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Abstract: Although the principles followed by modern
standards for interaction between humans and robots
follow the First Law of Robotics popularized in science
fiction in the 1960s, the current standards regulating the
interaction between humans and robots emphasize the
importance of physical safety. However, they are less
developed in another key dimension: psychological safety.
As sales of industrial robots have been increasing over
recent years, so has the frequency of human–robot inter-
action (HRI). The present article looks at the current safety
guidelines for HRI in an industrial setting and assesses
their suitability. This article then presents a means to
improve current standards utilizing lessons learned from
studies into human aware navigation (HAN), which has
seen increasing use in mobile robotics. This article high-
lights limitations in current research, where the relation-
ships established inmobile robotics have not been carried
over to industrial robot arms. To understand this, it is
necessary to focus less on how a robot arm avoids humans

andmore on how humans react when a robot is within the
same space. Currently, the safety guidelines are behind
the technological advance, however, with further studies
aimed at understanding HRI and applying it to newly
developed path finding and obstacle avoidance methods,
science fiction can become science fact.

Keywords: robot ethics, human–robot collaboration, HRI,
HAN, industrial robotics, human factors in robots, robotics
safety

1 Introduction

“A robot may not injure a human being, or, through inac-
tion, allow a human being to come to harm,” the First
Law of Robotics put forward by Asimov [1] is a guiding
principle within human–robot interaction (HRI). The inter-
pretation of harm has primarily been interpreted as phy-
sical harm despite Asimov not limiting the definition to
that within his short stories. For instance, in pp. 101–122,
a robot gives people false information to prevent them
from feeling upset to not break the first law. Furthermore,
the short stories serve more as a warning to the pitfalls
of setting such laws without flexibility for the inherent
unpredictability of human behavior. Currently, technology
does not allow for a robot to be able to read someone’s
thoughts, but there is the technologyandresearchavailable
to understand how a robot’s actions may affect a person’s
psychological well-being (discussed in further detail in
Section 3). This is becoming more relevant as not only
the number of robots within the industrial environment
increases but also as the number of collaborative robots
increases [2–4]. Initially designed to be used as tools for
completing highly repetitive tasks [5], the range of appli-
cations for robots has expanded significantly from pro-
viding meals, laundry, and basic patient care in hospitals
[6], to tour guides in museums [7,8]. High speed, high
levels of repeatability, and continuous programming are
all advantages that robots have over humanworkers. This
is offset by the difficulty robots have adapted to dynamic
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changes in theworking environment,whichhumanworkers
can generally take in their stride. In ref. [9], it was high-
lighted that there are two elements of safety to be consid-
ered duringHRI: physical safety (the actiondoes not result
in an injury for the human) and psychological safety (the
action does not result in fear or surprise for the human).
Research intonavigationwhilemaintainingpsychological
safety has beenmore limited in relation to industrial robot
arms (stationary and typically high payload capabilities)
than with mobile robotics (a robot capable with no fixed
base, capable of moving in the environment). Although
mobile robots have been deployed for use in HRI since
the late 1990s [10] and the psychological effects of robotic
behaviorwere becomingprominent in the early 2000s [11],
it was not until themid-2000s that thesewere combined to
design a path planner that would incorporate them both.
A Human Aware path planner is one that incorporates
a person’s psychology into the path finding calculations
[12]. Therefore, to assess the current state of HumanAware
Navigation (HAN) in industrial robot arms, the following
questions will be addressed:
• How can the current HRI safety guidelines be optimized
for maintaining the physical and psychological safety
of the operator?

• How can the approaches for HAN in mobile robotics be
applied to an industrial robot arm?

To achieve this, first, a review of the current guidance
for physical safety in the industry for robot arms was
conducted, with the aim of highlighting the lack of psy-
chological safety considerations. This was followed by
a systematic literature review for HAN, where papers
were searched on Google Scholar under the search terms
“Human Aware Navigation” and “Human–Robot Interac-
tion,” with the aim of providing answers to the questions
posed earlier. The review included over 50 papers between
1998 and 2020, with papers only included if they involve
HRI and themeasure of a psychological variable as a result
of the HRI.

