
Computational Missile Guidance: A Deep Reinforcement
Learning Approach

Shaoming He∗

Beijing Institute of Technology, 100081 Beijing, People’s Republic of China

and

Hyo-Sang Shin† and Antonios Tsourdos‡

Cranfield University, Cranfield, England MK43 0AL, United Kingdom

https://doi.org/10.2514/1.I010970

This paper aims to examine the potential of using the emerging deep reinforcement learning techniques in missile

guidance applications. To this end, a Markovian decision process that enables the application of reinforcement

learning theory to solve the guidance problem is formulated.Aheuristicway is used to shape aproper reward function

that has tradeoff between guidance accuracy, energy consumption, and interception time. The state-of-the-art deep

deterministic policy gradient algorithm is used to learn an action policy thatmaps the observed engagements states to

a guidance command. Extensive empirical numerical simulations are performed to validate the proposed

computational guidance algorithm.

I. Introduction

P ROPORTIONAL navigation guidance (PNG) law and its var-

iants have been widely used in missile guidance systems due to

their effectiveness and simple implementation [1]. The basic idea of

PNG is to generate a lateral guidance command to nullify the zero-

effort-miss (ZEM) distance in finite time [2]. The PNG with navi-

gation gain three is theoretically proved to be energy optimal for

constant moving vehicles [1] and also optimal in terms of terminal

velocity maximization [3]. With the increasing complexity of appli-

cation scenarios, however, real-world guidance problems in autono-

mous aerospace systems will be characterized by numerous practical

constraints and highly time-varying, nonlinear dynamics. Even

though PNG and its variants can be used to control the impact angle

and impact time [4–6], the guidance command is derived based on

linearized kinematics by ignoring the aerodynamic forces. Therefore,

classical closed-form guidance laws, such as PNG, that rely on

approximated models with linearization and idealistic assumptions,

are no longer appealing to solve future real-world guidance problems.

Thanks to the rapid development on embedded computational

capability, there has been an increasing attention on the development

of computational guidance algorithms in recent years [7,8]. Unlike

classical optimal guidance laws, computational guidance algorithms

generate the guidance command, relying extensively on onboard

computation, and therefore does not require analytic solution of

specific guidance laws. Generally, computational guidance can be

classified into twomain categories: 1)model based and 2) data based.

The authors in [9] proposed a model-based three-dimensional compu-

tational guidance algorithm with terminal flight path angle constraints

using model predictive static programming (MPSP) [10]. This basic

idea behindMPSP is that it converts a dynamic programming problem

into a static programming problem and therefore is computationally

efficient. Because of this property, MPSP algorithm was later used in

manypractical guidanceproblems, e.g., impact-angle control guidance

[11] and reentry guidance [12]. However, the major limitation of
MPSP-based computational guidance algorithms is that they require
a good initial solution guess to guarantee the convergence [13].
Notice that model-based guidance algorithms are generally

designed under the assumption that the model information is fully
known. It is clear that the performance of model-based optimization
approaches highly relies on the accuracy of the model used. In our
previous work [14], we demonstrated that data-based learning algo-
rithm could provide performance improvement to the flight controller
in the presence of model uncertainties, compared with model-based
approaches. However, the potential of this concept for guidance
algorithm development has not been examined. To this end, it would
be more beneficial to develop data-based guidance algorithms for
guidance problems that suffer from uncertainties, e.g., target move-
ment and aerodynamic force. Considering the properties of the
guidance problem, leveraging the reinforcement learning (RL) con-
cept might be most appropriate for developing a data-based guidance
algorithm [15,16]. Previous works using RL to solve control prob-
lems mainly focused on the applications of robotics, with few works
addressing aerospace guidance problems. The authors in [17] devel-
oped an RL guidance law, and this work seems to be the first
paradigm in this domain. However, only one single fixed scenario
is considered in this paper. Very recently, the emerging deep RL
techniques have been applied to the Mars powered descent guidance
[18,19]. As learning from scratch is generally time-consuming, the
authors in [20] used RL to learn the gains of classical impact angle
guidance law and applied this algorithm in relative motion guidance
in near-rectilinear orbit.
The main objective of this paper is to examine the potential of

using the emerging deep RL techniques in missile guidance applica-
tions. To this end, we formulate the guidance problem in an RL
framework by considering the engagement kinematics as the envi-
ronment and the acceleration command as the agent action. Notice
that the reward function determines the convergence of the learning
process and the performance of the trained agent. A heuristic reward
function that provides tradeoff between guidance accuracy, energy
consumption, and interception time is proposed. The state-of-the-art
policy gradient algorithm, i.e., deep deterministic policy gradient
(DDPG), is used to learn a deterministic action function that maps the
observed engagement states to a guidance command. In this paper,
we examined two different categories of learning agents:
1) Learning from scratch: Directly learn the guidance command

from data.
2) Learning with prior knowledge: Fix the guidance command as a

feedback form and then learn the guidance gain.
Extensive numerical analysis reveals that the proposed DDPG

guidance algorithms guarantee high interception accuracy with

Received 29 January 2021; revision received 29 April 2021; accepted for
publication 3 May 2021; published online Open Access 28 June 2021. Copy-
right © 2021 by Hyo-Sang Shin. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission. All requests for copying
and permission to reprint should be submitted to CCC atwww.copyright.com;
employ the eISSN 2327-3097 to initiate your request. See also AIAA Rights
and Permissions www.aiaa.org/randp.

*Associate Professor, School of Aerospace Engineering, 5 South Zhong-
guancun Road; shaoming.he@bit.edu.cn. Member AIAA.

†Professor, School of Aerospace, Transport and Manufacturing, College
Road; h.shin@cranfield.ac.uk. Member AIAA.

‡Professor, School of Aerospace, Transport and Manufacturing, College
Road; a.tsourdos@cranfield.ac.uk. Senior Member AIAA.

571

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

Vol. 18, No. 8, August 2021

https://orcid.org/0000-0001-6432-5187
https://orcid.org/0000-0001-9938-0370
https://doi.org/10.2514/1.I010970
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.I010970&domain=pdf&date_stamp=2021-06-28


acceptable performance under various scenarios. Also, the numerical
analysis shows that learning with prior knowledge is helpful in
improving the learning efficacy and is demonstrated to provide better
performance, compared with learning from scratch.

