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Abstract A data-driven statistical analysis of the missile’s capture region is per-
formed. The capture region is the region of the initial geometric configuration for
pursuer missile against a target in which the missile can intercept the target while
satisfying specific constraints. The statistical verification approach has advantages
over the analytic approach in that it can deal with various guidance algorithms and
target maneuver utilizing numerical simulator. In this study, the verification model
is constructed using the Gaussian process regression model. The verification model
computes the probability distribution of the target capture over the initial configura-
tion space. The data-driven capturability analysis is conducted for the maneuvering
target using the Gaussian process regression model. The capture region derived from
the statistical model is compared with the analytic model, and the effectiveness of
the active sampling algorithm is demonstrated.
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1 Introduction

Performances of missile guidance laws should be verified in several aspects. The inter-
ception accuracy, robustness, and control efficiency are some examples of qualifying
the performance of the guidance laws. In general, missile cannot always ensure a
perfect interception against an arbitrary target performing diverse maneuver, and
therefore it is necessary to analyze the guidance law on its feasible initial configura-
tion to capture the target. The capture region refers to the initial configuration of
the missile with respect to target in which a satisfactory interception is possible.

There are various approaches for the verificaion of capturability of missile against
a target, which are generally classified into two approaches: analytic approach, and
statistical approach. Proof-based certificate approach and exact solution approach
belong to the analytic verification [1]. These analytic verification approaches guaran-
tee that the closed-loop system satisfies the requirements under specific assumptions
and modeling. In missile guidance, capturability analysis has been studied as a means
of analytic verification. The performance of the pure proportional navigation guid-
ance (PPNG) was investigated in Ref. [2]. The necessary condition of the navigation
constant was addressed, and the characteristics of the PPNG corresponding to the
navigation constant was discussed. Progress analysis based on the analytic solution
of PPNG was performed in Ref. [3], and the performance of the proportional nav-
igation guidance (PNG) was further investigated by considering the maneuver of
the target [4–8], seeker’s field-of-view limit [9,10], and for the three dimentional mo-
tion [11]. For the analytic verification, however, it is very hard to derive the certificate
or the exact solution for the full system dynamic equations of motion. Considering
the difficulty, it is often to consider only a simplified model of the dynamic equations
in the analytic verification approaches [2, 7, 8].

On the other hand, the statistical verification approach evaluates the performance
of the system from the perspective of statistics. The statistical verification approach
returns statistical certificates based upon big sets of simulation/experimental data.
This approach can be utilized for wider types and the classes of system, relaxing
the modeling assumptions of the analytic verification approaches. In particular, the
simulation model or physical prototype in the statistical verification approach should
be of high fidelity to derive an acceptable verification model. In this regard, the
statistical verification approach may be suitable for the problem that the analytic
approach cannot be applied due to the complexity, but it requires intensive data.

In this study, a stochastic verification of the capturability of missile system is
studied using data-driven approach. The capture region of a missile is obtained
against maneuvering target. Due to the high nonlinearity and uncertainties on the
target motion, the capturability analysis of missile systems using the analytic ap-
proach is challenging. The stochastic property of the target motion is present as a
process and measurement noise in dynamic systems, which generates randomness
into the closed-loop system dynamics and intensifies the difficulties of the captura-
bility verification. It can be stated that the deterministic case is a subset of the
stochastic case. That is, a stochastic method can be applied for a deterministic sys-
tem, while a deterministic method cannot be applied for a stochastic system. In
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this study, the verification model computes the expected probability of satisfactory
performance at every points in the search space. The Gaussian process(GP) regres-
sion model is utilized to train the verification model [12]. For the effective sampling
of data, active learning technique based on importance-weighted random sampling
(IWRS) technique is adopted.

The contributions of this study are as follows. First, the capture region of an
arbitrary missile guidance law is obtained by statistical verification method. The
stochasticity in target maneuver is modeled, and the missile engagement dynamics
against the target is formulated in a nonlinear closed-loop system. The statistical
verification method is applied to train the verificaiton model of the system which
calculates the capture region. Second, in the application of the statistical verifica-
tion method, IWRS technique is adopted for an efficient sampling of collecting the
training data. The GP-based statistical capture region model calculates the capture
region. Last, the proposed verification method shows more beneficial features than
the analytic solution of the capture region. The analytic approach in [9] and [10]
only satisfies the requirements under a specific modeling assumption and does not
take the stochasticity into consideration. The proposed approach has merit in that
the capture region is represented as a probability distribution over the configuration
space. Also, the proposed method is advantageous in that the GP-based statistical
model can deal with various variations in subsystems, which may include the change
of guidance laws, tuning parameters, and dynamic models.

