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Abstract: In this work, three novel re-entrant plate lattice structures (LSs) have been designed
by transforming conventional truss-based lattices into hybrid-plate based lattices, namely, flat-
plate modified auxetic (FPMA), vintile (FPV), and tesseract (FPT). Additive manufacturing based
on stereolithography (SLA) technology was utilized to fabricate the tensile, compressive, and LS
specimens with different relative densities (ρ). The base material’s mechanical properties obtained
through mechanical testing were used in a finite element-based numerical homogenization analysis
to study the elastic anisotropy of the LSs. Both the FPV and FPMA showed anisotropic behavior;
however, the FPT showed cubic symmetry. The universal anisotropic index was found highest for FPV
and lowest for FPMA, and it followed the power-law dependence of ρ. The quasi-static compressive
response of the LSs was investigated. The Gibson–Ashby power law (≈ρn) analysis revealed that the
FPMA’s Young’s modulus was the highest with a mixed bending–stretching behavior (≈ρ1.30), the
FPV showed a bending-dominated behavior (≈ρ3.59), and the FPT showed a stretching-dominated
behavior (≈ρ1.15). Excellent mechanical properties along with superior energy absorption capabilities
were observed, with the FPT showing a specific energy absorption of 4.5 J/g, surpassing most
reported lattices while having a far lower density.

Keywords: additive manufacturing; plate lattice; stereolithography (SLA); compression response;
resin; energy absorption

1. Introduction

Lightweight engineering cellular materials are being extensively used and investi-
gated in a wide range of industries such as the aerospace, biomedical, and transportation
industries. In addition to the benefits brought about by light weighting, the dire need for
materials with mechanical properties customizable by design was the motive behind the
development of the so-called material concerned sub-field “Architected Cellular Materials
(ACMs)” or referred to as lattice structures (LSs) [1]. LSs are formed by arranging unit cells
made of struts, shells, and/or plates into a three-dimensional periodic array. Compared
to solid continuum materials, LSs, although lower in density, have high specific strengths
and superior energy absorption characteristics, making them widely used in modern-day
applications [2–4]. LSs properties are mainly driven by unit cell topology, scale, and the
constituent material’s properties. Their customizability also allows for the development of
application-specific materials [5–7].
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With the advent of additive manufacturing technologies, architectures previously
unimaginable became possible, allowing for the design and fabrication of complex LSs
with multifunctional structural capabilities, displaying unprecedented mechanical perfor-
mances [8,9]. Various additive manufacturing processes currently exist that allow for the
fabrication of various materials such as metals, ceramics, polymers, and composites [10,11].
A particular area of interest concerns those LSs whose members deform in a stretching-
dominated rather than a bending-dominated response mode. The stretching-dominated
lattices exhibit stiffness and strength properties that scale linearly with density, ρ, while
strength and stiffness properties scale as ρ3/2 and ρ2 respectively for bending-dominated
structures [1]. To fabricate these complex centimeter-scale-sized lattice structures, several
additive manufacturing techniques have been developed, such as fused filament fabrication
(FFF) [12], selective laser sintering (SLS), direct laser writing (DLW) [13–15], selective laser
melting [16,17], and direct ink writing [18].

Cellular materials can be divided into two categories, periodic lattice structures and
random stochastic foams [19]. In most cases, the periodic lattice structures contain pe-
riodically repeating unit cells with mechanical properties that can be easily customized.
Random stochastic foams, the first generation of manmade porous–isotropic materials,
have been widely used in impact energy absorption applications and elastic cushioning
applications [1,20,21]. Comparing the two cellular structures shows that the mechanical
properties of periodic lattice structures are superior to their stochastic counterparts. This is
due to the fact that unit cell elements in periodic lattice structures stretch/compress under
both static or dynamic loading. In contrast, stochastic foams exhibit a bending-dominated
deformation mode [22].

