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Abstract 

In this paper, a model-based decision-making framework for the design of localized networked production systems under largescale disruptions 
is developed. The framework consists of optimization and agent-based simulation models that run successively in an iterative manner, gradually 
improving the performance of the perceived system. The framework integrates uncertainty, provides decisions at different decision-making levels 
and embeds an algorithm that allows for communication between demand nodes and production sites once inventory shortages occur. The 
framework has been applied on a case study for the design of localized production and distribution networks, powered by additive manufacturing 
(AM), in South East England during the early stages of the COVID-19 pandemic outbreak. Results revealed that implementing the framework 
indeed results in performance improvements to AM-powered production networks, particularly with regards to inventory shortages and lead time. 
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1. Introduction 

    Manufacturing systems are typically designed to 
accommodate, and adapt to, varying degrees of uncertainty and 
potential disruptions, to enhance the robustness of 
manufacturing systems. Methods to handle uncertainty and 
potential disruptions could be incorporated at the design stage 
of a manufacturing system i.e. passive or proactive robustness 
[1] (e.g. allocating redundant capacities that allow the 
accommodation of increased unplanned production). The other 
approach to handle uncertainty and disruptions is the reactive 
approach where the manufacturing system reacts to uncertainty 
and disruptions through its existing resources [2] (e.g. efficient 
flexible scheduling algorithm coupled with modular production 
to react to changes in the nature of demand). These disruptions, 
if not handled properly, could have adverse consequences on 
the manufacturing system, potentially significantly deviating it 
from achieving its intended targets. However, regardless of the 
nature and number of measures taken to boost robustness, 

hedging against all possible disruptions is usually deemed as an 
impossible task [3]. 
    Disruptions are, however, not confined within the 
boundaries of a manufacturing system [4], they can rather occur 
anywhere along the supply chain. For example, a 
manufacturing system can be equipped with an additional 
machine tool (e.g. a late or milling machine) to cope with a 
sudden spike in demand. It can, however, still face disruptions 
due to, for instance, shortage of supply of raw materials, 
stemming somewhere else along the supply chain where the 
manufacturing system has no control, rendering additional 
resources (or capacities) or other measures ineffective. This 
case of disruptions occurs in wide scale emergencies where 
supplies (finished goods or raw materials) could be readily 
available in their point of origin or somewhere else along the 
supply chain, but disruptions outside the control of the 
manufacturing system make it impossible to deliver to their 
point of demand at the required time. In such cases of 
disruptions, localised production, and subsequently localised 
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supply chains could provide a means to mitigate the adverse 
consequences of such disruptions. 
    Recent advancements in manufacturing technologies, 
particularly unconventional methods such as additive 
manufacturing (AM) have the potential to enable the prospect 
of localised production to meet urgent needs [3]. AM, which is 
steadily moving from prototyping, to a means to produce final 
products [5], can bring advantages such as less need for tooling, 
the production of complex optimised geometries and shorter 
lead times [5,6]. The opportunities that AM provides can be 
exploited in situations of largescale disruptions (e.g. sudden 
onset of disasters) where localised impromptu production sites 
can be established to temporarily compensate for shortage of 
supplies (provided that the required products conform to AM 
production capabilities). The collection of these localised 
production sites constitute a networked manufacturing system 
that is distributed over, and supplies to, a given geographical 
area. The design of efficient localised networked 
manufacturing systems, in response to largescale disruptions, 
entails several decisions. Decisions, in this context, means 
assigning values to decision variables (e.g. location/ allocation, 
capacities, production/ distribution schedules etc..). 
    Research into the area of manufacturing systems design, 
mostly through the development of decision-support tools, is 
well-established in its own right where it borrows heavily from 
the field of operational research (OR). Most of this research, 
however, is conducted from the lens of commercial production, 
enabled by highly efficient conventional means of production. 
Research into manufacturing systems design, in the context of 
largescale disruptions, is mostly conducted from the lens of 
supply chain design, assuming that production itself is 
uninterrupted, but the movement of products is interrupted [3], 
rendering this body of research tailored towards the 
preparedness phase of disruptions handling [7]. A growing 
body of research exists in the area of supply chain design, to 
meet urgent needs, in the event of largescale disturbances. A 
number of survey papers that review and analyse the state-of-
the-art in the decision-support tools for the design of largescale 
disturbances response networks can be found in [8–11]. Apart 
from review papers, most other papers in this area develop 
optimisation models for the preparedness phase of largescale 
disturbances. In particular, these papers develop models and 
frameworks for the strategic prepositioning of supplies, in 
preparation for response to disturbances. In [12], a facility 
location-inventory model is developed to maximise the covered 
area assigned to prepositioned distribution centres. The model 
developed in [12] handles uncertainty through experimenting 
with different scenarios, each with an associated probability of 
occurrence. This approach to handle uncertainty, although 
provides insight into possible scenarios, can only cover a 
limited number of scenarios, leaving many facets of the 
problem unexplored. In [7], a two-stage stochastic model for 
the design of relief chains in times of emergencies is developed.      
Similar to the work in [12], the model developed in [7] handles 
uncertainty through modelling a limited number of scenarios, 
but employed fuzzy numbers to model the stochastic 
parameters. In this paper, [7], the first stage decisions consisted 
of location/ allocation decisions, while the second stage 
decisions, which are determined after the uncertainty is 
revealed and minimise travel times and costs, and provide 
inventory and routing decisions. Centralized and distributed 
production paradigms have been discussed and modelled in 

