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Abstract: Timely clearing-up interventions are essential for effective recovery of flood-damaged
housing, however, time-consuming door-to-door inspections for insurance purposes need to take
place before major repairs can be done to adequately assess the losses caused by flooding. With the
increased probability of flooding, there is a heightened need for rapid flood damage assessment meth-
ods. High resolution imagery captured by unmanned aerial vehicles (UAVs) offers an opportunity
for accelerating the time needed for inspections, either through visual interpretation or automated
image classification. In this study, object-oriented image segmentation coupled with tree-based
classifiers was implemented on a 10 cm resolution RGB orthoimage, captured over the English town
of Cockermouth a week after a flood triggered by storm Desmond, to automatically detect debris
associated with damages predominantly to residential housing. Random forests algorithm achieved
a good level of overall accuracy of 74%, with debris being correctly classified at the rate of 58%, and
performing well for small debris (67%) and skips (64%). The method was successful at depicting
brightly-colored debris, however, was prone to misclassifications with brightly-colored vehicles.
Consequently, in the current stage, the methodology could be used to facilitate visual interpretation
of UAV images. Methods to improve accuracy have been identified and discussed.

Keywords: urban flood damage; UAV; object-oriented image analysis

1. Introduction

The risk of occurrence of floods has risen globally, being driven by climatic, terrestrial
and hydrological as well as socio-economic factors [1]. In the UK, there is evidence of
upward trends in peak flows at nearly a quarter (117) of river gauges, especially in the
upland areas starting from the 1990s [2]. In England, one in six properties is at risk
of flooding from rivers and the sea [3], with the scales of economic costs to residential
properties varying between 320–1500 million £ (2015 prices), depending on severity of
flooding events [4]. Rapid assessment of damages for insurance purposes is vital for fast
recovery, however, it may be delayed due to the necessity for door-to-door inspections to
be carried out before cleaning up activities can take place. Such delays may cause further
deterioration of the properties and consequently increase overall insurance costs. They also
slow down the pace of recovery, thus contributing negatively to increasing urban resilience
to flooding.

Remote sensing techniques, and imagery captured by unmanned aerial vehicles
(UAVs) in particular, can be used to shorten the time needed for flood damage assessment.
Although satellite and aerial imagery have been used in the context of flood detection [5],
UAV imagery has the advantage of on-demand availability, independence from cloud cover,
high spatial resolution of the imagery allowing for recognition of detailed on-the-ground
features, and the capacity of easy access to areas not accessible by manned aircraft [6].

RGB imagery captured by UAVs when combined with machine learning (ML) methods
such as random forests [7] or artificial neural networks [8–10] can be used to determine

Remote Sens. 2021, 13, 3913. https://doi.org/10.3390/rs13193913 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6172-901X
https://orcid.org/0000-0003-0073-5640
https://orcid.org/0000-0002-4169-3099
https://doi.org/10.3390/rs13193913
https://doi.org/10.3390/rs13193913
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13193913
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13193913?type=check_update&version=1


Remote Sens. 2021, 13, 3913 2 of 23

the extent of the inundated area, ascertaining the locations where damage to properties
has occurred without the need for time-consuming reconnaissance visits. Generally, this
involves ML methods to be facilitated by photogrammetric digital elevation models (DEMs)
generated from UAV imagery [11]. UAV-derived DEM and optical imagery coupled with
object-based image analysis (OBIA) can also be used to facilitate detection of houses affected
by flooding [12].

To date, only a couple of studies have used UAV data to detect damage caused by
flooding. In [6], a visual interpretation of an UAV RGB image was deployed to identify
signs of damage over the English town of Cockermouth which included water-damaged
items associated with households, as well as signs of natural damage and damage to
the infrastructure. Visual interpretation required over four days of work to digitize in
excess of 8000 points depicting flood damage. Another study [13] developed an automated
method for detection of water-related disaster damage. It used two convoluted neural
network-based image segmentation architectures and an object library generated from
publicly available aerial (UAV and helicopter) video footage captured of different hurricane-
struck areas in the United States. The library identified bulk objects such as flooded
area, vegetation and roads as well as countable objects including people, damaged and
undamaged building roofs, cars, debris, and boats. The average precision of the method
achieved 77.01% accuracy for the bulk classes and 51.54% mean average precision for the
countable classes.

However, ML methods have been used successfully to assess damage from other
natural disasters. For example, several ML techniques including decision trees (DTs)
and random forests (RFs) were used to predict vulnerability of buildings to earthquake-
related based on information on building age, size, and value as well as parameters
describing earthquake spectral acceleration, distance to fault and shear-wave velocity [14].
Xu et al. [15] used photogrammetric UAV point clouds with RGB information coupled
with active learning and support vector machines to detect earthquake damage in three
towns, achieving 64 to 88% accuracy, depending on site, in classification of associated
debris. Nex et al. [16] applied a convolutional neural network to UAV imagery captured
at four different sites to detect earthquake damaged buildings with overall accuracies
ranging from 67 to 93%. Moreover, various ML methods, that including RFs, have been
successfully applied in civil engineering not only to investigate damage to structures but
also for structural health monitoring and performance evaluation [17].

With the automated methods for flood damage detection from UAV imagery in their
infancy, the overarching aim of this study is to develop a modelling framework for the
automated detection of flood damage using UAV RGB imagery and ML methods coupled
with object-oriented image analysis, allowing for rapid recognition of signs of flood damage.
We chose to focus our analysis on the application of tree-based classifiers such as DTs and
RFs due to their good performance in damage detection tasks without the limitation of
deep learning approaches of the inability to learn from small amounts of data [18]. We
based our work on the existing study of flooding damage in Cockermouth [6] and our
specific objective are defined as follows:

(1) To devise a combined OBIA-ML-UAV system engineering solution for the automated
identification of flood impact to residential properties;

(2) To calibrate and validate the method developed in (1);
(3) To interpret the results from (1) and (2) within the context of current flood impact

assessment practice.

As such, our study provides a methodological framework for the application of tree-
based ML algorithms coupled with object-oriented image analysis in rapid post-event flood
damage detection as well as insights into their capacity to distinguish between different
types of debris. The implications of the devised framework for disaster management are
also discussed.



Remote Sens. 2021, 13, 3913 3 of 23

2. Materials and Methods
2.1. Study Area

The study area is located in the town of Cockermouth, Cumbria, UK, at the conflu-
ence of the rivers Cocker and Derwent (Figure 1). The town was affected by a severe
flood event caused by Storm Desmond that took place on 5–6 December 2015, damaging
466 properties [19]. The event was a consequence of heavy rainfall over an extended period
with more than 300 mm of rainfall over a 24 h period [19], which translated into flows in
the Derwent River of 395 m3 s−1 at the Ouse Bridge gauging station and 170 m3 s−1 at the
Cocker Southwaite River gauging station. The estimated annual exceedance probability for
the observed event was less than 1% for both rainfall and river flows.
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Figure 1. Location of the study area with main land cover types depicted from aggregated classes of OS MasterMap
Topography layer. The grid overlay is calibrated to British National Grid coordinates. [OS MasterMap® Topography Layer
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Digimap Ordnance Survey Service, Available online: https://digimap.edina.ac.uk, Downloaded: 10 November 2020
14:30:04.429].