This paper is organized as follows. The mathematical background which helps
understanding the proposed method is summarized in Section II. In Section III,
the problem of obtaining capture region is formulated. The guidance law and the
engagement geometry are explained in this section. In Section IV, the proposed
method is realized and data-driven capture region is obtained by numerical simutions.
Finally, Section V concludes the paper.

2 Mathematical Background

2.1 Gaussian Process Model

Gaussian process regression model is a Bayesian nonparametric regression tool for
modeling a scalar function across a continuous input space, which is also known as
Kriging. The GP produces the best unbiased prediction of the intermediate values of
the target function h(θ) given some data points, where h(θ) is a real, scalar function
with input vector θ ∈ Θ ⊂ Rp. The GP is used for the method of interpolation. The
interpolated values are modeled by a GP governed by prior covariances. That is, the
GP is completely defined by a scalar mean function m(θ) and covariance function
κ(θ, θ′) such that

h(θ) = GP (m(θ), κ(θ, θ′)) (1)

There is an underlying assumption on the GP to give the best unbiased pre-
dictions: The prior takes the form of the GP such that the samples from the func-
tion h(θ) are normally distributed and the covariance between any distinct samples
is the GP covariance function. From this assumption, the resulting posterior dis-
tribution is also Gaussian, with the mean and covariance are computed from the
observations from the prior. In the vector form, the prior probability distribution
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for h = [h(θ1), · · · , h(θN )]T ,P(h|D, ψ), is assumed to be a joint, multivariate Gaus-
sian distribution with mean vector m = [m(θ1), · · · ,m(θN )]T and covariance matrix
K = [κ(θi, θj)] ∈ RN×N for i, j = 1, · · · , N .

P(h|D, ψ) = N (h|m,K) (2)

where D denotes the set of sample points, ψ is the hyperparameter for the kernel
function, N denotes the normal (or Gaussian) distribution. In the unbiased prior
probability distribution, the prior mean m = 0.

The GP is defined as the joint Gaussian distribution of a finite number of random
variables and be understood as a distribution over possible functions for h(θ). The
objective of using the GP regression model is to infer the true target function h(θ)
from a finite number of sample points {θ1, · · · , θN } in the sample space. The label
y(θi) denotes observations h(θi) from the sample points. Note that the label y(θi)
can be a noisy measurement of h(θi), and the GP model considers h(θ) as a random
function. The resulting GP regression model can be used to predict function values
h(θ) at unobserved input vectors θ.

2.1.1 Training the GP Model

The posterior probability distribution P(h|L, ψ, ϑ) defines the distribution of the
target function h(θ) by training N -samples of dataset L = {D,y} which con-
sists of the sample points D = {θ1, · · · , θN } and the labels (observations) y =
[y(θ1), · · · , y(θN )]T , where ϑ is the set of hyperparameters of the likelihood model.
The likelihood model is given as follows:

P(y|h, ϑ) =
N∏

i=1

P(yi|h(θi), ϑ) (3)

The posterior probability distribution P(h|L, ψ, ϑ) can be derived from the Bayes’
rule as follows [13]:

P(h|L, ψ, ϑ) ∝ P(y|h, ϑ)P(h|D, ψ) (4)

The hyperparameters of the likelihood model ϑ are controlled parameters of the
nonliner system to be verified. In this study, for example, the speed of the pursuer,
the bandwidth of the autopilot, and the guidance algorithm can also be understood
as the hyperparameters of the likelihood model.

2.1.2 Predictions Using GP Model

The observation model is noisy due to the target maneuver, and the GP predictions
using the observations corrupted by uniform Gaussian noise is used in this study.
The observation vector y corrupted by a noise term ϵ can be expressed as follows:

y(θ) = h(θ) + ϵ (5)
ϵ ∼ N (0, ϵ2n) (6)

Then, the probability distribution can be written as follows:

P(y|h, ϵn) = N (y|h, ϵ2n) (7)
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In practice, the noise variance ϵn cannot be known in general. When the noise vari-
ance is known in advance, θ = ϵn and the likelihood model is represented as follows.