[13,14] where in [14] the authors investigated the idea of 
decentralization of healthcare production in the UK. In [3], the 
authors developed a framework consisting of interacting 
optimisation and agent-based simulation models for the design 
of localised distributed production networks in times of 
largescale crises. In their paper, the authors proposed the use of 
additive manufacturing, distributed over a given geographical 
area, and applied the framework on a case study to produce 
personal protective equipment (PPE) during the early stages of 
the COVID-19 pandemic outbreak. 
    Although there has been an increased attention dedicated to 
AM production and response to largescale disruptions, studies 
that develop quantitative decision-support tools for the design 
of production networks in response to largescale disruptions at 
the system-level are almost non-existent. It should be noted 
however, that there is a considerable body of research that 
investigates the viability of AM production in largescale 
disruptions, but such research is almost entirely confined in 
technical aspect of production at the product level, overlooking 
the system-level production network. Apart from [3], all 
research that addresses response to largescale disruptions, from 
production and logistical contexts, either does so at the system-
level assuming that products have already been produced 
without interruptions and stored in prepositioned distribution 
centres, and only designs a logistical network to deliver these 
products, or at the product-level. Research at the product-level, 
utilising AM, is mostly directed towards identifying and 
investigating the conformance of different products to AM 
production, and the impact of AM production on affected 
communities. 
    This work builds in the work conducted in [3] where the 
authors developed a model-based decision-making framework 
for the design of AM-powered production and distribution 
networks for crises response. The framework developed in [3] 
consisted of interacting optimisation and simulation models 
that provide decisions at the strategic, tactical and operational 
levels of decision-making, accounts for the interdependence 
between different levels of decision-making and incorporates 
uncertainty. The models inside the framework run 
consecutively in an iterative manner, where the performance of 
the production system gradually improves as will be explained 
in detail in the next section. In this paper, uncertainty is further 
integrated into the framework through sensitivity analysis, and 
the simulation model is embedded with a brute-force algorithm 
that allows instant communication between different facilities 
in case of inventory shortages. Similar to [3], the framework 
developed in this paper is a complementing tool that 
incorporates production activities through AM, in situations 
where the supply of goods that can be readily, safely and 
reliably produced via AM is disrupted. 

The rest of the paper is organised as follows; the next section 
presents the overall decision making framework, its constituent 
models and the mechanism of its operations. Section 3 presents 
a case study application for the production of PPE during the 
early stages of the COVID-19 pandemic outbreak in South East 
England, and numerical experiments to test and validate the 
framework. Finally, Section 4 presents concluding remarks and 
discusses future research directions. 
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2. Decision-making framework 

    The decision-making framework consists of two decision-
support tools that operate successively to generate production 
networks and then evaluate their performance in the following 
manner as depicted in Fig. 1. The optimisation model, which is 
a multi-period capacitated integer linear program (ILP), 
generates the production network’s topology and the 
production and distribution plans. The decisions provided by 
the ILP are location-allocation decisions; placing the available 
AM equipment at strategic sites to minimise the total supply-
weighted distances travelled. The choice of this objective 
function (i.e. supply-weighted distances travelled) is made to 
prioritise demand locations with the highest projected demand 
rates. This objective function, however, can be easily 
transformed to minimise or maximise any other attribute 
deemed necessary to serve the overall aim of the framework’s 
application. For example, cost could be minimised to operate 
with minimal costs, or the maximum distance between any two 
facilities could be minimised (maximal covering model [15]). 
Nevertheless, it has been deemed appropriate, for the purpose 
of this modelling setting (i.e. supplying demand nodes in times 
of largescale disruptions), to prioritise areas with high demand.  

Since the ILP is deterministic, meaning that all inputs are 
known with certainty, it is necessary to account for some 
degree of uncertainty. Although the subsequent agent-based 
simulation model is stochastic, and in turn incorporates 
uncertainty into the overall framework, it is still necessary to 
account for uncertainty in all modelling stages. To do so, 
sensitivity analysis experiments are performed on the 
optimisation model before passing the production network’s 
parameters to the simulation model. In spite of the fact that 
sensitivity analysis does not proactively incorporate 
uncertainty into modelling, it still remains an indispensable 
approach to evaluate the robustness of a model, and to better 
allocate adequate resources into mitigating the uncertainty 
surrounding these parameters identified by the sensitivity 
analysis. Sensitivity analysis provides a method to identify 
important parameters, so that careful planning is used in 
selecting the value of these parameters. Important parameters 
in this context refer to input parameters whose relatively small 
changes in value can have big impact on the overall model 
outcome. 

