hold for exogenous and

bounded disturbances d(t) ∈ R that satisfy ‖d(t)‖ ≤ d̄ for some d̄ > 0. The

modelling error ξ in (12) and (24) is modified as

ξ =




0

d̄− η



 ∈ R
2n. (33)

5. Experiments

The performance of the robust feedback linearization controller was eval-

uated in two different direct drive robot manipulators. The controllers are

coded using Matlab/Simulink software platform under the program Wincon

from Quanser Consulting. The Simulink diagrams use a sampling period of 0.1

ms and the ODE4 solver.

5.1. Control of a 1-DOF robot

The 1-DOF robot (see Figure 1) is controlled by a Copley Controls power

amplifier, model 413, configured in current mode. Angular position of the motor
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is measured by a BEI optimal encoder. Resolution of the optical encoder is

2500 pulses per revolution and is directly coupled to the motor shaft. Angular

velocity is measured by a Servo-Tek tachometer with a resolution of 7V/1000

rpm. The tachometer and encoder outputs are filtered by the following low-pass

filter G(s) = 50
s+50 . G(s) was tuned manually until the best performance was

achieved.

Figure 1: 1-DOF robot prototype.

Data acquisition is performed by a Sensoray model 626 PCI data acquisi-

tion target endowed with inputs for optical encoders. The data card electronics

increases four times the optical encoder resolution up to 10,000 pulses per rev-

olution. The dynamic model of the 1-DOF robot is Mq̈ + Rq̇ + G sin(q) = u,

where M = 0.1852 kgm, R = 0.019 kgm/s and G = 2.60 kgm/s2; q, q̇, q̈ defines

the angular position, velocity and acceleration, respectively. These parameters

were obtained previously using a least squares method.

The linearization is performed in the operating point O(ul = 0, ql = 0, q̇l =

0, q̈l = 0). The linearized model is Aq̈r + Dq̇ + Bq = u, where A = 0.1852

kgm, D = 0.019 kgm/s and B = 2.60 kgm/s2. Notice that this robot does not

have Coriolis term. For this example is easy to obtain the radius and interval of

convergence of the Taylor series expansion, that is, only the gravitational term

17



was linearized and satisfies

G sin(q) = G

∞∑

n=0

(−1)n

(2n+ 1)!
q2n+1 = G

(

q − q3

3!
+

q5

5!
− · · ·

)

Then the radius of convergence is

lim
n→∞

∣
∣
∣
∣

(−1)n+1

(2(n+ 1) + 1)!
q2(n+1)+1

/ (−1)n

(2n+ 1)!
q2n+1

∣
∣
∣
∣

= lim
n→∞

(2n+ 1)!

(2n+ 3)!
|q|2

= lim
n→∞

1

(2n+ 2)(2n+ 3)
|q|2 = 0.

Because this limit is zero for all real values q ∈ R, then the radius of convergence

of the expansion is the set of all real numbers R.

The desired closed-loop performance is defined by the proposed values of

Λ1 = 20 and Λ2 = 100. The Ackermann formula is used to obtain the gains of

the PD controller. The performance of the linearized models (3), (4) and (6) are

compared, and hence the control gains were modified in terms of each model.

The models, controller and control gains that were used in the experiments are

shown in Table 1.

Table 1: Linearized models and control gains

Model Control law Kp Kd

Aq̈r = u u = Kpe+Kdq̇ +Aq̈d , u1 18.52 3.70

Aq̈r +Bqr = u u = u1 +Bqd , u2 15.92 3.70

Aq̈r +Dq̇r +Bqr = u u = u2 +Dq̇d 15.92 3.68

The desired reference is a chaotic duffing system of the form

ż1 = z2ωπ

ż2 = [−0.25z2 + z1 − 1.05z31 + 0.3 sin(ωπt)]ωπ

qd = 7z1, z1(0) = z2(0) = 0, ω = 2 rad/s.

(34)

The above reference was proposed to show the effectiveness of the robust

linearization technique in presence of a trajectory that could destabilize the
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closed-loop system due to modeling error and the remainder of the Taylor for-

mula. Figure 2(a) shows the tracking results using the models and controllers

of Table 1.
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Figure 2: Results of the 1-DOF robot

Figure 2(a) shows some interesting results. The simplest linearization tech-

nique, Aq̈r = u, has better tracking results in comparison with the other lin-

earization methods. The main reason is that PD control gains excite the mod-

eling error dynamics and hinders accurate realization of the task. This problem

is known as the “accuracy/robustness” dilemma[28]. In other words, the PD

control law enhances robustness against disturbances (modeling error, remain-

der of Taylor series formula, exogenous perturbations, etc.). On the other hand,

the PD control gains can excite the disturbances in such a way that there exists
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some stationary error. Since model Aq̈r = u is a double integrator system, then

the control gains were larger than the other models. Nevertheless, the output

trajectory can present delays if the parameter A is not accurate. The second

and third methods have similar results. For this simple model, the friction was

small and therefore did not affect the closed-loop system trajectories. Further-

more, the desired trajectory was fast and hence the gravitational terms were

compensated by the momentum of the pendulum in the swinging movement.