P(y|h, ϑ) = N (y|h, ϵ2nI) (8)

Now, the predictions for the distribution of h(θ) at unobserved sample points
can be obtained. For the N∗ number of unobserved sample points D∗, there exist
corresponding prediction values h∗. Then the conditional distribution of h∗ given h
is represented as a multivariate Gaussian distribution as follows [13]:

P(h∗|h,D,D∗, ψ) = N (m∗ + KT
∗ K−1(h − m),K∗∗ − KT

∗ K−1K∗) (9)

where scalar K∗∗ = κ(θ∗, θ∗), and K∗ ∈ RN×1 is the vector of kernel function
κ(θ∗, θi), i = 1, · · · , N). From Eq. (9), the posterior predictive distribution of h∗
is obtained by marginalizing Eq. (9) over the posterior distribution in Eq. (4) as
follows:

P(h∗|L,D∗, ψ, ϑ) =
∫

P(h∗|h,D,D∗, ψ)P(h|L, ψ, ϑ)dh (10)

Finally, substituting Eq. (8) into Eq. (10) gives the posterior predictive distribution
as follows:

P(h∗|L,D∗, ψ, ϑ) = N
(
m∗ + KT

∗ (K + ϵ2nI)−1(y − m),K∗∗ − KT (K + ϵ2nI)−1K∗
)

≜ N (µ(θ∗), σ(θ∗))
(11)

More detailed explanations on the derivation of the posterior predictive distribu-
tion can be found in [14].

The GP verification model should return the probability of y(θ∗) > 0 given
L, θ∗, ψ, and ϑ. From Eq. (11), the estimation of the probability is computed as
follows:

p̂sat(θ∗) = P(y(θ∗) > 0|L, θ∗, ψ, ϑ) = 1
2 + 1

2erf

(
µ(θ∗)√

2(Σ(θ∗) + ϵ2y)

)
(12)

2.1.3 Kernel Function

For the kernel function, the designer can choose a proper kernel function from many
possible candidates. In this study, the squared exponential kernel function with au-
tomatic relevance determination is used.

κ(θ, θ′) = σ2
f exp

(
−1

2(θ − θ′)TΛ(θ − θ′)
)

(13)

Λ = diag(σ2
1 , · · · , σ2

p) (14)

where σ1, · · · , σp are weights for each dimension in θ. Therefore, the hyperparameter
is defined as ψ = {σf , σ0, · · · , σp}.
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2.2 Active Learning Algorithm

The objective of active learning is to build an accurate learning model with a small
number of datasets containing labeled points. The sample points are selected actively
by the constructed learning model. The importance of using active learning increases
when the cost of obtaining the training dataset increases. In this study, the cost
responds to the computation power or time of the numerical simulation. Due to its
importance, the active learning algorithms have extensively been developed [15–22]

The selection criteria is the reduction in the cumulative distribution function
(CDF) variance, V (θ|L, ψ, ϑ). The reduction in the CDF variance is selected for
the selection criteria because the likelihood of high prediction error is coupled to
the CDF variance. To reduce the probabilistic bounds on the prediction error, the
variance should be minimized and the best sample θ would either minimize the cu-
mulaive posterior CDF variance. More detailed explanations on this selection criteria
is discussed in [14]. Computing the true CDF variance by marginalizing over the
distribution of the hyperparameters, ψ and ϑ, is practically intractable. Therefore,
the CDF variance using a specific set of hyperparameters is used, which reduces
the probabilistic bounds on prediction error when selecting the new samples via the
active learning algorithm. The best selection of the sample point θ̄ minimizes the
cumulative posterior CDF variances.

θ̄ = argmin
θ∗

V (Θd|L+, ψ, ϑ) (15)

where L+ = L ∪ {θ∗, y(θ∗)}, θ∗ is the newly sampled points, and y(θ∗) is the cor-
responding measurements. However, since y(θ∗) cannot be known before conducting
the simulation, the expected CDF variance V̂ (θ|L̂+, ψ, ϑ) is used instead. That is,
the estimated posterior training dataset L̂+ = L ∪ {θ∗,E[y(θ∗)]} is used to compute
the expected CDF variance V̂ (θ|L̂+, ψ, ϑ). Also, it is computationally intractable to
compute the variance over the entire sample space Θd, and the local improvement
in CDF variance is maximized instead as follows:

θ̄ = argmax
θ∗

Ṽ (θ∗|L, ψ, ϑ) (16)

where
Ṽ (θ∗|L, ψ, ϑ) = V (θ∗|L, ψ, ϑ) − V̂ (θ∗|L̂+, ψ, ϑ) (17)

The solution of Eq. (16) is written as follows.

