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Abstract With the development of the aircraft gas turbine engine, a control system should be able

to achieve effective thrust control to gain better operability. The main contribution of this paper is

to develop a novel direct thrust control approach based on an improved model predictive control

method through a strategy that reduces the dimension of control sequence. It can not only achieve

normal direct thrust control tasks but also maximize the thrust level within the safe operation

boundaries. Only the action of switching the objective functions is required to achieve the switch

of these two thrust control modes while there is no modification to the control structure. Besides,

a shorter control sequence is defined for multivariable control by updating only one control variable

at every simulation time instant. Therefore, the time requirement for the solving process of the opti-

mal control sequence is reduced. The proposed controller is implemented to a twin-spool engine.

Simulations are conducted in the wide flight envelope, and results show that the average time-

consumption can be reduced up to 65% in comparison with the standard model predictive control,

and the thrust can be increased significantly when maximum thrust mode is implemented by using

engine limit margins.
� 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the development of next generation aircraft gas turbine

engines, a more advanced control system is urged to address
various control requirements.1–3 Normally, the control system
for a gas turbine engine is implemented to drive the engine to

complete a certain mission, such as providing thrust at a cer-
tain level, and to keep the engine operates safely at the same
time. Besides, the control system is expected to be more intel-

ligent than what it is at the current stage, which means that it
should not only have the capability to complete the normal
flight mission but also provides the ability to address the speci-
fic demand in some cases, such as to optimize the perfor-

mance.4–7

As thrust is the most important performance parameter for
a gas turbine engine, the concept of direct thrust control is
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Nomenclature

A, B System matrices

A8 Nozzle area
Bi ith block of matrix B with respect to ui
C, D Output matrices
Di ith block of matrix D with respect to ui
dev Evaluated control error for surge margin of fan
emax Control error used in the maximum thrust control

mode

enormal Control error used in the normal thrust control
mode

F Predicted thrust vector over the prediction horizon

F Thrust
G Transition matrix for control sequence
H Altitude
I Identity matrix

J Objective function
l Dimension of control variable vector
Ma Mach number

mfb Main fuel flow
N Number of samples of operating points during the

simulation

Nfan Low-Pressure (LP) shaft speed
Ncom High-Pressure (HP) shaft speed
nu Control horizon

ny Prediction horizon
P,H,L Prediction matrices
p Number of groups that the control variable vector

is divided into

Q, R Coefficient matrices for objective function
qi Dimension of the ith group of control variable vec-

tor

RMSE Root mean square error
r Command over the prediction horizon
ri Command of ith operating point of N operating

points

rSM Command of surge margin of fan

SMcom Surge margin of compressor
SMfan Surge margin of fan
s Dimension of constrained variable vector
TIT Inlet temperature of High-Pressure Turbine (HPT)

tavg Average time consumption
ti Time consumption of optimization process of ith

sampling operating point

U Control sequence
u Control variable vector
ui ith group of control variable vector

w Coefficient of the item of thrust in objective func-
tion

x State vector
Y Predicted output vector

y Output vector
yi Parameter of ith operating point of N operating

points

C Transition matrix for ui
D Deviation
e Calculated state vector change

Subscript

a Parameter of actuator
CLM Parameter given by component level model
con Limited parameter

ctrl Controlled variable
lb Lower bound of parameter
lim Limit value of parameter

k Simulation time instant
m Time instant of discrete-time state space model
ob Measurable parameter

ub Upper bound of parameter
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attractive.4,7–11 For conventional control systems, sensor data,
such as low-pressure shaft speed, gas exit temperature, and so
on, are fed into the control system to achieve the indirect con-

trol of thrust since thrust is unmeasurable and these measur-
able parameters are related to the thrust level.10,12–18

However, these parameters cannot reflect thrust precisely,

because there are complicated nonlinear relations between
these measurable parameters and thrust. Additionally, the cal-
ibration of the relationship between these measurable parame-

ters (e.g. Low-Pressure (LP) shaft speed) and thrust is usually
made for the manufactured engine before its entry into service.
Unfortunately, this calibration becomes inaccurate when the
engine operates and degradations occur. As a result, thrust

cannot be controlled to the desired level following the control
schedule that is based on the initial calibration.9,10,12,19 In
addition to this, some parameters’ margins must be kept to

ensure that the engine can operate safely in the most extreme
conditions or when some faults happen unexpectedly, so con-
servatism is inevitable in the traditional control structure.

Thus, more complex controller design methods and control
structures are anticipated.15,18,20,21 Besides that, it is necessary
to consider some inevitable factors like random packet loss,
dynamic quantization and randomly occurring uncertainties

in this sensor-based structure if the control system is net-
worked.22,23 Also, the single control loop usually can complete
only a control task. Therefore, many control loops for differ-

ent control tasks should be designed and fine-tuned, and the
control loop switch logic needs to be well designed to integrate
these control loops to achieve the main control objective and

the limit protection function, which raises a series of design
challenges of switched systems. This whole process makes the
control structure complex.8,10,15,24–29

Therefore, the novel model-based control is attractive at the

current stage, which aims at replacing the sensor data with
model outputs and feeding these outputs to the control system
to control unmeasurable critical parameters directly, such as

thrust, the inlet temperature of high-pressure turbine and surge
margin.18,30–32 The model predictive control technique is one
of the model-based control methods. It has attracted attention

because of its capability to handle the main control objective
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and manage constraints simultaneously in a single controller,
which is quite applicable to address control tasks of gas tur-
bine engines.11,33–39 Thus, when a Model Predictive Control

(MPC) controller is used, there is no need to design multiple
control loops like the traditional structure because functions
of different control loops can be integrated into this controller.