Investigation into the usage of cellular materials for energy absorption has become
rampant, with researchers realizing the potential behind utilizing LSs to improve the
energy absorption of structures. Generally, honeycombs made using AM are used for
energy absorption purposes; as a result, they have been widely investigated [23–27]. Triply
periodic minimal surface (TPMS)-based lattices are also currently under the spotlight and
have been recently investigated [28]. The more rudimentary truss-based lattices suffer from
low manufacturability and suffer from the presence of stress concentrations upon loading
and unloading [29–31], unlike TPMS-based lattices. The TPMS-based lattices not only lack
stress concentrations but are also easier to fabricate at different scales due to their parametric
nature [32]. Various studies have been conducted to investigate the energy absorption
capabilities of TPMS-based lattices. and many have reported promising results [33–35].
Another type of LS currently gaining attraction is plate-based lattice structures [36,37], as
their superior stiffnesses makes them excellent candidates for load-bearing applications.
Berger et al. [38] showed that plate-based lattice structures were capable of approaching
the upper Hashin–Shtrikman bounds: the theoretical limits of a composite material’s
modulus and strength. In fact, Crook et al. [39] recently fabricated cubic-octet plate
lattices that have reached the upper Hashin–Shtrikman bounds. Plate-based lattices also
seemingly excel when it comes to specific energy absorption. Numerical simulations done
by Tancogne-Dejean et al. [40] comparing truss and plate-based lattice structures of the
same mass and material showed that the specific energy absorption of plate-based lattice
structures is around 45% greater than that of truss-based lattice structures. They further
showed the superiority of the energy absorption of plate lattices by reporting that a 316L
stainless steel plate LS achieved a 30% higher specific energy absorption compared to a
titanium structure. Various papers have used numerical/theoretical methods to investigate
the effective properties of lattice structures and have validated them experimentally [2].
Kladovasilakis et al. [41] investigated the effective mechanical behaviors of four lattices
by experimentally testing them under compression and then subsequently developing
hyper-elastic FE models to predict the lattice’s behaviors.

Due to the nature of the field of cellular materials, novel architected materials with
a myriad of interesting properties are constantly emerging. In this paper, three novel
plate-based hybrid LSs are design, fabricated, and then had their mechanical performances
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characterized. Each of the three novel architectures are fabricated with 5%, 10%, 15%, and
20% relative densities. All the lattices are tested under quasi-static compression loading and
then, the obtained data are analyzed and discussed in terms of their mechanical properties,
such as Young’s modulus, strength, toughness, and specific energy absorption performance.
The elastic anisotropic index has been analyzed, and some interesting conclusions have
been presented.

2. Design of Lattice Architecture

The first novel design, the flat plate modified auxetic (FPMA) unit cell, is inspired by
the traditional auxetic and the octahedron cell design [42]. To incorporate the octahedron
unit cell into the center of the auxetic unit cell, a thin rectangular flat plate structure has been
added to four of the unit cell faces to support the corners of the octahedron, as illustrated in
Figure 1. To determine the dimensions of the novel unit cell, a constant thickness principle
was adopted, where the flat-plate structures are of constant thickness throughout, and
the trusses of the octahedron were of a constant diameter equal to 1.2 times the flat plate
thickness to aid the octahedron structure.
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Figure 1. Novel re-entrant plate-based lattice structures.

Next, the second and third novel flat-plate tesseract (FPT) and vintile (FPV) unit cells
were developed from the two traditional truss-based unit cells illustrated in Figure 1. The
development of such unit cells will help directly compare and explore the mechanical
properties of flat-plate structures instead of truss-based structures. Joining the truss regions
with flat plates and maintaining a constant relative density meant that the plates were
extremely thin, limiting their effectiveness. To account for this and help achieve a greater
plate thickness for the same relative density, the angle at which the flat plates were placed
was reduced to limit the extension of each plate, allowing for a thicker plate. All resultant
plate-based lattices have been observed to have a re-entrant feature, which is potentially
good for energy absorption behavior [1].
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3. Methodology
3.1. Fabrication and Characterization