II. Reinforcement Learning

In the RL framework, an agent learns an action policy through
episodic interaction with an unknown environment. The RL problem
is often formalized as aMarkov decision process (MDP) or a partially
observable MDP (POMDP). An MDP is described by a five-tuple
�S;O;A;P;R�, where S refers to the set of states, O the set of
observations, A the set of actions, P the state transition probability,
andR the reward function. If the process is fully observable, we have
S � O. Otherwise, S ≠ O.
At each time step t, an observation ot ∈ O is generated from the

internal state st ∈ S and given to the agent. The agent uses this
observation to generate an action at ∈ A that is sent to the environ-
ment, based on specific action policy π. The action policy is a
function that maps observations to a probability distribution over
the actions. The environment then leverages the action and the current
state to generate the next state st�1 with conditional probability
P�st�1jst; at� and a scalar reward signal rt ∼R�st; at�. For any
trajectory in the state-action space, the state transition in RL is
assumed to follow a stationary transition dynamics distribution with
conditional probability satisfying the Markov property, i.e.,

P�st�1js1; a1; : : : ; st; at� � P�st�1jst; at� (1)

The goal of RL is to seek a policy for an agent to interact with an
unknown environment while maximizing the expected total reward it
received over a sequence of time steps. The total reward in RL is
defined as the summation of discounted reward to facilitate temporal
credit assignment as

Rt �
XN
i�t

γi−tri (2)

where γ ∈ �0; 1� denotes the discount factor. The expected total
reward is then given by

J�π� � Eπ �Rtjst� (3)

Given current state st, the expected total reward is also known as
the value function Vπ�st� � Eπ �Rtjst�. According to Bellman equa-
tion, the value function satisfies the following recursion:

Vπ�st� � Eπ �R�st; at�� � γVπ�st�1� (4)

The optimal policy can be obtained by maximizing the value
function as

π� � argmax
π

Vπ�st� (5)

Many approaches in RL also make use of the action-value function

Qπ�st; at� � Eπ �Rtjst; at� (6)

According to Eq. (4), the action-value function also satisfies a
recursive form as

Qπ�st; at� � Eπ �R�st; at� � γEπ �Qπ�st�1; at�1��� (7)

Therefore, the optimal policy can also be obtained by optimizing the
action-value function. However, directly optimizing value function
or action-value function requires accurate model information and
therefore is difficult to implement with model uncertainties. Model-
free RL algorithms relax the requirement on accurate model infor-
mation and hence can be used even with high model uncertainties.
Generally, model-free RL algorithms can be categorized into two

classes: value function methods and policy gradient approaches.

Value function approaches leverage a nonlinear mapping, e.g., neural
network, to approximate the value function and greedily finds the
action by iteratively evaluating the value function based on Bellman
optimality condition. These approaches randomly explore the action
space and consider all possible actions during each iteration. There-
fore, value function algorithms onlyworkwith discrete action spaces,
and thewell-known deepQ learning [21] belongs to this category. As
a comparison, the policy gradient algorithms learn a deterministic
function that directly maps the states to the actions, rather than taking
the action that globally maximizes the value function. The action
function is updated by following the gradient direction of the value
function with respect to the action, thus termed as “policy gradient.”
Thanks to this property, the policy gradient algorithms are applicable
to continuous control problems. The DDPG algorithm, proposed by
Google Deepmind [22], is one of the state-of-the-art solutions that
belong to the policy gradient approach.

A. Deep Deterministic Policy Gradient

For the autopilot problem, the main goal is to find a deterministic
and continuous actuator command that could drive the air vehicle to
track the target lateral acceleration command in a rapid and stable
manner. For this problem, we use the DDPG algorithm to develop a
computational lateral acceleration autopilot for an air vehicle. DDPG
is an actor–critic method that consists of two main function blocks:
1) critic evaluates the given policy based on current states to calculate
the action-value function; 2) actor generates policy based on the
evaluation of critic. DDPG uses two different deep neural networks,
i.e., actor network and critic network, to approximate the action
function and the action-value function. The basic concept of DDPG
is shown in Fig. 1.
Denote Aμ�st� as the deterministic policy, which is a function that

directly maps the states to the actions, i.e., at � Aμ�st�. Here, we
assume that the action network Aμ�st� is parameterized by μ. In
DDPG, the actor function is optimized by adjusting the parameter
μ toward the gradient of the expected total reward as [22]

∇μJ�Aμ� � ∇μQ
w�st; Aμ�st��

� ∇μA
μ�st�∇atQ

w�st; at� (8)

whereQw�st; at� stands for the action-value function, which is para-
meterized by w.
The parameter μ is then updated by moving the policy in the

direction of the gradient of Qw in a recursive way as

μt�1 � μt � αμ∇μA
μ�st�∇atQ

w�st; at� (9)

where αμ refers to the learning rate of the actor network.
Similar to Q learning, DDPG also uses the temporal-difference

(TD) error δt in approximating the error of action-value function as

δt � rt � γQw�st�1; A
μ�st�1�� −Qw�st; at� (10)

DDPG uses the square of TD error as the loss function L�w� in
updating the critic network, i.e.,

L�w� � δ2i (11)

Fig. 1 Basic concept of DDPG.

572 HE, SHIN, AND TSOURDOS



Taking the partial derivative of L�w� respect to w gives

∇wL�w� � −2δi∇wQ
w�st; at� (12)

The parameterw is then updated using gradient descent by follow-

ing the negative gradient of L�w� as

wt�1 � wt � αwδt∇wQ
w�st; at� (13)

where αw stands for the learning rate of the critic network.
One major issue of using deep neural networks in RL is that most

neural network optimization algorithms assume that the samples for

training are independently and identically distributed. However, this

assumption is violated if the training samples are directly generated

by sequentially exploring the environment. To resolve this issue,

DDPG leverages a mini batch buffer that stores the training samples

using the experience replay technique. Denote et � �st; at; rt; st�1�
as the transition experience of the tth step.DDPGuses a bufferDwith

its size being jDj to store transition experiences. DDPG stores the

current transition experience in the buffer and deletes the oldest one if

the number of the transition experience reaches the maximum value

jDj. At each time step during training, DDPG uniformly draws N
transition experience samples from the buffer D and uses these

random samples to train actor and critic networks. By using the

experience buffer, the critic network is updated as

∇μJ�Aμ� � 1

N

XN
i�1

∇μA
μ�si�∇atQ

w�si; ai�

μt�1 � μt � αμ∇μJ�Aμ� (14)

With N transition experience samples, the loss function in updat-

ing the critic network now becomes

L�w� � 1

N

XN
i�1

δ2i (15)

The parameter of the critic network is updated by gradient descent

as

∇wL�w� �
1

N

XN
i�1

δi∇wQ
w�si; ai�

wt�1 � wt � αw∇wL�w� (16)

Notice that the update of the action-value function is also used as

the target value as shown in Eq. (10), which might cause the diver-

gence of critic network training [22]. To address this problem, DDPG

creates one target actor network and one target critic network. Sup-

pose that the additional actor and critic networks are parameterized

by μ 0 andw 0, respectively. These two target networks use soft update,
rather than directly copying the parameters from the original actor

and critic networks, as

μ 0 � τμ� �1 − τ�μ 0 w 0 � τw� �1 − τ�w 0 (17)

where τ ≪ 1 is a small update rate. This soft update law shares similar

concept as low-frequency learning in model reference adaptive con-

trol to improve the robustness of the adaptive process [23,24].
The soft-updated two target networks are then used in calculating

the TD error as

δt � rt � γQw 0 �st�1; A
μ 0 �st�1�� −Qw�st; at� (18)

With very small update rate, the stability of critic network training

greatly improves at the expense of slow training process. Therefore,

the update rate is a tradeoff between training stability and conver-

gence speed.