In a typical MPC controller, a constrained optimization
problem is constructed and solved to get the optimal control
sequence at every simulation time instant. However, the solv-

ing process of the optimization problem usually raises a high
demand for computation recourses. In the currently existing
gas turbine engine MPC controllers, the control sequence is
defined over the control horizon in the optimization process,

but only the elements for current simulation time instant are
applied. To the authors’ best knowledge, the research attention
is mainly paid to the capability of constraint management,

model developments, and optimization algorithms rather than
the reduction of the computation burden. But the computation
burden should be considered because of the limited computa-

tional resources of the aero gas turbine engine control system.
Thus, it is worthwhile to investigate the reduction of the MPC
computation burden when an MPC controller is implemented

in a gas turbine engine. A concept called multiplexed method is
investigated in Refs. 40,41, but rare further studies are con-
ducted based on these researches for gas turbine engine.

Besides, these researches mainly focus on normal control

tasks, namely controlling engine parameters to track control
commands generated by a pre-designed control schedule and
ensuring that the engine operates within a safe operation

boundary. However, an advanced control system should have
the capability to complete some specific control tasks.4,7,42–45

For example, for the take-off period and some emergencies

(e.g. one engine inoperative), a larger thrust level may be in
demand to ensure the safety of flight and passengers. Thus, a
quick increase of thrust exceeding the set-point level is antici-

pated to provide additional power while the engine operates
safely as much as possible. This is normally achieved by
increasing the set-point command, constraint relaxation, and
control logic switch in a traditional control architecture

although these will increase the risk of violating the original
limits, which may result in shortening the engine’s life.7,43–45

For this aspect, the MPC controller’s potential has not been

investigated in detail, which motivates our work. An MPC
controller can optimize some selected parameters during the
engine operation because it contains an optimization solver.

It means that the controller is able to maximize or minimize
some parameters even if there are no explicit commands defin-
ing relative operating points, because the optimization process
embedded in the MPC controller would find these operating

points automatically when a specific objective function is well
defined. Thus, it is valuable and practical to develop an MPC
based controller that can achieve normal control tasks and

specific tasks such as thrust optimization together.
Therefore, an MPC controller for direct thrust control is

presented in this article. The main contribution and advan-

tages can be summarized as follow. (A) Compared with exist-
ing standard MPC controller applied in aero gas turbine
engines, a novel strategy of reducing the dimension of the opti-

mized control sequence is developed. As a result, a much lower
computation burden than the standard/conventional MPC
algorithm is achieved while no modification of the control
structure is required. (B) Based on the feature of MPC con-
trollers, a new objective function is developed to maximize
the engine thrust. Thus, the MPC controller’s function is well
extended from completing normal direct thrust control tasks to

achieving online thrust optimization tasks. Another benefit
brought is that both normal direct thrust control and online
thrust optimization can be achieved in a single controller by

switching the control objective functions without any addi-
tional modification of controller structure.

The paper is organized as follows. Section 1 presents the

introduction while Section 2 details the proposed control
method about direct thrust control. Section 3 discusses the dif-
ferent control modes for direct thrust control and Section 4
analyzes and discusses simulation results. In Section 5, the

research conclusions are presented.

2. Control algorithm

2.1. Reduced-dimensional MPC controller description

The proposed MPC controller consists of a predictive model
linearized from a nonlinear adaptive model and an optimiza-
tion solver (as shown in Fig. 1), in which the predictive model

is used to construct the optimization problem to be solved.
In the proposed method, the controller inputs consist of the

commands of controlled variables, the limits of limited param-

eters, and the limits of actuators. The predictive model is a
state-space model that is updated continuously by a nonlinear
adaptive model detailed in Refs. 46,47, and then this state-

space model is implemented to construct a quadratic optimiza-
tion problem according to designed objective functions and
various constraints. Moreover, because this predictive model
is updated every simulation time instant, it provides an

approach to reduce the dimension of the control sequence in
the proposed method. Besides, two objective functions are pre-
sented in the proposed MPC controller to realize different

thrust control tasks. Based on the predictive model, the objec-
tive functions, and constraints, a constrained quadratic prob-
lem can be constructed and solved by the optimization

algorithm.

2.2. Predictive model

The predictive model plays an important role in the MPC algo-

rithm, which is used to predict parameter changes over the pre-
diction horizon, and different types of models always
determine the computation complexity of an MPC algorithm.

For example, a linear model can lead to a quadratic optimiza-
tion problem when a quadratic performance index is selected,
while a nonlinear model always can result in a higher-order

nonlinear optimization problem. There is no doubt that it is
much easier to solve the former problem than the latter one.

In this paper, a state-space model is used as the predictive

model, and this model is linearized from an adaptive Compo-
nent Level Model (CLM) according to the engine operating
state of last simulation time instant k � 1. Thus, this state-
space model can be written as follow, and the details about lin-

earization and update for this state-space model can be
referred to Refs. 46,47.

xmþ1 � xk;CLM ¼ A xm � xk�1ð Þ þ B um � uk�1ð Þ
ym � yk�1;CLM ¼ C xm � xk�1ð Þ þD um � uk�1ð Þ

(
ð1Þ



Fig. 1 Layout of proposed MPC controller.