Additive manufacturing based on a VAT photopolymerization process, as defined by
ISO/ASTM 52900 [43], was adopted to fabricate all specimens. The VAT photopolymeriza-
tion process used is the SLA process [44]. In SLA technology, liquid resin is exposed to an
ultraviolet (UV) laser that polymerizes the resin layer by layer, fabricating the 3D physical
models. In this study, we employed the FormLab 3 printer and used the “Durable” resin
provided by Formlabs, Inc., Somerville, MA, USA. Durable is a liquid photopolymer, which
is usually comprised of a liquid mixture that is made of acrylate oligomers/monomer,
methacrylated oligomers/monomer, and Photoinitiators [45]. The material has a density
of ≈1.20 g/cm3, low modulus, and high impact strength and failure strain, allowing for a
more ductile response.

In this study, we considered four different relative densities: 5%, 10%, 15%, and 20%.
We first created 3D computer-aided design (CAD) models of the architected LSs using
the Creo Parametric 7.0 software. The CAD files were exported as a stereolithography
(STL) file format and then sliced using the PreForm 3D printing software and transferred
to the FormLab 3 printer. In this printer, a high-powered ultraviolet (UV) laser polymerizes
the UV-curable resin layer by layer. By varying the optical size of the UV laser, the layer
resolution can be controlled in the range of 25 to 300 µm. Various lattices had a considerable
number of overhangs as shown in Figure 2a; these overhangs were addressed by simply
adding more support material where needed. All the fabricated lattices were printed
with a 150 µm XY plane feature resolution. Two samples of each relative density were
fabricated. After printing, all samples were cleaned in Formlab’s Form Wash machine
and left to cure in Formlab’s Form Cure machine for two hours at a temperature of 60 ◦C.
Then, the support material supporting the overhangs was removed using flush cutters. The
step-by-step-fabrication process is illustrated in Figure 2.

Polymers 2021, 13, x FOR PEER REVIEW 4 of 19 

3. Methodology
3.1. Fabrication and Characterization

Additive manufacturing based on a VAT photopolymerization process, as defined 
by ISO/ASTM 52900 [43], was adopted to fabricate all specimens. The VAT photopoly-
merization process used is the SLA process [44]. In SLA technology, liquid resin is exposed 
to an ultraviolet (UV) laser that polymerizes the resin layer by layer, fabricating the 3D 
physical models. In this study, we employed the FormLab 3 printer and used the “Dura-
ble” resin provided by Formlabs, Inc., Somerville, MA, USA. Durable is a liquid photo-
polymer, which is usually comprised of a liquid mixture that is made of acrylate oligo-
mers/monomer, methacrylated oligomers/monomer, and Photoinitiators [45]. The mate-
rial has a density of ≈1.20 g/cm3, low modulus, and high impact strength and failure strain, 
allowing for a more ductile response. 

In this study, we considered four different relative densities: 5%, 10%, 15%, and 20%. 
We first created 3D computer-aided design (CAD) models of the architected LSs using the 
Creo Parametric 7.0 software. The CAD files were exported as a stereolithography (STL) 
file format and then sliced using the PreForm 3D printing software and transferred to the 
FormLab 3 printer. In this printer, a high-powered ultraviolet (UV) laser polymerizes the 
UV-curable resin layer by layer. By varying the optical size of the UV laser, the layer res-
olution can be controlled in the range of 25 to 300 μm. Various lattices had a considerable 
number of overhangs as shown in Figure 2a; these overhangs were addressed by simply 
adding more support material where needed. All the fabricated lattices were printed with 
a 150 μm XY plane feature resolution. Two samples of each relative density were fabri-
cated. After printing, all samples were cleaned in Formlab’s Form Wash machine and left 
to cure in Formlab’s Form Cure machine for two hours at a temperature of 60 °C. Then, 
the support material supporting the overhangs was removed using flush cutters. The step-
by-step-fabrication process is illustrated in Figure 2. 

Figure 2. Fabrication process. (a) slicing software, (b) FormLab 3© printer, (c) FormLab Wash, (d) FormLab Cure, (e) final 
product. 