2.2. Data

This study is based on a high resolution (0.1 m) UAV orthoimage in the visible light
spectrum captured a week after the storm event, on 13 December 2015, over an area of
142 ha with a Sirus-Pro (Topcon Positioning System Inc., Livermore, CA, USA) fixed wing
platform. The horizontal and vertical position accuracy of 0.01 m and 0.015 m, respectively,
were ascertained by the Real Time Kinematic Global Navigation Satellite System GNSS-
RTK—L1/L2 GPS and GLONASS (Global Navigation Satellite System) with RTK mounted
on the platform. The camera was a 16-megapixel Panasonic GX-1 with 0.03 m pixel size,
14 mm focal length and Micro4/3 sensor type. The images were captured with 85% along
and 65% across track accuracy at a speed of 65 km h−1 and at 112 m altitude with resulting
ground sampling distance of 0.026 m. Further details regarding the UAV data acquisition

https://digimap.edina.ac.uk
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are available in [6]. All the imagery was collected by a qualified pilot following airspace
regulation. An ancillary data set with the location of the centroid of six random ground
control points (GCPs) was obtained with a Topcon HiPer V GPS (Topcon Positioning
System Inc., Livermore, CA, USA).

Interpretation of the main land cover classes present within the study area was facili-
tated by the OS MasterMap topographic map at the scale of 1:1 250 updated on 11 June 2015.

2.3. Photogrammetric Process

The quality and spatial coverage of each of the UAV images collected was inspected
prior to their inclusion in the photogrammetric process. Individual frames that were
distorted or blurred, did not present a nadir orientation and did not cover the area of interest
were discarded. The geomatic products were obtained using Photoscan Pro version 1.1.6
(Agisoft LLC, St. Petersburg, Russia). Each individual frame was located, translated,
and rotated into the World Geodetic System WGS84 for georeferencing purposes. The
coordinates of the GCPs centroids were used to minimize distortion. The coregistration
error was automatically derived from Photoscan Agisoft following [6]. From the geomatic
products obtained i.e., orthoimage, point cloud and digital elevation model), only the
orthoimage was used for the purpose of this study.

2.4. Object-Oriented Image Classification

The methodology applied to detect debris indicative of flood damage to residential
properties was based on object-oriented classification implemented within the eCognition
Developer v10 (Trimble Geospatial, Munich, Germany) software (Figure 2). Supporting
GIS tasks were carried out using ArcGIS Desktop v10.6 (ESRI, Redlands, CA, USA) and
statistical analyses were conducted in R (R Foundation for Statistical Computing, Vienna,
Austria) [20]. The methodology comprised two distinct steps: image segmentation and
flooding damage classification, described Sections 2.4.1 and 2.4.2 below.

In remote sensing, image classification can be carried out on pixel- or object-basis
whereby a class value is assigned either to individual grid cells of an image or objects
representing groupings of pixels possessing similar spectral properties. Object-based
approaches are often cited as having a superior classification accuracy [21]. Image objects
are created during the image segmentation process aimed at minimizing internal object
heterogeneity with regards to set criteria. Multiple segmentation techniques exist, three
of which have been used in this study: multiresolution segmentation, spectral difference
segmentation and vector-based segmentation.

In multiresolution image segmentation techniques, which allow for segmentation of
multi-band images taking into account spectral and textural properties of objects, homo-
geneity criteria are determined by parameters of scale, color, shape and compactness [22].
Scale determines the maximum allowed heterogeneity for the resulting image objects by
defining the maximum standard deviation of the homogeneity criteria for each image
band, with larger values yielding larger objects. The size of resulting objects will depend
on the level of homogeneity within the image, with the same scale value yielding larger
objects for more homogenous data. Color and shape define the importance weights of the
spectral information of the image versus texture of resulting objects contributing to the
homogeneity criterion. Compactness defines shape and can be used to separate compact
from fractured objects that have similar spectral values.

Spectral difference segmentation merges neighboring image objects based on the
maximum spectral difference value determined by the user, defined by the differences in
mean intensity of the objects. Vector-based segmentation is used to convert vector thematic
layers into objects retaining the shape and size of polygons.



Remote Sens. 2021, 13, 3913 5 of 23
Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 33 
 

 

 
Figure 2. Workflow of the method applied for classification of flood debris. DT—decision trees, RF—random forests, 
RGB—red-green-blue image bands, ANOVA—analysis of variance. 

Spectral difference segmentation merges neighboring image objects based on the 
maximum spectral difference value determined by the user, defined by the differences in 
mean intensity of the objects. Vector-based segmentation is used to convert vector the-
matic layers into objects retaining the shape and size of polygons. 

Object-oriented image classification is carried out on objects derived during segmen-
tation process and is based on the values of features that may be related to their spectral, 
geometric, and topological properties, among others. Spectral features refer to the statis-
tical descriptors of the image’s pixel values for each available image bands, such as mean, 
mode and standard deviation. Spectral properties of image bands can also be used to de-
scribe texture of objects from the grey-level co-occurrence matrix (GLCM) defining the 
frequency at which different combinations of pixel gray levels occur in the scene. Geom-
etry features constitute a large pool of descriptors related to the extent and shape of ob-
jects, polygons derived from objects or skeletons drawn within objects. Topological 

Figure 2. Workflow of the method applied for classification of flood debris. DT—decision trees, RF—random forests,
RGB—red-green-blue image bands, ANOVA—analysis of variance.

Object-oriented image classification is carried out on objects derived during segmen-
tation process and is based on the values of features that may be related to their spectral,
geometric, and topological properties, among others. Spectral features refer to the statistical
descriptors of the image’s pixel values for each available image bands, such as mean, mode
and standard deviation. Spectral properties of image bands can also be used to describe
texture of objects from the grey-level co-occurrence matrix (GLCM) defining the frequency
at which different combinations of pixel gray levels occur in the scene. Geometry features
constitute a large pool of descriptors related to the extent and shape of objects, polygons
derived from objects or skeletons drawn within objects. Topological features describe the
position of an object with regards to other objects, taking into account both their spatial
and spectral properties.
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2.4.1. Image Segmentation and Building Refinement