 

Figure 1 Decision-making framework

After the sensitivity analysis experiments reveal impact of 
uncertainty in each parameter on the outcome of the model (i.e. 
location-allocation and production-distribution decisions), 
these values are stored in database which is then accessed by 
the agent-based simulation model. The role of the simulation 
model then is to evaluate the performance of the production 
network under further uncertainty. In short, the inputs of the 
simulation model are the outputs of the optimisation model, 
and vice versa. Since the simulation model is stochastic, 
containing several stochastic parameters to reflect the instance 
being modelled, the outputs of one simulation run are hardly 

insightful. Therefore, to produce statistically significant results 
that reliably provide an insight into the performance of the 
perceived production network, the mean output of several 
simulation replications is required. To determine the minimum 
number of simulation replications required to produce 
statistically significant observations, the confidence interval 
method, which indicates how accurate the mean outputs are 
[16], has been used. 
   After the minimum number of replications has been 
determined, as highlighted above, the framework checks 
whether the desired criteria have been met, or a steady-state is 
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achieved, or not. In this step, the mean output of the simulation 
replications for the desired performance measure is checked 
whether it meets target performance measure or not. For 
example, the target performance measure could be to have no 
more than 10 instances or inventory shortages, or less than 24 
hours lead time, or any other measure. Steady-state, in the 
context of this research, is when the framework ceases to 
improve on the performance of the system without adding extra 
resources. For example, in order to improve the performance of 
the system in one aspect, say significant reduction in travel 
time, the framework might locate and allocate facilities in 
strategic locations to minimise travel time down to a certain 
threshold, after which, it becomes necessary to add more 
facilities along the network to further decrease travel times. 

2.1. Optimization model 

The optimisation model is a multi-period capacitated facility 
location model with production and distribution decisions. The 
model is formulated as integer linear program and its objective 
function minimises the total supply-weighted distances 
travelled. The model notation and formulation are as follows: 

Indices 
i  Index for demand nodes (i  = 1, 2, …, I) 
j  Index for potential production sites (j  = {1, 2, …, J} 

⊆ I ) 
t  Index for planning periods (t = 1, 2, …, T) 
Parameters 
n Number of available AM equipment 
c Cycle time for the production of one unit 
u  Maximum production time per production equipment 

per planning period 
qit  Demand at demand node i during planning period t 
dij  Distance between demand node i and potential 

production facility site j 
M Sufficiently large number (big-M) 
Decision variables 
Xj  Number of AM machines to place at potential 

production site j 
Yijt             

{ 1, if demand 𝑖𝑖 is assigned to site 𝑗𝑗 during     𝑡𝑡
0, otherwise                                                                                                                      

Sijt  Supply quantity from potential production site j to 
demand node i at the beginning of planning period t 

The model 
Total supply-weighted distances travelled =  
Minimise: 

∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖                                                                           (1)
𝑖𝑖∈𝑇𝑇𝑖𝑖∈𝐽𝐽𝑖𝑖∈𝐼𝐼

 

s.t. 
∑ 𝑋𝑋𝑖𝑖 ≤ 𝑛𝑛                                                                                       (2)
𝑖𝑖∈𝐽𝐽

 

𝑐𝑐 ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐼𝐼

≤ 𝑢𝑢𝑋𝑋𝑖𝑖                              ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇                      (3) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑑𝑑𝑖𝑖𝑖𝑖                                         ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇        (4) 

∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1                                     ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑡𝑡 ∈ 𝑇𝑇                      (5)
𝑖𝑖∈𝐽𝐽

 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀                                    ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇         (6) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖                                        ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇         (7) 
𝑋𝑋𝑖𝑖, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 ∈ ℤ+                                    ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇        (8) 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0, 1}                                     ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇        (9) 

In model (1) – (9) the objective function (1) minimises the 
total supply-weighted distances travelled during all planning 
periods. Constraint (2) ensures that the number of allocated 
production facilities (and implicitly the number of assigned 
AM machines) does not exceed the number of the available 
ones. It should be noted here that the number of production 
facilities (or more accurately the number of AM machines) is a 
model input rather than a model output. This is because in cases 
of largescale disturbances, one has to adapt with the available 
resources at their disposal, especially that the objective of the 
framework is to assist in the response phase of disturbances, 
not the preparedness phase. Nevertheless, this modelling 
attribute can be easily changed to make the number of 
production facilities (and AM equipment) a model output. 
Constraints (3) ensure that each AM machine’s production 
capacity is not exceeded. Constraints (4) stipulate that the 
supply amount received by each demand node at the beginning 
of each planning period has to be at least equal to its projected 
demand during that planning period. Constraints (5) impose a 
condition that each demand node at each planning period is 
served by exactly one production site. Constraints (6) and (7) 
ensure that demand nodes are only supplied from their assigned 
production sites. Finally, constraints (8) and (9) specify the 
types of the decision variables (integers and binary).  