Then, all the fabricated lattices were weighed using a METTLER TOLEDO ME204 by 
Mettler Toledo, Zurich, Switzerland, which is a high-precision scale with a resolution of 
0.1 mg. The masses were recorded in air and utilized in calculating the relative densities. 
The overall dimensions of the lattices were also recorded and then used in stress and strain 
calculations. Afterwards, the CAD models were used to obtain the design masses, which 
were then utilized to compute the designed relative density. Then, Figure 3 was con-
structed, showing the deviation of the actual relative density and the designed relative 
density. All the lattices have relative densities close to their ideal relative densities, and 
the slight deviations may result from the presence of voids, under-cured regions, dimen-
sional inaccuracies, undeveloped features, etc. The FPMA shows the greatest deviation 
from ideality due to the large amount of support material, some of which was very 

Figure 2. Fabrication process. (a) slicing software, (b) FormLab 3© printer, (c) FormLab Wash, (d) FormLab Cure, (e) fi-
nal product.

Then, all the fabricated lattices were weighed using a METTLER TOLEDO ME204 by
Mettler Toledo, Zurich, Switzerland, which is a high-precision scale with a resolution of
0.1 mg. The masses were recorded in air and utilized in calculating the relative densities.
The overall dimensions of the lattices were also recorded and then used in stress and
strain calculations. Afterwards, the CAD models were used to obtain the design masses,
which were then utilized to compute the designed relative density. Then, Figure 3 was
constructed, showing the deviation of the actual relative density and the designed relative
density. All the lattices have relative densities close to their ideal relative densities, and the
slight deviations may result from the presence of voids, under-cured regions, dimensional
inaccuracies, undeveloped features, etc. The FPMA shows the greatest deviation from
ideality due to the large amount of support material, some of which was very difficult to
remove. This causes a slight increase in the measured mass of the lattice and consequently
an increase in the calculated relative density.
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It is emphasized here that the complex geometrical and overhanging features of the
LSs limit the printability of the walls to a minimum thickness of 0.2 mm. A unit cell size of
20 mm × 20 mm × 20 mm was considered to ensure that all the samples can be printed
given the minimum thickness limit of 0.2 mm. The unit cells’ minimum wall thicknesses
are highlighted in Table 1. In order to obtain the properties of the parent material to be used
in further analyses, three tensile samples and three compressive samples were fabricated.
The tensile and compressive samples were fabricated according to ATSM D638 and ATSM
D695, respectively. The specimens were fabricated using the same print parameters as was
used to fabricate the lattices to ensure the applicability of the obtained results.

Table 1. Characteristics of architected unit cell and lattice structure.

Type Unit Cell Design Unit Cell Parameters 2 × 2 × 2
Lattice Structure Printed Specimen

Flat-Plate
Modified Auxetic
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ρ = 0.049
ρ = 0.099
ρ = 0.151
ρ = 0.201

tmin = 0.90 mm
tmin = 1.25 mm
tmin = 1.75 mm
tmin = 2.00 mm
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3.2. Parent Material Mechanical Testing

All the compression and tensile testing was performed on the Instron 5969 Universal
Testing System with a load cell capacity of 50 kN. The tensile tests’ experimental setup
is show in Figure 4a. A speckle pattern was applied on tensile coupons, as shown in the
inset of Figure 4a. Digital Image Correlation (DIC) was utilized to obtain the full-field
displacement and strain. The tensile testing of the specimens was performed perpendicular
to the printing direction with a crosshead velocity of 2.5 mm/min at room temperature
until the failure of the sample. The average stress–strain curves along with the error bars
for both the tensile and compressive specimen are shown in Figure 4b,c, respectively. The
results of Poisson’s ratio obtained from the DIC results are also shown in Figure 4d.
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From the obtained plots, the tensile and compressive moduli, the ultimate strength, the
yield strength, and the constant Poisson’s ratio were obtained. The error bars are colored
in red. The compressive and tensile moduli, defined as the slopes of the linear region
on the stress–strain curves, were obtained as 1.22 GPa and 1.10 GPa, respectively. The
compressive and tensile strengths, defined as the first inflection in the stress–strain curve,
were obtained as 40.86 MPa and 32.0 MPa, respectively. The tensile yield strength, obtained
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using the 0.2% offset method, was obtained as 13.27 MPa. Poisson’s ratio, defined as the
lateral strain divided by the longitudinal strain, was obtained as approximately 0.397.