Image segmentation was carried out with the purpose of deriving homogenous objects
depicting flood damage, referred throughout this manuscript to as debris, as well as
remaining land cover features (i.e., non-debris). The segmentation and subsequent debris
classification were necessarily facilitated by incorporation of main land cover classes
(buildings, land, roads and water) depicted by the large-scale topographic OS MasterMap
to avoid misclassification between buildings and their immediate surroundings. Whilst
the topographic map helped to distinguish buildings from their surrounding land, it also
provided excessive detail in terms of locations of large-scale features such as footpaths
or structures, and these were incorporated into the principal land cover classes of land,
buildings, roads and water. The procedure used is described in Table S1 of Supplementary
Materials. Therefore, in the first step ‘vector-based segmentation’ process was used to
derive objects corresponding to the major land cover classes as depicted by the topographic
map. Objects representing classes ‘land’ and ‘buildings’ were further sub-divided during
the ‘multiresolution segmentation’ process that used the RGB bands of the Cockermouth
UAV image. The scale, shape and compactness parameters required for the segmentation
were set to 10, 0.5 and 0.5 during a trial-and-error approach, calibrating the segmentation
process so that the derived objects offered good separation of debris and non-debris features,
and preventing the debris objects from comprising low-contrast features associated with
their background when the scale parameter was set to larger values. Water and road objects
were excluded from the multiresolution segmentation due to a very low presence of debris
within these features.

The land cover features depicted by the topographic map and the UAV image were
misaligned with regards to each other due to existing co-registration errors. The resulting
misalignment posed an issue especially for buildings due to the exposure of their walls,
which, when brightly colored, could be easily confused with debris by the classification
algorithms deployed in the subsequent steps of the analysis. Additionally, white features
such as conservatories that frequently were classified as ‘land’ in the topographic map,
where also likely to be misclassified as debris and therefore had to be incorporated into the
‘building’ class. Building refinement was carried out through a multi-step reclassification
procedure, implemented via the ‘assign class’ algorithm that reclassifies objects through
application of conditional statements related to their spectral and geometrical properties.
For this purpose, an ancillary sample of objects representing roofs, dark land, tiling, conser-
vatories, white walls, and heaps of debris was captured and attributed with 70 different
descriptors available from eCognition. The types of objects included in the ancillary data
sample represented land cover features located in high proximity to building roofs that
were likely misclassified as roofs or debris. For example, dark land representing water-
saturated bare ground or ground sparsely covered with grass was likely to be misclassified
as darker parts of roofs, whilst tiling characterized with bright, yellow-to-orange hues, was
often misclassified as brighter parts of roofs. On the other hand, brightly-colored conserva-
tories and white walls were frequently misclassified as heaps of debris, that were typically
white/bright in color, especially when the latter were placed immediately next to the
buildings. Selection of descriptors types and their values that offered the best distinction
between these classes was facilitated by the analysis of variance (ANOVA) and boxplots,
respectively. Descriptors presenting statistically significant differences (p-value < 0.05)
between building roofs and walls and the remaining classes were considered in the refine-
ment. It is important to note that the goal of this step was to reduce the confusion between
buildings and debris rather than identify exact boundaries of the buildings, allowing for a
small amount of overspill of the class ‘buildings’ onto the adjacent land cover objects.

In the final segmentation step, objects located within areas belonging to class ‘land’
were coarsened with the ‘spectral difference segmentation’ algorithm, using the maximum
spectral difference setting of 10 for the RGB bands and 3 iteration cycles. These parameters
were carefully chosen to minimize joining objects depicting debris to objects representing
non-debris features whilst reducing the overall number of objects present within the image
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to facilitate the classification process and data handling. Larger values would have resulted
in joining objects depicting both the debris and non-debris features together, reducing the
accuracy of the subsequent classification, whilst smaller values of these parameters would
retain an excessive number of objects within the image, increasing the time needed for the
deployment of classification models. The ‘merge region’ algorithm was also used to merge
all fine-resolution objects belonging to class ‘buildings’.

2.4.2. Flood Damage Classification

Flood damage classification was carried out on coarse-resolution objects in three steps:
sample collection, classification, and accuracy assessment, described in the Sub-Sections below.

Sample Collection

Point sample collection was carried out in ArcGIS Desktop environment upon careful
inspection of the Cockermouth UAV image for different types of debris, and was informed
by an existing image interpretation carried out for the purpose of a previous study [6].
The most prominent signs of flood damage comprised large heaps of debris representing
water damaged goods stored in a high proximity to houses as well as skips containing such
goods placed in the driveways or front gardens, however, also included small scattered
debris, furniture left to dry outside, as well as multiple bin bags gathered in front gardens.
For algorithm training and validation purposes, the data sample was supplemented with
features that could potentially be confused with debris, which included bins, industrial
palettes, cars, as well as objects representing tiling/paths, grass and bare ground of different
shades, hedges, shrubs and trees. No samples were collected for road features or water,
given that the subsequent classification was targeted at the ‘land’ class where the majority
of the debris were located. Figure 3 shows examples of debris and non-debris features.

Prior to classification, the sample was divided into approximately 70–30% sub-samples,
used for model training and validation, respectively (Table 1). Purity of the samples
was ensured by visual inspection of the coarse-resolution objects intersecting with the
samples and removal of any points placed within objects containing both the debris and
the surrounding land. Whilst the training sample was only drawn from areas classified as
‘land’, the validation sample covered both features within ‘land’ and the refined ‘buildings’,
allowing for assessment of accuracy including the potential overspill of buildings into
adjacent debris during refinement. Additionally, only one point per object was retained
in cases where multiple points were placed within an object during sample collection.
Finally, the different types of flooding damage identified during the sample collection,
were amalgamated into debris and non-debris classes prior to training of the models.
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Table 1. Model training and validation samples types and sizes expressed as number of coarse-
resolution objects. Values in brackets refer to the proportion of the total sample size used for model
training and validation. NV—samples excluding vehicles, WV—samples including vehicles.

Target Classes Detailed Classes

Sample Size

Training Validation Total

NV [64%] WV [71%] WV [29%] NV WV

Debris Bin Bags 20 10 30
Furniture 57 20 77

Heaps of debris 362 148 510
Skip 188 58 246

Small debris 376 184 560

Sub-total 1003 420 1423

Non-Debris Bins 139 69 208
Land 1090 524 1614

Palettes 102 45 147
Vehicles 0 780 249 249 1029

Sub-total 1331 2111 887 2218 2998

Grand Total 2334 3114 1307 3641 4421

Classification

Classification of objects related to debris and non-debris features was carried out in
eCognition Developer software using tree-based classifiers. Tree-based classifiers are ma-
chine learning methods that can be used to generate prediction models from tabular data,
and have exhibited high performance levels in land cover classification problems [23,24]
including classifications of very high resolution imagery in urban settings [25,26]. Decision
trees, being an implementation of classification and regression trees (CARTs) [27], and
random forests (RF) [28] were used in this study. In general, tree-based classifiers recur-
sively partition the data to fit a simple prediction model within each partition so that a
tree-like decision structure is created, with branches representing pathways through splits
of predictor values and the leaves—the target classes associated with these values [24,29].
Whilst the DT algorithm derives a single tree from the dataset that clearly visualizes the
classification rules and is fast to implement, RFs make the final decision based on the
majority vote from multiple trees that use a random subset of observations and predictor
variables, and are therefore difficult to visualize. RFs, however, do not overfit data, as
opposed to other machine learning methods used in urban flood mapping such as artificial
neural networks, do not require the input variables to be normally distributed as is the
case in maximum likelihood methods, and are quicker to parameterize than support vector
machines [26]. RFs can also provide an unbiased estimation of accuracy as well as relative
importance of each variable used in the prediction.