It is important to discuss the model’s assumptions and 
limitations, and their impacts on the quality of the framework’s 
outcome, before presenting the remaining components and 
processes of the framework. First, model (1) – (9) is 
deterministic. This might at first glance, especially in the 
context of this research which deals with largescale 
disturbances, seem to severely limit the usefulness of the 
framework. This is, however, not the case as the uncertainty is 
integrated into the overall framework and also into its 
constituent models. Uncertainty, more precisely its impact, is 
integrated into the optimisation model through the sensitivity 
analysis experiments, as depicted in Fig. 1. Later in the 
framework, as will be explained in the following section, 
uncertainty will be further introduced into the framework 
through the stochastic agent-based simulation model. The 
model also assumes road transport, where travel times are 
proportional to distances. Also, the model assumes no 
shortages of raw materials al all production facilities. Finally, 
the model assumes that pre and post production activities are 
aggregated within the cycle time. This assumption, as with all 
other assumptions, is made to maintain some degree of 
simplicity in the optimisation model without affecting the 
quality of its solutions. Relative simplicity (or more accurately 
less complexity) is necessary in optimization models as the 
computation time can grow exponentially, rendering a model 
practically unsolvable. 

2.2. Simulation model 

The simulation model, which is depicted in Fig. 2 below, is 
an agent-based model developed from an object-oriented 
backdrop. Object-orientation allows building modular models, 
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achieved, or not. In this step, the mean output of the simulation 
replications for the desired performance measure is checked 
whether it meets target performance measure or not. For 
example, the target performance measure could be to have no 
more than 10 instances or inventory shortages, or less than 24 
hours lead time, or any other measure. Steady-state, in the 
context of this research, is when the framework ceases to 
improve on the performance of the system without adding extra 
resources. For example, in order to improve the performance of 
the system in one aspect, say significant reduction in travel 
time, the framework might locate and allocate facilities in 
strategic locations to minimise travel time down to a certain 
threshold, after which, it becomes necessary to add more 
facilities along the network to further decrease travel times. 

2.1. Optimization model 

The optimisation model is a multi-period capacitated facility 
location model with production and distribution decisions. The 
model is formulated as integer linear program and its objective 
function minimises the total supply-weighted distances 
travelled. The model notation and formulation are as follows: 

Indices 
i  Index for demand nodes (i  = 1, 2, …, I) 
j  Index for potential production sites (j  = {1, 2, …, J} 

⊆ I ) 
t  Index for planning periods (t = 1, 2, …, T) 
Parameters 
n Number of available AM equipment 
c Cycle time for the production of one unit 
u  Maximum production time per production equipment 

per planning period 
qit  Demand at demand node i during planning period t 
dij  Distance between demand node i and potential 

production facility site j 
M Sufficiently large number (big-M) 
Decision variables 
Xj  Number of AM machines to place at potential 

production site j 
Yijt             

{ 1, if demand 𝑖𝑖 is assigned to site 𝑗𝑗 during     𝑡𝑡
0, otherwise                                                                                                                      

Sijt  Supply quantity from potential production site j to 
demand node i at the beginning of planning period t 

The model 
Total supply-weighted distances travelled =  
Minimise: 

∑ ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖                                                                           (1)
𝑖𝑖∈𝑇𝑇𝑖𝑖∈𝐽𝐽𝑖𝑖∈𝐼𝐼

 

s.t. 
∑ 𝑋𝑋𝑖𝑖 ≤ 𝑛𝑛                                                                                       (2)
𝑖𝑖∈𝐽𝐽

 

𝑐𝑐 ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐼𝐼

≤ 𝑢𝑢𝑋𝑋𝑖𝑖                              ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇                      (3) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑑𝑑𝑖𝑖𝑖𝑖                                         ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇        (4) 

∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1                                     ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑡𝑡 ∈ 𝑇𝑇                      (5)
𝑖𝑖∈𝐽𝐽

 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀                                    ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇         (6) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖                                        ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇         (7) 
𝑋𝑋𝑖𝑖, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 ∈ ℤ+                                    ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇        (8) 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0, 1}                                     ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑗𝑗 ∈ 𝐽𝐽, ∀𝑡𝑡 ∈ 𝑇𝑇        (9) 

In model (1) – (9) the objective function (1) minimises the 
total supply-weighted distances travelled during all planning 
periods. Constraint (2) ensures that the number of allocated 
production facilities (and implicitly the number of assigned 
AM machines) does not exceed the number of the available 
ones. It should be noted here that the number of production 
facilities (or more accurately the number of AM machines) is a 
model input rather than a model output. This is because in cases 
of largescale disturbances, one has to adapt with the available 
resources at their disposal, especially that the objective of the 
framework is to assist in the response phase of disturbances, 
not the preparedness phase. Nevertheless, this modelling 
attribute can be easily changed to make the number of 
production facilities (and AM equipment) a model output. 
Constraints (3) ensure that each AM machine’s production 
capacity is not exceeded. Constraints (4) stipulate that the 
supply amount received by each demand node at the beginning 
of each planning period has to be at least equal to its projected 
demand during that planning period. Constraints (5) impose a 
condition that each demand node at each planning period is 
served by exactly one production site. Constraints (6) and (7) 
ensure that demand nodes are only supplied from their assigned 
production sites. Finally, constraints (8) and (9) specify the 
types of the decision variables (integers and binary).  