The double integrator system did not present good results in presence of

a constant gravitational term. To show this fact, the tracking problem was

modified into a set-point control. The desired trajectory was changed to a

constant reference qd = π
4 . Figure 2(b) exhibits the obtained results. The plot

shows that the double integrator system was sensitive to the gravitational terms

because the PD gains cannot compensate it. The mean-squared error (MSE)

ē = 1
n

∑n
i=1 ke

2(i), where k is a scaling factor and n is the number of samples;

was used as metric performance. It was proposed a scaling factor k = 100. The

MSE of both the tracking and set-point tasks is shown in Table 2.

Table 2: MSE results of the 1-DOF robot

Model Tracking MSE Set-point MSE

Aq̈r = u 7.625 0.884

Aq̈r +Bqr = u 57.64 0.0035

Aq̈r +Dq̇r +Bqr = u 57.82 0.0036

The mean absolute value of the control voltage ū = 1
n

∑n
i=1 |u(i)| was used

as performance metric of the input voltage. The results are shown in Table 3.

Table 3: Mean value of the input voltage of the 1-DOF robot

Model Tracking task Set-point task

Aq̈r = u 12.9207 1.7023

Aq̈r +Bqr = u 13.33381 1.9157

Aq̈r +Dq̇r +Bqr = u 13.4342 1.9161
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5.2. Control of a 4-DOF robot

The 4-DOF robot (see Figure 3) was controlled by Schunk PowerCube mod-

ules PR 110-161, PR 90-161 and PR 70-161 using the CAN protocol. These mod-

ules have incremental encoders RS-422 included for angular position measure-

ments. A high-pass filter was used to estimate the angular velocity whose cutoff

frequency was 300, that is, G1(s) =
300s
s+300 . Also a low-pass filter with cutoff fre-

quency of 500 was used to smooth the velocity response, that is, G2(s) =
500

s+500 .

Both G1(s) and G2(s) were tuned manually until the best performance was

achieved.

(a) Robot prototype
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(b) Robot schematic

Figure 3: 4-DOF robot

The Denavit-Hartenberg (DH) parameters of the 4-DOF robot are given in

Table 4.

The parameter estimates of the robot are exhibited in Table 5, where mi, li,

and Ii denote the mass, length and inertia of link i, here ∗ means that the term

was not used. It is not possible to express the dynamic model in a simple and

compact form due to its high non-linearity. However, the analytic expression

can be easily obtained using any symbolic toolbox.

The dynamics is linearized at the operating point O(ql = [0, π
2 +0.1, 0, 0.1]⊤),

the other terms are set to zero. The linearized model is Aq̈r + Bqr + B0 = u,
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Table 4: Denavit Hartenberg Parameters

Joint i θi di ai αi

1 q1 l1 0 π
2

2 q2 0 0 -π2

3 q3 0 l3
π
2

4 q4 0 l4 0

Table 5: 4-DOF parameters

Joint i mi (kg) li (m) Ii (kgm
2)

1 8.4 0.228 0.0364

2 4.9 * *

3 2.7 0.22 0.0109

4 2.7 0.22 0.0109

where

A =











0.064 0 −0.044 0

0 0.75 0 0.27

−0.044 0 0.35 0

0 0.27 0 0.14











, B =











0 −11.55 0 −2.85

−11.55 0 0 0

0 0 0 −0.29

−2.85 0 −0.29 0











B0 =
[

−1.45, 0, 11.64, 0
]⊤

Notice that this model did not have a friction term because its parameters

were unknown. Furthermore, the Coriolis term was neglected in the linearization

point. For any robot, the radius of convergence of the Taylor series expansion

is not straightforward to obtain analytically since each element of the matrix

are functions of trigonometric functions and we cannot conclude that the radius

of convergence is the R
n space. In this experiment, the performance of the

PD control with Taylor series compensation was compared with the well-known
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computer torque controller

u = M(q)
(

q̈d +Kpe+Kdė
)

+ C(q, q̇)q̇ +G(q). (35)

The computer torque controller is a feedback linearization controller that

compensates the complete robot dynamics and establishes a desired performance

given by an inner controller (in most of cases is a PD control law). For this

experiment, the inner controller of the computed torque is a PD control whose

gains were set as the desired performance in (10), that is, Kp = Λ2 andKd = Λ1.

The desired trajectory qd = [qd1 , q
d
2 , q

d
3 , q

d
4 ]

⊤ ∈ R
4 was proposed to satisfy the

range of movements of an human shoulder and elbow as:

qd1(t) = 0.3 sin
(
π
3 t
)

qd2(t) = π
2 − 0.4 cos

(
π
3 t
)

qd3(t) = −0.2− 0.55 sin
(
π
3 t
)

qd4(t) = 0.35 + 0.2 cos
(
π
3 t
)
.

(36)

The values of the desired performance matrices were proposed as Λ1 =

10 × diag{12, 8, 6, 8} and Λ2 = 100 × diag{36, 16, 9, 16}. The proportional and

derivative matrices gains for the PD control with complete Taylor series com-

pensation were

Kp =











229.24 11.55 −39.97 2.85

11.55 1200.29 0 437.27

−159.88 0 312.75 0.29

2.85 437.27 0.29 225.99











,

Kd =











7.64 0 −2.66 0

0 60.01 0 21.86

−5.33 0 20.85 0

0 21.86 0 11.3











.