Reduced-dimensional MPC controller for direct thrust control 69
Note that the point (xk�1,uk�1) denotes the engine operat-

ing point where the state-space model is linearized.
Taking a twin-spool turbofan as an example, the state vec-

tor is always comprised of two shaft speeds, namely Low-

Pressure (LP) shaft speed Nfan and High-Pressure (HP) shaft
speed Ncom, and the control variables are main fuel flow mfb

and nozzle area A8 in this example in this paper.

Because the outputs are divided into controlled variables
and constrained variables, the Eq. (1) can be rewritten as

Dxmþ1 ¼ ADxm þ BDum þ e

Dyctrl;m ¼ CctrlDxm þDctrlDum
Dycon;m ¼ CconDxm þDconDum

8><
>: ð2Þ

where

Dxmþ1 ¼ xmþ1 � xk�1

Dxm ¼ xm � xk�1

Dum ¼ um � uk�1

e ¼ xk;CLM � xk�1

Dyctrl;m ¼ yctrl;m � yk�1;CLM

Dycon;m ¼ ycon;m � yk�1;CLM

8>>>>>>>><
>>>>>>>>:

ð3Þ

Note that there is a nonlinear item e that makes the predic-
tive model different from normal state space models. As
defined in Eq. (3), it is the change from the state vector of sim-

ulation time instant k � 1 to the state vector calculated by the
component level model for simulation time instant k. This item
actually represents the influence of shaft dynamics on the

engine operation. When the engine is at steady state, the shaft
speeds are unchanged, so e = xk,CLM � xk�1 = 0. However,
when the engine is during the transient operation, the item e

is a non-zero item, which can be considered as the additional

increase of shaft speeds caused by the linearization during
the transient operation. Thus, the model shown in Eq. (2) is
a nonlinear model in fact.

2.3. Reduced-dimensional MPC algorithm

In the standard MPC controller, the control sequence to be

optimized is defined as

DU ¼ DuTkþ0;Du
T
kþ1; . . . ;Du

T
kþnu�1

� �T ð4Þ
It can be seen that all the control variables are optimized

for every future sampling period over the control horizon.
However, only the first vector, namely uk+0 is implemented

to control the engine. The computation scale of a constrained
optimization problem increases as the dimension of the solu-

tion increases, so an interesting idea is to reduce the dimension
of the control sequence to lower the demand of computation
power. Thus, a reduced-dimensional control sequence is

defined and optimized in the proposed method. Assuming that
the dimension of the control variable vector is l, and the vector
is divided into p groups with the dimension of the group qi,

i = 1,2,. . .,p. Then, the control sequence can be defined as

DU ¼ DuTi;kþ0;Du
T
i;kþ1; . . . ;Du

T
i;kþnu�1

h iT
ð5Þ

where Du ¼ DuT1 ;Du
T
2 ; . . . ;Du

T
p

h iT
.

It can be seen that the dimension of control sequence
defined by Eq. (5) is reduced in comparison with that of con-

trol sequence shown in Eq. (4), because every component of
the control sequence in Eq. (5) is the ith group of Du, which
means that only a qi-dimension input vector is considered over

the control horizon every simulation time instant while an l-
dimension input vector is considered over the control horizon
every simulation time instant in Eq. (4). Thus, the dimension

of the control sequence in Eq. (5) is nuqi while that of the con-
trol sequence is nul in Eq. (4), which is larger than nuqi. Based
on this reduced-dimensional control sequence, a constrained

optimization problem with smaller scale can be constructed
in comparison with the problem scale that the control sequence
in Eq. (4) leads to, which results in a reduction in computation
demands.

Another difference is that the elements of Eq. (4) is
unchanged except their subscripts of time instant when a
new optimization problem is constructed at a new simulation

time instant. However, the elements of Eq. (5) are changeable.
For example, at simulation time instant k, only the ith group
of control variables is implemented over the control horizon

in Eq. (5), then it would be only the (i + 1)th group of control
variables over the control horizon in Eq. (5) at simulation time
instant k + 1. What’s more, if the pth group of control vari-
ables is considered at time instant k, then the first group of

control variables would be implemented in the control
sequence at time instant k + 1, and so on. Moreover, there
is no need to divide the control vector evenly; instead, some

control variables with a strong coupling characteristic can be
put in a group.

In another perspective, this control sequence represents that

all the control variables hold their value of previous simulation
time instant except a certain group of control variables ui.
Thus, these groups equal to zero, namely Duj = 0,j– i because

the predictive model is generated at the operating point of the
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last simulation time instant. As a result, it can be considered
that Eq. (5) is obtained by removing all the zero elements from
the Eq. (4), and only a group of control variables are valid in

the predictive model, namely the predictive model is reduced to
a qi-dimension-input model from the l-dimension-input model.

Then, the predictions based on the predictive model shown

in Eq. (2) can be conducted as follow. Firstly, the state vector
should be predicted for predicting output vector of future time
instants.

Dxkþ1 ¼ADxkþBiDui;kþ e

Dxkþ2 ¼ADxkþ1þBiDui;kþ1þ e

¼A ADxkþBiDui;kþ eð ÞþBiDui;kþ1þ e

¼A2DxkþABiDui;kþBiDui;kþ1þ Aþ Ið Þe
Dxkþ3 ¼ADxkþ2þBiDui;kþ2þ e

¼A A2DxkþABiDui;kþBiDui;kþ1þ Aþ Ið Þe� �
þBiDui;kþ2þ e

¼A3DxkþA2BiDui;kþABiDui;kþ1

þBiDui;kþ2þ A2þAþ I
� �

e

..