2 Safety with barriers – the current
state of safety in industrial
robot arms

With an increasing prevalence of HRI in an industrial
environment, more attention has been paid recently to
dynamic obstacle avoidance in static base robot arms.
This research differs from mobile robot navigation in

that the dynamic obstacles are generally assumed to be
a person, and therefore, the path planning and obstacle
avoidance are designed with physical safety as the main
priority and come with a more conservative approach
[13]. The traditional method was the use of physical
barriers to completely enclose the robot when it is in
operation. However, this is beginning to change as shown
by the guidance set in ISO 10218-2:2011 and ISO/TS
15066:2016 [14,15]. ISO 10218-2:2011 is the second part
of the standards encompassed by ISO 10218, where the
first part covers the “design and application of the parti-
cular robot integration” and the second part “provides
guidelines for the safeguarding of personnel during inte-
gration, installation, functional testing, programming, oper-
ation, maintenance and repair.” Although the scope of
ISO 10218 is industrial robots, ISO/TS 15066:2016 focuses
on collaborative robotics by providing “guidance for col-
laborative robot operation where a robot system and
people share the same workspace.” Following the gui-
dance set in ISO/TS 15066:2016, when a human enters
the workspace of the robot arm, one of the three following
measuresmust take place for safe collaborative operation:
• Safety-rated monitored stop, which involves the robot
ceasing motion before the operator enters a preset col-
laborative workspace. If the robot is in motion and
within the workspace when the operator enters, then
the robot ceases motion, only continuing again once
the operator has left the workspace.

• Speed and separation monitoring, which involves the
robot maintaining a protective separation distance,
which can be reduced with reduced robot speed and/
or by the robot executing a different path. If the dis-
tance is reduced to below a set value, then the robot
completes a safety-rated monitored stop.

• Power and force limiting, which involves reducing the
levels of impact should a physical contact between the
robot and the operator occur. The reduced impact can
be achieved by increasing the contact surface area,
mechanisms, and/or materials for absorbing the energy,
extending energy transfer time, and limiting movement
masses.

These can be categorized into two distinct strategies:
precollision and postcollision. A precollision strategy
aims to prevent a collision from happening (safety-rated
monitored stop, speed, and separation monitoring), while
a postcollision strategy aims to minimize the potential
damagewhen a collision occurs (power and force limiting).
Although not a collision avoidance/mitigation strategy,
ISO/TS 15066:2016 also mentions hand guiding within
the HRI guidelines, which involves the robot performing
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a safety-rated monitored stop followed by the operator
maneuvering the end effector.

The precollision strategies operate as guidelines for
path finding and obstacle avoidance algorithms although
these have been an area of research well before the intro-
duction of the guidelines. Algorithms for navigating the
world have been studied and developed for nearly 80
years, with the A* [16,17] and the artificial potential field
(APF) [18] algorithms coming to prominence in robotics
and HAN (see Section 3). A* algorithm generates a cost of
traveling to a point primarily on the distance (although
other variables can be added based on the use such as
obstacles), an APF algorithm generates repulsive and
attractive fields around obstacles and goals, respectively.
By reducing the calculation cost, APF algorithms are able
to operate more efficiently in a 3D space and provide real-
time obstacle avoidance [19–21]. Although the original
APF algorithm suffered from local minima and Goal-Not
Reachable Obstacle Nearby issues, iterations have shown
that these issues can be overcome without completely
rewriting the algorithm [22–26]. Both of these algorithms
benefit from a relatively low complexity, allowing for
further variables to be added to the cost function/repul-
sive fields.

The algorithm, however, is only one element required
for an effective precollision strategy. For a robot to avoid
an obstacle, it must also have a means to detect the ob-
stacle. While an algorithm may be efficient with a high
avoidance success rate in simulation, if the detection
system is not adequate for the task, then the avoidance
success rate will decrease [20]. Detection systems have
seen significant technological advances, such as the
development of increasingly complex on-board systems,
especially machine vision systems. However, early robotic
systems were reliant on laser distance scanners for inter-
preting the world around them, and many are still used,
and more modern systems can use depth and color
camera systems capable of relaying a significantly greater
amount of information [27,28]. A laser scanner can pro-
vide a highly reactive and detailed image of the distance
of an object from the robot, but it cannot be used to
interpret human features, gestures, or emotions in the
same way as an RGB-D camera. Furthermore, the increase
of processing power allows for the detailed analysis of
what a vision system is receiving. Machine learning has
allowed for sophisticated algorithms to detect, track, and
determine the pose a person is taking in real time. Early
systems were struck with requiring constant calibration,
a static environment, and markers for the person to be
detected and track [29]. Not only were early systems
unreliable but also costly. Recent additions, such as

Microsoft’s Kinect, have made real-time, full-body track-
ing more feasible and have received attention for use in
human–robot collaboration (HRC) [30–33].