It is important to discuss the model’s assumptions and 
limitations, and their impacts on the quality of the framework’s 
outcome, before presenting the remaining components and 
processes of the framework. First, model (1) – (9) is 
deterministic. This might at first glance, especially in the 
context of this research which deals with largescale 
disturbances, seem to severely limit the usefulness of the 
framework. This is, however, not the case as the uncertainty is 
integrated into the overall framework and also into its 
constituent models. Uncertainty, more precisely its impact, is 
integrated into the optimisation model through the sensitivity 
analysis experiments, as depicted in Fig. 1. Later in the 
framework, as will be explained in the following section, 
uncertainty will be further introduced into the framework 
through the stochastic agent-based simulation model. The 
model also assumes road transport, where travel times are 
proportional to distances. Also, the model assumes no 
shortages of raw materials al all production facilities. Finally, 
the model assumes that pre and post production activities are 
aggregated within the cycle time. This assumption, as with all 
other assumptions, is made to maintain some degree of 
simplicity in the optimisation model without affecting the 
quality of its solutions. Relative simplicity (or more accurately 
less complexity) is necessary in optimization models as the 
computation time can grow exponentially, rendering a model 
practically unsolvable. 

2.2. Simulation model 

The simulation model, which is depicted in Fig. 2 below, is 
an agent-based model developed from an object-oriented 
backdrop. Object-orientation allows building modular models, 
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greatly facilitating their transferability to different contexts by 
adding/ removing classes and objects. Classes in object-
oriented models refer to the containers that store the parameters 
and functions of objects that define their characteristics and 
behaviour. To explain more, the model depicted in Fig. 2 below 
contains three main classes, which in agent-based models 
represent agent populations. Each of these classes (agents) can 
contain any number of objects (entities) that are defined by the 
parameters values stored in their corresponding classes, and 
their behaviour governed by the functions which are also stored 
in the classes. For example, the Demand node agent in Fig. 2 

refers to the population of all demand nodes that populate the 
model. Their parameters include key information that 
distinguish each individual one from the rest of the population 
(defines each demand node’s individuality). Such parameters 
are location (latitude and longitude for each demand node) and 
demand rate, amongst others. The functions they perform are, 
for example, triggering demand, and communicating with all 
production facilities agents to request supplies in instances of 
inventory shortages. The Environment agent is the space where 
all agents populate. It could be thought of as the world, scaled 
down to contain only the given model’s setting. 

 

Fig. 2. Agent-based simulation model 

The simulation model runs once the optimisation model has 
found an optimal solution and stored it in the database. The 
simulation model accesses the database, imports the parameters 
values (in this case the production network topology and the 
production and distribution schedules) and builds the model 
according to these parameters values. The simulation model 
begins by adding demand nodes and production facilities on a 
map where the demand nodes locations are provided by the user 
and the production facilities are provided by the outcome of the 
optimisation model. Then the model establishes 
interconnections between demand nodes and their assigned 
production facilities, which could differ in each planning 
period. The model then adds delivery vehicles, where each 
demand node is responsible for the collection of its deliveries 
at the beginning of each planning period. The aforementioned 
processes are conducted simultaneously, and after performing 
these processes, the model updates the planning period. Update 
planning period is a timed function that is triggered by the 
simulation model when the time of each planning period 
elapses, and keeps recurring until the entire simulation time has 
elapsed. To explain more, if the model is to simulate a week’s 
period of operations, and each planning period corresponds to 
one day, then the Update planning period function is called at 

the end of each day until the final (seventh) day. Then, if the 
new planning period is not the first one, the model reports the 
individual shortages, if any, that were experienced by each site. 
The selection of inventory shortages has been made to serve the 
aim of the framework to supply all demand nodes with their 
required products, and, when inventory shortages occur, to 
fulfil the backlogs. Then, the production and distribution 
schedules (which were determined by the optimisation model) 
are shared with the respective production sites. After each 
production facility receives its production and distribution 
schedules, it begins immediately producing the assigned 
quantity. After the production of each individual unit, the 
production facility agent checks if the schedule has been met 
or not. If the set schedule has been met, then the production 
facility contacts each of its assigned demand nodes to inform 
them that their share of products is available for collection. 
Then each contacted demand node sends a delivery vehicle to 
collects its share of supplies.  

Inside each demand node’s agent, a random event triggers 
demand throughout the simulation time. Once the event occurs, 
the model checks if there are sufficient supplies to cover 
demand at the demand node’s own inventory stock. If there are 
enough units to cover this demand instance, then no further 



398 Yousef Haddad  et al. / Procedia Manufacturing 55 (2021) 393–400
6 Author name / Procedia Manufacturing 00 (2019) 000–000 

escalation occurs, if not then a brute-force algorithm, 
embedded inside the simulation model contacts all production 
sites and determined which one can supply the required units 
with shortest time. Once an inventory shortage occurs, the 
demand node that experienced the shortage calculates the 
projected amount of demand by comparing the demand rate 
against the time left until the next scheduled delivery as shown 
in (10), where e stands for the time left until the end of the 
current planning period, and u is the number of time units in 
each planning period and dit is the mean demand during the 
current planning period. 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑂𝑂𝑖𝑖𝑖𝑖𝑂𝑂
𝑎𝑎                                                              (10) 

The demand node agent then contacts all production sites to 
enquire about their statuses. It then chooses the production site 
that can deliver the required amount with the fastest time and 
sends a message containing the order details for production. 
The algorithm begins by creating an empty array with a size 
that is equal to the number of production sites. Then, in each 
production site’s respective location in the array, the algorithm 
calculates the estimated time required for each production site 
to deliver the required products. The algorithm checks the 
status of each production site, and then calculates the estimated 
time to receive the requested products and chooses the 
production site that can deliver with the shortest amount of 
time. 