.

Dxkþny ¼AnyDxkþAny�1BiDui;kþ . . .

þAny�nu�2BiDui;kþnu�1þ . . .þBiDui;kþnu�1

þ Pny�1

z¼0

Az

 !
e

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð6Þ

where Bi is the corresponding block of B with the input ui.
B = [B1,B2,. . .,Bi,. . .,Bp].

In Eq. (6), the state vectors are predicted by the input vec-

tor ui and the corresponding input matrix Bi, and the state vec-
tor of next future time instant is based on the prediction of the
state vector of last future time instant, for example, Dxk+2

depends on Dxk+1 partly, but finally all the predicted state vec-
tors can track back to Dxk.

Base on the state vector predictions, the output vector pre-

dictions can be given by using the output equation in a similar
way.

Dyctrl; k ¼CctrlDxkþDctrl;iDui;k
Dyctrl; kþ1 ¼CctrlDxkþ1þDctrl;iDui;kþ1

¼CctrlADxkþCctrlBiDui;kþDctrl;iDui;kþ1þCctrle

Dyctrl; kþ2 ¼CctrlDxkþ2þDctrl;iDui;kþ2

¼CctrlA
2DxkþCctrlABiDui;kþCctrlBiDui;kþ1

þDctrl;iDui;kþ2þCctrl Aþ Ið Þe
..
.

Dyctrl; kþny�1 ¼CctrlA
ny�1DxkþCctrlA

ny�2BiDui;k

þ . . .þCctrlA
ny�nu�1BiDui;kþnu�1

þ . . .þCctrlBiDui;kþnu�1

þDctrl;iDui;kþnu�1þCctrl

Pny�2

z¼0

Az

 !
e

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð7Þ

where Dctrl = [Dctrl,1,Dctrl,2,. . ., Dctrl,i,. . .,Dctrl,p].

As a result, the prediction of controlled variables and con-
strained variables can be given as

DYctrl ¼ PctrlDxk þHctrlDUþ Lctrle

DYcon ¼ PconDxk þHconDUþ Lcone

�
ð8Þ
DYctrl ¼

Dyk
Dykþ1

Dykþ2

..

.

Dykþny�1

2
66666664

3
77777775

ctrl

;DU¼

Dui;k
Dui;kþ1

Dui;kþ2

..

.

Dui;kþnu�1

2
66666664

3
77777775
;DYcon ¼

Dyk
Dykþ1

Dykþ2

..

.

Dykþny�1

2
66666664

3
77777775

con

ð9Þ

Pctrl ¼

C

CA

CA2

..

.

CAny�1

2
6666664

3
7777775

ctrl

;Lctrl ¼

0

C

C AþIð Þ
..
.

C Any�2þ . . .þAþI
� �

2
66666664

3
77777775

ctrl

Hctrl ¼

Di 0 0 � � � 0 0

CBi Di 0 � � � 0 0

CABi CBi Di � � � 0 0

..

. ..
. ..

. ..
. ..

.

CAnu�2Bi CAnu�3Bi CAnu�4Bi � � � CBi Di

..

. ..
. ..

.
: ..

. ..
.

CAny�2Bi CAny�3Bi CAny�4Bi � � � CAny�nuBi C
Pny�nu�1

z¼0 Az
� �

BiþDi

2
66666666666664

3
77777777777775

ctrl

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð10Þ

The Pcon, Lcon and Hcon can be given in a similar form to
Pctrl, Lctrl and Hctrl shown in Eq. (10). Normally, thrust F is

the most important parameter for an aero gas turbine engine,
thus thrust is selected as a controlled variable to achieve the
direct thrust control. Besides, the fan surge margin SMfan

always witnesses a larger change than the compressor surge

margin SMcom, and it is also a critical parameter to indicate
whether the engine is operating in an extreme condition. Thus,
SMfan is also selected as a controlled variable to be controlled

together with thrust F.
Besides that, the dimension of the state vector is two, and

the dimension of the constrained parameter vector is s, so

the dimensions of prediction matrices are

Pctrl 2 R2ny�2;Hctrl 2 R2ny�nuqi ;Lctrl 2 R2ny�2

Pcon 2 Rsny�2;Hcon 2 Rsny�nuqi ;Lcon 2 Rsny�2
ð11Þ

For the constrained parameters, their limits cannot be bro-

ken during the engine operation. Thus, these parameters can-
not go beyond their upper limits and lower limits.

Ylim;lb � PconDxk � Lcone 6 HconDU

6 Ylim;ub � PconDxk � Lcone ð12Þ
Besides that, there are upper limits and lower limits for con-

trol signals as well as the actuators.

Ulim;lb 6 DUþ Cui;k�1 6 Ulim;ub

Ua;lb 6 GDU 6 Ua;ub

�
ð13Þ

where G and C are the transition matrices as

G ¼

I 0 0 � � � 0

�I I 0 � � � 0

0 �I I � � � 0

..

. ..
. ..

. ..
.

0 0 0 �I I

2
6666664

3
7777775
;C ¼

I

I

..

.

I

2
66664

3
77775 ð14Þ

It should be noted that Ulim,ub, Ulim,lb, Ua,lb and Ua,ub are
dynamic because the control variable considered in the control
sequence is different for every simulation time instant.