In this study, regardless of the algorithm used, classification of the UAV image into
debris and non-debris features was carried out in two steps. Firstly, DT and RF models were
trained with coarse-resolution objects derived during the second step of image segmenta-
tion that intersected with training points locations captured during visual interpretation of
the image. These objects were attributed with multiple spectral and geometrical properties
available in the eCognition Developer software (Table S4 Supplementary Materials). Both
the DT and RF models were trained twice, with or without vehicles included in the training
sample using settings shown in Table 2 below.



Remote Sens. 2021, 13, 3913 10 of 23

Table 2. Settings used to train the random forests (RF) and decision trees (DT) models, with training
data sample excluding (WV) and including (NV) vehicles; n/a refers to settings not applicable to
the algorithms.

Algorithm Setting RFNV RFWV DTNV DTWV

Type Random Trees Decision Tree
Depth 0 0

Minimum sample count 0 0
Use surrogates No No

Maximum categories 16 16
Active variables 0 n/a

Maximum tree number 500 n/a
Forest accuracy 0.01 n/a

Termination criteria type Both n/a
Cross-validation folds n/a 10

Use 1SE rule n/a No
Truncate pruned tree n/a No

The parameters of depth and minimum sample count, both set to 0 in the RF and DT
algorithms, did not constrain the trees in terms of their depth as well as the allowed number
of observations at each node. Given that the data sample did not contain any missing
values, there was no need for the algorithms to use surrogate splits to predict actual splits
of the data. The maximum categories parameter refers to the number of clusters used in
categorical variables, which in the case of this study was spurious due to all predictors
being continuous. The DT algorithm was pruned during 10 cross-validation folds, reducing
the likelihood of overfitting our data. No additional pruning due to the application of 1 SE
rule, selecting the smallest tree with estimated error smaller than the lowest estimate of
error increased by 1 standard error of this estimate, was applied. Finally, no truncation of
the pruned tree was requested, allowing for the retrieval of non-truncated branches. In the
RF algorithm settings, the active variables parameter of 0 allowed for a random selection
of the square root of the total number of predictive variables at each tree node, which is
a default setting used by the algorithm. The maximum tree number was set to a large
number of 500 allowing for the forest to minimize the out of bag error before reaching the
termination criteria, which were set to both criteria of achieving the maximum number of
trees as well as the sufficient forest accuracy. Sufficient forest accuracy was set to a low
value of 0.01% not to constrain the evolution of the forest.

In the second step of the classification, the trained models were deployed on all coarse-
resolution objects covering land depicted by the topographic map to yield four different
classified maps in total.

Accuracy Assessment

Given that our flood damage detection approach aimed at classification of debris vs.
non-debris features, accuracy assessment was carried out with binary confusion matri-
ces derived with the ‘caret’ library [30] in R software. An independent validation data
sample was used. Confusion matrices allow for calculation of multiple metrics for diag-
nostics of performance of a classification scheme. These include overall accuracy (ACR)
(Equation (1)), sensitivity, i.e., true positive prediction rate (TPR) expressing the ratio of cor-
rectly classified positive samples (P) (Equation (2)), specificity, i.e., true negative prediction
rate (TNR) expressing the ratio of correctly classified negative samples (N) (Equation (3)),
precision and inverse precision, i.e., positive and negative prediction values (PPV and
NPV), measuring the proportion of correctly classified positive or negative samples to the
total number of positive or negative samples (Equations (4) and (5)), prevalence (PRV),
indicating the proportion of the positive samples in the data (Equation (6)), detection rate
(DT) (Equation (7)) measuring the rate at which positive values were correctly classified,
detection prevalence (DPRV) (Equation (8)), and balanced accuracy (BACR) (Equation (9))
correcting the accuracy score for an imbalanced data sample. In this study, p values refer
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to samples of debris and N values refer to non-debris features. The notation of equations
was adapted from [30,31]. Additionally, the unweighted Cohen’s kappa coefficient was
calculated (Equation (10)) [32].

ACR =
TP + TN

TP + TN + FP + FN
(1)

TPR =
TP

TP + FN
(2)

TNR =
TN

FP + TN
(3)

PPV =
TP

FP + TP
=

TP
P

(4)

NPV =
TN

FN + TN
=

TN
N

(5)

PRV =
TP + FN

TP + TN + FP + FN
(6)

DR =
TP

TP + TN + FP + FN
(7)

DPRV =
TP + FP

TP + TN + FP + FN
(8)

BACR =
1
2
(TPR + TNR) =

1
2

(
TP

TP + FN
+

TN
TN + FP

)
(9)

κ =
2·(TP·TN − FP·FN)

(TP + FP)·(FP + TN) + (TP + FN)·(FN + TN)
(10)

3. Results
3.1. Refinement of Buildings

The ANOVA (Table S2 in Supplementary Materials) carried out for pairs of different
land cover features considered in the building refinement procedure over multiple spectral
and geometrical properties of fine-resolution objects, identified eleven descriptors that,
based on statistically different means (p-value < 0.05), could be helpful in discriminating
between buildings and other land cover features. These descriptors included brightness,
mode (maximum) of the RGB image bands, length of the border to buildings, relative
border to buildings, width, relative border to land, distance to buildings, asymmetry,
GLCM contrast in all directions, and length/width ratio. Boxplots plotting the range of
values of these descriptors for each land cover class considered in the procedure (Figure 4),
however, revealed that some overlap was present between roofs or white walls and the
remaining features. The size of the overlap varied depending on the descriptor and land
cover feature, however, roofs could appear similar to adjacent dark land and tiling, and
white walls to heaps of debris and conservatories.

The 13-step building refinement procedure (Table S3 in Supplementary Materials) was
primarily based on brightness and maximum mode values of the RGB bands, classifying
objects that were moderately bright, and brighter in the B than R image band as roofs, with
the remaining descriptors acting as refining variables. Importantly, white walls were set
apart from brightly colored debris through their width.
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Visual inspection of the outcomes of the procedure showed that in overall it was
successful at improving the delineations of building footprints including conservatories
(Figure 5). Despite the implementation of the numerous refinement steps with carefully
selected thresholds informed both by the boxplots and a trial-and-error approach, however,
some tiling immediately adjacent to buildings as well as debris was erroneously classified
as buildings. Given that the principal goal of this classification was to separate buildings
from debris rather than accurately represent building footprints, some misclassifications
between buildings and adjacent paving or the ground were allowed. Any confusion with
the debris, however, was not desirable and was captured during validation of the flood
damage classification results presented in Section 3.2.
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Figure 5. Outcomes of the building refinement procedure aiming at the reduction of the misclassification rate of flooding
debris into buildings. Images (a–d) show accurately refined buildings, including white walls (b) and conservatories (d).
Images (e,f) show examples of buildings overspilling onto adjacent pavement or debris following the procedure.