The model keeps running as explained above until the last 
planning period is reached and the simulation time has 
completed. The model then calculates the confidence interval 
for the performance metric that the user wishes to improve. 
This performance measure could be any performance measure 
such as service level improvement or cost reduction, or any 
other performance measure that is in line with the overall 
framework’s objective. If the desired confidence interval 
(which is defined by the user) is met, then the model terminates. 
Otherwise the model performs extra replications and adds their 
outputs to the cumulative mean of the previous replications 
until the desired value is met. After the desired confidence 
interval is met and the simulation model terminated, the model 
calculates the means of the individual shortages for each 
demand node at each planning period, and passes them to the 
optimisation model as new constraints to generate new 
production network. This interchange then between the 
optimisation and simulation models keeps occurring iteratively 
as discussed at the beginning of this section. 

3. Computational experiments 

3.1. Case study background 

    To test and validate the framework, and to demonstrate its 
applicability in its intended domain, a case study for the design 
of localised networked production system for the production of 
PPE, in particular face shields, is conducted in this section. The 
domain of the case study was inspired by the outbreak of the 
COVID-19 pandemic where much of the world experienced 
severe disruptions that it was unprepared for, particularly at the 
early stages of the pandemic outbreak. During early stages of 
the pandemic many healthcare providers around the world 
experienced severe shortages in PPE, which constituted a 

serious risk factor to frontline healthcare workers [17]. Some 
countries, such as Italy, experienced relatively high mortality 
rate amongst frontline healthcare workers, in part due to 
inadequate supplies of PPE. In this paper, following suit with 
[3], the framework is applied to design a localised production 
network for the region of South East England; England’s most 
populous region. The same data set that was used in [3], which 
was retrieved from the UK Government’s open data dedicated 
COVID-19 website (https://coronavirus.data.gov.uk/). In short, the 
case study takes the South East England’s region hospitals as 
demand nodes that require face shields for healthcare workers. 
Demand at each hospital is proportional to the number of daily 
new confirmed cases in the respective hospital’s catchment 
area from 1 March 2020 until 30 April 2020. Hospitals also 
served as potential locations for production sites. Further 
details about the case study’s data can be found in [3]. 
However, Table 1 below presents key values for the parameters 
used while applying the framework.  

Table 1 Key parameters values 

Parameter  Value 

Number of available AM machines 5 

Number of planning periods 9 

Cycle time in hours (μ, σ, min, max) (2, 0.4, 1.6, 2.4) 

Average vehicle speed (Mile / hour) 50 

Length of each planning period (hrs) 168 (number of hours in a week) 

Demand rate (μ, σ, min, max) (demand during planning period, 
demand * 0.5, 0, ∞) 

3.2. Numerical experiments 

The  experiments were performed on a PC with Intel core i5 
2.4GHz and 8GB RAM, the optimisation model was coded in 
Python and run using Gurobi 8.1.1, while the simulation model 
was coded in Java and developed using AnyLogic 7.3.2 
University Edition.. 
    When the framework was applied using the data in Table 1 
and [3], the production network depicted in Fig. 3 was 
generated by the optimisation model. The resulting production 
network was then evaluated under uncertainty by the 
simulation model. The stochastic parameters in the simulation 
model are demand rate, cycle time and transportation time. 

 

Fig. 3. Production network generated by the optimisation model 
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escalation occurs, if not then a brute-force algorithm, 
embedded inside the simulation model contacts all production 
sites and determined which one can supply the required units 
with shortest time. Once an inventory shortage occurs, the 
demand node that experienced the shortage calculates the 
projected amount of demand by comparing the demand rate 
against the time left until the next scheduled delivery as shown 
in (10), where e stands for the time left until the end of the 
current planning period, and u is the number of time units in 
each planning period and dit is the mean demand during the 
current planning period. 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑂𝑂𝑖𝑖𝑖𝑖𝑂𝑂
𝑎𝑎                                                              (10) 

The demand node agent then contacts all production sites to 
enquire about their statuses. It then chooses the production site 
that can deliver the required amount with the fastest time and 
sends a message containing the order details for production. 
The algorithm begins by creating an empty array with a size 
that is equal to the number of production sites. Then, in each 
production site’s respective location in the array, the algorithm 
calculates the estimated time required for each production site 
to deliver the required products. The algorithm checks the 
status of each production site, and then calculates the estimated 
time to receive the requested products and chooses the 
production site that can deliver with the shortest amount of 
time. 