Figure 4 shows the tracking results. It can be observed that each feed-

back linearization controller exhibits good tracking results due to the proposed

desired matrices Λ1 and Λ2. The Taylor series compensation enhances the ro-

bustness of the PD controller and reduces the steady-state error.
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The PowerCube modules have large stiffness and friction unmodeled terms.

These terms were favorable at the closed-loop performance of the experiment

because they serve as an inner PD control law. Despite having modeling error,

the proposed feedback linearization controller presents robust performance and

good tracking accuracies similarly to the compute torque controller. The lat-

ter, is computationally more expensive than the PD control with Taylor series

compensation due to the number of operations that it has to compute (among

sums, multiplications, and standard functions). For real-time implementations

the computed torque controller has the next two main components [13]

1. An inner feedback loop such as a stabilizing PD, PID, or any other con-

troller.

2. An inverse dynamic solver to provide the torques for each joint.

In view of the above, the computer torque controller could have a relatively

large time-delay due to the hardware and software limitations. The proposed

feedback linearization controller overcome this issue by considering less number

of operations. In fact, whilst the computational complexity of the proposed

approach is O(n), for the computed torque controller is O(n2) [13].

The performance of each linearized model was evaluated using the MSE of

the last 4 seconds of the experiment. The results are given in Table 6. From

these results, it is shown that the term B0 robustify the control law in presence

of changes of the gravitational term. Furthermore, the MSE error demonstrates

that a feedback linearization controller converges to a bounded zone instead of

zero. This important fact verifies the proposed stability approach. Since the

trajectory is slow, then the robot cannot neglect the gravitational terms as in

the 1-DOF robot case and therefore the simplest linear model has large error.

The mean absolute value (MAE) of each control torque is used to compare

the performance of each feedback linearization controller. The results are exhib-

ited in Figure 5 and Table 7 where similar control torque values were shown for

each feedback linearization control law with small magnitude differences. These

results permit concluding that the proposed feedback linearization controller
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Figure 4: Joint position tracking results

Table 6: MSE results of the 4-DOF exoskeleton robot

Control e1 e2 e3 e4

u1 = Kpe+Kdė+Aq̈r + q̈d 0.0181 0.0819 0.1297 0.0725

u2 = u1 +B(qr − ql) 0.0125 0.0798 0.1522 0.0663

u3 = u2 +B0 0.0121 0.0798 0.0163 0.0661

u4 = M(q)[u1 −Aq̈r] + C(q, q̇)q̇ +G(q) 0.0011 0.0512 0.0639 0.1067

can obtain robust performances with less computational effort and opens the

opportunity to the design robust/adaptive controllers based on the linearized

model.

6. Conclusions

In this paper a robust feedback linearization of robot manipulators was pro-

posed. A linearization procedure was proposed using Taylor series expansion,

which includes initial conditions and the remainder of the Taylor formula. This

new linearization procedure gives a more realistic model of the robot dynamics
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Table 7: MAE results

Control τ1 τ2 τ3 τ4

u1 2.4485 2.4618 10.0932 0.486

u2 2.4731 2.456 10.0998 0.4732

u3 2.4787 2.2827 10.1847 0.4580

u4 2.4973 2.1812 10.1357 0.3459

which not assumes that the real system will behave as its linear model.

Exponential convergence to a bounded zone was proved using Lyapunov

stability theory. The stability proofs were analyzed in terms of controllability

and observability theories. The main drawback of this kind of controllers is that

it needs good estimates of the robot parameters which are not always available.

Experimental validation was carried out using a 1-DOF robot and an 4-

DOF exoskeleton robot. Interesting results were obtained in the 1-DOF robot,

since the simplest linear model had better results for tracking tasks and the

worst performance for a set-point control tasks. The main reason was that

the controller takes advantage of the pendulum inertia in such a way that the

gravitational terms were almost neglected. Conversely, in a set-point control the

simplest linear model cannot achieve good accuracy. In the exoskeleton results,
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the feedback linearization controller achieves robust performance in presence of

modeling error.

Future work consists on developing adaptive PD control laws that adapts the

desired performance in terms of the actuator limitations (torque, voltage, cur-

rent) and the unmodeled system dynamics (friction, endogenous and exogenous

disturbances).
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[16] A. Perrusqúıa, W. Yu, A. Soria, R. Lozano, Stable admittance control with-

out inverse kinematics, IFAC-PapersOnLine 50 (1) (2017) 15835–15840.

[17] Y. Pan, H. Yu, M. J. Er, Adaptive neural PD control with semiglobal

asymptotic stabilization guarantee, IEEE Transactions on Neural Networks

and Learning Systems 25 (12) (2014) 2264–2274.

[18] W. Deng, J. Yao, Asymptotic tracking control of mechanical servosystems

with mismatched uncertainties, IEEE/ASME Transactions on Mechatron-

ics.
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