Both the tensile modulus and strength reported in this study are comparable to
those provided by the manufacturer. The manufacturer has reported a tensile modulus
of 1.26 GPa and an ultimate tensile strength of 32.0 MPa [46]. The minor difference in
modulus may be attributed to a variation in print parameters or post-curing conditions.

3.3. Homogenization of Lattice Structures

In many engineering applications, it is important to understand the anisotropy of a
structure and to recognize its weakest and strongest directions. This is particularly crucial
for applications involving load bearing and energy absorption, as an anisotropic lattice
will not function as effectively in all its orientations. Anisotropy though, is not always a
negative attribute to have, because if the expected loading direction is known, then aligning
the lattice’s stiffest direction with the loading direction would be a suitable option.

The linearized macroscopic behavior of LSs can be described using the generalized
Hooke’s law relating the effective stresses (σij) and strains (εkl), i.e., σij = Cijklεkl . Here, Cijkl
are the components of the fourth-order elasticity tensor. Depending on the symmetry of the
LSs, the homogenized components of the Cijkl can be defined as a function of scalar valued
independent elastic moduli. For example, isotropic, cubic, orthotropic, and generalized
anisotropic materials require 2, 3, 9, and 21 elastic constants.

LSs have a defined repeating pattern; therefore, the unit cell homogenization method
can be adopted by choosing a representative volume element (RVE) or unit cell and
applying periodic boundary conditions (PBCs) [47,48]. The complete characterization
of the linear elasticity tensor can be realized using this homogenization approach. The
results of the effective properties obtained from the homogenization process represent the
macroscopic response of LSs.

In this study, a finite element-based numerical homogenization procedure was used
to calculate the effective stiffness matrix of the LSs based upon the properties of the base
material obtained in Section 3.2 and topological configuration in the RVE [49–52]. Moreover,
the elastic anisotropic analysis of the LSs with different densities were performed through
plotting the elastic moduli surface as a function of direction in three-dimensional space.
The nTopology software [53] was used to homogenize the proposed three novel lattices
and to obtain their respective stiffness matrices. In nTopology, a CAD model of each of
the lattices’ unit cells were imported. The material was assumed to follow linear elastic
behavior and the elastic modulus and Poisson’s ratio obtained from the tests discussed in
Section 3.2. A triangular surface mesh with an edge length of 10 mm was first created from
the imported CAD body; then, a tetrahedral volume mesh was generated. The nTopology
“Homogenize Unit Cell” Block was used to conduct the homogenization. Figure 5 shows
the proposed architectures and their elastic moduli surface as a function of direction in
three-dimensional space depicting the ratio of the local Young’s modulus to the maximum
Young’s modulus in every direction. Tancogne-Dejean et al. [40] proposed Emax/Emin as a
measure of anisotropy of the LS and found the value of 18.2 for the BCC LS at a relative
density of 0.1. Here, we observed that the relative modulus of the FPV in the [1 0 0]
direction was extremely small, giving Emax/Emin = 43.17 at a relative density of 0.05. In
contrast, the relative modulus of the FPMA in the [1 0 0] direction was reasonable, giving
Emax/Emin = 3.33.

The results of the homogenization process showed that the FPT belongs to the cubic
symmetric system, meaning that the stiffness matrix takes on the form shown below,
where C11 = C22 = C33, C12 = C13 = C23, and C44 = C55 = C66, with the remaining constants
equaling zero.
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C =



C11 C12 C12 0 0 0
C12 C11 C11 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (1)

Since the FPT belongs to the cubic symmetric system, the Zener ratio (Z = 2C44/
(
C11 − C12

)
)

may be used to measure the degree of elastic anisotropy in a cellular material. The Zener
ratio of 1 indicates an isotropic lattice and larger deviation from unity demonstrating more
elastic anisotropy. The Zener ratio of the FPT is calculated as 0.039, 0.063, 0.067, and 0.072
for relative densities of 5, 10, 15, and 20%, respectively.
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The FPMA and FPV show anistropic behavior, and since the Zener ratio may only
be used for lattices with cubic symmetry, the Universal Elastic Anisotropy index (AU)
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will be used with the FPMA and the FPV. Ranganathan and Starzewski [54] proposed the
following relation for the universal elastic anisotropic index.