Although the precollision strategies significantly reduce
thephysical harm, theydonot fullymitigate the likelihood
of an injury [34]. A person can still collide with inanimate
objects, which means that the robot stopping when a
person enters theworkspace is not a guarantee of physical
safety, and even with the robot’s speed and force being
reduced the person can still come to harm as a result of
their speed and force. As the maximum allowed speed for
a robot during HRC is 250mm/s, well below the speed a
person can achieve, the robot’s ability to avoid a collision
canbe significantly influenced by the actions of the person
it is avoiding. Furthermore, a robot that would either col-
lide with or ceases working when a person enters the
workspace is not ideal for HRC.

The strategies also do not consider how changes in
the robot’s proximity or speed may affect the person’s
psychological well-being. This is despite the growing
research that shows there is a link between them, predo-
minantly in HRI and social robotics (which is discussed in
further detail in Section 3). By taking the factors men-
tioned earlier into consideration, one can argue that the
current guidance in ISO/TS 15066:2016 can be improved
to maintain the physical and psychological safety of the
operator. HAN [12], a field of mobile robotics, does take
both physical and mental safety into consideration. The
lessons learned from studies into this recent field may
provide a means to inform and improve the current
guidelines.

3 Human aware navigation

To operate and be accepted in the same environment as
people, a robot must not only be able to avoid collisions
with them but also recognize and act accordingly to the
social behavior of humans [35]. Path finding and avoid-
ance algorithms that take this factor into account are now
finding increased relevance in robotics [36]. Alami et al.
[37] argued that for navigation to be considered human-
aware, the robot should be able to convey in an under-
standable manner its current state, current goal, and
imminent move. Since this definition in 2000, the criteria
for HAN have become more sophisticated as the under-
standing of the relationships between a robot’s attributes
and the person’s psychological well-being has improved.
The improved understanding comes because of advan-
cing technology, where it has not only increased the
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types of interactions people can have with robots but also
the means of assessing a person’s reaction during the
interaction.

Although a robot may not have anthropomorphic
features, concepts such as personality and intent will still
be applied by people onto the robot [38–40]. This under-
standing has led many of the social psychological con-
cepts for human–human interaction to form the base for
the psychological concepts in HRI; however, the direct
nature of the application has been the source of debate
[41]. Some of the social psychological concepts, such as
trust and workload, have been previously researched in
workplaces with increasing automation [42,43], which can
aid in providing a foundation and comparison. In this
sense, trust is determined as the ability of the machine
to complete the task without harming those around
it, which has become a key area of research with the
development of self-driving vehicles [44]. Just as the
passenger must be able to trust the vehicle to take
them to their destination without incident, so must
the operator be able to trust the robot they are colla-
borating with be able to complete the job without inci-
dent. As the operator gains more trust in the robot with
the task, the efficiency of the HRC increases up to a
point [45–47]. Therefore, it is essential that for HRC to
become accepted by workers, a deeper understanding
of how the robot can affect trust needs to be developed.
A potential solution to this is to bring operators into
the early design stages, with an extended study to
determine how such factors scale over time. In experi-
mental environments, the robots may perform differ-
ently than in the industrial environment. Therefore,
expectations will be more accurately set for the workers
and they will be more familiar with the robot’s capabil-
ities and their role within the task. Furthermore, it sets
more realistic expectations of what the robot can do,
reducing the potential dissatisfaction when the robot is
not as adaptable as initially perceived [48]. Takayama
and Pantofaru [49] showed that participants would
allow a robot to approach closer during initial interac-
tions when they had at least 1 year or more experience.
However, as the person gains more experience with a
particular robot, this becomes less dependent on experi-
ence and more dependent on the robot being used as
the task is completed [50]. Experience can also play a
key role in the efficiency of the interaction; therefore, it
is a key to introduce the human collaborators at the
earliest possible stage. Although the human always
having priority is generally considered an important
aspect for social path planning [51], people unfamiliar
with a robot and its capabilities will usually opt to give

way [52]. Therefore, if operators gain experience early
in the development stage for how the robot will react
based on their reactions, it may alleviate this confu-
sion. Furthermore, there is a lack of research into the
long-term effects of HRI on psychological factors and
how they change over this time.