B. Training a DDPG Agent

DDPG is an off-policy learning algorithm and is trained in an

episodic style. The environment initializes an episode by randomly

generating internal states and mapping the internal states to observa-

tions. This random initialization allows the agent to explore the

diversity of the state space. At the beginning of each episode, both

actor and critic networks are initialized with random weights. The

target actor and target critic networks directly copy the random

weights from the original networks. During each episode, the actor

and critic networks are updated using gradient descent according to

Eqs. (14) and (16), and the target networks are trained by soft update

as Eq. (17). The episode is terminated if the number of steps reaches

the maximum value or the agent completes the task.
A major issue of learning in a continuous space is how to explore

the state space to escape from the local minima of the total reward

function. DDPG addresses this problem by adding a random noise vt
to the action generated by the actor network

a 0
t � at � vt (19)

and using this new noise-corrupted action for system propagation.

In DDPG, the random noise vt is updated recursively using an

Ornstein–Uhlenbeck process, which is defined as

vt � vt−1 � βattract�μv − vt−1�Ts �N �0;Σt�
������
Ts

p
(20)

where μv represents the mean of the noise; N �0;Σt� denotes the

Gaussian distribution with zero mean and variance Σt; βattract is the
mean attraction constant that quantifies how quickly the noise is

attracted to the mean; and Ts stands for the sampling time. With

more experience gained during the training, the exploration variance

Σt exponentially decays with rate ε as

Σt � Σt−1�1 − ϵ� (21)

The advantage of the Ornstein–Uhlenbeck process is that it can

generate temporally correlated explorations and thus provides

smooth transitions. The detailed pseudocode of DDPG is summa-

rized in Algorithm 1.

Algorithm 1: Deep deterministic policy gradient

1: Initialize the actor and critic networks with random weights μ and w

2: Initialize the target actor and critic networks with weights μ 0
← μ and

w 0
←w

3: Initialize the experience buffer D
4: for episode � 1: MaxEpisode do

5: for t � 1:MaxStep do

6: Generate an action from the actor network based on current state
at � Aμ�st�

7: Add a random noise vt to the action for exploration at 0 � at � vt
8: Execute the action at 0 and receive new state st�1 and reward rt
9: Store the transition experience et � �st; at; rt; st�1� in the

experience buffer D
10: Uniformly drawN random samples ei from the experience bufferD
11: Calculate the TD error δi

δi � ri � γQw 0 �si�1; A
μ 0 �si�1�� −Qw�si; ai�

12: Calculate the loss function L�w�
L�w� � 1

N

XN
i�1

δ2i

13: Update the critic network using gradient descent as

∇wL�w� � 1
N

P
N
i�1 δi∇wQ

w�si; ai�
wt�1 � wt � αw∇wL�w�

HE, SHIN, AND TSOURDOS 573



III. Reinforcement Learning Formulation
of Guidance Problem

This section formulates the guidance problem in anRL framework.

Before introducing the system kinematics, we make three basic

assumptions as follows:
Assumption 1: Both the interceptor and the target are assumed as

point-mass models.
Assumption 2:The engagement occurs in a two-dimensional (2-D)

vertical plane.
Assumption 3: Both the missile and the target are flying with

constant velocity.
Note that these assumptions are widely accepted in guidance law

design for tacticalmissiles: (Assumption 1) Typical philosophy treats

the guidance and control loops separately by placing the kinematic

guidance system in an outer loop, generating guidance commands

tracked by an inner dynamic control loop, also known as autopilot.

(Assumption 2)Homing engagement can be treated as a 2-D problem

for roll-stabilized airframes. (Assumption 3) The vehicle’s velocity is

generally slowly varying and hence can be assumed as piecewise

constant.

A. Relative Kinematics

This paper considers a 2-D planar homing engagement geometry

shown in Fig. 2. As presented in the geometry, the inertial reference

frame is denoted as �X; Y�. Variables with subscripts of M and T
denote those of themissile and target, respectively. The notations of λ
and r are the line-of-sight (LOS) angle and the missile–target relative

range. γ denotes the flight path angle defined in the inertial reference
frame. The velocity and lateral acceleration are represented by V and

a, respectively.
The corresponding equations describing themissile–target relative

motion kinematics can be formulated as

_r � VT cos�γT − λ� − VM cos�γM − λ� (22)

r_λ � VT sin�γT − λ� − VM sin�γM − λ� (23)

Let VrΔ � _r, VλΔ � r_λ be the relative velocities along and
perpendicular to the LOS, respectively. Then, differentiating
Eqs. (22) and (23) with respect to time yields

_Vr �
V2
λ

r
� aTr − aM sin�λ − γM� (24)

_Vλ � −
VrVλ

r
� aTλ − aM cos�λ − γM� (25)

where aTrΔ � aT sin�λ − γT� and aTλΔ � aT cos�λ − γT� denote
the target acceleration along and normal to the LOS, respectively.
The complementary equations defining the relationship between

the flight path angle and lateral acceleration are

_γM � aM
VM

(26)

_γT � aT
VT

(27)

Because the target maneuver is difficult to measure or obtain in
practice, we assume that the target is flying with a constant course,
i.e., at � 0. During real flight, the lateral acceleration is generated by
an onboard autopilot, which has inevitable time delays. To account
for such time delay, we assume that the missile autopilot is modeled
by a first-order time lag system as

_aM � −
1

τa
aM � 1

τa
ac (28)

where τa denotes the autopilot time constant and ac represents the
guidance command.

B. Reinforcement Learning Problem Formulation

To solve the guidance problem using DDPG, we need to formulate
the problem in the RL framework by constructing an MDP with a
proper reward function.
To apply theDDPG algorithm to the guidance problem,we need to

define a properMDP.The relative kinematics, shown inEqs. (22–27),
constitutes the environment, which is fully characterized by the
engagement state

st � �r; λ; _r; _λ� (29)

For guidance law design, the agent action is naturally defined as
the guidance command ac. We assume that the missile is equipped
with an active radar seeker that can measure the relative distance r,
LOS angle λ, and their rates. This means that the agent observation
is given by

ot � �r; λ; _r; _λ� (30)

which gives a fully observable MDP.
The relative kinematics (22–25), engagement state (29), agent

observation (30), and a suitable agent action, together with a proper
reward function, constitute a complete MDP formulation of the
guidance problem. The conceptual flowchart of the proposed guid-
ance RL framework is shown in Fig. 3.