3.2. Classification of Flooding Damage
3.2.1. Classification Accuracy

Numerical assessment of the accuracy of the classification of image objects into
classes representing flood damage, i.e., debris, and other land cover features, i.e., non-
debris, (Table 3), indicated that the random forest model trained with data sample that
excluded vehicles was most successful at depicting debris, with the overall accuracy of
74%, (p-value < 0.001). The value of specificity metric of 0.82, however, indicated that the
model was more successful at classifying features belonging to the non-debris class, and
the sensitivity metric indicated that only 58% of the debris was successfully classified.

Decision tree models were not successful at depicting the debris, which could be
associated with only two predictor variables (contribution of the green image band to
overall brightness and border length of image objects) being included in the tree structure,
likely resulting from excessive pruning during the 10-fold cross-validation process. All
models trained with the data sample containing vehicles were unable to detect debris
within the image, indicating high levels of confusion between vehicles and debris features.
Inspection of the map obtained from the RF model that excluded vehicles during training
revealed that brightly-colored vehicles, including cars, vans or camper vans, were typically
misclassified as debris. In fact, the brightness of color was a decisive factor for classification
of objects as debris, with darker debris not being picked out in the classification.

Analysis of the distribution of the correctly and incorrectly classified features (Figure 6)
revealed that out of the different debris types, small debris followed by heaps of debris
and skips were most accurately classified, and pieces of furniture were least accurately
represented by the random forest model. Amongst the non-debris features, a great majority
of objects representing land and bins were correctly classified. Approximately half of the
vehicles as well as the majority of industrial palettes were misclassified as debris. Finally,
fragments of the RF image showing correctly and incorrectly classified debris are shown
in Figure 7.
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Table 3. Accuracy assessment for debris classifications obtained with the random forests (RF) and
decision trees (DT) algorithms with exclusion (NV) or inclusion (WV) of vehicles in the training data
sample. In the assessment, positive value was set to ‘Debris’.

Metric
RF DT

NV WV NV WV

Accuracy 0.74 0.68 0.68 0.68
95% CI 0.71, 0.76 0.65, 0.70 0.65, 0.70 0.65, 0.70

No information rate 0.68 0.68 0.68 0.68
p-Value [Acc > NIR] <0.001 0.51 0.51 0.51

Kappa 0.4 0 0.0034 0
Sensitivity (True positive rate) 0.58 0 0.0034 0
Specificity (True negative rate) 0.82 1 0.9976 1

Positive Prediction Value 0.6 NA 0.5 NA
Negative Prediction Value 0.8 0.68 0.68 0.68

Prevalence 0.32 0.32 0.32 0.32
Detection Rate 0.19 0 0.001 0

Detection Prevalence 0.31 0 0.003 0
Balanced accuracy 0.7 0.5 0.5 0.5
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senting (a) debris and (b) non-debris split into their respective feature types for the random forest model trained with data
sample excluding vehicles. Counts of objects falling into the correctly or incorrectly classified categories are shown above
the bars.
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3.2.2. Variable Importance

The list of variable importance of the random forest model constructed with the
training sample excluding vehicles pointed to a high variety of spectral and geometrical
properties of objects useful for making a distinction between debris and other features in
our study area setting (Table 4). The most important variable used in the classification
was “area” expressed as the number of image pixels forming an image object, closely
followed by “object width”, both referring to the geometric properties of image objects. The
third most important variable was the “mean value” of the red image band of the pixels
forming the inner border of an object, referring to the objects’ spectral properties. Out of
the arbitrarily chosen top twenty predictors and metrics representing spectral properties
of the image objects, the red band was used most frequently, with five different metrics,
followed by the green band (three metrics) and blue band (two metrics). Both the spectral
and geometric properties of the objects were equally important, given the near equal
distribution of metrics belonging to these categories within the top twenty predictors. The
distributions of these predictors for debris and non-debris features are shown in Figure 8,
with the debris typically associated with relatively higher values of spectral and lower
values of geometric properties as compared to non-debris, corresponding to their brighter
color and smaller size.

Table 4. Top twenty most important predictors of flood damage identified by the random forest model. The full list of
predictors is given in Table S4 in Supplementary Materials. Letters R, G, and B refer to the red, green and blue bands of
the Unmanned Aerial Vehicle (UAV) image. Variable type refers to its capacity to describe spectral (Sl) or geometric (Gc)
properties of an image object. Variable definitions are based on [22].

Rank Variable Type Definition Importance

1 Area Gc The number of pixels forming an image object 0.0535

2 Width Gc Width of an object calculates as the number of pixels within the object
divided by the length to width ratio of the object 0.0501

3 Mean of inner border R Sl Mean layer intensity value of pixels belonging to the inner border
of an object 0.0414

4 Length of longest edge
(polygon) Gc Length of the longest edge of polygons vectorised from image objects 0.0294

5 Border contrast R Sl Mean value of the pixel edge contrasts of all edges of an object 0.0256
6 Border length Gc Sum of edges of the image object located within inner and outer borders 0.0241
7 Border contrast B Sl Mean value of the pixel edge contrasts of all edges of an object 0.0228
8 Mode [Maximum] R Sl The largest pixel value occurring most often within an object 0.0225

9 Length Gc Length of an object calculated as a square root of the product of the
number of pixels and length to width ratio 0.0223

10 Perimeter (polygon) Gc The sum of lengths of all edges of the polygon vectorised from the
image object 0.0213

11 Average length of edges
(polygon) Gc The average length of edges of the polygon vectorised from

the image object 0.0211

12 Border contrast G Sl Mean value of the pixel edge contrasts of all edges of an object 0.0206

13 StdDev of length of
edges (polygon) Gc Measure of deviation of the lengths of edges of the polygon vectorised

from an image object from their mean value 0.0195

14 Ratio R Sl Contribution of a given image band to the total brightness of the object 0.0192

15 Mode [Median] R Sl The median value of the most frequently occurring pixel values within
an object 0.0188

16 Ratio G Sl Contribution of a given image band to the total brightness of the object 0.0186

17 Mean of inner border B Sl Mean layer intensity value of pixels belonging to the inner
border of an object 0.0177

18 Density Gc The number of pixels of an image object divided by its approximated
radius, with a square shape having the highest density 0.0164