Research into human factors in human–robot colla-
boration is still a relatively new field, but current studies
are establishing relationships between robot attributes
and a person’s psychological attributes. These relation-
ships will be discussed in the following two sections. The
first will focus on mobile robotics, which has received
more focus on the psychological impacts of HRI due to
the roles these robots are envisioned to have, for example,
social robotics. The proceeding section will then focus
on robot arms, which have received increased attention
of late as advances in technology have allowed physical
barriers to be removed.

3.1 Mobile robots

Even though mobile robots have been deployed for use
in HRI since the late 1990s [10], and the psychological
effects of robotic behavior were becoming prominent in
the early 2000s [11], it was not until the mid-2000s that
these were combined to design a path planner that would
incorporate them both into what was coined as HAN.
To achieve HAN, Sisbot et al. [12,53,54] set the following
criteria:
• The motion must not result in physical harm to the
person.

• The motion must be able to complete the task reliably
and sufficiently.

• The motion considers the preferences and requirements
of the person.

While both the first and second criteria are achiev-
able with traditional path finding methods, the last cri-
terion requires a more thorough understanding of how
a robot’s motion can affect the person. Mateus et al. [55]
further defined the last criteria by stating the goals to
achieve this: comfort, respect for social rules, and natur-
alness. One of the attributes of a robot’s motion that has
been considered is its proximity. Human–human interac-
tion already has a well-established model for socially
acceptable proximity, which can serve as a template for
HRI. As described by Hall [56], proxemics provide the
fundamental outline for a socially acceptable distance
for people, which can be utilized as a reference for
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socially acceptable distances for robots. These socially
acceptable distances can be used to designate comfort
zones, with the closer the zone, the higher levels of stress
the person would experience should a stranger enter it.
However, there is no consensus on the most accurate
social spacing model. The most prominent models for
social spacing around an individual are shown in Figure 1.
Each of these shapes can be applied depending on the
context of the interaction, but they all suggest that the
social sensitivity of the person decreases with increasing
distance away from the person. The closest distance a per-
son will allow a robot to approach is highly subjective and
has been shown to be linked to personality traits [57],
where the robot is “looking” [58], the size of the robot [11,59],
and whether the person or the robot is approaching [60].

Pandey and Alami [62,63] used such a model to
develop an algorithm, leading the robot to avoid an ellip-
tical space (compared with Figure 1), deemed too close
for comfort, with socially acceptable zones based on
one’s field of view. The robot’s path would then be
planned using a combination of an A* algorithm and
Voronoi diagrams. When compared to a static obstacle
avoidance algorithm, which does not apply social dis-
tances, the robot was considered to have performed in
a less uncomfortable manner. Sisbot et al. [12,53] devel-
oped a multilevel motion planner that generates a cost
grid around a detected person in an environment. The
associated costs of the grid are determined first by the
physical distance to the person and then by the person’s
perceived vision. The more effort required to see the robot
on the path the higher the cost, with the highest costs
being behind the person or behind an obstacle. There-
fore, the robot plans to be as visible for as long as pos-
sible and only enters the social proxemic zone when
necessary. The use of a cost grid allows for an existing
algorithm (in this case A* algorithm) to be iterated on for
navigating in a socially acceptable manner. Sun et al.

[64] also identified the sudden appearance of a robot
around a corner as socially unacceptable, generating a
higher cost around corners and blind spots. Vega-Magro
et al. [65] took an applied approach by generating cost
maps around items in the environment based on the way
a person would use the item, e.g., a trapezoidal area in
front of a TV. When evaluated, either in simulation or
real-life, all of these algorithms were capable of main-
taining the set socially acceptable distances, even with
multiple people included in the calculations.

Ferrer et al. [66,67] also applied a proxemics-based
model when developing their mobile robots, Tibi and
Dabo, which reduced the social work caused to a person
as a result of the robot navigating a crowd. The model
used was based on the social force model (SFM) devel-
oped by Helbing and Molnár [68], which was designed as
a means to describe the self-organization of pedestrians
in a crowd. Similar to APFs, the SFM generates repulsive
forces around obstacles (in this case other pedestrians)
and attractive forces toward the goal. Ferrer and Sanfeliu
[69] iterated on their design further by adding the cap-
ability of predicting the person’s reaction to the robot’s
possible actions and taking the course with the lowest
social work impact, again reducing the stress further.
Shiomi et al. [70] expanded on this model to develop
a socially acceptable, human-like collision avoidance
system for a robot moving among pedestrians. According
to ref. [69], the model was first calibrated by the robot
moving toward the person without collision avoidance to
determine the socially acceptable distance instead of
using proxemics. The system also operated on a colla-
borative avoidance basis, where both parties move to
avoid the collision, as is the case in most human–human
collision avoidance situations [52]. Surveys taken by par-
ticipants reported that the robot with the updated model
gave the perception of being safer, as well as the results
showing the avoidance system performed objectively safer.