C. Reward Function Shaping

The most challenging part of solving the guidance problem using
DDPG is the development of a proper reward function.Notice that the
primary objective of a guidance law is to drive themissile to intercept
a target in a stable manner with acceptable miss distance. A naive
selection of the reward function is that we give a bonus to the agentFig. 2 The homing engagement geometry and parameter definitions.

Algorithm 1: (Continued.)

14: Update the actor network using policy gradient as

∇μJ�Aμ� � 1
N

XN
i�1

∇μA
μ�si�∇atQ

w�si; ai�

μt�1 � μt � αμ∇μJ�Aμ�

15: Update the target networks as

μ 0 � τμ� �1 − τ�μ 0

w 0 � τw� �1 − τ�w 0

16: if the task is accomplished then
17: Terminate the current episode
18: end if

19: end for

20: end for

574 HE, SHIN, AND TSOURDOS



once the missile successfully intercepts the target and the agent is
penalized with a negative reward otherwise. However, this simple
reward function is demonstrated to be ineffective during our test, and
the agent would never see a positive reward within a realistic number
of episodes because the probability of successful interception with
random initial guesses is extremely low.
It is known that nullifying the ZEM results in perfect interception

with zero miss distance [1]. For this reason, wewill shape the reward
function using ZEM. At any time instant t, the ZEM is defined as the
closest distance between the missile and the target if, from the time
instant t onward, both themissile and the target do notmaneuver. The
ZEM, denoted as z, is formulated as [25,26]

z � rVλ������������������
V2
r � V2

λ

q (31)

For aerodynamically controlled airframes, the quadratic energy
consumption is also an important factor as it directly quantifies the
velocity loss due to induced drag. Considering this fact, the control
effort is also taken into account in the reward function. Notice that the
homing phase for intercepting a ballistic target is usually very short.
This motivates us to shape the reward function in a way that enables
rapid interception of the target. In summary, the reward function is
shaped using a heuristic way as

rt � ra � rz � rVr
� rr (32)

where

ra � ka

�
aM

jamaxj
�
2

(33)

rz � kz

�
z

jz0j
�
2

(34)

rVr
�

�
kVr

; Vr > 0

0; Vr ≤ 0
(35)

rr �
�
kr; r ≤ rd
0; r > rd

(36)

with ka, kz, kVr
, and kr are four constants to shape the reward

function. The notation amax denotes themaximum permissible lateral
acceleration of themissile due to physical constants and z0 represents
the initial value of ZEM.
From Eq. (32), it is clear that the first two terms in the reward

function penalize the normalized control effort and ZEM, respec-
tively. The reason of using normalization in the reward function is
that the lateral acceleration and ZEM have different units and scales.
This means that it is difficult to directly compare these twometrics in
an integrated manner without normalization. The third term rVr

encourages the missile to continuously reduce the relative distance,
yielding fast interception. Without this term, the missile’s flying
trajectorymight become longer and therefore requires longer engage-
ment time. This term also penalizes the mission failure: if the missile

misses the target when the time-to-go becomes zero, the relative

distance between the missile and the target will increase. The fourth

term rr gives bonus to the agent if the relative distance is smaller than

a positive constant rd, thus encouraging the missile to intercept the

target.Note that this term is only activewhen themissile is close to the

target and therefore provides similar role as the terminal constraint

cost in typical optimal control problems for shaping the terminal

state. In a nutshell, the proposed reward function allows the agent to

tradeoff between interception accuracy, energy consumption, and

interception time. The hyperparameters in shaping the reward func-

tion are summarized in Table 1.

IV. Training a DDPG Guidance Agent from Scratch

In this section, we will propose a DDPG guidance agent that

directly learns the guidance command ac during the training process.
In other words, this section aims to use DDPG to provide a direct

mapping from engagement states to guidance command, i.e.,

ac � fs�r; λ; _r; _λ� (37)

where fs is a nonlinear function.
Generally, training a DDPG agent involves three main steps:

1) obtaining training scenarios; 2) building the actor and critic net-

works; and 3) tuning the hyperparameters.

A. Training Scenarios

In this paper, we consider a head-on engagement scenario. For

better using the learned experience, we select several characteristic

initial engagement conditions, e.g., states with their maximum, mini-

mum, and medium values, as shown in Table 2, and train the DDPG

agent based on these initial conditions sequentially. More specifi-

cally, the DDPG agent is trained using one fixed characteristic initial

condition and switches to another initial condition after convergence.

Through larger empirical tests, we found that the proposed DDPG

agent converges within less than 100 episodes for one single initial

condition. After the training process using characteristic initial con-

ditions is finished, we randomly initialize the engagement states with

values uniformly distributed between the minimum and the maxi-

mum values at the beginning of each episode. This heuristic training

process is shown to perform much faster than starting training based

on random initial conditions only.

B. Network Construction

Inspired by the original DDPG algorithm [22], the actor and critic

are represented by four-layer fully connected neural networks. Note

that this four-layer network architecture is commonly used in deep

RL applications [27]. The layer sizes of these two networks are

summarized in Table 3. Except for the actor output layer, each neuron

in other layers is activated by a rectified linear units (Relu) function,

which is defined as

Guidance System

Flight Vehicle

Reward

Observation Action

Fig. 3 Conceptual flowchart of the proposed guidance RL framework.

Table 1 Hyperparameters in shaping the reward function

ka kz kVr
kr amax rd

−0.2 −1 −2 10 100 20

Table 2 Initial conditions in training

Parameter Minimum value Maximum value

Relative range, r 4000 m 6000 m

LOS angle, λ −10° 10°

Missile’s flight path angle, γM 0° 20°

Target’s flight path angle, γT 140° 160°

Autopilot time constant, τa 0.1 s 0.3 s

HE, SHIN, AND TSOURDOS 575



g�z� �
�
z; if z ≥ 0

0; if z < 0
(38)

which provides faster processing speed than other nonlinear activa-

tion functions due to the linear relationship property.
The output layer of the actor network is activated by the tanh

function, which is given by

g�z� � ez − e−z

ez � e−z
(39)

The benefit of the use of tanh activation function in actor network is
that it can prevent the control input from saturation as the actor output

is constrained by �−1; 1�. The output layer of the actor network is

scaled by a constant amax.
As different states have different scales and units, we normalize the

engagement states and action at the input layers of the networks, thus

providing unitless observations and action that belong to approxi-

mately the same scale. This normalization procedure is shown to be of

paramount importance for our problem and helps to increase the

training efficiency. Without normalization, the average reward func-

tion cannot converge and even shows divergent patterns after 103

episodes. Denote �⋅� as the normalized version of variable �⋅�. The
normalization of states and action are defined as