19 Max. diff. Sl The ratio of the maximum value of the difference between intensity of
image bands and brightness within an image object 0.0163

20 Mean of inner border G Sl Mean layer intensity value of pixels belonging to the inner
border of an object 0.0156
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4. Discussion
4.1. Flood Damage Detection

This study aimed at the development of a combined OBIA-ML-UAV system engineer-
ing solution for automated identification of flood impact to residential properties with the
purpose to facilitate rapid screening for damaged properties and consequently reduce the
time needed for insurance assessments. As such, out of different types of flood damage
identified during a visual interpretation of the available image during a previous study [6],
features representing natural debris e.g., sediment deposits, trees, branches and other
types of organic matter deposited across the study area; scour, leftover water pools as well
as signs of damage to infrastructure including exposed pipes and bridge barriers were
excluded from the analysis. Instead, we focused on detection of water-damaged goods
removed from affected households stored next to the houses (heaps of debris) or placed
in skips located in the front gardens. Scattered smaller pieces of debris, house furniture
placed outside of houses and bin bags filled with damaged goods were considered in the
final classification as well.

Our classification approach required selection of objects representing land cover
features not associated with flood damage. These included different types of natural
land cover (grass of different shades, trees or shrubs with and without leaves) as well
as items that were frequently misclassified as debris in preliminary classifications (bins,
industrial palettes, and vehicles). Our training dataset did not include any samples related
to buildings, roads or water, given that these areas were excluded from the classification
as the vast majority of the debris associated with households were located in class ‘land’
depicted by the topographic map and effectively constraining our methodology to sub-
urban type residential properties surrounded by gardens. Although the overall accuracy
rate for the classified image was 74%, the random forest algorithm was more successful
at correctly classifying features representing non-debris classes (80%), with debris being
correctly classified at the rate of approximately 60%. Inspection of the resulting predictive
map and the original UAV image revealed that debris was more likely to be correctly
classified when it was brightly-colored, ensuring distinct contrast to the surrounding land.
Conversely, fragments of debris similar in color to their immediate surroundings where
either not delineated correctly during segmentation process or misclassified. These results
are consistent with those reported in [13] where a convolutional neural network was used
to detect water-related disaster damage with an overall accuracy of 77.01% for the bulk
classes such as the flooded area, vegetation and roads, and 51.4% for the countable classes
(e.g., damaged and not damaged building roofs, cars, and debris).

High levels of confusion also occurred between debris and brightly colored vehicles,
which were frequently confused with skips. In fact, confusion with vehicles was very
prominent pointing to the inability of the deployed algorithms to detect debris within
the image when objects corresponding to vehicles were included in the training datasets.
This is confirmed by a greater degree of overlap between values of the most important
predictors of debris and non-debris features in training data sample including vehicles as
compared the data sample excluding vehicles (Figure S1 Supplementary Materials).

Given that flood-affected houses in the study area were associated with both bright
and dark debris, the moderate detection accuracy achieved in this study was sufficient to
identify properties that suffered flood damage. Post-classification visual inspection of the
image would have to be deployed, however, to identify vehicles incorrectly classified as
debris to avoid misidentification of undamaged houses.

Lower accuracy of detection of debris than non-debris features could be associated
with an imbalanced sample of these features used in the model training. ML algorithms,
including tree-based classifiers, may be sensitive to imbalanced training data samples,
i.e., samples containing an unequal number of observations in each class. This may lead
to predictions of the most dominant category only, especially in binary classification
problems [24], which was the case in our study. Nevertheless, given that debris to non-
debris ratio of 1.3 and 2.1 for training samples excluding and including vehicles did not
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exceed the factor of 4 or more, which can be considered as a severe imbalance [33], we
attribute the lower detection rate of debris to class overlap, especially when vehicles
were included in the data sample. Consequently, further improvements should focus
on deployment of more robust models for prediction of imbalanced data as well as an
enhanced description of the land cover features to reduce confusion, e.g., via further
refinement of objects representing debris and non-debris features

4.2. Implications for Flood Impact Assessment

The automated method for flood damage detection from UAV imagery presented in
this study could facilitate rapid screening of flood-affected areas for signs of damage to
houses, given the availability of processed UAV imagery. Manual detection and classi-
fication of flood damage in the same study area took 132 h in total, 36 h of which were
dedicated to the photogrammetric process required to process the collected UAV imagery,
72 h for digitization of impact features and 24 h for estimation of losses [6]. The automated
method developed here reduced the detection time of debris from 72 h to circa 98 min,
of which 48 min was dedicated to image segmentation within buildings and land covering
an area 119 ha in size, 27 min to building refinement and coarsening of objects, 12 s to
training and 22 min to deployment of the RF model from pre-collected training data run
on a 64 GB Lenovo® UK PC with 2 Intel® Xeon® 4110CPU @ 2.10 GHz processors. Given
moderate accuracy of our approach, which may be hindered by specific properties of a dif-
ferent study area and data, additional time should be allocated for manual reclassification
of incorrectly classified objects.

The times needed for automated debris detection may significantly be increased
when a training data sample needs to be collected, involving visual interpretation of
the UAV imagery. In such cases we recommend visual inspection and sample collection
from a representative portion of the study area where most of the damage had occurred,
for example by random selection of 50% of quadrants sized proportionally to the size
of the affected area to reduce the time needed for the analysis. Additionally, to ensure
good predictive power of the RF model, care should be taken to collect a balanced sample
of objects representing debris and non-debris features [34]. This can be achieved by
application of sampling strategies aiming at equalization of the numbers of observations
for each class, such as for example under-sampling of overrepresented features or synthetic
over-sampling of minority features, discussed in [35].

UAV imagery has been used for flood extent and associated damage assessment as
well as rescue operations, allowing for rapid and safer actions immediately after or during
the event [36]. In our context, however, the successful flood damage detection requires
flood water to retreat and the area to be safe enough for people to return and clear out
their homes from damaged goods that can be subsequently detected within the imagery.
Consequently, UAV survey needs to be timed well with clearing out activities that happen
days after the flood occurred. In the light of the door-to-door inspections for insurance
purposes having to take place before the debris can be removed, the risk of it being cleared
out completely causing non-detection is currently small but may increase in the future
when automated damage detection methods are adopted.

4.3. Future Work

Future attempts for object-based classification of flood damage could benefit from in-
clusion of the near-infrared spectral band at both the image segmentation and classification
stages to help mitigate the confusion between debris colored with hues of green and brown
and the surrounding vegetation that occurred in this study. The green pigment contained
within plant cells, chlorophyl, has a distinctly high reflectance in the NIR light spectrum,
which is absent from artificial pigments, and therefore may provide sufficient contrast to
the natural land cover. Conversely, inclusion of surface elevation data derived from stereo-
pairs of the UAV images (nadir and oblique) in addition to the digital elevation model
obtained from the photogrammetric process could help with accurate detection of buildings
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as well as reduce confusion between lightly colored debris and other bright features, and
sheds and stand-alone conservatories in particular, whose height is typically greater than
that of debris. Note that the inclusion of any surface elevation information would require
an ancillary data set of accurate elevation measurements for validation purposes.