Figure 1: The model displays four social spacing shapes around a person, which dictate the different comfort zones: (a) concentric circles,
(b) egg shaped, (c) elliptical, and (d) elliptical, which is skewed on the dominant side. Adapted from ref. [61].
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Although SFM has been shown to perform well outdoors,
it has been shown to perform less well indoors, where the
repulsive vectors can result in the robot taking unneces-
sary detours to avoid collisions [71].

The aforementioned algorithms show a key limitation
in the analysis of HAN, which is the metrics used for
evaluation. Despite the algorithms being designed to
improve the psychological well-being of the person, the
psychological factors were not assessed. Instead, they
rely on physical distance data and interpreted socially
acceptable distances based on proxemics. Robust studies
of the algorithms with multiple participants, where fac-
tors such as comfort, workload, and trust may prove ben-
eficially in further understanding the variables to be
added to existing algorithms to make the path planning
“HumanAware.”While they show the promise of adapting
existing algorithms to incorporate psychological fac-
tors, they only consider proximity. This is significant
as studies have previously highlighted mobile robot
attributes other than proximity, which contribute to a
person’s psychological well-being. Predictable move-
ment is where the movement is the same as the move-
ment expected by the person [72]. Motion that is more
predictable than human motion has been shown to be
preferential when collaborating with a robot [73]. Another
attribute that has been shown to influence a person’s
comfort is the speed of the robot. Butler and Agah [11]
used a Nomadic Scout II at varying speedswhen approach-
ing a person, after which the personwas asked to complete
a 5-point Likert scale survey ranging fromVery Uncomfor-
table to Very Comfortable. The speeds that scored higher
on this scale were between 0.25 and 0.4 m/s, but a signifi-
cant change to uncomfortable was not reported until
1.0 m/s, while a decrease in comfort and an increase in
frustration were suggested to be possible at speeds below
0.25 m/s. Sardar et al. [74] used multiple scales (Negative
Attitude Towards Robots, Source Credibility, Perceived
Human-Likeness, and Interpersonal Attraction Scale) as
well as physiological measures to assess participants’
compensatory behaviors when a robot approaches them
at two different speed settings. They found that at the
higher speed, participants reacted with more “pleasant”
facial expressions and that the robotwasmore trustworthy
(whichmay be attributed to the greater noise generated by
the robot at higher speeds, leading to increased awareness
of the robot’s location). Despite the potential for relation-
ships between a robot’s speed and a person’s psycholo-
gical well-being to exist, the number of studies into this is
quite limited. Thismaybedue to the speedbeing limited in

the perceived roles for the robot during HRI, whether by
environment or the nature of the task. Furthermore, the
studies have little cohesion as the metrics used are not
consistent and tend to be tailor made to the experiment
rather than using a universal method for measurement.
The lack of consensus on psychological concepts is chal-
lenging to overcome due to the inherent subjective
nature and has been problematic for workload for nearly
40 years [42].

From this review into HAN in mobile robotics, the
path planner should utilize a model based on proxemics
spacing. However, proxemics should not be considered
the only attribute, which contributes to a path planner
to make it “Human Aware.” A model incorporating an
understanding of a person’s available field of view has
also been shown to help improve the interaction [12]. The
robot’s speed and predictability when interacting with a
person are also important factors, which require further
study [11,73]. It is of note, however, that mobile robots
used in the aforementioned speed and proximity studies
are smaller or equal to the height of an average person.
This will have to be taken into consideration when asses-
sing the application of HAN to industrial robot arms, as
they are often larger with a higher payload capacity. As
some of the studies have shown there to be a relationship
between robot size and acceptable proximity, it is essen-
tial to understand the effects of proximity and speed for
robots larger than a person. There is also a persistent lack
of consensus in psychological analysis tools within robotics
that should be addressed. Many of the studies within
this review use different methods for assessing a parti-
cipant’s “comfort,” without a formal or agreed upon
definition. This leads to difficulty in comparing studies
as the metric is consistently vague. Therefore, it would
be of importance in this field for a formal definition of
psychological concepts such as comfort and a standar-
dized scale for assessment.