�r � r

r0
; �λ � λ

λ0
; �_r � _r

_r0
;

�_λ �
_λ
_λ0
; �ac �

ac
amax

(40)

where �⋅�0 stands for the initial value of variable �⋅�.
Both actor and critic networks are trained using Adam optimizer

withL2 regularization to address the overfitting problem for stabiliz-

ing the learning process. WithL2 regularization, the updates of actor

and critic are modified as

Lactor � J�Aμ� � λ2LA
2 μt�1 � μt � αμ∇μLactor (41)

Lcritic � L�w� � λ2LC
2 wt�1 � wt � αw∇wLcritic (42)

where LA
2 and LC

2 denote the L2 regularization losses on the weights

of the actor and the critic, respectively; λ2 is the regularization constant.
To increase the stability of the network training process, we use the

gradient clip technique to constrain the update of both actor and critic

networks.More specifically, if the normof thegradient exceeds a given

upper bound ρ, the gradient is scaled to equal with ρ. This helps to
prevent a numerical overflow or underflow during the training process.

C. Hyperparameter Tuning

Each episode during training is terminated when the relative dis-

tance between the missile and the target is lower than a threshold

rm � 2 m or the number of time steps exceeds the maximum per-

missible value. All hyperparameters that are used in DDPG training

for our problem are summarized in Table 4. Notice that the tuning of

hyperparameters imposes great effects on the performance of DDPG,

and this tuning process is not consistent across different ranges of

applications [27,28], i.e., different works used different set of hyper-

parameters for their own problems. For this reason, we tune these

hyperparameters for our guidance problem based on several trial-

and-error tests.

D. Simulation Results

1. Training Results

As discussed before, we first train our DDPG guidance agent
using 10 fixed characteristic initial conditions sequentially. Once

the average reward of one scenario converges to a certain steady-
state value, the training process switches to another initial condition.

We use 100 episodes for each scenario to train our DDPG guidance
agent. Figure 4 presents the learning curves with four representative

fixed initial conditions. The average reward is obtained by averaging
the episode reward within 30 episodes. From this figure, it can be

observed that the proposed DDPG guidance agent guarantees con-
vergence within 100 episodes for all representative scenarios. Once
the training process using characteristic scenarios is finished, each

episode is then initializedwith randomengagement stateswith values
uniformly distributed between the minimum and the maximum

values. The learning curves of the training process with random
initial conditions are shown in Fig. 5. It can be clearly noted from

this figure that the average reward of the proposed DDPG guidance
agent converges to its steady-state value within 100 episodes, even

with random initial conditions. The reason is that the agent has
already gained some experience during training using representative

scenarios. In our numerical tests,we found that the proposed heuristic
training process provides much faster convergence rate than starting

training based on random initial conditions only.
To show the importance of observation and action normalization

in training DDPG guidance agent, Fig. 6 presents the comparison
results of average reward function for conditions 1 and 2. From this

figure, it is clear that using normalization provides fast convergence
rate of the learning process and higher steady-state value of the

average reward function. This means that leveraging observation
and action normalization helps to achievemore efficient and effective

training process. The reason can be attributed to the fact that nor-
malization imposes equally importance on each element of the

observation vector. Without normalization, the scale difference
between the elements varies in a great deal, e.g., the magnitude of

the relative range is much larger than that of the LOS rate and
therefore prohibits effective training of the actor and critic networks.

2. Test Results

To test the proposed DDPG guidance agent under various con-
ditions, the trained agent is applied to some random scenarios and the

results are presented in Fig. 7. From Figs. 7a and 7b, one can note that
the proposed computational guidance algorithm successfully drives

themissile to intercept the target with different initial conditions. The
miss distances for all tested cases are smaller than 2m recorded in our

simulations. The achieved accelerations produced by the onboard
autopilot are given inFig. 7c,which reveals that the proposed computa-

tional guidance algorithm provides smooth guidance command with

Table 4 Hyperparameter settings

Parameter Value

Maximum permissible steps 500
Maximum permissible episodes 1000
Actor learning rate, αμ 10−3

Critic learning rate, αw 10−3

L2 regularization constant, λ2 6 × 10−3

Gradient upper bound, ρ 1

Discounting factor, γ 0.99

Size of experience buffer, jDj 5 × 105

Size of mini-batch samples, N 64

Mean of exploration noise, μv 0

Initial variance of exploration noise, Σ1 0.1

Variance decay rate, ϵ 10−6

Mean attraction constant, βattract 0.15

Target network smoother constant, τ 0.1

Table 3 Network layer size

Layer Actor network Critic network

Input layer 4 (size of states) 5 (size of states� size of action)

Hidden layer 1 30 50
Hidden layer 2 20 40
Output layer 1 (size of action) 1 (size of action-value function)

576 HE, SHIN, AND TSOURDOS



acceptable energy consumption. As shown in Fig. 7c, the guidance

commands of some scenarios converge to approximate zero, but the

lateral acceleration commands of some scenarios are also close to

saturation when the missile is close to the target.

Notice that the proposed DDPG guidance agent is trained by

assuming that the target performs no evasive maneuvers. For this

reason, we also perform numerical simulations to evaluate the robust-

ness against random target maneuvers. At each round of test, the

target lateral acceleration aT is randomly sampled from a uniform

distribution, with minimum value being −20 m∕s2 and maximum

value being 20 m∕s2. The simulation results, including flight trajec-
tory, relative range, and acceleration response, are shown in Fig. 8.
From this figure, it can be observed that the proposed DDPG guid-

ance algorithm also guarantees target interception with satisfactory
performance. However, the responded acceleration exhibits unde-
sired oscillations for some scenarios. Further investigation and
parameter tuning are required to alleviate this issue.

3. Comparison with Proportional Navigation Guidance

To further show the advantage of the proposed DDPG guidance
algorithm, we compare the proposed approach with the benchmark

PNG.As stated in [1], the navigation gain of PNG in real applications
usually belongs to [3,5]. For this reason, both PNGs with navigation
as three and five are performed in the simulations for the purpose of
comparison. The comparison results for two representative scenarios
are presented in Figs. 9 and 10, respectively. From this figure, it can
be observed that all guidance laws successfully drive the missile to
intercept the target, but the proposed DDPG guidance algorithm
provides slightly reduced energy consumption, compared with other

two approaches. As discussed before, one benefit of the proposed
computational guidance algorithm is that it can avoid command
saturation due to the nature of tanh activation function, as confirmed
by Fig. 9b. For the second scenario, it can be noted from Fig. 10e that
the proposed approach provides converged acceleration response.
Hence, the proposed computational guidance algorithm is helpful in
providing more operational margins to cope with undesired disturb-
ances, e.g., wind, when the missile approaches the target. Another

potential benefit of using RL computational guidance is that we can
shape the guidance command as desired by properly tuning the
reward function.