Moreover, application of different types of algorithms, including deep learning should
be considered in future studies. For example, different architectures of deep learning
algorithms were successful at accurately classifying complex urban land cover from objects
derived from high-resolution imagery, with the caveat that state-of-the-art ML methods
such as gradient boosting trees or support vector machines, less dependent on large training
samples, performed comparably well [37]. To facilitate the deployment of computer vision
algorithms such as convolutional neural networks and other ML algorithms, we have
generated a library of image objects [10.17862/cranfield.rd.14816355.v1], available upon a
reasonable request, containing visual and tabular samples of the different types of debris
detected in this study. The transferability of application of our debris libraries will depend
on spatial resolution of the UAV image available, time of year the flood event occurred
and/or climatic zone determining the development stage of green vegetation, and on-the-
ground moisture conditions affecting the saturation of color of land cover features depicted
by the image.

4.4. Limitations and Reproducibility of the Results

The main limitation of this study relates to the fact that the image segmentation pa-
rameters used to derive objects were tailored to the specific properties of our UAV image
in terms of spatial resolution and altitude of the sensors affecting the scaling between
actual and represented size of ground features and invoking the need to modify parameters
used in this study. Conversely, both the building-refinement procedure and the tree-based
classification approaches relied on the RGB values of the image, which may be altered with
different season of the year, weather, and physiography of the study area. Should these
differ largely from our data, a new training sample of objects would have to be captured.
Moreover, implementation of our procedure requires a certain level of expertise in handling
of geospatial data that may necessitate outsourcing of the task to appropriate consultants or
employment of geospatial analysts, both incurring additional costs to insurance companies.
Alternatively, the procedure could be packaged into a user friendly and flexible software
solution, for example with the use of eCognition Architect software, facilitating imple-
mentation of existing object-oriented image classification solutions to new study areas by
non-specialists.

5. Conclusions

This study presents an automated method for object-based UAV image classification
aimed at detection of flood damage to residential housing with the overarching aim of
shortening the time needed for damage assessment for insurance purposes. Object-oriented
classification of a very high resolution RGB image with the use of the random forest
algorithm was able to detect items damaged during the flood and removed from houses
fairly well provided that the debris was lightly colored. Darker items provided insufficient
contrast to the land surface predominantly composed of wet soil, sediment and grass and
were omitted by the process. Additionally, some brightly-colored land cover features were
misclassified as debris. Consequently, we propose that the presented procedure can aid
visual interpretation of an UAV image at the screening stage for signs of flood damage,
however, is not sufficiently accurate to replace it entirely. Future improvements to the
classification should consider inclusion of multispectral imagery as well as surface height
data to reduce confusion between land surface features representing debris and non-debris
as well as implementation of deep learning methods such as convolutional neural networks.
When successful, automated flood damage detection methods can assist the estimation
of insurance costs for insurance companies as well as identification of houses requiring
inspections. Moreover, data on locations of housing affected by flooding can be used by
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appropriate agencies to devise risk management plans and implement tangible solutions
preventing the damage from reoccurring. Similarly, in an event of another flood, emergency
and rescue services could prioritize locations that are known to have suffered most severe
damage in the past to increase their effectiveness and potentially save lives.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13193913/s1. Table S1: Aggregation of land cover classes present in the OS MasterMap
topographic layer used as an ancillary dataset in the automated procedure for detection of flood
damage. Table S2: ANOVA analysis for selected descriptors of objects belonging to ancillary land
cover classes used for refinement of buildings delineated by the topographic map. Table S3: Building
refinement procedure. Table S4: Variable importance determined by the RF model trained with a
sample that excluded vehicles. Figure S1: Distribution of the top 20 predictor variables of debris and
non-debris features identified by the Random Forest model training dataset including vehicles.

Author Contributions: Conceptualization, J.Z. and M.R.C.; methodology, J.Z and M.R.C.; software,
J.Z.; validation, J.Z.; formal analysis, J.Z.; investigation, J.Z.; resources, M.R.C.; data curation, M.R.C.;
writing—original draft preparation, J.Z.; writing—review and editing, I.T., A.K., M.R.C.; visualization,
J.Z.; supervision, M.R.C.; project administration, M.R.C.; funding acquisition, M.R.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Innovate UK, grant number 104880.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The underlying data is confidential and cannot be shared.

Acknowledgments: We would like to thank Innovate UK for funding this project. We would also
like to thank the reviewers for their useful and detailed comments. We believe the manuscript is
easier to read and follow as a result.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach,

K.; et al. Le risque d’inondation et les perspectives de changement climatique mondial et régional. Hydrol. Sci. J. 2014, 59, 1–28.
[CrossRef]

2. Faulkner, D.; Warren, S.; Spencer, P.; Sharkey, P. Can we still predict the future from the past? Implementing non-stationary flood
frequency analysis in the UK. J. Flood Risk Manag. 2020, 13, e12582. [CrossRef]

3. Environment Agency. Flooding in England: A National Assessment of Flood Risk; Environment Agency: Bristol, UK, 2009. Available
online: https://www.gov.uk/government/publications/flooding-in-england-national-assessment-of-flood-risk (accessed on
7 May 2021).

4. Environment Agency. Estimating the Economic Costs of the 2015 to 2016 Winter Floods; Environment Agency: Bristol, UK, 2018.
Available online: https://www.gov.uk/government/publications/floods-of-winter-2015-to-2016-estimating-the-costs (accessed
on 11 July 2021).

5. Sghaier, M.O.; Hammami, I.; Foucher, S.; Lepage, R. Flood extent mapping from time-series SAR images based on texture analysis
and data fusion. Remote Sens. 2018, 10, 237. [CrossRef]

6. Casado, M.R.; Irvine, T.; Johnson, S.; Palma, M.; Leinster, P. The use of unmanned aerial vehicles to estimate direct tangible losses
to residential properties from flood events: A case study of Cockermouth Following the Desmond Storm. Remote Sens. 2018, 10,
1548. [CrossRef]

7. Feng, Q.; Liu, J.; Gong, J. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier-A
case of yuyao, China. Water 2015, 7, 1437–1455. [CrossRef]

8. Popescu, D.; Ichim, L.; Stoican, F. Unmanned aerial vehicle systems for remote estimation of flooded areas based on complex
image processing. Sensors 2017, 17, 446. [CrossRef]

9. Hashemi-Beni, L.; Gebrehiwot, A.A. Flood Extent Mapping: An Integrated Method Using Deep Learning and Region Growing
Using UAV Optical Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2127–2135. [CrossRef]