Considering these studies into mobile robotics, the
following criteria can be a considering key for HAN:
• The robot must avoid collision with persons and obsta-
cles during navigation.

• The movements of the robot must be predictable and
smooth.

• The path planner should be informed by the psycholo-
gical needs of the people it is intended to interact with.

Section 3.2 reviews the few studies that have included
psychological safety factors when designing a path finding
and obstacle avoidance algorithm on robot arms.
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3.2 Robot arms

Unlike physical safety maintenance, the development of
HAN in robot arms is less developed than in mobile
robotics. This could be due to the robot arms being
more applied in industry, where they are often separated
by physical barriers. Such a setting greatly limits the
opportunity for HRI and, as a result, reduces the rele-
vance of mental safety considerations. Once the barriers
are removed, however, robot arms should be meeting
the same psychological safety measures as mobile robots.
Because the removal of the barriers and the introduction
of collaborative robots are becoming more prominent,
mental safety with robot arms is more relevant than ever.

Although robot arms and mobile robots share many
qualities, there are some significant differences. One
would be the extra dimension of available movement
and the added degrees of freedom of movement in robot
arms. This inherently makes the robot arms more com-
plex, making its planned movements harder to read [75].
Due to the different applications and motions, a robot
arm tends to be associated with, the addition of a “face”
or expressive character is not widely implemented, the
main exception being the Baxter robots by ReThink
Robotics. Therefore, this presents one of the challenges
for a robot arm in HAN: clear legibility and predictability
of movement. One of the main challenges for legibility is
that different viewpoints and different robots will give
varying degrees of legibility [76]. Dragan et al. [77] set
up an experiment that would assess objective time to
complete the task and the subjective perceptions of the
participants during HRC, while the robot operated in
three different movement modes: functional, legible, and
predictable. The person and the robot would work together
to make tea, with the type of tea being inferred from
which color cup the robot was seen to be reaching for.
The objective results showed that participants reacted
significantly faster with predictable motion against func-
tional, with a further 33% reduction in reaction speed
with legible motion. In turn, this reduced the time taken
to complete the task. The objective data also concur with
the subjective perceptions where trust, fluency, safety,
perceived closeness, robot contribution, predictability,
legibility, and capability were significantly higher for
legible and predictable motion over functional. These
findings highlight that by considering the perceptions
of the person the task in HRC will not only be completed
faster but also lead to improved job satisfaction and
acceptance.

Speed of the robot arm during HRC is another key
measure. An early study into the relationship between the

speed of a robot arm during collaboration and the person’s
perceptions of the motion was conducted by Shibata and
Inooka [78], first using a simulation and then using a
PUMA 561 robot arm. By using a 7-point Likert scale, par-
ticipants were asked to assess the motion using seven
adjective pairs: pleasant-unpleasant, smooth-awkward,
fast-slow, careful-careless, interesting-boring, skilled-
unskilled, and humanlike-mechanical. During this study,
while the robot armmoved at the slowest speed (580mm/s),
it was perceived as too slow, unskilled, and boring. It
should be noted that this is over twice the allowable
speed under current guidelines. A possible reason for
this may be the limitations of the path finding and joint
movements of the time, whereas a modern robot arm
would be able to provide smoother motions at lower
speeds. Kulic and Croft [79] used a combination of phy-
siological (skin conductance, heart muscle activity, and
corrugator muscle activity) and survey (5-point Likert
scale for anxiety, calm, and surprise) data to assess par-
ticipant’s reactions to different speeds of a robot arm.
This study found that as the speed of the robot arm
increased, so did their anxiety, surprise, and arousal.
An exploratory study by Charalambous et al. [80] explored
the factors that would influence a person’s trust during
HRC with two industrial robots of different sizes. After
completing a hand-over task with each robot, the partici-
pants were given semi-structured interviews. All partici-
pants reported that the motion and the speed of the robot
had influenced their trust. The larger robot also resulted in
a larger emphasis on speed, highlighting that the person’s
perceptions of trustworthiness at a certain speed may be
influenced further by the robot’s size.