AU = 5
GV

GR +
KV

KR − 6 ≥ 0 (2)

where GV and GR are the Voigt and Reuss shear modulus estimates, and KV and KR are
the Voigt and Reuss bulk modulus estimates. An AU = 0 indicates isotropic LSs, while
departure from zero defines the degree of elastic anisotropy that exists in the LSs while
accounting for both the shear and bulk contributions.

The relative density of the LSs provides a subtle control parameter to describe the
universal elastic anisotropy. In this study, the function AU = Bρm is used to describe the
universal anisotropy index relation as a function of relative density. Figure 6 shows the AU

for the three proposed plate-based lattice structures, exhibiting a decreasing trend with
increasing relative density. The FPV lattice has AU = 74.4 at ρ = 0.05, which decreased
rapidly to AU = 4.46 at ρ = 0.2, which shows that the anistropy of FPV is very sensitive to
relative density. In contrast, the AU of both FPMA and FPT showed a mild dependence
on the relative density. The power law fitting for FPV, FPT, and FPMA is AU = 0.17ρ−2.03,
AU = 6.2ρ−0..49, and AU = 0.25ρ−1.09, respectively. The power law relations can be used
to specify a relative density to provide a required level of elastic anisotropy from the
proposed LSs.
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3.4. Lattice Structure Mechanical Testing

Then, all the fabricated lattices were loaded under compression in a direction perpen-
dicular to the print direction using the Instron 5969 Universal Testing System at a constant
strain rate of 0.001/s and the test was stopped when evident densification was observed.
The samples were placed in the center of the machine’s plates to ensure uniform loading
and to obviate moments that may arise due to sample misalignment. Figure 7 shows the
average stress–strain curves of all the lattices at different relative densities, and the star
symbol on each of the stress–strain curves indicates the onset of densification as per the
efficiency curve criteria [55]. Pictures of the lattices at various strain levels were taken and
shown in Table 2.
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The failure response of a cellular structure after the peak stress is highly dependent on its 
architecture, and different architectures generally exhibit different responses at the plat-
eau stage. The final stage is densification, which is characterized by a rapid increase in the 
stress. 

A general trend to observe in all the three lattices is the proportional relation between 
mechanical properties and relative density. It is also worth noting that the FPT shows the 
most stable response, with an average increasing stress up until the onset of densification. 
Beginning with the FPMA, an expected initial linear response is seen until the peak stress 
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4. Results and Discussion

Under low strain rate compression, cellular structures exhibit three stages of deforma-
tion [1]. The first stage is the elastic region, from which the elastic properties are calculated.
Then, the peak stress indicates the transition to the second stage, the plateau stage. The
failure response of a cellular structure after the peak stress is highly dependent on its archi-
tecture, and different architectures generally exhibit different responses at the plateau stage.
The final stage is densification, which is characterized by a rapid increase in the stress.

A general trend to observe in all the three lattices is the proportional relation between
mechanical properties and relative density. It is also worth noting that the FPT shows the
most stable response, with an average increasing stress up until the onset of densification.
Beginning with the FPMA, an expected initial linear response is seen until the peak stress
is reached, after which a sudden drop in the stress is observed. The FPMAs show the same
trend past their peak stress, which may be attributed to the manner at which the lattices
fail. At all four relative densities, failure occurs when either the trusses of the octahedron
or the trusses of the auxetic honeycomb buckle, which is accentuated in the red circle, as
seen in the first row of Table 2.