Fig. 2 Flight condition in simulation.

Reduced-dimensional MPC controller for direct thrust control 71
3. Objective function for different thrust control mode

3.1. Normal thrust control

For the normal control issue, the controller should drive the
engine to produce the desired thrust according to set-point

commands, thus the thrust control error should be considered
for this task.

Because an optimization process is conducted in an MPC

controller, the control error can be considered in the objec-
tive function. Normally a quadratic performance index that
contains control errors and the energy consumption is
selected.

J ¼ eTnormalQenormal þ DUTRDU ð15Þ
where enormal is the control error defined as

enormal ¼ rctrl � Yctrl ð16Þ
where rctrl is the command vector over the prediction horizon,

and

Yctrl ¼ DYctrl þ

I

I

..

.

I

2
66664

3
77775yk�1;CLM ð17Þ

The optimization task in the controller is to minimize
this objective function, which means that the control objec-
tive is to drive the engine to operate at the point defined by

the command with minimum energy consumption. In this
objective function, control error and the control energy
are balanced by two coefficient matrices. In other words,
larger matrices Q imposes stricter control error require-

ments, while larger matrix R denotes less energy consump-
tion. Usually, these elements can be fine-tuned after trial-
and-error. Consequently, the normal control issue can be

addressed when this objective function is implemented in
the MPC controller.

3.2. Maximum thrust mode

In most cases, thrust should be controlled to track its com-
mand. However, in extreme operating conditions (e.g. aborted
landing), thrust should be increased as much as possible to sat-

isfy special demands in comparison with that of the normal
operating state. Thus, it is necessary to develop a method to
maximize the thrust during the flight mission. Given that a

specific control objective can be achieved in a MPC controller
by the selected objective function, modification of the objective
function is a feasible approach.

Thus, a new objective function is defined as following to
maximize the thrust during the engine operation.

J ¼ eTmaxQemax þ DUTRDU� wFTF ð18Þ
where F is the vector representing predicted thrust over the

predicted horizon, namely F ¼ Fkþ0;Fkþ1; . . . ;Fkþny�1

� �T
.

It should be mentioned that the control error emax of Eq.
(18) is almost the same as enormal in Eq. (16) except that the
control error of thrust is not included, so the thrust command

is not considered in this objective function. As a result, the
thrust command is not a necessary item in this control mode.
Instead, an item representing the maximum thrust is added to
replace the control error of thrust. There is no doubt that the
objective function tends to a smaller value when the item

related to thrust is increased. Thus, the minimum of this func-
tion can be reached when the thrust reaches the maximum and
other controlled parameters track their commands well. More-

over, there is no need to change any part of the proposed con-
troller’s structure when the objective function is changed to
conduct this control mode. It brings the benefit that this objec-

tive function and the objective function shown in Eq. (15) can
be switched from each other easily, namely the normal thrust
control mode and maximum thrust mode can be changed from
each other smoothly.

Thus, the proposed MPC controller can be presented as

minJ

s:t: Eq: 12ð Þ;Eq: 13ð Þ
�

ð19Þ
4. Simulation

4.1. Simulation case

To demonstrate the effectiveness of the proposed method, the
MPC controller is implemented to a twin-spool gas turbine

engine, in which the fan component is linked to the low-
pressure turbine through the low-pressure shaft while the com-
pressor component is linked to the high-pressure turbine

through the high-pressure shaft. The state-space model is
updated continuously from a high-fidelity Linearized Kalman
Filter (LKF) based component-level model of which modeling
details can be found in Ref. 47. Then, the generated state-space

model is used as the predictive model and introduced into the
online optimization process.

In this case, F and SMfan are selected as the controlled vari-

ables. The command of F is given by a pre-designed thrust con-
trol schedule and the command of SMfan is a constant, namely
rSM = 10%, which means that the fan surge margin is kept at a

certain level. Nfan, Ncom, SMfan, SMcom and the inlet tempera-
ture of high-pressure turbine TIT are considered as limited
parameters. The limits for these parameters are Nfan � 1.05,



Fig. 3 Responses and changes of control variables in flight envelop.
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Ncom � 1.05, SMfan � 5%, SMcom � 5%, TIT � 1.05. It should
be mentioned that SMfan is not only a controlled variable but

also a limited parameter, because its lower limit should not be
broken during the transient operation. Note that all the
parameters are normalized to the design point except two
surge margins. Besides that, the system noise and the measure-

ment noise are considered, of which covariance are both
0.0022 � I.



Table 1 Control error with SMPC and SIMPC controller.

(nu,ny) Error of F Deviation

(error of F)

Error of SM (%) Deviation

(error of SM) (%)
SMPC SIMPC SMPC SIMPC

(1,2) 0.011420 0.021078 0.009658 3.238254 3.294703 0.056449

(1,3) 0.011275 0.021011 0.009736 3.230974 3.271633 0.040659

(1,4) 0.011024 0.019547 0.008523 3.234271 3.280991 0.046720

(1,5) 0.011021 0.019849 0.008827 3.228046 3.271303 0.043257

(1,6) 0.010980 0.018522 0.007541 3.223577 3.272841 0.049264

(2,3) 0.011525 0.020589 0.009064 3.244670 3.300952 0.056282

(2,4) 0.011514 0.019540 0.008026 3.239428 3.296920 0.057492

(2,5) 0.011514 0.018835 0.007321 3.237951 3.290261 0.052310

(2,6) 0.011445 0.018868 0.007423 3.236535 3.281196 0.044661

(3,4) 0.011504 0.019464 0.007960 3.240231 3.294312 0.054081

(3,5) 0.011465 0.018828 0.007363 3.241352 3.282596 0.041244

(3,6) 0.011427 0.018704 0.007276 3.240686 3.287254 0.046567

(4,5) 0.011372 0.018894 0.007522 3.241846 3.284405 0.042559

(4,6) 0.011370 0.018482 0.007112 3.240239 3.282681 0.042442

(5,6) 0.011328 0.019538 0.008210 3.239837 3.285083 0.045246

Table 2 Time consumption of optimization process.