The model keeps running as explained above until the last 
planning period is reached and the simulation time has 
completed. The model then calculates the confidence interval 
for the performance metric that the user wishes to improve. 
This performance measure could be any performance measure 
such as service level improvement or cost reduction, or any 
other performance measure that is in line with the overall 
framework’s objective. If the desired confidence interval 
(which is defined by the user) is met, then the model terminates. 
Otherwise the model performs extra replications and adds their 
outputs to the cumulative mean of the previous replications 
until the desired value is met. After the desired confidence 
interval is met and the simulation model terminated, the model 
calculates the means of the individual shortages for each 
demand node at each planning period, and passes them to the 
optimisation model as new constraints to generate new 
production network. This interchange then between the 
optimisation and simulation models keeps occurring iteratively 
as discussed at the beginning of this section. 

3. Computational experiments 

3.1. Case study background 

    To test and validate the framework, and to demonstrate its 
applicability in its intended domain, a case study for the design 
of localised networked production system for the production of 
PPE, in particular face shields, is conducted in this section. The 
domain of the case study was inspired by the outbreak of the 
COVID-19 pandemic where much of the world experienced 
severe disruptions that it was unprepared for, particularly at the 
early stages of the pandemic outbreak. During early stages of 
the pandemic many healthcare providers around the world 
experienced severe shortages in PPE, which constituted a 

serious risk factor to frontline healthcare workers [17]. Some 
countries, such as Italy, experienced relatively high mortality 
rate amongst frontline healthcare workers, in part due to 
inadequate supplies of PPE. In this paper, following suit with 
[3], the framework is applied to design a localised production 
network for the region of South East England; England’s most 
populous region. The same data set that was used in [3], which 
was retrieved from the UK Government’s open data dedicated 
COVID-19 website (https://coronavirus.data.gov.uk/). In short, the 
case study takes the South East England’s region hospitals as 
demand nodes that require face shields for healthcare workers. 
Demand at each hospital is proportional to the number of daily 
new confirmed cases in the respective hospital’s catchment 
area from 1 March 2020 until 30 April 2020. Hospitals also 
served as potential locations for production sites. Further 
details about the case study’s data can be found in [3]. 
However, Table 1 below presents key values for the parameters 
used while applying the framework.  

Table 1 Key parameters values 

Parameter  Value 

Number of available AM machines 5 

Number of planning periods 9 

Cycle time in hours (μ, σ, min, max) (2, 0.4, 1.6, 2.4) 

Average vehicle speed (Mile / hour) 50 

Length of each planning period (hrs) 168 (number of hours in a week) 

Demand rate (μ, σ, min, max) (demand during planning period, 
demand * 0.5, 0, ∞) 

3.2. Numerical experiments 

The  experiments were performed on a PC with Intel core i5 
2.4GHz and 8GB RAM, the optimisation model was coded in 
Python and run using Gurobi 8.1.1, while the simulation model 
was coded in Java and developed using AnyLogic 7.3.2 
University Edition.. 
    When the framework was applied using the data in Table 1 
and [3], the production network depicted in Fig. 3 was 
generated by the optimisation model. The resulting production 
network was then evaluated under uncertainty by the 
simulation model. The stochastic parameters in the simulation 
model are demand rate, cycle time and transportation time. 

 

Fig. 3. Production network generated by the optimisation model 
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After the optimisation model generated the production 
network, the next step is to run sensitivity analysis experiments 
on key parameters to examine their impact on key performance 
measures. The key parameters that were changes are demand 
rate, cycle time and the available time for each AM equipment. 
Their impact has been investigated on the total distances 
travelled. Fig. 4 demonstrates the impact of changing these 
parameters on the aforementioned performance metric. 
Looking at Fig. 4, it can be noticed that when total demand 
decreases, total distances travelled increases to a certain point 
and then they start decreasing. This is because as demand 
decreases, less production facilities are required to meet the 
decreasing demand, resulting in fewer production facilities and 
therefore more distances travelled. After the 80% decrease 
threshold, however, total distances start decreasing as well. 
This is because as demand significantly decreases, many 
demand nodes (i.e. hospitals) will not request any deliveries for 
several planning periods, resulting in fewer delivery trips and 
subsequently shorter distances travelled. The decrease in cycle 
time also leads to an increase in total distances travelled as 
shorter cycle times will also eventually lead to fewer 
production facilities to fulfil demand. The impact of the 
increase in demand rate and cycle time is almost identical more 
demand, or cycle time, will entail more production sites, which 
results in shorter distances. As for production time available for 
each AM equipment, the decrease in its value leads to shorter 
distances travelled. This is because less availability for each 
equipment will mean more AM equipment have to be 
distributed to supply demand, resulting in shorter distances 
travelled. The impact of the increase in production availability 
was not included because it is unrealistic to assume that a 
machine can operate beyond its time capacity. 