Proximity was identified as a key attribute during HRI
in mobile robotics and thus has been the focus of some
research in HRC with robot arms. Tan et al. [81]measured
the changes in participants’mental workload during HRC
with changing robot proximity. The mental workload was
measured objectively (skin potential reflex) and subjec-
tively (6-point Likert scale rating fear and surprise).
Although the physiological measure showed a negative
relationship with proximity, the subjective measures were
very low across the different proximities and showed no
significant difference. MacArthur et al. [82] conducted a
more thorough analysis using known surveys (Human
Robot Trust Scale, Interpersonal Trust Questionnaire, and
Trust in Automation Scale) to establish a negative relation-
ship between trust in the robot and robot distance. A de-
crease in trustwithdecreasingdistancewasalso reportedby
Stark et al. [83], as participants moved away from the robot
arm as it entered their personal space. As with speed, the
trends in proximity are similar between robot arms and
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mobile robots. Both attributes are also controlled within
ISO/TS 15066:2016 to maintain physical safety; however,
these relationships establish that evenwithin this guidance,
the robot can have a negative impact on the person’s psy-
chological safety.

As with mobile robots, a common limitation is the
subjective nature of the measurements. To overcome
the challenges from subjective measures, some studies
have looked into methods for objective measures. An
early study by Kramer [84] reviewed a range of physiolo-
gical measures including event-related brain potentials
(ERP), electroencephalographic (EEG) activity, endogenous
eye blinks, and pupil diameter among others. Although
the report found that no single measurement technique
was adequate to assess a single dimension of workload
by itself, it could be argued that this was more of a limita-
tion in technology available at the time. Brookings et al.
[85] evaluated physiological changes inworkload by com-
paring eye blink, heart rate, respiration, saccade, and
EEG response in various air traffic control tasks with the
responses to NASA-TLX questionnaires. Of the objective
measures, EEG response showed the most sensitivity.
As technology as improved, however, other physiological
measures such as electrocardiograms, skin conductance,
respiration, skin temperature, and eye tracking have been
found to perform as well as EEG response when measur-
ing objective workload alongside subjective [86]. EEG
response has been shown to be a successful measure,
with studies comparing EEG response and NASA-TLX
responses showing agreement in Human–Robot Coopera-
tion [87,88]. Objective measures, therefore, show promise
as a means of objectively measuring workload. A key lim-
itation, however, is the currently intrusive equipment
required to acquire the readings. As technology improves,
aswell as our understandingof the physiological responses
to increases in workload, they will certainly prove a valu-
able asset for improving the psychological safety of the
person during HRI and HRC.

By improving the psychological safety of a person
during HRC, there is a desirable side effect. A robot arm
utilizing HAN generally increases the operator’s comfort,
improving their efficiency [89] and also the efficiency
of the robot as it will have less idle time [46,90]. The
reduced idle time may be attributed to the implementa-
tion of path predictive planners, a key part of HAN.
Therefore, rather than reacting to the sudden appearance
of the person and waiting until they have vacated to a
safe distance, the robot can adapt and move around to
prevent the emergency stop taking place. By accurately
predicting where the person will be in accordance with
their own position, the robot can also reduce annoyance,

surprise, or obstruction [12].Despite theperceived improve-
ments incomfort levels experiencedbypeoplewhena robot
is using HAN, ref. [89] highlights that their study and
similar previous studies only observe these changes for a
relatively short period of time. As the end goal of many
studies is for a system to be implemented in an industrial
environment, the robotswouldbecollaboratingwithhuman
workers for an extended period of time, which may present
unforeseen variables.

In industrial HRI, overall trust in the robot is linked to
trust in the robot completing the task. Ref. [45] assessed
the extent to which HRI task efficiency is dependent on
how much the human trusted the robot with the task. The
results showed that task efficiency did improve as trust
increased up to a point, from which an overreliance in
the robot would then decrease performance. This would
suggest that there is an optimal level of trust over which
performance would be impaired. As with physical safety,
only path finding and obstacle avoidance, mobile robots,
and robot arms can follow similar principles, with some
minor changes due to the way they move throughout the
world and the different applications they have. Path pre-
dictive planners, speed, and proximity are all measures
that can be transferred across from mobile robots to robot
arms with modification. Nevertheless, the impact these
have on the person during HRI requires further study.
The data from these studies can then be implemented
into a HAN algorithm for a robot arm and also aid in
developing improved safety guidelines for robot arms in
industrial HRI.