θ̄ = argmax
θ∗

(
1

2πϵ2y
e−µ(θ∗)2/ϵ2

yΣ(θ∗)
(

Σ(θ∗)
Σ(θ∗) + ϵ2y

))
(18)

The detailed process of obtaining the solution of Eq. (16) is explained in [14].

2.2.1 Importance-weighted random sampling

In this study, the importance-weighted random sampling algorithm is used for the
active learning of the verification model. The IWRS algorithm forms a probability
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distribution as follows:

PV (θ) = 1
ZV

Ṽ (θ|L, ψ, ϑ) (19)

ZV =
|Θd|∑
i=1

Ṽ (θi|L, ψ, ϑ) (20)

The samples are selected from the distribution PV randomly. Therefore, regions
with high local improvement in CDF variance will have a large probability of selec-
tion. This randomized sampling method will lead samples to be distributed across
all regions of high probability.

3 Missile Interception Problem Formulation

3.1 Engagement Model

The engement model of the pursuer-evader in 2D plane is considered in this study.
The pursuer and the evader are represented as point masses, and the speed of the
pursuer is assumed to be constant. The kinematic equations of the engagement be-
tween a pursuer and an evader can be described as follows:

r = re − rp

ṙ = Ve − Vp

r̈ = Ae − Ap

(21)

where r(·),V(·), and A(·) represent the position, velocity, and accelerations vectors,
respectively. The subscripts e and p represent the evader and the pursuer, respec-
tively. In scalar representation, the equations can be rewritten as follows:

ṙ = Ve cos (γe − λ) − Vp cos (λ− γp)
rλ̇ = Ve sin (γe − λ) + Vp sin (λ− γp)

r̈ − rλ̇2 = ae,∥ − ap cos (λ− γp)
rλ̈+ 2ṙλ̇ = ae,⊥ + ap sin (λ− γp)

(22)

where r, λ, V(·), γ(·), and a(·) are distance line-of-sight angle between the persuer and
the evader, speed, flight path angle, and accelerations, respectively. Figure 1 shows
the engagement geometry between the pursuer and the evader which describes the
definition of the variables. In Fig. 1, σ is the lead angle of the pursuer.

σ = λ− γp (23)

Using Eq. (22), the time derivative of the lead angle can be obtained as

σ̇ = 1
r

{Ve sin (γe − λ) + Vp sin (λ− γp)} −
ap

Vp
(24)

Because ap is the lateral acceleration, which is perpendicular to the velocity direction,
the pursuer’s speed remain constant, and

γ̇p = ap

Vp
(25)
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Fig. 1 Engagement geometry bewteen the pursuer and the evader

In this study, the actuator’s dynamic model is approximated with first-order
system. The transfer function between the acceleration command and the lateral
acceleration is represented as follows:

ap(s)
acmd

p

= wn

s+ wn
(26)

where wn is the bandwidth of the autopilot or controller.
The magnitude and direction of ae is unknown, but ae may affect the capture

region of the pursuer.

3.2 Analytic Capture Region of Pure Proportional Navigation Guidance Law

In this study, the capture region of pure proportional navigation guidance (PPNG)
law is considered. The acceleration command from PPNG is defined as follows:

acmd
p = NVpλ̇ (27)

where N is the navigation constant. The principle of the PPNG is to steer the
guidance command proportional to the LOS angle and eventually to enter a stable
collision course. From Eqs. (23) and (27), neglecting the actuator dynamics, the LOS
rate can be represented in terms of the flight-path angle and the look angle as follows:

λ̇ = γ̇p + σ̇ = 1
N
γ̇p = 1

1 −N
σ̇ (28)
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The time integration of Eq. (28) yields,

λ− λ0 = 1
N

(γp − γ0) = − 1
N − 1(σ − σ0) (29)

where the subscript (·)0 denotes the initial value of the variable. The flight-path angle
and the look angle change in accordance with the LOS variation until the collision
condition satisfies. The condition whether the missile enters the collision condition
can be determined by the selection of the navigation gain, which was investigated
in [2]. When the navigation constant is chosen to satisfy the following inequality
conditions, the missile will enter the collision course.