 

Fig. 4 The impact of the change in key parameters on total distances travelled 

After the sensitivity analysis experiments, the performance 
under uncertainty was evaluated over several replications by 
the simulation model. The performance measures that the 
simulation model is designed to observe is the number of face 
shield shortages experienced by each hospital and lead time. 
Lead time is the time duration from an inventory shortage 
instance until receiving the required amount. It is assumed that 
face shields deliveries occur on a weekly basis where each 
hospital is supplied with the projected period’s supplies of face 
shields. Since some parameters have high uncertainty, 
particularly demand, a significant number simulation 
replications has to be performed to generate statistically 
significant outputs. After running several replications and 
observing the confidence interval, a total of 1000 simulation 
replication has been determined sufficient.  

The production network generated by the optimisation 
model should ideally be optimal in a highly certain 
environment. This is however not the case in most real life 
scenarios, particularly during largescale disturbances. 
Therefore, when the simulation model was run, incorporating 
uncertainty in the form of key stochastic parameters for the 
required number of replications, the simulation outcome 
revealed that the performance could be further improved with 
regards to the frequency of face shield shortages (unmet 
demands) and lead time. The modelling then resumed similar 
to the mechanism depicted in Fig. 1 in order to feed the 
optimisation model with feedback (to refine the constraints and 
achieve better service level performance).  

It took 8 optimisation-simulation iterations of gradual 
improvements until the framework ceased to identify 
improvements to the system’s performance with regards to the 
frequency of the occurrence of unmet demand and lead time as 
shown in Fig. 5.  Fig. 5 shows that the first optimisation-
simulation iteration had a mean of around 18 shortages 
experienced by all the 29 hospitals during all planning periods, 
while the mean lead time was around 2.28 hours. 

   
Fig. 5. Improvement in unmet demands (left) and lead time (right) 

 
These outcomes could be acceptable in some cases, but in 

crisis situations it is likely that these values are desired to be 
lower than that. Therefore when the simulation model was run, 
it evaluated the system’s performance, observed where most 
shortages occurred and passed back a number of 
recommendations to the optimisation model to guide its search 
for the optimal solution, given the new requirements. These 
requirements include supplying more face shields to hospitals 
that experienced shortages at the specific planning period that 
such shortages occurred, and if any, supply less to hospitals that 
experienced surpluses. 

It could be noticed from Fig. 5 that the most significant 
improvement has been achieved from the second iteration. The 
frequency of unmet demand improved from around 18 to 
around 10 in the second iteration, stopping at around 5 in the 
last iteration. Regarding improvement in lead time, the first 
iteration yielded a mean lead time of 2.28 hours, improving to 
1.83 hours and stabilising at 1.37 hours in the last iteration. To 
elaborate more on the improvement attained from applying the 
framework to improve the frequency of unmet demand, Fig. 6 
below depicts the frequency of the occurrence of unmet 
demand for hospitals that experienced the highest degrees of 
unmet demands for the first and last optimisation-simulation 
iterations. The results reveal that by the last optimisation-
simulation iteration, demand nodes experienced significantly 
less occurrence of unmet demands. 
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Fig. 6. Frequency of the occurrence of unmet demand for the 10 highest 

hospitals in the first and last optimisation-simulation iterations 

4. Conclusion 

    In this paper, a model-based decision-making framework for 
the design of localised networked production systems in times 
of largescale disruptions has been developed. The framework 
improves on the one developed in [3] by adding sensitivity 
analysis to pass the impact of potential uncertainty in certain 
parameters to the deterministic section of the framework, and 
embeds an algorithm that handles backlogs into the simulation 
model. The performance with regards to lead time has been 
observed in addition to the frequency of inventory shortages. 
The sensitivity analysis revealed interesting insights, 
particularly with regards to the relationship between the impact 
of the change in the values of demand and cycle time. The key 
characteristic of the framework is that it can generate 
production networks from the optimisation model under 
uncertainty, where only the impact of uncertainty is passed to 
the model. This approach to handle uncertainty and complexity 
in optimisation model is useful as the optimisation model can 
still be simple enough to be presented in closed form and solved 
to optimality, while at the same time including the perceived 
impacts of uncertainty and complexity into its solutions. In 
other words, uncertainty and complex interrelationships are 
handled by the simulation model, while their impact is passed 
back to the optimisation model. 
    This research can be extended in a number of directions. 
First, the cost of establishing the system could be considered 
by adding an extra cost minimisation objective function to the 
model. It will also be interesting to  integrate a heuristic 
algorithm, such as genetic algorithm or tabu search or 
simulated annealing, in the decision-making framework to 
solve a more complex and detailed optimisation model. As 
mentioned earlier, most of the complexity, uncertainty and 
details were passed to the agent-based model which performed 
all complex operations and passed back the key observations to 
the optimisation model, iteratively. Therefore, examining the 
framework’s output when both the optimisation and the agent-
based models are complex and detailed, and comparing it with 
the outputs presented in this study will be an interesting area of 
research. Finally, a number of assumptions made earlier could 
be relaxed, and the impact of removing these assumptions 
could be observed. For example, transportation deliveries could 
become capacitated. 
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