4 Conclusion

At the beginning of this review, a question was posed:
How can the current Human–Robot Interaction safety
guidance be optimized for maintaining the safety of the
operator? The safety guidance set in the technical spe-
cifications of ISO/TS 15066:2016 presents methods of
reducing the likelihood of physical injury as a result of
a robot’s actions but, as highlighted in Section 1 of this
article, that is considering only the potential physical
impact in HRC. Therefore, they can be improved. To
improve the quality of the human element of HRC, it is
important to develop a better understanding of how the
robot’s action (or inaction) can influence the operator.
By failing to consider the psychological element of the
interaction, which would be experienced by the oper-
ator during HRC, then the efficiency of the team can be
reduced, as well as acceptance and job satisfaction. One
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of the primary solutions for this could be the inclusion
of operators at the early design stages of a collaborative
work cell. In doing this, the parameters for the robot
can be set more appropriately for the task. These para-
meters can then be implemented in another potential
solution: using the guidance that informs HAN to supple-
ment existing guidance. Therefore, a second question
was posed: How can the approaches for HAN in mobile
robotics be applied to an industrial robot arms? The
reviews in Sections 3.1 and 3.2 show the potential cross-
over between human aware planners in mobile robotics
and in robot arms, with the following areas identified as
readily transferrable:
• Interpretation of a person’s intent through machine
vision and learning

• Robot motion based upon a person’s field of view

However, other areas that have been identified but req-
uire further development include:
• Legible and predictable robot motion
• How do the robot’s speed and proximity affect the per-
son’s comfort

• Link between the robot’s size and shape with person’s
comfort

• The appropriate spacing model for an industrial robot
arm

• Psychological attributes of a person which are influ-
enced by a robot’s attributes

The transfer of skills is also limited by a lack of
research into the different perceptions of safety that occur
between a mobile robot and an industrial robot arm.
Although the robot arm will have an extra dimension of
movement, the base is fixed, and there is a limit to its
reach, which is not possible in mobile robots. Although
physical only safety operates on the principles that a
person can be treated as an obstacle in the same way
as any other object, HAN recognizes that the cognitive
abilities of a person require special treatment. Although
an obstacle will not be affected by the robot’s speed, size,
proximity, or gaze, studies have established relationships
between these elements and a person’s psychological
well-being. Without considering the human aspect of
HRC, there is a risk for the robots not to be fully accepted
and the efficiency of the tasks to be reduced. Furthermore,
although the results from studies into mobile robotics can
inform approaches for HAN in robot arms, the differences
between the two types of robotics should be acknowl-
edged. Therefore, there is a need for studies to better
understand and develop the relationships between a robot
arm’s attributes and the relationships they have with a

person’s psychology. A further developed understanding
of these can allow for better evaluation of the algorithms
with respect to the person’s psychological well-being.
While proximity to the person can prove a useful and
easily measurable metric, it cannot be considered the only
one for determining whether a robot is “Human Aware.”

Despite the limitations of studies into HAN, it is clear
that speed and proximity of a robot arm can affect a
person’s comfort, trust, and workload. This can lead to
an objective improvement when using HAN in HRC: the
efficiency of both the human and the robot is increased.
Even with this improved efficiency, HRC is not wide-
spread in the industry. One of the main reasons for the
relatively few occurrences of such interaction can be
attributed to safety regulations being behind the advances
in technology. Nevertheless, with further studies and
research into HAN, which highlight the advantages men-
tioned in Section 3.2, as well as the significant improve-
ments in robotics safety without the requirement of phy-
sical barriers, this is due for a change. A key limitation of
studies into HAN, and Human Factors in robotics, is the
lack of an agreed upon formal definition for many of the
social psychological concepts. This is further hindered by
the lack of a universal measurement tool for the concepts
within HRC. However, there are some tools that are seeing
more prominence in the measurement of increasing
automation and may prove beneficial to the evaluation
of HAN.

The future proposed by Asimov envisioned a success-
ful shared working environment between robots and
humans based on the understanding that the robot inter-
prets the human as that: a human and not just a dynamic
obstacle. There may be less vacuum tubes and mining
stations on Mercury, but by furthering our knowledge
of this key aspect in HRI, the acceptance of industrial
robot arms in a shared workspace can be considered
that much closer.

This article is an extended version of the published
manuscript from ICRES 2019: M. Story, C. Jaksic, S. R.
Fletcher, P. Webb, and J. Carberry, “Evaluating the use of
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Conference on Robot Ethics and Standards, 2019, no. July,
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