20 40 60 80 100 120 140 160 180 200
-6000

-5000

-4000

-3000

-2000

-1000

0

Fig. 5 Learning curves with random initial conditions.

10 20 30 40 50 60 70 80 90 100

-1500

-1000

-500

0

a) Condition 1

10 20 30 40 50 60 70 80 90 100
-6000

-5000

-4000

-3000

-2000

-1000

0

b) Condition 2

10 20 30 40 50 60 70 80 90 100
-1200

-1000

-800

-600

-400

-200

0

200

c) Condition 3

10 20 30 40 50 60 70 80 90 100
-1400

-1200

-1000

-800

-600

-400

-200

0

200

d) Condition 4

Fig. 4 Learning curves with some fixed characteristic initial conditions.

HE, SHIN, AND TSOURDOS 577



V. Training a DDPG Guidance Agent with Prior
Knowledge

Even though directly learning the guidance command provides
satisfactory performance for some scenarios, our tests reveal that
this learning strategy might not guarantee target interception for
some specific initial conditions. Therefore, instead of directly
learning the guidance command from scratch, this section suggests
another way to train a DDPG guidance agent. Over the past several
decades, classical PNG is widely used in many missile guidance
systems due to easy implementation and efficacy. The main idea
behind PNG is to generate a lateral acceleration to nullify the LOS

rate so as to force themissile to converge to the collision triangle. It has
alsobeenproved that theZEMunderPNGconverges to zero at the time
of impact against nonmaneuvering targets [2]. Analogous to PNG,
we fix the guidance command using classical proportional control
concept as

ac � N
z

t2go
(43)

where N is a time-varying guidance gain and tgo represents the

remaining flight time, which is approximated as

tgo � −
r

_r
(44)

Then, DDPG is used to provide a direct mapping from engagement

states to guidance gain, i.e.,

N � fn�r; λ; _r; _λ� (45)

where fn is a nonlinear function.

0 1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

1200

1400

1600

1800

a) Flight trajectory

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

b) Relative range

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-100

-80

-60

-40

-20

0

20

40

60

80

100

c) Commanded response

Fig. 8 Test results with random initial conditions for maneuvering target.

10 20 30 40 50 60 70 80 90 100
-1000

-800

-600

-400

-200

0

200

a) Condition 1

10 20 30 40 50 60 70 80 90 100
-3000

-2500

-2000

-1500

-1000

-500

0

b) Condition 2

Fig. 6 Learning process comparison with respect to normalization.

0 1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

1200

1400

1600

a) Flight trajectory

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

b) Relative range

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-100

-80

-60

-40

-20

0

20

40

60

80

100

c) Commanded response

Fig. 7 Test results with random initial conditions for nonmaneuvering target.

578 HE, SHIN, AND TSOURDOS



The reward function, network structure, and hyperparameters are

the same as previous section except that the out layer of the actor is

scaled by a constant Nmax � 10.

A. Simulation Results

1. Training Results

Similar to previous section, we first train our DDPG guidance

agent using 10 fixed characteristic initial conditions sequentially.

Once the average reward of one scenario converges to a certain

steady-state value, the training process switches to another initial

condition. We use 100 episodes for each scenario to train our DDPG

guidance agent. Figure 11 presents the learning curves with four

representative fixed initial conditions. The average reward is obtained

by averaging the episode rewardwithin 30 episodes. From this figure,

it can be observed that the proposed DDPG guidance agent guaran-

tees convergencewithin 100 episodes for all representative scenarios.

Once the training process using characteristic scenarios is finished,

each episode is then initialized with random engagement states with

values uniformly distributed between the minimum and the maxi-

mum values. The learning curves of the training process with random

initial conditions are shown in Fig. 12. It can be clearly noted from
this figure that the average reward of the proposed DDPG guidance
agent converges to its steady-state value within 100 episodes, even
with random initial conditions.

2. Test Results

Similar to previous section, we test our DDPG guidance agent
using random scenarios with and without target maneuver. The
results for scenarios without target maneuver are provided in Fig. 13,
and the results for scenarios with random target maneuvers are given
in Fig. 14. From these figures, it can be observed that the proposed
DDPG guidance agent provides converged guidance command for
all scenarios. Similar to classical PNG, the guidance algorithm
developed guarantees near zero final guidance command against
nonmaneuvering targets if the interceptor has enough maneuverabil-
ity. Compared with directly learning guidance commands, learning
guidance gain provides smoother guidance commands with less
command oscillations and therefore is more desired for practical
applications.
To better show the advantages of learning with prior knowledge,

Monte Carlo simulations are performed to compare the two learning

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

a) Flight trajectory

0 0.5 1 1.5 2 2.5 3
-80

-60

-40

-20

0

20

40

60

80

100

b) Acceleration response

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
104

c) Control effort

Fig. 9 Comparison results of scenario 1.

0 1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

1200

1400

1600

1800

a) Flight trajectory

0 1 2 3 4 5
-30

-20

-10

0

10

20

30

40

50

b) Acceleration response

0 1 2 3 4 5
0

500

1000

1500

2000

c) Control effort

Fig. 10 Comparison results of scenario 2.

HE, SHIN, AND TSOURDOS 579



strategies that have been developed in this paper. To test the robust-

ness of the proposed formulations, the simulations are carried out in

noise-corrupted environment, and the statistical characteristics of the

considered measurement noise are summarized in Table 5. The

detailed statistical comparisons of two different learning strategies

are summarized in Table 6. The successful rate is defined by the

number of scenarios with miss distance less than 2 m over the total

number of scenarios. Because the actions of these two different

learning strategies are given in a nonlinear feedback form of the

engagement states, these two computational guidance algorithms

show strong robustness against the undesired noise; e.g., the perfor-

mance variation is small. However, it is clear from Table 5 that

leveraging prior knowledge significantly outperforms learning

from scratch: using prior knowledge during learning increases the

expected total reward and thus provides higher successful intercep-

tion rate.

10 20 30 40 50 60 70 80 90 100
-6000

-5000

-4000

-3000

-2000

-1000

0

a) Condition 1

10 20 30 40 50 60 70 80 90 100
-2000

-1500

-1000

-500

0

b) Condition 2

10 20 30 40 50 60 70 80 90 100
-2000

-1500

-1000

-500

0

c) Condition 3

10 20 30 40 50 60 70 80 90 100

-1400

-1200

-1000

-800

-600

-400

-200

0

200

d) Condition 4

Fig. 11 Learning curves with some fixed characteristic initial conditions.