(nu,ny) Average time (ms)

SMPC SIMPC

(1,2) 0.051441 0.040040

(1,3) 0.054130 0.042986

(1,4) 0.061437 0.044703

(1,5) 0.062523 0.046627

(1,6) 0.068375 0.050653

(2,3) 0.090240 0.056675

(2,4) 0.109032 0.062770

(2,5) 0.122291 0.063802

(2,6) 0.127381 0.071514

(3,4) 0.156778 0.082484

(3,5) 0.189116 0.093823

(3,6) 0.208139 0.100577

(4,5) 0.264550 0.109181

(4,6) 0.327304 0.130568

(5,6) 0.443558 0.153606
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Besides, the sampling period is 20 ms, and the simulation is
conducted in the flight envelope as shown in Fig. 2. Note that

the unit of horizon axis is second (s) rather than minute (min)
because this flight condition change is used for demonstrating
the effectiveness of the proposed direct thrust control method

for different flight conditions rather than for simulating a com-
plete flight mission.

4.2. Results analysis

Firstly, the simulation results about normal direct thrust con-
trol are given in this subsection to show the control outcome
and the advantage of time-consumption of the proposed con-

trol method. Given that the proposed method is a reduced-
dimensional variant of the Standard MPC (SMPC), the con-
trol outcome under the SMPC controller is given for

comparison.
Fig. 3 shows parameter responses and control variable

changes during the simulation when the control horizon and

the prediction horizon are 3 and 6 respectively. The weight
Q and R are set to diagonal matrices, and the weights for
thrust F and SMfan are 5 and 1, and the weights for control

variables, namely for main fuel flow mfb and nozzle area A8,
are both 1. Legend ‘‘SIMPC” denotes the response of the pro-
posed MPC controller.

Effective command tracks and constraint management can
be achieved by both SIMPC and SMPC controllers. Con-
trolled parameter responses under the proposed SIMPC con-

troller and those under the SMPC controller can track the
command well although changes of control variables are a lit-
tle different in some transient operations. For example, at sim-
ulation instant 50 s, thrust response speed under the SIMPC

controller is a little slower than that under the SMPC con-
troller, it is because only a control variable is allowed to be
changed every simulation time instant in the SIMPC controller

while two control variables are changed together in the SMPC
controller. This is in accordance with changes of main fuel flow
and nozzle area shown in Figs. 3(g) and (h), which shows that

these two control variables change faster when the SMPC con-
troller is implemented. However, it should be mentioned that
the increase of control error caused by this feature of the
SIMPC controller is small and acceptable while the SIMPC

controller gains a significant advantage in reduction of time
consumption in comparison with the SMPC controller.

Table 1 compares the control error with the SMPC con-

troller and that with the SIMPC controller. The control error
of thrust is judged by RMSE that is calculated by Eq. (20),
while the control error of SMfan is judged by the percent devi-

ation between the command and responses shown in Eq. (21).
The columns ‘‘Deviation” compare the control errors under
the SIMPC controller with that under the SMPC controller.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ri � yið Þ2

N

vuuut
ð20Þ

dev ¼
PN

i¼1 ri � yið Þ=rij j
N

� 100% ð21Þ

Table 1 shows that the control error of the proposed
method is only a little larger than that of the SMPC controller,
which demonstrates the control effectiveness of the proposed



Fig. 4 Maximum thrust during cruise period.
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method. Concretely, the SMPC achieves the minimal RMSE
of thrust (0.010980) when the control horizon and predictive

horizon are set to 1 and 6, while the RMSE of thrust under
the proposed SIMPC controller is 0.018522, which is only
0.007541 larger than the RMSE the former controller achieves.

For fan surge margin SMfan, the minimal control error under



Table 3 Engine performance reached when maximum thrust

mode is implemented.

Mode Thrust Rise time (s) RMSE of

SMfan (%)

Normal thrust control 0.6481 0.1774

w = 0.03 0.7565 2.1400 0.2754

w = 0.05 0.7573 1.4650 0.2820

w = 0.1 0.7584 1.1600 0.3327

w = 0.15 0.7586 0.9800 0.3556

w = 0.2 0.7587 0.9750 0.3942

w = 0.5 0.7595 0.9400 0.6296
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the SMPC controller is 3.223577% when (nu,ny)=(1,6) while
that of the proposed one is 3.271303% when (nu,ny)=(1,5),
which is only 0.047726% larger. Furthermore, the deviations
of thrust control error only vary from 0.007112 to 0.009736,

and the deviations of SMfan control error fluctuate from only
0.040659% to 0.057492%. Thus, the deviations of control
errors between the SMPC controller and the proposed SIMPC

controller are very small, which means that the control out-
come achieved by the SIMPC controller is very close to that
achieved by the SMPC controller.