η < 1/
√

2, N > 2
(

1 + η/
√

1 − η2
)
> 2(1 + η) (30)

where η = Ve/Vp is the speed ratio between the evader and the pursuer.

Theorem 1 (Capture Region of PPNG without FOV limit [9]) A missile
pursuing a target by using PPNG with (N − 1)Vm > VT and Vm > VT will reach
the target for all but a finite number of initial conditions. Moreover, the missile will
arrive at the target along a straight line whose direction λ = λP P N is determined by

VT sin(γT − λP P N ) + Vm sin (σ0 + (1 −N) (λP P N − λ0)) = 0 (31)

Theorem 1 implies that the PPNG renders the missile to enter a collision course
by choosing the navigation gain addressed in Eq. (30). The terminal values of the
flight-path angle, the look angle, and the LOS angle associated with the collision
course can be calculated by solving Eq. (31). The analytic capture region is need for
comparison with the capture region obtained by the data-driven method proposed in
this study. The capturability study of the PPNG was also investigated by considering
additional constraints including the target acceleration [4–6,11,23], and seeker’s field-
of-view limit [9]. However, it is worth noting that further investigation is needed to
take the stochastic motion of the maneuvering target into account in the analysis.

3.3 Target Maneuver

In this study, maneuvering target with constant lateral acceleration is considered. In
practice, the maneuver of the target cannot be accurately known in advance. There-
fore, the magnitude of the target’s lateral acceleration is modeled with a random
variable using a uniform distribution as follows:

aT ∼ U(aT , āT ) (32)

where aT and āT are the lower and the upper bound of the uniform distribution,
respectively. In this study, aT = −0.5m/s2 and āT = 0.5m/s2 are used.

In realistic situations, the target may conduct some specific evasive maneuver.
Then the probability distribution of the capture region changes consequently. If a
specific evasive maneuver of the target is defined and realized in the simulator, the
capture region against the target of the specific evasive maneuver can be obtained.
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4 Capture Region Analysis using GP Regression Model

In this study, the variable of the missile system was modeled with the statistical
modeling. This modeling is rationally conducted and scaling functions were designed
to label the data and approximate the target function. Also, the performance of the
proposed method was validated by comparing the errors computed from the true
probability distribution for both of the deterministic case and the stochastic case.

In this section, the capture region analysis of the interceptor missile against a
maneuvering target is discussed. As pointed out in the previous section, the capture
region can be obtained via analytic approaches and statistic(data-driven) approaches.
The analytic capture region from [9] is breifly introduced and the statistic approach
is discussed. The data-driven verification approach using deterministic verification
model is studied for the target with constant maneuver in [24], wherein the support
vector machine is used to obtain the decision boundary for the binary verification.
However, with the deterministic verification model, the capture region should be
computed for every possible magintude of the target maneuver because the magni-
tude of the target maneuver cannot be known in advance. In contrast, the stochastic
verification using GP regression model can cover the target maneuver of arbitrary
magnitude.

First, the analytical capture region of the PPNG against stationary target is com-
pared with the statistical verification result in this section. Obtaining the capture
region of the PPNG against stationary target belongs to the category of deterministic
problems, and therefore, a deterministic statistical verification model may be utilized
to obtain the statistical capture region. The stochastic verification model including
GP regresssion model can also provide the statistical capture region. Because the
stochastic verification model calcultes the probability distribution over the configu-
ration space, the decision boundary can easily be obtained by specifying a certain
threshold of the probability. In this section, the decision boundary obtained from
the GP regression model is compared with the analytic capturable region. In this
comparison, the verification error of the GP regression model is analyzed considering
the analytic capture region as the true capture region.

Second, the capture region analysis is conducted against a target with maneuver.
In this case, the analytic capture region analysis is not possible. Therefore, the
statistical capture region analysis is conducted. Because it is not possible to obtain
the true capture region(true probability distribution in this case) psat(θ), the true
probability distribution is approximately obtained by conducting 100 number of
numerical simulations at each sample point θ in the configuration space θ ∈ Θd.

Remark 1 In the data-driven approach, the quality of the data is very important.
That is, the simulator fidelity should be secured to trust the simulation result and
the corresponding capture region. In this study, for the sake of brevity, a simplified
missile system model of low fidelity is used to focus on the method of stochastic
verification of a nonlinear system.