20 40 60 80 100
-15000

-10000

-5000

0

Fig. 12 Learning curves with random initial conditions.

0 1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

1200

1400

1600

1800

a) Flight trajectory

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

b) Relative range

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-100

-80

-60

-40

-20

0

20

40

60

80

100

c) Commanded response

Fig. 13 Test results with random initial conditions for nonmaneuvering target.

580 HE, SHIN, AND TSOURDOS



VI. Conclusions

A computational guidance algorithm has been developed for

missile–target interception using deep RL techniques. A heuristic

reward function is proposed to encourage the missile to intercept the

target in a rapid and stable manner with acceptable energy consump-

tion. The state-of-the-art DDPG approach is leveraged to train an RL

agent with a deterministic action policy that maximizes the expected

total reward. Extensive numerical simulations validate the effective-

ness of the proposed approach. Futurework includes solving the deep

RL guidance problem using a more realistic model that contains

aerodynamic forces, thrust, and target maneuver. Validating the

proposed computational guidance algorithm under uncertain envi-

ronment is also an important issue and requires further explorations.

References

[1] Zarchan, P., Tactical and Strategic Missile Guidance, AIAA, Reston,
VA, 2012, Chap. 2.

[2] He, S., and Lee, C.-H., “Optimality of Error Dynamics in Missile
Guidance Problems,” Journal of Guidance, Control, and Dynamics,
Vol. 41, No. 7, 2018, pp. 1624–1633.
https://doi.org/10.2514/1.G003343

[3] Jeon, I. S., Karpenko, M., and Lee, J. I., “Connections Between Propor-
tional Navigation and Terminal Velocity Maximization Guidance,”
Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, 2019,
pp. 1887–1892.
https://doi.org/10.2514/1.G001681

[4] Kim,B. S., Lee, J. G., andHan, H. S., “Biased PNGLaw for Impact with
Angular Constraint,” IEEE Transactions on Aerospace and Electronic

Systems, Vol. 34, No. 1, 1998, pp. 277–288.
https://doi.org/10.1109/7.640285

[5] Lee, C.-H., Kim, T.-H., and Tahk, M.-J., “Interception Angle Control
Guidance Using Proportional Navigation with Error Feedback,”
Journal of Guidance, Control, and Dynamics, Vol. 36, No. 5, 2013,
pp. 1556–1561.

[6] Kim, T.-H., Lee, C.-H., Tahk, M.-J., and Jeon, I.-S., “Biased PNG
Law for Impact-Time Control,” Transactions of the Japan Society for

Aeronautical and Space Sciences, Vol. 56, No. 4, 2013, pp. 205–214.
https://doi.org/10.2322/tjsass.56.205

[7] Lu, P., “Introducing Computational Guidance and Control,” Journal

ofGuidance,Control, andDynamics, Vol. 40,No. 2, 2017, pp. 193–193.
https://doi.org/10.2514/1.G002745

[8] Shukla, D., Lal, R., Hauptman, D., Keshmiri, S. S., Prabhakar, P., and
Beckage, N., “Flight Test Validation of a Safety-Critical Neural
Network Based Longitudinal Controller for a Fixed-Wing UAS,” AIAA
Aviation 2020 Forum, AIAA Paper 2020-3093, 2020.

[9] Dwivedi, P. N., Bhattacharya, A., and Padhi, R., “Suboptimal Mid-
courseGuidance of Interceptors forHigh-SpeedTargetswithAlignment
Angle Constraint,” Journal of Guidance, Control, and Dynamics,
Vol. 34, No. 3, 2011, pp. 860–877.
https://doi.org/10.2514/1.50821

[10] Padhi, R., and Kothari, M., “Model Predictive Static Programming: A
Computationally Efficient Technique for Suboptimal Control Design,”
International Journal of Innovative Computing, Information and

Control, Vol. 5, No. 2, 2009, pp. 399–411.
[11] Oza, H. B., and Padhi, R., “Impact-Angle-Constrained Suboptimal

Model Predictive Static Programming Guidance of Air-to-GroundMis-
siles,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1,
2012, pp. 153–164.
https://doi.org/10.2514/1.53647

[12] Halbe, O., Raja, R. G., and Padhi, R., “Robust Reentry Guidance of a
Reusable LaunchVehicleUsingModel Predictive Static Programming,”
Journal of Guidance, Control, and Dynamics, Vol. 37, No. 1, 2014,
pp. 134–148.
https://doi.org/10.2514/1.61615

[13] Pan, B., Ma, Y., and Yan, R., “Newton-TypeMethods in Computational
Guidance,” Journal of Guidance, Control, and Dynamics, Vol. 42,
No. 2, 2019, pp. 377–383.
https://doi.org/10.2514/1.G003931

[14] Shin, H.-S., He, S., and Tsourdos, A., “Computational Flight Control: A
Domain-Knowledge-Aided Deep Reinforcement Learning Approach,”
arXiv preprint arXiv:1908.06884, 2019, https://arxiv.org/abs/1908.06884.

[15] Zhao, X., Wang, Z., and Zheng, G., “Two-Phase Neural Combinatorial
Optimization with Reinforcement Learning for Agile Satellite Sched-
uling,” Journal of Aerospace Information Systems, Vol. 17, No. 7, 2020,
pp. 346–357.
https://doi.org/10.2514/1.I010754

[16] Bloem, M., and Bambos, N., “Ground Delay Program Analytics with
Behavioral Cloning and Inverse Reinforcement Learning,” Journal of
Aerospace Information Systems, Vol. 12, No. 3, 2015, pp. 299–313.
https://doi.org/10.2514/1.I010304

[17] Gaudet, B., and Furfaro, R., “Missile Homing-Phase Guidance Law
Design Using Reinforcement Learning,” AIAA Guidance, Navigation,

and Control Conference, AIAA Paper 2012-4470, 2012.
[18] Gaudet, B., Linares, R., and Furfaro, R., “DeepReinforcement Learning

for Six Degree-of-Freedom Planetary Powered Descent and Landing,”
Advances in Space Research, Vol. 65, No. 7, 2020, pp. 1723–1741.

[19] Gaudet, B., and Linares, R., “Adaptive Guidance with Reinforcement
Meta-Learning,” arXiv preprint arXiv:1901.04473, 2019, https://arxiv
.org/abs/1901.04473.

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

a) Flight trajectory

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

b) Relative range

0 0.5 1 1.5 2 2.5 3 3.5 4
-100

-80

-60

-40

-20

0

20

40

60

80

100

c) Commanded response

Fig. 14 Test results with random initial conditions for maneuvering target.