To compare the time required for the optimization process
of the proposed SIMPC controller with that of the SMPC con-
troller, the time consumption is recorded and listed in Table 2.
Note that the time consumption test is conducted on a Win-

dows operation system based laptop. Although the time con-
sumption recorded cannot show the real real-time property
of both controllers, it still supports the comparison because

all the tests are based on the same device, which means that
the same test baseline is implemented. The ‘‘Average time”
in Table 2 denotes the average time consumption defined as

Eq. (22).

tavg ¼
PN

i¼1ti
N

ð22Þ

Table 2 shows that the time consumption of both con-
trollers witnesses an increase when the control horizon
increases, but the average time consumption of the SMPC con-

troller is larger than that of the SIMPC controller when the
same parameters setting is implemented. For instance, the
average time of the former controller is about 1.3–2.9 times

the latter controller. Besides that, the SMPC controller experi-
ences a more significant increase than the SIMPC controller.
For example, the average times of the SMPC controller and
SIMPC controller are close (0.068375 ms and 0.050653 ms

respectively) when the control horizon and prediction horizon
are 1 and 6. However, the average time consumption rises to
0.443558 ms and 0.153606 ms respectively. It means that the

former one increases 6.5 times while the latter one only
increases 3.0 times, which shows the superiority of the pro-
posed method in time consumption.

4.3. Maximum thrust mode

To demonstrate the effectiveness of the proposed method for

maximum thrust mode, this method is implemented in differ-
ent cases. The first and second cases are to maximize the thrust
at a steady-state operating point (cruise) and during the tran-
sient operation (climb period), and the third one is to maximize
the thrust during the whole simulation. The forth case is to
maximize the thrust at simulation time 10–20 s and 50–60 s
but to activate the normal thrust control mode at other simu-

lation time, which aims at showing the capability of switch
between these two control modes.

For the first case, the flight condition change from 0 s to

20 s is as same as the change from 0 s to 20 s shown in
Fig. 1, but the flight condition is unchanged after 20 s. Then,
the thrust optimization is activated from 20 s when the engine

is at a steady-state point. The weights are 5, 1, 1, 1 for thrust F,
SMfan, mfb, and A8 in Eq. (15) respectively, while they are 1, 1,
1 for SMfan, mfb, and A8 in Eq. (18) respectively.

Fig. 4 shows the engine parameter responses and control

variables’ changes with different thrust coefficients w for the
first case. The legend ‘‘Command” is the commands for thrust
and fan surge margin, ‘‘No thrust optimization” denotes the

parameter response when only the objective function shown
in Eq. (15) is implemented. Table 3 shows the engine perfor-
mance reached when the maximum thrust mode is

implemented.
It is noted that thrust is increased significantly when the

objective function for the maximum thrust mode is imple-

mented, and different thrust responses are achieved when dif-
ferent coefficients w are implemented. Fig. 4 shows that the
thrust can be increased more quickly when a larger coefficient
is selected, and it is in line with the rise times of thrust control

shown in Table 3. The rise time is 2.1400 s when w = 0.03, but
it decreases to 0.9400 s when w is increased to 0.5, which sug-
gests that the proposed controller can adjust the rise time by

selecting different coefficients with respect to item of maximum
thrust in the objective function. Besides, the change of rise time
decreases when the coefficient w increases. For instance, the

time decreases by 0.3050 s when w rises to 0.1 from 0.05, but
it only goes down by 0.035 s when w jumps from 0.2 to 0.5.

Besides that, there is an overall trend that a larger coeffi-

cient can lead to a larger terminal value of thrust. In other
words, generally a better optimization of thrust can be reached
with a larger coefficient (Table 3). For example, the thrust after
optimization is larger than the original thrust level at steady-

state, varying from 16.7% to 17.2% larger with increasing
coefficients. In contrast, the surge margin is controlled satisfac-
torily to track the command of fan surge margin although the

RMSE of SMfan increases when w increases. This is because
the larger w means that a relatively smaller coefficient of the
control error of SMfan is considered in the objective function.

This is reasonable as the maximum thrust mode aims at max-
imizing the thrust by making full use of any potential engine
parameter margins. For example, the LP shaft speed and HP
shaft speed rise to more than 1.0, and TIT is increased to reach

its limit line, while there is a large limit margins of these
parameters left when the engine is controlled by normal thrust
control mode.

For the second case, the flight condition change is as same
as the first case, but the maximum thrust mode is started at
10 s, which means the thrust is optimized during the transient

operation. The weights are 5, 1, 1, 1 for thrust, SMfan, mfb, and
A8 in Eq. (15) respectively, while they are 0.2, 1, 1, 1 for thrust,
SMfan, mfb, and A8 in Eq. (18) respectively. Fig. 5 shows the

engine parameter responses and control variables’ changes
for this case. The legend ‘‘Maximum thrust at 10 s” denotes
the parameter response when the thrust is optimized from
10 s, ‘‘Maximum thrust at 20 s” denotes the parameter



Fig. 5 Maximum thrust during transient operation.
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response when the thrust is optimized from 20 s, namely after
being steady-state.
Fig. 5 shows that the thrust can be optimized greatly during
the transient operation, which suggests the proposed controller