However, the stress–strain curves of the FPT and FPV show unorthodox behavior
that is not commonly seen in other common architectures. The FPV shows the largest
increase in both modulus and peak stress with an increase in relative density, albeit at the
expense of a stable response after the peak stress. This loss of stability at higher relative
densities may be readily explained by observing the failure mechanisms of the FPV at
the four different relative densities. At the lower relative densities, the lattice experiences
a more bending dominated failure mode, as shown in the red circle, which is primarily
due to local buckling, as shown in the second row of Table 2. However, as the relative
density increases, the lattices increase in stiffness and rather than failing by local buckling,



Polymers 2021, 13, 3882 12 of 18

they fail by brittle fracture, and an example in the red circle is shown in the third row of
Table 2. This behavior, as a result, causes a more catastrophic failure mode as the relative
density increases.

Lastly, all the FPTs exhibit relatively similar failure behavior at the lowest three tested
relative densities but behave in a noticeably different manner at 20% relative density. This
is explicable by looking at their failure mechanisms. At 5% relative density, the FPT crushes
uniformly, as shown in the fourth row of Table 2, providing a stable failure response. The
response is slightly altered at relative densities of 10% and 15% as the middle vertical
members, which are circled red, remain rigid, but push into the lattice, and with increasing
strain push further down, increasing the resistance to deformation and increasing the
lattice’s stiffness. This phenomenon may be seen in the fifth row of Table 2. However, at
20% relative density, the middle vertical members are the first to crush, and once completely
crushed, the two horizontal plates come in contact, stiffening the lattice as seen in row
six of Table 2. This trend repeats until densification. These unique responses prompted
the team to investigate the behavior of these novel lattices when fabricated from different
materials, using different technologies, which is the group’s current work.

The compressive modulus, peak stress, toughness, and specific energy absorption
were plotted on a log–log scale and fitted with a power law of the form ∅cellular = Cρn,
where ∅cellular is the mechanical property and ρ is the relative density of the lattice structure.
Figure 8a,b show the variation of Young’s modulus and peak stress with change in relative
density. Young’s modulus was obtained by finding the slope of the linear region in the
stress–strain curves. The peak stress is defined as the first inflection point in the stress
curve. Figure 8c shows the yield strengths of all the lattices at different relative densities,
where the yield strength is defined using the 0.2% offset method.
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Figure 8. Deduced mechanical properties. (a) Young’s modulus vs. relative density, (b) peak stress vs. relative density,
(c) yield strength vs. relative density [56,57].
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Figure 9a,b shows the toughness at different relative densities. Toughness (EA) was
calculated as the total area under the stress–strain curve up to 60% strain or the integral
of the stress–strain curve shown in Equation (1) below, where ε is the strain and σ is the
stress [58].

EA(ε) =

ε∫
0

σ(ε)dε (3)
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Figure 9. Deduced mechanical properties, (a) toughness vs. relative density, (b) toughness histogram.

The results of the power-law fitting are presented in Table 3.

Table 3. Power-law fitting constants.

Compressive Modulus (MPa) Peak Stress (MPa) Toughness (MJ/m3) Yield Strength (KPa)

C n C n C n C n

FPMA 275.40 1.30 18.74 1.65 9.11 1.94 12,196.07 1.50
FPT 131.17 1.16 11.38 1.51 9.87 1.59 10,477.49 1.63
FPV 6716.66 3.59 92.13 2.75 10.85 2.10 70,898.04 2.85

The exponent (n) of the power-law fit provides useful insight into the lattices’ mechan-
ical properties and behaviors. The FPT has an n of 1.16, indicating a stretching-dominated
behavior that is efficient at load bearing, making its stiffness least affected by a change in
relative density between all the three novel lattices. The FPV, on the other hand, has an n of
3.59, indicating a bending-dominated behavior, and with the highest power-law exponent,
sees the greatest change in stiffness for a change in relative density. The FPMA shows a
near stretching dominated behavior with an n of 1.30. As for the peak stresses, the FPV also
has the highest n exponent, giving rise to a large change in specific energy absorption with
a change in volume fraction. The FPMA and FPT scale relatively similarly with changes in
the relative density. The FPMA and FPT showed similar scaling with the yield strength,
with the FPV having again the largest n. With regard to the toughness, the FPT exhibits a
superior performance, surpassing both the FPV and the FPMA at all four tested relative
densities, with only a minor sacrifice in peak stress and modulus.