4.1 Statistical Verfication of Stochastic Capture Region

When the verification model is deterministic, binary verification model such as sup-
port vector machine can be utilized to obtain the capture region. The binary verifi-
cation model divides the sample space (the initial configuration space) into two. One
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Algorithm 1: Verification using importance-weighted random sampling
Input : Initial training set L = {D,y}, number of iterations T , and batch size M

1 initialization: train GP regression model from randomly sampled points;
2 for i = 1, 2, · · · , T do
3 Initizlize: S = ∅;
4 Transform E(θ|L, ψ) into probability distribution PV (θ);
5 Generate M random samples from PV (θ), add to S;
6 Perform simulation ∀θ ∈ S, obtain result yS ;
7 Add {S,yS} to training set L;
8 Retrain model with updated L;
9 end

Return: predicted sets Θ̂sat, Θ̂fail, and confidence P(y(θ) > 0|L, ψ)∀θ ∈ Θd

Sampling 
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▪ Initial configuration 
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Fig. 2 Process block diagram for the proposed method

is the predicted success region and the other is the predicted fail region. However,
because of the stochastic nature of the closed-loop system, the capture region of the
missile against maneuvering target cannot be represented as the binary verification
model. In this study, the GP regression model is trained to obtain the stochastic
capture region of a missile. The GP regression model calculates the probabilistic
distribution of chance to capture the target at every point in the sample space.

Algorithm 1 describes the verification procedure using GP regression model. The
initial GP regression model should be trained using randomly sampled points in
available sample locations U (Step 1). The initial GP regression model is used to
compute the probability distribution PV (θ). The entropy is converted into proba-
bility distribution in Step 4. In Step 5, M sample locations are chosen from the
probability distribution. Next, numerical simulations are conducted for M samples
chosen, and the simulation result yS is obtained (Step 6). The sample points and
the result are added to the training dataset L (Step 7), and the GP regression model
is retrained. After the T batches are iterated, the algorithm returns the predicted
sets and confidence, where Θ̂sat stands for the predicted satisfactory set and Θ̂fail

stands for the predicted fail set.
The data-driven approach has merit in that various dynamic systems to be veri-

fied can be considered. In contrast, an analytic approach is only valid for a given par-
ticular system, which in general requires simplifications. The data-driven approach
can consider any systems under the condition that the corresponding numerical sim-
ulator (or, experiments) can be realized with enough fidelity.

Figure 2 shows a block diagram for the proposed method. In the block diagram,
the process of the proposed method is visualized and the elements for each block are
enumerated. Also, related symbols are stated below the diagram. First, the sampling
algorithm samples the points in the sample space D. When there exists a trained
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GP model, sample points are selected using the IWRS algorithm. In this study, the
sample space is the vector space of the initial configurations (LOS and look angle).
The sample space can be modified when required. For example, the initial range
to the target can also be included in the sample space. Second, the simulator is
used to evaluate the sample points. In the simulator, the simulation settings and
guidance algorithm are included, which do not change. Those can be understood as
hyperparameters ψ in the GP model. Also, stochasticity such as the target maneuver
is included in the simulator. The fidelity of the simulator is important for obtaining
a reliable capture region. The next block is the nonlinear simulator. The simulation
result (miss distance in this study) is computed through the nonlinear transformation
which is called the scaling function, to obtain the labels for each sample point. The
scaling function design is explained in Section 4.2. Then, the dataset is constructed
by combining the sample points and the labels. The GP regression model is trained
using the dataset. This process is iterated as described in Algorithm 1. Finally, the
stochastic capture region is obtained from the trained GP model.

4.2 Scaling Function Design

To realize the verification model using GP, the miss distance m(θ) is processed
through a scaling function y = s(m) to obtain the label y ∈ [−1, 1], where m(θ) is the
miss distance obtained by the simulation from the initial configuration θ = (σ0, λ0).
The objective is to attain the probability distribution of h(θ) over the configuration
space Θd from a given dataset. The physical meaning of the resulting distribution
p̂sat(θ) is the probability of that the miss distance m(θ) is below of a predefined
threshold mthr. In the following simulations, the threshold value mthr = 1m is
used. The predefined threshold determines the shape of the scaling function s(m) as
follows:

s(m) =

Fs
m−mmax

s

mmax
s −mmin

s
if m < mthr

Ff
m−mmin

f

mmax
f

−mmin
f

if m ≥ mthr

(33)

where

ms = {m ∈ m|m−mthr < 0} (34)
mf = {m ∈ m|m−mthr ≥ 0} (35)

mmin
s = min(ms), mmax

s = max(ms) (36)
mmin

f = min(mf ), mmax
f = max(mf ) (37)

and Fs, Ff are scalar scaling factors, and m is the set of miss distance obtained
from the simulations from the configuration set Θd. Note that s(ms) ⊂ [−1, 0] and
s(mf ) ⊂ [0, 1] by the scaling function s(m). Finally, the range of the label y(θ) ∈
[−1, 1]. The label y(θi) = s(m(θi)), which is obtained from the simulation result
conducted at the point θi, is a noisy measurement of h(θi), because of the target’s
maneuver. The resulting GP regression model can be used to predict function values
h(θj) at an arbitrary unobserved point θj ∈ Θd.



Title Suppressed Due to Excessive Length 13

-10 0 10
Look angle [deg]

-20

-10

0

10

20

LO
S 

An
gl

e 
[d

eg
]

#sat

#fail

Fig. 3 Analytic capture region of PPNG against target with constant velocity

4.3 Capture Region Analysis against Deterministic Target

In this section, the capture region for a missile using PPNG against a target with
constant velocity is discussed. The analytic capture region against the target with
constant velocity is obtained and is compared with the data-driven capture region.
Therefore, the analytic capture region is considered to be the true solution for the
statistical verification model of the data-driven capture region. The verification er-
ror is computed based on this comparison, and evaluates the performance of the
statistical verification model. In the simulations, the initial range to the target is
r(0) = 5, 000m, the speed of the pursuer missile is Vp = 400m/s, and the speed of
the target is Ve = 300m/s.

A discretized configuration space Θd ⊂ (σ0 ×λ0) is considered for the data-driven
capture region analysis. That is, the capture region is defined as the two dimensional
plane of the initial LOS angle λ0 and the initial lead angle σ0, because the analytic
capture region is described in this configuration space. Note that the discretization of
the configuration space is not required for the analytic approach here. The analytic
capture region of PPNG against target with constant velocity is displayed in Fig. 3,
which divides the configuration space Θd into two (Θsat, Θfail). If a user wants to
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Fig. 4 Evolution of the decision boundary

conduct the capture region analysis along with some parameters of the missile or
target, then it is natural to augment the parameter into the input vector θ. In this
study, only limited number of inputs (look angle and LOS angle) was considered for
the sake of conciseness and the easiness of the visualization of the result.

Figure 4 shows the time evolution of the decision boundary of the verification
model. The light red and light blue colors in the background of the figure describe the
true capture region, which is computed from the analytic approach. The red and blue
dots are sampled points, and the black solid line stands for the decision boundary
of the verification model at each iteration. The initial number of samples, which
are selected randomly in the configuration space, is 30. At each iteration, additional
20 number of samples are selected actively using IWRS. It can be shwon that the
samples near the decision boundary are actively selected and the convergence of the
error is boosted.

Figure 5 shows the converging history of the verification error. The verification
error is computed from the decision boundary and the true capture region in the
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Fig. 5 Error converging history

configuration space. Because of the inherent randomness of IWRS, the error does
not always strictly decrease. However, as the iteration number increases, the error
converges toward zero.

4.4 Data-driven Capture Region Analysis against Stochastic Target

In this section, the capture region for a missile using PPNG against a maneuvering
target is discussed. Because of the stochasticity, the capture region is represented as
a probability distribution over the initial configuration space. The analytic capture
region is not available in this case. Therefore, the approximated true probability
distribution should be computed based on a dense discretization of the initial config-
uration space followed by numerical simulations on every single point in the space.
In the simulations, the initial range to the target is r(0) = 5, 000m, the speed of the
pursuer missile is Vp = 400m/s, and the speed of the target is Ve = 300m/s.