Fig. 6 Maximum thrust during whole simulation.
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Fig. 7 Two control mode switch during whole simulation.
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also can optimize the thrust during the transient operation.
This optimization is also achieved by driving various limited

parameters to close to their limits. Besides, the thrust and other
parameters finally reach a very close level either starting max-
imum thrust mode from 10 s or starting it from 20 s when the
flight condition is unchanged. For example, the thrust of the

former is 0.7585 at the final 5 s while that of the latter is
0.7587. Similarly, the LP shaft speed and HP shaft speed of
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the former are 1.0288 and 1.0223 respectively while those of
the latter are 1.0289 and 1.0224. These suggest the effectiveness
of the proposed method either during a transient operation or

at a steady-state operating point.
Fig. 6 shows the parameter responses and control variable

changes when the thrust optimization is activated during the

whole simulation.
It is noted that the proposed controller for optimizing

thrust can be effective in the flight envelope as thrust can be

much larger than that when no thrust optimization is imple-
mented. For example, the thrust commands are 0.8548,
0.6506, 0.3782, 0.5974 and 0.8547 at the steady-state points
during the period of 0–10 s, 10–20 s, 30–40 s, 40–50 s and

50–60 s respectively, but the thrust can reach the peak of
1.1116, 0.7591, 0.4284, 0.6229 and 1.1105 respectively, with
30.04%, 16.68%, 13.27%, 4.27% and 29.93% increases.

Accordingly, various parameters become much closer to their
limit lines in comparison with the responses when thrust is
not maximized. Note that for the period of 20–30 s, the thrust

level achieved by the normal thrust control mode and maxi-
mum thrust mode is the same. This is because the upper limit
of TIT has been reached under the normal thrust control

mode. In other words, there is no engine potential that can
be used to increase the thrust anymore.

In addition, Fig. 7 shows parameter responses and control
variable changes under the forth case.

Fig. 7 shows that two control modes can switch from each
other effectively. It can be found that when the maximum
thrust mode is activated, the thrust can increase significantly,

while this mode is turned off the thrust response can track
the command well. For example, the maximum thrust mode
is turned off at 20 s, then the thrust decreases towards the com-

mand and it becomes as same as the thrust response that is
controlled by the normal control mode during the whole sim-
ulation after about 21 s.

Overall, the above four cases demonstrate that the thrust
optimization based on the proposed MPC controller is effec-
tive, which extends the application of MPC controller on aero
gas turbine engines. The maximum thrust mode can be acti-

vated effectively both in transient operation or steady-state
operation, and the switch between normal thrust control mode
and the maximum thrust control mode is simple and com-

pletely practical. Besides, it should be mentioned that the
amplitude of thrust increase depends on the originally designed
thrust command. There is no doubt that a much larger increase

can be attained if the original thrust command is relatively
small because the smaller original thrust command always
leads to a larger limit margin, namely the gap between limited
parameters and their limits, to be fully developed. Thus, it

should be mentioned that the capability of optimizing the
thrust by using the potential margins sufficiently rather
than the capability of maximizing the thrust more than a

certain amplitude is investigated and demonstrated in this
subsection.
5. Conclusions

(1) A novel reduced-dimensional MPC controller is pre-
sented and implemented to achieve the direct thrust con-
trol in the concept of model-based control. By comparing

with standard MPC controller, the computation burden
of the proposed method is significantly reduced by

redefining the control sequence to optimize only one con-
trol variable at every simulation time instant. Thus, the
dimension of the control sequence is decreased signifi-

cantly, which leads to a reduction in the scale of the opti-
mization problem that needs to be solved.

(2) This proposed MPC controller is further developed to
not only complete normal thrust control tasks but also

realize thrust optimization, which extends the function
of the MPC controller on the gas turbine engine con-
trol. The former aims at driving the engine to operate

following the given command with a quadratic perfor-
mance objective function. The latter aims at fully devel-
oping the capability of the proposed MPC controller to

maximize the thrust based on the feature of optimiza-
tion. A different objective function is defined to maxi-
mize the thrust according to current operating points
online without any modification of the controller in

comparison with the controller for normal thrust con-
trol mode.

(3) The proposed method is implemented to a twin-spool

turbofan engine to achieve different direct thrust control
modes. Different control horizons and prediction hori-
zons are implemented in this proposed MPC controller,

and a comparison of time consumption is conducted
based on the simulation in the wide flight envelope. In
the terms of average time consumption, a 20.59% to

65.37% reduction is achieved by the proposed MPC
controller in comparison with that of the standard
MPC controller. This demonstrates the effectiveness of
the strategy that reduces dimension of control sequence

in the MPC controller.
(4) The normal thrust control mode and maximum thrust

mode is demonstrated by simulations. Particularly,

different thrust coefficient for the objective function of
maximum thrust mode is investigated, which denotes
that this coefficient can be a useful parameter to adjust

the rise time and thrust level in maximum thrust mode.
The thrust optimization in four different cases demon-
strates that two thrust control mode can be switched
smoothly. For all modes, the parameter control and

constraint management can be achieved, and the maxi-
mum thrust mode can increase the thrust while the limits
are still not violated.

(5) As the maximum thrust control mode is achieved in this
paper, it would be interesting to investigate the method
to achieve more intelligent control modes in the future

research, such as the minimum specific fuel flow con-
sumption mode, the minimum HPT inlet temperature
mode and so on. It is also worthwhile to investigate

the possibility of using more advanced predictive mod-
els, such as deep neural networks and so on, and con-
structing a higher order nonlinear optimization
problem to achieve a better thrust optimization in the

maximum thrust mode.
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