Figure 10 presents the relative modulus and relative yield strength of the novel lattices
alongside the lattices found in literature. The results obtained have been fitted to a power-
law relation. For the modulus, the power law is of the form E

Es
= C1(ρ

n), where E is the
lattice’s modulus, and Es is the parent materials modulus. While for the yield strength, the
power law is of the form

σyl
σys

= C2(ρ
m), where σyl is the yield strength of the lattice and σys

is the yield strength of the parent material. The powers n and m are the same as given in
Table 3. However, the coefficient C1 = 0.25, 0.12, 6.11 and C2 = 0.92, 0.79, 5.34 are given
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for FPMA, FPT, and FPV, respectively. Although the FPV is on the lower side of Figure 10a,
the FPT and FPMA have moduli comparable to TPMS-based lattices and are close to truss
lattices. As for the relative yield strength, the novel lattices surpass most of the presented
lattices from the literature, except for the sheet TPMS-based lattices.
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Figure 10. (a) Relative modulus vs. relative density, (b) relative yield strength vs. relative density.

The specific energy absorption (SEA) vs. strain is plotted in Figure 11, and it was
found by dividing the area under the stress–strain curve by the lattice’s density (ρ*), as
shown in the equation below, where (εd) is the densification strain [58].

SEA =

∫ εd
0 σ(ε)dε
ρ∗

(4)
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Figure 11. Specific energy absorption vs. strain, (a) flat-plate modified auxetic, (b) flat-plate tesseract, (c) flat plate vintile.
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The FPT can reach a remarkable SEA of 4.50 J/g at a strain of 0.7, the FPV reaches a
SEA of 2.20 J/g at a strain of 0.75, and the MA reaches an SEA of 1.70 J/g at a strain of
0.58. However, it is worth noting that the FPT at 20% relative density sees a decrease in
its SEA due to the early onset of densification. It is interesting to note that the effects of
cell architecture become less pronounced with an increase in relative density, as evident
by Figure 8, where the fits tend to converge to a single point. However, that does not
seem to be the case for toughness, bolstering that the FPT has the best energy absorption
regardless of the relative density. This remarkable energy absorption ability makes the
FPT a suitable candidate for lightweight energy absorption applications, such as those
commonly required in aerospace load-bearing structures.

Figure 12 presents the specific energy absorption of the three novel lattices designed
in this work with some of the lattices found in the literature. It can be clearly seen that even
with such a low density, the lattices presented exhibit specific energy absorption values
that surpass most of the shown lattices and are closest in effectiveness to metallic plate
lattices (≈3.8 J/g difference), with a density almost 20 times less. This further illustrates
the efficacy of the proposed lattice designs for energy absorption applications, particularly
the flat-plate tesseract.
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5. Conclusions

In conclusion, three lattices with novel architectures were designed, fabricated, and
tested under quasi-static compression. The Formlabs Durable Resin was used to fabricate
the novel lattices, and the mechanical properties of the resin were experimentally obtained.
Using the obtained data, a finite element-based homogenization was performed to deter-
mine the lattices’ anisotropy. The anisotropic analysis showed that the anisotropy index of
FPV is highly dependent on relative density. After quasi-static compression testing, the
behavior of the different lattices was analyzed and discussed, and their mechanical prop-
erties were deduced. The flat-plate modified auxetic lattice had the highest stiffness and
showed mixed-bending and stretching behavior, with failure being initiated by buckling of
the unit cell members. The flat-plate vintile showed a ductile failure mode at lower volume
fractions, with a transition to a brittle failure mode at higher volume fractions. Lastly, the
flat-plate tesseract showed remarkable stiffness and had the highest energy absorption of
all the three novel lattices, and whose specific energy absorption surpassed many lattices
found in literature.
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