10. Ichim, L.; Popescu, D. Flooded Areas Evaluation from Aerial Images Based on Convolutional Neural Network. In Proceedings of
the International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 9756–9759.

https://www.mdpi.com/article/10.3390/rs13193913/s1
https://www.mdpi.com/article/10.3390/rs13193913/s1
http://doi.org/10.1080/02626667.2013.857411
http://doi.org/10.1111/jfr3.12582
https://www.gov.uk/government/publications/flooding-in-england-national-assessment-of-flood-risk
https://www.gov.uk/government/publications/floods-of-winter-2015-to-2016-estimating-the-costs
http://doi.org/10.3390/rs10020237
http://doi.org/10.3390/rs10101548
http://doi.org/10.3390/w7041437
http://doi.org/10.3390/s17030446
http://doi.org/10.1109/JSTARS.2021.3051873


Remote Sens. 2021, 13, 3913 23 of 23

11. Hashemi-Beni, L.; Jones, J.; Thompson, G.; Johnson, C.; Gebrehiwot, A. Challenges and opportunities for UAV-based digital
elevation model generation for flood-risk management: A case of princeville, north carolina. Sensors 2018, 18, 3843. [CrossRef]

12. Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Ontiveros-Capurata, R.E.; Marcial-Pablo, M. de J. Rapid urban flood damage
assessment using high resolution remote sensing data and an object-based approach. Geomat. Nat. Hazards Risk 2020, 11, 906–927.
[CrossRef]

13. Pi, Y.; Nath, N.D.; Behzadan, A.H. Detection and Semantic Segmentation of Disaster Damage in UAV Footage. J. Comput. Civ.
Eng. 2021, 35, 04020063. [CrossRef]

14. Mangalathu, S.; Sun, H.; Nweke, C.C.; Yi, Z.; Burton, H.V. Classifying earthquake damage to buildings using machine learning.
Earthq. Spectra 2020, 36, 183–208. [CrossRef]

15. Xu, Z.; Wu, L.; Zhang, Z. Use of active learning for earthquake damage mapping from UAV photogrammetric point clouds. Int. J.
Remote Sens. 2018, 39, 5568–5595. [CrossRef]

16. Nex, F.; Duarte, D.; Tonolo, F.G.; Kerle, N. Structural building damage detection with deep learning: Assessment of a state-of-the-
art CNN in operational conditions. Remote Sens. 2019, 11, 2765. [CrossRef]

17. Salehi, H.; Burgueño, R. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 2018, 171, 170–189.
[CrossRef]

18. Cremer, C.Z. Deep limitations? Examining expert disagreement over deep learning. Prog. Artif. Intell. 2021, 1–16. [CrossRef]
19. McCall, I.; Evans, C. Cockermouth. S. 19 Flood Investigation Report; Environment Agency, Cumbria County Council: Penrith, UK,

2016. Available online: https://www.cumbria.gov.uk/eLibrary/Content/Internet/536/6181/42774103411.pdf (accessed on 11
July 2021).

20. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
21. Ye, S.; Pontius, R.G.; Rakshit, R. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon

approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [CrossRef]
22. Trimble Germany GmbH. Trimble Documentation eCognition Developer 10.0 Reference Book; Trimble Germany GmbH: Munich,

Germany, 2020.
23. Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J.

Photogramm. Remote Sens. 2017, 130, 277–293. [CrossRef]
24. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review.

Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]
25. Zhang, Q.; Qin, R.; Huang, X.; Fang, Y.; Liu, L. Classification of Ultra-High Resolution Orthophotos Combined with DSM Using a

Dual Morphological Top Hat Profile. Remote Sens. 2015, 7, 16422–16440. [CrossRef]
26. Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis.

Remote Sens. 2015, 7, 1074–1094. [CrossRef]
27. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: London, UK, 1984;

ISBN 9780412048418.
28. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
29. Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [CrossRef]
30. Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-86. 2020. Available online: https://cran.r-project.

org/web/packages/caret/caret.pdf (accessed on 20 March 2020).
31. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2018, 17, 168–192. [CrossRef]
32. Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews Correlation Coefficient (MCC) is More Informative Than Cohen’s Kappa and

Brier Score in Binary Classification Assessment. IEEE Access 2021, 9, 78368–78381. [CrossRef]
33. Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232.

[CrossRef]
34. Shetty, S.; Gupta, P.K.; Belgiu, M.; Srivastav, S.K. Assessing the effect of training sampling design on the performance of machine

learning classifiers for land cover mapping using multi-temporal remote sensing data and google earth engine. Remote Sens. 2021,
13, 1433. [CrossRef]

35. Azadbakht, M.; Fraser, C.S.; Khoshelham, K. Synergy of sampling techniques and ensemble classifiers for classification of urban
environments using full-waveform LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 277–291. [CrossRef]

36. Salmoral, G.; Casado, M.R.; Muthusamy, M.; Butler, D.; Menon, P.P.; Leinster, P. Guidelines for the Use of Unmanned Aerial
Systems in Flood Emergency Response. Water 2020, 12, 521. [CrossRef]

37. Jozdani, S.E.; Johnson, B.A.; Chen, D. Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine
Algorithms for Object-Based Urban Land Use/Land Cover Classification. Remote Sens. 2019, 11, 1713. [CrossRef]

http://doi.org/10.3390/s18113843
http://doi.org/10.1080/19475705.2020.1760360
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000947
http://doi.org/10.1177/8755293019878137
http://doi.org/10.1080/01431161.2018.1466083
http://doi.org/10.3390/rs11232765
http://doi.org/10.1016/j.engstruct.2018.05.084
http://doi.org/10.1007/S13748-021-00239-1
https://www.cumbria.gov.uk/eLibrary/Content/Internet/536/6181/42774103411.pdf
http://doi.org/10.1016/j.isprsjprs.2018.04.002
http://doi.org/10.1016/j.isprsjprs.2017.06.001
http://doi.org/10.1080/01431161.2018.1433343
http://doi.org/10.3390/rs71215840
http://doi.org/10.3390/rs70101074
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1002/widm.8
https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf
http://doi.org/10.1016/j.aci.2018.08.003
http://doi.org/10.1109/ACCESS.2021.3084050
http://doi.org/10.1007/s13748-016-0094-0
http://doi.org/10.3390/rs13081433
http://doi.org/10.1016/j.jag.2018.06.009
http://doi.org/10.3390/w12020521
http://doi.org/10.3390/rs11141713

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Photogrammetric Process 
	Object-Oriented Image Classification 
	Image Segmentation and Building Refinement 
	Flood Damage Classification 


	Results 
	Refinement of Buildings 
	Classification of Flooding Damage 
	Classification Accuracy 
	Variable Importance 


	Discussion 
	Flood Damage Detection 
	Implications for Flood Impact Assessment 
	Future Work 
	Limitations and Reproducibility of the Results 

	Conclusions 
	References