Figure 6 is an illustration of the histogram of the label y(θ) at θ = (0, 9.54). It
can be spotted from Fig. 6 that the stochasticity leads to a noisy measurement y(θ).
This observation is quite different from the observation model of GP in Eqs. (6)
and (5). The distribution of the miss distance does not seem to follow the Gaussian
distribution. This discrepancy between the model and the actual data may result in
the performance decrease. By better design of the scaling or normalization, it could
be possible to make the observation follow the Gaussian distribution and make the
model show better prediction performance. There exist various statistical approaches
to process given data to follow the normal distribution, including box-cox transforma-
tion, etc. Nonetheless, the GP regression model is still useful for the capture region
analysis. If the distribution of the observation follows the Gaussian distribution, the
prediction performance would be better.

The approximated true probability distribution psat(θ) is computed from 100
times of numerical simulations at each sample point θi ∈ Θd and is shown in Fig. 7. To
evalute the performance of the stochastic verification model, the prediction accuracy
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Fig. 6 Histogram of the labels y(θ) from at location θ = (0, 9.54).

Fig. 7 True satisfaction probabilty function psat(θ) for the capture region against stochastic
target
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Fig. 8 Evolution of the predicted proabability distribution p̂sat(θ)

is computed using mean absolute error (MAE) between p̂sat(θ) and true psat(θ) over
θ ∈ Θd.

Figure 8 illustrates the evolution of the predicted probability distribution p̂sat(θ)
from the trained GP regression model at each iteration. For the discussions about
the selection criterion, Fig. 9 shows p̂ and Ṽ at 14th iteration. The selected points
from IWRS are drawn on each figure. Note that the selected points are spread on
the region of large Ṽ . This region coincides with the region where p̂ ≈ 0.5.

Figure 10 shows the final predicted probability distribution and the approximated
true probability distribution. The decision boundaries that stand for the line where
the probabilities are 0.5, are also descried in the figure. Note that the statistical
verification model using GP regression model gives similar probability distribution
to the true probability distribution.

The MAE converging history is displayed in Fig. 11. In the figure, the mean MAE
and σ error bound for MAE over 100 times of Monte-Carlo simulations with random
initiations of the model training are shown. The MAE converging history of the IWRS
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Fig. 9 The predicted probability distribution p̂sat (Left), and the local improvement of CDF
variance Ṽ (Right) at 14th iteration

Fig. 10 The predicted probability distribution (Left), the true probability distribution (Cen-
ter), and the decision boundary (Right) after 60th iteration

algorithm and that of the random sampling algorithm are compared. Note that the
mean MAE after 60th iteration of the random sampling algorithm is obtained by the
IWRS algorithm after only 20th iteration. The MAE of the verification model goes
below 2% after 20 iterations using active sampling with IWRS. Because the IWRS
selects the sample points actively based on the currrent verification model at each
iteration, the resulting MAE is reduced faster.
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Fig. 11 Mean absolute error history for the stochastic target

The computational benefit of using the proposed GP approach over generat-
ing the approximated true probability distribution using MCs is obvious that the
number of sample points to be simulated can be highly reduced. For example, the
computation time for MC (evaluating every sample point in the discretized sample
space) was 44,932 seconds. However, the computation time for the proposed method
with 60 iterations was 161 seconds including the time consumed for training the GP
model and optimizing the hyperparamters.

5 Conclusions

In this study, a data-driven capturability analysis for the missile guidance algorithm
is studied. A GP regression model is trained to obtain a verification model that
computes the probability distribution of satisfaction of interception against a ma-
neuvering target. The guidance algorithm considered in this study is PPNG, but
is not limited to a particular guidance algorithm because the training dataset can
be obtained using numerical simulations. This is an advantageous feature of the
data-driven statistical verification approach against existing analytic verification ap-
proaches. A comparison between the analytic and the statistic capturability analysis
is conducted. It is demonstrated that the stochastic verification model is also use-
ful for obtaining deterministic decision boundary of the binary verification problem
such as the capture region for a non-maneuvering target. When selecting the sample
points, importance-weighted random sampling technique is used to select efficient
sample points to enhance the performance of the verification model. The verifica-
tion model using active sampling provide better performance than that using ran-
dom sampling. When the maneuvering target is considered, the analytic verification
model cannot consider the stochasticity. However, the statistic verification model
with the GP regression model is available to consider the stochasticity and provides
the probability distribution of capturability.

For the future works, the limitations of the proposed method should be alleviated.
The GP regression model used in this study can only deal with normal distribution
of the stochasticy, which limits the usability. This limitation can be overcomed by
designing a proper scaling function to make the observations follow the normal dis-
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tribution. Also, considering another model other than using the GP regression model
may be another way of the breakthrough.
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