Table 5 Statistical characteristics of

measurement noise

Parameter Mean Standard deviation

Range, r 0 20 m

Range rate, _r 0 5 m∕s
LOS angle, λ 0 0.2 rad

LOS rate, _λ 0 0.2 �m ⋅ rad�∕s

Table 6 Statistical comparisons of two different learning strategies

Total reward

Strategy
Target

maneuver
Successful
rate, % Mean

Standard
deviation Maximum Minimum

From
scratch

No 61.29 −9.1103 22.4912 −0.7997 −146.6742

Random 58.07 −6.3011 3.9781 −2.2097 −16.3913
With prior
knowledge

No 77.93 −4.7860 5.0917 −0.4975 −20.2109

Random 74.01 −4.5001 4.4909 −0.9003 −25.3378

HE, SHIN, AND TSOURDOS 581

https://doi.org/10.2514/1.G003343
https://doi.org/10.2514/1.G003343
https://doi.org/10.2514/1.G003343
https://doi.org/10.2514/1.G003343
https://doi.org/10.2514/1.G001681
https://doi.org/10.2514/1.G001681
https://doi.org/10.2514/1.G001681
https://doi.org/10.2514/1.G001681
https://doi.org/10.1109/7.640285
https://doi.org/10.1109/7.640285
https://doi.org/10.1109/7.640285
https://doi.org/10.1109/7.640285
https://doi.org/10.2322/tjsass.56.205
https://doi.org/10.2322/tjsass.56.205
https://doi.org/10.2322/tjsass.56.205
https://doi.org/10.2322/tjsass.56.205
https://doi.org/10.2322/tjsass.56.205
https://doi.org/10.2514/1.G002745
https://doi.org/10.2514/1.G002745
https://doi.org/10.2514/1.G002745
https://doi.org/10.2514/1.G002745
https://doi.org/10.2514/1.50821
https://doi.org/10.2514/1.50821
https://doi.org/10.2514/1.50821
https://doi.org/10.2514/1.50821
https://doi.org/10.2514/1.53647
https://doi.org/10.2514/1.53647
https://doi.org/10.2514/1.53647
https://doi.org/10.2514/1.53647
https://doi.org/10.2514/1.61615
https://doi.org/10.2514/1.61615
https://doi.org/10.2514/1.61615
https://doi.org/10.2514/1.61615
https://doi.org/10.2514/1.G003931
https://doi.org/10.2514/1.G003931
https://doi.org/10.2514/1.G003931
https://doi.org/10.2514/1.G003931
https://arxiv.org/abs/1908.06884
https://arxiv.org/abs/1908.06884
https://arxiv.org/abs/1908.06884
https://doi.org/10.2514/1.I010754
https://doi.org/10.2514/1.I010754
https://doi.org/10.2514/1.I010754
https://doi.org/10.2514/1.I010754
https://doi.org/10.2514/1.I010304
https://doi.org/10.2514/1.I010304
https://doi.org/10.2514/1.I010304
https://doi.org/10.2514/1.I010304
https://arxiv.org/abs/1901.04473
https://arxiv.org/abs/1901.04473
https://arxiv.org/abs/1901.04473


[20] Scorsoglio, A., Furfaro, R., Linares, R., and Massari, M., “Actor-Critic
Reinforcement Learning Approach to Relative Motion Guidance in
Near-Rectilinear Orbit,” 29th AAS/AIAA Space Flight Mechanics Meet-

ing, American Astronautical Soc., San Diego, CA, 2019, pp. 1–20.
[21] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-

mare,M.G., Graves, A., Riedmiller,M., Fidjeland,A.K., Ostrovski, G.,
and Petersen, S., “Human-Level Control Through Deep Reinforcement
Learning,” Nature, Vol. 518, No. 7540, 2015, p. 529.
https://doi.org/10.1038/nature14236

[22] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,
Silver, D., andWierstra, D., “Continuous Control with Deep Reinforce-
ment Learning,” arXiv preprint arXiv:1509.02971, 2015, https://arxiv
.org/abs/1509.02971.

[23] Yucelen, T., and Haddad, W. M., “Low-Frequency Learning and Fast
Adaptation in Model Reference Adaptive Control,” IEEE Transactions

on Automatic Control, Vol. 58, No. 4, 2013, pp. 1080–1085.
https://doi.org/10.1109/TAC.2012.2218667

[24] Gaudio, J. E., Gibson, T. E., Annaswamy, A. M., Bolender, M. A., and
Lavretsky, E., “Connections Between Adaptive Control and Optimiza-
tion in Machine Learning,” 2019 IEEE 58th Conference on Decision

and Control (CDC), Inst. of Electrical and Electronics Engineers, New
York, 2019, pp. 4563–4568.

[25] Rawling, A., “On Nonzero Miss Distance,” Journal of Spacecraft and
Rockets, Vol. 6, No. 1, 1969, pp. 81–83.
https://doi.org/10.2514/3.29539

[26] He, S., Song, T., and Lin, D., “Impact Angle Constrained Integrated
Guidance and Control for Maneuvering Target Interception,” Journal of
Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2653–2661.
https://doi.org/10.2514/1.G002201

[27] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., andMeger,
D., “Deep Reinforcement Learning thatMatters,” 32nd AAAI Conference
on Artificial Intelligence, New Orleans, Louisiana, 2018, Paper 1169.

[28] Islam, R., Henderson, P., Gomrokchi, M., and Precup, D., “Reproduc-
ibility of Benchmarked Deep Reinforcement Learning Tasks for Con-
tinuous Control,” Proceedings of the Reproducibility in Machine

Learning Workshop at the 34th International Conference on Machine

Learning, Sydney, Australia, 2017, Paper 7.

E. Atkins
Associate Editor

582 HE, SHIN, AND TSOURDOS

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.1109/TAC.2012.2218667
https://doi.org/10.1109/TAC.2012.2218667
https://doi.org/10.1109/TAC.2012.2218667
https://doi.org/10.1109/TAC.2012.2218667
https://doi.org/10.1109/TAC.2012.2218667
https://doi.org/10.2514/3.29539
https://doi.org/10.2514/3.29539
https://doi.org/10.2514/3.29539
https://doi.org/10.2514/3.29539
https://doi.org/10.2514/1.G002201
https://doi.org/10.2514/1.G002201
https://doi.org/10.2514/1.G002201
https://doi.org/10.2514/1.G002201


Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2021-06-28

Computational missile guidance: a deep

reinforcement learning approach

He, Shaoming

AIAA

He S, Shin H-S, Tsourdos A. (2021) Computational missile guidance: a deep reinforcement

learning approach. Journal of Aerospace Information Systems, Volume 18, Number 8, August

2021, pp. 571-582

https://doi.org/10.2514/1.I010970

Downloaded from Cranfield Library Services E-Repository


